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 Computational modeling has played a great role in solving many questions in 

biochemical and biomedical research. Computers in chemistry are now readily used to 

study enzymatic reactions, protein-ligand binding, protein folding, macromolecular 

assembly and other dynamical phenomena. Particularly, in the realm of cell membrane 

and transmembrane-protein chemistry, computer modeling has provided a great deal of 

information and guidance. The research presented here in this dissertation furthers the 
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body of work in membrane-protein modeling. The mechanical properties of 

membranes—tension and lateral pressure—are demonstrated along with the change in 

these features when a peptide (melittin) is inserted into the membrane. By the simulation 

technique of umbrella sampling, the thermodynamics of a model hexapeptide (WL5) are 

probed, as it transverses the span of a membrane. The first free energy calculation of such 

a system is presented. Coupled with previous experimental findings, a grand model of 

peptide insertion and aggregation in a membrane host is assembled. Membrane proteins 

also serve as pharmacological targets in drug discovery. The work presented here focuses 

on the acetylcholine binding protein (AChBP), a surrogate structure of the nicotinic 

acetylcholine receptor (nAChR). A virtual screening study was conducted using the 

relaxed-complex method—in which protein flexibility is captured via a molecular 

dynamics simulation—of AChBP against a database of ligands from the National Cancer 

Institute (NCI). The study shows that several small molecule ligands from NCI can bind 

AChBP and possibly nAChR. Such ligands can serve to differentiate between the three 

species of AChBP and between the subtypes of the receptor. Furthermore, such ligands 

can resemble agonistic/antagonistic behavior of addictive narcotics, thus aiding in 

counter-drug addiction treatments. A final, peripheral membrane-protein is also studied 

here; a molecular dynamics simulation of the cytosolic phospholipase A2 (CPLA2) is 

conducted, along with a docking study of its known inhibitors. The results are correlated 

with experimental deuterium exchange data, to afford a broader understanding of protein-

ligand interactions in this system. As CPLA2 is an important target in pharmacology, this 

work contributes to the design of novel ligands that can bind appreciably to the enzyme.    
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CHAPTER 1: An Introduction to Computing in 

Biochemical Phenomena 

 
Examining scientific history, one can easily highlight several inventions that have 

significantly affected the trajectory of human existence. To mention only a few, one 

could cite the inventions of the reading glasses, the telescope, the microscope, the 

telephone and penicillin. Particularly in the 20th Century, man enjoyed a great renaissance 

in technological innovation; and arguably the single most important invention to stem 

from the 20th Century was the computer, an electrical device capable of carrying out 

simple calculations in a repetitive and rapid manner. Yet, what distinguishes the 

computer from other inventions is that it is not a static product. The computer is always 

changing with respect to function, accuracy, speed and size. This last quality is best 

demonstrated by the cell phones of today that harbor the computing power of once 

warehouse-sized machines! To put it mildly, computers have changed many aspects of 

our lives. Man employs them for a wide spectrum of tasks, including weapons control, 

security, personal finance, work, leisure, communication, etc. With the advent of the 

Internet, computers can be used to seamlessly transfer information in quantities and with 

speeds unimaginable by previous generations. And as we continue to use computers on a 

hourly basis in our lives, we observe the computer changing both functionally and 

aesthetically, to meet all of our professional and personal needs.    

The scientific communities—particularly those in the physical sciences, such as 

physics, mathematics and engineering—were the first to harness the power of computing 
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in their professional forums.1 Computers made it possible to carry out numerous and 

mundane calculations once the theory of such work was grounded. For instance, in the 

study of partial differential equations, although the equations were well-posed, the 

solutions were unattainable or lacked analytical forms. With the advent of computing, 

these equations—which span many disciplines—were solved numerically by carrying out 

many calculations using computers.2  

Such numerical methods became the pillar of scientific computing and held the 

throne until the 1970s, when the art of scientific simulation came on the horizon.3 As 

computing and visualization technology advanced, scientists took advantage of this 

ongoing renaissance by devising simulation schemes. In a simulation, the same numerical 

procedures are carried out as before, but a visual element can also be added to show (for 

instance) how a particular solution of a differential equation changes as the boundary 

conditions are varied. The simulations can also demonstrate a model for the real physical 

world. Fluid mechanics simulations can demonstrate the movement of an eddy in the 

ocean,4 geophysicists can simulate an earthquake,5 and chemists can simulate the 

dynamics of molecules.6 This world of simulation and the accompanying visualization 

now intersects with many roads in our lives; from computer-animated graphics in video 

games and movies, to scientific models that yield a better understanding of the physical 

world, it is now hard to imagine a life without computing power and simulation. 

In science, investigators have been using computers to solve complex problems 

for over 70 years.7 As technology evolved throughout this time, so too did the 

relationship between scientists and computing. The first computers filled up entire 

buildings and scientists went through laborious tasks to employ them.8 But as computers 
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advanced, they became smaller and more easily accessible. Once their spatial 

requirements were reduced down to the size of a large room, laboratories all around the 

globe began to purchase computers and integrate them into research. And with the 

relatively recent advent of the personal computer, nowadays, one would be hard-pressed 

to find a single office without a computer.9 

Along with the technological advances in computing, another (and arguably more 

important) change occurred, regarding the mindset of scientists and how they conduct 

their research. At the beginning of the computing age, scientists would first formulate 

their ideas and mathematical notions without consideration of computing techniques. 

Later, they would write code trying to emulate their formulations, but the former could 

never influence their thinking regarding the latter. In other words, they viewed their 

traditional formulations as ground truth and forced the computing code to follow suit. 

Oftentimes, the result was an inefficient computational method.1  

In due time, it dawned on many scientists that if they can construct their 

formulations with the computing code in mind, then they can employ computers to carry 

out their calculations in more efficient and accurate ways. Even if a particular algorithm 

was correct and elegant on paper, if the scientist knew that that algorithm would become 

cumbersome in computing, then that algorithm was immediately discarded. It was 

replaced with a more efficient one.10 This type of forward thinking at the conception level 

is now common practice among all scientists. Every time a mathematician pens a new 

algorithm for numerical optimization, or when a chemist scribbles down a new 

formulation for molecular dynamics, he/she is thinking, “How can I code this? How can 

this be implemented in C++, PERL, MATLAB, etc?”   
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Although computers and science have been intertwined for decades now, their 

relationship has enjoyed a stimulating growth particularly over the past 20 years. With 

the advent of faster processors, larger memory storage, and more feasible inter-hardware 

communication, today, even a modest desktop computer can perform many scientific 

calculations and simulations. The user no longer requires a warehouse full of machines 

for simple scientific tasks.9 Moreover, parallel programming codes and architecture make 

it possible for one to link up two or more desktop machines (or simply their processors), 

for even faster computing. In such a parallel fashion, even a small cluster can perform at 

the level of yesterday's supercomputer. Parallel processing has catapulted scientific 

thinking into realms that were once thought to be unreachable.11 Running on hundreds, 

thousands, even tens of thousands of processors, scientists can simulate and study events 

that are unfeasible by experimental means, such as the collision of galaxies.12 If the 

invention of computing can be heralded as one of the great inventions of the 20th Century, 

then undoubtedly, parallel computing will be held in the same light from the current era. 

The other dramatic change that has occurred over the past 20 years is in the 

demographics of the computing community. What used to be a body of only "hard" 

scientists (those rooted deeply in the physical sciences) now consists of investigators 

from many disciplines. Epidemiologists use computational science to probe the spread of 

disease,13 while financial analysts use modeling to simulate stock market fluctuations.14 

Many subjects now reap the benefits of computing power. The ease of numerical 

calculations, the predictive power of simulation, and the visual insight gained from 

modeling are but a few of the advantages afforded by computational science, across a 
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variety of genres. In due time, every discipline will have a significant computational 

component to it.  

In the discipline of chemistry, many problems lend themselves to the art of 

scientific computing. In general, these problems can be divided into the following 

categories: many-body problems, such as molecular dynamics (MD), where the 

interactions of several atoms or molecules are simulated, usually in a classical manner; 

quantum chemical calculations, where numerical computing is used to solve a complex 

partial differential equation, namely the Schrodinger Equation; energetic calculations 

pertaining to conformational and/or electronic states of molecules (for instance, the 

calculation showing that one protein conformer is more stable than the other, i.e. the 

protein folding problem); and the calculation of thermodynamic parameters (such as 

entropy, enthalpy, free energy) in various chemical interactions. The importance of 

computers in chemistry was recognized in a grand sense, by the 1998 Nobel Prize in 

chemistry. The award went to Walter Kohn and John A. Pople, for their efforts in the 

field of quantum computing, including the discovery and implementation of density 

functional theory (DFT).15,16  

In all of the aforementioned categories, computational science continues to propel 

chemical thinking in the modern day. Particularly in biochemistry, scientists employ 

computers to study a variety of phenomena, such as biomolecular dynamics, protein 

folding, and protein-ligand interactions. The first computational approaches in 

biochemistry arose in the 1970s, during which the structure and dynamics of proteins 

were elucidated.17,18 Throughout the 1980s, various techniques in molecular dynamics 

paved the way for the first biochemical simulations. Computational code such as 
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GROMACS19 and AMBER20 made it possible to construct movies of dynamical events in 

biochemistry, thus affording new knowledge in the field. In the 1990s, parallel computing 

was integrated into much of the computational chemistry codes, such as NAMD,21 

making it possible to run even larger simulations. In the current decade, the 

computational study of protein-ligand interactions, more commonly termed as ‘docking’, 

has also become a central theme in chemical computing.22 All of this biochemical 

computing has advanced so quickly and thoroughly that today, it can be used to augment, 

predict, and guide experimental endeavors. Biochemical computing now plays a crucial 

role in research, in both academia and industry. As stated by Professor Tamar Schlick of 

New York University:23 

In biomolecular modeling, a multidisciplinary approach is important not 
only because of the many aspects involved—from problem formulation to 
solution—but also since the best computational approach is often closely 
tailored to the biological problem. In the same spirit, close connections 
between theory and experiment are essential: computational models 
evolve as experimental data become available, and biological theories and 
new experiments are performed as a result of computational insights.  

 
Almost every conceivable category of molecules in biochemistry has been 

addressed by computational modeling and simulation, including proteins, carbohydrates, 

nucleic acids, and lipids.23 Computational approaches have shed much light on a wide 

breadth of biochemical problems and dilemmas. Simulations can demonstrate how 

proteins fold, how one conformation dominates over another, or how a drug binds to its 

target.24 It is now possible to simulate even larger structures, such as viruses,25 

ribosomes,26 and other cellular organelles.  

One such organelle is the cell membrane, which consists of an organized 

arrangement of phospholipids. Each lipid interacts with its neighbors in a non-covalent 



7 

 

fashion; the packing and consequent stress/strain created by these lipids ascribe to the 

membrane an overall structural integrity.27 Yet, the membrane is by no means 

homogenous in composition; the type and concentrations of the lipids can vary, large 

macrocyclic molecules (such as cholesterol) can embed into the membrane, and 

peptides/proteins can also carve homes for themselves in this hydrophobic environment. 

Some of these proteins span across the entire membrane, while others only bind to one 

peripheral side.28  

Computational simulations of membranes began in the early 1980s, with the work 

of Berendsen et al.29 Of course, these first models were primitive and consisted only of a 

few dozen lipids, accounting for a small patch of a cellular membrane. Nonetheless, the 

work was pivotal in that it was the first to accomplish the parameterization of lipids and 

allow for their simulation. As computing power and the field of molecular dynamics 

progressed, it soon became possible to simulate much larger patches of membranes.30 

During the 1990s, the work of Peter Tieleman et al. demonstrated that if simulated with 

careful attention to key parameters (including pressure and temperature coupling), a 

model membrane patch could mimic the physical properties of a real cell membrane 

(such as tension, area-per-lipid, etc).31 

With confidence in the capability to simulate model membranes, scientists then 

turned their attention to membrane proteins. The first simulations of proteins in a lipid 

environment took place in the late 1990s, and the field of membrane-protein modeling 

has taken great leaps in the current decade. A wide variety of such systems has been 

examined, including the mechano-sensitive protein channels,32 ligand-gated ion channels 

and receptors,33 anti-microbial peptides,34 and G-protein coupled receptors.35 In the work 
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presented here, the computational and pharmacological modeling of membrane proteins 

is further advanced.   

The distribution of surface tension within a lipid bilayer, also referred to as the 

lateral pressure profile, has been the subject of theoretical scrutiny recently due to its 

potential to radically alter the function of biomedically-important membrane proteins. 

Experimental measurements of the pressure profile are still hard to come by, leaving first-

principles all-atom calculations of the profile as an important investigative tool. 

Described and validated here (in Chapter 2) is an efficient implementation of pressure 

profile calculations in the molecular dynamics package NAMD, capable of distinguishing 

between internal, bonded and nonbonded contributions as well as those of selected atom 

groups. The new implementation can also be used in conjunction with Ewald summation 

for long-range electrostatics, improving the accuracy and reproducibility of the calculated 

profiles. Described are the results of the calculation of a pressure profile for a simple 

protein–lipid system consisting of melittin embedded in a model bilayer. While the lateral 

pressure in the protein–lipid system is nearly the same as that of the bilayer alone, 

partitioning of the lateral pressure by atom type revealed substantial perturbation of the 

pressure profile and surface tension in an asymmetric manner. 

Next, in Chapter 3, Peptide insertion, positioning, and stabilization in a model 

membrane are probed via an all-atom molecular dynamics simulation.  One peptide 

(WL5) is simulated in each leaflet of a solvated dimyristoylglycero-3-phosphate (DMPC) 

membrane.  Within the first 5 ns, the peptides spontaneously insert into the membrane 

and then stabilize during the remaining 70 ns of simulation time.  In both leaflets, the 

peptides localize to the membrane interface, and this localization is attributed to the 
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formation of peptide-lipid hydrogen bonds.  It is shown here that the single tryptophan 

residue in each peptide contributes significantly to these hydrogen bonds; specifically, the 

nitrogen heteroatom of the indole ring plays a critical role.  The tilt angles of the indole 

rings relative to the membrane normal in the upper and lower leaflets are approximately 

26° and 54°, respectively.  The tilt angles of the entire peptide chain are 62° and 74°.  

The membrane induces conformations of the peptide that are characteristic of -sheets, 

and the peptide enhances the lipid ordering in the membrane.  Finally, the diffusion rate 

of the peptides in the membrane plane is calculated (based on experimental peptide 

concentrations) to be approximately 6 Å2/ns, thus suggesting a 500 ns  time scale for 

intermolecular interactions.     

In Chapter 4, the free energy change of the same peptide (WL5) as it inserts into a 

model membrane is explored. This is an important phenomenon because a variety of 

biomolecules mediate physiological processes by inserting and reorganizing in cell 

membranes, and the thermodynamic forces responsible for their partitioning are of great 

interest. Recent experiments provided valuable data on the free energy changes 

associated with the transfer of individual amino acids from water to membrane. However, 

a complete picture of the pathways and the associated changes in energy of peptide 

insertion into a membrane remains elusive. To this end, computational techniques 

supplement the experimental data with atomic-level details and shed light on the 

energetics of insertion.  In Chapter 4, the technique of umbrella sampling is employed in 

a total 850 ns of all-atom molecular dynamics simulations to study the free energy profile 

and the pathway of insertion of a model hexapeptide consisting of a tryptophan and five 

leucines (WL5). The computed free energy profile of the peptide as it travels from bulk 
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solvent through the membrane core exhibits two minima: a local minimum at the water-

membrane interface or the head group region; and a global minimum at the hydrophobic-

hydrophilic interface close to the lipid glycerol region. A rather small barrier of roughly 1 

kcal mol-1 exists at the membrane core, which is explained by the enhanced flexibility of 

the peptide when deeply-inserted. Combining these results with those in the literature, a 

thermodynamic model is presented for peptide insertion and aggregation which involves 

peptide aggregation upon contact with the membrane at the solvent-lipid head group 

interface.  

Chapter 5 begins the examination of large and more biologically-relevant 

membrane proteins. The nicotinic acetylcholine receptor (nAChR), which is a member of 

the ligand-gated ion channel family, is implicated in many neurological events. Yet, the 

receptor is difficult to target without high-resolution structures. In contrast, the structure 

of the acetylcholine binding protein (AChBP) has been solved to high resolution, and it 

serves as a surrogate structure of the extra-cellular domain in nAChR. A virtual screening 

study of the AChBP is presented using the relaxed-complex method, which involves a 

combination of molecular dynamics simulations (to achieve receptor structures) and 

ligand docking. The library screened through comes from the National Cancer Institute, 

and its ligands show great potential for binding AChBP in various manners. These 

ligands mimic the known binders of AChBP; a significant subset docks well against all 

species of the protein and some distinguish between the various structures. These novel 

ligands could serve as potential pharmaceuticals in the AChBP/nAChR systems.  

Finally, in Chapter 6, an analysis of Group IVA (GIVA) phospholipase A2 (PLA2) 

inhibitor binding is presented using a combination of deuterium exchange mass 
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spectrometry (DXMS) and molecular dynamics simulations. Models of the GIVA PLA2 

inhibitors pyrrophenone and the 2-oxoamide AX007 docked into the protein were 

designed based on deuterium exchange results, and extensive molecular dynamics 

simulations were run to determine protein-inhibitor contacts. The models show that both 

inhibitors interact with key residues that also exhibit changes in deuterium exchange 

upon inhibitor binding. Pyrrophenone is bound to the protein through numerous 

hydrophobic residues located distal from the active site, while the oxoamide is bound 

mainly through contacts near the active site. We also show changes in protein dynamics 

around the active site between the two inhibitor-bound complexes. This combination of 

computational and experimental methods is useful in defining more accurate inhibitor 

binding sites, and can be used in the generation of better inhibitors against GIVA PLA2.   
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CHAPTER 2: Computational Investigation of Pressure 

Profiles in Lipid Bilayers with Embedded Proteins  

 

2.1 Introduction  

Lipid bilayers are the dominant structural component of cellular membranes. 

However, the diversity of lipids expressed in cells as well as their specific localization 

reflects their active role in determining the propensity of peptides to insert into bilayers, 

as well as the activity and function of integral membrane proteins. While protein–lipid 

interactions occur via a number of modes, including direct hydrogen bonding and specific 

interactions with the transmembrane portion of membrane proteins, the role of chemically 

non-specific lateral pressures has become increasingly well appreciated in recent years. 

At equilibrium, cellular lipid bilayers are found in a tension-free state. Yet, the 

internal membrane lateral pressure, which stems from the interactions of membrane 

constituents, can vary significantly according to depth in the bilayer as well as the lipid 

composition.36 This variation is attributable to a complex interplay of interactions 

between lipid components and the surrounding solvent, including the repulsion of the 

phosphate headgroups (a positive pressure), the hydrophobic–hydrophilic interface (a 

negative pressure) and the entropic repulsion of the hydrocarbon tails (a positive 

pressure).37 The profile could be expected to be even more complex in the presence of 

transmembrane proteins, which make up a significant portion of many lipid bilayers in 

vivo. 

12 
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While some progress has been made in directly measuring the lateral pressures in 

bilayers,38 computational approaches are still an important tool for investigating the 

nature of the pressure distributions and their dependence on membrane composition. Both 

statistical models,37 coarse-grained molecular dynamics (MD),39,40 and all-atom MD41,32 

have been used to directly calculate the lateral pressure from the underlying molecular 

interactions. The MD approach, while much more computationally intensive than more 

coarse-grained approaches, benefits from the decades-long development of transferable 

force fields as well as the ability to model specific lipid headgroups and protein 

inclusions in atomic detail. An all-atom approach thus presents the opportunity to 

develop a consistent model of both specific, chemical interactions between lipids and 

proteins, as well as non-specific, physical effects such as those arising from 

inhomogeneous distributions of, and shifts in, lateral pressures. 

Recent experimental results seem to suggest that, while specific lateral pressure 

profiles play a role in modulating membrane protein behavior in some cases, specific 

lipid–protein interactions are still critical for function. An illustrative example is the 

interaction of the nicotinic acetylcholine receptor (nAChR) with its surrounding lipid 

environment. Solid-state NMR measurements suggest a strong interaction between the 

m1 segment of nAChR and dimyristoylphosphatidylcholine (DMPC) bilayers, leading 

to effects on lipid organization that cannot be explained solely by hydrophobic mismatch 

or bilayer rigidity.42 Contrary to physical mechanisms of membrane protein control, it 

was found by Martinez et al. that nAChR exhibits binding kinetics in a complex of 

amphipathic polymers similar to that of its native membrane environment.43 However, in 

detergent, the kinetic properties of the channel are markedly different. The authors argue 
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that the data supports a molecular mechanism of channel function modulation, rather than 

a generic, physical mechanism. Baenzinger et al. find mixed results: either 

dioleoylphosphatidic acid (DOPA) or cholesterol in a reconstituted egg 

phosphatidylcholine membrane can influence the equilibrium between nAChR states, but 

anionic lipids are required for nAChR to adopt a fully functional conformation.44 

The present work seeks to extend lateral pressure calculations to protein–lipid 

systems. For comparison with previous work we chose to model a well-studied peptide, 

melittin, which forms stable helices and aggregates in bilayers. Pressure profiles for 

membrane proteins have been studied previously,45,46 to our knowledge no protein–lipid 

systems have been studied in this manner using all-atom MD. The effect of lateral 

pressures on a system as simple as a single helical peptide ought to be discernable in 

simulation, as thermodynamic transfer energies for insertion of helices of varying 

composition have been shown to depend on the location of residues within the 

polypeptide chain.47 

Consisting of 26 amino acids, melittin embeds itself in cellular membranes, 

disrupts their integrity and eventually leads to lysis. The mechanism of such embedment 

as well as the orientation of melittin in the lipid bilayer are the subjects of much research. 

It has long been suggested that melittin can lie either laterally across the membrane or 

insert itself parallel to the lipid normal, with the hydrophilic carboxy terminus protruding 

out of the membrane.48 A computational study of the former orientation demonstrating its 

stability has been presented.49 

The present article introduces preliminary findings of a computational study of 

the latter orientation of melittin (parallel to the normal) in a lipid bilayer. In particular, we 
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seek to calculate the lateral pressure profile of a DMPC bilayer hosting melittin in the 

normal-parallel orientation and to contrast this to a profile of the membrane without 

melittin. The objective is to demonstrate a significant difference between the pressure 

profiles of the membrane-protein and no-protein complexes. If such a difference exists, 

one can then study the effect of the protein-altered pressure profile on other constituents 

(possibly other proteins) in the membrane. 

