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1. ABSTRACT

Microscopic mechanisms operating at the mineral-aqueous interface control rates of

growth and dissolution, isotope fractionation and trace element partitioning during crys-

tal growth. Despite the importance of characterizing surface kinetic controls on isotopic

partitioning, no self-consistent microscopic theory has yet been presented which can simul-

taneously model both mineral growth rate and isotopic composition. Using a kinetic theory

for AB or di-ionic crystal growth, we derive a model to predict precipitation rate and isotope

fractionation as a function of growth solution oversaturation and solution stoichiometry and

apply the theory to calcium isotope fractionation during calcite precipitation.

Our model assimilates the current understanding of surface controlled isotope fraction-

ation with kinetic theories of ion-by-ion mineral growth to predict isotopic partitioning

during the growth of ionic crystals. This approach accounts for the effect of solution com-

position on microscopic mineral surface structure and composition, providing numerous

testable hypotheses for growth of sparingly soluble AB crystals such as calcite, namely:

1) Both oversaturation and solution stoichiometry control growth rate and partitioning

of isotopes during precipitation;

2) For growth driven primarily by step propagation, distinct expressions describe dislocation-

and 2D nucleation-driven growth rates, while the expression for isotope fractionation is the

same for both mechanisms;

3) Mineral precipitation occurring via the formation of an amorphous precursor will

generate isotope effects that are not compatible with ion-by-ion growth theory and may

therefore be excluded from comparison; and,

4) The absolute kinetic limit of isotope fractionation may not be accessible at high
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oversaturation due to the formation of amorphous precursors.

Using calcite as a model system, we derive expressions for growth rate and isotopic

fractionation as a function of oversaturation and Ca2+:CO2−
3 in solution. Increasing over-

saturation increases mineral growth rate and drives isotope partitioning towards the kinetic

limit, while increasing the concentration of Ca2+ relative to CO2−
3 at a given oversatura-

tion tends to drive crystal growth towards isotopic equilibrium. These competing effects

attenuate the magnitude of isotope fractionations observable in terrestrial environments.
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2. INTRODUCTION

Mineral precipitation from aqueous solution is a widely studied process, with direct

relevance to aqueous and environmental geochemistry, geobiology, and industry. Macro-

scopic descriptions of mineral growth and dissolution rate laws abound in the geochemical

literature, (e.g. Chou et al., 1989; Zuddas and Mucci, 1994; Zhang and Dawe, 1998; Morse

and Arvidson, 2002; Steefel and Maher, 2009), alongside robust microscopic models for

mineral precipitation (Burton et al., 1951). Kinetic, mass-dependent fractionation of stable

isotopes and disequilibrium trace element partitioning are widely observed during mineral

growth (Watson, 1996; Fantle and DePaolo, 2007; Tang et al., 2008b,a). No existing theory

links microscopic mineral growth models with macroscopic models of trace element and

isotope partitioning during precipitation. In this paper, we derive a self-consistent model

for calcite growth that predicts growth rate and isotope fractionation as a function of growth

solution composition. The model is applicable to any sparingly soluble di-molecular salt,

and may be extended to incorporate the nonlinear effects of trace element incorporation on

both growth rate and trace element partitioning.

2.1. Microscopic and macroscopic descriptions of mineral growth

Microscopic models describing mineral growth were initially derived during the 1950s.

The seminal Burton, Cabrera, & Frank (1951; BCF) paper details what is now referred to as

terrace-ledge-kink (TLK) theory, a thermodynamic description of the microscopic structure

of mineral surfaces and classical, dislocation-driven mineral growth. TLK theory has been

applied to model mineral growth from aqueous solution in numerous systems, including

KH2PO4 (KDP) (DeYoreo et al., 1994) and calcite (Teng et al., 1998, 1999, 2000; Larsen
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et al., 2010). Application of the TLK model is not strictly valid in the case of relatively

insoluble minerals where kink formation is limited by the rate of stable 1D nucleation

along the step (DeYoreo et al., 2009); more recent models of kink creation, propagation,

and collision (CPC) may be used to quantify kink densities of lower-solubility minerals

such as calcite (Zhang and Nancollas, 1990, 1998).

Isotopic and trace element partitioning during mineral growth have been shown to be

kinetically controlled, (e.g. Young et al., 2002), and numerous models have been invoked to

describe these observations. The mechanistic underpinning of these models varies widely,

from processes such as solid state diffusion (Watson, 1996), overprinting of equilibrium

partitioning between solvated and mineral ions by kinetic effects (Lemarchand and Wasser-

burg, 2004), to kinetic separation due to macroscopic ion fluxes in the mineral surface

boundary layer (Fantle and DePaolo, 2007; DePaolo, 2011). None of these models is di-

rectly tied to the mechanistic models for mineral growth based on TLK theory. Though a

dependence of trace element (Nehrke et al., 2007) and isotope (Spero et al., 1997) parti-

tioning on solution stoichiometry has been observed, these observations were not explicitly

modeled. No growth rate model has been presented that depends explicitly on either so-

lution stoichiometry or trace element concentration, both of which directly affect mineral

growth rates and growth mechanisms (Zhang and Dawe, 1998; Wasylenki et al., 2005;

Davis, 2008; Perdikouri et al., 2009; Larsen et al., 2010; Stack and Grantham, 2010).

2.2. Application of growth models to calcite precipitation

Calcium carbonate mineral precipitation has been extensively studied as a model sys-

tem for both microscopic (Dove et al., 2008; Teng et al., 1998, 2000), and macroscopic
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(Zhang and Dawe, 1998; Tang et al., 2008a; DePaolo, 2011) theories for mineral growth

and trace element and isotope distribution. Teng et al. (2000) applied BCF theory to cal-

cite precipitation and demonstrated that dislocation-driven spiral growth is the dominant

growth mechanism at low thermodynamic driving force (i.e. low oversaturation), while at

higher oversaturation, step generation and growth is driven by 2D nucleation. Each growth

mechanism is associated with distinct microscopic surface structures and corresponding

rate laws: dislocation-driven step growth rate is a linear function of oversaturation as pre-

dicted by classical theory, while higher order rate laws, (e.g. Malkin et al., 1989; van der

Eerden, 1993; Dove et al., 2008), describe 2D nucleation-driven growth.

Significant variability in the calcium isotope composition of terrestrial and solar system

materials including calcite has been observed and attributed to mass-dependent isotope frac-

tionation (Russell et al., 1978; Simon and DePaolo, 2010). Biogenic fractionation during

CaCO3 mineralization is an important source of variation: organisms fractionate calcium

isotopes during biomineralization of shell (Skulan et al., 1997; Gussone et al., 2003; Chang

et al., 2004; DePaolo, 2004; Gussone et al., 2004; Nägler, 2000; Böhm et al., 2006; Hippler

et al., 2006, 2009) and bone (Skulan and DePaolo, 1999; DePaolo, 2004; Komiya et al.,

2008; Reynard et al., 2010). In all cases, the solid carbonate phase is enriched in the light

isotope, typically by∼ 1−2h relative to the growth medium, strongly suggesting a kinetic

effect. Isotopic fractionation of similar magnitude may be generated by inorganic precipi-

tation of calcium carbonate in the lab (Gussone et al., 2003; Lemarchand and Wasserburg,

2004; Gussone et al., 2005). Kinetic fractionation of oxygen isotopes has also been ob-

served during calcite growth (Dietzel et al., 2009; Gabitov et al., 2011). Controlled growth

experiments suggest that calcite growth rate is correlated with the magnitude of isotopic
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fractionation (Lemarchand and Wasserburg, 2004; Tang et al., 2008a), and various mecha-

nisms have been proposed to explain these observations.

