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RELATIVE TATE OBJECTS AND BOUNDARY MAPS IN THE

K-THEORY OF COHERENT SHEAVES

OLIVER BRAUNLING, MICHAEL GROECHENIG, JESSE WOLFSON

Abstract. We investigate the properties of relative analogues of admissible Ind, Pro, and elemen-
tary Tate objects for pairs of exact categories, and give criteria for those categories to be abelian.
A relative index map is introduced, and as an application we deduce a description for boundary
morphisms in the K-theory of coherent sheaves on Noetherian schemes.
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1. Introduction

If one knows the category Coh(X) of coherent sheaves of a scheme, the quasi-coherent sheaves are
just the category of Ind objects QCoh(X) ≃ Ind

a (Coh(X)), i.e. they arise from an entirely formal
categorical process. What is the geometric role of the Pro object analogue?

Two examples: (1) For j : U →֒ X open, Deligne [Del66] defines an extension-by-zero functor j!, a
type of left adjoint for the pull-back j∗, or (2) for i : Z →֒ X a closed immersion the adic completion
naturally outputs a Pro-coherent sheaf:

j! : Coh(U) −→ Pro Coh(X) CZ : Coh(X) −→ Pro Coh(Z).

Both functors “need” Pro objects and cannot be defined inside coherent sheaves alone, e.g. for j! this
is forced by the adjunction property. Although both functors are very natural, Pro-coherent sheaves
are used far less often than their Ind-counterpart in practice. Two natural questions arise:

(1) Is there a natural framework allowing one to view both Ind- and Pro-coherent sheaves as
objects in one category?

(2) How do the notions of Ind- and Pro-coherent sheaves generalise for sheaves with support?

This article proposes an answer to these questions and studies the effect of these functors on
algebraic K-theory. We summarize our answers:
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No. EP/G06170X/1. J.W. was partially supported by an NSF Graduate Research Fellowship under Grant No. DGE-
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this paper was being completed. Our research was supported in part by NSF Grant No. DMS-1303100 and EPSRC
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(1) For this there would trivially be a boring answer by just taking an extremely large category.

However, we shall argue that the category of Tate objects Tate
el(Coh(X)), originally introduced by

A. Beilinson [Bĕı87] and K. Kato [Kat00] for different reasons, is an interesting candidate. This is
an exact category whose K-theory has close ties to that of Coh(X), and its objects are precisely
extensions of quasi-coherent sheaves by Pro-coherent sheaves. So, in a way it provides the minimal

solution to our question. However, while CZ takes values in this category, this is not the case for
Deligne’s j!. See Equation 6, and the paragraph after Theorem 1.1 for a precise explanation of how
this functor is related to our work.

(2) There are several ways to weave support constraints into these categories, e.g. Ind
a (CohZ X)

are Ind objects from coherent sheaves supported in Z, while we shall also introduce a category
Ind

a(Coh(X),CohZ X), which contains Ind objects built of arbitrary coherent sheaves, but so that
the Ind-system has relative quotients with supports in Z. There are a number of further variations
of the theme of support and we investigate the relations between these categories. Ultimately this
requires a relative Tate category Tate

el(D,C), which gives this article its name.
Once these categories are properly constructed, we use them to address a question in algebraic

K-theory. Namely, any open-closed complement U →֒ X ←֓ Z gives rise to a localization sequence

· · · −→ Gi(Z) −→ Gi(X) −→ Gi(U)
∂
−→ Gi−1(Z) −→ · · ·

in the K-theory of coherent sheaves, i.e. Gi(X) := πi(KCoh(X)).

Theorem 1.1. Suppose X is a Noetherian scheme, U
j
→֒ X an open subscheme and Z its reduced

closed complement. Then there is a canonical homotopy commutative triangle

ΩKCoh(U)

TZ

��

∂ // KCoh(Z)

ΩKTateel(Coh(X),CohZ(X)),

∼

i

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

where

(1) the map TZ is the “open complement” to the adic completion functor CZ ; it will be defined
below in Corollary 3.26 (or see Equation 1 below),

and
(2) i is an equivalence of K-theory spaces, given as a concrete zig-zag of simplicial maps in §4.

The functor TZ is in general only exact if the inclusion j : U → X is affine. However, exactness
fails only up to a part irrelevant to K-theory, which allows us to state the theorem without imposing
this assumption. See Corollary 4.9 for the full formulation

It is the functor TZ which is related to Deligne’s j!. As we will see in Equation 6, there is a short
exact sequence of (not necessarily admissible) Ind Pro objects

(1) 0→ j! F → j∗ F → TZ(F)→ 0.

Let us explain the simplicial map of the theorem a little more. We keep the assumptions as said.
Denote by Gr≤•,•(X,Z) the bi-simplicial space given by the nerves of the groupoids of collections
of coherent sheaves (F ij)i≤n, j≤m with inclusions F ij ⊂ Fkl for i ≤ k and j ≤ l. Moreover we

assume that j∗ F ij = j∗ Fkj for i ≤ k. Consider the span of maps S• Coh(U)× ← Gr≤•,•(X,Z) →
S•S• CohZ(X), where the left-pointing arrow sends the above diagram to the simplicial diagram
obtained by restriction along j∗. The rightward arrow maps the above to (F ij /F0j) ∈ CohZ(X).

The face and degeneracy maps of Gr≤•,•(X,Z) are defined, such that for each fixed index i, the

map (Fkj)k,j 7→ (F ij)j defines a map Gr≤•,•(X,Z) → S•(Coh(X))×. We now obtain the following
reformulation of Theorem 1.1.
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Theorem 1.2. Taking geometric realisations of the aforementioned map, and applying the double
loop space functor Ω2, we obtain the following homotopy commutative diagram

Ω2|Gr≤•,•(X,Z)|

≃

ww♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

ΩKCoh(U)
∂ // KZ ,

where ∂ : KCoh(U) → BKZ is the boundary map of Theorem 1.1, resp. in the G-theory localisation
sequence.

In order to establish our main result we continue the investigations of our article [BGW14a], which
was devoted to a detailed analysis of the exact categories of elementary Tate objects. For an exact
category D, together with an extension-closed full subcategory C ⊂ D, we define and study exact
categories of relative Tate objects Tate

el(D,C) ⊂ Tate
el(D); as well as their cousins Ind

a(D,C) and
Pro

a(D,C) of relative admissible Ind and Pro objects. We also give necessary and sufficient criteria
for categories of relative admissible Ind objects to be abelian, namely that C and D are abelian and
satisfy a relative analogue of the Noetherian condition; dually, relative admissible Pro objects are
abelian if and only if C and D satisfy a relative Artinian condition. We refer the reader to Definitions
3.3 and 3.9 for a precise explanation of those terms.

An example of particular interest to us is given by CohZ(X) ⊂ Coh(X), where X is a Noetherian
scheme, and Z a closed subscheme. We denote by CohZ(X) the full subcategory of coherent sheaves
on X with set-theoretic support at Z; and by QCoh(X,X \Z) the category of quasi-coherent sheaves
on X , whose restriction to X \ Z is coherent. The following statement is part of Proposition 3.23 in
the main body of the text.

Example 1.3. We have an exact equivalence QCoh(X,X \ Z) ∼= Ind
a(Coh(X),CohZ(X)).

The study of elementary Tate objects in exact categories was pioneered by Beilinson [Bĕı87], who
introduced this notion in order to study vanishing cycles. This direction was then further pursued by
Previdi [Pre11], and the authors in [BGW14a]. We view the present article as a natural continuation
of these investigations.

2. Recollection on Exact Categories

For the remainder of this section we fix exact categories C, D. The basic definitions and properties
can be found in Bühler’s survey [Büh10]. We denote by LexC the abelian category of left exact

presheaves, that is functors C
op F
−→ Ab, taking values in the category of abelian groups, such that a

short exact sequence X →֒ Y ։ Z is sent to an exact sequence

0→ F (Z)→ F (Y )→ F (X).

We recall the following definition and lemma from [BGW14a].

Definition 2.1. Fix an infinite cardinal κ, and consider a filtered poset I with |I| ≤ κ. An admissible
Ind diagram is a functor X : I → C, such that for every i ≤ j we have that Xi →֒ Xj is an admissible
monomorphism. The full and extension-closed subcategory of LexC, consisting of objects X which can
be represented by lim

−→i∈I
Xi, over an admissible Ind diagram with |I| ≤ κ, will be denoted by Ind

a

κ(C).

It will be referred to as the exact category of admissible Ind objects.