 

2.2 Materials and Methods  

The DMPC system was based on a pre-equilibrated membrane from the Tieleman 

laboratory ( http://www.ucalgary.ca/tieleman/download.html ). The melittin coordinates 

used were those of 2MLT.pdb, downloaded from the Protein Data Bank.50 The DMPC 

membrane originally contained 128 lipids (divided evenly between the top and bottom 

monolayers), was solvated with 3655 water molecules and previously equilibrated for 1 

ns at a constant area of 0.596 nm2/lipid. The membrane normal was oriented with the z-

axis. 

Using the Visual Molecular Dynamics program51 and in a manner similar to that 

of Bachar et al.,52 three DMPC residues near the center of the membrane were deleted 

from the bottom monolayer, as well as four from the top monolayer. The melittin 

structure, stripped of its sulfate ions, was carefully placed along the z-axis in this cavity; 

see Figure 1. After neutralization, this new system, which we refer to as DMPC+Mel, 

consisted of 121 DMPC lipids (61 in the bottom monolayer, 60 in the top), the 26-residue 

melittin, five chloride ions and 3637 TIP3 water molecules for a total of 25,625 atoms. 
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Following a 5 ps equilibration period, pressure profile data was gathered under conditions 

identical to equilibration from runs of 14.3 ns for the DMPC system and 22.08 ns for the 

DMPC+Mel system. 

 

Figure 1: Initial snapshot of melittin-DMPC system, colored by atom type 
used in the pressure profile analysis: lipid headgroups (green), lipid tails 
(pink), water (light blue), Melittin residues 1–11 (orange), 12–20 
(purple), and 21–26 (dark blue). Melittin conformations are shown from 
snapshots separated by 2 ns. See online version for color. 

 
The molecular dynamics program NAMD53 with the CHARMM27 force field54 

was employed for all MD simulations and calculations. Following the procedure of 

Berneche et al.,49 the system was equilibrated at 330 K, with temperature control 

provided by Langevin dynamics with a coupling constant of 2 ps, and pressure control 

via the Langevin piston method.55 The cross-sectional area of the membrane was held 

fixed at 59.4 by 63.0 Å, while the pressure normal to the bilayer was maintained at 1 atm. 

Bonds to hydrogens were fixed, permitting a timestep of 2 fs. Nonbonded interactions 

were smoothly switched off between 9 and 10 Å. Long-range electrostatic forces were 
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evaluated using the particle mesh Ewald (PME) method56 with grid spacing less than 1 Å 

along each axis. 

The pressure profile was further partitioned by atom type (see below). The 

partition for the melittin system is shown in Figure 1. Besides lipid and solvent atoms, we 

partitioned the melittin peptide into three segments, which we refer to as Mel (1–11), Mel 

(12–20), and Mel (21–26), corresponding to the residues included in each partition. 

The bulk pressure  P  is expressed in terms of the contributions made by kinetic 

and inter–particle interactions as: 
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where ΔV is the change in volume, mi and vi are the mass and velocity of the ith-particle, 

Fij and rij are the interaction force and distance between particles i and j. Calculation of 

the lateral pressure profile requires partitioning into several different spatial regions. At 

equilibrium the off-diagonal elements of pressure vanish, and in a homogeneous system 

such as bulk solvent the diagonal components will be equal. Anisotropic systems such as 

lipid bilayers may maintain a non-vanishing surface tension (γ), given by: 
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where  2h  is the total bilayer thickness (with the membrane center placed at 0), and the 

latter quantity in the integrand is the lateral pressure.41 The integration takes place over 

the entire simulation space. 

We consider here systems with anisotropy only along one axis, which we assign 

to z, so that the system may be partitioned into “slabs” perpendicular to the z-axis. 
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Calculation of the spatial distribution of the lateral pressure requires that the contributions 

to the virial be somehow distributed over the several slabs. A natural choice of contour, 

employed by several previous efforts,41,45 is the Irving–Kirkwood contour,57 in which the 

contribution from each interaction is distributed evenly between slabs lying on a straight 

line between the interacting particles. It has been pointed out, however, that this approach 

is limited to describing pairwise interactions, which precludes the use of common 

electrostatics methods such as PME in the computation of the pressure profile.58 PME can 

be reasonably well approximated using long cutoffs, but artifacts may still remain due to 

the non-uniform distribution of charges in the plane of the bilayer and the slow 

convergence of the distribution of lipids. 

Using a different contour, known as the Harasima contour,59 full electrostatics can 

readily be employed in the pressure profile calculation by using Ewald sums.58 At 

sufficiently high accuracies, the Ewald sum and the particle mesh ewald computation 

converge to precisely the same result. PME has the advantage of converging faster and 

producing smooth forces, which are required for MD simulation. 

For the purpose of determining the contributions of water, lipid, protein, or other 

classifications of atom types to the pressure profile, we also computed pressure profiles 

decomposed by atom type. Following the notation of Essman et al.,56 the reciprocal space 

contribution to the electrostatic energy Erec of a configuration of  N charged particles with 

coordinates  ri  is given by: 

S(m)S(-m) 
m

)/mπexp(
 

V2

1
    E

0m
2

222

rec 





           (3) 

where the structure factor  S(m)  is given by: 



19 

 

)r m i 2exp(q    S(m) j

N

1j
j  



             (4) 

and the reciprocal lattice vectors  m = m1 a + m2 b + m3 c , where  a , b , c designate the 

reciprocal unit vectors, and for integers m1, m2, and m3 not all zero. For the purpose of 

obtaining a pressure profile, one simply expands one of the structure factor terms in 

equation (4) and rearranges the order of summation to obtain the contribution of the 

pressure provided by each individual atom: 
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where  α and  β  are the unit cell vector and conjugate vectors (respectively), and δαβ is 

the Kronecker delta (if α =  β  , δαβ = 1, otherwise δαβ = 0). 

The particle mesh Ewald method proceeds by interpolating the structure factor 

onto a grid. Although it seems that the pressure profile could in principle be determined 

directly from the PME approximation to the structure factor, such an expression is much 

more unwieldy than the direct Ewald sum. Moreover, since (as described below) the 

Ewald contribution may be calculated offline, and plays no role in the simulation 

dynamics, the calculation of the Ewald contribution need not be as fast as PME. 

The Ewald sum also admits a partition into contributions from selected atom 

types. If the structure factor equation (4) is decomposed into  k  partitions  S1(m) + S2(m) 

+ … + Sk(m), then, from equation (3), the reciprocal energy can be written: 
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where  Es  is the reciprocal space energy if only particles of type  s  are considered. The 

remaining cross terms can be considered to arise from the interactions between particles 

of type  s  and  t , and can themselves be  partially-partitioned just as was done for 

interactions between atoms of the same type. 

In the new NAMD implementation, all contributions to the pressure profile except 

the Ewald sum are computed “online”; that is, as the simulation proceeds. For each 

pressure profile slab, the module outputs the average of the pressure tensor for all 

timesteps since the previous output. This self-averaging improves the convergence of the 

nonbonded contribution to the pressure profile and avoids problems associated with using 

multiple timestepping.32 In addition to the total pressure profile, the contributions from 

“internal”, “bonded”, and “nonbonded” are output separately. “Internal” incorporates 

contributions from the kinetic energy of the particles, as well as correction forces arising 

from rigid bond constraints. The “bonded” portion contains the usual covalent terms 

present in the force field, while “nonbonded” contains all van der Waals and electrostatic 

interactions. 

If multiple atom types have been specified, all three contributions to the pressure 

profile are further subdivided by atom type. One set of “internal” contributions are 

reported for each atom type. For “bonded” and “nonbonded”, the self interactions of each 

atom type with other atoms of the same type, as well as the pairwise interactions of each 

atom type with every other atom type, are recorded. In the current implementation, up to 

15 different atom types can in principle be analyzed simultaneously. 
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If a simulation was conducted using PME for electrostatics, a second offline 

calculation needs to be made to account for the reciprocal space contribution to the 

pressure. In the previous implementation (present in NAMD 2.5), this could be done only 

by setting a long cutoff. In the new implementation, the PME contribution can be 

estimated using a cutoff as before (by ignoring the nonbonded contribution in the online 

calculation and re-computing the nonbonded contribution using a long cutoff), or with the 

Ewald summation method. 

The calculations presented here all used the Ewald sum for the calculation of the 

pressure profile. The maximum Ewald k-vector along each direction was sixteen; no 

significant improvement was observed when more k-vectors were added. 

 

2.3 Results 

The distribution of melittin residues within the DMPC bilayer is shown in Figure 

2a. While the N-terminal half of the peptide lies entirely within the hydrophobic core of 

the bilayer, much of the C-terminal region resides in the solvent-headgroup interface 

region. That this region (and specifically residue 19, tryptophan) remains in the interface 

during the entire simulation agrees well with previous experimental and simulation 

results.52,60 A small kink in the helix is reflected in a change in slope of the melittin 

residue distribution at GLY12. This kink, as well as the overall disposition of the melittin 

within the bilayer, remained fairly constant for the duration of the simulation. Such 

observations are characteristic of melittin-membrane simulations.52 
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Figure 2: a) Distribution of melittin residues within the bilayer. b) Lateral 
pressure profile computed from DMPC-only simulation (DMPC, blue), 
DMPC with melittin (DMPC+Mel, green), and DMPC with melittin but 
excluding the contribution of melittin interactions (DMPC+ExcMel, red) 
in online version. 
 
We computed lateral pressure profiles for both the DMPC and DMPC+Mel 

systems. For purposes of comparison, we also computed the pressure profile for the 

DMPC+Mel system with the contributions from melittin atoms excluded from the sum. 

We refer to this “virtual” system as DMPC+ExcMel. The lateral pressure profiles 

computed from the DMPC, DMPC+Mel and DMPC+ExcMel simulation are shown in 

Figure 2b. As in previous work,32 the peak tension, corresponding to minimum lateral 

pressure, lies just inside the average depth of the phosphate groups of the bilayer. In both 

simulations the profile is reasonably symmetric, and drops to zero in the water phase, 

indicating that the bilayer is sufficiently hydrated. 
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While the total pressure profile in the DMPC and DMPC+Mel simulations 

appears very similar, the contribution to the lateral pressure made by the lipid alone is 

substantially offset in the upper monolayer by the contribution made by the melittin. Only 

a small change in the profile of the DMPC+Mel simulation compared to the pure DMPC 

simulation is observed in the lower leaflets. As seen in Table 1, the total tension in the 

membrane is nearly the same in the two systems, differing by less than the statistical error 

in their measurement. Although the area per lipid and lipid order parameter (Figure 4) in 

our simulations are in good agreement with experimental membrane values,61 the system 

still exhibits positive surface tension. This is in agreement with previous work employing 

the CHARMM parameter set for lipids,62 where it was found that a surface tension of 35 

– 45 dyne cm-1 gave the best agreement with known area per lipid. Our smaller tensions 

in the range of 10 – 20 dyne cm-1 probably derive from the larger size of the bilayers in 

our simulations (60 lipids per monolayer, compared to 36 in reference 62). 

 
Table 1: Per-monolayer tension computed, respectively, from total virial 
during the simulations, from the pressure profile, and from the pressure 
profile for the lower and upper leaflets separately. All units are in dyne 
cm-1. See the caption of Figure 2 for definitions of abbreviations. 
 

 
Pressure 
Tensor 

Pressure 
Profile 

Lower 
Leaflet 

Upper 
Leaflet 

DMPC 12.2 ± 1.4 12.7 12.9 12.6 
DMPC+Mel 13.2 ± 1.1 13.3 18.0 8.5 

DMPC+ExcMel N/A 8.0 19.2 3.2 

 
 

The tension computed from the pressure profile analysis will necessarily differ 

slightly from the tension computed on the fly during the respective simulations, simply 

because it is based in part upon post-processing of trajectory timesteps sampled 500 ps 
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apart. As seen in Table 1, the tensions computed from the pressure profiles are both well 

within the statistical error of the direct simulation values. However, the pressure profile 

analysis also reveals that the tensions in the individual monolayers are nearly the same in 

the DMPC simulation, but differ substantially in the DMPC+Mel simulation. The tension 

in the lower leaflet is nearly 5 dyne cm-1 larger than in pure DMPC, and 4 dyne cm-1 

smaller in the upper leaflet. This is despite the fact that, in the construction of the 

DMPC+Mel system, the upper leaflet has fewer lipids than the lower leaflet (60 vs. 61, 

respectively); thus, if the two termini of melittin were perfectly symmetric, one would 

expect that the upper leaflet would exhibit greater tension due to its increased area per 

lipid. In fact, the opposite is observed, suggesting that protein–lipid interactions are the 

primary mechanism responsible for decreasing the tension in the upper leaflet and 

increasing the tension in the lower leaflet. 

The asymmetry in the tension is even more striking when melittin interactions are 

excluded from the calculation. Values in the third line of Table 1 are computed for 

contributions to the pressure profile from lipid, water, and interactions between lipid and 

water. The average tension in the DMPC+Mel system when melittin is excluded is only 8 

dyne cm-1, compared to 13.3 dyne cm-1 for the complete system. Yet, the computed 

tension in the lower leaflet is even greater than in the complete DMPC+Mel system, 19.2 

vs. 18 dyne cm-1, while the tension in the upper leaflet is much smaller, 3.2 vs. 8.5 dyne 

cm-1. 

Despite the large difference in tension between the two leaflets, the available area 

per lipid is not substantially different, and thus, as shown Figure 4a, the lipid order 

parameter in the two leaflets is virtually indistinguishable. This similarity in order 
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parameter between the two leaflets has also been noted in previous membrane-melittin 

simulations.52 

As shown qualitatively in Figure 1, and quantitatively in Figure 2a, the melittin 

peptide was quite stable during the course of the DMPC+Mel simulation in terms of its 

secondary structure, its orientation relative to the bilayer normal and its depth in the 

bilayer. We therefore consider the spatial regions within the bilayer where the 

components of the melittin peptide contributed to the lateral pressure.  

Figure 3a shows the partial lateral pressures arising from interactions involving 

three subsections of the melittin peptide; residues 1–11, referred to as Mel(1–11); 

residues 12–20, Mel(12–20); and residues 21–26, Mel(21–26). It is somewhat surprising 

that interactions due to the respective components of melittin were visible well outside 

the spatial region occupied by those components. In order to establish whether those 

interactions were due in part to the use of periodic boundary conditions in the simulation 

along the z direction, a second DMPC+Mel system was constructed with a water layer 20 

Å thicker than the one described here. No significant difference was seen in the location 

or size of the peaks in the pressure profile, indicating that the pressure profile peaks 

visible in Figure 3 are due to interactions within the membrane and not from interactions 

with neighboring periodic images.  

The most pronounced contribution from the melittin to the pressure profile occurs 

around z = 18 Å , with a large negative peak. This is, of course, consistent with the result 

of Figure 2, where it was shown that excluding the contribution of melittin to the pressure 

profile leads to an increase in lateral pressure in the region around z = 18 Å.  
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Figure 3: a) Partial pressures of melittin: contribution from complete 
protein(thick solid line); melittin residues 1–11(thin solid line); residues 
12–20(dashed line); residues 21-26(dotted line). b) Partial pressures 
arising from interactions of melittin with other simulation components. 
Thick solid line: total melittin pressure; thin solid line: interactions with 
lipid headgroups; dashed line: interactions with lipid tails; dotted line: 
interactions with water; dot-dashed line: interaction with self. c) 
Difference between pressure profile components in DMPC+melittin 
simulation and pure DMPC simulation. Thick solid line: total difference 
in membrane and water contribution to the pressure profile; thin solid 
line: headgroup–headgroup interactions; dashed line: headgroup–water 
interactions; dotted line: tail–water interactions; dot-dashed line: water–
water interactions. 
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Most of this peak is due to Mel(21–26), which, with its four positively charged 

side chains near the highly polar lipid headgroups, is well positioned to interact strongly 

with the bilayer. The other two melittin segments studied here slightly offset the 

contribution of Mel(21–26) in this region. 

Figure 3b shows the same total pressure arising from melittin interactions as in 

Figure 3a, but instead partitioned by interaction partner rather than by melittin 

component. A great deal of cancellation between interacting terms is seen, especially 

between water and headgroups. In particular, melittin gives rise to zero net partial 

pressures in the region near z = ± 25 Å due to the cancellation of interactions involving 

water and lipid headgroups. We can observe that the small peaks at z = -18 Å and z = -2 

Å are due to melittin interactions with the lipid tails. Water and headgroup interactions 

together provide about half the contribution to the large negative peak at z = 18 Å, with 

the rest provided by melittin–tail interactions and a small cancellation due to protein–

protein forces. 

Figure 3c shows how the partial pressures of membrane and water components in 

DMPC changed upon insertion of melittin. We observe an increase in lateral pressure at z 

= 18 Å where the bilayer and solvent interact with the charged residues in Mel(21–26), 

and also a small decrease in lateral pressure around z = -16 Å . Most strikingly, we see 

very little change in the solvent region near the upper leaflet due to near perfect 

cancellation of the change in contribution from headgroup–water interactions with those 

from headgroup–headgroup and water–water interactions. While headgroup–water 

interactions are the dominant contributor of surface tension in both simulations, they 

make a stronger contribution in the presence of melittin; however, headgroup–headgroup 
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and water–water interactions still offset headgroup–water interactions just enough to give 

nearly zero net change in the tension in the solvent region. 

Figure 4b and 4c shows the number of hydrogen bonds made by Mel(12–20) and 

Mel(21–26) with surrounding phosphate groups and water molecules. Mel(1–11), being 

deeply buried in the hydrophobic portion of the bilayer (Figure 2), made very few 

hydrogen bonds. Mel(12–20) was found to be hydrogen bonded to phosphate in 5.6 % of 

simulation snapshots, compared to 82% for Mel(21–26). Similarly, Mel(12–20) formed at 

least one hydrogen bond with water 35% of the time, compared to 91% for Mel(21–26). 

The difference is, of course, reflected in the proximity of Mel(21–26) to the interface as 

well as the large number of charged side chains present in Mel(21–26), as compared to 

Mel(12–20). 

 

2.4 Discussion 

The importance of proteins, small molecules, and other non-lipid components in 

modulating the hydrophobic environment of lipid bilayers is becoming increasingly well-

recognized, in part due to recent contributions of molecular simulations. Pressure profile 

studies of lipids with varying amounts of cholesterol revealed a surprisingly complex 

pattern of pressure peaks and troughs that varied with cholesterol concentration.46 

Simulations of DPPC over a range of lipid areas (50 – 80 Å2 per lipid) showed that the 

tension in the bilayer could be lowered upon addition of trehalose, which is known to 

stabilize lipid bilayers,63 providing a possible mechanism for the stabilization. Here, we 

analyzed the lateral pressure of a DMPC bilayer both with and without a melittin peptide, 
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under conditions of nearly identical total surface tension. We find that a single melittin 

significantly lowers the tension of the lipids surrounding the peptide.  

 

Figure 4: Protein–lipid interactions in DMPC+melittin system. a) 
Averaged lipid order parameters of the lower (solid line) and upper 
(dashed line) leaflets. b) Fraction of simulation snapshots containing the 
indicated number of hydrogen bonds with phosphate oxygens for melittin 
residues 12–20 (dashed line) and 21–26 (solid line). c) Same as b), but for 
hydrogen bonds to water. 
 



30 

 

The two leaflets of the bilayer exhibit the same surface tension in the peptide-free 

system, but markedly different tensions when melittin is inserted. The tension in the 

leaflet containing the amino terminus of the melittin increased by 50% upon melittin 

insertion, while in the carboxyl terminus the tension decreased by nearly the same 

amount. 

The present work demonstrates that protein–lipid interactions contribute 

significantly to the total bilayer tension in the vicinity of an inclusion. Additional 

investigation under conditions of constant surface tension and/or variable lipid number 

will be required in order to determine how lateral pressure Figures into other modes of 

protein–lipid interaction, such as the electrostatic potential, in modulating the propensity 

of peptides to insert into bilayers as well as the equilibrium between conformations of 

peptide aggregates and integral membrane proteins. 
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CHAPTER 3: Peptide Insertion, Positioning, and 

Stabilization in a Membrane:  Insight  from an All-

Atom Molecular Dynamics Simulation 

 

3.1 Introduction  

 A wide range of functions, such as proton transport and cell signaling, illustrate 

the importance of transmembrane proteins in biological phenomena. Consequently, 

elucidating the chemical and biochemical behavior of these proteins is the subject of 

much research.  For example, extensive spectroscopic techniques have been used to probe 

the relationship between the structure and function of transmembrane proteins.64  

Properties such as helix tilt angles, side chain orientations, and functional conformations 

have been studied in a variety of transmembrane proteins using NMR and Raman 

spectroscopy.65,66,67 Tryptophan fluorescence and circular dichroism techniques have also 

been used to study the equilibrium penetration depth of small transmembrane peptides.68  

 Computational methods—including implicit membrane models, coarse-grained, 

and all-atom molecular dynamics (MD) simulations—have complemented experimental 

techniques.  In the implicit membrane approach, the membrane is represented by an 

electrostatic continuum (such as the Generalized Born model) while the protein is treated 

explicitly.69 This technique reduces the computational time required to model protein-

membrane phenomena but does so at the expense of relevant details regarding the 

membrane. In coarse-grained modeling, two or more atoms can be merged to form a 

31 
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single bead; for instance, all of the phosphate atoms of a lipid head group can be 

represented by one bead, while the choline group atoms by a second bead.70,71,72   This 

approach strives to employ the simplest possible description of its system components, in 

order to gain specific physical insight, such as the conformational dynamics of a channel 

transmembrane protein.73 As a result, coarse-grained modeling can provide insight on 

reactions that occur on relatively long biological time scales.    