Distribution of trace elements such as Sr, Mg and U during inorganic and biogenic

calcite precipitation also varies as a function of growth rate (Tang et al., 2008a) and solu-

tion stoichiometry (Russell et al., 2004). Concentrations of trace elements in solution also

affects growth rate, so the relationship between trace element incorporation and growth

kinetics is nonlinear (Wasylenki et al., 2005). A mechanistic description of trace element

partitioning and the effect of trace elements on growth kinetics is currently lacking.

DePaolo (2011) developed a model that describes the calcium isotope fractionation and

strontium partitioning observed by Tang et al. (2008 a & b) during inorganic calcite precip-

itation experiments. This model posits that the relative attachment and detachment fluxes

of ions to the growing mineral surface controls the degree to which a mineral isotopic

composition reflects equilibrium (αeq) or kinetic (αf ) fractionation endmembers. When the

mineral growth rate exceeds the rate of exchange of ions between mineral and aqueous solu-

tion, the isotopic composition tends towards αf . The equilibrium fractionation is expressed

only when growth rate is much smaller than the exchange rate. This model does not account

explicitly for the effects of changes to solution composition−other than oversaturation−on

isotope fractionation, nor does it take into account the dependence on oversaturation of the

densities of microscopic features at which attachment and detachment occur. However, the

theory is consistent with forward and reverse fluxes of ions governing mineral growth in

microscopic models of ionic crystal growth (Zhang and Nancollas, 1998) and accounts for

much of the available laboratory data on Ca isotope and Sr/Ca fractionation.

Zhang & Nancollas (1998) detailed a model for ion-by-ion AB (NaCl structure) crystal
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growth based on CPC theory, which accounts for the stoichiometry of the growth solution.

This model applies a kinetic steady state approach and considers the elementary attach-

ment and detachment of ions to and from the mineral surface (Zhang and Nancollas, 1990).

Though the theory was explicitly derived for the (001) face of an AB crystal, Larsen et al.

(2010) demonstrated that this theory can accurately predict changes in calcite precipitation

rate on the calcite {101̄4} face due to changes in solution stoichiometry, and Wolthers et

al. (2012) have recently extended the model to account for solution pH. As with growth

rate, the ratio of Ca2+ to CO2−
3 ions in solution (solution stoichiometry) should affect the

ability of the mineral surface to exchange ions with solution. In a calcium rich solution,

back reaction of Ca will be promoted, because attachment of carbonate ions becomes the

growth rate limiting step. Such exchange must facilitate calcium isotopic equilibration of

the mineral surface with aqueous solution, driving the solid away from the kinetic end-

member composition. A combination of these two theories, then, may be used to describe

isotope partitioning as a function of solution composition during surface-controlled mineral

growth.

2.3. Mechanics of AB crystal growth

The surface of a sparingly soluble AB mineral such as calcite in contact with aqueous

solution is schematically depicted in Fig. 1. Assuming that the oversaturation is smaller

than that at which amorphous precursor phases are generated, mineral growth and dissolu-

tion proceed via the advancement and retreat of monomolecular steps across the surface.

At very low oversaturations, steps are generated at dislocations on the surface, leading to

the formation of growth hillocks (Teng et al., 2000). At higher oversaturations, the ther-
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modynamic driving force becomes sufficiently high to cause heterogeneous nucleation on

the surface (Teng et al., 2000). The resulting 2D nuclei act as a source of step edges anal-

ogous to growth hillocks. The advancement of these steps drives overall mineral growth.

In both cases, A and B ion attachment and detachment occur primarily at kink sites along

step edges, where a large number of chemical bonds are unsatisfied. If, as in calcite, an

individual growth unit is a molecule, the step edge orientation may affect its structure and

therefore the energetics of bond formation and breaking. On the primary cleavage face of

calcite, {101̄4}, carbonate ionic units are oriented at an angle to the surface, forming obtuse

(+) and acute (−) steps, which travel at different speeds under certain conditions.

[Figure 1 about here.]

2.4. Linking microscopic and macroscopic models of growth

In this paper, we derive a model for growth rate as a function of oversaturation and

solution stoichiometry for the cases of spiral dislocation- and 2D nucleation-driven step

growth, based on reactions occurring at microscopic step features on the mineral surface.

We extend the Zhang & Nancollas (1998) model of ion-by-ion growth for an AB crystal,

allowing for differences in A and B ion attachment and detachment kinetics and introducing

a third component A’ into the kinetic theory. This derivation can describe the step velocity

anisotropy of acute and obtuse faces of spiral growth hillocks observed in calcite. Exchange

of ions between mineral kink sites and aqueous solution dictates the final trace element and

isotopic composition of the mineral, so we extend this model for the first time to describe

isotopic partitioning during surface controlled mineral growth.

Using the framework developed by DePaolo (2011), we derive a general analytical ex-
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pression for isotopic fractionation during AB mineral growth as a function of oversaturation

and solution stoichiometry. The model accurately describes mass-dependent fractionation

of Ca isotopes during calcite growth. Growth rate is considered in two cases: dislocation-

driven (spiral) growth, and 2D nucleation-driven growth. The process of ion attachment

and detachment at kinks along step edges governing ion incorporation along steps is the

same in both cases. Isotopic fractionation during precipitation, αp, is derived from an ex-

pression for step velocity which applies to both spiral and 2D nucleation-driven growth,

so a single expression for αp is needed. Trace element incorporation affects both surface

kink density and growth kinetics, whereas isotopic exchange with solution does not. Trace

element incorporation will not be addressed in detail here.

We demonstrate that 2D nucleation explains the high order dependence of growth rate

on oversaturation observed in inorganic calcite growth experiments reported by Tang et al.

(2008), and we also show that our expression for isotope fractionation is consistent with re-

ported ∆44/40Ca values. As a consequence of the microscopic nature of this derivation, we

also conclude that our model is not valid for describing growth from highly oversaturated

solutions, where calcite grows by the formation of amorphous calcium carbonate (ACC),

which then reorganizes to form a crystalline phase. Formation of ACC may be invoked to

explain the rate dependence of Ca isotope fractionation during calcium carbonate growth

obtained by Lemarchand et al. (2004) and Gussone et al. (2003), which has an inverse

growth rate dependence compared with the Tang et al. (2008) data modeled here. The

growth solutions used by Gussone et al. (2003) and Lemarchand et al., (2004) are all sig-

nificantly oversaturated with respect to ACC (solubility reported in Clarkson et al. (1992)),

while none of the Tang et al. (2008) solution compositions exceed this solubility threshold.
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The results of the former two groups are likely due to the mixing of calcite formed via the

ACC pathway and that formed by ion-by-ion addition. For a description of the variables

used in the following sections, we refer the reader to Appendix A.

