Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title

SuperLU_DIST: A scalable distributed-memory sparse direct solver for
unsymmetric linear systems

Permalink

https://escholarship.org/uc/item/83z86961

Authors

Li, Xiaoye S.
Demmel, James W.

Publication Date
2002-03-27

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/83z8696r
https://escholarship.org
http://www.cdlib.org/

SuperLU_DIST: A Scalable Distributed-Memory Sparse

Direct Solver for Unsymmetric Linear Systems”

Xiaoye S. Lif James W. Demmel*

March 29, 2002

Abstract

In this paper, we present the main algorithmic features in the software package
SuperLUDIST, a distributed-memory sparse direct solver for large sets of linear
equations. We give in detail our parallelization strategies, with focus on scalability
issues, and demonstrate the parallel performance and scalability on current machines.
The solver is based on sparse Gaussian elimination, with an innovative static pivoting
strategy proposed earlier by the authors. The main advantage of static pivoting over
classical partial pivoting is that it permits a prior: determination of data structures and
communication pattern for sparse Gaussian elimination, which makes 1t more scalable
on distributed memory machines. Based on this a priori knowledge, we designed highly
parallel and scalable algorithms for both LU decomposition and triangular solve and
we show that they are suitable for large-scale distributed memory machines.

*This work was supported in part by the National Energy Research Scientific Computing Center
(NERSC) which is supported by the Director, Office of Advanced Scientific Computing Research, Division
of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy under
contract number DE-AC03-76SF00098, and was supported in part by the National Science Foundation
Cooperative Agreement No. ACI-9619020, NSF Grant No. ACI-9813362, the Department of Energy
Grant Nos. DE-FG03-94ER25219 and DE-FC03-98KER25351, and UT Subcontract No. ORA4466 from
ARPA Contract No. DAAL03-91-C0047.

INERSC, Lawrence Berkeley National Lab, MS 50F, 1 Cyclotron Rd., Berkeley, CA 94720.
xiaoye@nersc.gov.

{Computer Science Division, University of California, Berkeley, CA 94720. demmel@cs.berkeley.edu.

Contents
1 Introduction

2 The GESP algorithm
2.1 Numerical stability
2.2 Exploiting higher precision to enhance stability
2.3 Opportunities for better fill-teducing orderings

3 Parallel algorithms
3.1 Matrix to processor mapping and distributed data structure
3.2 Numerical kernel based on Level 3 BLAS
3.3 Parallel factorization with pipelining
3.4 Parallel triangular solution o oL

4 Parallel performance and scalability
4.1 Factorization e
4.2 Triangular solution Lo L
4.3 Memory usageo e e e e e e
4.4 Scalability
4.5 Load balance and communication/synchronization overhead

5 Related work

6 Concluding remarks and future work

14
14
16
17
20

23
23
24
26
26
27

28

29

1 Introduction

Parallelizing sparse direct solvers has been an active research area in the past decade. It is
very challenging to implement such algorithms scalably on distributed memory machines.
One of the main reasons is due to the fill-ins in the matrix factorization. For symmetric
positive definite matrices, pivots can be chosen on the main diagonal, and so the fill-in
positions in the Cholesky factor can be predicted before the actual factorization starts.
This allows static distribution of data structures and determination of communication
pattern. Researchers have been quite successful in achieving scalable performance for
sparse Cholesky factorization; available codes include CAPSS [35], MUMPS-SYM [3],
PaStix [37], PSLDLT [47], and PSPACES [33].

However, for unsymmetric and non-definite systems, few distributed-memory codes
exist. Compared with sparse Cholesky, the LU factorization is further complicated for at
least two reasons. One reason is the need for some kind of numerical pivoting for stability.
The classical partial pivoting [31] or the sparse variant of threshold pivoting [22] usually
cause the fill-ins to be generated dynamically. Therefore, there is a need to design dynamic
data structures and algorithms to accommodate these fill-ins. Another reason is the need
to handle two factored matrices L and U, which are structurally different yet closely related
to each other in the filled pattern. Unlike the Cholesky factor with the minimum graph
representation being a tree (called elimination tree, or etree for short) [44], the minimum
graph representations of I and U factors are directed acyclic graphs (called elimination
DAGSs, or edags for short) [29, 30]. Despite these difficulties, researchers have been
addressing these issues successfully for sequential and shared memory machines; available
codes include MA41 [6, 5], PARDISO [48], SPOOLES [9], SuperLU [18], SuperLU_MT [19],
UMFPACK/MAZ38 [14], and WSMP [32].

In our earlier codes SuperLU (serial) and SuperLU_MT (shared-memory), we devised
efficient “symbolic” factorization algorithms to accommodate the dynamically generated
fill-ins due to partial pivoting. The symbolic algorithm cannot be de-coupled from the
numerical factorization; instead, it must be interleaved with the numerical algorithm as the
numerical factorization proceeds. These symbolic factorization algorithms are not suitable
for distributed-memory machines, because they involve fine-grained memory access and
synchronization to manage the data structures and identify task and data dependencies.
This would generate large numbers of small messages. Therefore, for SuperLUDIST that is
targeted for large-scale distributed-memory machines, we use a static pivoting approach,
called GESP (Gaussian Elimination with Static Pivoting), proposed earlier by the authors
[42]. We parallelized the GESP algorithm using MPI. Our parallelization strategies center
around the scalability concern. We use a 2D block-cyclic mapping of a sparse matrix to the
processors, and designed an efficient pipeline algorithm to perform parallel factorization.
With GESP, the parallel algorithm and code are much simpler than if we had to pivot
dynamically. The main algorithmic features of SuperLUDIST solver are summarized as
follows:

e supernodal fan-out (right-looking) based on elimination DAGs
e static pivoting with possible half-precision perturbations on the diagonal

e static 2D irregular block-cyclic mapping using supernodal structure

¢ loosely synchronous scheduling with pipelining

The rest of the paper is organized as follows. In Section 2 we demonstrate the
numerical stability, the sequential runtime efficiency and the ordering schemes of the
GESP algorithm. In Section 3, we present an MPI implementation of the distributed
algorithms for LU factorization and triangular solutions. In Section 4, we present and
analyze the parallel performance and scalability results. Section 5 describes the related
work and compares SuperLUDIST with some other solvers. Finally, we conclude the paper
and present future work.

2 The GESP algorithm

Recall that the role of numerical pivoting is to avoid small pivots and control pivot growth
in the factors. Dynamic pivoting is not the only means to achieve this goal. We can use
other algorithms to pre-permute large elements on the diagonal, thereby partially fulfiling
the role of dynamic pivoting. Furthermore, when large pivot growth still occurs, there
are inexpensive methods to tolerate and compensate for the growth, such as iterative
refinement. This observation led us to design a static pivoting factorization algorithm,
called GESP [42]. We demonstrated that GESP works surprisingly well for practical
matrices. In our GESP algorithm, since pivots are chosen from the main diagonal,
the fill-in positions can be determined before the numerical factorization, and so the
symbolic factorization can be de-coupled from numerical factorization. This enables static
data structure optimization, graph manipulation and load balancing in a similar way as
Cholesky factorization.

Figure 1 sketches our GESP algorithm. To motivate step (1), recall that a diagonally
dominant matriz is one where each diagonal entry a;; is larger in magnitude than the sum
of magnitudes of the off-diagonal entries in its row (3_,;4; |ai;|) or column (3,4, |aji]). Tt
is known that choosing diagonal pivots ensures stability for such matrices [17, 31]. We
therefore expect that if each diagonal entry can somehow be made larger relative to the
off-diagonals in its row or column, then diagonal pivoting will be more stable. The purpose
of step (1) is to choose the diagonal scaling matrices D, and D,, and the permutation P,
to make each a;; larger in this sense. We have experimented with a number of heuristic
algorithms implemented in the routine MC64 (available from HSL [38]) [21]. All depend
on the following graph representation of an n X n sparse matrix A: it is represented as
an undirected weighted bipartite graph with one vertex for each row, one vertex for each
column, and an edge with appropriate weight connecting row vertex ¢ to column vertex
j for each nonzero entry a;;. Finding a permutation P, that puts large entries on the
diagonal can thus be transformed into a weighted bipartite matching problem on this
graph. In MCc64, there are algorithms that choose P. to maximize different properties of
the diagonal of P, A, such as the smallest magnitude of any diagonal entry, or the sum or
product of magnitudes. But the best algorithm in practice is the following (option 5 of
MC64): it chooses P, to maximize the product of the diagonal entries, and chooses D, and
D, simultaneously so that each diagonal entry of P.D,.AD. is £1, each off-diagonal entry
is bounded by 1 in magnitude. We report results for this algorithm only. The worst case
serial complexity of this algorithm is O(n - nnz(A)-logn), where nnz(A) is the number of
nonzeros in A. In practice it is much faster; the actual timings appear later in Figure 7.

Figure 1: The outline of the GESP algorithm.

(1) Row/column equilibration and row permutation: A — P.- D, -A - D.,
where D, and D, are diagonal matrices and P, is a row permutation chosen
to make the diagonal large compared to the off-diagonal.

(2) Find a column permutation P. to preserve sparsity: A « P.- A - PT

(3) Symbolic analysis to determine the nonzero structures of L and U.

(4) Factorize A = L - U with control of diagonal magnitude:

if (las| < V2 -[[A]l1) then
set a;; to 4/ || 4|11
endif
(5) Triangular solutions using L and U.
(6) If needed, perform the following iterative refinement

iterate:
r=b—A-z ... sparse matrix-vector multiply
Solve A-dx =r ... triangular solution
berr = max; w ... componentwise backward error
if (berr > ¢ and berr < } - lastberr) then
rz=z+dx

lastberr = berr
goto iterate

endif

Step (2) is not new and is needed in almost any sparse direct solver. The column
permutation P. can be obtained from any fill-reducing heuristic. In our code, we provide
the minimum degree ordering algorithm [43] on the structure of A7 + A. The code can also
take as input an ordering based on some other algorithm, such as the nested dissection on
AT 4 A [28, 36, 40]. Note that we also apply P. to the rows of A to ensure that the large
diagonal entries obtained from step (1) remain on the diagonal.