 In contrast to implicit and coarse-grained modeling approaches, the all-atom MD 

method—in which nearly every atom is treated explicitly—can employ broadly 

transferable and accurate force fields describing the interactions between lipid, protein, 

and water.  As an example, Aliste et al. employed all-atom MD simulations to study the 

thermodynamics of small peptides at a membrane-solvent interface.74 In this study, the 

authors attempted to reproduce the Wimley-White scale75 which provides the free energy 

associated with the transfer of a residue  from the solvent to the membrane. Although 

they were not completely successful in this endeavor, Aliste et al. successfully elucidated 

the energetic differences for peptide-partitioning into a non-polar solvent or a membrane. 

They also demonstrated that the penetration depth of the peptide into a membrane is a 

function of the peptide hydrophobicity.      

 Protein insertion and positioning in a membrane host are of particular interest in 

transmembrane peptides. As experimental approaches continue to expand in this area,76,77 

computational approaches are also being utilized to reveal the details of protein insertion 

and positioning.  Gorfe et al. used all-atom MD to study the insertion and stabilization of 

a lipidated peptide.78 In their simulations, the authors applied an artificial force on the 

lipidated peptide to induce the insertion process. Once inserted, the applied force was 
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turned off, and the lipidated peptide was allowed to stabilize. This non-equilibrium 

approach—also known as steered molecular dynamics (SMD)—was used to enhance the 

rate of insertion. This technique is valid as long as the applied force does not significantly 

perturb the physical properties of the model membrane during the simulation.79  If the 

thickness, order parameters, or cross-sectional area of the membrane are dramatically 

altered as the peptide inserts into the membrane, the SMD simulation is considered 

unrealistic. For this reason, care must be taken in selecting the magnitude of the pulling 

force. In addition to utilizing realistic forces, an equilibrium, all-atom MD simulation of 

biomolecular insertion into a membrane is challenging because of the time scale; protein 

insertion requires s to ms simulations, which are currently inaccessible by all-atom 

MD.80       

 In this study, we present an equilibrium all-atom MD simulation—with no biasing 

force—of a solvated peptide membrane system. The peptide used is WL5 and consists of 

one tryptophan (TRP) residue followed by five leucines. It is acetylated and amidated at 

its N- and C-termini, respectively. The membrane of choice is a 1,2-dimyristoylglycero-

3-phosphocholine (DMPC) bilayer.  We chose this small peptide in hopes of observing its 

spontaneous insertion into the membrane during an equilibrium MD study. The available 

experimental work on this system shows that multiple units of WL5 assemble in the 

membrane to form a multimeric anti-parallel -sheet.81,82,83   While the experimental data 

will help validate the simulation results presented here, the latter will provide important 

atomic-level details and hence shed additional light on the phenomena of peptide 

insertion, positioning, and stabilization in the membrane host.   
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3.2 Materials and Methods  

 A single WL5 peptide was assembled in an extended conformation using 

SYBYL.84 Using the  GROMACS MD package,19 the peptide was placed by itself in a 25 

nm3 cubic box and solvated with 4092 water molecules. The peptide was held fixed in 

position and the water molecules were energetically minimized. This minimization 

scheme consisted of 2500 steps of steepest descent followed by 2500 steps of conjugate 

gradient minimization. The peptide was then liberated and the entire free system was 

again minimized by the same scheme. While restraining the heavy atoms of the peptide 

(with a force constant of 1000 kJ mol-1nm-1) , the system was heated to a temperature of 

310K over 50 ps. Pressure coupling was then included, the restraints were lifted, and the 

free system of peptide in water was equilibrated for 5 ns. The last snapshot of the peptide 

(still in its extended form) was used as the starting conformation in the membrane/peptide 

simulation. A pre-equilibrated, 128-lipid DMPC membrane was obtained from the 

Tieleman laboratory.74,85 To ensure the integrity of the membrane, it was further 

equilibrated in solvent for 10 ns. No appreciable change in the membrane thickness, order 

parameters, or area per lipid occurred (data not shown).  

Using VMD,51 one copy of the equilibrated peptide was situated on either side of 

the equilibrated bilayer, at an average distance of 10 Å from the nearest lipid head 

groups. The principal axis of the peptide was oriented parallel to the membrane plane, 

which was set to be the xy-plane. Using GROMACS, the system was placed in a box of 

dimensions 6.02 × 6.02 × 9.50 nm and then solvated with 6631 water molecules. The 

peptides and membrane were held fixed in position, while the water molecules were 
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minimized via 2500 steps of steepest descent then 2500 steps of conjugate gradient 

minimization. The peptides and membrane were then liberated, and this entire free 

system was again minimized by the same scheme. The heavy atoms of the peptides and 

membrane were then restrained in position (force constant of 1000 kJ mol-1 nm-1), while 

the solvent was heated to 310K, over 50 ps. Finally, all restraints were removed, and the 

all-atom MD simulation (25,925 atoms) was conducted for a total of  75 ns.  

The GROMOS (ffgmx) force field parameters were used for the peptides and 

solvent, while the lipid parameters provided by  Berger et al.86 were employed for the 

DMPC lipids. A time step of 2 fs and a non-bonded cutoff of 1.0 nm (for van der Waals 

interactions) were used. Full electrostatics were calculated using the particle mesh Ewald 

(PME) method, with 6th order spline interpolation and a tolerance of 1×10-5.87,56  

Berendsen temperature coupling was employed,88 with a reference temperature of 310K 

and a coupling of 0.1 ps. For the production run, a semi-isotropic pressure coupling 

scheme was used, with a reference pressure of 1.0 bar, a pressure coupling of 0.5 ps, and 

a compressibility of 4.5×10-5 bar-1. Trajectories were analyzed using the various 

GROMACS tools. Rendering and visualization were done in VMD. Plots and figures 

were created in MATLAB©.89 

 

3.3 Results and Discussion  

 During the first 5 ns of the production run, the peptide on either side of the 

membrane diffuses throughout the simulation box and associates with the membrane. The 

peptides then spend the remaining 70 ns of simulation time stabilizing in the membrane 
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host (see Figure 5), consistent with the known thermodynamics of the system. The solute 

(peptide) is very hydrophobic and initially resides in a polar solvent. The head group 

region of the membrane is less polar,90 and the local dielectric constant of the membrane 

core varies between 2 and 5.91,92 Thus, as expected, the membrane serves as a 

thermodynamically favorable environment for the model peptide. Despite changes in 

their conformation and lateral positions, the peptides remain in the membrane for the 

duration of the simulation (as discussed below).      

 Shown in Figure 6 are the penetration depths of the peptides in each leaflet of the 

membrane. When averaged over 50 ps blocks during the last half of the simulation, the 

penetration depth of the peptide into the upper leaflet is 2.70 ± 1.05 Å.  The 

corresponding depth in the lower leaflet is 1.26 ± 1.47 Å. The peptide in the upper leaflet 

resulted in a slightly more convergent result. The penetration depths in both leaflets are in 

agreement with each other, consistent with the symmetrical nature of the system. This 

observed penetration demonstrates the spontaneous insertion of the peptides, without the 

need for an external biasing force.  

 A noteworthy observation is that despite their hydrophobic nature, the peptides do 

not completely submerge into the membrane core. On our time scale, they stabilize at the 

membrane interface—a region defined to contain the first solvation layers, the lipid head 

groups, and the beginning of the lipid tails.   This interfacial localization of the peptides 

can be ascribed to the tryptophan residue, as noted previously.93  Yau et al. observe that 

the role of TRP in anchoring proteins to the interfacial region of membranes can be 

attributed to the physical characteristics of the indole side chain.  Relevant  characteristics  
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Figure 5: Simulation snapshots at a) 25 ns and b) 50 ns. Lipid head 
groups and tails are colored in dark blue and light green, respectively. 
Peptides are shown in the van der Waals representation, colored by atom 
(carbon = light green , nitrogen = dark blue, white = hydrogen, red = 
oxygen). The entire TRP residue in each peptide is colored yellow. Water 
molecules are omitted for clarity. 
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of the indole group include the propensity of the indole nitrogen for hydrogen bonding 

and the orientation of the indole ring in the membrane host.  

 

Figure 6: Position along the membrane normal vector (z-axis) of the 
peptide centers of mass as a function of time. Horizontal lines represent 
the position of the phosphorus atoms in the lipid head groups. The 
membrane is centered on the zero position; thus, profiles in the positive 
and negative zones correspond to the upper and lower membrane leaflets, 
respectively. 

 

 The TRP residue contributes significantly to the hydrogen bonding interactions of 

the entire peptide. Averaging over the entire course of the simulation (see Figure 7a), we 

find that TRP accounts for approximately 43% of the total peptide-membrane hydrogen 

bonds in the upper leaflet and 14% in the lower; thus, the TRP residue contributes 

significantly more to the hydrogen bonding in the upper leaflet of the membrane. 

Considering that TRP harbors only 3 of the 15 hydrogen bonding elements in the peptide, 
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one would expect its contribution to be about 20%.   Moreover, the entire peptide in the 

lower leaflet forms more hydrogen bonds with the membrane host, and this peptide 

penetrates the membrane slightly less than its counterpart in the upper leaflet. Although 

we do not definitively present such a relationship here, our results suggest that peptide 

insertion is directly correlated with the extent of hydrogen bonding.  

 The TRP residue contains three hydrogen bonding elements: the hydrogen-

accepting carbonyl of the backbone; the hydrogen-donating amide also of the backbone; 

and the hydrogen-donating nitrogen atom of the indole ring. The indole side chain 

appears to be primarily responsible for the hydrogen bonding of the TRP residue in both 

peptides, during most of the simulation (see Figure 7b). During the entire length of the 

simulation, this nitrogen heteroatom accounts for 81% of the hydrogen bonds formed 

between tryptophan and the membrane. This data suggests then that the indole ring 

contributes most significantly to the hydrogen-bonding potential of tryptophan, which in 

turn contributes to the hydrogen bonds formed between peptide and membrane. The 

prevalence of such hydrogen bonding between tryptophan and a membrane host has also 

been  noted experimentally.93 Thus, although hydrogen bonding alone does not explain 

the interfacial localization and stabilization, it is clear that the peptides hydrogen bond 

significantly with the membrane.  

In addition to hydrogen bonding, the orientation of the indole ring is relevant for 

peptide localization and stabilization in a membrane host. We examine temporal 

variations in the angle between the plane of the indole ring and that of the membrane in 

both  leaflets. As shown in  Figure 8  (the  dashed  profiles),  the  orientation  of  the  TRP  
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Figure 7: Average number of hydrogen bonds formed (over each ns of 
simulation). The cut-off criteria for hydrogen bonding was set to an angle 
of 30º and a radius of 0.3 nm. a)  Red and blue lines indicate profiles in 
the upper and lower membrane leaflets, respectively. Solid and dashed 
lines indicate hydrogen bonding between the membrane and the entire 
peptide or just the TRP residue, respectively. b) Average number of 
hydrogen bonds between the indicated entity—either the entire TRP 
residue (blue squares) or just the indole side chain (red open circles)—
and the DMPC membrane. 
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indole rings fluctuates dramatically during the first half of the simulation but converges 

in the second half. During this last portion of the simulation, the average orientation angle 

of the indole ring in the upper leaflet is 26.2 ± 6.9° (averaged over blocks of 1 ns). That 

angle in the lower leaflet is 54.2 ± 6.8°. It appears that the most stable orientation angle 

of the indole ring in the membrane is neither  0° nor 90° but an intermediate value. 

Moreover, the fluctuation of the ring is small in magnitude (~7°) thus demonstrating the 

constriction of the indole ring (at least with respect to its orientation angle). This is 

consistent with the previous discussion on the propensity of the indole ring to form 

hydrogen bonds. Because of its strong interactions with the membrane, the indole ring 

converges tightly to a particular orientation angle. 

 As the peptides insert, they are oriented parallel to the membrane plane. 

Following insertion, the peptides adopt a more tilted orientation during stabilization (see 

Figure 8, solid line profiles). This tilting can be rationalized in terms of thermodynamics; 

the preferred state of the hydrophobic leucine side chains is buried inside an apolar 

environment (the membrane core), while the preferred state of the indole ring is situated 

at the membrane interface. Thus, the indole ring acts as an anchor or a pivot point, about 

which the rest of the peptide rotates to insert into the membrane. In both leaflets, the 

peptide tilt angles converge to similar values. In the upper leaflet—as averaged over the 

last half of the simulation and in blocks of 1 ns—the tilt angle is 62.3 ± 4.3°. In the lower 

leaflet, the value is slightly larger at 73.8 ± 5.3°. These angles are comparable to 

experimentally-determined tilts. For example, Bradshaw et al. observed a tilt angle of 55° 

for a fusion peptide.76  
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Figure 8: Orientation angles of the peptide and tryptophan side chain. Top 
panel of the figure describes the angles in question. Solid and dashed-line 
profiles represent the tilt of WL5 and the indole ring, respectively. Blue 
and red profiles depict the upper and lower leaflets, respectively. Data 
points are averaged over each ns of simulation.       

 

 If tilting is the result of a hydrophobic effect, what prevents the peptide from 

relaxing to a perpendicular conformation relative to the membrane plane (an angle of 0 

degrees in Figure 8)?  Such an orientation would result in maximizing the hydrophobic 

interactions of the leucine residues, thus resulting in a presumably more favorable 

system. We suggest that hydrogen bonding plays a critical role here. In the lower leaflet, 
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the peptide forms more hydrogen bonds with the membrane than in the upper leaflet (see 

Figure 7a). As a result, the tilt angle of the peptide in the lower leaflet is significantly 

greater, suggesting that the peptide is more parallel to the membrane plane. From these 

results, it appears that an increase in the number of hydrogen bonds causes the peptide to 

localize to the interface where it exhibits a parallel orientation.  

 Interestingly, the peptides acquire some secondary-structure characteristics as 

they insert and stabilize into the membrane (see Figure 9). The / angles of the non-

terminal residues of the peptides are localized in the upper left quadrant of the 

Ramachandran plot during the majority of the simulation. This quadrant is characteristic 

of -sheet structure.94 As averaged over 1 ns blocks during the entire simulation, the 

mean   of the internal residues is -110.2 ± 30.7°, while the mean  is +110.3 ± 15.4°. 

These values contrast to those of the peptide in solution, prior to membrane insertion, 

during which we observe a broader distribution of  / values, varying by as much as 

60°. These results suggest that the membrane host restricts the atoms of the peptide 

backbone, such that the / angle distribution is narrow and centered on the values 

consistent with -sheet structure.  

Despite the evidence for -sheet structure, the peptide is too small to form 

intramolecular  secondary structure. However, such secondary structure can be achieved 

by the intermolecular interactions of several WL5 peptides. As observed by Wimley et 

al., multiple units of this model peptide (WL5) can assemble to form a larger -barrel.81  

To probe the time scale of interaction between WL5 peptides, we examined their 

diffusion properties in  the  membrane  plane. Figure  10  shows  their  displacement  as  a 
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Figure 9: A Ramachandran plot, averaged over all of the non-terminal 
(colored dots) and terminal (open black circles) residues of both peptides 
and over 1 ns blocks. Blue, green, and red dots correspond to the 
beginning, middle, and end of the simulation, respectively. Terminal 
residues are shown over the entire simulation, clustering mostly in the 
region bound by the ellipse (non -sheet conformations). The non-
terminal residues explore the upper-left quadrant, which is characteristic 
of -sheet conformations (in particular, the boxed area).          

 

function of time. As a first approximation, the slope of the fit to these profiles 

(approximately 6 Å2/ns) yields information about the mobility of the peptides. Since the 

peptides do not significantly translate along the membrane normal after the insertion 

event, most of this displacement occurs in the membrane plane.     

At a diffusion rate of approximately 6 Å2/ns, and with a cross-sectional membrane 

area of about 3624 Å2, the peptide should sample the entire membrane surface in 

approximately   600  ns. To  approximate   the   time   scale   of  interaction  between  two 
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Figure 10: Displacement as a function of time, of the center of mass of 
the peptide in each leaflet. Reference coordinates are taken from a 
snapshot after 5 ns, when the peptides have inserted. Blue and red profiles 
correspond to the upper and lower leaflets of the membrane, respectively. 
Solid line is a linear fit to the blue profile, while the dashed line is a fit to 
the red profile. The slopes of both lines are approximately 6 Å2/ns, and 
this is taken to be an approximate diffusion rate.  

 

peptides in the same leaflet (not simulated here), it is critical to know the experimental 

concentrations of WL5 in the membrane. In one experiment, Wimley et al. use a 

peptide:lipid ratio of 2:100.82  Extrapolating from our simulation here, a 100-lipid model 

membrane would occupy an area of 6000 Å2. Two peptides migrating in this plane, at the 

aforementioned diffusion rate and assuming each peptide must cover only half of the 

area, could come into contact in approximately 0.5 s. For this small model peptide to 

form a macromolecular assembly, the estimated time scale (~500 ns) is accessible by all-

atom MD simulations, and we intend to study such associations in subsequent 

simulations.    
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 The deuterium order parameters of the carbon atoms in the lipid tails provide 

insight into the physical properties of the membrane. Each order parameter, SCD , is 

defined as: 

 1  cos 3 
2

1
    2

nCDS                                                   (8) 

where θn is the angle between a vector along the methylene/methyl hydrogens of the 

carbon atom in question and the vector normal to the membrane plane.78  For a particular 

carbon atom in a lipid tail, a larger order parameter correlates to minimal fluctuation in 

atomic location.    

 When modeling the insertion of a peptide into a membrane, the order parameters 

change as the insertion and stabilization events proceed (see Figure 11). The order 

parameters of nearly every carbon increase as a function of time. The most dramatic 

change can be noted when comparing the profile at 1 ns vs. 75 ns. It appears that the most 

statistically significant increase of the order parameters occurs in the lipid carbon atoms 

that reside near the membrane core (carbons 8 to 13). Thus, the insertion and stabilization 

of these peptides in the membrane has a slight ordering effect on the lipids. The cross-

sectional area of the membrane was fixed via the dimensions of the simulation box. The 

thickness of the membrane, defined as the distance between the phosphorus atoms in the 

upper and lower leaflets also exhibited minimal change (see Figure 5). Thus, the ordering 

observed here is likely to originate from packing and constricting of the lipid carbon 

atoms, and this increased constriction may be a direct consequence of peptide insertion 

into the membrane.     
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Figure 11: Deuterium lipid order parameters of the acyl chains in DMPC, 
shown at 1, 25, 50 and 75 ns of simulation (error bars are based on 1-ns 
block averages). Top and bottom leaflets were averaged together. Lower 
carbon numbers are those closer to the lipid head groups, while higher 
ones are those closer to the membrane core. The inset shows how the 
order parameters of the lipid carbon atoms differ near the peptide (within 
10 Å, top curve, circles) and far from it (greater than 10 Å, bottom curve, 
squares).  

 

 The observed changes in membrane structure are likely local effects. In contrast, a 

global disruption of a biological membrane occurs primarily when numerous peptide 

units  simultaneously insert and aggregate, as in the case of melittin.95  We suggest that 

the observed ordering reported here is localized to the region surrounding the peptide. 

The inset of Figure 11 demonstrates this, where one can see that the lipid carbon atoms 

near the peptide (within 10 Å) are significantly raised. However, one should be careful in 

making any generalizations here;  it is not always the case that a peptide raises order 

parameters in its vicinity. The exact effect of any membrane solute on the order 
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parameters is probably a function of that solute’s chemical nature and position. In any 

case, one can note that there is a significant perturbation to the order parameters, and that 

the change is a local one occurring near the peptide. Moreover, as found in our previous 

study, such a local effect can perturb the lateral pressure profile in the membrane.96   

Specifically, we observed that an embedded peptide changes the lateral pressure and 

increases the surface tension in the membrane. In turn, these effects can alter the physical 

properties of other transmembrane proteins, such as channel gates. 97  

 In the discussion of transmembrane protein folding, it is often debated whether 

the transmembrane protein in question is shaped by the membrane, or whether the latter 

is perturbed by the former; indeed, there are several examples of both cases.98,99,100   It is 

not surprising that the model membrane presented here can induce specific 

conformational changes in such a small peptide. It is especially intriguing that this small 

peptide can in turn cause significant changes to the membrane. Thus, as peptides insert 

and stabilize, the effect of small solutes on the membrane structure should not be 

neglected and may play a significant role in many biological processes.        

 

3.4 Conclusion 

 All-atom molecular dynamics simulation results of the insertion, positioning, and 

stabilization of a small model peptide into a membrane have been presented here. The 

spontaneous insertion event is followed by a stabilization phase which is characterized by 

increased hydrogen bonding, restricted side chain orientation, and tilting of the peptide. 

We demonstrate how the tryptophan residue plays a crucial role during both the insertion 
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and stabilization phases. Furthermore, we find that the membrane environment can 

induce significant secondary-structure conformations in the peptide WL5, while the 

peptide itself induces an ordering effect in the membrane. We also present a discussion 

about the mobility of the peptides in the membrane plane which affords a time scale for 

macromolecular assembly.    

 Interestingly, with respect to the tryptophan residue, a transmembrane protein 

does not always present its TRP residues at the membrane interface. Kelkar et al. discuss 

how some proteins—such as membrane channel or gating proteins—actually fluctuate 

their TRP residues from the interface to the membrane core. Such a fluctuation is related 

to their open and closed conformations and is thus not primarily driven by the interfacial 

preference of TRP. Although the interfacial location is likely the most 

thermodynamically stable position for TRP, the movement of the TRP residue away from 

the interface can have other structural and functional consequences.101   

 What then is the energetic cost of moving the TRP-containing segment of the 

protein (or in our case, just the entire model peptide) from the interface to the membrane 

core?  This  question has been addressed via simulation for just the indole side chain of 

TRP but not yet for an entire peptide.102  In subsequent studies, employing the simulation 

techniques of non-equilibrium molecular dynamics, we hope to calculate the energetics of 

WL5 movement across the membrane. Coupling these future simulation results with 

experimental data will allow us to further elucidate the details of transmembrane protein 

insertion, positioning, and stabilization.  
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CHAPTER 4: Thermodynamics of Peptide Insertion 

and Aggregation in a Lipid Bilayer 

 

4.1 Introduction  

The lipid bilayer plays critical roles in the biochemistry of cells, the most basic of 

which being its role in defining the shape of the cell and organelles. The unique 

arrangement of hydrophilic and hydrophobic groups at the membrane exterior and 

interior regions, respectively, allows for a selective inhibition of foreign agents and 

transport of essential molecules.103,104 As a consequence, the membrane plays vital 

immunological functions.105,106 The functional versatility of the cell membrane is also in 

tune with its highly inhomogeneous composition and structure, wherein receptors, 

channels, peptides and other molecules create a vast chemical mixture and diverse 

geometry.107 The thermodynamics of adhesion and membrane insertion of biomolecules 

is therefore the subject of much research. In the context of protein folding, for instance, 

understanding how membrane proteins insert and simultaneously fold to assume their 

functional three-dimensional structure is of great interest.108 This poorly-understood 

process can involve the cooperative action of several amino acid residues that work in 

concert towards both membrane penetration and organization to a particular shape.  

