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Timing Driven Gate Duplication
Ankur Srivastava, Member, IEEE, Ryan Kastner, Chunhong Chen, and Majid Sarrafzadeh, Fellow, IEEE

Abstract—In the past few years, gate duplication has been
studied as a strategy for cutset minimization in partitioning
problems. This paper addresses the problem of delay optimization
by gate duplication. We present an algorithm to solve the gate
duplication problem. It traverses the network from primary
outputs(PO) to primary inputs(PI) in topologically sorted order
evaluating tuples at the input pins of gates. The tuple’s first
component corresponds to the input pin required time if that
gate is not duplicated. The second component corresponds to the
input pin required time if that gate were duplicated. After tuple
evaluation the algorithm traverses the network from PI to PO in
topologically sorted order, deciding the gates to be duplicated.
The last and final traversal is again from PO to PI, in which the
gates are physically duplicated. Our algorithm uses the dynamic
programming structure. We report delay improvements over
other optimization methodologies. Gate duplication, along with
other optimization strategies, can be used for meeting the stringent
delay constraints in today’s ultra complex designs.

Index Terms—Delay optimization, gate duplication, logic syn-
thesis.

I. INTRODUCTION

LOGIC synthesis is the process of transforming a set of
boolean equations into a circuit comprising of gates that

implement the logic while minimizing some cost function (usu-
ally area or delay). Logic synthesis is decomposed into two
phases: technology independent and technology dependent. The
main objective of the technology independent phase is to sim-
plify the logic. At this stage, we do not have an accurate esti-
mate of the circuit parameters, hence, optimization techniques
in this phase use prediction metrics like number of literals. The
goal of technology dependent phase is the implementation of
logic in well characterized logic gates from a given technology
library [28]. There are many optimization objectives of logic
synthesis (eg. area, delay, and power) but the present work deals
with delay optimization.

Many timing optimization strategies have been proposed over
the past few years. Some of the rule based techniques are LSS
[13] and SOCRATES [15]. These use predefined set of local
transformations based on design style and technology to im-
prove delay. Some of the popular strategies that use algorithms
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have been suggested in [17] and [23], which exploit the con-
cept of restructuring for improvement in circuit performance.
The choice of nodes on which restructuring is applied depends
on the maximum delay improvement achievable with minimum
area penalty. [16] is another strategy which uses permissible
functions and network “don’t cares” to optimize the circuit. [1]
reduces the delay of the longest sensitizable path in the circuit.
Speed up is another topology based optimizer and relies on a
number of local transformations which includes tree height re-
duction [17]. These transformations are local and attempt to
resynthesize a small part of the network. The best timing im-
provement of all the nodes is estimated and a set of nodes is
selected on which the transformations should be applied.

Other strategies for timing optimization are applicable
during or after technology mapping. These include gate sizing
and buffer insertion. Gate sizing is the process of deciding the
driving strength of a gate. A high-driving strength corresponds
to smaller delay but larger area. [25] and [26] address the issue
of gate sizing for performance optimization. Buffer insertion
is a strategy that decreases capacitive loading at critical gates
such that the delay is reduced. [19], [24] and [30] address the
problem of buffer insertion.

New developments in logic synthesis strive to combine syn-
thesis with physical design. Some of these strategies depend on
prelayout estimation of the effects of the layout without actu-
ally performing it, and using these estimates to guide the opti-
mization steps. [22] suggests a methodology which has a fast
global placement guiding the wiring estimate and technology
mapping. The approach was later extended in [21] to include
logic restructuring and technology decomposition and further
extended in [11] to include post mapping fanout optimization.
These methodologies predict or generate a layout and base their
logic optimizations on this information. The final layout might
be entirely different causing inaccuracy in the estimates. An-
other set of methodologies try to do physical design and logic
optimization simultaneously; [14] and [31] are attempts of com-
bining technology mapping and placement. [2] combines floor-
planning, technology mapping and gate placement; [3], and [29]
combine fanout optimization and routing tree construction. [27]
is another layout driven logic optimization strategy which incre-
mentally does placement and logic resynthesis.

