UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
UNIFIT: A Unified Framework For Instruction Tuning To Improve Instruction Following
Ability For Large Language Models

Permalink

bttgs:géescholarshiQ.orggucéitem48406229g

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Huang, Qiang
Huang, Feng
Tao, DeHao

Publication Date
2024

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8406229x
https://escholarship.org/uc/item/8406229x#author
https://escholarship.org
http://www.cdlib.org/

UNIFIT: A Unified Framework For Instruction Tuning To Improve Instruction
Following Ability For Large Language Models

Qiang Huang#,Feng Huang&#,Dehao Tao<> , Bingkun Wangé,Yongfeng Huangit /!
& School of Computer Science and Technology,Xinjiang University ,China
1 Department of Electronic Engineering, Tsinghua University,China
& School of Information Engineering, Zhengzhou College of Finance and Economics,China
<> School of Humanities, Tsinghua University,China
+ Zhongguancun Lab,China

Abstract

Extensive instruction tuning of large language models(LLMs)
has proven to be a powerful technique, extending the
outstanding performance of general LLMs to new tasks.
Consequently, the integration of state-of-the-art(SOTA)
general open-source models with specific domains leverages
instruction tuning to unlock the emerging capabilities of large
language models(LLMs) in those domains. Current practices
in instruction tuning often rely on expanding the size of the
dataset without a clear strategy to ensure data quality. This can
inadvertently introduce noise and degrade model performance.
Furthermore, there is currently no unified approach for the
quantity, quality, and diversity of instruction tuning data, as
well as the methods for instruction tuning. As a result,
this severely hampers the practicality and universality of
instruction tuning.

Addressing these issues, we propose a UNIfied Framework
for Instruction Tuning(UNIFIT), namely Concept Tree
generation for instruction tuning data, instruction following
difficulty selecting data for high-quality instruction tuning, and
the incorporation of random noise embeddings(NE) to enhance
model performance during tuning. Through experiments
involving multiple models, domains, and orders of magnitude,
our proposed instruction tuning framework not only enhances
the diversity of instruction tuning data but also achieves
a remarkable 60% reduction in training time consumption,
with a mere 6% of all instruction tuning data, surpassing
the performance of using all instruction tuning data by
11%. This universally applicable instruction tuning framework
signifies a substantial advancement in the generality of large
language model instruction tuning, marking a revolutionary
leap forward and promising efficiency gains while being
resource-conscious.

Keywords: Large Language Models, Instruction Tuning,
High-Quality Instruction Data

Introduction

The large language models(LLMs) have fundamentally
changed the landscape of artificial intelligence
development. Prominent models such as ChatCPT, GPT-4,
LLaMa2(Touvron, Martin, et al., 2023), Baichuan2(Yang,
Xiao, et al.,, 2023), Qwen(Bai, Bai, et al., 2023), and
Mistral(Jiang et al., 2023) showcase advanced text
understanding and generation capabilities through
the utilization of extensive datasets and sophisticated
training methodologies. Applications for these models
across different domains, including interactive systems,
automated content generation, and support for scientific
enquiry(Shanahan, McDonell, & Reynolds, 2023).