Researchers are also studying how smaller biomolecules insert into the membrane 

and aggregate, and to what extent these processes affect the physical properties of the 

membrane.109,110 Several experimental methods have been employed to describe the 

51 
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equilibrium properties of peptide insertion, that is, to describe the initial and final states 

and the associated thermodynamic properties.111,112,113 The most important 

thermodynamic parameter in this context is the free energy change, ΔG, defined here to 

be the energetic change upon the transfer of the peptide from its initial aqueous 

environment to its final state in membrane; ΔG < 0 indicates a favorable insertion 

process. Wimley et al. studied the free energy of amino acid partitioning first in an 

octanol/water114 membrane mimic and later in a synthetic membrane.75 In the latter study, 

they derived a thermodynamic scale for the partitioning of small model peptides between 

membrane and water. By altering a single residue in the test peptide, the contribution of 

each of the 20 amino acids to the transfer free energy was tabulated. For instance, in the 

case of the hydrophobic amino acid leucine, the free energy of transfer is -0.56 ± 0.04 

kcal mol-1. Wimley and White also contemplated how peptide aggregation or formation 

of higher order molecular assemblies might occur in membranes.82,115 

Concurrently, computational methods have played significant roles in elucidating 

the atomic-level details that are not always accessible by experiment. The advance of 

computational power and the development of faster algorithms enables modeling of 

increasingly larger membrane systems.116,117,118,119 For example, Aliste et al. used MD 

simulations to study the partitioning of the Wimley and White peptides in a model 

membrane, and the results provided the details of the peptide-membrane atomic 

interactions responsible for insertion.74 The partitioning of the various amino acids into a 

model membrane host has also been studied.120 A unique benefit of computation is its 

ability to shed light on the free energy of peptide-membrane binding, as well as to 

characterize the energetic landscape or the pathways of insertion and aggregation. One 
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such study examined the free energy profile (or the potential of mean force, PMF) of the 

chromophore indole ring as it traveled through the membrane.102 In this work, the authors 

explored how different parameterizations of the indole moiety can affect the free energy 

calculations; they also pinpointed some key properties of the reaction coordinate, 

including the locations of energetic barriers.  

In this study, we employ a molecular dynamics (MD) technique known as 

‘umbrella sampling’121,122 to simulate the insertion of a model hydrophobic peptide into a 

membrane. The model of choice is the small hexapeptide consisting of one tryptophan 

(TRP) and five leucine residues (WL5), the same model system used in the experiments 

of Wimley and White.82 We computed the PMF as the peptide moves from the solvent, 

inserts into, and completely traverses across the membrane. To our knowledge, this is the 

first attempt in computing the free energy profile of a full length peptide as it crosses a 

membrane. We analyzed the dynamical and structural properties of the peptide during 

this process. By coupling the computed free energy profile with the experimental results 

of Wimley and White, we propose a thermodynamic model for the insertion and 

aggregation of hydrophobic peptides in a membrane host.  

 

4.2 Materials and Methods 

The structure of the solvated peptide-membrane system was obtained from a 

previous study, in which we explored the properties of the system in a 75 ns MD 

simulation.123 Snapshots at the end of this simulation—at which point, the peptides were 

embedded within the head group region of the membrane—were used as starting 
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configurations to initiate 50 different all-atom simulations each representing a window in 

an umbrella sampling scheme. Two different snapshots of the peptide were employed 

(one for each leaflet of the membrane); in other words, the 25 simulation windows within 

a leaflet were initiated with the same initial peptide conformation. These two snapshots 

are taken to be the equilibrated conformation of the peptide when embedded in the 

solvent-head group interfacial region of the membrane.  

In total then, the 50 simulation windows consisted of a WL5 peptide (acetylated 

and amidated at its N- and C-Termini, respectively), a pre-constructed bilayer of 128 

dimyristoylphosphatidylcholine (DMPC) lipids,74 and 6631 water molecules, resulting in 

a ~25,000 atom system assembled in a simulation box of 60 × 60 × 95 Å. The membrane 

was positioned at the center of the box, leaving approximately 23 Å for the solvent on 

either side.  

Each simulation corresponds to a window of width 1.9 Å such that the position of 

WL5 was different in each simulation. In the first window, WL5 was constrained (along 

the z-axis) in the bulk solvent at the upper half of the box and well away from the 

membrane surface. In the next, WL5 was moved by 1.9 Å closer to the membrane and 

constrained at that position. In subsequent simulations, WL5 was moved closer to the 

center of the simulation box each time stepped along the z-axis by the increment of 1.9 Å. 

The constrained molecule thus spans the entire reaction coordinate (in the z-direction) of 

approximately 95 Å. 

For organizational purposes, the simulation box is divided into two halves along 

the z-axis, representing the ‘upper’ (positive z) and ‘lower’ (negative z) leaflets with 

respect to the membrane center at z = 0. Among the 25 simulation windows in each 
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leaflet, 12 had the peptide constrained in solvent and 13 were carried out with the peptide 

constrained at various z-locations in the membrane. The initial configuration of the 

peptide differs between the two leaflets but is the same amongst the 25 simulation 

windows of each leaflet. The reaction coordinate was defined by the separation along the 

z-axis between the centers-of-mass of the indole chromophore—the tryptophan side 

chain—and the membrane. WL5 was constrained by a harmonic potential of force 

constant 500 kJ mol-1 nm-2 (1.20 kcal mol-1 Å-2).  

The setup of the simulations was as follows. First, unfavorable contacts were 

relieved by two cycles of 5,000 steps steepest descent followed by 5,000 steps of 

conjugate-gradient energy minimizations, each with the peptide held fixed and set free. 

Second, except when the peptide is in bulk solvent, an annealing step was conducted to 

equilibrate the lipid tails around the peptide. With the peptide and lipid head groups 

restrained, the system was gradually heated (over 1 ns) from 310K (the temperature of 

the initial snapshot) to 410K, then gradually cooled back down to 310K. Third, adding 

pressure coupling, a restrained MD was performed on all 50 windows for 1 ns, with the 

restraint applied to non-solvent molecules. Fourth, with only the indole ring of tryptophan 

constrained to its selected position, production runs commenced. Those with the peptide 

located outside of the membrane were sampled for 5 ns, while those with the peptide 

somewhere in the membrane were sampled for 25 ns. In total, including all pre- and post 

production runs, approximately 850 ns of all-atom MD simulations have been carried out.  

A time step of 2 fs was used while coordinates/velocities were recorded every 500 

steps (1 ps). Constraints were imposed using the LINCS method. Full electrostatics were 

calculated using the particle mesh Ewald (PME) method, with coulombic and van der 
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Waals cut-offs of 0.9 and 1.4 nm, respectively. A sixth-order spline interpolation was 

used for PME along with a tolerance of 1 × 10-5. Nearest neighbor lists were updated 

every 10 steps using the grid method and periodic boundary conditions (in xyz) were 

employed with a cut-off of 0.9 nm. Berendsen temperature coupling was used, with a 

reference temperature of 310 K and a coupling of 0.1 ps. A semi-isotropic pressure 

coupling scheme—in which the x-y dimensions are coupled together, while the z-

direction is allowed to fluctuate independently—was used, with a reference pressure of 

1.0 bar, a pressure coupling of 0.5 ps, and a compressibility of 4.5 × 10-5 bar-1.  

The simulations were performed with the GROMACS MD package.19 The ffgmx 

force field was used for the peptide and the SPC water model was used as the solvent. 

The lipid parameters of Berger et al. were employed for the DMPC lipids.86 The analysis 

of the simulation trajectories was completed using the various GROMACS tools. For 

further details regarding these tools and specific procedures in running GROMACS MD 

simulations, see the GROMACS manual at http://www.gromacs.org/ . Visualization and 

rendering were done by the Visual Molecular Dynamics application (VMD).51  

Given the construction of the simulation windows, one might expect the resulting 

profile in Figure 12 to be perfectly symmetric about the membrane center. In other words, 

the profile in one leaflet should be a mirror image of the other provided that the peptide 

exhibits the same orientation while penetrating through both leaflets of a homogenous 

membrane. As mentioned in the text, the free energy profile of Figure 12 is not exactly 

symmetric, and this was attributed mainly to the starting conformation of the peptide in 

the simulation windows of each leaflet. Yet, even if the peptide conformation was the 

same in each leaflet, it is doubtful that one could achieve great symmetry, simply due to 
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convergence limitations inherent in MD simulations. An exorbitant amount of 

computational time would be needed to achieve such a result. In fact, the asymmetric 

profile may be used as a convergence criterion with respect to certain free energy 

calculations.  

For instance, the values of the computed GHG/C in the upper and lower leaflets 

are within 1 kcal mol-1 of each other while the values of GS/HG differ more significantly. 

This could signify that the simulation of deep insertion (from bulk solvent into the deep 

interface) produces a more converged result than insertion into the solvent-head group 

(S/HG) interface. One could reason that this is the case because the S/HG interface is 

more chemically diverse and dynamic, thus requiring more sampling time for energetic 

calculations. In Figure 12, the symmetric profile was obtained by averaging the results of 

the two leaflets. About the center of the profile (at 0 Å), the average was taken between 

the two points on either side of the profile. For instance, if the free energy was 1.8 kcal 

mol-1 at +10 Å (upper leaflet) and 1.5 kcal mol-1 at -10 Å (lower leaflet), the free energy 

in the symmetric plot at ±10 Å is taken to be 1.65 kcal mol-1. The asymmetric free energy 

profile in Figure 12 can also be used as a judge of error in these simulations. The 

differences at mirror sites along the reaction coordinate (for instance, at ±7 Å) reveal a 

sampling error on the order of 0.5 – 1.0 kcal mol-1 .   

As reported by Wimley and White, the experimental concentration of the WL5 

peptide is (at most) 100 μM.82 Using this concentration, and that of water to be 55.5 M 

(or 55.5 × 106 μM), we can calculate the mole fraction of the peptide in the experiment to 

be χexp,Peptide = 1.80 × 10-6. In each simulation, we have one peptide, in either the upper or 

lower leaflet of the system. Because of periodic boundary conditions, the peptide is 
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solvated in the total solvent of 6631 water molecules. Thus, the mole fraction of the 

peptide in the simulation is χsim,Peptide = 1.51 × 10-4. Substituting these mole fractions 

along with the simulation temperature (310K) into the expression for ∆GR, we arrive at 

+2.73 kcal mol-1, which corrects for the differences in peptide concentration between 

simulation and experiment. To calculate the mole fractions of the lipids, a volumetric 

ratio is computed in a fashion similar to Grossfield et al.128 Taking the average thickness 

of a DMPC membrane to be 36 Å124 and the cross-sectional area to be 60 × 60 Å (per 

simulation setup), we compute the volume occupied by the membrane to be 1.30 × 105 

Å3. When the ratio of the membrane volume to the box volume is computed, we obtain 

χsim,lipids = 0.38; we also use χexp,lipids = 0.24 , for an experimental vesicle concentration of 

4 mM.127 These mole fractions result in ∆GMix = +0.28 kcal mol-1, and this corrects for 

the differences in lipid concentration between simulation and experiment. The combined 

correction term is then the sum, ∆GR + ∆GMix = GCorr ≈ +3.0 kcal mol-1.  

  

4.3 Results and Discussion 

Each leaflet of the membrane can be divided into three regions based on the 

polarity of the constituent atoms: the solvent-head group interface (S/HG), where the first 

two solvent shells (~ 6 Å) merge with the choline and phosphate head groups of the 

phospholipids; the glycerol or head group-core interface (HG/C), where the lipid head 

groups mix with the hydrophobic fatty acid chains; and the core, the region occupied by 

the aliphatic lipid tails. Using these three regions as landmarks, the free energy profile of 

the peptide WL5 as it traverses across the membrane is shown in Figure 12. The extent of 
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convergence of this profile (in the allotted sampling time) is shown in Figure 13. The 

profile exhibits minima at both the S/HG and HG/C interfaces of each leaflet, the latter 

being the global minimum. Note that two peptide orientations (one per leaflet) were used 

to determine whether the initial orientation affects the energetics of insertion. The dashed 

line in Figure 12 clearly shows that the initial orientation does indeed affect the profile. 

Such an asymmetric profile implies that even for a rudimentary peptide such as WL5, 

there may be more than one possible path of membrane insertion.  

 

Figure 12: The free energy profile (symmetric-heavy blue line, 
asymmetric-dashed line) of the peptide as a function of position along the 
z-dimension (negative/positive values correspond to the lower/upper 
leaflets, respectively). Aqua green on either side of the simulation box 
denotes regions of bulk solvent. Pink marks the regions of the 
solvent/lipid head group interface (S/HG in the lower leaflet, HG/S in the 
upper). Beige indicates the head group/core interface (HG/C in the lower 
leaflet, C/HG in the upper). The light brown region centered on the zero 
depicts the membrane core. See the text for further discussion and the 
computed changes in free energy.  
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The conformation of the peptide—as judged by the distribution of Φ/Ψ angles—

assumes that of a β-strand, especially when the peptide is positioned somewhere in the 

membrane; see Figure 14. Most noticeably, the distribution centers on the β-strand Φ/Ψ 

angles when the peptide is embedded in the HG/C region of the membrane (lower left 

panel of Figure 14). Such a conformational change may have some effect on the free 

energy profile of the peptide as it travels through the membrane. Yet, it is difficult to 

quantify this effect because we have not imposed any constraints on the Φ/Ψ angles of 

the peptide.  

 

 
Figure 13: The extent of convergence of the free energy profile—as a 
function of peptide position along the z-dimension (negative/positive 
values correspond to the lower/upper leaflets, respectively)—at different 
sampling times. Aqua green on either side of the simulation box denotes 
regions of bulk solvent. Pink marks the regions of the solvent/lipid head 
group interface (S/HG in the lower leaflet, HG/S in the upper). Beige 
indicates the head group/core interface (HG/C in the lower leaflet, C/HG 
in the upper). The light brown region centered on the zero depicts the 
membrane core. 
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In the upper leaflet, the nitrogen heteroatom points towards the interfacial regions 

while the peptide moves through the membrane; while in the lower leaflet, the ring 

nitrogen consistently points towards the core of the membrane (see Figures 15a and 16). 

This preferential orientation results in distinct and deeper energy minima at the interfacial 

regions of the upper leaflet while the corresponding minima in the lower leaflet are 

shallow and less distinct (see Figures 12 and 15b). The  location  of  the  minima  and  the  

 

Figure 14: Ramachandran plots of the internal leucine residues in WL5, 
when the peptide is positioned in various parts of the simulation box: a) in 
Bulk Solvent ; b) in the solvent-lipid head group (S/HG) region ; c) in the 
head group-core (HG/C) region ; d) in the membrane core. The upper left 
corner of each plot is the β-strand conformational space. The peptide 
assumes the β-strand conformation most prominently in the HG/C region 
(plot c). See the text of the manuscript for further discussion. 
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orientation of the indole ring in the upper leaflet indicate that the ring is in a prime 

position to interact with the glycerol carbonyls and other hydrogen bonding elements of 

the lipid head groups. The importance and extent of hydrogen bonding between the 

indole ring and the membrane interfacial region has been addressed in a previous 

study.123 Here, the nitrogen heteroatom forms  a  significant  number  of  hydrogen  bonds  

 

Figure 15: Nitrogen heteroatom distribution along the reaction 
coordinate. a) Density distributions of the tryptophan indole nitrogen in 
the upper and lower leaflets of four simulation windows. Dashed lines 
indicate where the peptide was constrained (via the indole ring) in that 
particular simulation. b) The asymmetric free energy profile in the 
membrane (dashed line) and the same profile shifted to reflect the 
nitrogen heteroatom position (dark heavy line). At each point, the 
nitrogen is distributed to the right (more positive z) of the indole center; 
but the magnitude of that shift is not equal in all parts of the profile.  
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Figure 16: Snapshots of WL5 in the upper (above) and lower (below) 
leaflets of the membrane. The membrane is shown as a transparent 
surface with the lipid head groups colored pink and the tails brown. The 
peptide is shown as van der Waals spheres with the indole ring 
highlighted in yellow. The insets show a close-up of the indole ring 
orientation, with carbon, hydrogen, and nitrogen atoms colored in cyan, 
white, and blue, respectively.        
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with the membrane, and it does so to a greater extent where the minima occur along the 

reaction coordinate (see Figure 17). In the upper leaflet, where the minima are deeper and 

more distinct, a larger number of hydrogen bonds are formed as compared to the minima 

in the lower leaflet.  

 

Figure 17: Average number of hydrogen bonds formed between the 
indole nitrogen and the hydrogen bonding elements of the lipids, as a 
function of the peptide’s position along the reaction coordinate. The cut-
off criterion was set to elements within 3 Å and hydrogen bonding angles 
of 40°.  

Analysis with respect to orientation of the entire peptide reveals a tilt in the 

peptide axis (see Figure 18), an observation common in helical transmembrane-peptide 

systems.125 As it adheres and inserts into the membrane, the peptide axis stabilizes at an 

angle near 70°, which is off parallel to the membrane plane (an angle of 90°). Such a tilt 

allows the leucine residues to interact with the hydrophobic part of the membrane while 

maintaining the indole ring position in the interfacial region. This appears to be the 

general strategy of transmembrane peptides, in that they are designed to exploit both the 

hydrophilic and hydrophobic parts of the membrane during the insertion process. The 
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orientations of the whole peptide and the tryptophan side chain argue that the PMF in the 

upper leaflet represents a more plausible path of peptide insertion. But in reality, the 

peptide could approach the membrane in a variety of orientations. Also, it may be the 

case that the peptide binds the membrane surface in a random initial orientation and then 

rearranges prior to further insertion and stabilization.  

 

Figure 18: Peptide tilt as a function of position along the z-axis, with the 
membrane centered on 0. Each data point corresponds to one window. 
Error bars encompass one standard deviation. Inset shows how the angle 
is defined by the vector fitted to contain the alpha carbons of the peptide 
(light arrow) and the vector representing the membrane normal (dark 
arrow).  

However, we do not have any a priori knowledge of the peptide orientation or 

information on its conformational dynamics at the solvent-membrane interface. 

Furthermore, the constraint applied at the TRP residue during the umbrella sampling does 

not allow for a spontaneous reorganization. It is therefore impossible to determine the 

relative weights of the two profiles and here we assume that the lower- and the upper-

leaflet orientations are equally probable. In other words, because the molecular dynamics 

simulations in each leaflet are separate and independent, one can consider the data from 
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the upper and lower leaflets as twice the sampling of the same system. Thus, we 

symmetrize the free energy profile (heavy blue line in Figure 12) and allow this result to 

reflect the sampling of the entire system (see the Materials and Methods section). This 

symmetric profile is used for all further calculations and discussion, but we note that this 

symmetry is due purely to the homogeneity of the model membrane used in the 

simulations. In biological heterogeneous membranes, however, such symmetry may not 

exist. 

The peptide begins its approach towards the membrane from a region of bulk 

solvent, where the PMF plateaus (± 35 Å). This plateau indicates that the peptide does 

not interact with the membrane and instead experiences a purely aqueous environment. 

The average PMF in this region (aqua-colored in Figure 12) is 10.1 kcal mol-1. This value 

will be used as the reference point from which the change in free energy (G) will be 

calculated. In other words, this bulk solvent environment is considered as the initial state 

of the peptide.  

As the peptide travels closer to the membrane, at about 30 Å from the center, the 

free energy rapidly declines as the peptide encounters the solvent-head group (S/HG) 

interface. This steep descent can be attributed to a hydrophobic effect. Such a drop in the 

free energy is often encountered when a hydrophobic solute encounters a like 

environment.126 Inside this S/HG region, the free energy profile continues to decline until 

it reaches a shallow minimum near ± 17 Å, and the barrier to escape this minimum is 

approximately 0.5 kcal mol-1. [This barrier seems insignificant given the sampling error 

of this method (see the Materials and Methods section), and it should be greater. 

Nonetheless, we know from previous experiment and simulation that a minimum in the 
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free energy profile occurs here.] The computed free energy change as the peptide inserts 

into the S/HG interface is ΔGS/HG = -8.3 kcal mol-1. Thus the peptide has a tendency to 

localize in the S/HG region, and this can likely be attributed to the partial hydrophilic 

nature of the TRP residue.  

The peptide descends further into the head group-core (HG/C) interface and 

encounters a global minimum at about ± 7 Å and gains a further 2 kcal mol-1 in free 

energy. The total free energy change from the bulk solvent to the HG/C region (ΔGHG/C) 

is -10.2 kcal mol-1. A local maximum occurs in the core of the membrane (0 Å), and the 

energy barrier as measured from the HG/C region is approximately 1.0 kcal mol-1.  

The peptide exhibits considerable conformational changes as it travels through the 

membrane. The root mean square fluctuation (RMSF) demonstrates how much the 

peptide deviates from its average conformation and is plotted in Figure 19 as a function 

of the peptide location along the membrane normal. One can conclude that the peptide is 

more flexible and samples a wider region of conformational space (has a larger RMSF) as 

it travels deeper into the membrane core. This flexibility is also demonstrated by the root 

mean square deviation (RMSD) of the peptide structure, as seen in Figure 20.  