It is not obvious to see that Ind
a

κ(C) ⊂ LexC is extension-closed (see [BGW14a, Theorem 3.7]).
As a corollary one obtains a canonical structure of an exact category on Ind

a

κ(C), inherited from the
abelian category LexC. We will often refer to the following result, which is Lemma 3.11 in [BGW14a].

Lemma 2.2. If (Xi)i∈I is an admissible Ind diagram in an exact category C, then for every i ∈ I the
induced Xi →֒ X is an admissible monomorphism in Ind

a(C).
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The definition of admissible Pro, and elementary Tate objects will be evidently modelled on this
one. In fact, categorical duality allows one to define admissible Pro objects at no extra cost. The
concept of elementary Tate objects combines Ind and Pro directions in a non-trivial manner.

Definition 2.3. We define Proaκ(C) = (Indaκ(C
op))op, and refer to it as the exact category of admissible

Pro objects. The full subcategory of Indaκ Pro
a

κ(C), consisting of objects V which sit in an exact sequence

0→ L→ V → V/L→ 0,

with L ∈ Pro
a

κ(C) and V/L ∈ Ind
a

κ(C), will be referred to by Tate
el(C), the category of elementary Tate

objects. Any such admissible subobject L of V is called a lattice in V . We denote the set of lattices
by Gr(V ).

There are several equivalent ways to introduce elementary Tate objects. In [BGW14a, Definition
5.2], elementary Tate object were defined by means of the property described in the remark below.
The fact that the two viewpoints are equivalent, is implied by [BGW14a, Theorem 5.5].

Remark 2.4. Every elementary Tate object can be represented as a directed colimit lim
−→i∈I

Xi ∈

Ind
a
Pro

a(C) over a directed poset I, with Xi ∈ Pro
a(C), such that for i ≤ j we have Xj/Xi ∈ C.

We need to recall the notions of left and right s-filtering subcategories, which were introduced in
[Sch04, Definition 1.3 & 1.5]. The definition given below differs from the one of loc. cit. The fact that
the two definitions are equivalent is due to Bühler, a proof is given in [BGW14a, Appendix A].

Definition 2.5. Let C →֒ D be a fully faithful, exact inclusion of exact categories.

(a) We say that C is left filtering in D, if every morphism X → Y in D, with X ∈ C factors
through an admissible monomorphism X ′ →֒ Y with X ′ ∈ C. We say that C ⊂ D is right
filtering, if Cop ⊂ D

op is left filtering.
(b) The inclusion C ⊂ D is left special, if for every admissible epimorphism G ։ Z in D, with

Z ∈ C, there exists a commutative diagram with short exact rows

0 // X //

��

Y //

��

Z // 0

0 // F // G // Z // 0,

with the top row being a short exact sequence in C. We say that C is right special in D if
C
op ⊂ D

op is left special.
(c) If C ⊂ D is simultaneously left special and left filtering, then we refer to it as left s-filtering.

Dually, if Cop ⊂ D
op is left s-filtering, then we say that C ⊂ D is right s-filtering.

Left or right s-filtering inclusions enable us to define a quotient exact category D /C (see [Sch04,
Proposition 1.16]). Moreover, they play an important role in the abstract study of elementary Tate
objects. Before expanding on this, we have to record an elementary property of s-filtering embeddings.

Lemma 2.6. Let C →֒ D be left, respectively right s-filtering, then the inclusion reflects admissible
monomorphisms and admissible epimorphisms.

Proof. By categorical duality we may assume that C ⊂ D is left s-filtering. If X →֒ Y ։ Z is a
short exact sequence in D, and Y ∈ C, then one obtains that X,Y ∈ C. Indeed, this is demanded by
Schlichting’s definition [Sch04, Definition 1.3 & 1.5], or follows from [BGW14a, Appendix A], for the
definition we stated above. In particular, if X →֒ Y is an admissible monomorphism in D with X and
Y in C, it fits in a short exact sequence X →֒ Y ։ Z with Z ∈ C as well. But, the proof of Lemma
2.14 in [BGW14a] shows that this short exact sequence is also a short exact sequence in C. Hence, we
obtain that X →֒ Y is also an admissible monomorphism in C. Similarly, one deals with the case of
admissible epimorphisms. �
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It was shown in [BGW14a, Proposition 5.6] that Pro objects are left filtering in Tate
el(C) and Ind

objects right filtering. The following result strengthens these two facts. It develops the idea of the
proof of [BGW14a, Prop. 5.8], and is a statement of independent interest:

Proposition 2.7. Let C be an exact category.

(1) Every morphism Y
a
−→ X in Tate

el(C) with Y ∈ Pro
a(C) can be factored as Y

ã
→ L →֒ X with

L a lattice in X.
(2) Every morphism X

a
−→ Y in Tate

el(C) with Y ∈ Ind
a(C) can be factored as X ։ X/L

ã
→ Y

with L a lattice in X.

Proof. (1) By Remark 2.4 the elementary Tate object X can be represented as a formal colimit
lim
−→i∈I

Xi, where I is a filtered poset, and I → Pro
a

κ(C) a diagram which satisfies the two conditions

- For every pair i ≤ j in I the induced morphism Xi → Xj is an admissible monomorphism in
Pro

a

κ(C),
- such that the quotient Xj/Xi lies in the full subcategory C.

By virtue of the definition of morphisms in categories of Ind objects we see that Y → X factors
through an Xi → X . It remains to show that the latter map is an inclusion of a lattice. Lemma 3.11
of [BGW14a] implies that Xi →֒ X is an admissible monomorphism. The quotient object X/Xi is
represented by the Ind system lim

−→j≥i
Xj/Xi, and is hence an admissible Ind object in C. (2) Since

Ind objects are right filtering in Tate
el (C) [BGW14a, Proposition 5.8], it suffices to deal with the case

X ։ Y . We pick some lattice L in X , and by the right filtering of Ind objects again, we get an object
C ∈ Ind

a (C) so that the diagram

L

X

� _

��

C

Y
��

X Y// //

L C// //

X

X/L
����

commutes. Being a quotient of a Pro object at the same time, we must have C ∈ C, since Pro
a(C) ⊂

Ind
a
Pro

a(C) is left s-filtering by [BGW14a, Proposition 3.10]. Let W := ker(L ։ C) and complete
the diagram to

L

X

� _

��

W L� � //W

X

� o

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄
C

Y
��

X Y// //

L C// //

X/WX/L oo

X

X/L

����

X

X/W
�� ��
❄❄

❄❄
❄❄

❄❄
❄❄

❄

X/W

YOO

The existence of the arrows originating from X/W follows from the universal property of cokernels.
In the idempotent completion X/W → X/L must be an admissible epic by [Büh10, Prop. 7.6] and
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the Snake Lemma applied to

W X
� � // X X/W// //

L X
� � // X X/L// //

W

L

� _

��

X/W

X/L

����

X

X

provides us with an isomorphism ker(X/W ։ X/L) ∼= L/W ∼= C. We conclude that C →֒ X/W ։

X/L is exact already in elementary Tate objects, since inclusion in the idempotent completion of an
exact category reflects exactness (see [Büh10, Proposition 6.13]). Since X/L is an Ind object and
C ∈ C, it follows that X/W is an Ind object. Moreover, W is a subobject of L, so W is a Pro object
and therefore a lattice. The factorisation X ։ X/W → Y proves the claim. �

Central to the theory of elementary Tate objects is the main result of [BGW14a, Theorem 6.7].
For convenience of the reader we recall the main idea behind the argument.

Theorem 2.8. Suppose C is an idempotent complete exact category and V ∈ Tate
el(C). Then the

Sato Grassmannian Gr(V ) is a directed and co-directed poset.

Sketch. Suppose L1, L2 →֒ V are lattices. Then L1 ⊕L2 → V is a morphism from a Pro object to an
elementary Tate object. Thus, by Prop. 2.7 there exists a factorisation

L1 ⊕ L2 → L′ →֒ V

with L′ a lattice in V . Invoking the non-trivial result [BGW14a, Lemma 6.9] implies that the mor-
phisms Li → L′ must be admissible monics. �

3. Relative Tate Objects

In this section we introduce relative versions of Ind, Pro, and Tate objects. This will allow us to
give an index-theoretic description of boundary maps in algebraic K-theory. We begin by stating two
lemmas on ordinary admissible Ind objects.

Lemma 3.1. Let C and D be exact categories, and let C →֒ D be an exact, fully faithful embedding.
Then C ≃ Ind

a(C) ∩ D ⊂ Ind
a(D).

