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Abstract: We introduce an approach to calculate the thermody-
namic oxidation and reduction potentials of semiconductors in aque-
ous solution. By combining a newly-developed ab initio calculation
for compound formation energy and band alignment with electro-
chemistry experimental data, this approach can be used to pre-
dict the stability of almost any compound semiconductor in aque-
ous solution. 30 photocatalytic semiconductors have been stud-
ied, and a graph (a simplified Pourbaix diagram) showing their va-
lence/conduction band levels and oxidation/reduction potentials is
produced. Based on this graph, we have studied the stabilities and
trends against the oxidative and reductive photocorrosion for com-
pound semiconductors. We found that, only metal oxides can be
thermodynamically stable when used as the n-type photoanodes.
All the non-oxides are unstable due to easy oxidation by the photo-
generated holes, but they can be resistant to the reduction by elec-
trons, thus stable as the p-type photocathodes.

One key issue in the research of photocatalytic water splitting
is to search for semiconductor photoelectrodes that can absorb the
visible light and drive the hydrogen (oxygen) evolution reaction
using the photo-generated electrons (holes).1–4 This requires the
semiconductors to have proper band alignment relative to the wa-
ter redox potentials,e.g. the conduction band minimum (CBM)
of the p-type photocathode should be higher (more negative in po-
tential) than the water reduction potential H+/H2, and the valence
band maximum (VBM) of the n-type photoanode lower (more pos-
itive in potential) than the water oxidation potential O2/H2O, as
shown in the band alignment plot (1) for the Z-scheme water split-
ting system.5–9 Given the importance of the band alignment, it is
usually taken as a screening condition in the search and design of
new photocatalytic semiconductors. However, this condition is not
sufficient, and one important issue, which has attracted increasing
attention but has not been well studied, is how to evaluate and en-
hance the stability of semiconductors in the aqueous solution.3,10,11

Resistance to the photo-induced corrosion (degradation orde-
composition) under illumination is a critical condition for the pho-
tocathode and photoanode materials. It is due to this condition
which makes the photocatalytic water splitting a much more chal-
lenging problem than the photovoltaic. A compound semiconduc-
tor MX (e.g.M=Zn, Ga, Ti, X=S, N, O2 in ZnS, GaN, TiO2 respec-
tively) used as the n-type photoanode may have a VBM lower than
the O2/H2O oxidation potential, but the photo-generated holes (h+)
may oxidize the semiconductor first, rather than the water, making
the compound MX decomposed through this reaction,11,12

MX+zh++solv⇀↽ Mz+
•solv+X (oxidization) (1)
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Figure 1. A schematic plot of the band alignment of the p-type photo-
cathode and n-type photoanode semiconductors relative to the water redox
potentials in the Z-scheme.φox shows the oxidation potential of the pho-
toanode in aqueous solution, andφ re shows the reduction potential of the
photocathode.

Similarly the photo-generated electrons (e−) in the p-type photo-
cathode MX may reduce itself rather than the water through the
following reaction,

MX+ze−+solv⇀↽ M+Xz−
•solv (reduction) (2)

The above reactions define two potentials for the hole and electron
respectively. When the electron (hole) Fermi energy equalsthat po-
tential, the reactions are in equilibrium,i.e. the Gibbs free energy
change equals zero, and when the photo generated electron (hole)
quasi Fermi energy is higher (lower) than that potential, the reac-
tion will occur, hence the semiconductor will be corroded. These
potentials are called the thermodynamic reduction potential φ re and
oxidization potentialφox of the semiconductor.

Since the photoanode (photocathode) is in contact with the aque-
ous solution, the photo-generated holes in the valence band(elec-
trons in the conduction band) can oxide (reduce) either the water
or itself, as shown in 2. Whether the semiconductor is resistant
to the photocorrosion depends on the alignment ofφox relative to
φ (O2/H2O) for the photoanode, andφ re relative toφ (H+/H2) for
the photocathode, as shown in 2. Generally speaking, a semicon-
ductor is stable with respect to the hole oxidation if itsφox is lower
than eitherφ (O2/H2O) or its VBM, and is stable with respect to the
electron reduction if itsφ re is higher than eitherφ (H+/H2) or its
CBM.

