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Abstract

Aims.—Electrical status epilepticus in sleep (ESES) is an age-related, self-limited epileptic 

encephalopathy. The syndrome is characterized by cognitive and behavioral abnormalities and a 

specific EEG pattern of continuous spikes and waves during slow-wave sleep. While spikes and 

sharp waves are known to result in transient cognitive impairment during learning and memory 

tasks performed during the waking state, the effect of epileptiform discharges during sleep on 

cognition and behavior is unclear. There is increasing evidence that abnormalities of coherence, a 

measure of the consistency of the phase difference between two EEG signals when compared over 

time, is an important feature of brain oscillations and plays a role in cognition and behavior. The 

objective of this study was to determine whether coherence of EEG activity is altered during slow-

wave sleep in children with ESES when compared to typically developing children.

Methods.—We examined coherence during epochs of ESES versus epochs when ESES was not 

present. In addition, we compared coherence during slow-wave sleep between typically developing 

children and children with ESES.

Results.—ESES was associated with remarkably high coherences at all bandwidths and most 

electrode pairs. While the high coherence was largely attributed to the spikes and spike-and-wave 

discharge, activity between spikes and spike-and-wave discharge also demonstrated high 

coherence.

Conclusions.—This study indicates that EEG coherence during ESES is relatively high. 

Whether these increases in coherence correlate with the cognitive and behavioral abnormalities 

seen in children with this EEG pattern remains to be determined.

Correspondence: Gregory L. Holmes, Department of Neurological Sciences, Larner College of Medicine, University of Vermont, 
Stafford Hall 118C, Burlington, VT 05405, USA, < gregory.holmes@med.uvm.edu>. 
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Electrical status epilepticus in sleep (ESES) is defined as an age-related, self-limited 

epileptic encephalopathy. The condition is characterized by cognitive and behavioral 

abnormalities and a specific electroencephalographic (EEG) pattern of continuous spike and 

waves during slow-wave sleep (CSWS) (Patry et al., 1971; Galanopoulou et al., 2000; 

Scheltens-de Boer, 2009; Sanchez Fernandez et al., 2012, 2014; Singhal and Sullivan, 2014; 

Gencpinar et al., 2016). While the clinical presentation of children with ESES is variable, 

the most severe clinical syndrome presents with global cognitive regression in addition to 

clinical seizures. The age at onset ranges from one to 14 years, with a peak between four and 

eight years (van den Munckhof et al., 2015). Although seizures may be absent in up to 20% 

of cases, they are most often the presenting symptom, after which developmental delay, 

developmental arrest, or regression in cognitive performance or behavior becomes evident 

(Tassinari et al., 2000). While CSWS and ESES are used interchangeably, ESES typically is 

used to describe the EEG pattern while CSWS is used to describe the clinical syndrome of 

cognitive and behavioral abnormalities associated with the ESES pattern (Gencpinar et al., 
2016). The hallmark EEG features of ESES are:

• a spike and wave occurring “during a significant proportion” of non-REM sleep 

with a threshold ranging from 25% to 85%;

• continuous or nearly-continuous, bilateral, or occasionally lateralized slow spikes 

and waves;

• and marked potentiation of epileptiform discharges during non-REM sleep 

(Sanchez Fernandez et al., 2013).

Near-continuous epileptiform discharges have been causally related to neurocognitive 

regression in CSWS (Tassinari et al., 2000; Holmes and Lenck-Santini, 2006). The 

pathophysiologic mechanisms underlying this condition are still incompletely understood. 

Recent data suggest that the abnormal epileptic EEG activity occurring during sleep might 

cause the typical clinical symptoms by interfering with sleep-related physiologic functions, 

and possible neuroplasticity processes mediating higher cortical functions such as learning 

and memory consolidation (Tassinari et al., 2000; Holmes and Lenck-Santini, 2006). It is 

known that spikes and spike-and-wave discharges can lead to cognitive impairment in both 

animals (Kleen et al., 2010) and humans (Aarts et al., 1984; Binnie et al., 1987, 1990, 1991; 

Shewmon and Erwin, 1989; Krauss et al., 1997; Ung et al., 2017). However, the cognitive 

impairment seen with interictal spikes is transient in nature in both humans (Aarts et al., 
1984; Nair et al., 2014; Horak et al., 2017) and rodents (Holmes and Lenck-Santini, 2006; 

Zhou et al., 2007; Kleen et al., 2010) and it has been difficult to link the neurocognitive 

regression in CSWS solely to nocturnal spikes (Ebus et al., 2011).