' denotes corresponding author

To optimize the performance of LLMs in specific tasks or
domains and make their output adapt to particular contexts
or instructions is imperative. The technique employed for
achieving this goal is known as instruction tuning. Its
operational approach involves providing explicit training
instructions to LLMs to generate outputs that are more
consistent with the expected results. Carefully crafted
instructions or prompts offer crucial background information,
enhancing the capability of model to generate task-specific
outputs. This method strengthens the generalization of
the model to new tasks and reinforces its alignment with
user-defined objectives. Instruction tuning is an indispensable
step that not only activates the valuable knowledge acquired
by LLMs during training but also enables them to interact
with humans in a natural conversational manner. Presently,
we are faced with the dilemma that more and more tasks
require the application of the general state-of-the-art(SOTA)
LLMs through instruction tuning to specific domains, such
as medicine, law, and food, which are closely related to
human life. For workers in these domains, who have
little or no background in computer technology, the task
of instruction tuning is almost impossible, combining the
instruction data generation involved in the process, the
selection of high-quality instruction data, and effective
instruction tuning methods. This dilemma severely hampers
the application of LLMs in vertical domains. To solve
this problem, there is an urgent requirement for a unified
framework for effective instruction tuning to assist those
domain practitioners to be able to complete the task of
vertical domain application in a few simple steps. This
will greatly improve the practicality and effectiveness of
instruction tuning and reduce the difficulties of applying
LLMs to vertical domains. It further promises that the SOTA
general LLMs can be effectively applied in various domains
to enhance work efficiency, promote scientific research, and
improve the quality of life.

Traditionally, instruction tuning has predominantly relied
on accumulating extensive datasets. In the pre-era of LLMs,
the requisite data for instruction tuning primarily depended
on manual composition.PROMPTSOURCE(Bach, Sanh, et
al., 2022) and SUPERNATURALINSTR
-UCTIONS(Wang, Mishra, et al., 2022) are two noteworthy
datasets that use extensive manual annotation to collect
instructions to construct the TO and TK-INSTRUCT, which

2121
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

is however expensive due to the significant amount of manual
labor consumed. In the era of LLMs, a notable endeavor is the
Self-Instruct(Wang et al., 2023) framework, which leverages
minimal human annotation to generate substantial data for
instruct tuning. However, the Self-Instruct(Wang et al., 2023)
framework often grapples with limitations in terms of limited
data diversity, hindering its ability to cover a truly diverse
array of vertical application tasks. This struggle becomes
particularly evident in practical application scenarios. From
LIMA(Zhou et al., 2023), a pioneering insight emphasizes
the art of instruction tuning: it is the quality of the data
that determines the performance of a model, not the mass of
data. Findings of LIMA(Zhou et al., 2023) emphasize that
even a limited amount of hand-managed, high-quality data
can improve a model’s instructional adherence ability. This
site presents both an opportunity and a challenge. While it
highlights the validity of high-quality data, the question of
how to automatically identify high-quality data from large
available datasets remains under-researched, especially when
combined with effective instructional tuning methods during
tuning.

To bridge the above gaps, we propose a three-stage
instruction tuning framework(See Fig2). First, we use a
Concept Tree(See Figl) to automatically generate instruction
tuning data. Specifically, we take the root node in the tree
structure as the domain to which the instruction tuning will
be applied, and the nodes in the second level of the tree
as the scope involved in the current domain; the root node
and the nodes in the second level of the tree are the ones
that require human intervention to determine. Subsequent
nodes will use the hints to generate sub-concepts iteratively
until the concept hierarchy satisfies the domain and scope,
forming a complete concept tree. The leaf nodes of the
concept tree are used to generate specific instruction data in
conjunction with the cueing macromodel. Second, to realize
the quest for automatic identification of high-quality data, we
designed to train a scoring model by randomly extracting K
instructions from each leaf node in the concept tree, and the
data used to train the scoring model typically requires only
5% of all data. Using the scoring model in combination with
the instruction-following difficulty scores to automatically
filter out some high-quality data from all the data, we call it
Pithy data, which is typically 5%-10%. Finally, we added
random noise to the embedding vectors during instruction
training and obtained significant improvements by including
this simple application during tuning.

We demonstrate on extensive experiments across multiple
models, domains, and orders of magnitude that our proposed
instruction tuning framework not only expands the diversity
of instruction tuning data but also achieves a win rate of
only 6% with all instruction tuning data over 11% with
all instruction tuning data at a savings of 60% in training
time consumption. UNIFIT marks the versatility of instruction
tuning for LLMs that has been greatly improved, gaining
efficiency and resource-awareness advances and ushering in

a transformative leap in instruction tuning.