Experimentally,φox and φ re can be derived from the Pourbaix
diagram,13,14 but the diagram is not available for many novel
photoelectrode semiconductors, and it is not easy to measure it.
Thirty years ago,φox and φ re of several binary semiconductors
had been calculated by Gerischer12,15 (where the labelspεdecomp
andnεdecompcorrespond toφox andφ re respectively) and Bard and
Wrighton.16 Park and Barber have also calculated the full Pourbaix
diagram for a few simple semiconductor compounds.14 These cal-
culatedφox and φ re are widely cited in literatures to explain the
corrosion of semiconductors in aqueous solution.11,17,18As pro-
posed by Lewis and coauthors in their review paper,1 theφox and
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Figure 2. The stability change of the photoanode (a) as its oxidation po-
tential φox shifts up from below the VBM to aboveφ (O2/H2O), and of the
photocathode (b) as its reduction potentialφ re shifts down from above the
CBM to belowφ (H+/H2).

φ re should be taken into account when choosing the candidate pho-
toelectrodes, in additional to the optimal band gap and bandedge
alignment. Because the calculation ofφox and φ re requires the
Gibbs free energy of all the reactants and products in the related
reactions, which are not available for some semiconductors(espe-
cially for multinary ones),φox andφ re of only a few simple semi-
conductors had been reported, and no general trend had been stud-
ied systematically. Recently new ab initio methods based onthe
density functional theory have been developed to calculatethe for-
mation energies of semiconductors with high accuracy,19 and also
more experimental electrochemistry data can been found in the lat-
est handbooks,20,21 thus a more extended study ofφox andφ re for
almost all semiconductors becomes possible. To facilitatethe fu-
ture choice of candidate photocatalytic materials, we herereport
the φox andφ re for more than 30 semiconductors as well as their
band alignment relative to the normal hydrogen electrode (NHE)
potential. Based on these results, we will discuss the trendin the
oxidative/reductive stabilities of a series of metal oxides, II-VI and
III-V related semiconductors.

To start with, we will take ZnS as an example and introduce how
we calculate itsφox andφ re. The specific exemplification of Eqs.(1-
2) for ZnS are,

ZnS+2h++H2O⇀↽ ZnO+S+2H+ (oxidization) (3)

ZnS+2e−+2H+ ⇀↽ Zn+H2S (reduction) (4)

which define theφox and φ re of ZnS respectively,i.e. when the
chemical potentials (Fermi energies) of the holes and electrons are
equal toφox andφ re respectively, the Gibbs free energy changes of
Eq.(3) and (4) are zero, thus,

φox = [G(ZnO)+G(S)+2G(H+)−G(ZnS)−G(H2O)]/2eF (5)

φ re =−[G(Zn)+G(H2S)−G(ZnS)−2G(H+)]/2eF (6)

where G(X) stands for the Gibbs free energy of X at the stan-
dard state,e is the elementary charge andF is the Faraday con-
stant. To reference the potentials to the hydrogen reduction poten-
tial φ (H+/H2), the following half reactions can be used:

H2+2h+ ⇀↽ 2H+ (7)

2H++2e− ⇀↽ H2 (8)

Here the chemical potentials of both the electron and hole are equal
toφ (H+/H2), thush+ is equivalent to−e−, and the above two equa-
tions are equivalent.φ (H+/H2) can be written as

φ(H+/H2) = [2G(H+)−G(H2)]/2eF (9)

Now, we can add the reverse of Eq.(7) [exchange the left and right
hand side] to Eq.(3), then get the sum reaction,

ZnS+H2O→ ZnO+S+H2 (oxidization) (10)

and add the reverse of Eq.(8) to Eq.(4), then get

ZnS+H2 → Zn+H2S (reduction) (11)