3. SPIRAL GROWTH OF NON-KOSSEL AB CRYSTALS

3.1. Rate of ion incorporation and exchange

The growth of an AB crystal may be modeled by quantifying the relative rates of ion

incorporation and back exchange with solution. For a two-component mineral with an NaCl

structure growing via dislocation-driven step growth (spiral growth) from aqueous solution,

the net rate of ion incorporation depends on the difference of ion fluxes to (Rf ) and from

(Rb) the mineral surface,

Rnet = Rf −Rb =
ρuhbd

y0
, (3.1)

where ρ is kink density (unitless) or the probability of a given site being a kink site, u is

the net overall kink propagation rate (s−1), h is the unit step height (m), d is the solid phase

density (mol/m3), b is kink depth (m), and y0 is the step spacing (m). The total rate of A

and B attachment to the surface is Rf = Rf
A + Rf

B (mol
m2s

), and the rate of detachment from

the surface is Rb = Rb
A +Rb

B in the same units. For component A,

Rnet
A = Rf

A −R
b
A (3.2)
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Based on mineral surface geometry, the net rate of surface normal mineral growth due to A

incorporation (mol
m2s

) is equal to:

Rnet
A =

ρunetA hbd

y0
=
vstbd

2y0
(3.3)

where uneti is the rate of kink propagation for ion i (s−1), and vst is the lateral step velocity

(m/s). Kink density ρ is defined as a/x0, where x0 (m) is the average distance between

kink sites along a step, and a is the intermolecular distance along the step (m). Rate of kink

propagation, unet, is the net frequency of attachment of ions to a kink site. Step spacing or

terrace width may be expressed as y0 = 4ΓLc for a symmetrical growth hillock (Teng et al.,

2000), where Γ is approximately equal to 1 for calcite and Lc is critical step length,

Lc =
2h|~a×~b|α
kTσ

, (3.4)

which depends on step edge free energy per unit step height α (J/m2), the Boltzmann

constant k (J/K), temperature T (K), and oversaturation σ = ln(IAP/Ksp). Ion activity

product, IAP = [A][B], is the product of A and B activities in solution. Asymmetrical

growth hillocks may be generated in minerals such as calcite by growth rate anisotropy,

where obtuse and acute step velocities are not equal (see Appendix C). The rate formulation

presented here assumes that all ion attachment and detachment occurs at kink sites and that

2D nucleation is insignificant (Zhang and Nancollas, 1998).

Assuming an A ion can only be added to a B kink site and removed from an A site (e.g.
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Fig. 1), the rate of A kink propagation may be written

uA = ufA − u
b
A (3.5)

where the frequency of A detachment from A kink sites with detachment rate constant νA

(s−1) is equal to

ubA = νAPA, (3.6)

and the frequency of A addition to B kinks with attachment rate constant kA (s−1M−1) is

equal to

ufA = kA[A]PB, (3.7)

where PA and PB are the probability of a given kink site being an A or B site respectively

(Zhang and Nancollas, 1998), and square brackets denote ion activity. The overall kink

propagation rate is the sum of A and B net kink propagation rates, u = uA + uB. All kink

sites are either A or B sites, so PA + PB = 1.

Combining Eqs. 3.3 and 3.5 - 3.7, the forward and back fluxes of A at the surface

become:

Rf
A =

ρkA[A]PBhbd

y0
(3.8)

and

Rb
A =

ρνAPAhbd

y0
. (3.9)
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3.2. Probability of A and B sites on the surface

Net ion fluxes and therefore growth rate depend on the overall kink density, so abun-

dances of A and B kink sites must be determined. During growth or dissolution, the rate of

addition of A must always equal that of B to preserve crystal stoichiometry, so

uA = uB. (3.10)

Thus, kA[A]PB − νAPA = kB[B]PA − νBPB. Substituting 1− PA for PB, we find that the

probability that a given kink site is an A or B site respectively is:

PA =
kA[A] + νB

kA[A] + kB[B] + νA + νB
, (3.11)

and

PB =
kB[B] + νA

kA[A] + kB[B] + νA + νB
(3.12)

3.3. Calculation of surface kink density

The balance of kink site formation via 1D nucleation of AB ion pairs and annihilation

via kink collision dictates the steady state kink density of the mineral surface. When the

rate of 1D nucleation is equal to i, and the kink propagation rate is u,

ρ = 2

√
i

2u
(3.13)

(Appendix B).

For an AB crystal, Zhang & Nancollas (1998) determined the rate of formation of stable
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1D nuclei, i, as a function of solution composition,

iA = 2 exp

(
−2εA
kT

)(
S − 1

) νBkA[A]

kA[A] + νB
, (3.14)

and

iB = 2 exp

(
−2εB
kT

)(
S − 1

) νAkB[B]

kB[B] + νA
, (3.15)

where S is oversaturation defined as S= [A][B]
Ksp

, Ksp is the equilibrium solubility, εj is the

kink formation energy of a j kink site (J) and i = iA+iB
2

. Kink formation energy is equal

to half the single AB bond energy (Zhang and Nancollas, 1990). Combining Eqs. 3.5 - 3.7

and identical equations for B, kink propagation rate becomes

u =
2kAkB[A][B]− 2νAνB

kA[A] + kB[B] + νA + νB
(3.16)

(Zhang and Nancollas, 1998).

Eqs. 3.13 - 3.16 may be substituted into Eq. 3.13 to calculate kink density along the

step:

ρ =

[
(S − 1)

([
exp

(
−2εA
kT

)
νBkA[A]

νB + kA[A]

]
+

[
exp

(
−2εB
kT

)
νAkB[B]

νA + kB[B]

])
(
νA + νB + kA[A] + kB[B]

kA[A]kB[B]− νAνB

)]1/2
(3.17)

A simplified expression may be found in Zhang & Nancollas (1998), where the attach-

ment and detachment flux constants of A are assumed to equal those of B.
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3.4. Growth rate as a function of oversaturation and solution stoichiometry

To obtain growth rate in terms of solution saturation (S) and stoichiometry (ra =

[A]/[B]), attachment and detachment fluxes must be recast in terms of S and flux ratio

r. As in Zhang & Nancollas (1998), we define flux ratio such that

r =
kA
kB
ra. (3.18)

The equilibrium solubility of an AB crystal is defined as Ksp = [A]eq[B]eq. At equilib-

rium, the forward and back fluxes of A and B are equal, so ρkA[A]eqPB = ρνAPA, thus

[A]eq =
νAPA
kAPB

, (3.19)

similarly

[B]eq =
νBPB
kBPA

. (3.20)

These equations simplify to

Ksp =
νAνB
kAkB

, (3.21)

which is the equilibrium solubility expressed in terms of the forward and backward flux co-

efficients. By substituting Eq. 3.21 into the standard equation relating S and Ksp we obtain

an expression for S in terms of the flux coefficients and the aqueous ion concentrations.

S =
kAkB[A][B]

νAνB
, (3.22)
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which then also allows us to write the forward ionic fluxes in terms of S and r as:

kB[B] =

(
S
νAνB
r

)1/2

, (3.23)

and

kA[A] =
(
SνAνBr

)1/2
. (3.24)

The overall precipitation rate, Rnet may now be expressed in terms of S and ra by substi-

tuting ρ (Eq. 3.17) and u (Eq. 3.16) into Eq. 3.1:

Rnet =
hbd

y0

{[(
exp

(
−2εA
kT

)
ν
3/2
B (SνAr)

1/2

νB + (SνAνBr)1/2

)
+(

exp

(
−2εB
kT

)
ν
3/2
A (S νB

r
)1/2

νA + (S νAνB
r

)1/2

)][
νA + νB + (SνAνBr)

1/2 + (S νAνB
r

)1/2

νA + νB

]}1/2

[
2νAνB(S − 1)

νA + νB + (SνAνBr)1/2 + (S νAνB
r

)1/2

]
.(3.25)

Step velocity may similarly be written in terms of S and r (i.e. Eq. 3.3):

vst =
Rnety0
bd

= ρuh. (3.26)

The dependence of growth rate,Rnet, on S and ra is plotted in Fig. 2. Rate is maximized

at high oversaturation and Ca2+:CO2−
3 ∼ 1 when νA ∼ νB and kA ∼ kB. Fig. 2 also shows

that Rnet is more strongly dependent on S than on r, but that r can change Rnet by about a

factor of 10 when increased or decreased by 3 orders of magnitude, a range that is accessed

in natural aqueous solutions.
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[Figure 2 about here.]