Proof. Let X ∈ Ind
a(C) be the colimit of an admissible Ind diagram X : I //C. Let Y ∈ D such that

there exists Y
∼= //X in Ind

a(D). By the definition of morphisms in Ind
a

κ(D), there exists i ∈ I, such
that we have a factorisation

Y
∼= //

��

X

Xi.
. �

==⑤⑤⑤⑤⑤⑤⑤⑤

The diagonal arrow is an admissible monic in Ind
a(C) by construction ([BGW14a, Lemma 3.11]); and

the commutativity of the above diagram implies that it is also an (not necessarily admissible) epic. It
is therefore an isomorphism. �

The next lemma is a slight generalization of [BGW14a, Proposition 5.9(1)]; to shake things up, we
give a different proof.

Lemma 3.2. Let D be an exact category, and let C ⊂ D be a right (or left) s-filtering subcategory.
Then for any short exact sequence in Ind

a(D)

X →֒ Y ։ Z

we have that Y ∈ Ind
a(C) if and only if X and Z are.
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Proof. We will show that the category Ind
a(C) is equivalent to the fibre product

Ind
a(C) //

��

0

��

Ind
a(D)

F // Ind
a(D /C),

that is, it is the full subcategory of X ∈ Ind
a(D), which are mapped to a zero object by F , i.e.

F (X) ∼= 0 ∈ Ind
a(D /C). Taking this for granted, we observe that for an exact sequence X →֒ Y ։ Z,

we have F (Y ) ∼= 0, if and only if F (X) ∼= 0 and F (Z) ∼= 0. Because F is an exact functor, this implies
that Y ∈ Ind

a(C) if and only if X ∈ Ind
a(C) and Z ∈ Ind

a(C).
By [BGW14a, Proposition 3.16], we have a fully faithful functor Ind

a(C) →֒ Ind
a(D), therefore it

suffices to show that its essential image is precisely the kernel of the functor F : Ind
a(D)→ Ind

a(D /C).
If (Xi)i∈I is an admissible Ind diagram in C, then we have F (Xi) ∼= 0 for every i ∈ I. In particular,
F (Xi)i∈I

∼= 0 ∈ Ind
a(D /C).

Vice versa, if (Xi)i∈I is an admissible Ind diagram in D, which is mapped to 0 ∈ Ind
a(D /C), then

the fact that the induced maps F (Xi) →֒ 0 are admissible monomorphisms (see Lemma 2.2) implies
that F (Xi) = 0 for every i ∈ I. In particular, we see that every Xi ∈ C. Admissible monomorphisms
are reflected by right/left s-filtering inclusions (Lemma 2.6), which implies that (Xi)i∈I ∈ Ind

a(C). �

Having dealt with the technicalities above, we are ready to define relative Ind, Pro and Tate objects.

Definition 3.3. Let D be an exact category, and let C ⊂ D be an extension-closed subcategory. Let κ
be an infinite cardinal.

(a) Define the category of relative admissible Ind objects Ind
a

κ(D,C) to be the full subcategory of
Ind

a

κ(D) consisting of objects that admit a presentation by an admissible Ind diagram X : I //D

(cf. [BGW14a, Def. 3.2]) such that for all i < j in I, we have Xj/Xi ∈ C.
(b) Define the category of relative admissible Pro objects Proaκ(D,C) by

Pro
a

κ(D,C) := (Indaκ(D
op,Cop))op.

(c) Define the category of relative elementary Tate objects Tateelκ (D,C) to be the category Indaκ(Pro
a

κ(D),C).
(d) For C and D idempotent complete, define the category of relative Tate objects Tateκ(D,C) to

be the idempotent completion Tate
el

κ (D,C)
ic.

Remark 3.4. In the language of Definition 3.3, the category of elementary Tate objects in C can be
written as

Tate
el

κ (C) = Ind
a

κ(Pro
a

κ(C),C).

We begin with a formal observation, which characterises relative admissible Ind objects in categor-
ical terms. Often it can be used to shorten proofs, provided one accepts stronger assumptions for the
embedding C →֒ D.

Lemma 3.5. Assume that C →֒ D is left or right s-filtering. Then, we have Indaκ(D,C)
∼= Ind

a

κ(D)×Indaκ(D /C)

D /C →֒ Ind
a

κ(D) as a full subcategory of Indaκ(D).

Proof. Let (Xi)i∈I be an Ind diagram, representing an object X of Indaκ(D). We denote the exact
functor Indaκ(D)→ Ind

a

κ(D /C) by F . If (Xi)i∈I is relatively admissible, then (F (Xi))i∈I is a constant
diagram, since the transition maps Xi → Xj are mapped to equivalences in D /C. Conversely, if
lim
−→I

F (Xi) ∼= Y for some Y ∈ D /C, then the isomorphism Y // lim
−→I

F (Xi) factors through the

inclusion F (Xi) →֒ lim
−→I

F (Xi) for some i. By Lemma 2.2, this inclusion is therefore an epic admis-

sible monic, and thus an isomorphism. Because D /C →֒ Ind
a

κ(D /C) is left s-filtering by [BGW14a,
Proposition 3.10], we can also conclude that F (Xj) ∈ D /C for all j ≥ i in I, and that F (Xj)j≥i is
isomorphic in D /C to a constant diagram. We conclude that, for all j ≥ i, Xj/Xi ∈ C and thus that
(Xj)j≥i is an admissible relative Ind-diagram. �
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If the reader is willing to work instead with the assumption that C →֒ D is left or right s-filtering,
the next lemma is a direct consequence of the result proven above.

Lemma 3.6. Let C ⊂ D be an extension-closed full subcategory. For any cardinal κ, Indaκ(D,C) is
closed under extensions in Ind

a

κ(D). Similarly, Proaκ(D,C) is closed under extensions in Pro
a

κ(D) and

Tate
el

κ (D,C) is closed under extensions in Ind
a

κ(Pro
a

κ(D)).

Consequently we obtain an exact structure on the categories Indaκ(D,C), and similarly for relative
admissible Pro objects, and relative elementary Tate objects.

Corollary 3.7. The categories Ind
a

κ(D,C), Pro
a

κ(D,C) and Tate
el

κ (D,C) are exact categories.

Proof of Lemma 3.6. The statements about relative Pro and relative elementary Tate objects are
special cases of the statement about relative Ind objects. In all cases, the lemma follows from the
straightening construction for exact sequences [BGW14a, Prop. 3.12] and the fact that C is closed
under extensions in D.

In more detail, consider an exact sequence in Ind
a

κ(D)

0 // X̂ // Ŷ // Ẑ // 0

with X̂ and Ẑ in Ind
a

κ(D,C). Let

X : J // D , and

Z : I // D

be admissible relative Ind diagrams. The straightening construction for exact sequences (Proposition
3.12 of [BGW14a]) shows that there exists a directed partially ordered set K with final maps K // J
and K // I such that the exact sequence above is isomorphic to the colimit of an admissible Ind
diagram of exact sequences

K

⇒

  ❆
❆❆

❆❆
❆❆

❆ K

��

K.

⇒

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

C

For any map i ≤ j in K, the 3×3-Lemma [Büh10, Cor. 3.6] shows that we have a diagram with exact
rows and columns

Xi
� � //
� _

��

Yi� _

��

// // Zi� _

��

Xj
� � //

����

Yj

����

// // Zj

����

Xj/Xi
� � // Yj/Yi

// // Zj/Zi.

Because X : J // D is an admissible relative Ind diagram, so is K // J
X // D, and similarly for

K // I
Z // D. In particular, Xj/Xi and Zj/Zi are both objects in C. Because C is closed under

extensions in D, we conclude that Yj/Yi is also in C, and thus that Y : K // D is an admissible
relative Ind diagram. �

Lemma 3.8 (Straightening). Every morphism f : X → Y in Ind
a(D,C) (see Definition 3.3) can be

represented (that is, straightened) by a colimit of morphisms in D, (Xi → Yi)i∈I , where (Xi)i∈I ,
(Yi)i∈I are relative admissible Ind diagrams.

Proof. We choose presentations (Xi)i∈K , (Yi)i∈K′ for Y as a relative admissible Ind diagram. Ac-
cording to [BGW14a, Lemma 3.9] there exist cofinal maps I → K, I → K ′, such that the induced
relative admissible Ind diagram (Yi)i∈I fits into a diagram of morphisms

(Xi → Yi)i∈I .
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This concludes the argument. �

Henceforth, we omit the cardinality bound κ from our notation.
Under favourable conditions, the exact categories of relative Ind and Pro objects Ind

a(D,C) and
Pro

a(D,C) are abelian.