Note, to makeh+ in Eq. (3) and (7) ande− in (4) and (8) equiv-
alent, it is assumed that their chemical potentials are the same as
φ (H+/H2), so now the Gibbs free energy changes (∆G) of Eq. (3)
and (4) are not zero, and they are equal to∆G of the reactions (10)
and (11) respectively, thus the sign→ is used rather than⇀↽. ∆G of
the reactions (10) and (11) can be calculated directly,

∆G(10) = G(ZnO)+G(S)+G(H2)−G(ZnS)−G(H2O) (12)

∆G(11) = G(Zn)+G(H2S)−G(ZnS)−G(H2) (13)

From Eq. (5), (6), (9), (11) and (12), we have

φox = ∆G(10)/2eF+φ(H+/H2) (14)

φ re =−∆G(11)/2eF+φ(H+/H2) (15)

Since the NHE potential isφ (H+/H2) at pH=0,φox andφ re rela-
tive to NHE can be calculated using Eq. (14) and (15). The key
of the procedure is to find the plausible oxidation and reduction re-
actions, such as (10) and (11), and get their∆G, then the relevant
φox andφ re can be calculated. Several plausible reactions can be
tried, then the lowestφ re and highestφox should be used as the true
reduction and oxidization potentials. Thus, in a sense, what we get
is a simplified Pourbaix diagram, only the potentials limiting the
photo-corrosions are reported here. In the supplement materials,
we listed the reactions we considered in determiningφox andφ re

for different semiconductors. It should be mentioned that there is no
guarantee that we have enumerated all the possible reactions, thus
strictly speaking, the potentials reported here should be considered
as a higher limit forφ re and a lower limit forφox. Nevertheless,
in practice, we believe the results we obtained are very close to the
true oxidation/reduction potentials.

3 shows our calculatedφox andφ re relative to NHE, the water re-
dox potentialsφ (O2/H2O) andφ (H+/H2), and the valence and con-
duction band edges for five selected classes of semiconductors at
pH=0. It is well-known thatφ (O2/H2O) andφ (H+/H2) depend on
the pH value according to Nernstian relation,22 i.e. shifting up by -
0.059 V as the pH increases by 1. The dependence ofφox andφ re on
the pH value is determined by the specific reactions: when thesum
reactions such as Eq. (10) and (11) are irrelevant to H+ or OH−,
their ∆G is fixed, thenφox and φ re shift together withφ (H+/H2)
as described by Eq. (14) and (15) and also follow the Nernstian
relation; when the reactions are relevant to H+ or OH−, the de-
pendence is different, at variance to the Nernstian relation. Most
of φox and φ re plotted in 3 follow the Nernstian relation, similar
asφ (H+/H2), and the exceptions include: (i) all oxides have fixed
φox with respect to pH change. (ii)φox of CuGaS2, Cu2ZnGeS4
and Cu2ZnSnS4 shift up by -0.044 V (instead of -0.059 V) as pH
increases by 1. With these relations clear, theφox andφ re relative
to NHE orφ (O2/H2O) andφ (H+/H2) at different pH can be plotted
(as a simplified Pourbaix diagram).

The valence and conduction band edges in 3 are collected from
Ref. [11] for most metal oxides and from Ref. [23,24] for non-
oxides. For the metal oxides, the band edge position relative to
NHE is reported to depend on the pH value of the solution through
the same Nernstian relation as for the water redox potentials.22 For
the non-oxides, the relation between the band edge positionand
the pH value is so far not clear.22 Ref. [23] derived the band edge
positions of the group IV, III-V and II-VI semiconductors relative to
NHE based on the calculated band offsets among semiconductors,
assuming that the conduction band edge of Si corresponds to its
electron affinity (about -3.7 eV relative to vacuum level) and NHE
is -4.44 eV relative to vacuum level. This implicitly assumes that
the band edge positions for these materials do not depend on the
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Figure 3. The calculated oxidation potentialφox (red bars) and reduction potentialφ re (black bars) relative to the NHE and vacuum level for a seriesof
semiconductors in solution at pH=0. The water redox potentials φ (O2/H2O) andφ (H+/H2) (dashed lines), and the valence (green columns) and conduction
(blue columns) band edge positions at pH=0 are also plotted.The alignment for these potentials at different pH values (asimplified Pourbaix diagram) can be
derived according to the relations described in the text, such as the Nernstian relation.