In step (4), we perform factorization using diagonal pivots. The tiny pivots encountered
during elimination can be set to y/-|| 4|, where ¢ is machine precision. This is equivalent to
a small (half precision) perturbation to the original problem, and trades off some numerical
stability for the ability to keep pivots from getting too small.

In step (6), we perform a few steps of iterative refinement if the solution from step (5)
is not accurate enough, which also corrects for the half precision perturbations in step (4).
The termination criterion is based on the componentwise backward error berr [17]. The
condition berr < ¢ means that the computed solution is the exact solution of a slightly
different sparse linear system (A+¢A)z = b where 6 A changes only each nonzero entry a;;
by at most one unit in its last place, and the zero entries are left unchanged; thus one can
say that the answer is as accurate as the data deserves. We terminate the iteration when
the backward error berr is smaller than machine epsilon, or when it does not decrease by
at least a factor of two compared with the previous iteration. The latter test is to avoid
possible stagnation. (IFigure 5 shows that berr is always small.) Note that demanding
berr < ¢ is very stringent, and in practice, the refinement can be terminated earlier.

2.1 Numerical stability

In this subsection, we illustrate the numerical stability and runtime of our GESP algorithm
on 68 unsymmetric matrices drawn from a wide variety of applications. The application
domains of the matrices are given in Table 1. Most of them, except for wu, can be obtained
from the Harwell-Boeing Collection [23] and the collection of Davis [15]. Matrix wu was
provided by Yushu Wu from the Earth Sciences Division of Lawrence Berkeley National
Laboratory. Figure 2 plots the dimension, nnz(A), and nnz(L + U) (i.e., the fill-ins, after
the minimum degree ordering on AT 4+ A). The matrices are sorted in increasing order
of the LU factorization time of the sequential GESP algorithm. The matrices of most
interest for parallelization are the ones that take the most time, i.e., the ones towards the
right of this graph. From the figure it is clear that the matrices large in dimension and
number of nonzeros also require more time to factorize. The timing results reported in
this subsection are obtained on a single IBM 375 MHz POWERS processor, running AIX
operating system. The processor has a 64 KB L1 data cache and an 8 MB L2 cache.

Detailed performance results from this section in tabular format are available at
http://www.nersc.gov/~xiaoye/SuperLU/GESP.

Among the 68 matrices, many would get wrong answers or fail completely (via division
by a zero pivot) without any pivoting or other precautions. 26 matrices contain zeros on
the diagonal to begin with which remain zero during elimination, and 3 more (bbmat,
jpwh 991 and orsreg_1) create zeros on the diagonal during elimination. Therefore, not
pivoting at all would fail completely on these 29 matrices. For our experiment, the right-
hand side vector is generated so that the true solution 4., is a vector of all ones. IEEE
double precision is used as the working precision, with ¢ ~ 10716, All the test matrices

Discipline Matrices

fluid flow, CFD af23560, bbmat, bramleyl, bramley2, ex11, ex19, fidap011, fidap019,
fidapm11, fidapm29, garon2, goodwin, grahaml, inaccura, inv-extrusion-1,
Insp3937, Ins_3937, mixing-tank, raefsky3, raefsky4, rmal0, venkat01, wu

circuit simulation add32, gre_1107, gre_115, jpwh_991, memplus, onetonel, onetone2, twotone
device simulation wang3, wang4, ecl32

chemical engineering extrl, hydrl, Ihr01, lhr71c, radfrl, rdist1, rdist2, rdist3a, west2021
chemical process bayer01, bayer02, bayer04

petroleum engineering orsirr_1, orsreg_1, sherman3, sherman4, sherman5

finite element PDE av4408, av11924

MagnetoHydroDynamics | mhd500

stiff ODE fs_541_2

Olmstead flow model 0olm5000

aeroelasticity tols4000

reservoir modelling pores_2

crystal growth simulation | cry10000

power flow modelling gemat1l

dielectric waveguide dw8192 (eigenproblem)

astrophysics mcfe

plasma physics utm5940

demography psmigr_1, psmigr_2, psmigr_3

economics mahindas, orani678

Table 1: Test matrices and their disciplines.

have condition numbers bounded by % Figure 3 shows the number of iterations taken in
the iterative refinement step. Most matrices terminate the iteration with no more than 3
steps: 9 matrices require 1 step, 46 matrices require 2 steps, 5 matrices require 3 steps, and
8 matrices require more than 3 steps. In the case of conventional Gaussian elimination
with partial pivoting (GEPP) (as in sequential SuperLU), 4 matrices require 1 step, 63
matrices require 2 steps, and 1 matrix requires 3 steps.

For each matrix, we present two error metrics, in Figure 4 and Figure 5 respectively, to
assess the accuracy and stability of GESP. Figure 4 plots the error from GESP versus the
error from GEPP for each matrix: a dot on the diagonal means the two errors were the
same, a dot below the diagonal means GESP is more accurate, and above means GEPP
is more accurate. Figure 4 shows that the error of GESP is at most a little larger, and
can be smaller (36 out of 68 matrices), than the error from GEPP. Figure 5 shows that
the componentwise backward error [17] is also small, usually near ¢ and never larger than
10713,

Figure 6 compares the pivot growth of GESP versus that of GEPP. Here, the pivot
growth is defined as ”g'f‘x’. For 31 matrices, GESP and GEPP have comparable pivot
growth. For 10 matrices, GESP has more than 10 orders of magnitude larger pivot growth

than GEPP, up to 10?*. Even in the presence of such large pivot growth, the iterative
refinement can effectively recover any loss of accuracy during the factorization.

Note that Figure 1 shows all the techniques that are implemented in the code. Some
may not be needed for some problems. Qur experiment shows that the half-precision
perturbation introduced in step (4) is not needed for most matrices. It is good for 5
matrices (fidapm11, goodwin, graham1, inv-extrusion-1 and mixing-tank), but is bad for
4 others (ex11, fidap011, inaccura and raefsky4). The rest of the matrices are insensitive

to this option. For matrix jpwh_991, the errors are large unless we omit P, from step (1).
Therefore, in our code, we provide a flexible interface so the user is able to turn on or off
any of these options (steps (1), (2), (6), and the diagonal perturbation in step (4)).

Figure 2: Characteristics of the matrices.

Figure 3: Iterative

refinement steps.

10° . 8 —
O Dimension 8 O GESP
of T # of nonzeros in A Q o = x_GEPP
10°y ¢ #of nonzeros in L+U 1 @7 Y = i
: <><><§> <
B, 2
yh 0. &, o 1 g6r o O O
10 0%> 0 00 qE)
0. +° i =
100k <><><><><§><> Hog o] ®st 00 il
2 * R [}
oo Lo >
10°: NCIR K i 0 | Bar 0]
; a0 Yk 8 © Y
, 8% 4 000 62 o)
S Ss@m 0 E=1
4] <> 0 %ﬁféﬁ QCC?C o8 & 5 1 B3F X 00 0] ©} 7
10 % O% o0 o o3 C 00 @) o)
*g CO%OCOC 00 g
10° 0. Foo { E2r ® QB X
’ >
2
10 L I I 1 R L 5 !) I
10° B T 10° 10° 0 10° 10
LU factorization time in seconds Condition number
_ Figure 5: The backward error
Figure 4: The error w |A-z—b|;
) x) max; 7.
0 = t(A]|z[+[b])s
10 10—10
< : O GESP
" + GEPP
10 3
..
Q107 ¢ y 1107 .
w o
O] =L
2 g 10781 Grid
8 o 5
5500 o e | & |]
LItJ ’ e © s} :
. .. . @ 10’15 ' : + 4 i
%% @ = % e
a0 eg;%** Pe Q
[] ° 10—16 ~ g B 4
w0 82 1 if ‘
10_15 10‘_10 10_5 10 10—17 0 ‘5 ‘10 ‘15
10 10 10 10

Error from GEPP

Condition number

We now evaluate the runtime of each step of GESP in Figure 1. This is done with
respect to the sequential runtime. For large enough matrices, the LU factorization in step
(4) dominates all the other steps, so we will measure the time of each step with respect to
step (4).

Both row and column permutation algorithms in steps (1) and (2) (computing P, and
P.) are not easy to parallelize (their parallelization is future work). Fortunately, their

Figure 6: The ratio of pivot growth of GESP Figure 7: The times for the other steps of GESP,

versus GEPP. as fraction of the factorization time.
25 1
10 T 10
[)
o *
D— X
0_1020’ ° g X
w i * +xx %
c X X
15[fx X " ® 9 %
;10 ‘ N 8.0 fg%ﬁ* B
wn o ® B ++X‘ %+ X. Ojf Xfﬁi G0
W ‘ . ° . 3] 5 ¥ Qi C++£D o s
010 . od R .,9 . [5 V‘% ‘EA Eér 3%:% X X
L s +...0000
< oo .’ 310 s A%AzﬂﬁJr%& AR
% i Fox o
O ° .0. o ©® 5 o MC64 JaS % AA$++
4 ° ° =)
o (1 L4 o _ + L)
> 100 [o . M“i 0.’! ° o.. i 9 10 2| A g'\:.lnDb(Qch) L%
o } s Y "'"%"Pg\“‘é
+ Tri. soln. o
5 Iter. refine.
10 L L L T L L an)
10 10 107 10" 10° 10" 10 10 10° 10°
Condition number LU factorization time in seconds

memory requirement is just O(nnz(A)) [16, 20], as opposed to the superlinear memory
requirement for I, and U factors, so in the meantime we can run the ordering algorithms
on a single processor.

Figure 7 shows the times spent in the other steps of GESP as the fraction of the
sequential time for the factorization step. The times are significant for the small problems,
but drops to below 10% as the problems become larger, see the 15 matrices that require
more than 10 seconds to factorize. Only the large matrices are of interest for parallel
machines and are also the ones which SuperLUDIST is designed for.

2.2 Exploiting higher precision to enhance stability

Using higher than working precision is another technique to enhance the stability of GESP.
Neither of the following two methods were necessary to achieve stability in the test cases
we used, but we mention them anyway for completeness, and in case they may be necessary
in the future.