The rate of exchange of a given ion between the mineral surface and aqueous solution

dictates the ultimate trace element and isotopic composition of the solid phase (DePaolo,

2011). The relative exchange flux for A may be expressed as a function of supersaturation,

S, and flux ratio, r (Eq. 3.18), from the ratio of back to forward reaction rates:

Rb
A

Rf
A

=
νAPA

kA[A]PB
=

νA
kA[A]

(
νB + (SνAνBr)

1/2

νA + (S νAνB
r

)1/2

)
. (3.27)

If we assume that the rate coefficients of A and B ion attachment and detachment are

equal (e.g. kA = kB and νA = νB) and substitute Eqs. 3.18, 3.23, and 3.24, Eq. 3.27

reduces to:
Rb
A

Rf
A

=
1√
Sra

(
1 +
√
Sra

1 +
√
S/ra

)
, (3.28)

which is solely dependent on solution composition. The exchange flux of A based on Eq.

3.28 is plotted as a function of oversaturation and solution stoichiometry in Fig.3. High

values of Rb/Rf for A promote equilibrium fractionation or partitioning of A isotopes

between the solid phase and aqueous solution. Conversely, low values of Rb/Rf drive the

mineral-aqueous system towards kinetic control. Decreasing Rb/Rf may be accomplished

by increasing oversaturation, because with increasing S, the first term on the right hand

side of Eq. 3.28 decreases. Decreasing A:B (ra) also decreases Rb/Rf , because decreasing

ra simultaneously decreases the numerator and increases the denominator of the term in

parentheses of Eq. 3.28 (Fig.3).

[Figure 3 about here.]
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In DePaolo (2011), the backward flux Rb is assumed to equal the mineral dissolution rate

under infinite undersaturation at appropriate P, T and pH. According to the model presented

here, the net detachment flux of A and B varies with both oversaturation S and solution

stoichiometry, although Rb is close to the measured calcite dissolution rate under the S and

ra conditions applicable to seawater and to the available laboratory measurements of Ca

isotope fractionation (Fig. 4).

[Figure 4 about here.]

4. HIGHER ORDER GROWTH RATES AND NUCLEATION

The derivation presented above for the relationship between Rnet, S and ra, for spiral

growth must be modified for high oversaturations where the spiral growth mechanism does

not operate. With increasing oversaturation, the dominant mechanism of step initiation

undergoes a transformation, where steps initially sourced from screw dislocations on the

surface begin to nucleate directly on the surface as 2D islands. This transformation is

associated with a higher-order dependence of growth rate on oversaturation, (e.g. Teng

et al., 2000). Van der Eerden (1993) determined an expression for the rate of surface normal

growth (m/s) driven by 2D nucleation:

R = 1.137h

(
Iv2st

)1/3

, (4.1)
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where h is step height, I is nucleation frequency (m−2s−1), and v = ρunetb is step velocity

(m/s). Nucleation frequency may be written

I = βst
h

Ω

(
ξ2hσ

πΩ

)1/2

exp

(
−∆G∗

kT

)
(4.2)

where ξ2 is an area shape factor, σ = ln(IAP/Ksp), ∆G∗ is the excess Gibbs free energy of

the critical nucleus relative to an empty terrace, Ω is the growth unit volume (e.g. ∼ hab),

and βst is the step kinetic coefficient (van der Eerden, 1993). The step kinetic coefficient of

van der Eerden (1993) depends on step velocity following,

βst =
vst
σ
. (4.3)

This differs from a more typical expression for βst, where the step kinetic coefficient is

assumed to be proportional to the difference between the mineral constituent ion concen-

tration in solution and its equilibrium concentration, (e.g. Teng et al., 2000).

Following Van der Eerden (1993), the free energy barrier of forming a critical 2D nu-

cleus depends on oversaturation, the chemical driving force for growth:

∆G∗ =
ξΩγ2

hkTσ
, (4.4)

where γ is the average edge free energy of the nucleus in J/m, and ξ = 2ξ2/ξ
2
1 (van der

Eerden, 1993). If I∗ is the radius of a rhombic critical nucleus, the perimeter of the nucleus

is ∼ ξ1×I∗ ' 8×I∗, and the area of the nucleus is ∼ ξ2×I∗2 ' 4×I∗2. Thus ξ ' 1/8.
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5. TRANSITION FROM STEP GROWTH TO 2D NUCLEATION

At low oversaturations, dislocation driven step growth will control overall growth rate,

because the thermodynamic driving force for formation of 2D nuclei is too low. Above a

threshold oversaturation, which can be determined by setting Eqs. 3.25 and 4.1 equal, 2D

nucleation will drive growth (Fig. 5). The value at which this transition occurs is sensitive

to the average edge free energy of the nucleus γ (Eq. 4.4), the kinetic coefficient βst (Eq.

4.2), and the step edge free energy per unit step height α (Eq. 3.4). Typical values for

calcite are poorly constrained, because the presence of contaminants could significantly

reduce the free energy barrier for 2D nucleation, leading to very low apparent threshold

supersaturations. The use of a background electrolyte could also significantly reduce the

free energy barrier for nucleation, by decreasing the free energy of the surface via non-

specific ion adsorption (Butt et al., 2006). Experiments conducted by Teng et al. (2000)

place the transition at around σ ∼1 (S=2.7) for calcite, which is considered a lower limit.

Fig. 5 gives a graphical illustration of the rates associated with the two growth mechanisms,

using the parameters employed in fit B described in section 7.1 below, to fit experiments

conducted in the absence of significant background electrolyte (Tang et al., 2008b).

[Figure 5 about here.]

6. OVERSATURATION AND SOLUTION STOICHIOMETRY DEPENDENT

ISOTOPE AND TRACE ELEMENT FRACTIONATION

The flux to and from a mineral surface of isotopes substituting for a given constituent

ion will depend on the relative abundance of the ion in solution as well as the activation
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energy barrier for isotope or trace element addition and removal. Heavy isotopes tend to

have higher kinetic activation energy barriers for chemical reactions, so reaction kinetics are

expected to be slightly more sluggish. Trace elements of the same charge fit more or less

favorably into the crystal lattice depending on ion size and site structure, affecting the ki-

netics of trace element incorporation and the overall mineral solubility. Isotope substitution

into the mineral lattice does not significantly affect the rate coefficients of ion attachment or

detachment, so we assume that it has no effect on mineral growth kinetics. Using the formu-

lations for growth rate during dislocation- and 2D nucleation-driven growth, we derive an

analytical expression for isotopic partitioning as a function of solution oversaturation and

ion activity ratio. This expression applies to both 2D nucleation and dislocation driven-step

growth mechanisms, because ion exchange occurs primarily at the step edge in both cases.

