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Algorithms of Data Generation For Deep
Learning and Feedback Design ∗

Wei Kang† Qi Gong‡ Tenavi Nakamura-Zimmerer§ Fariba Fahroo, ¶

April 18, 2021

Abstract

Recent research reveals that deep learning is an effective way of solving high dimensional
Hamilton-Jacobi-Bellman equations. The resulting feedback control law in the form of a
neural network is computationally efficient for real-time applications of optimal control. A
critical part of this design method is to generate data for training the neural network and
validating its accuracy. In this paper, we provide a survey of existing algorithms that can be
used to generate data. All the algorithms surveyed in this paper are causality-free, i.e., the
solution at a point is computed without using the value of the function at any other points.
An illustrative example is given for the optimal feedback design using supervised learning in
which the data is generated using causality-free algorithms.

1 Introduction

A critical part in feedback controllers of dynamical systems is a mathematical feedback law, which
is a function whose output is the control value and its input is the value of sensory information or
estimated states. The control law is designed to meet performance requirements based on a given
system model. The performance of feedback controls includes, but not limited to, minimizing a cost
function, stabilization, tracking, synchronization, etc. After decades of active research, tremendous
progress has been made in the field of control theory that has a huge literature of feedback design
methodologies. For linear systems, there are a well developed theory and commercially available
computational tools, such as MATLAB toolboxes, that help to implement the linear control theory
in practical applications. For nonlinear control systems, rigorous theory and design methods have
been studied and developed. However, their applications to many real-life problems have been
limited by some fundamental challenges. Lacking effective computational algorithms for nonlinear
feedback design is one of the main bottlenecks. For instance, ideally one can solve the Hamilton-
Jacobi-Bellman (HJB) equation that leads to a simple feedback law of optimal control. However,
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solving the HJB equation is a problem that suffers the curse-of-dimensionality. For systems with
even a moderate dimension such as n ≥ 4, finding a numerical solution for the HJB equation is
extremely difficult, if not impossible. The curse-of-dimensionality affects many areas of nonlinear
feedback design, such as differential games, reachable sets, the PDE (or FBI equation) for output
regulation, stochastic control, etc.

Some recent publications reveal that neural networks can be used as an effective tool to over-
come the curse-of-dimensionality. In [20, 32, 23], neural network approximations of optimal con-
trols are found for examples with high dimensions from n = 6 to n = 100. In these examples,
a large number of numerical data is generated using computational algorithms and the system
model. Then a neural network is trained by minimizing a loss function. These examples show
that a neural network tends to be less sensitive to the increase of the dimension, but more depen-
dent on the quality of the data. The methods in [20, 32, 23] share something in common: They are
all model-based and data-driven, i.e., the control law is designed through the training of a neural
network based on data that is generated using a numerical model. After decades of research, a
large variety of computational methods have been developed for optimal control. These methods
are buried in a huge number of research papers. Some of them are well-known only to some specific
communities. In this paper, we give a survey of some existing algorithms of open-loop optimal
control that either have been applied or have a great potential to be applied for the purpose of
generating data for deep learning.

Optimal control has many different formulations, finite/infinite horizon, fixed/free terminal
time, unconstrained/control-constrained/mixed state-control constrained, etc. A computational
method that is appropriate for a certain type of problems may face challenge in solving other types.
This paper not only surveys computational methods but also highlights their special properties
(as shown in Table 1). Such result helps the interested researchers and practitioners to identify
appropriate numerical methods for their problems. The survey does not include those results, such
as [37] for output regulation, [35] for general PDEs and [3] for multiscale stochastic systems, that
are not focused on optimal control although they share similar ideas of deep learning for dynamic
systems.

For background information, we briefly outline the process in [32] of training a neural network
to approximate an optimal control. Similar steps are followed in several other papers mentioned
above. Consider the following problem

minimize
u∈U

∫ tf

t0

L(t,x,u)dt+ ψ(x(tf )),

subject to ẋ(t) = f(t,x,u),
x(t0) = x0.

(1)

Here x(t) : [t0, tf ] → X ⊆ Rn is the state, u(t,x) : [0, tf ] × X → U ⊆ Rm is the feedback
control to be designed, f(t,x,u) : [0, tf ] × X × U → Rn is a Lipschitz continuous vector field,
ψ(x(tf )) : X → R is the terminal cost, and L(t,x,u) : [0, tf ] × X × U → R is the running cost,
or the Lagrangian. The optimal cost, as a function of (t0,x0), is called the value function, which
is denoted by V (t0,x0) or simply V (t,x). The following approach is from [32]. An illustrative
example is given in Section 2

1. Initial data generation: For supervised learning, a data set must be generated. It contains
the value of V (t,x) at random points in a given region. A key feature desired for the
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algorithm is that the computation should be causality-free, i.e. the solution of V (t0,x0) is
computed without using an approximated value of V (t,x) at nearby points. For instance,
finite difference methods for solving PDEs are not causality-free (in space) because the
solution is propagated over a set of grid points. The Causality-free property is important
for several reasons: (1) the algorithm does not require a grid so that the computation can
be applied to high dimensional problems; (2) data can be generated at targeted region for
adaptive data generation; (3) the accuracy of the trained neural network can be checked
empirically in a selected region; (4) data can be generated in parallel in a straightforward
manner.