An alternative view of the RMSF in Figure 19b further shows that the side chains 

of the peptide are predominantly responsible for this flexibility. In particular, the TRP 

side chain has the largest RMSF when deep in the membrane core. To the extent that 

peptide flexibility can be correlated with entropy,127 one can infer that the peptide exhibits 

increased entropy as it inserts into the membrane. This results in a more negative (or 

favorable) contribution to the free energy change and explains why the energy barrier in 

the core is  not  greater  in  the  calculated  profile.  Therefore,  a  small  barrier  seems  to  
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Figure 19: Root mean square fluctuation (RMSF) of the peptide by atom 
number and as a function of position along the z-axis of the simulation 
box. The membrane is centered on the zero mark of the z-axis. Atom 
numbers 1-3 correspond to the acetyl group on the N-Terminus; 4-24 
correspond to the tryptophan residue; 25-69 correspond to the leucine 
residues; and 70-72 correspond to the amide group on the C-Terminus. a) 
Surface representation, where the red halo shows the maximum RMSF 
achieved by the indole ring near the core of the membrane. b) An 
alternative (color map) view of the RMSF data. 
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Figure 20: Average root mean square deviation (RMSD) of the peptide 
(non-hydrogen atoms) as a function of position along the z-dimension 
(inside the membrane). Error bars encompass one standard deviation.  

 

suggest that the peptide can occasionally translate across the membrane center and shift 

positions between the two leaflets. Yet, as Wimley and White have demonstrated—and as 

we shall explore further below—individual units of this model peptide aggregate in the 

membrane and form a supramolecular structure, a process that can counteract the 

tendency of a lone peptide to transfer from leaflet to leaflet.82.  

The free energy profile presented here is that of a single peptide traveling through 

the membrane and is thus not reflective of the entire biological process. If the final state 

of WL5 in the membrane is not monomeric but rather an aggregate form, then it 

behooves us to study this aggregation process and the pathways that lead to it. Although 

we have not simulated the actual aggregation, the presented work—coupled with 

previous simulations and experimental evidence—can shed some light on the mechanism 

and potential pathways of aggregation. Figure 21 shows a proposed thermodynamic cycle  
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Figure 21: A proposed thermodynamic cycle of peptide insertion and 
supramolecular assembly inside a model membrane. The yellow arrows 
depict a pathway in which single peptides insert first into the deep head 
group-core (HG/C) interface and then aggregate to form the final 
structure. The red arrows mark a less likely (yet plausible) path, in which 
the peptide aggregates first in solution, and then the aggregate as a whole 
inserts into the membrane. The green arrows qualitatively describe an 
intermediary pathway, in which individual peptides insert first into the 
aqueous or solvent-head group (S/HG) interface, aggregate to some 
extent, and then insert deeper into the membrane. Each of these steps can 
be described by a free energy change (ΔG, Aggr = aggregation). See the 
text for further discussion.  
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for the insertion and assembly of WL5 in the membrane. In this model, the initial state of 

the peptide in an aqueous environment is monomeric and the final state in membrane is 

an assembly of several monomers (top left and bottom right of Figure 21, respectively). 

The difference in the free energy between these two states as obtained by Wimley and 

White is GExp = -5.3 kcal mol-1 (Exp = experimental). [This is assuming that the transfer 

from monomeric aqueous to membrane aggregate form is an equilibrium process, and 

that the experimental result is a reflection of this.] As suggested by Grossfield et al., the 

computed free energy can be coupled to this experimental value via a correction term that 

accounts for the difference in the peptide and lipid concentrations between simulation and 

experiment.128 

The correction term is given by: 

ΔGCorr  = ΔGR + ΔGMix                                                                 (9) 

ΔGR      = kbT ln ( χsim,Peptide  / χexp,Peptide )                                (10) 

ΔGMix  = kbT ln ( χsim,lipids  / χexp,lipids )                                    (11) 

where kbT is the Boltzmann factor. Following the notation of Grossfield, ΔGR and ΔGMix 

are the correction terms for the peptide and lipid (respectively) concentration differences 

between simulation (sim) and experiment (exp). χ is the mole fraction of the species in 

question (either peptide or lipids). This entire correction term, ∆GCorr is calculated to be 

+3.0 kcal mol-1 (see the Materials and Methods section 3.2 for further information), and 

must be added to the computational results.  
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In terms of insertion and aggregation, Figure 21 shows two paths on opposite ends 

of the spectrum. In the yellow path, each peptide inserts individually into the deeper 

membrane interface. The aggregation step then follows: 

                           GHG/C  + GAggr(HG/C)  = GYellowPath                                    (12) 

        (GHG/C + ΔGCorr )  + GAggr(HG/C)  = GYellowPath                                     (13) 

Equation 13 is the corrected version of equation 12, where the correction term has been 

added to computational result GHG/C = -10.2 kcal mol-1. The unknown term here is the 

aggregation one, GAggr(HG/C) . If we can set GYellowPath to be the experimental value 

determined by Wimley and White (-5.3 kcal mol-1), the aggregation term is then 

calculated to be +1.9 kcal mol-1.  

The red path in Figure 21 illustrates the opposite approach, in which individual 

peptides in aqueous solution first assemble, and then the whole aggregate inserts into the 

membrane. The first leg of this pathway is plausible and has a negative free energy 

change, because hydrophobic peptides in an aqueous environment are energetically more 

stable in aggregate instead of monomeric form.129 Yet, the stability and energetic gain of 

the aggregate in solution could deter the adhesion and insertion of the aggregate into the 

membrane, thus making the second leg of the red path less likely. Furthermore, if the 

orientation of each monomeric peptide can affect the thermodynamics of the insertion 

process (as discussed above), it may become energetically costly for the peptide units of 

the complex to reorganize and assume the correct orientation. Others have also shown 

that transmembrane proteins do not fold entirely or form complex structures before 

inserting into a membrane.130  
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Instead, it is more likely that a transmembrane peptide adsorbs on the membrane 

surface, aggregates to some extent, and then inserts into the membrane. As the insertion 

event proceeds, it is likely that the membrane continues to shape the peptide aggregate 

structure until it achieves a final stable form in the membrane host. Note that membranes 

exhibit the mechanical properties to do just this.32 For our model system, this is depicted 

in the green path, in which the monomeric peptide first adheres to the S/HG interface, 

aggregates, and then inserts: 

             GS/HG  + GAggr(S/HG) + GAggr(Insert) = GGreenPath                           (14) 

(GS/HG + ΔGCorr ) + GAggr(S/HG) + GAggr(Insert) = GGreenPath                           (15) 

Equation 15 represents the corrected version, with the correction term added again to the 

computational result, GS/HG = -8.3 kcal mol-1. The last two terms on the left hand side of 

equation 15 are the unknowns, and we cannot calculate the exact contribution from 

GAggr(S/HG) nor GAggr(Insert). Again, if we equate GGreenPath to the experimental value of -

5.3 kcal mol-1, the sum of these unknown terms can be calculated, GAggr(S/HG) + 

GAggr(Insert) = 0 kcal mol-1.  

Thus, in the yellow path, the aggregation free energy change is positive and 

indicative of an unfavorable process. In other words, if the monomeric form of the 

peptide were to insert deep into the HG/C region of the membrane, aggregation would 

not be likely. In the green path however, the collective aggregation term is 0, indicating 

an equilibrium (and more likely) process. We have shown the following relation: 

         {GAggr(S/HG) + GAggr(Insert)}GreenPath  <  {GAggr(HG/C)}YellowPath                       (16) 
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where the braces group the unknown terms of each path, as described above. The results 

suggest that the green path in Figure 21—where the peptide first adheres to the solvent-

head group interface, aggregates and then inserts—more closely represents the in vitro 

mechanism of insertion and organization of WL5. Furthermore, following the previous 

discussion of the red path in which we stated that a formed aggregate would have 

difficulty inserting into the membrane, we can speculate that GAggr(Insert) > 0 and thus 

GAggr(S/HG) < 0 . In other words, aggregation occurs immediately upon peptide binding to 

the membrane, in the solvent-head group region.  

 

4.4 Conclusion 

In summary, in this paper we have examined the biologically important process of 

peptide insertion into a membrane host, followed by aggregation and supramolecular 

assembly. The calculated PMF of the insertion process shows two minima, one each at 

the solvent-head group and hydrophilic-hydrophobic interfaces. The energetics show that 

aggregation and supramolecular assembly can begin immediately when the peptide 

makes contacts with the membrane at the first solvent-head group interfacial region. In 

other words, the peptide need not insert deeply and stabilize before taking on higher order 

structure; if it does insert deeply, the aggregation process is thermodynamically 

unfavorable. This implies that the membrane environment plays a direct and significant 

role in shaping transmembrane protein/peptide structures and is not a passive medium. 

Even initial contacts with the membrane can induce tertiary configuration in the protein 
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sequence; this induction can be attributed to the fluidity and chemical diversity of the 

solvent-membrane interface.  

 

4.5 Acknowledgements 

This work was supported in part by the National Science Foundation, the National 

Institutes of Health (GM34921), the Howard Hughes Medical Institute, the National 

Biomedical Computing Resource, the Keck Foundation, and the Center for Theoretical 

and Biological Physics.  

Chapter 4, in full, is a near reprint of the material as it appears in the Journal of 

Physical Chemistry B 2008, Volume 112, Pages 10528-10534. This is a co-authored 

article. The dissertation author was the primary investigator and author of this paper. A. 

A. Gorfe and J. E. Kim contributed in an advisory capacity. J. A. McCammon served as 

the head adviser and principal investigator. 

 

 

 

 

 



76 

 

CHAPTER 5: A Virtual Screening Study of the 

Acetylcholine Binding Protein using a Relaxed-complex 

Approach  

 

5.1    Introduction 

 The ligand-gated ion channels (LGIC) constitute a class of membrane proteins 

that function in a variety of biological processes. For instance, in signal transduction, they 

play a key role in the transfer of information across neurological networks.131 In the 

realm of disorders, these ion channels have been implicated in the onset of Alzheimer’s 

disease and drug-addiction.132,133 As such, these proteins and the ligands that bind to them 

are of great interest in the pharmacological communities. If a binding ligand affects the 

activity of the channel in question, that ligand is labeled as either an agonist or 

antagonist. In the former case, ligand binding enhances the neurological phenomena 

associated with the particular ion channel. On the other hand, if an antagonist, the ligand 

can hinder the neurological event.134  

 The nicotinic acetylcholine receptors (nAChRs) are members of the LGIC family. 

Upon acetylcholine (ACh) binding, the receptors assume the open-state and allow the 

influx of ions into the cell. This is the chemical basis of neuronal response and muscle 

activity.135 As its name suggests, nicotine binds nAChR, and it does so in an agonistic 

76 
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fashion, leading to increased ion flow and neuronal stimulation. This agonistic behavior 

of nicotine leads to patient addiction by increasing the number of high-affinity nAChR in 

the membrane of neurons.136 Other drugs, such as cocaine, also bind nAChR and 

stimulate the receptor.137 Thus, nAChR serves as a great pharmacological target in 

research on smoking-cessation and drug addiction.  

 Yet, to be employed in pharmacology and particularly in structure-based drug 

discovery, the structure of the target protein must be known to a high degree of 

confidence. This is usually afforded by x-ray crystallography. Yet, achieving a high 

resolution structure is an especially difficult feat when working with membrane proteins, 

whose crystallization does not occur as easily as their aqueous counterparts. The lipid 

environment in the membrane can greatly affect the structure of the membrane protein,138 

and it is difficult to capture this final structure via crystallography. To date, the highest 

resolution achieved for nAChR is a 4 Å result obtained by cryo-electron microscopy, by 

Unwin et al.139 In this work, the pentameric structure of nAChR and the distinctive extra-

cellular and transmembrane domains are resolved clearly. However, from a 

pharmacological standpoint, much is left to be desired regarding side chain orientations 

and other important conformational details.  

 Rather fortunately, there exists an aqueous protein that mimics the extra-cellular 

half of nAChR, where ligand binding occurs. This protein, the acetylcholine binding 

protein (AChBP), comes from three species of sea snails: Lymnaea stagnalis (Ls); 

Aplysia californica (Ac); and Bulinus truncates (Bt).140 The exact function of AChBP is 

unknown, although it is thought to play a role in modulating neuronal response by 

binding acetylcholine in synaptic clefts.141 Experimentally, AChBP is significantly easier 
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to work with in terms of expression and crystallization. To date, over a dozen structures 

of AChBP (with and without ligands) have been solved with high resolution.142,143,144,145 

Although its sequence identity to the extra-cellular domain of nAChR is only roughly 

30%, AChBP bears a great resemblance with respect to its secondary structure. As shown 

by Brejc et al., the general shape of AChBP is that of a hollow cylinder with an outer, 

inner diameter and height of 80, 18, and 62 Å, respectively. AChBP is a homopentamer, 

each subunit consisting of 210 residues.  

As in the extra-cellular domain of nAChR, ligands bind to AChBP at the interface 

between subunits; thus, with 5 subunits arranged in a cylinder, the maximum ratio of 

ligand:protein is 5:1.146 The ligand binds in the approximate middle region of this 

interfacial axis, typically behind a characteristic loop extending from one of the subunits, 

known as the ‘C-loop’.141 The chemical nature of this binding site is discussed in greater 

detail below. Because of its great structural similarity to the ligand-binding extra-cellular 

domain of nAChR, AChBP has been deemed a surrogate structure of the receptor.147 By 

targeting and identifying binders of AChBP, researchers hope to gain more understanding 

about nAChR. Common research themes about AChBP/nAChR focus on which ligands 

act as agonists or antagonists, which bind universally across all subtypes of nAChR and 

all species of AChBP, which ligands can distinguish between the various forms, and 

which can serve as leads for drug discovery efforts. Although there are marked 

differences between the AChBP and nAChR—most obviously, the presence of the 

transmembrane domain in the latter—the two proteins have enough chemical and 

physical similarities to warrant using AChBP as a template structure of the receptor.148 

Thus, only the three species of AChBP are targeted in this study, but the implications can 
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be far-reaching on the entire class of nicotinic acetylcholine receptors. Furthermore, what 

is unclear is whether or not ligand binding can occur in regions along this interfacial unit 

but away from the C-loop region. Can the virtual screening protocol presented here 

position the ligands in the traditional C-loop region as well as in novel potential binding 

sites? We will see that this is indeed the case.  

 The known ligands and various derivatives of the AChBP/nAChR systems have 

been extensively studied; unfortunately, many would fail as medicinal drug candidates 

because of their poor pharmacological properties.146 The known small molecule ligands 

that do succeed in this light are harmful because of their addictive and abusive nature; 

these include cocaine, heroine, morphine and nicotine.149 Thus, we are in search of  new 

ligands that can bind AChBP and possibly play pharmacological roles in the 

AChBP/nAChR systems. The set through which we explore comes from the National 

Cancer Institute (NCI), which harbors a database of nearly 250,000 drug-like compounds. 

In the computational work presented here, we conduct a virtual screening study of 

AChBP using (as the ligand set) the National Cancer Institute Diversity Set (NCIDS)—

consisting of approximately 2,000 molecules—which serves as a representative subset of 

the entire NCI database.150 Indeed, the NCIDS ligands are novel to the AChBP/nAChR 

system (to the best of our knowledge) and they exhibit the desired pharmacological 

properties of small molecule drugs (low molecular weight, high solubility).  

In any virtual screening or docking protocol, one must first determine how to 

obtain protein structures to dock against. One can readily employ crystal structures from 

the Protein Data Bank (PDB), but these static structures do not adequately depict the  

flexibility of the protein. Thus, docking against them does not usually reflect the true 
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dynamical nature of most protein-ligand interactions. Various docking protocols exist 

that attempt to surmount this hurdle of protein flexibility. One recent application, 

FLIPDOCK,151 attempts to achieve protein flexibility by toggling the positions of various 

side chains in the active site during the docking runs. This is a useful and quick way of 

capturing the local protein flexibility in the binding site. Yet, because of computational 

expense, one can only toggle a few (3 to 5) side chains, and this can be very limiting if 

there are many side chains implicated in ligand binding. The technique is also unfeasible 

if the exact binding site is unknown, or if the user intends to explore larger sites within 

the protein. Moreover, the application does not capture global conformational changes of 

the protein, and such changes could dramatically affect the binding pocket.  

An alternative method in capturing protein flexibility is the relaxed-complex 

method, in which a molecular dynamics (MD) simulation of the target protein is first 

conducted.152,153 If the time scale of the simulation coincides with that of the protein’s 

functional dynamics, one can capture local (and sometimes global) conformational 

changes in the protein. Snapshot structures can be taken from the MD simulation and 

employed in the screening of the ligand set using a computational docking tool. The 

results from these different receptor snapshots can be compared to ascertain if/how the 

conformational changes in the protein affect ligand binding. In the relaxed-complex 

scheme, there are various simulation and post-simulation processing methods that one 

can employ for capturing the receptor (protein) structures. As detailed by Amaro et al., 

the simulation can consist of standard equilibrium MD or even non-equilibrium methods, 

such as steered MD. A variety of techniques such as principal component or root mean 

square deviation (RMSD) analysis can then be used to pick out snapshots. Exactly which 



81 

 

simulation and analysis techniques afford the best structures for docking is the subject of 

much debate. The ideal method probably varies from system to system; it is thus crucial 

to verify any technique against experimental evidence before pursuing novel endeavors. 

In our case, for the AChBP, we first provide such a comparison to experimental data for 

validation before employing the relaxed-complex scheme on the novel set (NCIDS).   

Using the relaxed-complex method, we conducted MD simulations of all three 

species of AChBP, selected 5 snapshots from each simulation, and screened through the 

NCIDS for each snapshot. Given the aforementioned knowledge of the AChBP binding 

site, the RMSD of the characteristic C-loop that covers the binding site was chosen as the 

metric for snapshot selection. Specifically, through the presented work here, we address 

the following questions: 1. Can our relaxed-complex scheme—focusing on just one loop 

region—produce comparable results with previous experimental evidence (thus 

implicating the usage of this technique in other AChBP/nAChR systems)? 2. Can we 

identify new ligand binding regions within the interface of AChBP? 3. Can the NCIDS 

serve as a novel source of small molecule drugs targeting AChBP (and thus possibly the 

entire genre of AChBP/nAChR proteins)?  

The results from this virtual screening protocol agree well with previous 

experimental evidence, particularly with respect to the predicted poses and energetic 

trends of the known ligand binders of AChBP. Thus, the dynamical C-loop does serve as 

a sufficient metric for conformational selection. The NCIDS ligands explore almost the 

entire subunit interface and demonstrate their propensity to bind both the C-loop and non-

C-loop regions. A good number of them dock reasonably across all species and all 

snapshots of AChBP, and their binding interactions resemble those of known binders. All 
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of this suggests that the NCIDS could serve as a good set from which to pick novel 

ligands against AChBP/nAChR.  Even more interesting is that some of the NCIDS 

ligands dock differently into the three species of AChBP, and these ligands could serve to 

distinguish between them and possibly between the various subtypes of nAChR.  

 

5.2 Materials and Methods 

 From the PDB, structures for the Ls (1I9B),141 Ac (2BYN),144 and Bt (2BJ0)154 

species of AChBP were obtained. All non-protein atoms were stripped from these 

structures. The GROMACS MD package was then used to place each protein in its own 

simulation box of dimensions 100 × 100 × 82 Å, to solvate and neutralize the system with 

counterions, and then to carry out all subsequent MD simulations.19 Each system (3 in 

total) consisted of one of the AChBP species (the complete protein, as a pentamer), 

approximately 22,000 simple-point charge (SPC) model water molecules, and 

approximately 45 sodium ions. Each system totaled approximately 82,000 atoms.   

 Unfavorable contacts in each system were relieved by two cycles (5,000 steps 

each) of conjugate-gradient and steepest-descent minimizations. With the backbone of 

the protein restrained, each system was then heated to a temperature of 300K over a short 

50 ps simulation. Pressure coupling was then added and a simulation was carried out for 

1 ns with the alpha carbons of the protein restrained. The restraints were removed, and 

each equilibrated protein was simulated for 20 ns of production. The OPLSAA force field 

parameters were used for each AChBP system.155 The simulation parameters consisted of 

the following: a 2 fs time-step; coordinates and velocities recorded at every 500 and 
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1,000 steps, respectively; bond length constraints were imposed using the LINCS 

method; full electrostatics were calculated using the particle mesh Ewald technique, with 

coulombic and van der Waals cut-offs of 9 and 14 Å, respectively; Ewald tolerance was 

set to 1 × 10-5; nearest-neighbor lists were updated every 10 steps, with a cut-off of 9 Å; 

periodic boundary conditions were employed in all directions; Berendsen temperature 

coupling was used across the entire system, with a coupling constant of 0.1 ps, to 

maintain a temperature of 300K;  Berendsen isotropic pressure coupling was used across 

the entire system, with a reference pressure of 1.0 bar, a pressure coupling of 0.5 ps, and 

a compressibility of 4.5 × 10−5 bar−1. Analysis of the MD simulations was conducted 

using the various GROMACS tools. 