pH value. The band offsets of almost all group IV, III-V and II-
VI related semiconductors had been calculated using the ab initio
methods with reasonable consistence compared to experiments,25

and the similar calculation procedures can be used to estimate the
band edge positions of other semiconductor whose experimental
values are unavailable.26

Compared to the calculation performed by Gerischeret al.,12,15

Bard and Wrighton,16 and Park and Barber14 30 years ago, our
current work benefits from the progresses in both experimentand
ab initio calculations. It is the combination of these two progresses
which allow us to calculateφox andφ re for almost any given semi-
conductors, no matter binary or multinary compounds, as shown in
3. (i) Experimentally, the Gibbs free energy data in handbooks like
Ref. [20,21] covers much more chemical compounds with higher
accuracy compared to those published 30 years ago. (ii) If the ex-
perimental Gibbs free energy (formation enthalpy plus entropy con-
tribution) for a compound in the proposed reaction is not reported
in those handbooks, mostly for some novel compound semiconduc-
tors, its formation energy can be calculated using modern abinitio
methods. The Gibbs free energy of that compound is then calcu-
lated from the formation energy plus the Gibbs free energiesof the
elementary compounds which are all known experimentally. For
example, in this work, we have calculated the formation energies
of Ta2N5, TaON, ZnGeP2, Cu2ZnGeS4, Cu2ZnSnS4, etc. using a
newly developed approach19 based on the density functional the-
ory. This approach reduces the formation energy error from 0.25
eV/atom to less than 0.05 eV/atom for the compound semiconduc-
tors.19 As a result, if a compound in the reactions has 4 atoms per
formula unit, the errors of the calculatedφox andφ re are reduced
from 1 V to 0.2 V (assuming one electron is transfered in the reac-
tion). Note that the entropy contribution in the formation energy is
neglected for those semiconductors with no experimental data, but

for crystals this contribution is small and we estimate it causes er-
rors less than 0.2 V inφox andφ re. In the supplement materials, we
listed how we get the Gibbs free energy of all the solid compounds
which are not available in Ref. [20,21].

In the following we will discuss the trends in 3 and their influence
on the design of photocatalytic system.

(i) For the oxidation potential, most metal oxides haveφox lower
thanφ (O2/H2O) at pH=0, indicating they are resistant to the hole
oxidation and stable in the solution, but four exceptions are also
found, Cu2O, ZnO, PbO and FeTiO3. The reasons for the easier ox-
idation of Cu2O, PbO and FeTiO3 are obvious, since the cations in
these compounds are not at their highest valences and can be further
oxidized to higher valences (Cu+ to Cu2+, Pb2+ to Pb4+ and Fe2+

to Fe3+).27 Comparing Cu2O with Cu+ and CuWO4 with Cu2+,
we can find that CuWO4 has a much lowerφox than Cu2O, since
both cations in CuWO4 are in the highest valence state. According
to this simple trend, all the metal oxide semiconductors at anot-
highest valence state of cations are likely susceptible to oxidation
in water, and tend to be unstable (Note Co3O4 is an exception, Co
has higher valence in Co2O3, but Co2O3 is not as stable as Co3O4,
thus itsφox is quite low). The easy oxidation of ZnO is also unique
considering that Zn is at its highest valence state and its band gap is
quite large with a very low valence band. Thus the stability of ZnO
cannot be predicted according to its valence state of elements, or its
valence band position. This is related more to its formationenergy
relative to other phases or compounds. Sinceφox of the listed ox-
ides does not shift with pH value, when pH=7, theφox of ZnO and
FeTiO3 fall belowφ (O2/H2O), indicating that these compounds are
stable under illumination in the neutral or alkaline solution, which
is consistent with the observation of ZnO in solution: no photocor-
rosion at pH=10 while complete decomposition at acid pH=4.5.28