2. Training: Given this data set, a neural network is trained to approximate the value function
V (t,x). The accuracy of the neural network can be empirically checked using a new data set.
If necessary, an adaptive deep learning loop can be applied. In each round, one can check
the approximation error and then expand the data set in regions where the value function
is likely to be steep or complicated, and thus difficult to learn.

3. Validation: The training process stops when it satisfies the convergence criteria. Then, the
accuracy of the trained neural network is checked on a new set of validation data computed
at Monte Carlo sample points. Once again, a causality-free algorithm is needed here.

4. Feedback control: Causality-free algorithms may not be fast or reliable enough for real-
time feedback control. However, one can compute the optimal feedback control online by
evaluating the gradient of the trained neural network and applying Pontryagin’s maximum
principle. Notably, evaluation of the gradient is computationally cheap even for large n,
enabling implementation in high-dimensional systems.

Physics laws and first principle models are fundamental and critical in control system designs.
Guaranteed system properties by physics laws and mathematics analysis are invaluable. These
properties should be carried through the design, rather than reinventing the wheel by machine
learning. In a model-based data-driven approached outlined in Steps 1 - 4, we take the advantage
of existing models and design methodologies that have been developed for decades, many with
guaranteed performance. The deep neural network is used focusing on the curse-of-dimensionality
only, an obstacle that classical analysis or existing numerical methods have failed to overcome.
Control systems designed in this way should have the performance as proved in classical and
modern control theory, however be curse-of-dimensionality free. Demonstrated in [32, 20, 23],
some advantages of the model-based data-driven approach include: the optimal feedback can
be learned from data over given semi-global domains, rather than a local neighborhood of an
equilibrium point; the level of accuracy of the optimal control and value function can be empirically
validated; generating data using causality-free algorithms has perfect parallelism; the inherent
capacity of neural networks for dealing with high-dimensional problems makes it possible to solve
HJB equations that have high dimensions.

Generating data is critical in three of the four steps shown above. A reliable, accurate and
causality-free algorithm to compute V (t,x), and Vx(t,x) in some cases, is required. Some compu-
tational algorithms for open-loop optimal control are suitable for this task. The goal of this paper
is to provide a survey of some representative algorithms that have been, or have the potential to
be, used for data generation (Sections 3 to 6). In the next section, an example is given to illustrate
the key steps outlined above.
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2 An example of optimal attitude control

This is an example from [32] in which a neural network is trained using adaptive data generation for
the purpose of optimal attitude control of rigid body. The actuators are three pairs of momentum
wheels. The state variable is x =

(
v ω

)
. Here v represents the Euler angles. Following the

definition in [9],

v =
(
φ θ ψ

)T
,

in which φ, θ, and ψ are the angles of rotation around a body frame e′1, e′2, and e′3, respectively, in
the order (1, 2, 3). These are also commonly called roll, pitch, and yaw. The other state variable
is ω, which denotes the angular velocity in the body frame,

ω =
(
ω1 ω2 ω3

)T
.

The state dynamics are (
v̇
Jω̇

)
=

(
E(v)ω

S(ω)R(v)h+Bu

)
.

Here E(v),S(ω),R(v) : R3 → R3×3 are matrix-valued functions defined as

E(v) :=

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

 , S(ω) :=

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 ,

and

R(v) :=

 cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ cos θ sinφ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cos θ cosφ

 .

Further, J ∈ R3×3 is a combination of the inertia matrices of the momentum wheels and the
rigid body without wheels, h ∈ R3 is the total constant angular momentum of the system, and
B ∈ R3×m is a constant matrix where m is the number of momentum wheels. To control the
system, we apply a torque u(t,v,ω) : [0, tf ]× R3 × R3 → Rm. In this example, m = 3. Let

B =

 1 1/20 1/10
1/15 1 1/10
1/10 1/15 1

 , J =

2 0 0
0 3 0
0 0 4

 , h =

1
1
1

 .

The optimal control problem is
minimize

u(·)

∫ tf

t

L(v,ω,u)dτ +
W4

2
‖v(tf )‖2 +

W5

2
‖ω(tf )‖2,

subject to v̇ = E(v)ω,
Jω̇ = S(ω)R(v)h+Bu.

(2)

Here

L(v,ω,u) =
W1

2
‖v‖2 +

W2

2
‖ω‖2 +

W3

2
‖u‖2,
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and

W1 = 1, W2 = 10, W3 =
1

2
, W4 = 1, W5 = 1, tf = 20.

The HJB equation associated with the optimal control has n = 6 state variables and m = 3 control
variables. Solving the HJB equation using any numerical algorithm based on dense grids in state
space is intractable because the size of the grid increases at the rate of N6, where N is the number
of grid points in each dimension. In [27], a time-marching TPBVP solver is applied to compute
the optimal control on a set of sparse gridpoints. In [32], this idea is adopted to generate an initial
data set from the domain

X0 =
{
v,ω ∈ R3

∣∣− π

3
≤ φ, θ, ψ ≤ π

3
and − π

4
≤ ω1, ω2, ω3 ≤

π

4

}
,

This is a small data set with Nd = 64 randomly selected initial states

x(i) = (v(i),ω(i)) for i = 1, 2, · · · , Nd.