In this paper, we present a new algorithm for timing driven
gate duplication after technology mapping. As we show in
Section II, gate duplication is the process of duplicating a gate
which has large number of fanouts. In this process, the number
of fanouts of each gate (the original and the replica) decreases
hence reducing the individual gate delays. This can potentially
reduce the overall circuit delay. A preliminary version of this
paper appeared in ICCAD-2000 [8]. The research community
has looked at gate duplication extensively as a method of
reducing the cutset of partitions. Strategies of logic (gate)
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duplication for cutset minimization were suggested in [18] and
[20]. The strength of gate duplication as a cutset minimizing
strategy has been demonstrated. However, applicability of this
strategy in reducing the circuit delay has not been studied
in detail. One of the few works is [12], which addresses the
gate duplication problem in a performance driven perspective.
It integrates cell replication into a layout driven framework.
Another strategy of gate duplication that addresses this problem
in the technology independent phase has been proposed in [9]
and extended in [4].

Both the global (pertaining to the whole circuit) and local
delay optimization problems (in which we are interested only
in a gat and its immediate fanouts) by gate duplication are
NP-complete [7]. We present an algorithm for gate duplication
which is based on the dynamic programming approach. It
traverses the network from primary outputs (PO) to primary
inputs (PI) in topologically sorted order evaluating tuples at the
input pins of gates. The tuple’s first component corresponds
to the input pin required time if that gate is not duplicated.
The second component corresponds to the input pin required
time if that gate were duplicated. After tuple evaluation the
algorithm traverses the network from PI to PO in topologically
sorted order, deciding the gates to be duplicated. The last
and final traversal is again from PO to PI in which the gates
are physically duplicated. Our algorithm uses the dynamic
programming structure.

The rest of this paper is organized as follows. Section II deals
with the delay model and provides basic definitions. Section III
reviews the complexity of the global gate duplication problem.
Section IV presents the routine for local optimization by gate
duplication. This routine will be repeatedly called by the global
algorithm. Section V describes the global algorithm, followed
by a heuristic for constraining the area penalty in Section VI.
Results are reported in Section VII. This is followed by some
observations and conclusion in Section VIII.

II. PRELIMINARIES

A. Delay Models

Given a single output gate , let denote delay from an
input pin of the gate to the output of . The load denotes
the cumulative capacitance seen at the output of . It is the sum
of the individual input pin capacitances for all fanouts of

. A commonly used delay model for gate level circuits is the
load dependent delay model LDDM [30] according to which
the delay in the gate is given by

(1)

Here
load capacitance at the output of the gate ;
intrinsic delay from pin to output of ;
drive capability or load coefficient of the path from
to the output of .

The delay of a path that goes from a primary input (PI) to a
primary output (PO) is the sum of the pin-to-pin delays through
all the gates lying on the path [24]. The delay in the circuit is the
maximum of all the individual path delays. Let denote the
required time at the output of a gate . The following equation

illustrates the method of computing if the required times
of the fanouts of are available

(2)

Here
intrinsic delay of gate with respect to the pin con-
nected to ,
load coefficient of gate with respect to the pin con-
nected to

Required time at the input pin of a gate is define as follows:

(3)

In this paper, we neglect the wire capacitance. We also as-
sume all gates in the circuit to be single output combinational
gates. In this paper we set the required times at the POs to zero
and the arrival times (time at which the signal arrives) at PIs to
zero. Hence, the slack at all the gate is always negative. In this
scenario, the objective of our delay optimization algorithm is
the maximization of the minimum slack in the circuit.

B. Gate Duplication Problem

Gate duplication can be used for delay optimization. The idea
is illustrated with the following example.

Consider the circuit shown in Fig. 1(a) in which the parameters
, , and along with the required times have been indicated.

The subscript has been omitted from gate parameters as
all the gates have just one input pin.. This circuit structure
consists of only buffers. Let us assume that these are the
only type buffers in the design library. Hence, gate sizing is
in-effective. Since this is a balanced circuit structure, buffer
insertion does not improve the delay either. We will show that
the delay through this circuit can be improved by duplicating
some gates In the unduplicated case, Fig. 1(a) the capacitive
loading and . Hence, the required
time at the input of can be calculated to be 5. When
is duplicated Fig. 1(b), the capacitive loading
and 2. Hence the new required time at the input of

becomes 4. Gate duplication was hence, instrumental in
improvement of circuit delay.