The first and simplest high precision technique is the use of iterative refinement [24, 17]
where the residual is computed to high precision:

Depending on the stopping criterion used to measure whether d is small enough
(typically one asks that z; and z;_1 do not differ much) and assuming that the factorization
of GESP is not too unstable for the above iteration to converge, it can be shown that
this algorithm will converge to a quite accurate approximate solution #: || — A71b|| =
O(ne)||[A7tb||, i.e. independent of the condition number. This is the advantage of high
precision computation of r: We currently use iterative refinement to help stabilize GESP,
but since r is only computed to working precision, we can only hope to achieve good
backward stability, not a tiny forward error bound on || — A71b|].

But iterative refinement with or without high precision residuals may not help if the
initial factorization A ~ LU is too unstable for the iteration to converge, i.e. |[|A —

Figure 8: High Precision Iterative Refinement

Compute an initial approximation zg of z = A71b
/* using factorization of A from GESP */
1=10
repeat
1=1+1
/* compute residual r to high precision, but store in working precision */
r=A*x9—0b
Solve Ad = r /* using factorization of A from GESP */
T, =221 —d
until d is small enough

LU|| > ¢||A]|. Our second high precision technique shows how by using dynamic precision
instead of dynamic pivoting that stability can be guaranteed. This method would be
complicated to implement fully (though cheaply approximated), but shows that pivoting
can in principle be avoided entirely.

We explain the algorithm assuming a left-looking factorization. This means that the
entries of I and U are computed as dot products, without storing intermediate results
to memory. This simplifies the algorithm, because this limits much of the high precision
to the registers accumulating the dot products, and avoids storing many high precision
entries of intermediate Schur complements to memory.

We describe the well-known error analysis of Gaussian elimination below, but
distinguish the precision €44 ;; used in dot products to compute U;; or L;; from the
precision ¢;; used to store L;; or U;;. Thus we permit each dot product and each L;; and
U;; to possibly be computed and stored to a different precision. (In practice one would
have just two precisions, working and double working.) We use the well-known fact that
the dot product Zle z; - y; computed in precision €4, yields the computed result (here
and later we ignore over/underflow and O(e?) terms)

k
> wi-yi(146)
i=1

where each |6;] < kegor.
Now consider the formula

1—1
Uij = Aij — (D Lik - Ugj)
k=1

for i < j. The algorithm will (1) evaluate the dot product to precision €40t ;; (thus it may
vary from one dot product to another in the algorithm), and then (2) subtract the result
from A;; and store the answer in U;; to precision ¢;;. This yields

i—1
Uij = [Aij = Y Lik - Ui (1 + 8aor,iji) (1 + 6ij)
k=1

10

where |6;;] < 2¢;; (this comes from subtracting and the final rounding of U;; to store in
memory), and |04o¢ k)| < NEgor,i;. Rearranging, we get

0. i1
Ayj e+ > Lir - Ukj(1 4 b4otij
j 0160 kz::l k- Uk (14 8dot,ijn)
i1
~ Ui(1—=6i5) + D Lik - Ui (1 + Sdorije) (1)
k=1

Similarly, the formula
7—1
Lij = (Aij =) Lik - Ugj) [Ujj
k=1

for ¢ > j is implemented by (1) computing the dot product with precision e44¢,;, and then
(2) doing the subtraction, division and storing of L;; to precision ¢;;. This yields

7—1
Aij m Ui Li(1 = 6i5) + Y it - Uri(1 + baot,ijr) (2)
k=1

where |52]| S 352']' and |6dot,ijk| S NEdot,ij-

To put these formulas all together, we need some notation. We let £ be the matrix
with &; = €;;, Eior be the matrix with Ejpeij = €4or,ij, diag(U) be the diagonal part of the
matrix U, and off(U') be the off-diagonal part of the matrix U. We also use the Hadamard
(componentwise) product of two matrices: €' = A ® B means C;; = A;; - B;;. Then we
may write equations (1) and (2) as A = L -U + E where

|E] < néior © (Joff(L)] - [off(U)]) + 3E © |(off(L) - diag(U)) + U))| (3)

Note that off(L) - diag(U) is strictly lower triangular and U is upper triangular, so their
sum requires no actual additions, just copying. In summary, the n€4,; © (|off(L)|- |off(U)])
term accounts for all the error from inner products, and the 36 @ |(off(L) - diag(U)) + U)|
term accounts for errors from subtraction from A;;, division and storing the final entries
of L and U in memory.

Now we will show how to use this formula to choose 4. ,; and ¢;; dynamically to
guarantee stability, where we mean guaranteeing that |£;;| is no larger than some given
upper bound F;;. One obvious possibility is £;; = || A]|, but since it is no harder we do
the general case where each EZ']- may differ. If a pivot Uj; is encountered that is less than
E;; in magnitude, it should be set to E; (to avoid division by zero and minimize growth
of the entries of L and U). We will also insist that all £4,¢;; and ¢;; are no larger than the
working precision ¢ in which the entries of A are stored.

Consider first the computation of U;;. We begin by evaluating the dot

product b = Z};ﬁﬂik - Ug;| (any reasonable upper bound on b will do, such as
nmaxi<ic; | Lik| maxi<pe; |Urj|), and then choosing egu;; < min(F;;/(2b),e). Next
compute d = 22_:11 Ly - Ug; and u = A;; — d in precision €40¢,;. Then we choose

g;j < min(E;;/(6u),¢) and use it to complete the computation and storage of U;; = A;; —d.
These choices of &; = ¢;; and Equt,;j = €dot,;; guarantee that the 4,7 entry of the right
hand side of (3) is no more than F;; for ¢ < j as desired.

11

Now consider the computation of L;;. As before we begin by computing the dot product
b= ch;i |Lik, - Ug;| or a reasonable upper bound and choosing €4, ;; < min(Eij/(Qb),a).
Next we compute d = Efc;ll L - Ug; and | = A;; — d in precision e40¢,;. Then we
choose ¢;; < min(F;;/(6l),e) and use it to complete the computation and storage of
L;; = (A;; —d)/Uj;. These choices of &; = ¢;; and Eqo1,ij = €dot,i; guarantee that the ¢, j
entry of the right hand side of (3) is no more than E;; for i > j as desired.

Now we get to the solution of Az = b by the solution of Ly = b for y and Uz = y for
z. The simplest thing is to do all the computations (including storing intermediate values
of z and y) in the precision e4,; = min;;(e;;,4ot,i;). Then the usual error analysis says the
computed solutions § of Ly = b and & of Uz = y satisfy (L+6L)§ = b with |6 L] < ney| L]
and (U 4 6U)z = g with |6U| < neg,|U|. Combining everything yields (A + F)& = b with

|F| = |—=E+6L-U+L-8U+6L-68U]|
|~ E+68L-U+1L-68U|
[El+6L] - |U| + [L] - |8U]

|E| + 2044 L] - U]

X

IN N

where our choice of ¢y,; guarantees that the 2ney;|L| - |U| term is dominated by at most
about n times the || term from bound (3). Altogether, this shows that the computed
solution # is stable (even after rounding back to working precision) as desired.

We have obviously paid a price to avoid pivoting, namely extra work to compute the
bounds b. But we could clearly approximate this algorithm, if it ever becomes necessary,
to maintain stability while avoiding pivoting.

Here is an example. Consider the matrix

1078 1 1 1

1 4 3 2

A= 1 2 4 3
1 2 3 4

which has a condition number of under 30. Its L and U factors without pivoting are
approximately (we have omitted important trailing digits)

10-8 1078 1 1 1
108 1 : -10% —10% —10%
=1 100 1 1 and U= 3 3
0% 1 2/3 1 2

Note that the first column of L and second row of U are very large, but the latter rows
and columns are not. Supposing that working precision is ¢ = 10~ and that we want to
achieve stability with EZ']- = 1078, then our algorithm would pick the following values of
& and &4yt (rounded to the nearest power of 10):

10-% 10°®% 10=® 10°® 10-% 10°® 10°® 10°%
e 107% 107'¢ 107'¢ 10716 46— 107% 10716 10'¢ 10716
dot = 10=8 10-16 10-16 10-16 an | 10°® 10-' 10-% 10°%

10~8 10-16 10-16 10-16 10~8 10~ 108 108

12

In other words, the initial tiny pivot means that all dot products need to be done to
double precision, but only the second row of U and second column of L need to be stored
to double precision; the rest can be working precision.

2.3 Opportunities for better fill-reducing orderings

For the unsymmetric factorizations, the preordering for sparsity is less well understood
than that for the Cholesky factorization. Most unsymmetric ordering methods use the
symmetric ordering techniques on a symmetrized matrix (e.g., ATA). Now we examine
the relationships of several matrices and the rationale behind the above ordering methods.
Consider the LU factorization with partial pivoting P,A = LU, where P, is a permutation
matrix describing row interchanges. Also consider the Cholesky factorization ATA =
RTR, and the QR factorization A = QR computed by Householder transformation.!
@ is represented by the “Householder matrix” H whose columns are the Householder
vectors. The nonzero structure for L and U cannot be predicted immediately from the
nonzero structure of A, because the row interchanges during the factorization depend on
the numerical values. However, for any row interchanges, the structures of I and U are
subsets of the structures of H (or RT) and R respectively [26, 27]. Therefore, a good
symmetric ordering P, on AT A (either based on minimum degree or nested dissection)
that preserves the sparsity of R can be applied to the columns of A, forming AP, so
that the LU factorization of the column-permuted matrix APT is sparser than that of the
original matrix A. This is due to the relation P.(AT A)PT = (APT)T(APT). A drawback
with the above approach is that computing the structure of AT A can be expensive both
in time and space since AT A may be much denser than A. Davis et al. developed an
algorithm, called COLAMD, to compute P. directly from the sparsity structure of A [16].
It is based on the same strategy, that is, to make the “upper bound” matrices H and R
sparser, but uses better heuristics. Both serial SuperLU and SuperLUMT have incorporated
both column ordering methods; i.e., the user can choose to obtain a column ordering by
calling MMD [43] on AT A, or by calling COLAMD.