Through extensive experiments across various models,
domains, and scales, we have validated the effectiveness of
our proposed instruction tuning framework. UNIFIT not only
enhances the diversity of instruction tuning data but also, with
a mere 6% utilization of all instruction tuning data, achieves
a win rate exceeding that of using the entire dataset by
11%, while concurrently reducing training time consumption
by 60%. UNIFIT marks a significant advancement in the
universality of instruction tuning for LLMs, showcasing
progress in efficiency and resource utilization, and marking
a transformative leap in the field of instruction tuning.

The main contributions of this paper:

1. We employ a self-guided concept tree to autonomously
generate instructional data, resulting in a more diverse dataset
compared to the baseline Self-Instruct approach.

2. We introduce the UNIFIT, establishing a comprehensive
pipeline for the entire instruction fine-tuning process. This
significantly enhances the practicality and generality of
instruction tuning, encompassing three main components:
data generation for instruction tuning, selection of
instructional tuning data, and effective methods for
instruction tuning.

3. UNIFIT has been empirically validated through
extensive instruction tuning experiments, demonstrating its
effectiveness. Even when utilizing only 6% of all instruction
tuning data while conserving 60% of resources, it achieved a
win rate surpassing 11% compared to using the entire dataset.

Methodology

In pursuit of achieving efficient reuse and robust
generalization capabilities for instruction tuning, UNIFIT
aims to address three key challenges: ensuring the diversity
of instruction data, effectively automating the selection of
high-quality instruction data, and enhancing the effectiveness
of instruction tuning.

Instruction Tuning Data Generation

In our approach (See Figl), we designate the first-layer nodes
in the tree structure, specifically the root node, as the domain
to which the instruction fine-tuning model will be applied.
The value of the root node, representing the domain to which
the instruction fine-tuning will be applied, is determined
by downstream tasks. Examples of such domains include
cybersecurity and public safety.

Subsequently, the second-layer nodes of the tree are
used to define the scope of the current domain. Taking
the cybersecurity domain as an example, the root node is
set as “cybersecurity,” and the second layer encompasses
the five major infrastructures within the cybersecurity
domain—namely, Email, Routing, CDN, DNS, and PKI.
Therefore, the determination of the root node and the
second-layer nodes requires manual input based on the
specific application domain. Subsequent nodes are generated
iteratively by prompting the LLM until the concept hierarchy

2122

Domain node

Scope node

Concept iteration

v

Leaf node de\Qd\Q,‘> {L} with answers. ‘@

Output: !
Question 1: How can I protect my online K
banking transactions from key exchange B

A example of instruction tuning data :

“instruction”: “How can I protect my online banking transactions

from key exchange vulnerabilities? ”

“illpllt” s

“output”: To protect your online banking transactions from key

exchange vulnerabilities, you can follow these measures.....

Prompt: Please generate 22 subconcepts
~7 that target the concepts from {C}.

Output: Relevant sub-concepts have
been generated as following :
{1.concept}, {2.concept}, ..., {n.concept}

Prompt: Please generate q questions for

< --- vulnerabilities? <
Answer 1: To protect your online
banking.....
Question n:................ Answer n

Figure 1: Framework of Conceptual Tree.Domain nodes represent the application domains for generating instruction data.
Scope nodes indicate the scopes involved in this domain. Concept iteration involves generating child concepts from a scope
node as the parent node. The newly generated child concept is then used as the parent concept to generate new child concepts,
iterating continuously until the application domain requirements are met. Here, n represents the number of child concepts to
generate,C denotes the current parent concept. ¢ is the number of instances generated for the current leaf node, and L represents
the current leaf node. This will always stay closely aligned to the application domain, maintaining higher relevance with a

deeper depth of instruction data.

satisfies the requirements of the chosen domain and scope,
resulting in the formation of a comprehensive concept tree.
A prompt for generating sub-concepts is Please generate
n sub-concepts for C, where n represents the number of
sub-concepts, and C is the parent concept. Starting from
the second layer, the generation of sub-concepts begins using
the second-layer nodes as parent concepts. Subsequently, the
newly generated sub-concepts are used as parent concepts in
an iterative process to generate sub-concepts.