Based on the data, a neural network implemented in TensorFlow [1] is trained to approximate the
value function, V (t,x), at t = 0. The neural network has three hidden layers with 64 neurons in
each. The optimization is achieved using the SciPy interface for the L-BFGS optimizer [4, 24].
The loss function has two parts,

L =
1

Nd

Nd∑
i=1

[
V (i) − V NN(t(i),x(i);θ)

]2
+

µ

Nd

Nd∑
i=1

∥∥λ(i) − V NN
x (t(i),x(i);θ)

∥∥2
,

in which µ is a scalar weight. The optimization variable is θ, the parameter in the neural network.
The first part in the loss function penalizes the error of the neural network and the second part
penalizes the error of its gradient. The loss function defined in this way takes the advantage of
the fact that a TPBVP solver finds both the value of V (t,x) and the costate, which equals the
gradient of the value function. Due to the small size of the data set, V NN(t,x) is an inaccurate
approximation of the value function. However, it is often good enough to serve as the initial guess
for the TPBVP solver. As a result, new data can be generated significantly faster than using
time-marching. This makes adaptive data generation possible. After each training round, the
location and number of additional data points are determined following a set of formulae [32].
Then a new data set is generated using a neural network warm start. In this example, a total of
seven training rounds are carried out with the final data set containing Nd = 2110 samples [32].

The accuracy of the neural network over the course of training is shown in Figure 1. As
described in Section 1, accuracy is measured on an independently generated set of Nd,val = 1000
data points. As noted previously, the ability to validate the error in this way is a key advantage of
data-driven approaches. Two error metrics are reported. First, the relative mean absolute error
(RMAE) of value function prediction, which is defined as

RMAE(θ) :=

∑Nd,val

i=1

∣∣V (i) − V NN
(
t(i),x(i);θ

)∣∣∑Nd,val

i=1 |V (i)|
. (3)

Second, the relative mean L2 error (RML2) of gradient prediction, which is defined as

RML2(θ) :=

∑Nd,val

i=1

∥∥λ(i) − V NN
x

(
t(i),x(i);θ

)∥∥
2∑Nd,val

i=1 ‖λ(i)‖2

. (4)
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Compared to pointwise relative errors, these metrics emphasize predictive accuracy in regions
where a lot of control effort is needed. This is important when we are interested in designing
nonlinear controllers which are effective and efficient on large domains.

0    8280 19277 28398 42947 56776 75428 95656
10

-4

10
-3

10
-2

10
-1

0    8280 19277 28398 42947 56776 75428 95656
10

-3

10
-2

10
-1

Figure 1: Progress of adaptive sampling and model refinement for the rigid body problem (2),
compared to training on fixed data sets and the sparse grid characteristics method. Spikes in the
error correspond to the start of new training rounds and expansion of the training data set. Figure
from [32].

3 Characteristic methods

In this section, we review a set of causality-free algorithms that are based on characteristic meth-
ods. They are used in [32, 23] as the tool of generating data for supervised learning. The survey
also includes some other data generating algorithms such as minimization-based algorithms (Sec-
tion 4), methods for stochastic systems (Section 6), and direct methods for optimal control with
constraints (Section 5). Consider the problem of optimal control defined in (1). Let’s define the
Hamiltonian

H(t,x,λ,u) = L(t,x,u) + λTf(t,x,u), (5)

where x ∈ Rn is the state of the control system,

ẋ = f(t,x,u),

in which u ∈ U ⊆ Rm is the control variable. In (5), λ ∈ Rn is the costate and L(t,x,u) is the
Lagrangian of optimal control. The HJB equation is{

Vt(t,x) + min
u∈U
{L(t,x,u) + V T

x (t,x)f(t,x,u)} = 0,

V (tf ,x) = ψ(x),
(6)
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where ψ(x) represents the endpoint cost. The optimal feedback control law is

(t,x)→ u∗(t,x, Vx) = arg min
u∈U

H (t,x, Vx,u) . (7)

If we assume λ = Vx, the characteristics of the HJB equation follows Pontryagin’s maximum
principle (PMP) 

ẋ(t) =
∂H

∂λ
= f(t,x,u∗(t,x,λ)), x(0) = x0,

λ̇(t) = −∂H
∂x

(t,x,λ,u∗(t,x,λ)), λ(tf ) =
∂ψ

∂x
(tf ),

v̇(t) = −L(t,x,u∗(t,x,λ)), v(tf ) = ψ(x(tf )).