There is increasing evidence that abnormalities in underlying oscillatory activity may play 

an important role in cognitive impairment in children with seizures (Holmes and Lenck-
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Santini, 2006; Holmes, 2014; Barry and Holmes, 2016). For example, in children with 

epilepsy, neither spikes nor spike-and-wave discharges correlate with the neuropsychological 

profile, whereas slow-wave activity on the EEG is related to memory impairment (Koop et 
al., 2005). In a study of children with Dravet syndrome, it was found that cognitive outcome 

was related more to preserved alpha rhythm of the EEG than seizures or generalized spike-

wave discharges on the EEG. Likewise, in an animal model of Dravet syndrome, cognitive 

impairment was related to altered theta rather than seizures or interictal spikes (Bender et al., 
2013, 2016). These studies raise the question of whether EEG background abnormalities are 

related more to cognitive impairment than interictal spikes.

Recent work in humans has demonstrated that coherence is a valuable marker of functional 

brain organization and connectivity. On a frequency by frequency basis, EEG spectral 

coherence represents the consistency of the phase difference between two EEG signals when 

compared over time. EEG coherence is interpreted as a measure of “coupling” and as a 

measure of the functional association between two brain regions (Thatcher et al., 1987, 

2012). High coherence values are taken as a measure of strong connectivity between the 

brain regions that produce the compared EEG signals (Srinivasan et al., 2007). In both 

autistic spectrum disorder (Buckley et al., 2015) and West syndrome (Burroughs et al., 
2014), EEG coherences are abnormally high. Remarkably, there have been no papers to date 

assessing coherence as a functional measure of brain connectivity in ESES.

We hypothesized that ESES during SWS has high coherence values. To address this 

hypothesis, we compared coherences across bandwidths and electrode pairs during SWS in 

children with ESES and normal children. In children with ESES, we also compared 

coherences during SWS during non-ESES and ESES epochs. Finally, to determine the 

“driver” of coherence during ESES, we examined epochs containing only spikes with epochs 

not containing spikes.

Methods

Study design and participants

Twenty-four-hour inpatient EEGs were documented from 29 neurotypically developing 

(TYP) children (mean±SD: 4.18±1.70 years) and 18 children (5.37±1.85 years) with ESES, 

as defined as an EEG with generalized spikes, sharp waves, spike and wave or polyspikes 

and waves, occupying 85% of slow-wave sleep (figure 1). For every 10 seconds of SWS, the 

mean duration of epileptiform discharges had to be equal to 8.5 seconds or more. The TYP 

group comprised participants in an NIH natural history study of autism approved by the 

National Institutes of Health Institutional Review Board (NCT00298246). None of the 

children in the TYP group had autism or relatives with autism. Data from the TYP group 

have previously been published as part of a study on functional connectivity in children with 

autism (Buckley et al., 2015). The EEGs from the children with ESES were from 

Dartmouth-Hitchcock Medical Center and the University of Vermont Medical Center with 

approval of both institutions’ Institutional Review Board for analysis of de-identified EEG 

data. The 10–20 system of electrode placement was used and the Pz electrode served as the 

reference. The linked-ear montage was used for all EEG analyses. The EEGs were analyzed 

by SAB, ALK and GLH without any identifying information other than gender and age.