 For each species of AChBP, each subunit interface (there are 5 in AChBP) was 

examined for the greatest flexibility in the C-loop region. To reflect this flexibility, 5 

snapshots of a pair of subunits forming an interface, from each species, were taken at 

approximately 0 (just before the production run), 5, 10, 15, and 20 ns. Thus, screening 

was done with 3 (species) × 5 (snapshots) = 15 AChBP receptor structures. These 

structures were screened against using Autodock 4.0156,157 and 1,834 ligands from the 

NCIDS, which were previously parameterized for usage in Autodock by Chang et al.158 

These 15 × 1,834 = 27,510 Autodock jobs were performed on a cluster of 128 

processors—each 3.2 GHz EM64T with hyper threading capability, 2GB RAM—at the 

National Biomedical Computational Resource (NBCR).159 Each receptor structure, 

consisting of 2 subunits that meet to make the binding interface, was prepared for 

docking using a script from the AutoDockTools kit that adds Gasteiger charges to the 

structure. Grid maps were generated, with the center of the grid placed in the middle of 
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the subunit interfacial axis, at a spacing of 0.375 Å and with grid dimensions of 70 × 70 × 

70 points. For each Autodock job, default parameters were used with the following 

exceptions: the number of energy evaluations (ga_num_evals) was set to 5 × 106; the root 

mean square deviation tolerance (rmstol) for clustering was set to 1.5 Å; and the number 

of dockings (ga_run) was set to 100. This scheme was used for both the NCIDS ligands 

and the experimental ligands discussed below. In the latter case, the ligand structures 

were obtained from the PDB codes indicated in Table 2 and docked back into their 

crystal structures. In the work presented here, the NCIDS ligands are referred to by their 

name (if available) or by their NCI index number (also known as the NSC number). The 

structure and pharmacological data of the NCIDS ligands were obtained using this 

NCI/NSC number, via the NCI Query system.160 

For any ligand, from the Autodock result, the conformation from the most 

populated cluster was selected as the docked ‘pose’ for that ligand; this conformation 

may or may not exhibit the most negative free energy of binding. Because the pose is 

from the most populous cluster, we take it to be the statistically-probable result. The 

calculated binding energy for this pose was taken to be the ‘calculated’ or ‘predicted’ free 

energy of binding for the ligand in question. Analysis of the Autodock results was 

performed using common Autodock shell scripts and several scripts written by the 

authors. Data was plotted using MATLAB©. Visualization and rendering of AChBP and 

AChBP-ligand complexes were completed using the Visual Molecular Dynamics (VMD) 

software.51 Structural alignment of the AChBP species was performed using the MultiSeq 

module in VMD. 
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5.3 Results and Discussion 

 We first explore the dynamics of the binding site in AChBP, which (as mentioned 

above) occurs in each interfacial region between any two subunits. Following previous 

work, the subunit depicted on the left is known as the ‘plus’ (+) face and its characteristic 

feature is the ‘C-loop’, a loop in the protein consisting of residues 180-190, including the 

characteristic vicinal cysteine residues.161 The subunit depicted on the right is termed the 

‘minus’ (–) face. Most known binders of AChBP bind behind the C-loop in the middle of 

the axis in between the subunits. It has been suggested that the C-loop acts as a sort of 

flexible gate that covers the binding site; when a ligand binds, the C-loop becomes less 

flexible and covers the ligand-site complex.162,163 The C-loop flexibility is indeed 

observed in our molecular dynamics simulation as shown in Figure 22. At 5 ns intervals, 

one can readily observe the various positions of the C-loop. It should be noted though 

that this flexibility does not result in a complete opening of the subunit, for such an event 

does not occur on the present timescale of the simulation.164 Nonetheless, one can 

observe that the C-loop takes on different conformations during the simulation, and the 

exact position of the C-loop may impact ligand binding.  

 Oftentimes, the accuracy of any computational docking protocol is measured 

against known binding ligands of a protein. Such validation is crucial for justifying the 

current docking method. In our case, we seek to ensure the validity of selecting 

conformations based on the flexibility of one simple loop (the C-loop) in a rather large 

protein. Fortunately, for AChBP, there are many solved structures of ligand-receptor 

complexes in the PDB. The ligands of these complexes were docked back into AChBP; 
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the results are shown in Table 2 and Figure 23. In most cases, Autodock is fairly accurate 

in predicting the pose of the ligand, especially in the case of the well-known binders 

epibatidine and nicotine, whose docked poses exhibit less than a 1 Å RMSD from the 

crystal structure. It is well-documented that the smaller ligands of AChBP bind more 

rigidly behind the C-loop in between the two interfaces.165  

 

Figure 22: a) Snapshots from the molecular dynamics simulation of the 
acetylcholine binding protein (species Aplysia Californica, PDB: 2BYN).  
Only 1 of the 5 interfaces is shown here for clarity. The C-loop is colored 
in 5 ns increments. b)  The average root mean square deviation (RMSD) of 
the C-loop (Cα carbons only) as a function of simulation time. 
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As the ligands increase in size and in the number of rotatable bonds, the RMSD 

between docked and crystal structures increases, as can be seen in the cases of lobeline 

and cocaine. One suspects that the lobeline result is more accurate than the cocaine 

because the former exhibits a more symmetrical (or ‘butterfly’) structure, which possibly 

aids the lobeline in fitting along the interfacial axis between the subunits of AChBP. We 

discuss below ligands from the NCIDS that exhibit this same behavior. In the case of 

cocaine, its bulkiness and size possibly preclude a better predicted pose. In the case of the 

even larger ligands—pentaethylene glycol (several rotatable bonds) and 

methyllycaconitine (a macrocyclic structure)—the pose accuracy is even worse ( > 5 Å 

RMSD). 

Table 2: A comparison of the docked and experimental results, with respect 
to the pose accuracy of the ligand. The first column is the PDB ID of the 
ligand-AChBP complex, the second column is the full name of the ligand, 
followed by the ligand code (in the third column) as found in the PDB. The 
last column of the table shows the root mean square deviation (RMSD, in 
Å) of the docked ligand as compared to the crystal structure. 
 

PDB Ligand Name Code RMSD 
2BYQ Epibatidine EPJ 0.5 
1UW6 Nicotine NCT 0.7 

2UZ6 
Alpha-

Conotoxin 
- 0.9 

2BJ0 
3-Cyclo- 

hexyl-1-propyl-    
sulfonic Acid 

CXS 1.1 

2BYS Lobeline LOB 1.3 

1UV6 

2-[(Amino-
carbonyl)oxy]-     

N,N,N-
Trimethyl-        

ethanaminium 

CCE 1.4 

2BR7 

4-(2-Hydroxy- 
ethyl)-1-

Piperazine 
Ethanesulfonic 

 Acid 

EPE 1.9 

1I9B ″ EPE 2.8 
1UX2 ″ EPE 7.7 
2PGZ Cocaine COC 3.8 

2BYN 
Pentaethylene  

Glycol 
1PE 6.0 

2BYR 
Methyllyca- 

conitine 
MLK 8.0 
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  Such problems in dealing with large rotatable ligands are common when using 

Autodock and other docking codes.166 Nonetheless, though the exact poses are off for 

these ligands, Autodock does place them in the general vicinity of binding (behind the C-

loop) along the subunit interface, and this placement agrees well with previous 

experimental evidence.167 

 

Figure 23: Docked (blue) vs. crystal (red) structures of some common 
ligands that bind the acetylcholine binding protein.  Top Left: Nicotine, 
Top Right: Epibatidine, Bottom Left: Lobeline, Bottom Right: Cocaine.   
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Regarding the accuracy of the calculated free energy of binding, the current 

docking protocol does not predict with great accuracy the actual free energy as compared 

to experimental evidence,144,146,147,168 but it does pick up on some key trends; see Figure 

24. For instance, both experimental and computational results show nicotine binding 

better (a more negative free energy change) than the natural ligand of AChBP, 

acetylcholine. Although the docking does not show epibatidine to be the best binder, it 

does correctly show that epibatidine binds better than nicotine. The predicted free energy 

of binding seems to be more accurate in the larger ligands (cocaine, D-Tubocurarine, 

metocurine). A slight trend is also observed between the molecular weight and the 

calculated free energy of binding, in the sense that the larger ligands tend to bind more 

favorably (see Figure 25). Given the large binding space afforded by the subunit 

interface, it is not surprising that the calculated energies for the larger ligands are more 

accurate. In any case, it stands to reason that more emphasis should be placed on the 

predicted trends rather than the absolute binding energy numbers. Thus, because the 

energetic trends and docked poses agree fairly well with previous experimental results, 

we have confidence that the relaxed-complex scheme presented here—where we select 

and dock against various conformations of the C-loop—can be employed in the search 

for novel ligands.  

It is interesting to note that the predicted binding energies of the NCIDS ligands 

cluster in the same key range as the known ligands of AChBP; see Figure 26. For the 

purposes of this study and because of the known calculated noise associated with 

Autodock,158 we will focus on those ligands with a predicted binding energy near or less 

than -7.0 kcal mol-1. Although we do not  yet  have  experimental  results  of  the  NCIDS  
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Figure 24: A comparison of the Autodock calculated free energies of 
binding with experimental values, of known binders to the acetylcholine 
binding protein (Ls species). For the docked value, the best result was 
selected from the snapshots afforded by the relaxed-complex method. 
Experimental values for BTCP (N-[1-(2-benzothiophenyl)cyclo-
hexyl]piperidine), codeine, crystal violet, morphine, stilonium, and 
tropisetron were obtained via personal correspondence with Talley. All 
other experimental values were obtained from references 144, 146, 147, 
168.  

 

ligands against AChBP, the computational work presented here is very promising, in the 

sense that the novel set mimics the binding of known compounds. Furthermore, because 

the docking was conducted throughout the entire interfacial region, the NCIDS ligands 

bound to several residues along the axis between the two AChBP subunits; see Figures 27 

and 28. While many docked into the traditional C-loop binding region, what is striking is 

that many of the NCIDS ligands explored the remaining interfacial space, suggesting the 

prevalence of new binding sites and modes. We discuss below both the C-loop and non-

C-loop binding regions.  
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Figure 25: Molecular weight vs. the calculated free energy of binding, of 
the NCIDS ligands against the 10 ns snapshot of Ls AChBP.  
 

 
Figure 26: Free energies of binding of all docked conformations of the NCI 
Diversity Set against the 0 ns snapshot of the Ls AChBP.  
 

 
As expected, the ligands make a significant number of contacts with and around 

the C-loop region of the plus face (residues 180-200). Those ligands that bind well in this 

region do so with respect to all three species of AChBP. Appendix A-1 displays  a  list  of 
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Figure 27: Front and rear views of the binding (interfacial) site. The 
subunit containing the C-loop is often termed the ‘plus’ (+) face, while the 
adjacent subunit is the ‘minus’ (-) face. All colored regions show 
significant contact with the ligands of the NCI Diversity Set. The frequency 
profile of contacts can be seen in Figure 28. Plus face: orange corresponds 
to residues 80-100, pink to 115-125, green to 135-155, blue to 180-200. 
Minus face: orange corresponds to residues 30-40, green to 50-60, yellow 
to 70-75, pink to 95-105, black to 110-118, and blue to residues 150-170.    
 

 

Figure 28: The frequency of contacts (within 5 Å of a residue) between all 
of the ligands of the NCI Diversity Set and the acetylcholine binding 
protein. Coloring scheme matches that of Figure 27.  
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compounds from the NCIDS that bind to all three species and across all snapshots of the 

protein. These ligands should not distinguish between the three species of AChBP 

because they all bind in a similar fashion behind the C-loop.  The 50 compounds listed in 

Appendix A-1 that dock across all three species and behind the C-loop exhibit the same 

characteristics of previous known binders of AChBP. 19 of them (almost half) bear a 

tryptophan-like moiety, and this structure provides a key point of stabilization in the C-

loop region. In this region of the protein, an ‘aromatic cage’ stabilizes ligands that 

contain aromatic functionalities.169 This cage consists of several key tryptophan and 

tyrosine residues, and they are observed to make stabilizing contacts with the docked 

NCIDS ligands as well. An example of this interaction can be seen in Figure 29. Several 

of the NCIDS compounds that bind all three species and snapshots of AChBP contain 

amines that can bear a charge depending on the pH of the environment. In turn, these 

charged amines can interact with the electronic π networks of the aromatic amino acids, 

and these cation-π interactions also serve to stabilize the ligand in the AChBP binding 

pocket.145,170 That a significant number of the NCIDS ligands exhibit groups that can hold 

a charge and contain aromatic functionalities that can interact with the aromatic cage 

makes the NCIDS a practical pool from which to pick novel ligands against all species of 

AChBP. 

 Hydrogen bonds also play a role in stabilizing the AChBP-ligand complex.163 

Backbone atoms on the protein and key side chains (such as tryptophan and tyrosine) can 

make hydrogen bonds with the ligand.154 The NCIDS compounds also exhibit several 

hydrogen bonding moieties. Along with amines, many bear several hydroxyl groups in 

key positions that can help stabilize the ligand in the binding site. A prime example is 
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NCI 108608, as shown in Figure 30. This ligand contains all of the aforementioned 

characteristics, including a tryptophan-like structure, amines, and several hydroxyl 

groups. It forms close contacts with at least two residues of the C-loop region on the plus 

face (CYS187 and TYR192), a third residue characteristic of the aromatic cage 

(TRP143), and a residue on the minus face (LEU102). These interactions coupled 

together could make this ligand a strong binder against all three species of AChBP.  

 

Figure 29: NCI 105017, binding against Ls AChBP. The plus/minus faces 
of the binding site are colored green/yellow, respectively, and shown in the 
cartoon representation. Some of the protein residues from each face that 
make up the ‘aromatic cage’ are shown in a highlighted stick 
representation. The ligand is shown in the licorice model, where the atoms 
of the ligand are colored cyan, red, white, and blue, for carbon, oxygen, 
hydrogen, and nitrogen, respectively. Inset shows the 2D structure of the 
ligand. 
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If the ligand binds behind the C-loop in the interfacial region of AChBP, then the 

C-loop conformation itself plays a significant role in stabilization. For instance, in the 

binding of large ligands such as the conotoxins, the C-loop is usually extended outward 

and away from the cylindrical space of AChBP. On the other hand, when binding smaller 

ligands such as epibatidine, the C-loop is bent inwards and more towards the central axis 

of the protein.168 Based on this knowledge and the various poses of the C-loop afforded 

by the relaxed-complex scheme presented here, we can qualitatively judge the fidelity of 

a pose for a new ligand. We see that for the NCIDS ligands  that  do  bind  in  the  C-loop  

 

Figure 30: The extensive hydrogen-bonding character of NCI 108608, to 
the Lymnaea stagnalis species of AChBP. Numbers indicate distances in 
angstroms. Residues from the plus face of AChBP are shown in green, and 
they are (from the left) CYS187, TYR192, and TRP143. The yellow 
residue is LEU102 and from the minus face. The hydrogen bonding atoms 
on the protein residues as well as the atoms of the ligand are colored cyan, 
red, white, and blue, for carbon, oxygen, hydrogen, and nitrogen, 
respectively. Inset shows the 2D structure of the ligand. 
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region, the ligand pose depends significantly on the position of the C-loop; see Figure 31. 

It appears that as the C-loop moves away from its characteristic position, the 

conformation of the ligand is altered (middle and bottom panels of Figure 31a). We have 

not explicitly explored such dynamics here, but recent computational work by Liu et al. 

has shown that the dynamics of the C-loop and the ligand position are inherently tied to 

each other.164 For ligands that bind well across all three species of AChBP, we take the 

predicted pose with the C-loop in the traditional position (as shown in the crystal 

structure) to be the most probable pose of that ligand. 

Some of the NCIDS compounds are also reminiscent of the recently-studied 

neonicotinoids that bind well to AChBP.171 NCI 348401 (shown in Figure 31), 118208, 

and 116805 bear a resemblance to the neonicotinoid imidacloprid, in the sense that they 

harbor nitro groups that can form hydrogen bonds with key residues in the C-loop of the 

plus face.  Similar to desnitroimidacloprid, NCI 22959 contains imines and amines that 

can stabilize the ligand in the C-loop region. As Talley et al. point out, these nitrogenous 

functionalities form key hydrogen bonds and (if charged) cation-π interactions with the 

residues of the binding site.171 Thus, the ligands from the NCIDS that contain these 

imines and amines—as well as those that exhibit properties of typical C-loop binders—

may become novel AChBP-binding ligands. 

As mentioned above, a significant number of the NCIDS compounds consistently 

bind away from the C-loop region, in all three AChBP species. By visual inspection, 

these compounds seem to be ‘butterfly’ structures, in the sense that they exhibit identical 

(or  near-identical)  structures  on   either   side   of  a  point  of  symmetry. Of  the  list  in  
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Figure 31:  a) Binding of 2-amino-6-((7-(hydroxy(oxido)amino)-2,1,3-
benzoxa-diazol-4-yl)thio)-9H-purine (NCIDS 348401) to the Aplysia 
californica species of AChBP, at different conformations of the C-loop. 
The plus/minus faces of the protein are shown in a cartoon representation 
in green/yellow, respectively, and in a transparent fashion expect in the 
region of the C-loop (opaque). Ligand is shown in the licorice 
representations, with atoms colored cyan, red, white, and blue, for carbon, 
oxygen, hydrogen, and nitrogen, respectively. b) The 2D structure of the 
ligand. 

 

 

Appendix A-1, a handful of compounds (NCI  54671, 54672, 116805, and 282034) 

exhibit this property.  As  can  been  seen in Figure 32, 5-(2-(1H-tetraazol-5-yl)ethyl)-1H- 
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tetraazole (NCI 282034) docks in a deeper pocket on the plus face, too distant to form 

significant contacts with the C-loop residues. These butterfly compounds can bind into 

other crevices along the plus/minus interface, but their effect on either the conformation 

or chemistry of AChBP is unclear and warrants further work. In general, such butterfly 

compounds are versatile and have proven of interest in other pharmacological targets, 

such as HIV Integrase.172 Given the large interfacial area between the subunits of 

AChBP, the present docking method utilizes these butterfly compounds from the NCIDS 

to explore the binding space.  

 That the NCIDS ligands make significant contacts (see Figures 27 and 28) with 

parts of the plus/minus faces away from C-loop region suggests that parts of the interface 

above and below the C-loop may play a role in ligand binding. From the plus face, these 

other regions of binding are the A-loop region (residues 80 to 100), the β-strand (residues 

115 to 125) following the E-loop region, and the B-loop region with accompanying β-

strands (residues 135 to 155). The letter designations of the loops comes from previous 

work.161 On the minus face, the various β-strands (residues 30 to 40, 50 to 60, and 110 to 

118) stabilize the ligand when in the traditional binding site, behind the C-loop. Yet, we 

observe that some other parts of the minus face—in particular the F-loop region (residues 

150 to 170)—may also provide binding residues.  

Work by Hibbs et al. demonstrated that agonists and antagonists of AChBP have 

different effects on the flexibility of the F-loop upon ligand binding, and that this 

flexibility may result in a conformational change that is translated down the membrane 

portion in the actual acetylcholine receptor.173 Given the significant frequency of contacts 

with the F-loop region (see Figure 28b), the NCIDS ligands may elucidate this point 
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further. The strands preceding the A-loop region (residues 95-105) and even a piece of 

the interface at the top (residues  70-75)  of  the  minus  face  may  also  be  implicated  in  

 

Figure 32: a) 5-(2-(1H-tetraazol-5-yl)ethyl)-1H-tetraazole (NCI 282034) 
docked in Ac AChBP. Binding pocket of the protein is shown in a space-
filling representation while the ligand is shown in the licorice mode. The 
coloring scheme for the atoms is cyan, red, white, and blue, for carbon, 
oxygen, hydrogen, and nitrogen, respectively. b) The 2D structure of the 
same ligand. 
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binding. Because of the vast work on the binding in the traditional C-loop region, it is 

debatable how strongly ligands may bind to these other regions of the plus/minus 

interface. Yet, computationally, there is no reason to exclude these other interfacial 

regions. In fact, the work presented here suggests that it would be erroneous to discount 

the binding to the non-C-loop regions. Furthermore, recent experimental (unpublished) 

data by Talley also implicates these non-C-loop regions in ligand binding (although the 

exact properties of such ligands have yet to be determined).   

 It is also interesting to note that the NCIDS ligands that do bind to other parts of 

the plus/minus interface bind differently amongst the three species of AChBP. Appendix 

A-2 shows a subset of the NCIDS that bind differently  across the 15 snapshots of 

AChBP (5 from each species). One such ligand, Tolypomycin (NCI 117383) is shown in 

Figure 33. It is a macrocyclic molecule, bearing some resemblance to the curariform 

antagonists that bind to AChBP in a variety of orientations.170 In the three species, the 

Tolypomycin docks in the interfacial regions below, behind, and above the C-loop in the 

Ls, Ac, and Bt forms of AChBP, respectively. As discussed previously, because binding 

behind the C-loop region is the most stable form of binding, it is likely that Tolypomycin 

would bind better to Ac AChBP than to the other two species. In this sense, some of the 

ligands of the NCIDS could possibly be used to differentiate between the three species of 

AChBP and between the different subtypes of nAChR.  

Some interesting characteristics of the Tolypomycin binding are revealed by 

comparing the sequences of the plus/minus faces in the three species.  In the plus face 

(Figure 34a), the sequence conservation of  the  C-loop  region  is  great  across  all  three  
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Figure 33: a) 2D Structure of Tolypomycin (NCI 177383). b) Binding of 
Tolypomycin to the three species of AChBP. From left to right: Lymnaea 
stagnalis; Aplysia californica; Bulinus truncates. In each case, the 
plus/minus faces are shown in a cartoon representation in green/yellow, 
respectively. Ligand is shown in the licorice representations, with atoms 
colored cyan, red, white, and blue, for carbon, oxygen, hydrogen, and 
nitrogen, respectively.  
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species of AChBP. Tolypomycin makes contacts here with the conserved tyrosine-serine-

cysteine-cysteine (YSCC) sequence in all three species. This again demonstrates that the 

C-loop region of the plus face is the ideal location for binding, and many of the NCIDS 

ligands resolve this point. Just upstream from the C-loop region, Tolypomycin makes 

contact with conserved tyrosine and aspartic acid residues.  

 

 

 

 

Figure 34: Structural sequence alignments of the AChBP in the a) plus 
face and b) minus face. The top, middle and bottom rows correspond to 
the species Lymnaea stagnalis (Ls), Bulinus truncates (Bt) and Aplysia 
californica (Ac), respectively. Asterisks delineate points of structural 
sequence conservation throughout all three species. Highlighted residues 
are those that make contacts (within 7.5 Å) with the ligand Tolypomycin, 
shown in Figure 33.  
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Contacts occur at some other conserved sites as well but not always across all 

three species of AChBP. For instance, Tolypomycin makes contact with TYR89 and 

TYR99 of Ls and Ac AChBP, respectively; but no such contact is made with the 

conserved TYR88 of Bt AChBP. The ligand also makes contacts with the conserved 

cysteine and aspartic acid residues of Ls AChBP but not with Bt or Ac AChBP. Slight 

differences in secondary structure at these conserved sites may result in differences in 

binding for a particular ligand. Moreover, certain strands of contact occur in some species 

but not in the others, such as the contacts from SER152 to GLU159 in Ac AChBP. This 

is even more the case in the minus face (Figure 34b), where the contact pattern differs 

greatly from one species to the next. Here one can see that the strands of contacts are not 

always aligned, and sometimes a long strand of contacts occurs in one species but to a 

lesser degree in the other two. These points of contact differentiation between the three 

species could explain the differential binding of Tolypomycin (as well as the other 

ligands in Appendix A-2) to AChBP.  