III. COMPLEXITY ISSUES OF GATE DUPLICATION

In this section, we will briefly outline the complexity issues
associated with gate duplication. Both the global and local prob-
lems have been proved NP-complete [5]. The global problem
is concerned with the delay optimization of the entire network
through gate duplication. It can be defined more formally as
follows:

1) given a network consisting of gates and nets;
2) given the delay parameters and for each gate

where is the th input pin of ;.
3) find a duplication strategy that maximizes the minimum

required time at the (assuming the required time at
POs is zero).

MONO3SAT problem was transformed to an instance of
global gate duplication problem [5] and hence, proved NP-com-
plete in LDDM; [5] shows that the problem of partitioning a set
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Fig. 1. Delay optimization by gate duplication.

of fanouts between a node and its replica for maximizing input
pin required time is also NP-complete. This makes the local
problem NP-complete. For a more formal definition and proofs
please refer to [5]. In this paper, we are primarily interested
in algorithms for solving the problem. Any gate duplication
algorithm will have to make at least two decisions on which the
final result will depend:

1) decide the gates to be duplicated;
2) decide the fanouts of the duplicated gates

In Sections IV–VII, we will describe an algorithm to solve the
global gate duplication problem. Both local and global aspects
of the algorithm will be discussed in detail.

IV. DELAY OPTIMIZATION IN THE LOCAL SCENARIO

In this section, we will discuss the local formulation of the
problem of gate duplication. This formulation is used in the
global algorithm to optimize the overall delay of the circuit. The
local problem can be defined as [8].

1) Given a node and a set of fanouts
2) Two numbers are associated with each fanout, one corre-

sponds to the required time at the input pin if that fanout
gate is duplicated and the other corresponds the the re-
quired time if it is not duplicated

3) Find the highest required time at the input pin of gate if
is duplicated and if is not duplicated

Before we proceed any further, let us define a data structure
which we call tuple. A tuple is represented as .
It has two subcomponents and . The values
are of floating data type. Let us define the following functions
on tuple

NODUP (4)

DUP (5)

Functions DUP and NODUP let us access the internal
fields of a tuple. Hence, DUP (or r2)
represents the r1 (or r2) component of . Similarly,
NODUP gives the value stored in the

first subcomponent of tuple. This data structure will be used
extensively in this paper to explain the algorithmic concepts.
Now let us come back to the problem of local optimization.
Please refer to Fig. 2 for a graphical explanation of the points
enumerated above. Fig. 2(a) illustrates the existence of a tuple
data structure associated with each input pin of each
gate . The pair just illustrates the fact that we are
referring to the tuple associated with the ith input pin of gate

. As mentioned before, each tuple has two components. The
first component NODUP is the best (largest) required
time at the input pin if gate is not duplicated Fig. 2(b). This
could be achieved by duplicating some fanouts and not dupli-
cating others. Finding the best duplication methodology for
the fanouts such that NODUP gets maximized is the
objective here. The second component DUP is associated
with duplication of the node. If the node is duplicated into

and [see Fig. 2(c)], then the two values DUP and
DUP correspond to required times at the ith input of
and as shown in Fig. 2(c). Here, component is smaller of
the two and is larger of the two. While computing this value
we assume that when gate gets duplicated, both the original
and the replica get connected to the same fanin. The objective is
the maximization of DUP . There are two problems that
need to be solved in order to achieve the desired values. The
first is identification of the best fanout duplication methodology
and the second problem is the partitioning of these fanouts
between the original gate and the replica. Algorithms to solve
these problems will be discussed in Sections IV-A and B.
There might be cases in which a gate cannot be duplicated,
(for instance if it has only single fanout). In such a situation
DUP is set to NULL. In our formulation, the local problem
corresponds to the following

Given the tuples for all the fanouts of a gate .
Here denotes the input pin at which the fanout is con-
nected to . Compute the tuples for all input pins of
gate . Value NODUP is the largest required time at
the ith input pin if gate is not duplicated. This can be achieved
by choosing the appropriate fanout duplication methodology.
Values DUP and DUP corresponds to the input
pin required times at gates and which is the replica of . The
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Fig. 2. Local optimization.

objective is the maximization of DUP which is smaller
of the two values.

Before we proceed any further, let us define the term fanout
script

Fanout script associated with an input pin of a node is a
vector of boolean variables. Each boolean variable corresponds
to a fanout. If the boolean variable is TRUE then that fanout is
designated for duplication else it is not duplicated.