Mott et al. Page 3

Epileptic Disord. Author manuscript; available in PMC 2020 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT00298246


Epochs of artifact-free SWS were identified in each patient. For the ESES group, 60 seconds 

of non-continuous EEG demonstrating ESES (figure 2A) and 60 total seconds of SWS 

without ESES (figure 2B) were obtained. This 60-second epoch exceeds the 20-second time 

frame which is considered sufficient to assess quantitative EEG measures (Mocks and 

Gasser, 1984). Split-half reliability and the ratio of variance between the even and odd 

seconds of the time series of selected digital EEG (variance = sum of the square of the 

deviation of each time point from the mean of the time points) were calculated for each 

channel and a reliability of >0.95 was required before analysis. We also performed “test re-

test” measures on all EEG data. Test re-test reliability uses the same equations as those used 

for split-half reliability but refers to the ratio of the variance of the first half of the EEG 

selections vs the variance of the second half of the EEG selections. A test re-test reliability 

of >0.90 was required before EEG data was statistically analyzed. In the TYP group, 10 

minutes of continuous SWS EEG was analyzed. Since 85% of SWS consist of spikes and 

spike-and-wave discharges, shorter epochs were used in the children with ESES than the 

TYP group since it was often difficult to find 10 minutes of SWS without spike-and-wave 

complexes. In three patients with ESES, we compared 60-second epochs with 10-minute 

epochs of SWS with ESES and SWS without ESES using the paired-t test. No significant 

differences were noted in absolute power, relative power, power ratio, coherence or phase 

lag between 60-second and 10-minute epochs (data not shown). Thus, we concluded that it 

was appropriate to compare 60-second epochs between ESES patients and the TYP group.

To determine the electrical activity underlying coherence in ESES, epochs containing 

generalized spikes, sharp waves, spike and wave, or polyspikes and waves (figure 3A) were 

compared with epochs without spikes (figure 3B). The slow wave following the spike was 

considered as part of the epileptic discharge and was included in epochs of epileptiform 

activity.

EEGs were analyzed using NeuroGuide (Applied Neuroscience, Inc., Largo, FL). 

Frequencies from 0–30 Hz were analyzed using a Fast Fourier Transform (FTT) with the 

following parameters: epoch = 2 seconds at a sample rate of 128 samples/second = 256 

digital time points and a frequency range from 0.5 to 30 Hz at a resolution of 0.5 Hz using a 

cosign taper window. FFT absolute and relative power was used for each of the 19 electrodes 

for delta (δ) (0–4 Hz), theta (θ) (4–8 Hz), alpha (α) (8–12 Hz), α1 (8–10 Hz), α2 (10–12 

Hz), beta (β) (12–25 Hz), β1 (12–15 Hz), β2 (15–18 Hz), β3 (18–25 Hz), and high β (25–30 

Hz). FFT absolute power per Hz (1–30 Hz) and power ratios for each electrode (δ/θ, δ/α, δ/

β, θ/α, θ/β, α/β) were measured. FFT coherence for each electrode pair and FFT phase lag 

(degrees) between electrode pairs were obtained. Intra-hemispheric and inter-hemispheric 

pair wise combinations of electrodes were evaluated (171 pairs of electrodes).

Coherence represents the consistency of the phase difference between two EEG signals 

when compared over time and serves as a measure of synchronization between two EEG 

signals based mainly on phase consistency. Two signals may have different phases but high 

coherence occurs when this phase difference tends to remain constant. Coherences vary from 

0, with no consistency between phases of two EEG signals, to 1, with perfect alignment of 

phase.
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Coherence was defined as:

coℎerence f = GXY f 2

GXX f GY Y f

Where Gxy(f) is the cross-power spectral density and Gxx(f) and Gyy(f) are the respective 

autopower spectral densities. FFT coherence for each electrode pair and FFT phase lag 

(degrees) between electrode pairs were obtained. Intra-hemispheric and inter-hemispheric 

pair wise combinations of electrodes were evaluated (171 pairs of electrodes).

Statistical analysis

Hypotheses were proven or discarded based on unpaired t tests for comparisons between the 

TYP children and ESES children and paired t tests for comparisons within the same patient 

for SWS with ESES and SWS without ESES using Neurostat EEG statistical software. The t 

test was used since the data demonstrated a normal distribution. The p values are shown in 

two ways:

• electrode maps with color and thickness of the lines connecting electrodes, 

reflecting direction of the differences between groups and the degree of 

significance;

• p value heat maps with degree of significance in selected color-coded electrode 

pairs. Although data were reviewed from 171 electrode pairs, selected electrodes 

were chosen for illustration.