Definition 3.9. (a) An abelian category A is said to be Noetherian if for every object X ∈ A, an
ascending countable sequence of subobjects

X0 ⊂ X1 ⊂ · · · ⊂ X

eventually stabilises, that is, there exists an index i ∈ N, such that Xj+1 = Xj for all j ≥ i.
It is said to be Artinian if every descending countable sequence of subobjects stabilises.

(b) Let A1 ⊂ A2 be an exact, fully faithful inclusion of abelian categories. We say that the pair
(A2,A1) is Noetherian, if for every object X ∈ A2, every countable sequence of subobjects
Xi ⊂ X as above having Xi+1/Xi ∈ A1 eventually stabilises. Analogously for Artinian.

Example 3.10.

(1) For a Noetherian commutative ring R, the abelian category of finitely generated R-modules
is Noetherian. If R is Artinian as a ring, the category is also an Artinian.

(2) An abelian category C is Noetherian if and only if Cop is Artinian.

Proposition 3.11. Let D be an abelian category, and C ⊂ D a Serre subcategory. Then,

(1) the exact category Ind
a(D,C) is equivalent to an abelian category with the maximal exact struc-

ture if and only if the pair (D,C) is Noetherian.
(2) the exact category Pro

a(D,C) is equivalent to an abelian category with the maximal exact
structure if and only if the pair (D,C) is Artinian.

Here Noetherian and Artinian are to be understood in the sense of Definition 3.9 (b).

Proof. We shall only deal with the case of Inda(D,C), for Pro objects it suffices to invert arrows.
Freyd has shown in [Fre66, Prop. 3.1] that an exact category is abelian if and only if every morphism
X → Y is admissible, that is, admits a factorisation

X ։ I →֒ Y,

where the first morphism is an admissible epimorphism, and the second one an admissible monomor-
phism.

For a morphism X
f
−→ Y in Ind

a

κ(D,C) ⊂ Ind
a

κ(D) we may choose a straightening by Lemma 3.8,
that is, a presentation as a map of diagrams (fi : Xi → Yi)i∈I , where each (Xi)i∈I and (Yi)i∈I is a
relative admissible Ind diagram in D. In particular, we may assume that the transition maps Xi → Xj

and Yi → Yj are monomorphisms with quotients in D.
Since D is abelian, we obtain a factorisation Xi ։ Ii →֒ Yi, where each Ii is the image of the

morphism fi. The equivalence
Ii ∼= coker(ker fi → Xi)

implies that we have a commuting diagram with exact rows

0 // ker fi //

��

Xi
//

��

Ii

��
✤

✤

✤
// 0

0 // ker fj // Xj
// Ij // 0

for every pair of indices i ≤ j, and in particular obtain canonical maps Ii → Ij . The commutative
square

Ii //

��

Yi

��

Ij // Yj
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implies that Ii →֒ Ij is an admissible monomorphism. Moreover we see that Ij/Ii is a quotient of
Xj/Xi, thus belongs to C, since C is a Serre subcategory. We denote by I = lim

−→i∈I
Ii the corresponding

object of Inda(D,C).
So far we have produced a factorisation X → I → Y . The morphism X → Ii is an admissible

epimorphism, since it fits into an exact sequence given by the colimit of

0→ ker fi → Xi → Ii → 0.

In order to conclude the proof, we need to show that I → Y is an admissible monomorphism in
Ind

a(D,C). In LexD it fits into a short exact sequence given by the colimit of

0→ Ii → Yi → Yi/Ii → 0,

but the direct system (Yi/Ii)i∈I is not necessarily admissible. However, according to Lemma 3.12 it
admits a presentation by a relative admissible Ind diagram, which concludes the proof of one direction.
This is where the relative Noetherian assumption is key.

Vice versa, assume that (D,C) is not Noetherian, that is, there exists an object Y ∈ D and a
sequence of subobjects

Xi ⊂ Y,

such that Xi 6= Xi+1, and Xi+1/Xi ∈ C. Let us denote by X = lim
−→i∈I

Xi the corresponding object

of Inda(D,C). We have a morphism X
f
−→ Y , induced by the inclusions Xi →֒ Y . We claim that

f does not have a cokernel in Ind
a(D,C). Indeed, assume that f has a cokernel, which implies that

f is an admissible monomorphism in Ind
a(D,C). Hence, f is also an admissible monomorphism in

Ind
a(D). However, [BGW14a, Proposition 3.10] shows that D ⊂ Ind

a(D) is left s-filtering. This implies
that every X ∈ Ind

a(D), such that X ⊂ Y , we have in fact X ∈ D. However, the object X we have
constructed above cannot belong to D because the sequence

· · · ⊂ Xi ⊂ Xi+1 ⊂ · · ·

does not stabilise. If X were in D, then the isomorphism X → lim
−→i

Xi would factor through a fixed

Xi, in which case, we would have an epic admissible monic Xi
//X , and thus X would be isomorphic

to Xi. We conclude that Inda(D,C) cannot be abelian, if (D,C) is not relatively Noetherian. �

Lemma 3.12. Let D be an abelian category with a Serre subcategory C ⊂ D, such that the pair (D,C)
satisfies the relative Noetherian condition of Definition 3.9. Under these assumptions, every colimit
in LexD

X = lim
−→
i∈I

Xi,

where I is a directed poset, and ker(Xi → Xj), coker(Xi → Xj) ∈ C for every ordered pair of indices
i ≤ j, is equivalent to an object in Ind

a(D,C).

Proof. If |I| is finite, the assertion follows, since X ∼= Xmax(I). In order to verify the claim for infinite
I we will produce a relatively admissible Ind system (Yi)i∈I , satisfying lim

−→i∈I
Yi
∼= X , such that for

i ≤ j we have Yi →֒ Yj is a monomorphism with Yj/Yi ∈ C. We will construct Yi = Xi/Ki as a
quotient of Xi.

For i ≤ j we denote by Kij the kernel of Xi → Xj . For j ≥ k we have Kij ⊂ Kik ⊂ Xi. Moreover,
the quotient Kik/Kij is a quotient of Kik ∈ C, and hence itself in C. We conclude that the filtered
poset of subobjects Kij ⊂ Xi must stabilise at a subobject Ki ⊂ Xi.

Note that for every i1 ≤ i2 we have an induced map Ki1 → Ki2 : indeed, there exist indices j1,
j2, such that Ki1 = ker(Xi1 → Xj) for every j ≥ i1, and similarly for i2. Hence, we may choose
j ≥ i1, i2, and the universal property of kernels implies the existence of a unique map Ki1 → Ki2 as
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in the diagram

0 // Ki1
//

��
✤

✤

✤
Xi1

//

��

Xj

��

0 // Ki2
// Xi2

// Xj.

We denote the colimit lim
−→i∈I

Ki ∈ LexD by K; and similarly define Y = lim
−→i∈I

Xi/Ki. By exactness

of colimits for Grothendieck abelian categories, we have a short exact sequence

0→ K → X → Y → 0.

However, one sees easily that K = 0, since by construction we know that for every i ∈ I, there exists
j ≥ i, such that Ki → Kj is the zero map. In order to conclude the proof, we have to show that for
every i1 ≤ i2 the induced map Yi1 → Yi2 is a monomorphism.

As above we may choose an index j ≥ i1, i2, such that Kik = ker(Xik → Xj) for k = 1, 2. In
particular, we may identify Yik with the image Xik/Kik ⊂ Xj, and the map Yi1 → Yi2 with the
induced inclusion of images. �

Example 3.13. (Non-abelian admissible Ind category) Let Vectf be the category of finite-dimensional
k-vector spaces and Vect the category of all k-vector spaces. There is a morphism

Ind
a(Vect)⊕

i=0...∞

k
f
−→

Vect⊕
i=0...∞

k,

where the first coproduct is formed in Ind
a(Vect), and the latter in Vect itself. In terms of an admissible

Ind diagram, f is (i 7→ (k⊕i →֒ k⊕∞)). This morphism does not possess a cokernel, so that Inda(Vect)
cannot be an abelian category. This example also re-affirms that the inclusion C →֒ Ind

a(C) does
not preserve colimits. If we work instead with the full Ind category Ind(C), i.e. we allow also Ind
diagrams whose transition morphisms are not monics, Ind(C) is always abelian once C is, and our f
would permit a cokernel. Its transition morphisms would all be epics, so it is non-admissible.

3.1. Further Properties. The next lemma is a slight generalization of [BGW14a, Proposition 3.14];
mutatis mutandi the proof is the same.

Lemma 3.14. For k ≥ 0, there exist canonical equivalences

Ind
a(Sk D, SkC)

≃ // Sk(Ind
a(D,C)),

Pro
a(Sk D, SkC)

≃ // Sk(Pro
a(D,C)),

Tate
el(Sk D, SkC)

≃ // Sk Tate
el(D,C).