(8)

It is a two-point boundary value problem (TPBVP). Computational algorithms of solving TPBVPs
have been studied for decades with an extensive literature. Solvers exist in various programming
languages and computing platforms such as MATLAB and Python. For instance, bvp5c is a
MATLAB boundary value problem solver that controls both the residual and error [30]. In bvp5c,
the differential equation is discretized using the four-point Lobatto IIIa formula, which is also
stated as an implicit Runge-Kutta formula that has the following Butcher-array ((3.3.21) in [8])

0 0 0 0 0
5−
√

5
10

11+
√

5
120

25−
√

5
120

25−13
√

5
120

−1+
√

5
120

5+
√

5
10

11−
√

5
120

25+13
√

5
120

25+
√

5
120

−1−
√

5
120

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

The trajectory is evaluated at a sequence of grid points t0 = 0 < t1 < · · · < tN = tf . If t
is not a grid point, bvp5c approximates the solution using a continuous extension, which is a
function that interpolates the trajectory and its slope at ti, 0 ≤ i ≤ N , and the midpoints of
subintervals. A relation between the residual and the true error is established for bvp5c in [30].
Solving an implicit Runge-Kutta discretization of boundary value problems requires numerically
solving algebraic equations. Most solvers of boundary value problems have algebraic equation
algorithms integrated in them, such as bvp5c used for the examples in [27, 28] and the SciPy
implementation of bvp4c used in [32]. A challenge in all these examples is that boundary value
problem solvers are sensitivity to initial guess. This is a main issue to be addressed in Sections
3.1 and 3.2.

Remark 1 In (8), the TPBVP requires the minimization of the Hamiltonian, i.e., a solution to
(7). For some problems whose Hamiltonian is a quadratic polynomial of u, the minimization can be
explicitly solved. This is the case for the attitude control problem shown in Section 2. If (7) does
not have an explicit solution, u∗(t,x,λ) in the ODEs in (8) has to be evaluated using a numerical
algorithm of minimization, such as Newton’s method. In this case, the computational load is
increased. Another approach that we recommend is to use a direct method, which is introduced in
Section 5. Using a direct method, one applies nonlinear programming to a discretized optimization
problem in which a solution to (7) is not necessary.
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3.1 Time-marching

TPBVPs have been perceived as very difficult because their numerical algorithms tend to diverge.
The single most important factor that affects the convergence is the initial guess. In a worst
scenario, the TPBVP solver in [32] converges at only 1% of the sample pints. However, applying a
time-marching method, the convergence is improved to 98%. Applying more sophisticated tuning
of marching steps in [27, 28], 100% convergence was achieved at more than 40, 000 grid points.

In the time-marching trick, a sequence of solutions is computed that grows from an initially
short time interval. More specifically, we choose a time sequence,

t0 < t1 < t2 < · · · < tK = tf ,

in which t1 is small. For the short time interval [t0, t1], the TPBVP solver always converges using
an initial guess close to the initial state. Then the resulting trajectory, (x1(t),λ1(t)) is extended
over the longer time interval [t0, t2]. A simple way to extend the trajectory is with a piecewise
function

x2
0(t) =

{
x1(t), if t0 ≤ t ≤ t1,
x1(t1), if t1 < t ≤ t2,

and λ2
0(t) is similarly defined. Or one can try a linear extension

x2
0(t) = x1

(
t0 +

t1 − t0
t2 − t0

(t− t0)

)
, for t0 ≤ t ≤ t2.

The trajectory over the extended interval is used as an initial guess to find (x2(t),λ2(t)), a solution
of the TPBVP over [0, t2]. Repeating this process until tK = tf at which we obtain the full solution.
One needs to tune the time sequence {tk}Kk=1 to achieve convergence while maintaining acceptable
efficiency. The time-marching approach does not require a good initial guess. When converges,
the TPBVP solver achieves highly accurate solutions. The algorithm in [30] even provides an
estimated error. However, this method is usually slower than the neural network warm start,
which is illustrated next.

3.2 Neural network warm start

In [32], a neural network warm start is used to speed up the computation and to improve the
convergence. Before a neural network can be trained, we need an initial set of data. This can
be generated using the time-marching method in Section 3.1. Then we train a neural network
based on the initial data set. The loss function used in [32] takes into consideration both the value
functions, V (t,x), and the costate, λ(t). Suppose

V (i) = V (t(i),x(i))

be the optimal cost, i.e. the value function, at sampling points (t(i),x(i)) for i = 1, 2, · · · , Nd.
If the value function is evaluated by solving the TPBVP (8), as a byproduct the costate is also
known,

λ(i) = λ(t(i),x(i)),
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where λ(t,x) represents the value of costate in the solution of TPBVP with initial time t and
initial state x. Then we use a neural network to approximate V (t,x) by minimizing the following
loss function,

L(θ) =
1

Nd

(
Nd∑
i=1

[
V (i) − V NN(t(i),x(i);θ)

]2
+ µ

Nd∑
i=1

∥∥λ(i) − V NN
x (t(i),x(i);θ)

∥∥2

)
,

where θ is the parameter of the neural network, µ is a parameter weighing between the losses of
the value function and the costate. The trained neural network, V NN(t,x), provides the costate at
any given point (t,x), which is V NN

x (t,x). If the size of an initial data set is small, then the neural
network approximation is not necessarily accurate. However, it is good enough for the purpose
of generating initial guess at any given (t,x) to warm start the TPBVP solver so that additional
data can be generated at a much faster rate. In [32], neural network warm start exceeds 99%
convergence for the rigid body optimal control problem. The initial data used to train the neural
network is very small, Nd = 64.