Following this, the leaf nodes of the concept tree, in
conjunction with prompts, are utilized by the LLM to
generate specific instances of instruction data. A prompt
for generating data instances is Please generate q questions
for L and provide answers, where ¢ is the number of
instances to be generated, and L represents the leaf node
concept. Under the setting of the concept tree, it is even
possible to utilize prompts to generate multiple multi-turn
question-answer instances for each leaf node. As widely
acknowledged, multi-turn data plays an extremely important
role in enhancing the effectiveness of instruction fine-tuning.
A prompt for generating multi-turn question-answer data is
Based on the question Q, generate a new question that is
highly likely to be asked next, and provide the answer..

High Quality Instruction Data Selection

The process of filtering high-quality instruction data mainly
consists of two steps(See Fig2). In the first step, we initially
randomly extract K instances of instructions from each leaf

node concept, forming the training data 7 for training the
scoring model. Our numerous experiments indicate that
T typically constitutes 5%-10% of all instruction instances,
which is sufficient to train a scoring model capable of
effectively completing the task. The value of K is determined
based on the size of T. The goal of this stage is to
force the model to first experience a subset of the target
dataset, enabling the initial model to acquire basic instruction
following ability.

In the second step inspired by From Quantity to Quality(Li
et al., 2023), the scoring model trained in the first step is
utilized to automatically filter high-quality instruction data
based on the score of instruction following difficulty(IFD).
The notion of instruction following difficulty refers to the
disparity between the model’s anticipated response and its
autonomous generation ability. This metric evaluates the
ability of model to generate an appropriate response based
on the provided instruction. It measures the alignment of
the model’s output with the instruction and the corresponding
correct answer. In the entire process of selecting Pithy
data, our approach exhibits a fundamental distinction from
the method proposed by From Quantity to Quality(Li et al.,
2023). The instruction instance sets randomly sampled from
each leaf node concept in our method can comprehensively
cover the entire spectrum of instruction data categories,
ensuring the effectiveness of the scoring model with minimal
time consumption. In contrast, their approach necessitates

2123

1.Instruction data generation

Generate instruction
data with leaf nodes

’:> Instruction
Data

Concepts tree

2.Get high score instruction data

Instruction
Data

@Sampel with leaf node

LLM b

Finetune

LLM

Notes
LLM | Raw Model
L L M Scoring Model
LLM Target Model

IFD: Instruction-Following Difficulty
NE: Noisy Embedding

~
=

IFD
I

3.Get tatget model

LLM —— LLM

Finetune + NE

Figure 2: Framework of UNIFIT. It consists of three parts: instruction data generation using Concept Trees, filtering
high-quality instruction data(Pithy) through instruction following difficulty(IFD), and instruction tuning with the addition of
noise embedding(NE). Specific details are available at Methodology

the use of a language model ensemble and the K-Means
algorithm for clustering to determine clusters. This not only
consumes substantial computational resources and time but
also fails to guarantee the impact of the cluster count on the
scoring model, as the cluster count is a manually determined
hyperparameter.

Noise Embedding Boosting Instruction Tuning

In pursuit of better instruction tuning results(See Fig2), we
are inspired by NEFTune(Jain et al., 2023) to add random
noise to the embedding vector of the training data during
the forward fine-tuning process. Each step of NE begins
by sampling an instruction from the dataset instructions and
converting its labeling to an embedding vector. NE then
departs from standard training by adding a random noise
vector to the embedding. The noise is generated by sampling
iid uniform entries, each in the range [-1,1], and then scaling
the entire noise vector to ov/Ld, where L is the sequence
length, d is the embedding dimension, and o is a tunable
parameter. Significant results were obtained by this simple
improvement of noise embedding(NE).