In Definition 2.3 we defined elementary Tate objects as the full subcategory of admissible Ind Pro
objects which possess a lattice. The concept of lattices also exists for relative elementary Tate objects
and is of equal importance.

Definition 3.15.

(1) For V ∈ Tate
el(D,C) we say that an admissible monic L →֒ V is a relative lattice, if L ∈

Pro
a(D), and V/L ∈ Ind

a(C).
(2) For two relative lattices L,L′, we say that L ≤ L′, if the inclusion L →֒ V factors through

L′ →֒ V via an admissible monic L →֒ L′ (by Lemma 2.6).
(3) Define the relative Sato Grassmannian GrC(V ) to be the partially ordered set of relative lattices

of V .

It follows directly from the definition that every elementary relative Tate object has a lattice. In
fact, the existence of lattices characterises elementary relative Tate objects.

Lemma 3.16. For V ∈ Ind
a
Pro

a(D) the following assertions are equivalent:

(a) We have V ∈ Tate
el(D,C).
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(b) There exists a relative lattice, that is, a short exact sequence L →֒ V ։ V/L with L ∈ Pro
a(D)

and V/L ∈ Ind
a(C).

Proof. We have seen in Lemma 3.6 that Tateel(D,C) ⊂ Ind
a
Pro

a(D) is an extension-closed subcategory.

Since Pro
a(D) ⊂ Tate

el(D,C) ⊃ Ind
a(C), we see that (b) implies (a).

Conversely, if V is in Tate
el(D,C), there exists a presentation as lim

−→i∈I
Vi, where (Vi)i∈I is a directed

system in Pro
a(D), with Vj/Vi ∈ C for j ≥ i. Lemma 2.2 implies that Vi →֒ V is an admissible

monomorphism in Ind
a
Pro

a(D). The quotient is given by lim
−→j≥i

Vj/Vi ∈ Ind
a(C). This shows that V

possesses a relative lattice. �

Corollary 3.17. The smallest extension-closed subcategory of Inda Proa(D) which contains Pro
a(D)

and Ind
a(C) is Tate

el(D,C).

We now record the key property of relative lattices.

Proposition 3.18. If D is idempotent complete, then the relative Sato Grassmannian GrC(V ) is a
directed partially ordered set.

Proof. Abuse notation and let V : I // Pro
a(D) be an admissible relative Tate diagram representing

V . Note that, by definition, for all i ∈ I, Vi ∈ GrC(V ). Now let L1, L2 ∈ GrC(V ). Because Pro
a(D)

is left filtering in Tate
el(D,C), there exists i ∈ I such that we have a commuting triangle

L1 ⊕ L2
//

##❍
❍❍

❍❍
❍❍

❍❍
VioO

��⑦⑦
⑦⑦
⑦⑦
⑦

V

in Tate
el(D,C). If D is idempotent complete, then Lemma 6.9 of [BGW14a] shows that for a = 1, 2

the map La
// Vi is an admissible monic in Pro

a(D). �

Lemma 3.19. Let C ⊂ D be a left or right s-filtering subcategory. Let V ∈ Tate
el(D,C) and let

L1 ≤ L2 ∈ GrC(V ). Then L2/L1 ∈ C.

Proof. By [BGW14a, Proposition 6.6], we know that L2/L1 ∈ D. Lemma 3.2 and Noether’s Lemma
show that L2/L1 ∈ Ind

a(C). By Lemma 3.1, we have L2/L1 ∈ C. �

Lemma 3.20. Let D be idempotent complete, and let C ⊂ D be a left or right filtering subcategory.
Then C is idempotent complete.

Proof. By categorical duality, we may reduce the claim to the assumption that C is left filtering in

D. Let X
p

//X be an idempotent in C. Because D is idempotent complete, there exists Y ∈ D such
that Y = ker(p). Because C ⊂ D is left filtering, C is closed under subobjects in D. Hence, Y →֒ X
also belongs to C, which implies that ker(p) ∈ C. �

As a next step, we investigate the filtering properties of the inclusions D →֒ Ind
a(D,C), Proa(D) →֒

Tate
el(D,C), and study the relation between the categorical quotients.

Proposition 3.21. Let C ⊂ D be a subcategory which is closed under extensions. The inclusions
D →֒ Ind

a(D,C), and Pro
a(D) →֒ Tate

el(D,C) are left s-filtering. The inclusions Inda(C) // Ind
a(D,C)

and Ind
a(D,C) // Tate

el(D,C) induce exact equivalences

(2) Ind
a(C)/C

≃ // Ind
a(D,C)/D

≃ // Tate
el(D,C)/Proa(D).

Proof. We first show the inclusions are left s-filtering. The second inclusion is a special case of the
first. For the first, we observe that D is left special in Ind

a(D,C) because D is left special in Ind
a(D)

[BGW14a, Lemma 2.18]. Further, D is left filtering in Ind
a(D,C) for the same reason it is in Ind

a(D),
namely given any admissible relative Ind diagram Y : I // D, and given any

X // Ŷ
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there exists i ∈ I such that X factors through the admissible monic Yi →֒ Ŷ .
We now establish the equivalences. The inverse equivalence

Ind
a(D,C)/D // Ind

a(C)/C

is defined as follows. Let Dir
a

∗(D,C) ⊂ Dir
a(D) be the full subcategory of relative admissible Ind

diagrams indexed by directed partially ordered sets with an initial object. A slight modification
of the proof of [BGW14a, Proposition 5.11] shows that Ind

a(D,C) is equivalent to the localization
Dir

a

∗(D,C)[W
−1], where W is the subcategory of final maps as in [BGW14a, Proposition 3.15]. By

inspection, the assignment

(I
X
−→ D) 7→ (I

X/X0

−−−−→ C)

induces a functor Dira∗(D,C) // Ind
a(C), such that the induced functor

Dir
a

∗(D,C) // Ind
a(C)/C

factors through the localization Dir
a

∗(D,C)
// Ind

a(D,C). By inspection, this functor is the desired
inverse for the first functor of (2). To see that it is exact, apply the straightening construction for
exact sequences (cf. [BGW14a, Proposition 3.12]).

Mutatis mutandi, the proof of Proposition 5.28 of [BGW14a] defines an exact functor

Tate
el(D,C) // Ind

a(C)/C

which factors through the localization Tate
el(D,C)/Proa(D). By inspection, this functor is inverse to

the canonical map Ind
a(C)/C // Tate

el(D,C)/Proa(D).
The previous lemma now combines with the 2 of 3 property for equivalences to imply that the

second functor in (2) is an equivalence as well. �

Proposition 3.22. Let D be idempotent complete and let C ⊂ D be a right s-filtering subcategory.
Then C ⊂ Pro

a(D) is right s-filtering, and the inclusion Pro
a(D) ⊂ Tate

el(D,C) induces an exact
functor between exact categories

Pro
a(D) // Tate

el(D,C)/ Inda(C),

yielding an equivalence of categories Pro
a(D)/C ∼= Tate

el(D,C)/ Inda(C).

Proof. The definition of right s-filtering implies that a composition of right s-filtering embeddings is
again right s-filtering. Therefore, our assumption on C together with the fact that D →֒ Pro

a(D) is
right s-filtering (cf. [BGW14a, Theorem 4.2(2)]) implies that C ⊂ Pro

a(D) is right s-filtering.
Using Lemma 3.19, the same argument as for [BGW14a, Proposition 5.29] shows that the assign-

ment

V 7→ L

(sending a relative Tate object to a relative lattice) extends to an exact functor

(3) Tate
el(D,C) // Pro

a(D)/C.

To see that this factors through Tate
el(D,C)/ Inda(C), let

V0 →֒ V1 ։ Z

be a short exact sequence of relative Tate objects with Z ∈ Ind
a(C). By the universal property of

localizations, it suffices to show that (3) sends the map V0 →֒ V1 to an isomorphism in Pro
a(D)/C.

To check this, we let L0 →֒ V0 be a relative lattice. By the definition of morphisms in Tate
el(D,C),

the inclusion

L0 →֒ V1

factors through a relative lattice L1 →֒ V1. Therefore, the functor (3) sends the map V0 →֒ V1 to
L0

//L1. We claim that this map is an isomorphism in Pro
a(D)/C, i.e. that it is an admissible monic

in Pro
a(D) with cokernel in C.