 

5.4 Conclusion 

 We have presented here a virtual screening study of the acetylcholine binding 

protein using the relaxed-complex method which involves a combination of MD 

simulation (to sample receptor structures) and docking. Regarding the ligands that bind 

AChBP—although the exact binding energies and poses are not always predicted—the 

relaxed-complex method does provide accurate results for many of the known binders 

and highlights key binding trends. Even the simple method of receptor structure selection 
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based on the RMSD of a single loop can afford these results; this is likely the case for the 

entire realm of AChBP/nAChR proteins.  

The ligands of the National Cancer Institute Diversity Set were screened through, 

and the results show that a number could serve as potential binders of AChBP. Like the 

known binders of AChBP, many of the NCIDS ligands dock behind the C-loop along the 

interface formed between the plus and minus subunits. This is the traditional location of 

ligand-binding in AChBP. The NCIDS ligands that possess aromatic functionalities are 

stabilized in the C-loop region by an aromatic cage. Hydrogen bonding interactions are 

prevalent; the ligands also feature chemical moieties that can bear a charge and thus form 

cation-π interactions with the residues in the binding site. Although many of the NCIDS 

ligands dock well across all three species and snapshots of AChBP, some appear to 

distinguish between the various structures. When this is the case, the ligands dock away 

from the C-loop region, and these molecules could serve to distinguish between the three 

species of AChBP. In this way, the NCIDS ligands have identified potentially-novel 

binding regions in the interfacial space of the protein.  

 Thus, the chemical space of the NCIDS provides valuable insight into ligand-

binding in the acetylcholine binding protein. Because of its functional and structural 

similarity to the extra-cellular domain of the nicotinic acetylcholine receptor, AChBP 

serves as a surrogate structure in the study of the receptor. The ligands that interact 

significantly with AChBP could in turn bind the receptor. If this is the case, the NCIDS 

could be probed for ligands that bind across all of the receptor subtypes as well as those 

that distinguish between different structures. Such novel ligands could be helpful in 

pharmaceutical research on various neurological processes and disorders.  
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CHAPTER 6: Inhibitor Binding of Group IVA 

Phospholipase A2 Probed by Molecular Dynamics and 

Deuterium Exchange Mass Spectrometry   

  

6.1    Introduction 

The Group IVA phospholipase A2 (GIVA PLA2) is a member of the superfamily 

of phospholipase A2 enzymes that cleave a fatty acid from the sn-2 position of 

phospholipids.174,175 The products of this reaction, a free fatty acid and a 

lysophospholipid play important roles as lipid second messengers. GIVA PLA2 was 

isolated in 1990 from U937 cells,176 and was discovered to be composed of a C2 domain, 

and a α/β hydrolase domain containing the active site.177 The GIVA PLA2 is specific for 

phospholipids with arachidonic acid in the sn-2 position, and the release of arachidonic 

acid is the first step in the production of eicosanoids and leukotrienes which play 

important roles in many inflammatory diseases.178 Experiments performed using mice 

deficient in the GIVA PLA2 enzyme have proven that GIVA PLA2 is the critical PLA2 

enzyme for eicosanoid generation in many inflammatory disease models.179,180,181  

The enzyme was shown through site directed mutagenesis to contain an active site 

dyad composed of Ser-228 and Asp-549,182 and this was later confirmed through x-ray 

crystallography of the enzyme.183 The enzyme contains an amphipathic lid region from 

415-432 that prevents accession of phospholipid into the active site.183 The lid region has 

106 
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two disordered regions from 408-412, and 433-457 that may act as hinges that allow the 

lid region to open.  It has been shown that this lid is in the open conformation when the 

enzyme is in the presence of lipid vesicles (its natural substrate) or when inhibitor is 

bound in the active site.  

The knowledge that GIVA PLA2 plays an important functional role in many 

inflammatory diseases has sparked an interest in the production of specific inhibitors 

against this enzyme. The first inhibitors of this enzyme were based around the specificity 

of the enzyme for phospholipids with arachidonic acid in the sn-2 position, and as such 

arachidonyl trifluoromethyl ketones (ATK) and methyl arachidonyl fluoro phosphonate 

(MAFP) (1) were synthesized and found to inhibit the enzyme in platelet models of 

eicosanoid generation.184,185,186 In recent years many different strategies have been 

pursued to create effective and specific GIVA PLA2 inhibitors. These have included 

indole derivatives developed by Wyeth Pharmaceuticals (2),187,188,189,190 pyrrolidine based 

inhibitors by Shinogi Pharmaceuticals (3),191,192,193,194 substituted propan-2-ones by the 

Lehr group,195,196,197 as well as 2-oxoamide compounds by the Kokotos and Dennis 

groups (4) as shown in Figure 35.198,199,200,201 Of these inhibitors, there exist two docked 

structures in the GIVA PLA2 active site, generated through computer modeling,187,202 but 

there are no in depth examinations of the binding pocket contacts between inhibitor and 

enzyme.  

The pyrrolidine derived inhibitor pyrrophenone displays some of the best 

inhibition but (due to chemical properties) is not useful as a drug.190 We have previously 

shown that the 2-oxoamide compounds show an antihyperalgesic effect in rat models.203 

The invention of better 2-oxoamide inhibitors is a promising drug strategy, and to such 
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end, we set out to model the 2-oxoamide inhibitor AX007, as well as the pyrrolidine 

derived inhibitor pyrrophenone, bound in the active site. This required a technique to 

monitor changes in protein structure upon inhibitor binding.  

 

Figure 35: Inhibitors of GIVA PLA2. 1. MAFP. 2. Efipladib. 3. 
Pyrrophenone. 4. AX007 

 

Peptide amide hydrogen deuterium exchange analyzed via liquid 

chromatographymass spectrometry has been widely used to analyze protein-protein 

interactions,204,205 protein conformational changes,206,207 and protein dynamics.208 We 

have previously used this technique to explore changes in lipid binding with the GIVA 

PLA2 and discovered changes in exchange profiles in the presence of the irreversible 

inhibitor MAFP.209 The DXMS technique, in conjunction with site-directed mutagenesis, 

has recently been used to identify regions interacting with different inhibitors.210,211    
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Coupled with these experimental techniques, computational methods can be 

employed to study the atomic-level details in the GIVA PLA2-Inhibitor complex. 

Extensive simulations of the phospholipase A2 system have been carried out. Most 

notably, Wee et al. recently conducted a coarse-grained simulation of the pancreatic 

phospholipase A2, in which they demonstrate how the enzyme adheres to the lipid 

bilayer.212 Quantum mechanical methodologies have also been applied to the 

phospholipase system.213 This work has proven vital to the understanding of 

phospholipase A2 chemistry and dynamics.  

In turn, by running molecular dynamics (MD) simulations of GIVA PLA2 with 

inhibitor, one can observe how the latter docks into and stabilizes itself in the enzyme. 

Contacts between the inhibitor and specific residues of GIVA PLA2 can also be 

identified. This information augments the results from the deuterium exchange technique 

which at this time lacks the resolution to achieve single-residue data. In lieu of known 

crystal structures depicting the enzyme-inhibitor complex, this computational work 

affords working models of the complexes and characterizes key enzyme-inhibitor 

interactions. The MD simulations and subsequent analysis aid in drawing comparisons 

between the oxoamide and pyrrophenone complexes.  

The study of these two very different inhibitors provides an excellent model for 

generalized GIVA PLA2 inhibition. The dual techniques of deuterium exchange mass 

spectrometry and MD simulation are  excellent methods to probe the dynamical changes 

induced by binding of inhibitors to any enzyme. This study also represents a continuation 

of our deuterium exchange studies on the PLA2 family of enzymes.209,214 We have 

identified specific regions of the protein that interact with the oxoamide and 
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pyrrophenone inhibitors, and we have carried out extensive computer simulations to 

create a model of inhibitor binding in the active site. We have also identified significant 

differences in the way pyrrophenone and oxoamide bind GIVA PLA2.  This work leads to 

the possibilities of enhanced rational drug design through the powerful combination of 

experimental and computational work. 

 

6.2 Materials and Methods 

All reagents were analytical reagent grade or better. Pyrrophenone was the 

generous gift from Shinogi, and the 2-oxoamide AX007 was synthesized as described.199   

Protein Expression and Purification: C-terminal His6-tagged GIVA PLA2, and 

the C2 and catalytic domains were expressed using recombinant baculovirus in a 

suspension culture of Sf9 insect cells. The cell pellet was lysed in 25 mM Tris-HCl pH 

8.0, 150 mM NaCl, 2 mM β-mercaptoethanol, and 2 mM EGTA and than the insoluble 

portion was removed by centrifugation at 12,000 x g for 30 min. The supernatant was 

passed through a column comprised of 6 ml nickel-nitrilotriacetic acid agarose (Qiagen, 

Valencia, CA). The protein in the native state was eluted in the “protein buffer” (25 mM 

Tris-HCl pH 8.0, 100 mM NaCl, 125 mM imidazole and 2 mM dithiothreitol). The 

protein concentration was measured using the Bradford assay (Bio-rad) to manufacturer’s 

standards, and the activity was assayed using mixed micelles in a modified Dole assay.215 

Purified GIVA PLA2 (2 mg/ml) was stored in the protein buffer on ice for DXMS 

experiments. Experiments were performed immediately after elution from the nickel 

column.   
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Preparation of Deuterated samples for On-exchange Experiments: D2O buffer 

contained 10 mM Tris (pD 7.5), 50 mM NaCl in 98% D20. Hydrogen/deuterium 

exchange experiments were initiated by mixing 20 μl of GIVA PLA2  (containing 40 μg) 

in protein buffer with 60 μl of D2O buffer to a final concentration of 73% D2O at pH 7.5. 

In inhibitor binding experiments, the GIVA PLA2 in protein buffer was pre-incubated in 

the presence of 40 μM pyrrophenone, 40 μM oxoamide AX007, or DMSO control. The 

inhibitors were added from 600 μM stock dissolved in DMSO. The final concentration of 

DMSO was 1.5% for all experiments. The inhibitors were allowed to preincubate with 

the enzyme for 10 minutes at 23oC before addition of D2O buffer. The D2O buffer was 

added and the samples were incubated at 23°C for an additional 10, 30, 100, 300, 1000, 

3000 or 10000 seconds.  The deuterium exchange was quenched by adding 120 μl of ice-

cold quench solution (0.96% formic acid, 1.66 M guanidine hydrochloride (GdHCl)) that 

acidified the sample to a final pH = 2.5 and concentrations of formic acid of 0.58%, and 1 

M GdHCl. The samples were placed on ice for 10 min to partially denature the protein 

and obtain optimal peptide maps. Vials with frozen samples were stored at −80 °C until 

analysis, usually within three days.  

Proteolysis-liquid-chromatography-mass spectrometry analysis of samples: All 

steps were performed at 0°C as previously described.204,206 The samples were hand-

thawed on melting ice and injected onto and passed through a protease column (66 μl bed 

volume) filled with porcine pepsin (Sigma); immobilized on Poros 20 AL medium 

(Applied Biosystems) at 30 mg/ml following the manufacturer's instructions, at a flow 

rate of 100 μl/min with 0.05% trifluoroacetic acid (TFA). The eluate from the pepsin 

column was directly loaded onto a C18 column (Vydac cat #218MS5150). The peptides 
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were eluted at 50 μl/min with a linear gradient of 0.046% TFA, 6.4% (v/v) acetonitrile to 

0.03% TFA, 38.4% acetonitrile for 30 min. The eluate from the C18 column was directed 

to a Finnigan Classic LCQ mass spectrometer via its ESI probe operated with a capillary 

temperature of 200 °C as previously described. 204,206  

Data processing: SEQUEST software (Thermo Finnigan Inc.) was used to identify 

the sequence of the peptide ions. DXMS Explorer (Sierra Analytics Inc, Modesto CA) 

was used for the analysis of the mass spectra as previously described.204,206 All selected 

peptides had first passed the quality-control threshold of the software and were then 

manually checked to insure that the observed mass envelope agreed with the calculated 

mass envelope. The highest signal/noise ion was picked if multiple ionization charges (1, 

2 or 3) of a peptide were detected. Incorporated deuteron number was obtained by 

measuring the centroid shift between the non-deuterated and the partially-deuterated mass 

envelope.  

The deuteration level of each peptide was calculated by the ratio of the 

incorporated deuteron number to the maximum possible deuteration number.  Peptide 

deuteration levels in replicate samples, measured by our DXMS methods, have been 

found to vary by less than 10%, and we therefore regard changes greater than 10% as 

significant.204 All experiments were performed at least twice, and representative data is 

shown. Trends in the data were similar from experiment to experiment, but total 

deuterium content varied by roughly 5-10% in similar experiments carried out weeks 

apart. For all peptides shown in the Figures, different peptides that cover the same region 

are included in Figure 36. 
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Figure 36: Deuterium exchange upon binding of 10 µM Pyrrophenone or 
AX007. The number of  incorporated deuterons at seven time points are 
displayed. Peptides 240-253, and 379-393 are given as examples of 
peptides with no change in exchange upon inhibitor binding. 

 

Molecular Dynamics Simulations: In total, three systems were simulated: the apo 

form of GIVA PLA2; GIVA PLA2 with pyrrophenone bound; and GIVA PLA2 with 

oxoamide bound. The structure of GIVA PLA2 was obtained from the Protein Data Bank 

(code 1CJY).183 In this reported structure, several segments were missing including 

residues 407-414, 431-462, 498-538, and 626-632. These apparently flexible regions 

were modeled into chain B of 1CJY using SWISS MODEL (Figure 37).216 The resulting 



114 

 

complete structure of GIVA PLA2 was optimized by 500 steps each of steepest decent 

and conjugate gradient energy minimizations and used in all three systems.  

 

Figure 37: Modeling uncrystalized residues. The residues without defined 
electron density in the crystallographic structure were modeled and are 
shown in purple.  

 

The inhibitors pyrrophenone and oxoamide were constructed using the Accelrys® 

Discovery Studio package, in which they were built and energy minimized to obtain their 

initial conformations. Each inhibitor was manually placed in the active site of GIVA 

PLA2 using the aforementioned knowledge of the active site and residues implicated in 

binding. This was carried out using the Visual Molecular Dynamics (VMD) package,51 
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which was also used for further construction of all 3 systems. The protein (or the protein-

inhibitor complex) was placed in a simulation box of dimensions 127 × 73 × 91 Å , 

solvated with approximately 22,750 TIP3P water molecules, and neutralized with 28 

sodium counterions (~80,000 atoms total for each system). 

The minimization steps and all subsequent simulations were carried out using the 

NAMD molecular dynamics package.21 For the apo structure, an energy minimization 

was performed on the system first with the protein backbone atoms fixed—for 25,000 

steps, to allow the water/ions to conform to the shape of the protein—and then with no 

such constraint—for another 25,000 steps, to relieve any unfavorable contacts in the 

entire system. For the inhibitor-bound systems, a similar energy minimization scheme 

was performed, with the addition of an extra minimization holding the inhibitor 

coordinates fixed, to relieve unfavorable contacts between the inhibitor and protein. For 

all three systems, a heating step was performed, in which the system was gradually 

heated (~50 ps) to a temperature of 300 K. During this heating and then the equilibration 

phase, the protein backbone and inhibitor atoms were restrained with a force constant of 

5 kcal mol-1 Å-2.  In the equilibration phase, pressure coupling was added and a series of 

restrained MD simulations were conducted. The restraints were gradually relieved and 

the free, un-restrained system was equilibrated for 1 ns further. The production runs for 

each system commenced; each protein (or protein-inhibitor complex) was simulated for 

50 ns. 

For each of the production runs, the temperature was maintained at 300K using 

the Langevin thermostat, with a coupling constant of 2 ps-1. Pressure was maintained at 

1.01325 kPa using the Langevin piston method, with the ‘GroupPressure’ and 
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‘FlexibleCell’ parameters turned on. Bonds to hydrogen atoms were held fixed while 

using a 2 fs timestep. Non-bonded interactions and full electrostatics was calculated 

every 1 and 2 steps, respectively. Non-bonded interactions were smoothly switched off 

between 8.5 and 10 Å, while the cut-off for pairlist distance was set to 12 Å. Long-range 

electrostatic forces were evaluated using the particle mesh Ewald (PME) method.56 The 

CHARMM22/27 all-hydrogen parameter files were used for protein and inhibitors in all 

three simulations.54 The standard protein/amino acid parameters were used for GIVA 

PLA2 and pyrrophenone (by analogy to various amino acid side chain structures). The 

oxoamide was parameterized according to the lipid parameters provided in CHARMM27.    

 

6.3 Results and Discussion 

GIVA PLA2 Digestion Map: The protein digestion procedure was optimized to 

produce a peptide map that yielded the best coverage of GIVA PLA2 as described 

previously.209,214 The optimized condition identified 185 distinct peptides that gave 94% 

coverage of the GIVA PLA2 sequence (Figure 38). From this group, the 71 peptides with 

the best signal to noise ratio with the least amount of redundant data were used to 

generate the Figures in the manuscript as described previously.209,214 All peptides were 

analyzed for deuterium content as a comparison, but only the ones with non-redundant 

data were used in the analysis. 
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Figure 38: Peptide digest map of GIVA PLA2. Identified and analyzed 
peptides resulting from pepsin-digestion are shown below the primary 
sequence of GIVA PLA2. Only the peptides shown as solid lines were used 
in this study. 

 

Modeling and Simulation: The overall structure of the protein remained close to 

the crystal structure in all three simulations (Figure 39). The regions missing in the X-ray 

structure, but model-built in the simulations, exhibited large fluctuations throughout the 

simulations, which is consistent with their being disordered in the crystals. However, the 

majority of the modeled regions remained solvated, without making significant contact 

with the rest of the protein. As a result, their motion did not affect the active site region of 



118 

 

the enzyme. In the apo form, GIVA PLA2 shows no significant conformational changes, 

as expected. In the inhibitor-bound forms, both pyrrophenone and the oxoamide show 

considerable movement in the first half of simulation but settle to a converged 

conformation and location in the last 25 ns, as judged by the root mean square deviation  

(RMSD) of the inhibitors (Figure 39). Thus, the last 25 ns of each simulation were used 

in all subsequent simulation analysis.  

 

Figure 39: Root mean square deviation of protein and inhibitor. For all Cα 
RMSD measurements the red represents the RMSD of all residues, with 
crystallized residues RMSD shown in blue (excluding 407-414, 431-462, 
498-538, and 626-632). A. The RMSD of the Cα in the apoenzyme over the 
simulation time course (50 ns). B. The RMSD of the Cα in the 
pyrrophenone bound enzyme. C. The RMSD of the Cα in the oxoamide 
bound enzyme. D. The RMSD values of both the oxoamide (green) and 
pyrrophenone (red) over the simulation time course is plotted. 
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GIVA PLA2 Pyrrophenone Binding Experiments: We examined both the 

pyrrolidine derived inhibitor pyrrophenone as well as the 2-oxoamide derived inhibitor 

AX007. These compounds are structurally quite different and target different 

functionalities of the GIVA PLA2. Therefore, determining exactly how these inhibitors 

bind is an important goal, because it allows the possibility of combining the best parts of 

each inhibitor to form new, more effective inhibitors to allow for further structure-

activity studies. On-exchange experiments were performed on the intact GIVA PLA2 

enzyme in the presence of both 10 µM pyrrophenone and 10 µM  of the 2-oxoamide 

inhibitor AX007 to determine if inhibitor binding caused changes in deuterium exchange 

rates. The experiments were carried out at relatively low ratios of protein to inhibitor 

(1:2) in 1.5% DMSO to prevent possible complications from inhibitor aggregation and 

misleading deuterium exchange results. Experiments were carried out at seven time 

points varying from 10 to 10,000 seconds. Both inhibitors showed multiple regions of the 

protein with greater than 10% change in the on-exchange rates between the inhibitor-

bound and apo forms at all time points. These percent increases and decreases in on-

exchange rates showed a strong correlation with computational data mapping percent 

chance of contact per residue number (Figure 40). The residues from 292-298 and 401-

417  predicted to be in contact with the inhibitor (within 5 Å) from modeling and that 

show no changes in deuterium exchange are all located in regions with either extremely 

slow or rapid exchange, and hence there is no significant difference in exchange between 

apo- and halo- forms (Figure 41). The difference in on-exchange at the 100 second time 

point captured all of the major changes, and was used to generate the data shown in 

Figure 40. 
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Figure 40: Deuterium exchange information compared to computer 
simulation results. Panels A and B: The percent change in deuterium 
exchange between inhibitor free GIVA PLA2 and oxoamide-bound (panel 
A) or pyrrophenone-bound (panel B) GIVA PLA2 at 100 seconds of on-
exchange is shown.  Each bar represents a region that deuterium exchange 
was quantified. All changes greater than 10% are considered significant. 
Panels C and D: The percent chance of specific residues being within 5 Å 
of the docked inhibitor in the molecular dynamics simulation are plotted for 
oxoamide-bound (panel C) and pyrrophenone-bound (panel D).   

 

The inhibitor pyrrophenone was synthesized in 2001;192 and contains a 

thiazoloidinedione ring postulated to target Arg-200 and a carbonyl group bridging the 

two benzoyl groups that is expected to target the active site Ser-228. This class of 

inhibitors was also shown, through structure-activity work, to have large increases in 
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inhibitory potency with the addition of large bulky lipophilic substituents, suggesting the 

presence of a hydrophobic binding pocket in the enzyme.191 Using deuterium exchange 

and modeling we planned to test this hypothesis based on structure-activity work. 

 

Figure 41: Regions in contact with inhibitors with extremely fast or slow 
rates of exchange. Region 403-417 (A) and 294-298 (B) are plotted 
showing extremely fast rates of exchange (region 403-417), or extremely 
slow rates (region 294-298), with or without pyrrophenone or oxoamide 
present. 

 

Eight regions of the GIVA PLA2 exhibited significant changes in deuterium 

exchange in the presence of pyrrophenone. Figure 42 shows these results both 

quantitatively and visually imposed on snapshots from the MD simulations. Three 

regions of the protein, residues 393-397, 481-495, and 543-553 exhibited increased rates 

of exchange in the presence of pyrrophenone. Regions 393-397 and 543-553 had greater 

differences in on-exchange rates (between apo- and pyrrophenone-bound enzymes) at 

early time points of roughly 20-30%, with the difference going to zero at later time 
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points. Region 393-397 contains Ala-396 and Phe-397 in contact with pyrrophenone. 