(ii) φox of all non-oxide semiconductors are higher than
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φ (O2/H2O), at least 0.5 V more at pH=0, and the alignment of
φox relative toφ (O2/H2O) is not changed by pH value. This in-
dicates these non-oxide semiconductors are thermodynamically
unstable in aqueous solution and will be oxidized by the holes
under illumination. The reason is also simple: the anions such as
N3−, P3−, As3−, S2−, Se2−, Te2− can all be oxidized to neutral
or positive valence states,e.g. N3− to N2 or NO−

3 , and S2− to S
or SO2−

4 . It is interesting to note that the oxynitride TaON, which
is between the oxide and nitride and naively expected to combine
the better stability of the oxides and higher valence band (hence
smaller band gap) of the nitrides,9,29,30has the oxidation potential
close to the nitride Ta2N5, therefore it does not inherit the good ox-
idative stability of the oxides. This further indicates that although
doping or alloying the oxide semiconductors with weaker electron-
negative anions can decrease the band gap, they become less stable
with respect to oxidation in water.

(iii) For the reduction potentialφ re, all the non-oxide semicon-
ductors have higherφ re thanφ (H+/H2) at pH=0, and thus are re-
sistant to the electron reduction under illumination, corresponding
to the situation in 2(b) withφ re aboveφ (H+/H2). Sinceφ re and
φ (H+/H2) change at the same rate with pH value, this situation
is not influenced by the pH change. Our results are consistent
with the reported Pourbaix diagrams for CdS, CdSe, CdTe, GaP
and GaAs,14 which clearly show that their reduction and oxidation
potentials are negative (higher in Fig.3) relative toφ (H+/H2) and
φ (O2/H2O) respectively at 0<pH<14.

(iv) For φ re of the metal oxides, a few metal oxides have lower
φ re thanφ (H+/H2) at pH=0, such as Cu2O, PbO, CuWO4, BiFeO3,
BiVO4, WO3 and Co3O4, caused by the ease of reactions such as,

Cu2O+H2 → 2Cu+H2O (16)

WO3+H2 →WO2+H2O (17)

In these compounds, the bonding between the metal cations and
oxygen anions are weaker than the H-O bonding in H2O, so the
above reactions are energetically favorable. According tothe ex-
perimental Pourbaix diagrams,13 the WO3/WO2 and Cu2O/Cu re-
duction potentials are 0 V and 0.45 V relative toφ (H+/H2) re-
spectively, in good agreement with our calculatedφ re. Although
PbO, CuWO4, BiFeO3 and WO3 have lowerφ re thanφ (H+/H2),
they are still stable because theirφ re is above their CBM, and thus
the conduction band electrons can reduce neither the water nor the
semiconductors (Noteφ re, CBM andφ (H+/H2) change at the same
rate with pH, so the stability analysis of these metal oxidesis not
changed by pH). However, Cu2O, BiVO4 and Co3O4, haveφ re

lower than bothφ (H+/H2) and CBM, corresponding to the align-
ment in 2(b) withφ re below φ (H+/H2), thus they will be reduced
in the solution under illumination. Actually the reductionof photo-
catalytic p-type Co3O4 to inactive CoO had been observed exper-
imentally.31 All the other oxides listed in 3 haveφ re higher than
φ (H+/H2), and thus are stable against reduction.

According to the above trends, one can find a series of metal ox-
ides which are both resistant to the hole oxidation and the electron
reduction and thus stable in the solution. Due to the lower CBM
thanφ (H+/H2), most oxides except Cu2O, BiVO4 and Co3O4 can
not be used as the photocathode, but can be used as the photoanode
given their low VBM. Furthermore, the low VBM also makes the p-
type doping difficult and most metal oxides are intrinsically n-type
according to the doping-limit rule,32 which states that a semicon-
ductor is difficult to be doped p-type if its valence band is too low
and is difficult to be doped n-type if its conduction band is too high.
Therefore the metal oxides with low valence band should be better
used as the n-type photoanodes.