Since the “AT A-based ordering” methods attempt to account for all possible row
interchanges, it may be too generous when only a limited amount of pivoting is needed.
This is especially true for our GESP algorithm, in which the row interchanges are
performed prior to the factorization. During the factorization, the pivots are chosen solely
on the main diagonal. A better fill-reducing ordering would be based on the symmetric
matrix AT 4 A, instead of AT A, because the symbolic Cholesky factor of AT + A is a much
tighter upper bound on the structures of L and U than that of AT A. Note that in this
case, we perform a symmetric permutation PAPT so that the entries of the main diagonal
of the permuted matrix remain the same as those in the original matrix A. Table 2 lists
the amount of fill in the LU factorization using different ordering methods. It is clear that
the ordering based on AT + A is much better than those based on AT A. Sometimes the
improvement can be more than a factor of two, see matrices INV-EXTRUSION-1, MIXING-TANK
and wanc4. The only exception is FiDaPM11, for which the three ordering methods are
comparable.

Although the (AT 4 A)-based orderings improve the ordering quality, it still may not
be the most effective fill-reducing method, since symmetrization AT + A may destroy the

1The R factor in the Cholesky factorization and the R factor in the QR factorization are identical.

13

Nonzeros in L + U (10°)

(ATA)fbased (AT + A)-based
Matrix MMD | COLAMD || MMD AMD
BBMAT 49.1 49.8 41.1 40.2
ECL32 73.5 72.6 42.4 42.7
FIDAPM11 26.4 24.3 24.8 24.8
INV-EXTRUSION-1 53.7 62.7 29.1 28.4
MIXING-TANK 86.9 81.4 40.7 41.2
RMA10 14.7 16.3 9.3 9.3
TWOTONE 22.6 18.3 11.4 11.9
WANG4 27.7 25.5 10.5 10.7

Table 2: Impact of different ordering methods on the size of the factors; the GESP
algorithm is used.

sparsity of matrix A, particularly when A is highly unsymmetric. Recently, motivated
by the GESP algorithm and an unsymmetrized multifrontal method [5], Amestoy, Li
and Ng [4] proposed a new symmetric ordering scheme that does not require any
symmetrization of the underlying matrix, that is, it works directly on matrix A itself. The
scheme is similar to the Markowitz scheme [45] but limits the pivot search to the entries
on the main diagonal. The efficient implementation is similar to that of approximate
minimum degree (AMD) [2], but it generalizes the (symmetric) quotient graph to the
bipartite quotient graph to model the unsymmetric node elimination. The preliminary
results show that the new ordering method reduces the amount of fill by 15% on average
for unsymmetric matrices, when compared with applying AMD to AT + A. In the future,
we will incorporate this new ordering algorithm into SuperLUDIST.

The better choice of sparsity ordering algorithm is indeed an an added benefit of the
GESP algorithm. Throughout the paper, we only report the results using the ordering
algorithms based on AT + A,

3 Parallel algorithms

In this section, we describe our design, implementation and the performance of the
distributed algorithms for two major steps of the GESP method: sparse LU factorization
(step (4)) and sparse triangular solve (step (5)). Our implementation uses MPI [49] to
communicate data. We have tested the code on a number of platforms, such as Cray T3E,

IBM SP, and Berkeley NOW.

3.1 Matrix to processor mapping and distributed data structure

We distribute the matrix in a two-dimensional block-cyclic fashion. In this distribution,
the P processes are arranged as a 2D process grid of shape P, x P.. The matrix is
partitioned into blocks of submatrices. The block definition is based on the notion of
unsymmeltric supernode first introduced in [18]; it is defined over the matrix factor L. A
supernode is a range (7 : s) of columns of L with the triangular block just below the
diagonal being full, and the same nonzero structure elsewhere (either full or zero). This

14

Figure 9: The 2D block-cyclic layout and the data structure to store a local block column

of L.
Global Matrix Storage of block column of L

index nzval

of blocks
LDA of nzva

block #
#of full rows |,/

row subscripts
i1
i2

)
block # S
#of full rows |/ // LTS

row subscripts

supernode partition is used as the block partition in both row and column dimensions,
that is the diagonal blocks are square. If there are N supernodes in an n-by-n matrix,
the matrix will be partitioned into N? blocks of non-uniform size. The size of each block
is matrix dependent. The off-diagonal blocks may be rectangular and need not be full.
Furthermore, the columns in a block of U do not necessarily have the same row structure.
We call a dense sub-column in a block of U a segment. By block-cyclic layout, we mean
block (/,.J) is mapped onto the process at coordinate (({ — 1) mod P, (J/ — 1) mod F;)
of the process grid. During factorization, block L(/,.J) is only needed by the processes on
the process row ((/ — 1) mod P,), thus restricting the communication. Similarly, block
U(1,J)is only needed by the processes on the process column ((J/ — 1) mod P,). Figure 9
illustrates such a 2D block-cyclic layout.

Although a 1D partition is more natural to sparse matrices and is much easier to
implement, a 2D layout strikes a good balance among locality (by blocking), load balance
(by cyclic mapping), and lower communication volume (by 2D mapping). 2D layouts
were demonstrated to be more scalable in the implementations for dense matrices [12] and
sparse Cholesky factorization [34, 47].

We now describe the distributed data structures to store local submatrices. In the 2D
blocking, each block column of L resides on more than one process, namely, a column of
processes. For example, in Figure 9, the second block column of L resides on the column
processes {1, 4}. Process 1 only owns two nonzero blocks, which are not contiguous in the
global matrix. The schema on the right of Figure 9 depicts the data structure to store the
nonzero blocks on a process. Besides the numerical values stored in a Fortran-style array
nzval[] in column-major order, we need the information to interpret the location and
row subscript of each nonzero. This is stored in an integer array index[], which includes
the indices for the whole block column and for each individual block in it. The zero blocks
are not stored; neither do we store the zeros in a nonzero block. Both lower and upper
triangles of the diagonal block are stored in the I data structure. A process owns [N/ P.]
block columns of L, so it needs [N/P.] pairs of index/nzval arrays.

15

For matrix U, we use a row oriented storage for the block rows owned by a process,
although for the numerical values within each block we still use column-major order.
Similarly to L, we also use a pair of index/nzval arrays to store a block row of U. Due
to asymmetry, each nonzero block in U has the skyline structure as shown in Figure 9
(see [18] for details on the skyline structure). Therefore, the organization of the index[]
array is different from that for L, which we omit showing in the figure.

The user can control the partitioning and mapping. Firstly, the user can set
the mazimum block size parameter. The symbolic factorization algorithm identifies
supernodes, and chops the large supernodes into smaller ones if their sizes exceed this
parameter. The supernodes may be smaller than this parameter due to sparsity and the
blocks are then defined by the supernode boundaries. (That is, supernodes can be smaller
than the maximum block size but never larger.) Our experience has shown that a good
value for this parameter on the IBM SP2 is around 40, while on the Cray T3E it is around
24, because T3E has smaller caches on each processor. Secondly, the user can set the
shape of the process grid, such as 2 x 3 or 3 X 2. Better performance is obtained when we
keep the process row dimension slightly smaller than the process column dimension. Since
we do no dynamic pivoting, block partitioning and the setup of the data structure can
all be performed in the symbolic algorithm. This is much cheaper to execute as opposed
to partial pivoting where the size of the data structure cannot be forecast and must be
determined on the fly as factorization proceeds.

3.2 Numerical kernel based on Level 3 BLAS

The main numerical kernel during the factorization is a block update corresponding to the
rank-k£ update to the Schur complement:

A(LJ) — A(1,J) - L(I,K)x U(K,J),

see Figure 10. In earlier versions of SuperLU, this computation was based on Level 2.5
BLAS. That is, we call the Level 2 BLAS routine GEMV (matrix-vector product) but with
multiple vectors (segments), and the matrix L(/, K) is kept in cache across these multiple
calls. This to some extent mimics the Level 3 BLAS GEMM (matrix-matrix product)
performance. However, the difference between Level 2.5 and Level 3 is still quite large
on many machines, for example the IBM SP2. This motivated us to modify the kernel in
the following way in order to use Level 3 BLLAS. For best performance, we distinguish two
cases corresponding to the two shapes of a U(K,.J) block.

o The segments in U(K,J) are of same height, as shown in Figure 10 (a).
Since the nonzero segments are stored contiguously in memory, we can call GEMM
directly, without performing operations on any zeros.

o The segments in U(K,.J) are of different heights, as shown in Figure 10 (b).
In this case, we first copy the segments into a temporary working array T’, with
some leading zeros padded if necessary. We then call GEMM using L(/, K) and
T (instead of U(K,J)). We perform some extra floating-point operations for those
padding zeros. The copying itself does not incur a runtime cost, because the data
must be loaded in the cache anyway. The working storage T is bounded by the

16

maximum block size, which is a tunable parameter. For example, we usually use
40 x 40 on the IBM SP2 and 24 x 24 on the Cray T3E.

Depending on the matrix, this Level 3 BLAS kernel improved the uniprocessor
factorization time by about 20% to 40% on the IBM SP2. A performance gain was
also observed on the Cray T3E. It is clear that the extra operations are well offset by the
benefit of the more efficient Level 3 BLAS routines.

Figure 10: [llustration of the numerical kernels used in SuperLUDIST.

il

Al J) L(l, K) U(K,J)

(@ UK,J) = m
_ I CoPY
(b) UK, J) = - . w -

3.3 Parallel factorization with pipelining

In this subsection, we first describe in detail how the parallel factorization algorithm
utilizes the pipeline effect. Then we discuss how to improve the performance robustness
by introducing immediate sends and receives. The following notation will be used in
Figure 12 and throughout the discussion. MATLAB notation is used for integer ranges and
submatrices.

e Process IDs

PROC.(K) : the set of column processes that own block column K
For example, in Figure 9, PROC.(3) = PROC.(6) = {2,5}.

— PROC,(K) : the set of row processes that own block row K
For example, in Figure 9, PROC,(1) = PROC,(3) = {0,1,2}.

— Pg = PROC,(K)N PROC,(K)

— me : the process rank as illustrated in Figure 9

o Tasks labelled in Figure 12

— F (...) : Factorize a block column or a block row?