Region 481-495 had a constant 10-15% increase in exchange at all time points. These are 

the exact regions that we have previously shown had increases in on-exchange rates in 

the presence of the potent irreversible GIVA PLA2 inhibitor MAFP, as well as natural 

phospholipid substrate vesicles.209 We have hypothesized that these regions show an 

increase in exchange due to the opening of the lid region from 415-432, and that 

pyrrophenone also causes an opening of the lid region upon binding in the active site. In 

turn, this opening event induces an increase in the solvent accessibility and results in 

higher on-exchange rates. This lid opening was not seen in our simulations, and this is 

most likely a time dependent process that is too slow to view with molecular dynamics. 

Five regions of the protein, residues 256-265, 268-279, 466-470, 473-478, and 

684-689 demonstrated decreases in exchange between apo- and pyrrophenone-bound 

enzymes (Figure 42). Region 268-279 exhibits greater than 30% decreases in exchange at 

all time points. Correlating with the MD simulation, this region harbors multiple residues 

that are in constant contact with the pyrrophenone. Regions 256-265 and 684-689 exhibit 

20-30% decreases at early time points and drop to less than 10% at later time points. 

These regions also contain multiple hydrophobic residues demonstrated by simulation to 

be in contact with pyrrophenone; yet, this is to a lesser extent (and thus less of a decrease 

in exchange) as compared to region 268-279. Regions 466-470 and 473-478 showed 10-

15% decreases in on-exchange rates from 30 to 300 seconds but no differences in 

exchange at earlier or later time points.  
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Figure 42: Deuterium exchange upon binding of 10 µM Pyrrophenone. A. 
The number of  incorporated deuterons at seven time points in eight 
different regions, 256-265, 268-279, 393-397, 466-470, 473-478, 481-495, 
543-553, and 684-689 in  GIVA PLA2 are plotted onto the docked model 
of pyrrophenone binding at 50 ns of simulation time (the inhibitor is shown 
in space filled form). Decreases or increases in deuteration greater than 
10% are represented by the color scheme in the legend. 

 

Our deuterium exchange results show decreases in exchange in numerous regions 

containing hydrophobic regions and this matches our modeling work as shown in Figure 

43, where Pro-263, Leu-264, Leu -267, Val-272, Tyr-275, Trp-464, Ile-465, Ile-469, Met-

470, and Phe-683  all make contact with the numerous phenyl groups in pyrrophenone. 

These residues most likely are acting as the hydrophobic pocket postulated through 
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structure activity work with pyrrophenone, and our results correlate with recent data from 

Wyeth showing that GIVA PLA2 inhibitors become more potent when the steric bulk of 

the inhibitor is increased in functionally allowed regions.190 However we find that the 

thiazoloidinedione functionality targets Ser-228, rather than targeting Arg-200, as 

originally suggested by Shinogi,191,192 with the carbonyl bridging the two phenyl groups 

in pyrrophenone being located at a large distance from the active site serine. 

 

Figure 43: Residues involved in the binding of pyrrophenone. The residues 
that have contact with pyrrophenone greater than 90% of the time in the 
molecular dynamics simulation are represented as red sticks and labeled on 
the figure. The inhibitor is shown in the licorice representation, with 
carbon, hydrogen, oxygen, nitrogen and phosphorus atoms colored cyan, 
white, red, blue and yellow, respectively.  

 

GIVA PLA2 Oxoamide Binding Experiments: The 2-oxoamide inhibitor AX007 

was originally synthesized and shown to be an effective GIVA PLA2 inhibitor in 2002.198  
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It was postulated to target GIVA PLA2 via an interaction between its 2-oxo amide 

functionality and the active site Ser-228. Also, the carboxylic acid moiety of the 

oxoamide was designed to target Arg-200, while the inhibitor’s long fatty acyl tail 

positions itself in the hydrophobic binding pocket.199 Using deuterium exchange and 

modeling we planned to test these hypothesis based on structure-activity work. 

Seven regions of the GIVA PLA2 exhibited significant changes in deuterium 

exchange in the presence of the oxoamide (Figure 44). Two regions of the protein, 

residues 481-495, and 543-553 exhibit an increase in exchange in the presence of the 

oxoamide. These regions show the exact same deuterium on-exchange profile as the 

pyrrophenone-bound enzyme. However, the region 393-397 does not show any difference 

in exchange in the presence of the oxoamide. This result allows for multiple 

interpretations; perhaps the lid region is opened in a different way (as compared to the 

enzyme-pyrrophenone complex), thus only increasing solvent accessibility for regions 

481-495 and 543-553, but not for region 393-397. Or, the lid region may be opened in the 

same way, but increased contacts between region 393-397 and the oxoamide cause a 

comparative decrease in exchange rates between the two inhibitor-bound structures.  

Five regions of the protein, residues 196-201, 256-265, 268-279, 555-564, and 

684-689 exhibit decreases in exchange in the presence of the oxoamide. Regions 256-265 

and 684-689 reveal the same on-exchange pattern in the presence of both the oxoamide 

and pyrrophenone. Simulation shows that along these regions, both inhibitors make 

similar hydrophobic contacts with Pro-263, Leu-264, and Phe-683 as shown in Figures 43 

and 45. Region 268-279 has a 10-15% decrease in exchange at all  time  points,  which  is 
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Figure 44: Deuterium exchange upon binding of 10 µM AX007. A. The 
number of  incorporated deuterons at seven time points in seven different 
regions, 196-201, 256-265, 268-279, 555-564, 481-495, 543-553, and 684-
689 in  GIVA PLA2 are plotted onto the docked model of the oxoamide 
AX007 binding at 50 ns of simulation time (the inhibitor is shown in space 
filled form) Decreases or increases in deuteration greater than 10% are 
represented by the color scheme in the legend. 
 

much lower than the corresponding differences in this region in the pyrrophenone-

enzyme complex. This much smaller decrease in exchange in the oxoamide-enzyme 

complex correlates well with the simulation, which shows no residues in 268-279 making 

contacts with the inhibitor. Region 555-564 displays a 10-20% decrease in exchange at 

all time points in the presence of the oxoamide. This region contains Asp-555 and 

neighbors Gly-551/Leu-552, all of which are in constant contact with the oxoamide 

during the simulation. Recent work by us has shown that the short, nonpolar, aliphatic R-
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group substituent on the oxoamide AX007 (residing on the linker between the 2-oxo and 

carboxylic acid) increased potency. We postulated that this is facilitated by a 

hydrophobic pocket in the enzyme that can accommodate this particular group.201 The 

residues in and around 555-564 appear to constitute this pocket, as shown here by both 

on-exchange results and simulation. Region 196-201 exhibits a 20-30% decrease in 

exchange at all time points in the presence of the oxoamide. This region contains the 

proposed oxy-anion hole—residues Gly-196, Gly-197, Gly-198, Gly-229,  and Arg-

200—required for catalytic activity, as well as Phe-199, which is part of the hydrophobic 

pocket for the substrate. The modeling data shows an interaction between the carboxylic 

acid of the oxoamide and Arg-200, as well as the carbonyl of the 2-oxoamide in contact 

with the oxyanion hole composed of the numerous glycine residues. 

Differences in Oxoamide and Pyrrophenone Binding: Numerous regions of the 

protein show the same decreases or increases in exchange with both pyrrophenone and 

the oxoamide AX007. These regions include 256-265, 481-495, 543-553, and 684-689, 

and they all show similar contacts in these regions between both AX007 and 

pyrrophenone as shown in Figures 43 and 45. There are also regions such as 466-470, 

473-478, and 555-564 which show changes only in the presence of one or the other 

inhibitor, and this is explained by specific contacts only seen between pyrrophenone or 

the oxoamide and the protein.  

However region 196-201 acts as an interesting example of the differences 

between pyrrophenone and oxoamide inhibitor binding. There are four different regions 

in the enzyme 196-201, 225-232, 577-591, and 670-682 that show an increase in 

exchange with pyrrophenone and a decrease in exchange with the  oxoamide  (Figure 46). 
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Figure 45: Residues involved in the binding of the Oxoamide AX007. The 
residues that have contact with the oxoamide greater than 90% of the time 
in the molecular dynamics simulation are represented as red sticks and 
labeled on the figure. The inhibitor is shown in the licorice representation, 
with carbon, hydrogen, oxygen, nitrogen and phosphorus atoms colored 
cyan, white, red, blue and yellow, respectively.  
 

Many of these peptides do not show a change in deuterium exchange greater than 10% as 

compared to the apo structure. However, the comparison between pyrrophenone and the 

oxoamide does show a greater than 10% change in exchange. These peptide regions are 

all in or near the active site of the enzyme. Region 225-232, which contains the active site 

residue Ser-228, never exchanges greater than 25% at any time point. Yet, there is a 

greater than 10% change in exchange between the oxoamide and pyrrophenone-bound 

studies, with the oxoamide-enzyme complex showing less exchange than the 

pyrrophenone-bound sample. For regions 577-591 and 670-682, the main effects are most  
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Figure 46: Different inhibitors cause different rates of exchange of the 
active site residues of GIVA PLA2.  The number of  incorporated deuterons 
at seven time points in five different regions, 196-201, 225-232, 393-397, 
577-591, and 670-682 in  GIVA PLA2 are plotted onto the docked models. 
Areas that show less exchange with the oxoamide AX007 and more 
exchange with pyrrophenone are colored onto the respective structures. 

 

likely localized to 577-580 and 680-682, respectively, which are located within 5 Å of the 

active site. These results show that the 2-oxoamide inhibitor AX007 decreases the solvent 

accessibility of the active site while pyrrophenone has the opposite effect (an increase). 

These results help to explain why region 393-397 has an increase in exchange with 

pyrrophenone and not with the oxoamide. This region is located near the active site, and 
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increases in exchange are seen with the presence of pyrrophenone, MAFP, and natural 

phospholipid substrate,209 but not the oxoamide. The decreased solvent accessibility of 

the active site in the presence of the oxoamide would explain the lack of exchange 

increases in region 393-397. From viewing Figure 46, it is also apparent that the 

oxoamide mainly occupies the active site area, while pyrrophenone is mainly bound in 

the cap region near the interfacial binding surface of the enzyme.   

 

6.4 Conclusion  

These results have greatly enhanced our knowledge of how these two different 

inhibitors bind GIVA PLA2 and have allowed us to model all the residues contacting both 

inhibitors. This will allow us to create new inhibitors combining the 2-oxoamide 

functionality with a bulky lipophilic substituent in place of the acyl fatty acid tail to 

mimic how pyrrophenone binds GIVA PLA2 through multiple hydrophobic contacts 

located on or near the cap region. This study is the first to combine deuterium exchange 

mass spectrometry with molecular dynamics simulations for the determination of 

inhibitor binding. This methodology is an exciting new tool in developing better 

inhibitors, and we plan to continue this work through the synthesis and testing of new 

GIVA PLA2 inhibitors based on our results. 
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Appendix A-1: Ligands from the NCIDS that bind well across all three species and 
snapshots of AChBP, as judged by a standard deviation ≤ 0.50 kcal mol-1. ‘NCI’ is the 
National Cancer Institute’s identifying number, also known as the NSC number. ‘ΔG’ is 
the calculated free energy of binding, in kcal mol-1 along with the standard deviation (in 
parentheses) across all 15 receptor complexes. ‘MW’ is the molecular weight of the 
compound in g mol-1. ‘log P’ is the solubility (octanol/water partitioning), ‘HA’ and ‘HD’ 
are the numbers of hydrogen bond acceptors and donors (respectively) on the ligand. See 
reference 160 for further pharmacological data.  
 
NCI: 108608 
  ΔG:  -8.89(0.50) 
MW:  282.3 
logP:  -2.68 
 HA:   10 
 HD:   5  
 

 NCI: 169453 
  ΔG:  -8,23(0.44) 
MW:  263.4 
logP:  4.74 
 HA:   1 
 HD:   1 
 

 NCI: 85433 
  ΔG:  -8.15(0.45) 
MW:  424.1 
logP:  --- 
 HA:   3 
 HD:   1 
 

 NCI: 24915 
  ΔG:  -7.90(0.50) 
MW:  231.7 
logP:  1.24 
 HA:   2 
 HD:   2 
 

 NCI: 150554 
  ΔG:  -7.89(0.44) 
MW: 286.4 
logP: 3.78 
 HA:  1 
 HD:  2 
 

 NCI: 674348 
  ΔG: -7.88(0.45) 
MW: 283.4 
logP: 1.47 
 HA:  3 
 HD:  1 
 

 NCI: 140873 
  ΔG:  -7.66(0.46) 
MW:  277.7 
logP:  1.47 
 HA:   4 
 HD:   3 
 

 NCI: 115883 
  ΔG: -7.65(0.49) 
MW: 271.2 
logP:  0.37 
 HA:   9 
 HD:   5 
 

 NCI: 206601 
  ΔG: -7.61(0.48)  
MW:  287.7 
logP:  -1.85 
 HA:   5 
 HD:   2 
 

 NCI: 154829 
  ΔG:  -8.15(0.47) 
MW:  340.3 
logP:  -1.97 
 HA:   12 
 HD:   8 
 

 NCI: 348401 
  ΔG:  -8.01(0.49) 
MW:  330.3 
logP:  --- 
 HA:   10 
 HD:   2 
 

 NCI: 105017 
  ΔG: -7.76(0.31) 
MW: 250.3 
logP: -2.19 
 HA:  8 
 HD:  3 
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Appendix A-1 (continued): 
 
NCI: 30712 
  ΔG: -7.70(0.47) 
MW: 269.3 
logP: 4.24 
 HA:  3 
 HD:  2 

 NCI: 146876 
  ΔG: -7.59(0.44) 
MW: 148.1 
logP: -5.87 
 HA:  6 
 HD:  4 
 

 NCI: 112541 
  ΔG: -7.57(0.47) 
MW: 292.3 
logP: 4.3 
 HA: 4 
 HD: 2 

 NCI: 133118 
  ΔG: -7.54(0.35) 
MW: 268.2 
logP: -2.54 
 HA:  10 
 HD:  5 

 NCI: 123111 
  ΔG: -7.49(0.50) 
MW: 331.3 
logP: -0.84 
 HA: 7 
 HD: 1 

 NCI: 93277 
  ΔG: -7.54(0.46) 
MW: 219.3 
logP: 1.27 
 HA: 3 
 HD: 1 
 

 NCI: 329070 
  ΔG: -7.36(0.47) 
MW: 280.3 
logP: 2.58 
 HA: 5 
 HD: 2 
 

 NCI:109174 
  ΔG: -7.36(0.48) 
MW: 241.3 
logP: 2.9 
 HA:  5 
 HD:  2 

 NCI: 10776 
  ΔG: -7.37(0.38) 
MW: 247.4 
logP: 4.63 
 HA:  2 
 HD:  1 
 

 NCI: 207895 
  ΔG: -7.29(0.36) 
MW: 279.3 
logP: --- 
 HA: 7 
 HD: 0 
 

 NCI: 120186 
  ΔG: -7.28(0.42) 
MW: 275.3 
logP: 2.9 
 HA:  4 
 HD:  1 

 NCI: 55636 
  ΔG: -7.32(0.46) 
MW: 287.2 
logP: 4.62 
 HA: 2 
 HD: 2 
 

 NCI: 85260 
  ΔG: -7.20(0.46) 
MW: 241.3 
logP: 0.53 
 HA: 4 
 HD: 3 
 

 NCI: 54671 
  ΔG: -7.14(0.48) 
MW: 200.2 
logP: --- 
 HA: 6 
 HD: 2 

 NCI: 153533 
  ΔG: -7.26(0.41) 
MW: 234.3 
logP: 3.16 
 HA:  4 
 HD:  1 
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Appendix A-1 (continued): 
 
NCI: 1684 
  ΔG: -7.56(0.32) 
MW:  238.2 
logP: -3.48 
 HA:  8 
 HD:  6 
 

 NCI: 54672 
  ΔG: -7.54(0.46) 
MW: 228.2 
logP: --- 
 HA: 6 
 HD: 2 
 

 NCI: 85420 
  ΔG: -7.48(0.40) 
MW:  258.3  
logP: -3.62 
 HA:   6 
 HD:   3 
 

 NCI: 12161 
  ΔG: -7.47(0.40) 
MW: 283.2 
logP: -1.46 
 HA:  10 
 HD:   5 
 

 NCI: 116805 
  ΔG:  -7.34(0.44) 
MW:  161.2 
logP:  -0.63 
 HA:   4 
 HD:   2 
 

NCI: 118208 
  ΔG: -7.34(0.49) 
MW: 303.3 
logP: 2.12 
 HA: 7 
 HD: 2 
 

NCI: 614846 
  ΔG:  -7.28(0.44) 
MW:  247.3 
logP: 0.1 
 HA:  7  
 HD:  3 
 

NCI: 13220 
  ΔG: -7.26(0.47) 
MW: 219.2 
logP: 0.14 
 HA: 5 
 HD: 3 

This cell is intentionally 
left blank. 
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Appendix A-2:  Ligands from the NCIDS that seem to differentiate between the three 
species of AChBP, as judged by the standard deviation in the binding energy (> 1.00 kcal 
mol-1). ‘NCI’ is the National Cancer Institute’s identifying number, also known as the 
NSC number. ‘ΔG’ is the calculated free energy of binding, in kcal mol-1 along with the 
standard deviation (in parentheses) across all 15 receptor complexes. ‘MW’ is the 
molecular weight of the compound in g mol-1. ‘log P’ is the solubility (octanol/water 
partitioning), ‘HA’ and ‘HD’ are the numbers of hydrogen bond acceptors and donors 
(respectively) on the ligand.  See reference 160 for further pharmacological data. 
 
NCI:  109128 
  ΔG:  -12.49(1.72) 
MW:  415.6 
logP:  2.65 
 HA:   5 
 HD:   0 
 

NCI:  48458 
  ΔG: -12.16(1.78) 
MW:  484.7 
logP:  8.79 
 HA:   4 
 HD:   0 
 

NCI:  47455 
  ΔG: -12.03(2.57) 
MW: 247.3 
logP: -0.26 
 HA:  5 
 HD:  1 
 

NCI: 108697  
  ΔG: -11.45(1.80)  
MW:  358.3 
logP: 2.65 
 HA:  8 
 HD:  6 
 

NCI:  99804 
  ΔG: -11.21(1.01) 
MW: 509.6 
logP: -1.2 
 HA:  9 
 HD:  7 
 

NCI: 40781 
  ΔG: -10.94(1.22)  
MW: 291.4 
logP: 5.47 
 HA: 3 
 HD: 2 
 

NCI: 88915 
  ΔG: -10.63(1.00) 
MW: 549.5 
logP: 4.64 
 HA:  5 
 HD:  0 
 

NCI:  114381 
  ΔG:  -10.29(1.10) 
MW:  486.1 
logP: 3.94 
 HA:  7 
 HD:  2 
 

NCI:  143101 
  ΔG:  -10.25(1.07) 
MW:  610.5 
logP: 2.2 
 HA: 14  
 HD: 11  
 

NCI: 159631 
  ΔG: -11.78(1.29) 
MW:  638.6 
logP: 2.24 
 HA:  14 
 HD:  6 
 

NCI: 44102 
  ΔG: -11.70(2.20)  
MW:  276.3 
logP: 2.03 
 HA:  4 
 HD:  2 
 

NCI:  50352 
  ΔG: -10.73(1.22) 
MW: 527.6 
logP: -0.79 
 HA:  10 
 HD:  6 
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Appendix A-2 (continued):   
 
NCI: 143099 
  ΔG: -10.70(1.40) 
MW: 578.5 
logP: 1.88 
 HA:  12 
 HD:  10 
 

NCI:  117274 
  ΔG:  -10.20(1.14) 
MW:  464.4 
logP:  4.84 
 HA:   6 
 HD:   2 
 

NCI: 113909 
  ΔG: -10.09(1.02) 
MW:  418.4 
logP:  3.83 
 HA:   9 
 HD:   5 
 

NCI: 13984 
  ΔG: -10.03(1.33) 
MW:  392.5 
logP:  5.77 
 HA:   3 
 HD:   3 
 

NCI: 351123 
  ΔG: -9.77(1.32) 
MW:  434.6 
logP:  7.86 
 HA:   2 
 HD:   2 
 

NCI: 35450 
  ΔG: -9.37(1.06) 
MW:  335.4 
logP: -1.76 
 HA:  4 
 HD:  0 
 

NCI:  5857 
  ΔG:  -8.60(1.01) 
MW:  409.4 
logP: 9.26 
 HA:  2 
 HD:  2 
 

NCI: 101825 
  ΔG: -8.39(1.00) 
MW:  276.3 
logP: 1.09 
 HA:  10 
 HD:  4 
 

NCI: 93317 
  ΔG: -8.10(1.08) 
MW: 453.8 
logP: 4.45 
 HA:  4 
 HD:  0 
 

NCI: 177383 
  ΔG: -7.64(1.26) 
MW: 822.9 
logP: 6.55 
 HA: 15 
 HD: 5 
 

NCI:  339497 
  ΔG: -7.55(1.13) 
MW:  134.2 
logP: -2.77 
 HA:  4 
 HD:  4 
 

NCI: 77554 
  ΔG: -7.33(1.27) 
MW: 356.5 
logP: --- 
 HA:  4 
 HD:  4 
 

NCI: 211332 
  ΔG: -9.36(1.46) 
MW: 141.2 
logP: -4.94 
 HA:  5 
 HD:  4 
 

NCI: 25869 
  ΔG: -9.34(1.05) 
MW: 438.3 
logP: 1.89 
 HA:  7 
 HD:  3 
 

NCI: 74472 
  ΔG: -7.74(1.00) 
MW: 157.3 
logP:-0.38 
 HA: 3 
 HD: 3 
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Appendix A-2 (continued): 
 
NCI: 94783 
  ΔG: -7.71(1.52) 
MW:  681.1 
logP: 12.96 
 HA:  4 
 HD:  2 
 

NCI: 345672 
  ΔG: -6.67(1.08) 
MW: 131.2 
logP: -1.46 
 HA: 3 
 HD: 2 
 

This cell is intentionally 
left blank. 
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