Results

During ESES, there was a marked increase in coherence compared to the SWS segments 

without ESES (figures 4, 5). This increase in coherence occurred across all bandwidths and 

many electrode pairs. Of the 62 electrode pairs demonstrated in the heat map in figure 5, 12 

(19.3%) in the Δ range, 36 (58%) in the Θ range, 49 (79%) in the α range, and 49 (79%) in 

the β range showed statistically increased coherences. In no electrode pairs did the ESES 

epochs show lower coherences than the non-ESES epochs. Likewise, there were significant 

increases in coherence in the EEGs with ESES compared to the TYP group (figures 6, 7). 

Coherences were significantly increased in the ESES group across all bandwidths. Of the 62 

electrode pairs demonstrated in the heat map in figure 8, 16 (25.8) in the Δ range, 31 (50%) 

in the Θ range, 54 (87%) in the α range, and 52 (83.8%) in the β range showed statistically 

increased coherences, other than a few electrode pairs in the high β (25–30-Hz) bandwidth 

where coherences were lower in the TYP group than the ESES group. While all bandwidths 

demonstrated increases in coherence, the Δ frequencies were less likely to be significantly 

increased than the other major bandwidths (Θ, α and β). In the Δ bandwidth, some 

asymmetries in coherence were seen, with higher coherences noted over the left hemisphere, 

when compared with the TYP group. The composite coherence score showed that during 

ESES, coherence was substantially increased compared to non-ESES periods and with slow 

wave sleep (SWS) in the TYP group (table 1). In addition to the mean differences between 
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groups shown in table 1, for each individual child, the mean coherences were higher in the 

ESES patient than the mean score for the TYP group.

To determine the component of the ESES that was contributing to the increased coherences, 

periods of ESES with and without spikes were compared. As demonstrated in figure 8, 

coherences were significantly higher during the spike component of the ESES than the non-

spike component. Likewise, the composite coherence score during spikes was higher during 

spikes versus no-spike epochs (table 1). This was also true for each individual patient. Also, 

coherence values during no-spike epochs of ESES were significantly higher than those 

during non-ESES periods in the same patient (t[15]=4.038, p = 0.0011).

During ESES, there were also large increases in absolute power across the four major 

bandwidths (Δ, Θ, α and β) and relative power in the δ/θ, δ/α, δ/β, δ/γ, θ/α and θ/β 
compared to epochs without ESES (data not shown).

Discussion

The major finding in this analysis is that EEGs from children with ESES have marked 

abnormalities in coherence compared to periods of SWS without ESES and SWS in TYP 

children. While high coherence seems implicit in a recording with generalized spikes, it 

should be noted that the coherence values are increased at all bandwidths during spike-free 

epochs. It also should be noted that coherence cannot be assessed solely by examining the 

raw EEG signal. For example, in hypsarrhythmia, an abnormal interictal pattern consisting 

of high-amplitude and irregular waves and spikes in a background of chaotic and 

disorganized activity, coherence values are high (Burroughs et al., 2014).

The children with ESES were older than those in the TYP group and it is known that 

coherence increases with age (Gmehlin et al., 2011). In our previous study examining 

coherence in autism in children, using a series of general linear models controlling for age, 

we found little difference in coherence between four and five years (Buckley et al., 2015), 

thus making it highly unlikely the differences seen here were due to different ages. In 

addition, with such a large effect size, it is highly unlikely the increased coherence in the 

children with ESES was simply due to the ESES population being older. In addition, using 

paired comparisons, coherences were much higher during ESES periods than during non-

ESES periods in SWS within the same patient.

Of interest, in the Δ bandwidths, the ESES group had higher coherences than the TYP group 

over the left hemisphere relative to the right. Asymmetries of coherence have been reported 

in other studies (French and Beaumont, 1984; Tucker et al., 1986; Nielsen et al., 1990; 

Whedon et al., 2016). It is known that many children with ESES have language 

abnormalities (Nickels and Wirrell, 2008). Whether these aberrant coherences in the 

dominant hemisphere are correlated with language impairment in our cohort of patients is 

not known.