— S (...) : Send a block column or a block row

2There is also communication involved in this task, but it is negligible, and so is omitted in the
discussion.

17

— R (...) : Receive a block column or a block row

— U®)(..)) : Update the trailing submatrix using L(:, K) and U(K,:)

The parallel sparse LU factorization algorithm is right-looking and loosely synchronous,
as shown in Figure 11. It loops over the number of supernodes. The K-th iteration of
the loop consists of three steps: (1) the process set PROC(K) factors the block column
L(K : N,K); (2) the process set PROC,(K) factors the block row U(K,K + 1 : N);
and (3) all the processes perform the Schur complement update by L(K +1: N, K) and
UK,K +1 : N). The last step represents most of the work and also exhibits more
parallelism than the other two steps.

Figure 11: The parallel right-looking LU factorization.

for block K =1 to N do
(1) if [me € PROC¢(K)] then
Factorize block column L(K : N, K)
Send L(K : N, K) to the processes in my row who need it
else
Receive L(K : N, K) from one process in PROC¢(K)
endif
(2) if [me € PROCR(K) | then
Factorize block row U(K,K +1: N)
Send U(K, K +1: N) to processes in my column who need it
else
Receive U(K, K 4+ 1 : N) from one process in PROCE(K) if T need it
endif
(3)for J =K+ 1to N do
for /=K +1to N do
if [me € PROCRg(I) and me € PROC¢(J)
and L(I,K) #0and U(K,J) # 0] then
Update trailing submatrix A(I,J) — A(I,J)— L(I,K) -U(K,J)
endif

end for

In the actual implementation we use a pipelined organization so that processes
PROC.(K +1) will start step (1) of iteration K +1 as soon as the rank-b update (step (3))
of iteration K to block column K + 1 finishes, before completing the update to the trailing
matrix A(K+1: N,K+2:N)owned by PROC.(K + 1). Figure 12 illustrates this idea
using Steps K and K + 1 of the algorithm. In the figure, we show the activities of the
four process groups along the time line. The path marked with the dashed line represents
the critical path, that is, the parallel runtime could be reduced only if the critical path
is shortened. The block factorization tasks “F (...)” are usually on the critical path,
whereas the update tasks “U (...)” are often overlapped with the other tasks. There is
lack of parallelism for the “F (...)” tasks in Steps (1) and (2), because only one set of
column processes or row processes participate in these tasks. This pipelining mechanism
alleviates this problem. For instance, on 64 processors of the Cray T3E, we observed
speedups of between 10% and 40% over the non-pipelined implementation as in Figure 11.

18

Figure 12: Illustration of the pipeline at Steps K and K + 1 during the SuperLU
factorization.

Time

. : ! . 9 e et : :
PROC c (K) [F (LG, K))} S (L(;, K) ‘ R (UK,) [Ls (K+1:N, K+1:N) }] R (L(:, K+1))

,,,,,,,,

[I 1

ket . b
(K+LN, K+1:N) R (L(:, K+1))

-

k=1 N e b . d
PROC | (K) [d (KN, K.N} RI(LC, K)) [F(U(K, M| S (UK, 2)

R (U(K,) [Lfk)(| K+l)] [F (LG, K+1)ﬂi idle S (L(. K+1))

)

ij)(;, K+2:N)] [F (U(K+1, :)ﬁ

Critical Path

PK+1 [JH)(KN, K:N)] R(LC.K)| !

| R (LG, K+D)) | F (UK+1, 2)

D Computation Communication ‘ idle} Wait for synchronization

I
-
Z
A
%
=
z
X
%
=
z
(N

Other processes [JH)(K:N, K:N)} R (L(;, K)) ‘ R (UK,)

In an earlier version of the code, we used MPI’s standard send and receive operations
mpi_send and mpi_recv for the message transfer tasks “S (...)” and “R (...)”. In Figure 12,
we see idle time (longer send) during the sending of “S (L(:, ' 4+ 1))” for process Px 41 on
the critical path. This could happen if the sender and receiver are required to handshake
before proceeding, as is the case with large messages that exceed the MPI internal buffer
size [7]. That is, process P41 posts mpi_send long before processes PROC,(K) post the
matching mpi recv, and the sender must be blocked to wait for mpi recv. To avoid this
synchronization cost, we introduced the nonblocking send and receive primitives, mpi_isend
and mpi_irecv as follows.

e For the sender, we simply replace mpi_send by mpi_isend. This could eliminate the
idle time during the send “S (L(:, K 4+ 1))” shown in Figure 12.

e For the receiver, we will post mpi_irecv much earlier than we actually need the data.
For example, for processes PROC,(K) in Figure 12, we could post “R (L(:, K +1))”
before “U (A(K+1: N,K+1: N))”. That is, as soon as we have received a message
using mpi wait, we will post the mpi_irecv for the next message, before performing
the local computation with the just-arrived message.

To implement this idea, we need to provide user-level buffer space to accommodate
the messages in transit. Since for each process, there is only one outstanding message to
be received, we only need one extra buffer. Figure 13 sketches the pipelining algorithm
using mpi_isend and mpi_irecv. The main difference from Figure 11 is in Step (3). In the
new algorithm, the original Step (3) is split into two substeps (3.1) and (3.2). Step (3.1)
implements a look-ahead scheme. Here, we only update the (K + 1)-st block column, then
immediately factorize this column and post send and receive of the factorized column for

19

the (K + 1)-st iteration of the loop. This message transfer will overlap with the rest of
the trailing submatrix update appearing in Step (3.2). In Step (1), the processes wait for
the posted send and receive to complete. In particular, mpi_ wait in line 9 is matched with
the posted mpi_isend in line 23 (and 3); mpiwait in line 11 is matched with the posted
mpi_irecv in line 25 (and 5).

We observed a big performance difference between the blocking and nonblocking
versions of the codes on the Cray T3E. With an increasing number of processors, the
message size is usually decreasing. We show this in Table 3, because the smaller message
size implies that there is less handshaking between the sender and receiver in the blocking
code. Thus, the performance gain of the nonblocking code on a large number of processors
is less dramatic than that on a smaller number of processors. The largest performance gain
occurs at 4 processors where the nonblocking code is almost twice as fast as the blocking

code.
Matrix Ordering Number of processors
4 8 16 | 32 | 64
BBMAT AMD]0.19/0.18|0.090.09|0.05
ECL32 AMD]0.32|0.32|0.16 |0.16 | 0.09
INV-EXTRUSION-1 AMD]0.24|0.24]0.12|0.120.07
MIXING-TANK AMD 1]0.32|0.33|0.17(0.16 | 0.09

Table 3: Maximum size of the message (in Mbytes) during the factorization.

3.4 Parallel triangular solution

The sparse triangular solves are also designed around the same distributed data structure
(i.e., there is no data re-distribution). The forward substitution proceeds from the bottom
of the elimination tree (etree of AT + A) to the root, whereas the back substitution
proceeds from the root to the bottom. Figure 14 outlines the algorithm for sparse lower
triangular solve. The algorithm is based on a sequential “inner-product” formulation. In
this formulation, before we solve for the K-th subvector #(K'), the update from the inner-
product of L(K,1: K—1)and z(1 : K —1) must be accumulated and then subtracted from
b(K). The diagonal process, at the coordinate (K mod P,, K mod P.) of the process grid,
is responsible for solving for z(K'). Since each block row L(K,1: K — 1) is distributed
among the row process set PROCR(K), the inner-product is formed in a distributed
way. Each process stores the partial sum in [sum(K) locally. After it accumulates all the
product contributions from various blocks, it sends the partial sum to the diagonal process
that holds z(K). This is like a reduction operation among a row process set, except that
some processes may not participate in this reduction if they do not have any nonzero block
in this block row. Two counters, frecv and fmod, are used to facilitate the asynchronous
execution of different operations. fmod(K') counts the number of local block products to
be summed into lsum(K). When fmod(K) becomes zero, the partial sum [sum(K) is
sent to the owner of z(K'). frecv[K] counts the number of process updates to 2(K') to be
received by the owner of #(K'). This is needed because, due to sparsity, not all processes
in PROCR(K) contribute to the update. When frecv(K') becomes zero, all the needed
inner-product updates to z(/) are complete and z(K') can then be solved.

20

Figure 13: Parallel LU factorization with nonblocking send and receive.

Sy O W N —

o =1

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.

19

20.
21.
22.
23.
24.
25.
26.
27.

28

29.
30.
31.
32.
34.
35.
36.

/* —- Set up the initial stage for the pipeline — */
if [me € PROC,(1)] then

Factorize block column L(1: N, 1)

Post send L(1: N, 1) to the processes in my row who need it (— mpi_isend —)
else

Post receive L(1 : N, 1) from one process in PROC.(1) if T need it (— mpi_irecv —)
endif

/* —- Main pipeline loop — */
for block K =1 to N do
(1) if [me € PROC,(K)] then
Wait for the posted send of L(K : N, K) to complete (— mpi_wait —)
else
Wait for the posted receive of L(K : N, K) to complete (— mpi_wait —)
endif
(2) if [me € PROC,(K)] then
Factorize block row U(K, K +1: N)
Send U(K,K +1: N) to processes in my column who need it
else
Receive U(K, K 4+ 1: N) from one process in PROC,(K) (if T need it)
endif
.(B31)if[K+1< N]then
/* —- Factor-ahead scheme —- */
if [me € PROC,(K + 1)] then
Update (K + 1)-st column A, K+ 1) — A, K+ 1)—L(:,K)-U(K,K +1)

Factorize block column L(:, K + 1)
Post send L(:, K 4+ 1) to the processes in my row who need it (- mpi_isend —)
else
Post receive L(:, K 4+ 1) from one process in PROC.(K + 1) (- mpi_irecv —)
endif
endif

. (3.2)for J = K+2to N do
for /= K+ 1to N do
if [me € PROC,(I) and me € PROC,(J)
and L(I,K) # 0 and U(K,J) # 0] then
Update trailing submatrix A(7,J) — A(I,J)— L(I,K) -U(K,J)
endif

end for

end for
end for

21

Figure 14: Parallel lower triangular solve L -z = b.