3.3 Backward propagation

As its name indicates, the basic idea of backward propagation is to integrate the ODEs in (8)
backward in time. In the first step, a solution of TPBVP is solved for a nominal trajectory using
a nominal initial state x0. The second step is perturbing the final state and costate around the
nominal trajectory, subject to the terminal condition. Then the ODEs in (8) are solved backward
in time to propagate a trajectory using the perturbed final state and costate value. In this way,
a data set consisting of trajectories around the nominal trajectory is generated. Then, a neural
network is trained by minimizing a loss function. In this approach, one avoids solving TPBVP
repeatedly. Instead, the data set is generated by integrating differential equations, a task much
easier than solving a TPBVP. However, the location of the sample states cannot be fully controlled.
Along unstable trajectories (backward in time), integrating the ODE over a relatively long time
interval can be numerically challenging.

Backward propagation is used in [23] for the optimal control of spacecraft making interplanetary
transfers. The optimal control policy is computed for a spacecraft equipped with nuclear electric
propulsion system. The goal is to transfer from the Earth to Venus orbit within about 1.376
years. After generating 45× 106 data samples, neural networks consisting multiple layers are used
to approximate the control policy as well as the value function. Then the accuracy is validated,
once again, using data generated by backward propagation.

4 Minimization-based methods - unconstrained optimiza-

tion

Optimal control is essentially a problem of minimization (or maximization) subject to the con-
straint of a control system. There exist various ways of transforming the problem into uncon-
strained optimization. Without constraints, it is relatively easy to find its numerically solution.
The methods in this section are different from the direct method illustrated in Section 5 where
the problem consists of algebraic constraints in addition to the control system; and the problem
is transformed into optimization with constraints, which is solved using nonlinear programming.
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4.1 The Hopf formula

Consider a HJ PDE, {
Vt(t,x) + H̃(Vx(t,x)) = 0, in (0,∞)× Rn,
V (0,x) = ψ(x), x ∈ Rn,

(9)

where H̃ : Rn → R is continuous and bounded from below by an affine function, ψ : Rn → R
is convex. This equation is associate with a special family of optimal control problems. In [7],
control systems in the following form are considered,

ẋ(s) = f(u(s)), x ∈ Rn,
x(t) = x,

(10)

where u : (−∞, tf ]→ U ⊂ Rn is the control input and U is a compact set. The cost function is

J(x, t;u) =

∫ tf

t

L(u(s))ds+ ψ(x(tf )), (11)

where L(u) and ψ(x) are both scalar valued functions. The goal of optimal control design is to
find a feedback that minimizes J(x, t;u) using admissible control inputs. Define

H̃(λ) = min
u∈U

(
L(u) + λTf(u)

)
.

Then the solution of the HJ PDE (9) defines an optimal feedback

(t,x)→ u∗(t,x, Vx) = arg min
u∈U

(
L(u) + V T

x f(u)
)
.

The solution of the HJ equation (9) can be expressed as follows (the Hopf formula [22]),

V (t,x) = (ψ∗ + tH)∗(x), (12)

where the superscript ‘∗’ represents the Fenchel-Legendre transform. Specifically, f ∗ : Rn →
R ∪ {∞} of a function (convex, proper, lower semicontinuous) f : Rn → R ∪ {∞} is defined by

f ∗(z) = sup
x∈Rn

{xTz − f(x)}.

The solution given in (12) is causality-free. It can be computed by solving the minimization
problem

V (t,x) = −min
v
{ψ∗(v) + tH(v)− xTv}.

In [7], it is solved by using the split Bregman iterative approach. Within each iteration, two
minimization problems are solved numerically where Newton’s method is applicable under some
smoothness assumptions. In addition to optimal control, the level set method is also addressed in
[7] for the viscosity solution of the eikonal equation.
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4.2 Minimization along characteristics

In this approach, the value function is computed by minimizing the cost along trajectories of the
Hamiltonian system (8). Rather than a TPBVP, consider the initial value problem

ẋ(t) =
∂H

∂λ
= f(t,x,u∗(t,x,λ)), x(t0) = x0,

λ̇(t) = −∂H
∂x

(t,x,λ,u∗(t,x,λ)), λ(t0) = λ0,

u∗(t,x,λ) = arg min
u∈U

H(t,x,λ,u).

(13)

For fixed initial state x0, the cost along a characteristic is a function of λ0,

J(t0,x0,λ0) =

∫ tf

t0

L(t,x,u∗(t,x,λ))dt+ ψ(tf ). (14)

Then the solution, V (t0,x0), of the HJB equation (6) is the minimum value of (14) along trajec-
tories satisfying (13), i.e.,

V (t0,x0) = min
λ0

J(t0,x0,λ0). (15)

Different from the TPBVP in Section 3, (13) is an initial value problem. The solution is computed
by solving (15), a problem of unconstrained optimization. Under convexity type of assumptions,
the existence and uniqueness of solutions have been studied and proved (see, for instance, [5, 38]).
Similar approaches are also applicable to the HJI equation of differential games. In numerical
computation, algorithms of unconstrained optimization are applicable. For instance, Powell’s al-
gorithm is used in [38]. In [5], coordinate descent is used with multiple initial guesses to perform
the optimization. Some examples in [5] show fast convergence that may justify real-time computa-
tion. If this is the case, then a neural network training becomes unnecessary. On the other hand,
algorithms with guaranteed fast convergence for real-time optimization are still an open problem
in general.