14 OLIVER BRAUNLING, MICHAEL GROECHENIG, JESSE WOLFSON

By Lemma 3.19, it suffices to show that the admissible monic L0 →֒ V1 is a relative lattice. This
follows from Noether’s lemma and Lemma 3.2. Indeed, we have a short exact sequence in Tate

el(D,C)

V0/L0 →֒ V1/L0 ։ V1/V0.

By assumption V0/L0 and V1/V0 are both in Ind
a(C). Therefore V1/L0 is as well.

We have shown that (3) induces an exact functor

Tate
el(D,C)/ Inda(C) // Pro

a(D)/C.

From the definitions, we see that this is an inverse to the map

Pro
a(D)/C // Tate

el(D,C)/ Inda(C).

This concludes the proof. �

3.2. Examples. Let X be a Noetherian scheme, and let Z ⊂ X be a closed subscheme. Denote by
j : X \ Z →֒ X the inclusion of the complement of Z. Denote by CohZ(X) the full subcategory of
Coh(X) consisting of coherent sheaves with set-theoretic support in Z. Denote by QCoh(X,Coh(X \
Z)) the full subcategory of QCoh(X) consisting of quasi-coherent sheaves whose restriction to X \ Z
is coherent.

Proposition 3.23. There exists an exact equivalence

QCoh(X,Coh(X \ Z))
≃ // Ind

a(Coh(X),CohZ(X)),

and this equivalence fits into a 2-commuting square

QCoh(X,Coh(X \ Z)) //

≃

��

QCoh(X)

≃

��

Ind
a(Coh(X),CohZ(X)) // Ind

a(Coh(X)).

Proof. Recall that, because X is Noetherian, there is an exact equivalence QCoh(X) ≃ Ind
a(Coh(X))

which sends a quasi-coherent sheaf F to the Ind object represented by the admissible Ind diagram of
coherent subsheaves of F (see [Sta, Tag 01PG]).

Because Ind
a(Coh(X),CohZ(X)) is a fully exact subcategory of Inda(Coh(X)), it suffices to show

that a quasi-coherent sheaf is in Ind
a(Coh(X),CohZ(X)) if and only if its pullback to X\Z is coherent.

The “only if” is clear.
Let F be represented by an Ind diagram F : I // Coh(X). Suppose the pullback j∗F is coherent.

Then there exists a final subdiagram J ⊂ I such that the diagram

J →֒ I
F // Coh(X)

j∗
// Coh(X \ Z)

is isomorphic to a constant diagram. In particular, for all j < k in J , the cokernel Fk/Fj has
set-theoretic support in Z. We conclude that QCoh(X,Coh(X \ Z)) ⊂ Ind

a(Coh(X),CohZ(X)). �

Corollary 3.24. If the inclusion j is affine, there exists a 2-commuting diagram of exact functors

Coh(X \ Z)
j∗

//

��

QCoh(X)

≃

��

Ind
a(Coh(X),CohZ(X)) // Ind

a(Coh(X))

.

Proof. Because X \ Z ⊂ X is affine, the push-forward j∗ gives an exact functor

j∗ : Coh(X \ Z) // QCoh(X).

Because the co-unit of the adjunction j∗ ⊣ j∗ is an isomorphism, we see that j∗ factors through
QCoh(X,Coh(X \ Z)). �
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Proposition 3.25. There exists an exact functor

CZ : Coh(X) // Pro
a(CohZ(X)).

Proof. For all r ≥ 1, let jr : Z
r //X denote the inclusion of the rth-order formal neighborhood of Z

in X . For F ∈ Coh(X), define

CZ(F ) := lim
←−
r

jr,∗j
∗
rF

By inspection, the transition maps jr,∗j
∗
rF

// jr−1,∗j
∗
r−1F are epimorphisms in the abelian category

CohZ(X). Therefore, the assignment F 7→ CZ(F ) defines a functor

CZ : Coh(X) // Pro
a(CohZ(X)).

By the Artin–Rees Lemma (e.g. [AM69, Proposition 10.12]), this functor is exact. �

Corollary 3.26. There exists a 2-commuting diagram of functors

CohZ(X) //

1

��

Coh(X) //

CZ

��

QCoh(X,Coh(X \ Z))

TZ

��

CohZ(X) // Pro
a(CohZ(X)) // Tate

el(CohZ(X)),

moreover the functor TZ satisfies the property that the composition

Coh(U)
TZ−−→ Tate

el(CohZ(X))→ Tate
el(CohZ(X))/ Inda(CohZ(X)) ∼= Pro

a(CohZ(X))/CohZ(X)

is an exact functor.

Proof. The definition of CZ ensures that if F ∈ CohZ(X), then the Pro object CZ(F ) is represented
by the constant Pro diagram on F . This accounts for the left square. For the right square, we observe
that CZ gives an exact functor of pairs

(Coh(X),CohZ(X))
CZ // (Proa(CohZ(X)),CohZ(X)).

The exact functor TZ is the corresponding map

QCoh(X,Coh(X \ Z))
≃ // Ind

a(Coh(X),CohZ(X)) // Ind
a(Proa(CohZ(X)),CohZ(X))

=: Tateel(CohZ(X)).

This concludes the construction and the proof of the first part. The second part follows from Lemma
3.27 below, and the fact that the exact functor

Tate
el(CohZ(X))/ Inda(CohZ(X)) ∼= Pro

a(CohZ(X))/CohZ(X)

is an equivalence of exact categories by [BGW14a, Proposition 5.34]. �

Lemma 3.27. Let X be a Noetherian affine scheme, and Z a closed subset, we denote by j : U →֒ X
the inclusion of the open complement. There exists an exact functor

BZ : Coh(U)→ Pro
a(CohZ(X))/CohZ(X),

rendering the diagram of categories

Coh(X)
j∗

//

��

Coh(U)

BZ

��

Pro
a(CohZ(X)) // Pro

a(CohZ(X))/CohZ(X)

2-commutative.
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Proof. For every coherent sheaf F ∈ Coh(U) we denote by KF the directed set of coherent subobjects
N of j∗ F satisfying N |U = F . We have

j∗ F ∼= lim
−→

N∈KF

N.

As a consequence we obtain that for every morphism F1 → F2, and every N1 ∈ KF1
, there exists an

N2 ∈ KF2
, such that N1 →֒ F1 → F2 factors through N2.

We abuse notation and denote by

BZ : Coh(X)→ Pro
a(CohZ(X))/CohZ(X)

the functor given by the composition of CZ and

Pro
a(CohZ(X))→ Pro

a(CohZ(X))/CohZ(X).

Now we define

CZ : Coh(U)→ Pro
a(CohZ(X))/CohZ(X)

as the colimit

BZ(F) = lim
−→

N∈KF

CZ(N).

We observe that for N ⊂ N ′, the induced bonding map CZ(N) → CZ(N
′) is an isomorphism in

Pro
a(CohZ(X))/CohZ(X), since the kernel is given by CZ(N

′/N) ∈ CohZ(Y ). Therefore the colimit
exists.

To conclude the proof we have to show that the functor we have defined is exact. Let

(4) 0→ F1 → F2 → F3 → 0

be a short exact sequence in Coh(U). We obtain an exact sequence

0→ j∗ F1 → j∗ F2 → j∗ F3 → R1j∗ F1 .

The quasi-coherent sheaf G3 := ker(j∗ F3 → R1j∗ F1) agrees with F3 after restriction to U , since
R1j∗ F |U = 0. Choose a coherent subsheaf F̄3 ⊂ G3, satisfying F̄3|U = F3. By what we remarked
above, there exists a coherent subsheaf F̄2 ⊂ j∗ F2, satisfying F̄2|U = F2 |U , mapping to F̄3. We
define the kernel of this map to be F̄1. We have a commutative diagram with commutative rows

0 //

��

F̄1
//

��

F̄2
//

��

F̄3
//

��

0

0 // j∗ F1
// j∗ F2

// G3 // 0.

Applying the restriction functor j∗, we see that the two vertical maps on the right become isomor-
phisms, hence the same is true for F̄1 → j∗ F1. After applyingCZ , the upper short exact sequence can
be identified with the sequence obtained by applying the functor BZ to Equation 4. This concludes
the proof of the assertion. �

Corollary 3.28. Let W ⊂ Z ⊂ X be a chain of closed subschemes. There exists a 2-commuting
diagram of exact maps

CohW (X) //

1

��

Coh(X) //

CZ

��

QCoh(X,Coh(X \W ))

TZ,W

��

CohW (X) // Pro
a(CohZ(X)) // Tate

el(CohZ(X),CohW (X))/ Inda(CohZ(X)).