Experiment
Model

UNIFIT selected the four most popular models for the
experiment. Due to computational resource constraints, the
size of the models was chosen to be 7 billion parameters.
LLaMa2-7B(Touvron et al., 2023): The new open source
LLM released by Meta, LLaMa2 is a continuation and
upgrade of the Llama model.LLaMa?2 has a 40% increase in
the pre-training corpus compared to LLaMa, increasing to 2

trillion tokens, and the text sources in the training data are
more diverse.

Mistral-7B(Jiang et al., 2023): Mistral-7B is an
open-source LLM that has demonstrated amazing capabilities
on a wide range of tasks.

Baichuan2-7B(Yang et al., 2023): Baichuan2 is a new
generation of open source LLM launched by Baichuan
Intelligence, which is trained with a high-quality corpus
of 2.6 trillion Tokens.Baichuan2 has already achieved
eye-catching results in various dimensions.

Qwen-7B(Bai et al., 2023): Qwen-7B was pre-trained on
over 2.2 trillion tokens. On a wide variety of benchmarks
tested, Qwen-7B typically outperforms existing open-source
models and is comparable to performance on some LLM:s.

Evaluation Metric

Evaluating the instruction-following capabilities of LLM
poses a challenge. Despite extensive research dedicated
to creating automated evaluation metrics for LLMs(Chang,
Wang, et al., 2023), human judgment remains unparalleled.
However, it is both labor-intensive and susceptible to
human biases. Recent advancements in independent LLM
evaluation(Cassano et al., 2023; Zheng, Chiang, et al.,
2023) suggest that utilizing state-of-the-art(SOTA) LLMs for
evaluation is an urgent and highly promising endeavor. In
this paper, we undertake a comparative evaluation utilizing
GPT-4.

2124

Table 1: Time spent in tuning each model on the 500K dataset for the cybersecurity domain. Selection time consists of training
the scoring model and filtering the Pithy data with the scoring model. Traintime is the time spent training the target model. The
bolded text is what we get with our method. All numbers are in minutes.

LLaMa2-7B Mistral-7B Baichan2-7B Qwen-7B
Pithy All Pithy NE AINE | Pithy All Pithy NE AINE | Pithy All PithyNE AINE | Pithy All Pithy NE AIINE
Select time | 2528 0 2528 0 2519 0 2519 0 2608 0 2608 0 2558 0 2558 0
Train time | 193 8282 198 8298 188 8259 189 8263 205 8688 208 8693 195 8522 195 8525
All time 2721 8282 2726 8298 | 2707 8259 2708 8263 | 2813 8688 2816 8693 | 2753 8522 2753 8525

—— UNIFIT
— Self-instruct
Clarity

correlatjorB-83

Figure 3: GPT-4 conducted a diversity evaluation on the
instruction data from UNIFIT and Self-Instruct across six
dimensions. The results of this evaluation are based on the
500K data in the domain of cybersecurity

Win Rate ® fawt R Pithy R Al Win Rate

R Seifinsruct B UNIFT
50 me 443451 a5 407 L 525
433 5 2.5 522
113122 5 513 188 516 s e
“ 0
,,o

30
20 165

121 I 106 108 2
B | i
o o

LaMa2.78 ich: Qwen-

Mistral-78, Balchan278 Quen-78 Uama278 Mistral-78 Baichan278 Qwen-78

Figure 4: Results of the win rate in the evaluation of
instruction-following ability were compared between the
model tuned for All instruction data and the model tuned for
Pithy data with the addition of noise embedding using GPT4
on a 500K dataset in the cybersecurity domain. It is worth
noting that the Pithy instruction data used only 6instruction
data.