1. Let mycol (myrow) be my process column (row) coordinate in the process grid
2. 2=b; lsum=0

/* —- Compute leaf nodes —- */
3. for block K =1to N

4. if (myrow = (K mod P,) and mycol = (K mod P.) and frecv[K]=0)
5. #(K) = L(K, K)~" - 2(K)
6. Send z(K) to the column processes PROC¢(K)
7. endif
8. end for
/* —- Compute internal nodes —- */
9. while (T have more work) do
10. Receive a message
11. if (message is z(K))
12. for each of my L(I,K) # 0,1 > K
13. lsum(I) = lsum(I) + L(I,K) - 2(K)
14. fmod(I) = fmod(I) — 1
15. if (fmod(I) =0)
16. Send lsum(T) to the diagonal process that holds z(T)
17. endif
18. end for
19. else if (message is lsum(K))
20. 2(K) = 2(K) = lsum(K);
21. freev(K) = frecv(K) —1
22. if (freco(K) =0)
23. #(K) = LK, K)™" - 2(K)
24. Send z(K) to the column processes PROC¢(K)
25. endif
26. endif

27. end while

22

After Mc64 | nnz(L + U) | Flops

Order | nnz(A) | NumSym | StrSym | StrSym (10%) (107)

BBMAT 38744 | 1771722 0.02 0.54 0.50 41.1 34.0
ECL32 51993 | 380415 0.66 0.93 0.93 42.4 68.3
INV-EXTRUSION-1 | 30412 | 1793881 0.73 0.97 0.86 28.4 28.0
MIXING-TANK 29957 | 1995041 0.98 1.00 0.91 41.2 64.6
TWOTONE 120750 | 1224224 0.14 0.28 0.43 11.9 8.0
WANG4 26068 | 177196 0.19 1.00 1.00 10.7 9.1

Table 4: Characteristics of the large matrices. NumSym is the fraction of nonzeros
matched by equal values in symmetric locations. StrSym is the fraction of nonzeros
matched by nonzeros in symmetric locations.

The execution of the program is message-driven. A process may receive two
types of messages, one is the partial sum [sum(K), another is the solution subvector
z(K). Appropriate action is taken according to the message type. The asynchronous
communication enables large overlapping between communication and computation. This
is very important because the communication to computation ratio is much higher in
triangular solve than in factorization.

The algorithm for the upper triangular solve is similar, However, because of the row
oriented storage scheme used for matrix U, there is a slight complication in the actual
implementation. Namely, we have to build two vertical linked lists to enable rapid access
of the matrix entries in a block column of U.

4 Parallel performance and scalability

In this section, we restrict our attention to several large matrices selected from our testbed
in Table 1, because only large problems need to use parallel machines. These matrices are
representative of different application domains. The characteristics of these matrices are
given in Table 4. The timing results have been obtained on the Cray T3E-900 (512 450
MHz EV-5 processors, 256 Mbytes of memory per processor, 900 peak Megaflop rate per
processor) installed at NERSC.

4.1 Factorization

We show in Table 5 the factorization time of SuperLUDIST. The symbolic analysis is not
yet parallel. Although it takes very little time, its parallelization would enhance memory
scalability, and will be our future work. For now, we start with a copy of the entire matrix
on each processor, and run steps (1) through (3) independently on each processor. The
third column of Table 5 reports the time spent in the symbolic analysis. The memory
requirement of the symbolic analysis is small, because we only store and manipulate the
supernodal graph of L and the skeleton graph of U, which are much smaller than the graphs
of L and U. The subsequent columns in the table show the numerical factorization time
with a varying number of processors. For all these matrices, the algorithm can efficiently
use 128 processors. Beyond 128 processors, not all matrices can benefit from the additional

23

processor power. Only BBMAT with ND ordering and rcr32 with AMD can benefit from
using 512 processors. Our lack of other large unsymmetric systems gives us few data
points in this regime. To further analyse the scalability of our solvers, we consider three
dimensional regular grid problems in Section 4.4.

Matrix Ordering Symb Number of processors
Time 1| 2x2| 2x4 | 4x4 | 4x8 | 8x8 | 8x16 | 8x32 | 16x32
BBMAT AMD 4.6 — | 64.7(36.6(21.3]12.8| 92| T7.2| 6.7 6.8
ND 6.3 — 1 132.9(72.5(39.8|23.5|15.6| 11.1| 9.9 9.6
ECL32 AMD 6.0 — 1 106.8 | 56.7 |31.2|18.3|12.3| 82| 6.8 6.5
ND 3.9 — | 485|266 |15.7| 96| 7.6| 5.6| 5.7 6.1
INV-EXTRUSION-1 | ND 24 1682 213|128 82| 56| 49| 37| 3.5 3.8
MIXING-TANK ND 2.5 ||88.1] 25.2|14.2| 86| 56| 46| 3.1 | 3.1 3.1
TWOTONE MC64+AMD | 3.2 — 1 103.8|57.832.8|19.5(13.3| 9.7| 7.6 9.0
WANG4 AMD 1.3 ||57.0| 17.8|/106| 6.8| 48| 43| 34| 3.1 3.7

Table 5: Factorization time (in seconds) on the Cray T3E. “—” indicates not enough

memory. The best time is indicated in bold face. Note: MC64 is not always needed.

We also observe that the algorithm does not always fully benefit from the reduction
in the number of operations potentially available from the use of a nested dissection
ordering (see BBMAT). There are several reasons and the improvement remains as future
work. Firstly, the algorithm does not fully exploit the parallelism of the elimination dags.
Secondly, the pipelining mechanism does not fully benefit from the sparsity of the factors
(a blocked column factorization should be implemented). This also explains why it does
not fully benefit from the better balanced tree generated by a nested dissection ordering.

To better understand the performance, we show in Table 6 the average communication
volume. The speed of communication can depend very much on the number and the
size of the messages and we also indicate the maximum size of the messages and the
average number of messages per processor. With an increasing number of processors, the
communication volume and the size of the messages usually decrease, whereas the total
number of messages usually increase. This implies that on larger numbers of processors,
it is important to be able to overlap the computation with communication of many small
messages. Our use of nonblocking sends and receives in the loosely synchronous pipelining
algorithm facilitates this.

4.2 Triangular solution

In this section, we focus on the time spent to obtain the solution. We apply enough steps
of iterative refinement to ensure that the componentwise relative backward error (Berr) is
less than /¢ &~ 1.48 x 1078. Each step of iterative refinement involves not only a forward
and a backward solve but also a matrix-vector product with the original matrix.

In Table 7, we report both the time to perform one solution step (using the factorized
matrix to solve Az = b) and, when necessary (Berr greater than 1/¢), the time to improve
the solution using iterative refinement (lines with “4+IR”). Except on EcL32 and MIXING-
TANK which did not require any iterative refinement, one step of iterative refinement was
required and was always enough to reduce the backward error to /z.

24

Matrix Ordering Number of processors
2x2 4x4 8x8

Max Vol. #Mess | Max Vol. #Mess| Max Vol. #Mess
BBMAT AMD 0.18 81 23412| 0.09 61 34176| 0.05 35 35035
ND 0.17 82 30698| 0.09 62 45598| 0.04 36 50925
ECL32 AMD 0.32 90 27437| 0.16 67 37486| 0.09 39 34981
ND 0.25 56 28966 | 0.13 42 41172 0.07 24 41271
INV-EXTRUSION-1 | ND 0.15 31 17774| 0.08 23 25824 0.05 13 27123
MIXING-TANK ND 0.19 40 13667 | 0.11 30 19635| 0.05 18 19064
TWOTONE MC64+AMD | 0.26 27 120006| 0.15 20 153995| 0.05 11 104906
WANG4 AMD 0.19 24 27728 0.10 18 34495| 0.05 10 27561
Table 6: Maximum size of the messages (Max in Mbytes), average volume of

communication (Vol. in Mbytes) and number of messages per processor (#Mess).

On a small number of processors (less than 8), the solve phase is almost two orders of
magnitude less costly than the factorization. On a large number of processors, because the
solve phase is relatively less scalable than the factorization phases, the difference drops
to one order of magnitude. On applications for which a large number of solves might
be required per factorization this could become critical for the performance and will be
addressed in the future. The cost of iterative refinement can significantly increase the cost
of obtaining a solution. The use of MC64 to preprocess the matrix can reduce the number
of steps of iterative refinement and even avoid the need to use it in some cases. Although
both the solve times and iterative refinement times decrease very slowly with an increasing
number of processors, they still keep decreasing up to 512 processors.

Matrix Ordering IR Number of processors
1| 2x2 | 2x4 | 4x4 | 4x8 | 8x8 | 8x16 | 8x32 | 16x32
BBMAT AMD no — 1 1.33|1.160.75(0.71]0.53| 0.51| 0.50| 0.44
+IR| —|1.80|1.48(1.01]/0.93[0.72| 0.68| 0.62| 0.57
ND no —11.99|1.60|1.070.93|0.76| 0.65| 0.59| 0.44
+IR| —|243|1.95(1.34|1.16[0.96| 0.86| 0.78| 0.62
ECL32 AMD no — | 1.72|11.60|1.09|1.13]0.75| 0.79| 0.66| 0.56
ND no — | 1.52|1.57|1.02|0.72|0.68 | 0.68| 0.56| 0.49
INV-EXTRUSION-1 | ND no |1.48]0.80]|0.77]0.53|0.50]0.38| 0.29| 0.26| 0.21
+IR | 2.75|1.24|1.070.78|0.71 [0.57| 0.44 | 0.42| 0.35
MIXING-TANK ND no |1.47(0.73]|0.68]0.45|0.43]0.31| 0.23] 0.21| 0.17
TWOTONE MC64+AMD | no —13.49|3.88(2.69|2.61|1.58| 1.23| 1.03| 0.86
+IR| — |6.66|5.65|7.44(3.42(2.73| 1.59| 1.41| 1.17
WANG4 AMD no |1.2010.90|1.01]0.68|0.68|0.50| 0.46| 0.35| 0.31

Table 7: Solve time (in seconds) on the Cray T3E. “+IR” shows the time spent improving
the initial solution using iterative refinement.
best time is indicated in bold face.