During surface-controlled mineral growth, fractionation of rare isotopes of A (A’) may

be determined from the relative rates of A’ incorporation and removal at kink sites during

growth. The partitioning associated with each step and with the overall reaction may be

expressed:

αj−i =
rj
ri

=
Rj
A′

Rj
A

1

ri
, (6.1)

where i → j is the forward reaction (e.g. attachment, detachment, or net precipitation),

Rj
A′ and Rj

A are the net rates of A’ and A reaction respectively, rj is the [A’]:[A] ratio of the

product, and ri is the [A’]:[A] ratio of the reactant.

During step propagation, the fractionation factor of isotopes of A during attachment is

αf =
kA′ [A

′]

kA[A]

1

rs
=
kA′

kA
, (6.2)

22



where rs = [A′]
[A]

in solution. The fractionation factor during detachment is

αb =
νA′PA′

νAPA

1

rx
, (6.3)

where rx is the ratio of heavy to light isotopes incorporated into the crystal bulk. At steady

state, the composition of the mineral bulk with Ni moles of i is constant,

drx
dt

=
1

NA

(
dNA′

dt
− rx

dNA

dt

)
= 0. (6.4)

The rate of i addition or removal, dNi/dt = Ri
net, and rx = RA′

net/R
A
net (DePaolo, 2011).

To maintain a steady state isotopic composition, the net rate of A and A’ addition to the

surface must equal the net rate of A and A’ addition to the bulk, so rx is equal to the the net

incorporation of A’ by B divided by the net incorporation of A by B,

rx =
kB[B]PA′ − νBPBPB−A′
kB[B]PA − νBPBPB−A

=
PA′

PA
, (6.5)

where PB−i is the probability that a given B site is adjacent to an i site. The relation

rx = PA′/PA holds as long as the attachment and detachment of B ions to and from A sites

have the same coefficients, kB and νB, as to and from A’ sites, which is only an adequate

approximation for isotopic substitution. Invoking this assumption, kink probabilities cancel

from expression 6.3, and isotope fractionation during detachment becomes

αb =
νA′

νA
. (6.6)
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The fractionation factor of A at equilibrium is a function of the attachment and detach-

ment fractionation factors:

αeq =
αf
αb

=
kA′νA
kAνA′

. (6.7)

Thus,

νA′ =
αf
αeq

νA. (6.8)

The total fractionation of A isotopes during precipitation is defined as:

αp =
rx
rs
, (6.9)

which leads to the following expression:

αp =
Rnet
A′

rsRnet
A

=
Rf
A′ −Rb

A′

rs(R
f
A −Rb

A)
=

uA′

rsuA
. (6.10)

During growth along the step, the rate of A’ attachment to the mineral surface may be

expressed as:

Rf
A′ =

ρkA′ [A
′]PBhbd

y0
. (6.11)

Similarly, the detachment flux becomes:

Rb
A′ =

ρνA′PA′hbd

y0
. (6.12)
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By substitution, Eq. 6.9 becomes:

αp =
αfkA[A]PB

kA[A]PB + νAPA
( αf

αeq
− 1
) . (6.13)

This expression reduces to the DePaolo (2011) macroscopic model of kinetic isotope frac-

tionation during surface controlled mineral precipitation:

αp =
αf

1 +
Rb

A

Rf
A

( αf

αeq
− 1
) . (6.14)

This equation represents the DePaolo (2011) model, where Rb/Rf may now be expressed

explicitly in terms of S and r via Eq. 3.27. Hence, we have arrived at a microscopic

description of isotopic partitioning during crystal growth from aqueous solution that takes

account of both solution oversaturation and solution stoichiometry.

7. MODEL APPLICATION TO ISOTOPE FRACTIONATION

7.1. Calcium isotope fractionation during calcite growth

The theory derived thus far will now be applied to calcite, where Ca2+ and CO2−
3 substi-

tute for A and B, and heavy and light isotopes 44Ca and 40Ca replace A’ and A respectively.

Growth rate and the kinetic isotopic fractionation factor are calculated for a given solution

composition based on Eqs. 3.25 and 6.13 respectively.

No coherent set of calcite precipitation experiments provides sufficient information to fit

all parameters involved in this model. Free energy parameters α and γ and attachment rate

constants likely depend on solution compositional variables such as ionic strength, which
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are not directly accounted for, so values obtained under one set of experimental conditions

may not be generally applicable. An attempt to fit the dependence of calcium isotope frac-

tionation on calcite growth kinetics is presented here to demonstrate model implementation,

and to reveal gaps in experimental data. We do not account for surface speciation of car-

bonate, which is addressed in Wolthers et al. (2012). As most experimental data modeled

here were obtained within a narrow pH range (8.3-9), and the rate coefficient of cation at-

tachment to both dominant types of CO2−
3 surface sites (protonated and deprotonated) may

be assumed to be approximately equal (Wolthers et al., 2012), surface carbonate specia-

tion should have little effect on kinetic isotope fractionation of calcium or substituting trace

elements or isotopes.

Multiple parameters, including the calcite solubility (Ksp), density (d), kink height (h),

depth (b) and molecular spacing (a), and kink formation energy (ε) were taken from the

literature (Table 1). Reasonable values for kink formation energy and step edge free energy

per unit step height may be derived from Wolthers et al. (2012). We expect these values to

vary somewhat with solution composition and experimental setup. The step kinetic coeffi-

cient for 2D nucleation driven growth βst was calculated from Eq. 4.3, with step velocity vst

determined from Eqs. 3.25 and 3.26. Parameters not available in the literature, or those with

literature values inconsistent with observed precipitation rates were fitted. The following

procedure was used to fit the experimental growth rate and isotopic data:

1. Fit detachment and attachment rate coefficients ν and k to step velocity data, calculate

kink density and propagation rate using Eqs. 3.17 & 3.16, calculate step velocity using Eq.

3.26, and calculate βst using Eq. 4.3;

2. Fit αeq and αf to isotopic data, calculate kink site probabilities using Eqs. 3.11 &
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3.12, and calculate αp using Eq. 6.13;

3. Fit step edge free energy per unit step height (α) to spiral growth rate using Eq. 3.25;

and

4. Fit edge free energy of the critical nucleus (γ) to rate data, calculate 2D nucleation

frequency using Eq. 4.2 & 4.4, and finally calculate the 2D nucleation-driven growth rate

using Eq. 4.1.

[Table 1 about here.]

For each step of fitting, constraints on fitted parameters were obtained from the liter-

ature where available. The parameters fitted in step (1) can be evaluated from the solu-

tion stoichiometry-dependent step velocities of Davis (2008), Perdikouri et al. (2009), and

Larsen et al. (2010) (Table 2; Fig. 6). A similar relationship between step velocity and

solution stoichiometry was observed by Stack & Grantham (2010). However, we do not

attempt to fit their data here, because their observed step velocities suggest that calcite be-

comes undersaturated at very high and very low Ca2+:CO2−
3 . This phenomenon has not

been observed elsewhere, and could be attributed to the presence of impurities or to the

evolution in solution composition prior to entering the fluid cell.