Evaluation of the Diversity of Instruction Tuning
Data

We employed ChatGPT and GPT-4 to score instruction
data generated through both the concept tree method and
the self-instruct method. The scoring encompassed six
dimensions: scope, complexity, practicality, depth, clarity,
and correlation. To obtain more accurate results and
minimize differences caused by randomness, we conducted
multiple random extractions on the instruction data generated
by both methods. Subsequently, the obtained scores were
averaged for each dimension.

Win rate as the data changes with Pithy
Win Rate

@ 18 Pty NE 100
57.5 561 w0 —
ass V12
&
I I : | |
I I N
%o % ax 3 %o e
N Pty N

6 i
856

s0

a0

30

- I :
o
o

LaMa278 Mistral.78 Balchan2.78 Quen78

Figure 5: Results of the win rate in the evaluation of
instruction-following ability was compared between the
model tuned for All instruction data and the model tuned for
Pithy data with the addition of noise embedding using GPT4
on a 500K dataset in the cybersecurity domain. It is worth
noting that the Pithy instruction data used only 6% of All
instruction data

Evaluation of Model Instruction Following Ability
After Instruction Tuning

We generated over 1000 test questions separately using
ChatGPT and GPT-4. Subsequently, the same test questions
were presented to various testing models for responses,
including the native model, the model trained by pithy data,
and the model trained on the entire dataset. We treated the
test questions and answers from multiple testing models as a
collective input. We then tasked the evaluation model, GPT-4,
with selecting the most suitable answer among those provided
by the testing models for each test question. This process
is referred to as the winning rate. To mitigate the impact
of positional bias, we employed three different evaluation
sequences: forward, reverse, and random order. Following
the majority principle, we aimed to obtain more accurate
results. Positional bias refers to the potential inclination
of evaluation models towards answers positioned at specific
locations, such as models showing a preference for answers
positioned first.

Conclusion

In this paper, we introduce UNIFIT, a unified instruction
fine-tuning framework that combines practicality and
versatility. UNIFIT makes use of a concept tree to ensure the
diversity of instruction data, employs an instruction following
difficulty to automatically filter high-quality instruction
data(Pithy), and incorporates noise embedding(NE) to
promote instruction tuning. UNIFIT has successfully achieved
a win rate that exceeds the win rate of using all instruction
tweaks by 11% when only 6% of all instruction tweaks are

2125

utilized, on top of saving 60% in training time consumption,
while ensuring the diversity of instruction tweak data.

The reason for selecting 6% of all instruction data as
Pithy data is shown in Fig5. This universal instruction
tuning framework signifies a substantial improvement in the
practicality and generality of instruction tuning for LLMs. It
marks a revolutionary leap in the landscape of instruction
tuning, emphasizing that even smaller subsets can yield
better instruction-following capabilities, rather than blindly
expanding quantity. UNIFIT promises to advancements in
efficiency and resource awareness. Unparalleled is that
UNIFIT forms a pipeline of instruction data generation,
high-quality instruction data selection, and instruction tuning
with the addition of noise embeddings, which can be
used to propagate these benefits to all LLMs application
domains. UNIFIT is actively exploring a broader landing of
LLMs to facilitate the improvement of Al in human life
and work, especially in terms of efficiency, data quality, and
environmental awareness advancement.

Acknowledgments

This work was supported by the National Key R&D Program
of China 2023YFB4502100 and the National Natural Science
Foundation of China under Grant numbers U2336208

References

Bach, S., Sanh, V., et al. (2022, May). PromptSource:
An integrated development environment and repository for
natural language prompts. In V. Basile, Z. Kozareva, &
S. Stajner (Eds.), Proceedings of the 60th annual meeting
of the association for computational linguistics: System
demonstrations (pp. 93—104). Dublin, Ireland: Association
for Computational Linguistics.

Bai, J,, Bai, S., et al. (2023). Qwen technical report. ArXiv,
abs/2309.16609.

Cassano, F., Li, L., Sethi, A., Shinn, N., Brennan-Jones, A.,
Lozhkov, A., ... Guha, A. (2023). Can it edit? evaluating
the ability of large language models to follow code editing
instructions..