A. Computation of NODUP

While computing NODUP , the assumption is that the
gate cannot be duplicated. We need to find the best duplication
methodology of the fanouts (fanout script) such that the required
time at the input pin of gate is maximized. As mentioned be-
fore, tuples for all the fanouts of are known. Again
the index indicates the input pin of fanout at which gets
connected. Hence, we know the required times at the input pins
of the fanouts if they are set for duplication and if they are not
set for duplication. Using these values we need to find the best
duplication methodology of the fanouts such that the input pin
required time of gate is maximized with respect to the input
pin . This duplication methodology will correspond to the des-
ignated fanout script for at pin .

Fig. 3 has a formal description of the algorithm used for the
computation of NODUP . Basically it sorts the fanouts

in increasing order by their NODUP value. Then it
duplicates the first fanout in this list and keeps the rest undupli-
cated and computes the required time at the ith input pin of .
Then it duplicates the first two fanouts and recomputes the re-
quired time. This is followed by the duplication of first three and
so on. The one that gives the largest input pin required time is
picked. This duplication methodology is the designated fanout
script. Now let us first prove the following lemma

Lemma 1: Given a gate and an input pin of , then
NODUP DUP DUP .

Proof: By definition DUP DUP .
Duplication will always lead to a reduction in the number of

Fig. 3. NODUP(i; n):r1 evaluation.

fanouts of a gate. Hence, the capacitive loading of that gate
will be reduced (of course there will be an increase in the
capacitive loading of the fanin gate). This reduction will cause
a reduction in the gate delay. Now, consider NODUP
and the corresponding fanout script. Now duplicate the gate
assuming the fanouts are the ones defined by this fanout script.
Partition these fanouts between the gate and its replica and
compute the input pin required time . Any partitioning will
work. Since the gate delay has reduced, this value will be
larger than NODUP . By definition, DUP is
the largest input pin required time if the gate is duplicated.
This makes DUP . Hence, we can conclude

NODUP DUP DUP

Theorem 1: Given a gate and its input pin , a set of
fanouts which need to be driven and the tuples associated with
the fanouts. Algorithm gives the optimal
value of NODUP . Here, optimality is defined as the
largest possible value of NODUP .

Proof: According to Lemma 1, whenever a gate is dupli-
cated the required time at its input pin always improves. Let
be the sorted array of fanouts and let us associate a boolean vari-
able with the ith entry in . The algorithm only enumerates
fanout scripts in which a string of TRUEs is followed by a string
of FALSE in the sorted array A. If the algorithm indicates that the
first fanouts should be duplicated (ie maxindex ), then
the variables to are set to TRUE in the fanout script(ie
the corresponding fanouts should be duplicated) and rest are set
to FALSE. We show that the fanout script of the optimal solu-
tion should always consist of a string of TRUEs followed by a
string of FALSE in the sorted array . Let us assume that such
a solution is not an optimal solution. Let us assume an optimal
solution with a boolean variable corresponding to fanout .
Variable is chosen such that it is the first boolean variable
that is set to TRUE after a string of FALSE (note that algorithm

will not enumerate such fanout duplication
methodologies). Since NODUP NODUP
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for all is the input pin index with which fanout
gets connected to node ) in the sorted array, the required time

at the output of will never be dictated by fanout . This
is because some of more critical fanouts (that appear before in
array A) have not been duplicated. Hence, by Lemma 1 duplica-
tion of gate does not help the required time at all. But du-
plication of gate does add some extra capacitive loading on ,
hence, increasing its circuit delay. If we decide not to duplicate
this gate, the required time will not be affected but the gate
delay will improve as the extra capacitive loading will be
removed. Hence, such a solution cannot be optimal which is a
contradiction. So an optimal solution must always have a fanout
script with a string of TRUEs followed by a string of FALSE in
the sorted array. Basically duplicating a less critical fanout will
not give any improvement if a more critical fanout has not been
duplicated. The algorithm enumerates all
possible cases in which there is a string of TRUEs followed by a
string of FALSE (there are of them, where is the number
of fanouts of ) and picks up the best for that particular input
pin. Hence, it is optimal.

This completes the discussion on the computation of
NODUP . The next step is the computation of DUP .