To fit attachment and detachment rate coefficients, we first assumed that νA=νB=ν (be-

cause the same bond is being broken) and kA=kB=k (because ion attachment rate is limited

by calcium dehydration either at the surface or in solution). Step velocities were fitted by

adjusting a single parameter, k, and solving ν=
√
k2Ksp from Eq. 3.21. Step velocities

which were maximized at Ca2+:CO2−
3 6= 1 require that νA 6= νB and/or kA 6= kB. These

were fitted by slightly adjusting νB and kB, using Eq. 3.21 as a constraint. Final k and ν
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values obtained for Larsen et al. (2010), Perdikouri et al. (2009), and Davis (2008) acute

and obtuse step velocities were in reasonable agreement (Table 2).

For step (2) of the fitting procedure, we used the Fantle & DePaolo (2007) estimate of

αeq ∼ 1.0000 ± 0.0001, to constrain our fitted value (0.9998). We hypothesize that αf

depends on the relative rates of 44Ca and 40Ca ion dehydration. Ongoing work using MD

simulations to derive the relative cation desolvation frequencies suggests that the magnitude

of these effects could be appropriate to explain the laboratory data (Hofmann et al., 2011).

However, for our purposes, αf = kA′/kA is fitted without constraint. To determine step

edge free energy per unit step height in (3), we use values equal or similar to the value fitted

by Teng et al. (2000): α ∼ 1.41 J/m2. This parameter exerts a strong control on spiral

growth rate. Increasing α shifts the calculated spiral growth rate to lower values (Fig. 5).

For the final fitting step (4), γ was adjusted to fit the observed dependence of growth rate on

supersaturation, because a 2D nucleation-driven growth mechanism likely dominates over

the entire growth rate range reported by Tang et al. (2008a). In theory, edge free energy of

the critical nucleus should be close to step edge free energy per unit step height multiplied

by step height (α× h), and the fitted value is consistent with this constraint.

[Figure 6 about here.]

[Table 2 about here.]

To illustrate the effects of varying individual parameters on modeling experimental pre-

cipitation rate and isotopic data, we present three fits (A, B and C; Table 3; Fig. 7) to the

rate dependence of calcium isotope fractionation reported by Tang et al. (2008). Fits A and

B use the attachment and detachment rate constants fitted to Larsen et al. (2010) obtuse step
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velocities, while fit C uses exchange coefficients fitted to Davis (2010) obtuse step speeds

(Table 2). The kinetic endmember isotopic fractionation factor depends exclusively on ex-

change coefficients, so A and B use the same fitted value for αf = 0.9920, while the value

used in fit C substantially differs αf = 0.9963. Obtuse step velocities were fitted here, be-

cause at high Ca2+:CO2−
3 , obtuse steps tend to propagate much faster than acute steps and

should therefore dominate the isotopic signature. Because isotopic compositions specific

to the vicinal faces of calcite are not available, attempting to fit the data using an expres-

sion for isotope fractionation incorporating both step types (Appendix C) would introduce

further parameters without significantly promoting our understanding of the system.

Using fit A parameters, we found that it is not possible to generate growth rates as low

as those observed by Tang et al. (2008) at the lowest supersaturations via the spiral growth

mechanism. To correct this discrepancy, we adjusted step edge free energy per unit step

height α in fits B and C to a value sufficiently high such that modeled spiral growth rates

do not exceed the slowest growth rates reported by Tang et al. (2008) at low oversaturation

(Fig. 7b; Table 3). The value for edge work calculated based on this fitted α exceeds the

range of values presented by Wolthers et al. (2012) by a factor of ∼ 2.

[Table 3 about here.]

[Figure 7 about here.]

7.1.1. Carbon and oxygen isotope fractionation during calcite growth

As presented, the model should be applicable to characterizing isotopic fractionation

during the attachment of anions to the mineral surface. In the case of calcite, the proposed

rate limiting mechanism for ion attachment to kink sites on the surface is the dehydration
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of the cation, both in solution and on the mineral surface. Thus, any difference in rates

of CO2−
3 dehydration caused by mass differences should be overprinted by the rates of

calcium kink dehydration, so the kinetic endmember fractionation factor for both C and O is

expected to equal the equilibrium fractionation factor between carbonate adsorbed to calcite

as an outer-sphere complex and aqueous CO2−
3 . Rate dependent fractionation may still arise

if the detachment of carbonate containing heavy C or O is slower than that of carbonate

containing light C or O. Inorganic calcite precipitation experiments have yielded conflicting

results concerning the growth rate dependence of oxygen isotope fractionation, with some

groups observing no dependence (Romanek et al., 1992; Kim and O’Neil, 1997) and others

observing a significant growth rate effect (Dietzel et al., 2009; Gabitov et al., 2011). At

present, it is unclear whether the carbonate ion mass has any effect on the frequency of

detachment. Studies in which growth-rate dependent O isotope fractionation is evident (e.g.

Dietzel et al., 2009) must be scrutinized to rule out the effects of isotopic disequilibrium

between carbonate species in solution. Solution pH has a large effect on carbonate aqueous

speciation, so C and O isotope discrimination between species (e.g. Beck et al., 2005)

may be invoked to explain the dependence of C and O isotope fractionation on carbonate

concentration during calcite precipitation (Spero et al., 1997). We do not attempt to fit

this pH dependence here, because this requires incorporation of the equations derived by

Wolthers et al. (2012).

7.1.2. Amorphous precursor formation

Tang et al. (2008) performed precipitation experiments at saturation indices well below

the solubility of amorphous calcium carbonate (ACC), so calcite growth in this system
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likely occurs primarily by ion-by-ion addition and is therefore adequate for comparison

with this model. Based on carbonate concentrations and calcium activities calculated using

PHREEQc, the experiments of Lemarchand et al. (2004) and Gussone et al. (2003) were

performed at solution supersaturations exceeding the solubility of an amorphous precursor

phase (IAP > 5.9× 10−7) (Clarkson et al., 1992), so they are not expected to be consistent

with this model. The observation that the latter two sets of experiments exceeded ACC

solubility likely explains why these groups obtain a stable Ca fractionation rate dependence

inverse of that reported by Tang et al. (2008).

7.1.3. Implications of solution stoichiometry-dependent isotope fractionation

A key prediction of this model is that the isotopic fractionation factor (and the trace

element partition coefficient) should depend on solution stoichiometry as well as on growth

rate. We hypothesize that at very high Ca2+:CO2−
3 ion activity ratios, isotope fractionation

will approach the equilibrium limit, because back exchange with the solution is encouraged

by the abundance of calcium surface sites (high PCa2+) and the low [CO2−
3 ] in solution (Fig.

8). Conversely at very low Ca2+:CO2−
3 ion activity ratios, fractionation should approach the

kinetic limit. Qualitatively, the effects of varying oversaturation and solution stoichiometry

on fractionation factor can be seen in Fig. 8.

7.1.4. Calcite precipitation from seawater

Using the model coefficients from fits A and B, calcite precipitation from average sea-

water ([Ca2+]∼2e-03 and [CO2−
3 ]∼4e-06)(Berner, 1965; Russell et al., 2004) is expected

to have ∆44/40Ca= 0.60h, while fit C gives ∆44/40Ca= 0.70h, which are slightly smaller

than values typically inferred for marine CaCO3 calcium isotopic fractionation, (e.g. Gus-
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sone et al., 2004; Fantle and DePaolo, 2007; Nielsen et al., 2011). Biomineralizing organ-

isms increase the oversaturation of seawater to promote carbonate precipitation by active

transport of calcium ions through tissue (Böhm et al., 2006) or by modification of seawater

pH (Erez, 2003). The difference between observed seawater-biomineral calcium isotope

fractionation (∼ 1.3h) and our expected value (∼ 0.7h) may be explained by the bio-

logical enhancement of oversaturation, and the corresponding increase in mineralization

rate.