Chalnick, A., & Billman, D. (1988). Unsupervised learning
of correlational structure. In Proceedings of the tenth
annual conference of the cognitive science society (pp.
510-516). Hillsdale, NJ: Lawrence Erlbaum Associates.

Chang, Y.-C., Wang, X., et al. (2023). A survey on evaluation
of large language models. ArXiv, abs/2307.03109.

Feigenbaum, E. A. (1963). The simulation of verbal learning
behavior. In E. A. Feigenbaum & J. Feldman (Eds.),
Computers and thought. New York: McGraw-Hill.

Hill, J. A. C. (1983). A computational model of language
acquisition in the two-year old. Cognition and Brain
Theory, 6, 287-317.

Jain, N., yeh Chiang, P, Wen, Y., Kirchenbauer, J., Chu,
H.-M., Somepalli, G., ... Goldstein, T. (2023). Neftune:
Noisy embeddings improve instruction finetuning. ArXiv,
abs/2310.05914.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de Las Casas, D., ... Sayed, W. E. (2023).
Mistral 7b. ArXiv, abs/2310.06825.

Li, M., Zhang, Y., Li, Z., Chen, J., Chen, L., Cheng, N., ...
Xiao, J. (2023). From quantity to quality: Boosting llm
performance with self-guided data selection for instruction
tuning. ArXiv, abs/2308.12032.

Matlock, T. (2001). How real is fictive motion?
Doctoral dissertation, Psychology Department, University
of California, Santa Cruz.

Newell, A., & Simon, H. A. (1972). Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall.

Ohlsson, S., & Langley, P. (1985). Identifying solution paths
in cognitive diagnosis (Tech. Rep. No. CMU-RI-TR-85-2).
Pittsburgh, PA: Carnegie Mellon University, The Robotics
Institute.

Shanahan, M., McDonell, K., & Reynolds, L.
(2023). Role play with large language models.
Nat., 623(7987), 493-498. Retrieved from

https://doi.org/10.1038/s41586-023-06647-8
doi: 10.1038/S41586-023-06647-8

Shrager, J., & Langley, P. (Eds.). (1990). Computational
models of scientific discovery and theory formation. San
Mateo, CA: Morgan Kaufmann.

Touvron, H., Martin, L., et al. (2023).
Open foundation and fine-tuned chat models.
abs/2307.09288.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A,
Khashabi, D., & Hajishirzi, H. (2023, July). Self-instruct:
Aligning language models with self-generated instructions.
In A. Rogers, J. Boyd-Graber, & N. Okazaki (Eds.),
Proceedings of the 61st annual meeting of the association
for computational linguistics (volume 1: Long papers)
(pp- 13484-13508). Toronto, Canada: Association
for Computational Linguistics. Retrieved from
https://aclanthology.org/2023.acl-long.754
doi: 10.18653/v1/2023.acl-long.754

Wang, Y., Mishra, S. et al (2022, December).
Super-Naturallnstructions: Generalization via declarative
instructions on 1600+ NLP tasks. In Y. Goldberg,
Z. Kozareva, & Y. Zhang (Eds.), Proceedings of the 2022
conference on empirical methods in natural language
processing (pp. 5085-5109). Abu Dhabi, United Arab
Emirates: Association for Computational Linguistics.

Yang, A. M., Xiao, B., et al. (2023). Baichuan 2: Open
large-scale language models. ArXiv, abs/2309.10305.

Zheng, L., Chiang, W.-L., et al. (2023). Judging
Ilm-as-a-judge with mt-bench and chatbot arena. ArXiv,
abs/2306.05685.

Zhou, C., Liu, P, Xu, P, Iyer, S., Sun, J., Mao, Y., ... Levy,
0. (2023). Lima: Less is more for alignment. ArXiv,
abs/2305.11206.

Llama 2:
ArXiv,

2126