For the p-type photocathode, one can easily find metal non-
oxides which have higher CBM thanφ (H+/H2) and are also re-

sistant to the electron reduction, thus can be used the photocathode
if doped to p-type. According to the doping limit rule, the p-type
doping in the non-oxides are easier than in the oxides due to the
higher VBM. One may worry about the bad stability of the non-
oxides with respect to the hole oxidation. However, we should note
that, for the p-type photocathode, (i) the downward band bending at
the semiconductor/water interface prevent the majority holes from
reacting with water; (ii) the photo generated hole is expected to flow
to the connected anode quickly through majority carrier conduction
(at least when the device is working),33 thus in this sense we can
ignore whether it is oxidization resistant. As a result, some of the
III-V and II-V semiconductors with suitable band gaps can beused
as photocathodes, despite the fact they might be prone to oxidiza-
tion from the pure thermodynamic point of view. The same can be
said for n-type photoanodes where we are mostly concerned about
their resistance to oxidization.

Finally, we want to mention that the results represented in Fig.3
considered only the thermodynamic resistance to the reductive and
oxidative decomposition, but the real decomposition also depends
on the specific kinetic processes. If the material is stable thermody-
namically against the decomposition process, this material is stable
regardless of the kinetic process. However, if the materialis unsta-
ble thermodynamically, there might still be ways to make it stable
kinetically. For example, an oxide layer, which forms as a result of
oxidation, but stops itself after a certain thickness, can be a good
protective layer and make the material stable kinetically.For some
p-type photocathodes, such protective oxide layer can alsoserve
as a hole blocker, which prevents the recombination of the minor-
ity electron and the majority hole, and thus can be essentialto the
efficiency of a photochemical cell.

Note, through out our study, we have not considered the possibil-
ity of the semiconductor compound to be dissolved in the solvent
in dark condition. That can correspond to a reaction where the va-
lences of cations and anions in the compound are not changed,but
their total Gibbs energy is smaller in the solvation form than as in
a solid crystal structure. For example, this can happen to GaAs
within some pH range.14 However, we do find some interesting
cases for some compounds where reactions in the dark will occur.
Comparing the oxidation potentialφox and reduction potentialφ re

in 3, most compounds haveφox lower thanφ re, which is easy to
understand since the oxidation means the electrons are taken away
from the low valence band while the reduction means the electrons
are added to the high conduction band. However, several excep-
tions exist,i.e. Cu2O, AlP, GaP, AlAs, Si and SiC haveφ re lower
thanφox. As a result, the electron-hole pair needed for the reduction
and oxidization reactions can be generated spontaneously (they cost
negative energy), without the help of any photon. This will cause
these materials to decompose even in the dark. For example, the
following two reactions are used to calculate theφ re and φox of
AlP respectively,

2AlP+3H2 → 2Al+2PH3 (reduction) (18)

2AlP+3H2O→ Al2O3+2P+3H2 (oxidization) (19)

giving thatφ re is lower thanφox, which makes the two reactions
spontaneous, corresponding to a sum reaction,

4AlP+3H2O→ 2Al+Al2O3+2P+2PH3 (20)

The calculated Gibbs free energy change of this reaction is negative,
indicating the reaction is exothermal, and thus AlP will be decom-
posed in water even without any illumination. But once again, a
kinetic barrier (e.g., an oxide layer) can block the otherwise ther-
modynamically plausible reaction.

In conclusion, we studied the thermodynamic oxidation and re-
duction potentials for a series of photocatalytic semiconductors,
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and plotted their alignment relative to the valence and conduction
band edges as well as the water redox potentials. According to these
potentials, we found only metal oxides can be thermodynamically
stable when used as the n-type photoanodes, and all the non-oxides
are unstable due to easy oxidation by photo generated holes.This
indicates although the oxides doped or alloyed by less electroneg-
ative anions can have smaller band gaps, their stability is also de-
graded. On the other hand, many non-oxides are resistant to the
electron reduction, and thus may be used as p-type photocathode
provided the hole oxidation is prevented in the working devices.
The method we used is universal and can be applied to evaluatethe
stability of any semiconductors. We believe the presented stability
diagram (3) will be useful in guiding the search for stable photo-
cathode and photoanode materials.
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