Seawater has an average Ca2+:CO2−
3 activity ratio of ∼ 450, so inorganic calcium car-

bonate precipitation from seawater is not expected to reflect the kinetic endmember of iso-

tope fractionation. The carbonate ion concentration and therefore solution stoichiometry is

highly variable in the ocean, both geographically (Lea et al., 1999) and temporally (Suzuki

et al., 1995) due to changes in seawater pH. Diurnal shifts as large as 0.7 pH units have been

observed in seawater adjacent to coral reefs (Suzuki et al., 1995; Suzuku and Kawahata,

2004). Such significant changes in seawater ra may explain observed fine-scale variability

in coralline CaCO3 trace element composition (Meibom et al., 2008). Ocean acidification

due to the loading of anthropogenic CO2 in the atmosphere will decrease [CO2−
3 ] relative

to [Ca2+], altering carbonate mineral growth kinetics and corresponding mineral composi-

tion. The response of biomineralizing organisms to ocean acidification may be monitored

by investigating changes in biomineral isotopic composition.

[Figure 8 about here.]
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7.2. Model application to trace element partitioning

The model derived thus far for mineral precipitation rate and tracer partitioning is ap-

plicable to quantifying trace element partitioning during surface controlled calcite growth,

assuming the trace elements do not affect overall kink density. This assumption is typically

invalid, however, because many trace elements such as Sr2+ affect both mineral precipita-

tion rate as well as composition (Wasylenki et al., 2005), at least at high Sr/Ca ratios. A

series of expressions may be derived to determine growth rate, accounting for the effect

of trace element-occupied kinks on overall kink density as well as the exchange rates of

all ions. Additional parameters are required for implementing a such a model. For a trace

element that substitutes for A (A’) these include rate constants specific to B attachment to

A’ and B detachment from A’, assuming the bonding structure of the A’ ion does not affect

the long-range bonding structure of the mineral, which it most certainly will with signifi-

cant tracer incorporation. “Trace” elements may substitute into the solid phase up to mole

fraction quantities, directly altering the energetics of bonding at the mineral surface. The

ultimate consequence is a dependence of ν and k values as well as mineral solubility (Ksp)

on mineral composition.

Modeling trace element incorporation into calcite in particular is complex, because

growth on the {101̄4} face of calcite is comprised of four symmetrically distinct vicinal

faces expressing two kink site geometries (i.e. obtuse and acute), which respond differ-

ently to changes in solution stoichiometry. At high Ca2+:CO2−
3 , the velocity of obtuse steps

increases relative to acute step velocity, indicating that the coefficients ν and k differ be-

tween (+) and (−) steps. Thus, isotopes or trace elements which partition preferentially

into obtuse or acute steps, respectively may not directly obey Eq. 6.13 in bulk.
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To illustrate the difficulty of modeling trace element incorporation into calcite, the vari-

ability of strontium partitioning may be considered. In particular, Sr2+ does not qualita-

tively follow the partitioning behavior predicted by the model presented for isotopes above.

With increasing growth rate, incorporation of strontium into calcite increases, suggest-

ing the kinetic partitioning of strontium is greater than the equilibrium value (Tang et al.,

2008b). However, at high Ca2+:CO2−
3 , strontium is also more strongly incorporated into

the solid phase (Nehrke et al., 2007). We partially attribute this effect to the increasing ob-

tuse step velocity at high Ca2+:CO2−
3 , because strontium is preferentially incorporated into

obtuse sites (Paquette and Reeder, 1995). The effect of growth rate anisotropy on isotope

and trace element partitioning is discussed in Appendix C.

The model presented in this paper may be used as a foundation for understanding the ef-

fects of trace element incorporation on both mineral growth rate and partitioning, although

the expressions for trace element-dependent precipitation rate and mineral composition are

not derived here. We note that available Sr/Ca data were fit successfully by DePaolo (2011)

with the simpler model also used for isotopes, but this success may be due to the fact that

the experiments modeled were performed under a relatively restricted set of S and ra con-

ditions.

8. CONCLUSION

The addition of ions to and removal of ions from the mineral surface controls the min-

eral isotopic composition during growth. By identifying this mechanism and incorporating

compositional variability into preexisting rate relations based on this mechanism, we have

derived a general, self-consistent model describing precipitation rate and isotopic compo-
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sition simultaneously. We have demonstrated that calcite growth rate and calcium isotope

fractionation may be modeled, despite uncertainty in appropriate values for model parame-

ters. This model identifies key variables controlling trace element and isotope partitioning

into sparingly soluble AB minerals such as calcite and may inform experimental efforts

moving forward. Experimental data required for fitting all model parameters include mea-

surement of:

1) step velocity as a function of S and ra for both obtuse and acute steps,

2) terrace width as a function of S and ra for dislocation-driven growth,

3) threshold supersaturation for 2D nucleation,

4) nucleation frequency (I) as a function of S, and

5) isotopic and trace element composition of calcite as a function of S and ra for both

obtuse and acute steps.

The potential applications of this model are extensive. Precipitation rate variability may

be predicted as a function of solution oversaturation and stoichiometry, which may be use-

ful in the context of reactive transport modeling or when considering the effects of ocean

acidification on paleoproxy isotope partitioning into CaCO3. From an engineering stand-

point, mineral purity and isotopic composition may be controlled by altering the solution

stoichiometry. For addition of trace elements and isotopes that are kinetically inhibited,

the A:B ratio in solution may be tuned to optimize mineral composition. The framework

presented here may be used in the future to model precipitation rate, taking the effects of

trace element substitution on growth kinetics into account. Such a model will supersede the

assumption made here, that B ion attachment to and detachment from A and A’ sites will

express the same attachment and detachment rate coefficients.
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APPENDIX A. VARIABLE INDEX

Variable Units Description
a m molecular spacing along the step
α J/m2 step edge free energy per unit step height
αb fractionation factor during detachment
αeq equilibrium fractionation factor
αf fractionation factor during attachment
b m kink depth
βst step kinetic coefficient

∆G∗ J Gibbs free energy of the critical nucleus
d mol/m3 solid density
εj J kink site formation energy
γ J/m edge free energy of the critical nucleus
h m step height
I m−2s−1 nucleation frequency
i s−1 rate of stable kink formation (1D nucleation rate)
Ksp equilibrium solubility
k J/K Boltzmann constant
kj s−1M−1 rate coefficient of j attachment to a kink site
νj s−1 rate coefficient of j detachment from a kink site
ξj 2D nucleus shape factor
Ω m3 growth unit volume
Pj probability that a given kink site is a j site
Rj
i molm−2s−1 rate of reaction j for ion i
r flux ratio
ra A:B ion activity ratio (solution stoichiometry)
rx isotope ratio of the solution
rx isotope ratio of the crystal
ρ kink density
S oversaturation (IAP/Ksp)
σ supersaturation (ln(IAP/Ksp))
T K temperature
uj s−1 propagation rate of kink type j
vst m/s lateral step velocity
y0 m step spacing or terrace width
[j] M activity of j in solution
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APPENDIX B. KINK DENSITY DERIVATION

To maintain a steady state kink density, kink sites must be annihilated and created at the

same rate during mineral precipitation (Frank, 1974; Zhang and Nancollas, 1998). Along a

given step length L (m), with average kink spacing x0 (m), kink propagation rate u (s−1),

and molecular unit width a (m), all kinks along L are annihilated by collision in the time

(t) required for a given kink to move by x0. Thus

x0 = uat. (B.1)

The total number of kinks is L/x0, so the frequency of annihilation due to collision(Rcoll)

is

Rcoll =
Lua

x20
. (B.2)

Kinks are simultaneously being created along the step via 1D nucleation, with frequency

per molecule i. The rate of kink formation (Rfm) is then

Rfm = 2i
L

a
, (B.3)

where two kinks are created by each nucleation event and L/a is the number of molecules

along the step.