B. Computation of DUP

In this case the node is in the duplicated state. As shown
in Fig. 2(c) node and have the same fanins. The objec-
tive is the computation of DUP such that DUP is
maximized (by definition DUP DUP ). As
mentioned before, DUP and DUP correspond
to the required time at the input pin of gate , if is in dupli-
cated state. Two things need to be done in order to achieve this

1) First evaluate the appropriate fanout duplication method-
ology (fanout script)

2) Since node is in duplicated state, some of the fanouts
of will be driven by . Hence, the second problem is
the partitioning of fanouts between the node and .
Note that as the fanout script changes, the fanouts also
change. This is because some gates might get duplicated
(the ones to which the boolean value TRUE has been as-
signed), hence changing the fanouts

[6] shows that the problem for partitioning a set of fanouts
between a gate and its replica in order to maximize the input
pin required time is NP-complete. Hence, we use heuristics to
obtain a good value for DUP .

The objective is the maximization of DUP . The
algorithm tries to pick the appropriate fanout duplication
methodology and partitioning strategy which achieves this. We
enumerate the same fanout duplication methodologies (fanout
scripts) that are considerd by (ie the ones
in which a string of TRUEs is followed by a string of FALSE

in the sorted array of fanouts). This is a heuristic decision
(since in the worst case we can have an exponential number of
fanout scripts). For each fanout script we evaluate the fanouts
that need to be driven. The fanout set will change with the
fanout script. For each fanout script, the algorithm partitions
the fanouts between the node and its replica such that the input
pin required time is maximized. The fanout script that gives the

Fig. 4. Partitioning the fanout set into two.

largest input pin required time is chosen. The algorithm that
partitions the fanout set is as follows.

For the current fanout script generate the fanout set that
needs to be driven and populate an array with this fanout
set. If a fanout is duplicated then insert DUP and
DUP in else insert NODUP . These corre-
spond to the required times at the input pins of all the fanouts
that need to be driven. The next step is the partitioning of this
fanout set and computation of and (which correspond to
the required time at the input pin of the node and its replica).
Sort the array in increasing order. Partition this sorted array
by simply cutting the array into two. There can be
such partitions where is the number of entries in the array .
One of the partition will be driven by the original gate and the
other by the replica. Evaluate the required time at the input pins
of the original gate and its replica for the current partitioning
of fanouts. Assign the lower of the two required times to
and higher to . Repeat this for all the partitions and
pick the partitioning which maximizes . This procedure is
formally illustrated in Fig. 4. It chooses the partition for which

is maximized.
Algorithm is called repeatedly for

the different fanout duplication methodologies (fanout scripts).
The script that gives the highest value input pin required time is
the chosen one.

Theorem 2: Consider an array of fanouts, the required time
at their input pins, a node and its duplicate (with common
fanins). generates an optimal solution
if the input pin capacitances for all the fanouts are the same. If

is the required time at the input pin of gate and is the
input pin required time of . Optimal solution is the one which
has the maximum value of .

Proof: The algorithms works on the sorted list of input pin
required times at the fanouts. The output is a partition with the
property that all the fanouts in one partition say n have input pin
required times the ones in partition . Let us call this property
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Fig. 5. Transforming an optimal solution to comply with sort-part.

sort-part. enumerates all the partitions
that comply with property sort-part and picks the best (ie the one
that maximizes ). We prove that the optimal solution
always complies with property sort-part.

Consider an optimal solution which does not comply with
sort-part. Such a solution is illustrated in Fig. 5. It shows an array
of fanouts sorted in increasing order by their input pin required
times. Partition has three entries and partition has five en-
tries. Partition comprises of the gates that will be driven by
gate and partition will be driven by gate . The required
time of will be decided by the first entry in the array, while
the third entry will decide the required time for . Move the
third entry to partition and move the fifth entry to partition .
There is no change in the number of fanouts of and . There
is no change in the required time of . But there is a poten-
tial increase in the required time of . If this increases the input
pin required time then the initial solution was not optimal which
is a contradiction. If this transformation does not affect the so-
lution then the transformed solution is also optimal although
it complies with sort-part. This transformation can never make
the solution worse. Hence, at least one optimal solution should
comply with sort-part.