Different from the characteristic based approach, in [31] the problem of optimal control is
discretized using finite difference. Then the resulting finite dimensional optimization with con-
straints is transformed to an unconstrained optimization based upon Lagrangian duality. The
unconstrained optimization is then solved using a splitting algorithm. This approach can be clas-
sified as a direct method, a family of computational methods based on discretization of the original
problem. Some algorithms of direct methods are discussed in Section 5.

5 Direct methods - constrained optimization using non-

linear programming

In addition to ODEs, a control system may subject to constraints in the form of algebraic equations
or inequalities, such as state constraints, control saturation, or state-control mixed constraints.
A family of computational methods, so called direct methods, is particularly effective for find-
ing optimal control with constraints. The basic idea is to first discretize the control system
as well as the cost, then numerically compute the optimal trajectory using nonlinear program-
ming. These methods do not use characteristics. Instead, the optimal control is found by directly
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optimizing a discretized cost function, thus the name direct method. Different from indirect
methods based on characteristics, direct methods do not involve the costate of the Hamiltonian
dynamics in computation. Interconnections between direct and indirect methods were studied
for some algorithms such as the covector mapping theorem of pseudospectral optimal control
[17]. Without a thorough review of various direct methods, interested readers are referred to
[2, 6, 10, 12, 13, 18, 14, 16, 17, 26, 25] and references therein. In [36], a direct method is applied
to generate data for supervised learning. The method is exemplified by the optimal control of a
quadcopter system.

5.1 Finite time optimal control

For the purpose of generating data, direct methods are causality-free. As an example, in the the
following we outline the basic ideas of pseudospectral (PS) optimal control. Consider the following
problem

min
u(·)
J [x(·),u(·)] =

∫ 1

−1

F (x(t),u(t)) dt+ E(x(−1),x(1)), (16)

subject to 
ẋ(t) = f(x(t),u(t)),
e(x(−1),x(1);x0,xf ) = 0,
h(x(t),u(t)) ≤ 0,

(17)

where F : RNx×RNu → R, E : RNx×RNx → R, f : RNx×RNu → RNx , e : R2Nx×R2Nx → RNe and
h : RNx × RNu → RNh are continuously differentiable with respect to their arguments and their
gradients are Lipschitz continuous. In (17), the endpoint condition, e(x(−1),x(1);x0,xf ) = 0, is
given in a general form. For the purpose of generating data at random initial points, the endpoint
condition is simplified to an initial value problem, x(−1) = x0, where x0 is the random initial
state of the data set.

The problem is discretized at a time sequence

t0 = −1 < t1 < t2 < · · · < tN = 1.

There are various ways of chosing tk. For example, the Legendre-Gauss-Lobatto (LGL) nodes (see,
for instance, [14, 16]) are widely used in which tk are the roots of the derivative of the Nth order
Legendre polynomial. Let the discrete state and control variables be x̄k and ūk, then the problem
defined in (16–17) is discretized to form a problem of nonlinear programming,

min
ū
J̄ =

N∑
k=0

F (x̄k, ūk)wk + E(x̄0, x̄N), (18)

subject to 
‖

N∑
i=0

x̄iDki − f(x̄k, ūk)‖∞ ≤ ε, k = 0, 1, · · · , N,

‖e(x̄0, x̄N)‖∞ ≤ ε,
‖h(x̄k, ūk)‖∞ ≤ ε, k = 0, 1, · · · , N.

(19)
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In this discretization, the constraints are relaxed in which the value of ε is chosen to guarantee
feasibility. In (18–19), Dkj represent the elements in the differentiation matrix and wk represent
the LGL weights [16]. Problem (18–19) can be solved using numerical algorithms of nonlinear
programming. Commercial or free software packages are available for this purpose. The continuous
time solution is approximated by

x(t) ≈
N∑
k=0

x̄kφk(t), u(t) ≈
N∑
k=0

ūkψk(t),

where φk(t) is the Lagrange interpolating polynomial and ψk(t) is any continuous function such
that ψk(tj) = 1 if k = j and ψk(tj) = 0 if j 6= k. Different choices of ψk(t) are introduced
in [16, 17, 25, 26]. The LGL PS method of optimal control are proved to have a high order
convergence rate [25]. Direct methods based on Runge-Kutta or finite difference discretization are
also widely used in applications. Interested readers are referred to [2] and [18].

5.2 Infinite time optimal control

The methodology described above for solving a nonlinear constrained optimal control over a finite
time horizon can be extended to infinite time horizon problems. These type of optimal control
problems arise naturally in applications in biology and economics and also in mechanics where
stability and behavior of systems are considered over an infinite time interval. To handle these
type of optimal control problems using PS methods, a variation of the LGL methods called the
Legendre-Gauss-Radau (LGR) PS method was proposed in [15]. A brief description of the problem
and the LGR method is introduced as follows. Consider the problem of determining the state-
control function pair [0,∞) 3 s 7→ {x ∈ RNx ,u ∈ RNu} that minimize the cost

J [x(·),u(·)] =

∫ ∞
0

F (x(s),u(s), s) ds (20)

subject to the dynamic constraints,

ẋ(s) = f(x(s),u(s), s) (21)

end point event constraints,

e
(
x(0),x(∞)

)
= 0 (22)

and possibly mixed trajectory-control constraints,

gl ≤ g(x(s),u(s), s) ≤ gu (23)