At steady state, Rcoll = Rfm, so kink density (ρ = a/x0) may be expressed:

ρ =

√
2i

u
= 2

√
i

2u
. (B.4)
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APPENDIX C. STEP VELOCITY ANISOTROPY

The vicinal faces of calcite display two distinct step edge structures, acute and obtuse.

Acute steps form an acute angle with the terrace below, while obtuse steps form obtuse

angles. Changing solution stoichiometry and oversaturation shifts the relative growth ve-

locities of acute and obtuse steps, causing the angle (θ) between the faces to change (Fig.

9)(Teng et al., 1999; Larsen et al., 2010). Due to geometric constraints of the calcite {101̄4}

face, angle γ between acute-acute and obtuse-obtuse faces is 101.6◦. If obtuse step velocity,

v+, is greater than acute step velocity, v−, θ can be shown to equal:

θ = 2atan

[
tan

(
γ

2

)
v+ + v−
v+ − v−

]
. (C.1)

If acute step velocities exceed those of obtuse steps, (v−-v+) replaces (v−-v+) in the de-

nominator of Eq. C.1. In time interval t, obtuse and acute steps travel by v+t=ny0,+ and

v+t=ny0,+ respectively, where y0,± is the step spacing and n is the number of step widths

traveled in time t. It is trivial to show that v+
v−

= y0,+
y0,−

. The fraction of new growth with

obtuse geometry becomes: f+= v+
v++v−

. By fitting the rate constants k and ν and endmember

fractionation factors separately for acute and obtuse faces, independent expressions for step

velocity and αp may be obtained for each step type (Eq. 6.13). The total fractionation factor

becomes:

αp,tot = f+αp,+ + (1− f+)αp,−, (C.2)

where αp,± is the fractionation factor associated with step type ±.

Unlike trace element or isotopic composition, growth rate is independent of step pro-
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portions expressed on the surface, because

Rnet =
vbd

y0
=
v+bd

y0,+
=
v−bd

y0,−
, (C.3)

so the solution composition dependence of only a single set of step velocities and terrace

widths, acute or obtuse, must be determined experimentally to predict growth rate.

Isotopic fractionation is not expected to vary significantly with step growth anisotropy,

because isotope partitioning will not be affected by kink site geometry: isotopes of different

mass are similar in size. However, trace elements tend to partition strongly into the acute or

obtuse face depending on ionic size, so the total distribution will be sensitive to the growth

hillock shape.

[Figure 9 about here.]
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Table 1: Constants applied in all fits to experimental data displayed in Fig. 7. Sources for

these constants include Larsen et al. (2010) (ε) and Teng et al. (1998) (a, b, h, and Ksp).

ε/kT a = 2b h d Ksp

(m) (m) (mol/m3)
7.775 6.4e− 10 3.1e− 10 27100 10−8.54
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Table 2: Attachment and detachment frequency rate constants (s−1) fitted to reported step

speed data from Davis (2008), Perdikouri et al. (2009), and Larsen et al. (2010) and corre-

sponding oversaturations (S). Kinetic coefficients fitted to obtuse step velocities Larsen (+)

and Davis (+) were used in fits A and B and fit C respectively.

Constant Davis (+) Davis (−) Larsen (+) Larsen (−) Perdikouri
νCa2+(s−1) 1.70e3 1.14e4 5.64e03 4.60e04 8.38e03
νCO2−

3
(s−1) 9.90e3 5.89e2 5.64e03 1.30e03 5.64e03

kCa2+(s−1M−1) 6.60e7 4.82e7 1.05e8 2.56e08 4.44e07
kCO2−

3
(s−1M−1) 8.87e7 4.82e7 1.05e8 8.10e07 3.69e08

S 12 12 4.6 4.6 6.3
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Table 3: Fitted parameters applied in fits A, B and C displayed in Fig. 7.

Fit rate constants αf αeq α γ
(J/m2) (J/m)

A Larsen (+) 0.9920 0.9998 1.41 1.49e-10
B Larsen (+) 0.9920 0.9998 3.00 1.49e-10
C Davis (+) 0.9963 0.9998 3.00 1.49e-10
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Figure 1: Schematic of kink sites and step edges at the AB mineral surface. A ions in solu-

tion exchange with the surface via attachment (with frequency kA[A] (s−1)) and detachment

(with frequency νA). Step height (h), terrace width (y0), and molecular unit width (a) are

depicted.
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3 = 1, when νA = νB and kA = kB .
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3 activity ratio in solution (ra). Increasing S or decreasing ra will de-

crease the magnitude of the backward exchange flux (Rb) relative to the forward reaction

flux (Rf ), driving the system towards kinetically controlled isotope or trace element parti-

tioning. Typical seawater ra values vary from 102 to 103. The dashed line indicates where

ACC will begin to form. An important feature illustrated here is that the S at which Rb/Rf

approaches 1 depends strongly on ra. Also, the transition from near equilibrium conditions

(Rb >> Rf ) to kinetically controlled conditions (Rb << Rf ) occurs over a larger range

of S as ra increases. This is a condition that is recognized by DePaolo as being needed to

fit available data and is explained here by invoking a microscopic model of crystal growth

(DePaolo, 2011).
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function of oversaturation for model parameters obtained for fits A and B (section 7.1).

At low oversaturation, dislocation driven step growth controls growth rate, but above the

critical supersaturation (i.e. the intersection of both curves), 2D nucleation controls rate.

The transition to 2D nucleation-driven growth occurs at lower supersaturation for fit B,

which has a higher step edge free energy per unit step height.
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Figure 7: Dislocation- and 2D nucleation driven step growth models using parameters from

fits A (a), B (b) and C (c) compared with Tang et al. (2008) experimental data. Rate model

fits assuming a spiral growth mechanism are shown as dashed lines, while fits assuming 2D

nucleation-driven growth are shown as solid black lines. The experiment-specific modeled

data points are shown as black symbols. Tang et al. (2008) experimental rate vs. ∆44/40Ca

data are shown as grey circles and are the same in (a-c).
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Figure 8: Predicted fractionation dependence on solution stoichiometry at varied solution

supersaturations calculated from Eq. 6.13, assuming surface reaction controlled growth

using the k and ν values of fits A and B. Rectangle shows approximate expected Ca isotope

fractionations for calcite precipitated from surface seawater, or slightly more oversaturated

seawater-like solutions.
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Figure 9: Schematic plan view of a growth hillock under conditions where obtuse (+) faces

(shaded) are growing more quickly than acute (-) faces. The angle between similar faces

(γ) is 101.6◦ on the {101̄4} face of calcite. The c-glide plane bisects γ. The step edge

length, L, is equal along all faces.
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