As a measure of “coupling” oscillations, coherence provides a dynamic link between brain 

areas required for the integration of distributed information (Varela et al., 2001; Thatcher, 

2012). Since high coherence values are an indication of strong connectivity between the 
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brain regions that produce the EEG signals (Srinivasan et al., 2007), it is difficult to 

understand why high coherences would be detrimental. Decreased coherences have been 

associated with cognitive and behavioral abnormalities. Indeed, in rodent models of stress 

(Jacinto et al., 2013; Oliveira et al., 2013) and schizophrenia (Sigurdsson et al., 2010), 

coherences in the hippocampus and prefrontal cortex are decreased. Likewise, decreases in 

coherence occur in conditions such as Alzheimer’s disease (Besthorn et al., 1994), 

intellectual impairment (Thatcher et al., 2005), attention-deficit disorder and reading 

difficulties (Barry et al., 2009), and autism (Coben et al., 2008; Mathewson et al., 2012; 

Khan et al., 2013). However, neuronal synchrony in the brain is finely tuned and it is likely 

that functional “over connectivity” may be as detrimental as “under-connectivity” as a 

network that is over-connected may not be able to adapt to increased cognitive demand 

(Supekar et al., 2013). High phase locking of neurons in multiple brain regions likely results 

in neurons in both structures firing with excessive synchrony with a diminished ability to 

develop localized functional ensembles (Voytek and Knight, 2015). We suggest that, as with 

other electrophysiological processes, there is an ideal “sweet spot” for coherence and that 

deviations in either a positive or negative direction can alter behavior and cognition. The 

findings must be interpreted cautiously. This is an EEG study that examined the relationship 

of coherence with ESES and we provide no data indicating that increased coherence during 

ESES in SWS is responsible for the behavioral and cognitive issues in children with CSWS. 

Rather, we wish to raise the possibility that an overly coherent brain during SWS during 

childhood may play a role in the behavioral and cognitive problems seen in these children. 

In one of the other epileptic encephalopathies, West syndrome, it has been shown that 

children have marked abnormalities in coherence and that improvement in seizures and 

development are seen only in children in whom the coherences improved (Burroughs et al., 
2014). In future studies, it will be valuable to examine the relationship of coherences during 

SWS with clinical symptoms in children with CSWS and whether changes in coherence are 

a predictor of treatment success. □
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Figure 1. 
Example of ESES recording during slow-wave sleep. Note the high-amplitude (>150 

microvolts) spike-and-wave discharges.
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Figure 2. 
ESES during SWS. (A) Example of ESES during SWS. EEG absolute power is represented 

on the right. Colored lines represent different electrodes. Note the increased power in 

frequencies up to the β bandwidth. (B) Example of period during SWS without ESES. EEG 

absolute power is represented on the right. Compared to (A), the absolute power is primarily 

in the Δ bandwidth.
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Figure 3. 
Epochs of EEG used for coherence measurement. (A) Calculation of coherence measure 

during spike and waves and polyspikes and waves. (B) Epochs of EEG without spikes 

measured for coherence. Shaded areas in pink are incorporated into the coherence measures.
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Figure 4. 
Coherence during ESES. Marked increases in coherence were seen at most electrode pairs 

during ESES compared to non-ESES periods. Red lines indicate that the ESES segments had 

higher coherences than during the non-ESES segments during SWS. The significance values 

are illustrated by weight of the lines. L/R refer to the left and right side of the head.
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Figure 5. 
Heat map of p values for coherence between selected electrode pairs. Marked increases in 

coherence were seen during ESES compared to non-ESES periods.
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Figure 6. 
Coherence during SWS in children with ESES and TYP. Marked increases in coherence was 

seen at most electrode pairs during ESES segments in SWS compared to TYP controls. Red 

lines indicate that the ESES segments had higher coherences than during the SWS in the 

TYP controls while blue lines indicate lower coherences in the ESES segments in SWS 

compared to TYP controls. The significance values are illustrated by weight of the lines. L/R 

refer to the left and right side of the head.
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Figure 7. 
Heat map of p values for coherence between selected electrode pairs. Marked increases in 

coherence were seen during ESES compared to SWS in TYP controls.
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Figure 8. 
Coherence during spikes and inter-spike intervals in children with ESES. Increases in 

coherence were seen at most electrode pairs during ESES segments with spikes compared to 

the inter-spike interval. Red lines indicate that the spike segments had higher coherences 

than during the inter-spike interval. The significance values are illustrated by weight of the 

lines. L/R refer to the left and right side of the head.
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