In the above equations, ẋ denotes dx/ds and the various functions are defined as,

E : RNx ×Nx → R (24)

F : RNx × RNu × R→ R (25)

f : RNx × RNu × R→ RNx (26)

e : Nx × RNx → RNe (27)

g : RNx × RNu × R→ RNg (28)
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where Ng is the dimension of the path constraint vector and Ne is the dimension of the event con-
straints. The above optimal control problem is posed on the semi-infinite time domain [0,∞) and
usually this semi-infiniteness of the computational domain poses a challenge for direct numerical
simulation of the problem. The usual technique of using the Riccati solution is typically applica-
ble to the linear unconstrained quadratic cost problem. For many problems, linearization of the
underlying problem to use the Riccati approach is unsatisfactory. In order to obtain a full solution
for the original nonlinear constrained control problem with a general cost function, the following
method is suggested. First, map the semi-infinite domain to the finite time domain [−1, 1] and
then use the appropriate quadrature nodes for the interpolation polynomials. For s ∈ [0,∞) and
t ∈ [−1, 1] we have

s =
(1 + t)

1− t
↔ t =

s− 1

s+ 1

Using this mapping we can reformulate the original optimal control problem on the finite interval
[−1, 1] using the derivative of the mapping

r(t) =
ds

dt
=

2

(1− t)2
(29)

Now the transformed optimal control problem is formulated as determining the state-control func-
tion pair [−1, 1) 3 t 7→ {x ∈ RNx ,u ∈ RNu} that minimize the modified quadratic cost functional,

J [x(·),u(·)] =

∫ 1

−1

F (x(t),u(t), s(t)) r(t) dt (30)

subject to the mapped dynamic constraints,

dx

dt
= ẋ(t) = r(t)f(x(t),u(t), s(t)) (31)

end point constraints,

e
(
x(−1),x(1)

)
= 0 (32)

and mixed trajectory-control constraints,

gl ≤ g(x(s),u(s), s) ≤ gu (33)

It should be noted that in the formulation above all functional evaluation at t = 1 which correspond
to the value of the original function at s =∞ is taken in the sense of limit. Now that the problem
is posed on the finite time domain, the traditional quadrature interpolation using PS methods
can be used in the way similar to the approach illustrated above. The one major modification
required is the choice of node points. We choose LGR nodes for collocation. These node points,
tj, j = 0, · · · , N , are defined t0 = −1 and the rest of the nodes are defined as zeros of LN + LN+1

where LN is the Legendre polynomial of degree N. Different from the LGL nodes that include
t = 1, in the LGR nodes tN < 1. As N →∞, tN approaches t = 1 as a limit.
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6 Stochastic process

Model-based deep learning for optimal control was first introduced in [19] for stochastic systems.
In this approach, the optimal control law is approximated using a neural network. The learning
process is based upon a data set generated from the stochastic model of the system, rather than
data sets collected from experimentation. More recently, in [11, 20] solutions of the following
semilinear parabolic PDEs are approximated using a neural network,{

Vt(t,x) +
1

2
Tr(σσTHessxV )(t,x) + Vx(t,x)Tµ(t,x) +H(t,x, V (t,x), σT (t, x)Vx(t, x)) = 0,

V (tf ,x) = ψ(x).
(34)

As a special case, HJB equations with viscosity are PDEs in the form of (34). In this section,
x ∈ Rn, σ(t,x) ∈ Rn×n is a matrix valued function, µ(t,x) is a vector valued function, HessxV
represents the Hessian of V with respect to x, Tr(M) denotes the trace of a matrix M , H :
(−∞, tf ]×Rn ×Rn ×Rn → R is a known function. The characteristic of the PDE is a stochastic
process satisfying

x(t) = x0 +

∫ t

0

µ(s,x(s))ds+

∫ t

0

σ(s,x(s))dWs, (35)

where Wt, 0 ≤ t ≤ tf , is an n-dimensional Brownian motion. The solution of (34) satisfies the
following backward stochastic differential equation (BSDE) [33, 34],

V (t,x(t)) = V (0,x0)−
∫ t

0

H
(
s,x(s), V (s,x(s)), σ(s,x(s))TVx(s,x(s))

)
ds

+

∫ t

0

Vx(s,x(s))Tσ(s,x(s))dWs,

V (tf ,x(tf )) = ψ(x(tf )).

(36)

Discretize (35) and (36), we have

x(tn+1) ≈ x(tn) + µ(tn,x(tn))(tn+1 − tn) + σ(tn,x(tn))(Wtn+1 −Wtn), n = 0, 1, 2, · · · , N,
(37)

and

V (tn+1,x(tn+1)) ≈ V (tn,x(tn))−H
(
tn,x(tn), V (tn,x(tn)), σ(tn,x(tn))TVx(tn,x(tn))

)
(tn+1 − tn)

+ Vx(tn,x(tn))Tσ(tn,x(tn))(Wtn+1 −Wtn), (38)

for n = 0, 1, 2, · · · , N − 1. In (38), the value of V (t,x) depends on its gradient, Vx(t,x), which
is unknown. In [20], a neural network is defined to approximate the function x→ σTVx(tn,x) at
t = tn. In addition to the parameters of the neural network, the initial value and initial gradient
are also treated as parameters. For the data set, the first step is to generate a set of Brownian
motion paths, {