25

[43 ”

indicates not enough memory. The

4.3 Memory usage

In Table 8, we report the amount of memory actually used during the LU factorization
phase. This includes both reals and integers for the matrices, the working arrays, and the
communication buffers. We notice a significant reduction in the required memory per
processor when increasing the number of processors, showing good memory scalability.
We also observe that there is little difference between the average and maximum memory
usage, showing that the algorithm is well balanced.

Note that memory scalability can be critical on globally addressable platforms where
parallelism increases the total memory used. On purely distributed machines such as the
T3E, the main factor remains the memory used per processor which should allow large
problems to be solved when enough processors are available.

Matrix Ordering Number of processors
2x2 4x4 8x8

Avg. Max. | Avg. Max. | Avg. Max.
BBMAT AMD 113 114 50 51 33 34
ND 124 128 60 61 43 44
ECL32 AMD 113 115 42 44 24 25
ND 79 81 33 34 21 22
INV-EXTRUSION-1 | ND 47 48 22 22 15 16
MIXING-TANK ND 55 56 23 23 14 15
TWOTONE MC64+AMD 66 80 35 41 24 24
WANG4 AMD 33 34 14 14 8 9

Table 8: Memory used during factorization (in Megabytes, per processor).

4.4 Scalability

To better understand the scalability of our solvers, we report in this section the results
obtained for the 11-point discretization of the Laplacian operator on three-dimensional
(NX, NY, NZ) grid problems.

We consider a set of 3D cubic (NX=NY=NZ) and rectangular (NX, NX /4, NX/8) grids
on which a nested dissection ordering is used. When increasing the number of processors,
we tried to maintain a constant number of operations per processor while keeping as much
as possible the same shape of grids. The size of the grids used, the number of operations,
the timings, the Megaflop rates, and the parallel efficiency are reported in Table 9.

If the algorithm were perfectly scalable, the parallel runtime would be constant.
Because of various overheads, this is not usually true. But from the timing results we
see that the time increase is not very much even up to 128 processors. The results
on parallel efficiency show that the algorithm is more scalable for cubic grids than for
rectangular grids, since the cubic grids represent the best possible regular and balanced
problems. Here, the efficiency on p processors is computed as the ratio of the Megaflop rate
per processor on p processors over its Megaflop rate on 1 processor. For cubic grids, the
algorithm maintains greater than 95% efficiency up to 16 processors, and greater than 75%

efficiency even up to 128 processors. But for rectangular grids, the respective efficiency
figures are 80% and 50%.

26

Cubic grids Rectangular grids

Processors || Grid size | flops time Mflops Eff. Grid size | flops time Mflops Eff.
(10%) (%) || NX NY NZ | (10%) (%)

1 29 7.2 56.3 127.2 100 96 24 12 4.5 33.3 133.4 100
2 33 15.9 61.8 257.1 101 || 110 28 13 9.6 37.6 250.9 94
4 36 26.8 52.0 514.9 101 | 120 30 15| 17.9 36.3 491.5 92
8 41 60.0 60.2 996.5 98 || 136 34 17| 36.6 36.3 923.0 86
16 46 117.9 59.8 1971.5 97 || 152 38 19| T2.7 42.2 1719.6 81
32 51 224.9 64.7 3476.7 85| 168 42 21 |135.3 43.8 3084.6 72
64 57 444.7 67.3 6612.6 81 || 184 46 23 |236.0 46.6 5059.3 59
128 64 886.4 T71.1 12462.9 77| 208 52 26 |485.6 56.1 8652.2 51

Table 9: Factorization time (in seconds), the Megaflop rate, and parallel efficiency (Eff.)
on Cray T3E.

| BBMAT | ECL32 [INV-EXTRUSION-1 [MIXING-TANK | TWOTONE | WANG4
Load balance measure
Biaet .78 .83 .87 .92 A7 .84
B .86 .89 .93 .94 .52 .78
Fraction of the time spent in communication and synchronization
fact .64 .67 .64 .55 .76 .78
sol .85 .83 .86 .85 .84 .84

Table 10: Load balance and communication overhead on 64 processors Cray T3E.

4.5 Load balance and communication/synchronization overhead

The efficiency of a parallel algorithm depends mainly on how the workload is distributed
and how much time is spent in communication. One way to measure load balance is as
follows. Let f; denote the number of floating-point operations performed on process ¢.

Zg‘(f")

We compute the load balance factor B = & (1)) In other words, B is the average
workload divided by the maximum workload. It is clear that 0 < B < 1, and higher B
indicates better load balance. The parallel runtime is at least the runtime of the slowest
process, whose workload is highest. In Table 10 we present the load balance factor B for
both factorization and solve phases. As can be seen from the table, the distribution of
workload is good for most matrices, except for TwoToNE.

In the same table, we also show the fraction of the runtime spent in communication
or synchronization, i.e., the parallel overhead. This includes the time for MPI calls and
the idle time waiting for a message to be sent or to arrive. The amount of overhead
is quite excessive; on 64 processors, more than 50% of the total factorization time is
in overhead. For triangular solve, which has relatively smaller amount of computation,
communication and synchronization take more than 85% of the total time. We expect
the percentage of overhead will be even higher with more processors, because the total
amount of computation is more or less constant.

Although TwoToNE is a relatively large matrix, its factorization does not scale as well as
for the other large matrices. One reason is that the present submatrix to process mapping
results in very poor load distribution. Another reason is due to poor task scheduling that

27

results in large overhead. When we look further into the overhead, we find that most
overhead comes from the idle processors either waiting to receive a column block of L sent
from a process column on the left (step (1) in Figure 13), or waiting to receive a row block
of U sent from a process row from above (step (2) in Figure 13). Clearly, the critical path
of the algorithm is in step (1), which must preserve certain precedence relation between
loop iteration steps. Our pipelining method shortens the critical path to some extent, but
we expect the length of the critical path can be further reduced by a more sophisticated
DAG (task graph) scheduling. For the solve, we find that most overhead comes from the
idle processors waiting to receive a message (line 10 in Figure 14). So on each process
there is not much work to do but a large amount of idle time. These synchronization
overheads also occur in the other matrices, but the problems are not so pronounced as
TWOTONE.

Another problem with TwoToNE is that supernode size (or block size) is very small, only
2 columns on average. This results in poor uniprocessor performance and low Megaflop
rate.

5 Related work

Duff and Koster [21] studied the benefits of using MC64 to permute large entries onto the
diagonal in both direct and iterative solvers, and in preconditioning. For the multifrontal
direct solver, they showed that using the large-diagonal permutation, the number of
delayed pivots were vastly reduced in factorization. In the iterative methods such as
GMRES, BiCGSTAB and QMR using ILU preconditioners, they showed that convergence
rate is substantially improved in many cases when the large-diagonal permutation is
employed. Benzi, Haws and Tuma conducted more extensive experiments on the effect
of MC64 on preconditioning strategies [11]. Chen [13] also considered using MC64 to avoid
pivoting as much as possible in the ILU methods.

Amestoy et al. developed a distributed-memory multifrontal solver, called MUMPS [3].
It is based on the symmetric pattern of AT + A, and performs partial threshold pivoting.
It uses partial static mapping based on the elimination tree of AT + A (1D for the
frontal matrices and 2D for the root). The distributed scheduling algorithm for LU
factorization is dynamic and asynchronous. We performed a comprehensive comparison
between SuperLU DIST and MUMPS [7]. The general observations are: SuperLUDIST may need
one more step of iterative refinement than MUMPS to achieve the same level of accuracy;
SuperLU DIST preserves the sparsity and the asymmetry of the factors better, and usually
requires less memory; MUMPS is faster on smaller number of processors (e.g., less than 64),
but SuperLUDIST is faster on larger number of processors and shows better scalability.

A few other distributed-memory unsymmetric sparse direct solvers have been
developed. Comparing SuperLUDIST with those solvers remains future work. SPOOLES
is a supernodal, left-up-looking solver [9]. The fill reducing ordering is a hybrid approach
called multisection [10], which is applied to the structure of AT 4 A. It performs threshold
rook pivoting with both row and column interchanges. The task dependency graph is the
elimination tree of AT 4+ A. S+ is a supernodal, right-looking solver [25]. The algorithm
is based on the following static information. The sparsity pattern of the Householder Q) R
factorization of A contains the union of all sparsity patterns of L and U for all possible row

28

interchanges [26, 27]. This has been used to do both memory allocation and computation
conservatively (on possibly zero entries), but the structural upper bound can be arbitrarily
loose, particularly for matrices arising from circuit and device simulations.

6 Concluding remarks and future work

In this paper, we presented the details of the algorithms used in SuperLUDIST solver.
We demonstrated numerical stability of the GESP algorithm, and showed that a scalable
implementation is feasible for this algorithm because of the static data structure and
scheduling optimizations. Another added benefit of GESP is that it opens new possibilities
to study better fill reducing ordering algorithms for unsymmetric LU factorization. Our
goal is to have sparse LU factorization as scalable as sparse Cholesky. This is inherently a
harder problem than sparse Cholesky, because two different factors I and U are involved.
Our future work remains in several areas.

e Parallel preordering and symbolic analysis.
Steps (1) and (3) of the GESP algorithm (see Figure 1) are still sequential. Although
they usually do not take much time, we need to parallelize this step in order to
improve memory scalability, if not timewise. The parallel algorithm may be different
from the sequential algorithm used in MC64, because MC64 is inherently serial.

e Improve parallel efficiency of factorization and triangular solves

Although the solver exhibits good scalability now, the parallel overhead is still large
for large numbers of processors (see Section 4.5). Several improvements could be
made. For better load balance, we can use more general functions than 2D block
cyclic to map submatrices to processors. To reduce the synchronization overhead,
we can relax some task scheduling constraints imposed by the current pipelining
algorithm. For example, the blocks in a block column can be factorized by the
column processes independently if sparsity permits doing so. A more sophisticated
scheduling algorithm can be implemented to exploit the parallelism from the
elimination DAGs, which could simultaneously schedule independent tasks from
multiple steps of the factorization (see Figure 13). We expect these improvements
will have a large impact for very sparse and/or very unsymmetric matrices, such as
TwoTONE, and for the orderings that give wide and bushy elimination DAGs, such
as nested dissection.