This completes the discussion on the computation of tuples.
Now let us illustrate the computation of the tuples using an ex-
ample. Consider the circuit shown in Fig. 6. The tuples for the
fanout gates , , and are known. The gate parameters are
also known. The problem is to find the tuple of gate using this
information. In this example, all gates have exactly one input
pin. Hence, the input pin index has been dropped from the tuple
information.

Let us first illustrate the computation of NODUP . Note,
that since has exactly one input pin, the input pin index term
has been dropped.

After sorting the fanouts by their nodup values we get
the ordering . Following are the fanout scripts that

considers

1) , ,
2) , ,
3) , , . Since

cannot be duplicated (as DUP NULL, this fanout
script becomes , ,

4) , ,

Fig. 6. An example.

Fig. 7 illustrates the computation of NODUP from the
three nonredundant fanout scripts. The numbers in the boxes
correspond to the input pin required times of the fanout gates
which will have to drive for various fanout scripts. The op-
timal NODUP comes from the first fanout script.

Next we illustrate the computation of DUP . As men-
tioned before, we consider only those fanouts scripts that are
considered by . This is a heuristic decision.
For each of these scripts, we try to find the best partitioning
strategy such that the input pin required time is maximized.
Fig. 8 shows these evaluations. For each of the fanout scripts,
algorithm is used to compute the best
partitioning of fanouts such that DUP is maximized.
For this particular example this value has come out to be the
same for all the fanout scripts. In this case our algorithm will
pick the script with minimum area penalty, which for this case
is the first fanout script.

This completes the description of the local optimization rou-
tine. In Section V, we will describe the use of this methodology
for optimizing the global circuit delay.
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Fig. 7. Computation of NODUP(D).

Fig. 8. Computation of DUP(D).

V. THE GLOBAL ALGORITHM

Now we describe the global algorithm for optimization. We
will call this algorithm DUP in the rest of the paper. It is
based on dynamic programming and is divided into three stages.

A. Stage 1

In this stage, the network is traversed in reverse topologically
sorted order from POs to PIs. This ensures that when a gate is
being evaluated, all its fanouts have already been evaluated. If
is the node under consideration, this stage computes tuples
for all input pins of the node and their corresponding fanout
scripts. Since the network is being topologically traversed, the
tuples of all the fanouts have already been computed. Hence,
using the theory and algorithms described in Section IV, the
value can be computed. After the completion of this stage,
we have tuples and corresponding fanout scripts for all the input
pins for all the gates in the network. Note that DUP for PIs
and POs is set to NULL. This is because they cannot be dupli-
cated. We also set DUP for gates with only one fanout to
NULL.

B. Stage 2 and 3: Duplication Decisions

Stage 2: Now that we have computed the tuples and fanout
scripts for each input pin of all the gates, we traverse the network
from PI to PO in topological order. This traversal ensures that
when a node is visited, all its fanins have already been visited.
The purpose of stage two is to decide which gates to duplicate.
For every node, we first decide whether it should be duplicated
or not. Then we choose a fanout script (from those associated
with all the input pins) and set the duplication preference of
the fanouts using this script. If the fanout script sets a partic-
ular fanout to TRUE, (i.e., it should be duplicated) then the du-
plication preference of that fanout is set to TRUE. Every fanin
of a node sets a particular duplication preference. If the node
is type INTERNAL (ie it is neither PI nor PO), the duplication
decision is set to the duplication preference of the most crit-
ical fanin. Next we have to choose the fanout script of this node
(from all the fanout scripts associated with all the input pins).
We choose the fanout script of the input pin that is connected to
the most critical fanin. Using this script, we set the duplication
preference of the fanouts. PIs and POs cannot be duplicated.



SRIVASTAVA et al.: TIMING DRIVEN GATE DUPLICATION 49

TABLE I
DELAY IMPROVEMENTS AND AREA PENALTY OVER MAP -N 1 FOR

DUP HEU AND DUP EPSILON

Stage 3: The third and last stage of the algorithm traverses the
network from PO to PI, duplicating the gates whose duplication
decision was TRUE. Fanouts partitioning is done using algorithm

. This completes the description of the
algorithm. It must be mentioned that this is a polynomial time
algorithm.