{W i
tn}

N
n=0

∣∣ i = 1, 2, · · · , Ns

}
,

where Ns is the total number of samples. Then, one can compute all sample paths of the stochastic
process by solving (37) (forward in time),{

{xi(tn)}Nn=0

∣∣ i = 1, 2, · · · , Ns

}
.
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Integrating (38) along each sample path, one can compute V̂ (tn,x
(i)(tn)), an approximation of the

value function. Note that this approximation depends on the parameters of the neural network.
In [20], the neural network is trained using loss functions that penalize the mean square error of
the terminal condition

V (tN ,x(tN)) = ψ(x(tN)). (39)

For instance, one of such loss functions is

l(θ) = E
({
|ψ(x(i)(tN))− V̂ (tN ,x

(i)(tN))|2
∣∣∣ 1 ≤ i ≤ Ns

})
, (40)

where θ represents the parameters in the neural network and the unknown initial value and initial
gradient of V (t,x).

Some results on the error analysis for this type of algorithms are published in a recent paper
[21]. In addition to optimal control, neural networks are applicable to solve various types of PDEs.
In [11, 20, 35], neural networks are trained to solve PDEs with space dimensions up to n = 100.

7 Characteristics for general PDEs

The basic idea discussed in this paper is not limited to optimal control problems. In principal,
any PDE that has a causality-free algorithm allows one to generate data for supervised learning
and accuracy validation. Illustrated in Section 3, finding solutions along characteristic curves is
a causality-free process, i.e., the solution can be found point-by-point without using a grid. For
instance, a characteristic method of solving 1D conservation law was introduced in [29]. Because
of the causality-free property, the algorithm is able to provide accurate solution for systems with
complicated shocks. In general, any quasilinear PDE,

n∑
i=1

ai(x1, · · · , xn, u)
∂u

∂xi
= c(x1, · · · , xn, u), (41)

has a characteristic, (x̄(s), ū(s)), defined by a system of ODEs
dx̄i
ds

= ai(x̄1(s), · · · , x̄n(s), ū(s)),

dū

ds
= c(x̄1(s), · · · , x̄n(s), ū(s)).

(42)

Then the solution of the PDE satisfies

u(x̄1(s), · · · , x̄n(s)) = ū(s).

A challenge of this method is that the characteristic curves may cross each other to form shocks.
Also, the curves may not cover the entire region, thus forming rarefaction. Nevertheless, if a
unique solution can be defined based on characteristics, the resulting algorithm is causality-free.
It can be used to generate data to train a neural network as an approximate solution. The data
can also be used to check the accuracy of the neural network solution.
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8 Summary

To put the surveyed algorithms in perspective, we summarize them in Table 1. It contains the
references where the interested readers can find technical details of the algorithms. It contains
brief information about the type of examples shown in the references. The table also contains
brief comments on the applicability and limitations of the algorithms.

Method
Initial Guess
Required

References Examples

Time or space-
marching

No [27, 28, 32]
Optimal control of rigid body, n = 6.
Optimal control of Burgers’ equation, n = 30.

Comments: Computational convergence and speed depend on the number of
marching steps. It requires TPBVP solvers.

NN warm start Yes [32]
Optimal control of rigid body, n = 6.
Optimal control of Burgers’ equation, n = 30.

Comments: Computational convergence and speed depend on the quality of
neural network initial guess. It requires TPBVP solvers.

Backward propagation No [23] Space system interplanetary transfer, n = 7.

Comments: No convergence issue.
Initial states in data cannot be pre-selected.

Hopf formula Yes [7] Optimal control of (10)-(11), n = 4, 8, 12, 16.

Comments: Limited to control systems in the form of (10)-(11).
It requires unconstrained optimization such as Bregman’s algorithm.

Minimization along
characteristics

Yes [38] Differential game of state affine systems, n = 4.

Comments: Computational convergence and speed depend on the initial guess.
It requires unconstrained optimization such as Powell’s algorithm
or coordinate descent algorithm.

Direct methods Yes [16, 17, 36] Optimal control with state-control constraints, n = 4, 5, 7.

Comments: The method is effective for problems with state-control constraints.
It requires nonlinear programming software or solvers.

Stochastic process Yes [11, 20] Optimal control of stochastic systems, n = 100.

Comments: The method is applicable to stochastic optimal control.
It requires unconstrained optimization for neural network training.

Table 1: A summary of the surveyed algorithms with references and brief comments on their
applicability and limitations. In the column “Examples,” n represents the state space dimension
of the examples that can be found in the references

As demonstrated in the example of attitude control, causality-free algorithms generate data for
not only the training of neural networks but also the validation of their accuracy. A guaranteed
error upper bound is often impossible to be mathematically proved for applications of neural
networks. In this case, an empirically computed approximate error provides critical information
and confidence for practical applications. This is a main advantage of causality-free algorithms for
the purpose of deep learning. In addition, the methods surveyed in this paper are all model-based.
One has a full control of the location and amount of data to be generated, a property that is
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very useful for an adaptive training process. In computation, generating data using causality-free
algorithms has perfect parallelism because the solution at each point is computed individually
without using the function value at other points.
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