To speed up the triangular solve, we may apply some graph coloring heuristic to
reduce the number of parallel steps [39]. There are also alternative algorithms
other than substitutions, such as those based on partitioned inversion [1] or
selective inversion [46]. However, these algorithms usually require preprocessing or
different matrix distributions than the one used in our factorization. Whether the
preprocessing and redistribution will offset the benefit offered by these algorithms
will probably depend on the number of right-hand sides.

e Improve numerical robustness.
More techniques can be used; these include performing iterative refinement with
extra precise residuals [41] and using dynamic precision during the factorization, see

29

Section 2.2. We can also use the inaccurate LU factorization as a preconditioner to
an iterative solver, such as GMRES or QMR.

Acknowledgments

We would like to thank Patrick Amestoy, lain Duff, Jean-Yves I’Excellent and Rich Vuduc
for very helpful discussions on the subject, which greatly improves the presentation of the
manuscript. We thank Patrick Amestoy for providing us the 3D grid generation code for

scalability study.

References

(1]

[10]

[11]

[12]

[13]

[14]

Fernando L. Alvarado, Alex Pothen, and Robert Schreiber. Highly parallel sparse triangular solution.
In Alan George, John R. Gilbert, and Joseph W.H. Liu, editors, Graph theory and sparse matriz
computation, pages 159-190. Springer-Verlag, New York, 1993.

P. R. Amestoy, T. A. Davis, and lain S. Duff. An approximate minimum degree ordering algorithm.
SIAM J. Matriz Analysis and Applications, 17(4):886-905, 1996. Also University of Florida TR-94-
039.

P. R. Amestoy, 1. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous multifrontal solver
using distributed dynamic scheduling. STAM Journal on Matriz Analysis and Applications, 23(1):15—
41, 2001.

P. R. Amestoy, X. S. Li, and E. G. Ng. Diagonal markowitz scheme with local symmetrization.
Technical report, Lawrence Berkeley National Laboratory, in preparation.

P. R. Amestoy and C. Puglisi. An unsymmetrized multifrontal LU factorization. Tech. Rep.
RT/APO/00/3, ENSEETHT-IRIT, 2000. Also Lawrence Berkeley National Laboratory report LBNL-
46474.

Patrick R. Amestoy and lain S. Duff. Memory management issues in sparse multifrontal methods on
multiprocessors. The International Journal of Supercomputer Applications, 7(1):64-82, Spring 1993.

Patrick R. Amestoy, lain S. Duff, Jean-Yves L’Excellent, and Xiaoye S. [.i. Analysis and comparison
of two general sparse solvers for distributed memory computers. ACM Transactions on Mathematical
Software, 27(4):388-421, December 2001.

M. Arioli, J. W. Demmel, and 1. S. Duff. Solving sparse linear systems with sparse backward error.
SIAM J. Matriz Anal. Appl., 10(2):165-190, April 1989.

C. Ashcraft and R. G. Grimes. SPOOLES: An object oriented sparse matrix library. In Proceedings
of the Ninth SIAM Conference on Parallel Processing for Scientific Computing, San Antonio, Texas,
March 22-24, 1999. http://www.netlib.org/linalg/spooles.

C. Ashcraft and J. Liu. Robust ordering of sparse matrices using multisection. Technical Report
ISSTECH-96-002, Boeing Information and Support Services, 1996. Also Technical Report CS 96-01,
Department of Computer Science, York University, Canada.

M. Benzi, J. C. Haws, and M. Tuma. Preconditioning highly indefinite and nonsymmetric matrices.
SIAM J. Scientific Computing, 22:1333-1353, 2000.

L. S. Blackford, J. Choi, E. D’Azevedo, J. Demmel, 1. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. Scall APACK Users’ Guide. STAM, Philadelphia,
1997. 325 pages.

Tzu-Yi Chen. Preconditioning sparse matrices for computing eigenvalues and computing linear systems
of equations. PhD thesis, Computer Science Division, UC Berkeley, December 2001.

T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsymmetric sparse
matrices. ACM Trans. Mathematical Software, 25(1):1-19, 1999.

30

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]
[23]
[26]
[27]
[25]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]

37]

Timothy A. Davis. University of Florida sparse matrix collection.
http://www.cise.ufl.edu/~davis/sparse.

Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond Ng. A column approximate
minimum degree ordering algorithm. Technical Report TR-00-005, Computer and Information
Sciences Department, University of Florida, 2000. submitted to ACM Trans. Math. Software.

James W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.

James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu. A
supernodal approach to sparse partial pivoting. SIAM J. Matriz Analysis and Applications, 20(3):720—
755, 1999.

James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asynchronous parallel supernodal algorithm
for sparse gaussian elimination. STAM J. Matriz Analysis and Applications, 20(4):915-952, 1999.

Tain S. Duff and Jacko Koster. The design and use of algorithms for permuting large entries to the
diagonal of sparse matrices. Technical Report RAL-TR-97-059, Rutherford Appleton Laboratory,
1997.

Tain S. Duff and Jacko Koster. The design and use of algorithms for permuting large entries to the
diagonal of sparse matrices. SIAM J. Matriz Analysis and Applications, 20(4):889-901, 1999.

1.S. Duff, [.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. Oxford University Press,
London, 1986.

1.S. Duff, R.G. Grimes, and J.G. Lewis. Users’ guide for the Harwell-Boeing sparse matrix collection
(release 1). Technical Report RAL-92-086, Rutherford Appleton Laboratory, December 1992.

George E. Forsythe and Cleve B. Moler. Computer Solution of Linear Algebraic Systems. Prentics-
Hall, Englewood Cliffs, NJ, USA, 1967.

C. Fu, X. Jiao, and T. Yang. Efficient sparse LU factorization with partial pivoting on distributed
memory architectures. ITEEE Trans. Parallel and Distributed Systems, 9(2):109-125, 1998.

Alan George, Joseph Liu, and Esmond Ng. A data structure for sparse QR and LU factorizations.
SIAM J. Sci. Stat. Comput., 9:100-121, 1988.

Alan George and Esmond Ng. Symbolic factorization for sparse Gaussian elimination with partial
pivoting. SIAM J. Sci. Stat. Comput., 8(6):877-898, 1987.

J. George. Nested dissection of a regular finite element mesh. SIAM J. Numerical Analysis, 10:345—
363, 1973.

John R. Gilbert. Predicting structures in sparse matrix computations. SIAM J. Matriz Analysis and
Applications, 15(1):62-79, January 1994.

John R. Gilbert and Joseph W.H. Liu. Elimination structures for unsymmetric sparse LU factors.
SIAM J. Matriz Anal. Appl., 14(2):334-352, April 1993.

G. Golub and C. Van Loan. Matriz Computations. Johns Hopkins University Press, Baltimore, MD,
Third edition, 1996.

A. Gupta. WSMP: Watson Sparse Matrix Package. Technical report, IBM research division, T.J.
Watson Research Center, Yorktown Heights, 2000. http://www.cs.umn.edu/~agupta/wsmp.html.

A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for sparse matrix
factorization. IFEE Trans. Parallel and Distributed Systems, 8:502—-520, 1997.

A. Gupta and V. Kumar. Optimally scalable parallel sparse cholesky factorization. In The 7th SIAM
Conference on Parallel Processing for Scientific Computing, pages 442—-447, 1995.

M. T. Heath and P. Raghavan. Performance of a fully parallel sparse solver. [Int. Journal of
Supercomputer Applications, 11(1):49-64, 1997.

B. Hendrickson and R. Leland. The CHACO User’s Guide. Version 1.0. Technical Report SAND93-
2339 o UC-405, Sandia National Laboratories, Albuquerque, 1993.

P. Henon, P. Ramet, and J. Roman. A mapping and scheduling algorithm for parallel sparse fan-in
numerical factorization. In EuroPar’99 Parallel Processing, Lecture Notes in Computer Science, No.
1685, pages 1059-1067, Berlin, Heidelberg, New York, 1999. Springer-Verlag.

31

[38]
39]

[40]

[41]

[42]

[43]
[44]
[43]
[46]
[47]
[45]

[49]

HSL. A collection of Fortran codes for large scale scientific computation, 2000.
http://www.cse.clrc.ac.uk/Activity /HSL.

Mark T. Jones and Paul E. Plassmann. Scalable iterative solution of sparse linear systems. Parallel
Computing, (20):753-773, 1994.
G. Karypis and V. Kumar. MELS - A Software Package for Partitioning Unstructured Graphs,

Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices — Version 4.0.
University of Minnesota, September 1998.

X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang,
A. Kapur, M. C. Martin, B. J. Thompson, T. Tung, and D. J. Yoo. Design, Implementation and
Testing of Extended and Mixed Precision BLAS. ACM Trans. Mathematical Software, 2002. to
appear. Also Technical Report LBNL-45991, Lawrence Berkeley National Laboratory.

Xiaoye S. Li and James W. Demmel. Making sparse Gaussian elimination scalable by static pivoting.
In Proceedings of SC98: High Performance Networking and Computing Conference, Orlando, Florida,
November 7-13 1998.

Joseph W.H. Liu. Modification of the minimum degree algorithm by multiple elimination. ACM
Trans. Math. Software, 11:141-153, 1985.

Joseph W.H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matriz Anal. Appl.,
11(1):134-172, January 1990.

H. M. Markowitz. The elimination form of the inverse and its application to linear programming.
Management Sci., 3:255-269, 1957.

Padma Raghavan. Efficient parallel sparse triangular solution with selective inversion. Technical
Report CS-95-314, Department of Computer Science, University of Tennessee, 1995.

Edward Rothberg. Performance of panel and block approaches to sparse Cholesky factorization on the
iPSC/860 and Paragon multicomputers. SIAM J. Scientific Computing, 17(3):699-713, May 1996.

O. Schenk, K. Gartner, and W. Fichtner. Efficient sparse LU factorization with left—right looking
strategy on shared memory multiprocessors. BIT, 40(1):158-176, 2000.

Message Passing Interface (MPI) forum. http://www.mpi-forum.org/.

32