VI. HEURISTIC FOR CONSTRAINING AREA

The algorithm outlined in Section V (which we call
) can lead to a lot of area penalty if left un-

constrained. In this section we describe an extension of
called .

puts a constraint on the gates that can be duplicated, hence,
reducing the area penalty. The challenge is to select such gates
without losing the quality of the solution. A critical gate is
defined as gate which lies on the slowest PI to PO path. A
noncritical gate is defined as a gate whose delay has little or no
effect in the overall circuit delay. tries to reduce
the delay of all gates regardless of whether they are critical or
not. This can be wasteful in area.

In our extension, we do not consider the duplication of the
fanouts of a noncritical gate. Hence, while computing tuples

of a noncritical gate we consider only one fanout script,
the one in which none of the fanouts are duplicated. Note that
we still compute , which indicates that we keep the
flexibility of duplicating this gate. This is because, if the fanin
of is a critical gate, duplication of might be useful.

VII. RESULTS

We integrated our algorithm in SIS [10] and obtained results
for twenty five MCNC benchmarks. We used lib2.genlib as the
target technology library. Our experiments showed that the al-
gorithm was giving high area penalties, hence, we

TABLE II
DELAY IMPROVEMENTS AND AREA PENALTY OVER MAP -N 1 -AFG

FOR DUP EPSILON

Fig. 9. Area delay curves (x axis normalized area y axis % normalized delay)
for DUP EPSILON .

believe is better at optimizing delay under
area constraints. Note that will behave as
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if all gates are considered critical. For our exper-
iments we set the required time at the POs to be zero. In such
a scenario, the magnitude of the minimum slack in the circuit
is also the circuit delay. A user defined parameter was used
to define a critical gate. A critical gate is a gate whose slack

is . All
other gates are noncritical. Using this criteria for choosing a
critical and noncritical gate various experiments were done with

.
We obtained the results in two categories. The first category

shows the effectiveness of the algorithm on a general network.
The second category reports the improvements over highly
optimized results generated by SIS [10]. Initially the circuit was
optimized using script.rugged followed by technology mapping.
For category one we used the map -n 1 option. It is a minimum
delay technology mapper based on dynamic programming; for
details please refer to the SIS documentation. For category two
we use the map -n 1 -AFG option which is the recommended
option for obtaining highly optimized networks. This option
does better fanout optimization and area recovery. Again for
details please refer to the SIS documentation. Note that in
this category we use the best delay optimization algorithms
of SIS. Mapping is followed by gate duplication. Hence, we
use our algorithm as a post processing step. The results of
the first category are shown in Table I. Comparisons between

and can be derived. It can be
seen that can achieve large improvements
at minor increase in area. is not significantly
better in terms of delay but incurs much larger area penalty.
This illustrates the effectiveness of our algorithm. Given a
general network, gate duplication has the potential of giving
large improvements in delay. The value was fixed to 0.05.

The second category of results illustrate the improvements that
our algorithm can give over highly optimized results generated
by SIS. The circuit (after script.rugged) was mapped using map
-n 1 -AFG followed by gate duplication as a post processing
step. Table II shows the delay improvements and area penalty
by our algorithm. Parameter was again fixed to 0.05. The
improvements in this category are lesser than the previous
category as we use a highly optimized mapper which reduces
the fanout loading using very good fanout algorithms. Hence,
it reduces the effectiveness of gate duplication. Moreover, the
reported area penalty is without any area recovery. This penalty
will go down if we use some strategies for area recovery (like
gate sizing) after duplication.

Next the parameter was set as an input parameter and it
could be varied for getting a range of area, delay values for each
benchmark. Fig. 9 shows one such area/delay curve for three
benchmarks, (we omit the curves for the rest of the benchmarks
for clarity and brevity). Fig. 9 shows that larger delay improve-
ments could be obtained by larger area penalty. But increasing
the number of duplicated gates does not indefinetly reduce the
delay.

VIII. CONCLUSION AND FUTURE DIRECTIONS

We presented an algorithm for timing driven gate duplication
in the post technology mapping phase. Its effectiveness as an

efficient delay optimization methodology was reported in the
SIS framework.

There can be a number of future avenues of research. One
could be the merger of buffer insertion and gate duplication.
Certain sections of the circuit might perform well with buffer
insertion and certain might perform better with gate duplica-
tion. It would be interesting to recognize the properties of such
circuits. Development of layout driven algorithms for gate du-
plication which address not only delay but other metrics like
wirelength and congestion could be another interesting course
of future work.
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