Proof. The proof is the same as for the previous corollary, once we observe that, for W ⊂ Z and
F ∈ CohW (X), we have that CZ(F ) is represented by the constant Pro diagram on F . �

We conclude this section with a brief discussion of another exact functor of geometric origin, which
takes values in a category of Pro objects.
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Example 3.29 (Deligne). Let X be a Noetherian scheme and j : U →֒ X an open immersion. Let
J be the ideal sheaf of the closed complement. It does not matter whether we take the reduced ideal
sheaf or some nil-thickening. Deligne [Del66] defines the following: For any coherent sheaf F on U
let F be a coherent prolongment to X . Such an F always exists, but it is not canonical. A concrete
construction is given by considering the poset of coherent subsheaves Fi ⊆ j∗F of the quasi-coherent
sheaf j∗F . The restrictions j∗Fi will become stationary and equal F , and once Fi is chosen so that
this occurs, Fi is a feasible candidate for F . We get a Pro-diagram

(5) J i · F ←− J i+1 · F ←− J i+2 · F ←− · · · ,

which defines an object in ProCoh(X). Deligne shows that this defines a functor

j! : Coh(U) −→ ProCoh(X),

which is essentially left adjoint to the pull-back j∗:

HomU (F , j
∗G)

∼
−→ HomX(j!F ,G)

holds functorially for all F coherent on U and G quasi-coherent on X . In favourable situations, if F
has no torsion, the Pro-diagram in Equation 5 has monic transition maps. It describes an intersection,
the “J -divisible” sections of F . This makes this Pro-system very different from an admissible Pro-
diagram with epic transition maps. Moreover, unless X is an Artinian scheme, Equation 5 cannot be
replaced by an admissible system, Proposition 3.11 does not apply since Coh(X) is not an Artinian
abelian category. Being exact, j! induces a map in K-theory, but by the Eilenberg swindle, j! :
KCoh(U) → KProCoh(X) is just a map to the zero spectrum, so there is nothing interesting to see in
K-theory anyway. Nonetheless, j! is of course an important functor for other purposes: Deligne uses
j! as an ingredient to define a derived push-forward “with compact supports” Rf! for (non-admissible
Pro-)coherent sheaves. Classically, both Rf! ⇆ Rf ! were only defined for proper morphisms, but this
trick allowed him to devise a generalization to compactifiable morphisms. See [Del66] for more.

Deligne’s functor is related to TZ by a short exact sequence

(6) j!(−) →֒ j∗(−) ։ TZ(−)

of (not necessarily exact) functors from Coh(U) to Ind ProCoh(X). Indeed, for F ∈ Coh(U) we define
j! F by choosing an extension F̄ , and forming the limit over the inverse system J iF̄ . Hence, we have
a short exact sequence

0→ lim
←−
i

J iF̄ → F̄ → lim
←−
i

F̄/J iF̄ → 0,

in Pro(Coh(X)). The limit on the right hand side is by definition CZ(F̄). Taking the colimit over all
possible choices for F̄ , we obtain the short exact sequence

0→ j! F → j∗ F → TZ(F)→ 0

in Ind ProCoh(X).

4. The Relative Index Map

In order to introduce the relative index map, and relate it to algebraic K-theory, we need to recall
a few facts about Waldhausen’s approach to algebraic K-theory for exact categories.

In [Sch04], Schlichting established a fundamental “Localization Theorem” for the K-theory of
exact categories. We will be mainly interested in its statement for Waldhausen’s S-construction. This
requires us to recall notation introduced by Waldhausen [Wal85].

For an exact functor f : C → D of exact categories, we denote by Sr
•(f) the simplicial object of

exact categories given by pairs

(Y1 →֒ · · · →֒ Yn;X1 →֒ · · · →֒ Xn+1) ∈ SnC× Sn+1 D

together with an isomorphism

φ : (Y1 →֒ · · ·Yn) ∼= (X2/X1 →֒ · · · →֒ Xn+1/X1).
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The face and degeneracy maps are induced by the ones for the Waldhausen S-construction; details
can be found in loc. cit.

For a category C we denote by C
× the groupoid obtained by discarding all non-invertible isomor-

phisms. Via the classifying space construction (that is, the geometric realisation of the nerve), we can
fully faithfully embed the 2-category of groupoids into the ∞-category of spaces.

Following Waldhausen, we denote by KC = Ω|S•C
×| the K-theory space of an exact category. The

corresponding connective spectrum will be denoted by KC.

Proposition 4.1. (Schlichting [Sch04, Lemma 2.3]) Suppose that C ⊂ D is a right s-filtering inclusion
of an idempotent complete subcategory. Let

Sr
•(C ⊂ D)

q
// D /C

be the map of simplicial objects in categories, given by

(Y1 →֒ · · · →֒ Yn;X1 →֒ · · · →֒ Xn+1) 7→ Xn+1.

Then, in the homotopy commuting cube of spaces, all diagonal arrows are equivalences

|S•(C)
×|

1
((◗

◗◗◗
◗

f
//

��

|S•(D)
×|

��

1
))❙❙

❙❙❙

|S•(C)
×|

f
//

��

|S•(D)
×|

��

|S•S
r
•(1C)

×| //

((◗
◗◗

◗◗
◗◗

◗
|S•S

r
•(f)

×|
|S•q|

))❙❙
❙❙❙

∗ // |S•(D /C)×|.

From this proposition, Schlichting could deduce the following result.

Theorem 4.2 (Schlichting’s Localization Theorem). Let C ⊂ D be an idempotent complete subcate-
gory, which is left or right s-filtering. The commutative square of spaces

KC
//

��

KD

��

∗ // KD /C

is cartesian.

In [BGW14b, Corollary 2.39], the authors established the following description of boundary maps
in K-theory.

Theorem 4.3. Let C ⊂ D be a right s-filtering inclusion of an idempotent complete subcategory.
Consider the map of spaces

|Sr
•(C ⊂ D)×|

δ // |S•(C)
×|,

induced by the map of simplicial objects in exact categories

(Y1 →֒ · · · →֒ Yn;X1 →֒ · · · →֒ Xn+1) 7→ (Y1 →֒ · · · →֒ Yn).

It is canonically equivalent to the boundary map

(7) Ω|S•(D /C)×|
∂ // |S•(C)

×|

associated to the localization sequence

(8) |S•(C)
×|

��

// |S•(D)
×|

��

∗ // |S•(D /C)×|

.
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We now give a variant of the index map for relative Tate objects and relate it to boundary maps
in algebraic K-theory.

Definition 4.4. Let C ⊂ D be an extension-closed subcategory.

(1) For n ≥ 0, define Gr≤n (D,C) to be the full subcategory of Fun([n+ 1],Tateel(D,C)) consisting
of sequences of admissible monics

L0 →֒ · · · →֒ Ln →֒ V

where, for all i, Li →֒ V is the inclusion of a relative lattice (cf. Definition 3.15).1

(2) Define the relative Sato complex Gr≤• (D,C) to be the simplicial diagram of exact categories
with n-simplices Gr≤n (D,C), with face maps di given by omitting the ith relative lattice, and
with degeneracy maps si given by repeating it.

Lemma 3.19 allows for the following definition.

Definition 4.5. Let D be idempotent complete and let C ⊂ D be a right s-filtering subcategory. The
categorical relative index map is the span of simplicial maps

(9) Tate
el(D,C)←− Gr≤• (D,C)

Index // S•(C),

where the left-facing arrow is given on n-simplices by the assignment

(L0 →֒ · · · →֒ Ln →֒ V ) 7→ V,

and Index is given on n-simplices by the assignment

(L0 →֒ · · · →֒ Ln →֒ V ) 7→ (L1/L0 →֒ · · · →֒ Ln/L0).

We have an analogue of [BGW14b, Prop. 3.3] in this setting.

Proposition 4.6. Let D be idempotent complete, and let C ⊂ D be an extension-closed subcategory.
Then the augmentation Gr≤• (D,C) // Tate

el(D,C) of (9) induces an equivalence

|Gr≤• (D,C)
×|

∼= // Tate
el(D,C)×.

Proof. Proposition 3.18 implies that the relative Grassmannian is a directed partially ordered set. This
implies that the geometric realisation of its nerve (also known as classifying space) is contractible. The

simplicial groupoid Gr≤• (D,C)
× is equivalent to the nerve of the category Gr≤(D,C), whose objects

are pairs (V, L), with V ∈ Tate
el×(D,C), and L ∈ Gr(V ). Morphisms are given by commutative

diagrams

L
� � //� _

��

M� _

��

V
≃ // W

By virtue of Quillen’s Theorem A we obtain that the functor

Gr≤(D,C)× → Tate
el(D,C)×

induces an equivalence of classifying spaces. �

Along with Lemma 3.14 this implies an analogue of Corollary [BGW14b, Cor. 3.6].

Corollary 4.7. Let D be idempotent complete, and let C ⊂ D be a right s-filtering subcategory. The
categorical relative index map determines a map of infinite loop spaces

(10) BIndex : |S• Tate
el(D,C)×| // |S•S•(C)

×|

1To see that this is an exact category, observe that because Pro
a(D) and Ind

a(C) are closed under extensions in

Tate
el(D,C), Gr

≤
n (D,C) is closed under extensions in Fun([n+ 1],Tateel(D,C)).
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which fits into a homotopy commuting square

(11) Tate
el(D,C)×

��

Index // |S•(C)
×|

≃

��

Ω|S• Tate
el(D,C)×|

ΩBIndex

// Ω|S•S•(C)
×|

.

We refer to the looping of the bottom horizontal map as the K-theoretic relative index map.

This brings us to the main property of the relative Index map.

Theorem 4.8. Let D be idempotent complete, and let C ⊂ D be a right s-filtering subcategory. Then
the K-theoretic relative index map fits into a homotopy commuting diagram

ΩKTateel(D,C)
Ω2BIndex // KC

ΩKD /C

OO

∂

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

.

Proof. The categorical relative index map fits into a 2-commuting diagram

Tate
el(D,C)

��

Gr≤• (D,C)oo

�� ))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙

Pro
a(D)/C Sr

•(C ⊂ Pro
a(D))oo // S•(C)

D /C

OO

Sr
•(C ⊂ D),

OO

oo

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

and the map Gr≤• (D,C) // Sr
•(C ⊂ Pro

a(D)) is given on n-simplices by the assignment

(L0 →֒ · · · →֒ Ln →֒ V ) 7→ (L1/L0 →֒ · · ·Ln/L0;L0 →֒ · · · →֒ Ln).

Similarly, using Lemma 3.14, we see that there exists a 2-commuting diagram

S•(Tate
el(D,C))×

��

Gr≤• (S• D, S•(C))
×oo

�� **❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

S•(Pro
a(D)/C)× S•S

r
•(C ⊂ Pro

a(D))×oo // S•S•(C)
×

S•(D /C)×

OO

S•S
r
•(C ⊂ D)×oo

OO 44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

Geometrically realizing and taking the double loop spaces, we obtain a homotopy commuting diagram

ΩKTateel(D,C)

��

Ω2|Gr≤• (S• D, S•(C))
×|

≃
oo

��
))❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚

ΩKProa(D)/C Ω2|S•S
r
•(C ⊂ Pro

a(D))×|
≃

oo // KC

ΩKD /C

OO

Ω2|S•S
r
•(C ⊂ D)×|.

OO

≃
oo

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥



RELATIVE TATE OBJECTS 21

Note that the lower two left-facing maps are equivalences by Schlichting’s Proposition 4.1. The first
left-facing map is an equivalence by virtue of Waldhausen’s KC

∼= Ω|S•C
×|. To be more precise, we

apply first Proposition 4.6 to deduce that |Gr≤• (S• D, S•C)| ∼= Tate
el(S• D, S•C)

×, and then Lemma
3.14 to deduce

Tate
el(S• D, S•C)

× ∼= S• Tate
el(D,C)×.

After inverting the left-facing equivalences, we obtain a homotopy commuting diagram

ΩKTateel(D,C)

�� ((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

ΩKProa(D)/C
// KC

ΩKD /C.

OO
66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

By Theorem 4.3, it suffices to prove that the map

ΩKTateel(D,C)
// ΩKProa(D)/C

is an equivalence. We derive this from Proposition 3.22 as follows. To wit, consider the 2-commuting
diagram of exact categories

C //

((❘
❘❘

❘❘❘
❘

��

0

))❙❙
❙❙❙

❙❙❙

��

Pro
a(D) //

��

Pro
a(D)/C

≃

��

Ind
a(C) //

((P
PP

P
0

))❘❘
❘❘❘

❘❘❘

Tate
el(D,C) // Tate

el(D,C)/ Inda(C).

where the equivalence is that of Propositions 3.22. Applying K-theory, we obtain a commuting
diagram in the stable ∞-category of spectra

KC
//

((◗
◗◗◗

◗◗◗

��

0

((◗
◗◗

◗◗◗
◗◗

��

KProa(D)
//

��

KProa(D)/C

≃

��

KInda(C)
//

''P
PPP

P
0

((◗
◗◗

◗◗
◗◗

◗

KTateel(D,C)
// KTateel(D,C)/ Inda(C) .

Note that, of the entries in the diagram, only KC has non-vanishing π0. Along with Theorem 4.2,
this shows that the top face is bi-cartesian. We claim that the commuting cube above is bi-cartesian
as well. By virtue of [Lur14, Lemma 1.2.4.15], this is equivalent to the induced square of cofibres of
the vertical morphisms being bi-cartesian. However, Propositions 3.22 and 3.21 allow one to compute
those cofibres as the diagram obtained by applying K− to the square of exact categories

Ind
a(C)/C

∼= //

��

Tate
el(D,C)/Proa(D)

��

0 // 0,

.

Both this square and the resulting square of K-theory spaces are bi-cartesian. Since the top face and
the commuting cube itself are bi-cartesian, we see that the bottom face has to be bi-cartesian as well.
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The Eilenberg swindle implies thatKInda(C) ≃ 0, and we conclude thatKTateel(D,C) ≃ KTateel(D,C)/ Inda(C) ≃
KProa(D)/C as claimed. �

Corollary 4.9. Let X be a Noetherian scheme, and let W ⊂ Z ⊂ X be a flag of closed subschemes.
Then the diagram of exact categories

Coh(W ) //

��

Coh(Z) //

��

Coh(Z \W )

TZ

��

CohW (X) // CohZ(X) // Tate
el(CohZ(X),CohW (X))

determines a homotopy commuting triangle

ΩKCoh(Z\W )

TZ

��

∂ // KCoh(W )

ΩKTateel(CohZ(X),CohW (X))

Ω2BIndex

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

.

Here we define the vertical map KCoh(Z\W ) → KTateel(CohZ(X),CohW (X)) to be the composition of the

map given by the exact functor Coh(Z \W )→ Tate
el(CohZ(X),CohW (X))/ Inda(CohW (X)) of Corol-

lary 3.26, and the inverse of the homotopy equivalence

KTateel(CohZ(X),CohW (X)) → KTateel(CohZ(X),CohW (X))/ Inda(CohW (X)).

Proof. We have a nested chain of Serre subcategories CohW (X) ⊂ CohZ(X) ⊂ Coh(X). By [Sch04,
Example 1.7], Serre subcategories are right s-filtering. Therefore, we can take D = CohZ(X) and
C = CohW (X) and apply Theorem 4.8 to obtain a commuting triangle in the ∞-category of spaces

ΩKTateel(CohZ(X),CohW (X))
Ω2BIndex // KCohW (X)

ΩKCohZ(X)/CohW (X)

OO

∂

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

.

By devissage [Qui73, Section 5], we have equivalences KCoh(W ) ≃ KCohW (Z) ≃ KCohW (X) and
KCoh(Z) ≃ KCohZ(X). We also have an equivalence Coh(Z)/CohW (Z) ≃ Coh(Z \ W ) [Gab62,
Chapter 5]. Together with Quillen’s localization sequence (the precursor of Schlichting’s localization
theorem for abelian categories), these equivalences determine an equivalence ΩKCohZ(X)/CohW (X) ≃
ΩKCoh(Z\W ), which is compatible with the boundary maps of the localization sequences. Applying
these equivalences to the commuting triangle above, we obtain the commuting triangle of the desired
type. �

Proof of Theorem 1.2. Recall the exact functors

CZ : Coh(X)→ Pro
a(CohZ(X))

and

TZ : Coh(X \ Z)→ Tate
el(Coh(X),CohZ(X))/ Inda(CohZ(X))

from Proposition 3.25 and Corollary 3.26. It follows from the construction of Corollary 3.26 that for
every coherent sheaf F on X , the inclusion

CZ(F) →֒ TZ(F |X\Z)

defines a relative lattice. Therefore, we obtain a canonical map

Gr≤•,•(X,Z)→ Gr≤• (S• Coh(X), S• CohZ(X)),
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and the assertion of the theorem follows from Corollary 4.9, and the fact that the poset of coherent
subsheaves of j∗ F |X\Z , which extends F |X\Z is filtered (indeed, if G1,G2 ⊂ j∗ F |X\Z are coherent
subsheaves, then so is G1 + G2). �
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