Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

THE CONTROL OF A HIGH-POWER NEUTRAL BEAM GENERATOR BY MEANS OF ARC-CURRENT REGULATION

Permalink

<https://escholarship.org/uc/item/8440f3mn>

Author

Lietzke, A.F.

Publication Date

1981-10-01

Peer reviewed

IMASTER

LBL—12723

DE82 003900

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Accelerator & Fusion Research Division

Presented at the 9th Symposium on Engineering Problems of Fusion Research, Chicago, IL, October 26-29, 1981

THE CONTROL OF A HIGH-POWER NEUTRAL BEAM GENERATOR BY MEANS OF ARC-CURRENT REGULATION

A.F. Lietzke and G.J. deVries

October 1981

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

A.F. Lietzke and G.J. deVries Lawrence Berkeley Laboratory University of California Berkeley, CA 94720

SUMMARY

Preliminary tests of a method for regulating the accelerator perveance of a high-power neutral beam,
by controlling the plasma source have been conducted and are encouraging. The phase shifts and feedback paths were identified quantified, and and stabilization was achieved by adding an R-C snubber
at the accelerator power supply output which reduced
the destabilizing phase lags. The incorporation of such regulators into future systems is envisioned to make these high-power neutral beam systems cheaper and easier to operate.

MOTEVATION

The high-power beams of neutral particles used in fusion research are produced by accelerating ions (~250 mA/cm²) through semi-transparent grids having high potential differences (~120 kV). As in any
accelerated-beam system, neutral-beam (NB) sources specific design value of have a perveance (Ibeam/V3/2cel) which is associated with optimum beam
optics. When operated at this perveance value, there is minimal interception of the beam by the grids. It is particularly important to operate long-pulse
multi-megawatt NB sources at or near this perveance
value so that grid damage is avoided. Variations in
voltage (such as ripple) in the power supplies used to operate the neutral beam can cause departure from optimum perveance. Deviation from the optimum
perveance can also occur during beam "turn-on".

We report here the interim results of an investigation of a method for automatic beam current It has $control.$ achieved essentially constant-perveance operation and can increase the ease and safety of operation.

BEAM CURRENT REGULATION

For a NB source, the beam accelerating potential is controlled by the accel PS. The beam current, however, is controlled by the arc power (i.e., plasma density). One can automatically and continuously maintain the beam current (by controlling the arc
power) at a value consistent with a pre-requested perveance, even during accel voltage fluctuations.
This is the method we have employed. It is implemented by a type of controlled closed-loop arc regulator.

Certain immediate advantages are notable:

- 1. An accel PS regulator is no longer needed. This
can result in a real saving of (typically) 10 to 20% of required accel PS power.
- 2. An 80x reduction in the power-handling capability of the system controlling element (~100 kW versus 8 MW).

*This work was supported by the Director, Office of Energy Research, Office of Fusion Energy, Development
and Technology Division of the U.S. Department of
Energy under Contract No. W-7405-ENG-48.

- 3. Automatic perveance matching during the beam
"turn-on" transition.
- 4. Automatic compensation of accel PS and arc PS ripple.

In addition, such a system should be capable of compensating for "beam pumping" of the ion output and for beam ripple caused by ac-heated filaments (presently under consideration).

IMPLEMENTATION

Figure 1 shows a block diagram of the beam current regulator used for the "proof-of-principle"
tests on the NBSTF (the TFTR prototype beam line) at the Lawrence Berkeley Laboratory. The accelerator
power supply² current (I_{accel}), being dominated
by the beam current ($I_{\text{beam}} \approx 0.98$ x I_{accel}),
except during severe perveance mismatches) by the arc-current
net transconduct controlled predominantly modulator, 3 (having a modulator, 3 (having
Yarc PS and which incorporates the necessary 3/2-power dependence). Its control voltage is
generated by summing an error signal and a "requested beam current" signal. The latter signal is obtained beam current signal. The latter signal is obtained
by scaling the instantaneous accelerator voltage
(Vaccel = $V_0 - Z_{\text{accel}} \times I_{\text{accel}}$) according to
the requested perveance (G_{perv}, which is a linear
gain adjustment). V₀ voltage; Zaccel is the equivalent output
impedance. The error signal is produced from a
comparison of a scaled replica of the beam current Comparison of a scaled replica or the beam current

(Zprobe x Ibeam, obtained from the saturated

ion-collection current of a probe near the

accelerator input) with the "request for beam

current" (Gpery x Vaccel). This

NBSTF Beam-Current Regulator Block Diagram Figure 1 The open circuit voltage (V_0) is modified by the output current (Iaccel), the requested perveance (Gperv) and an error signal. The resultant controls the beam
current by modulating the arc current.

 $\mathbf{1}$

STABILITY CONSIDERATIONS

The complex admittance of the linear system shown in Figure 1 may be written:

$$
\frac{I_{\text{beam}}}{V_0} = \frac{G \times Y_{\text{arc PS}}}{1 + (Z_1 + Z_2)Y_{\text{arc PS}}}
$$

where

$$
G = G_{\text{perv}} \left[1 + \frac{G_{\text{accuracy}}}{(1 + j_{\text{werror}})} \right]
$$

and

 $Z_1 = G \times Z_{\text{accel}}$ (accel PS output impedance),

and

$$
Z_2 = \frac{G_{\text{accuracy}}}{1 + j_{\text{w}}_{\text{error}}} \times Z_{\text{probe}}
$$

The non linear electron current (I_0) has been neglected in these calculations.

One should expect stability problems near
frequencies where $1 + (2_1 + 2_2) \times Y_{\text{arc}}$ p_S = 0.
Hence, the reduction of the Z_1 , Z_2 impedances
and/or phase lag may be expected to be stabilizing.

The arc-current modulator was made with the highest practical frequency response so as to permit control during the beam "turn-on" without increasing the transient accel energy reservoir. Two phase lags
(Figure 2) were measured with the aid of a sine wave oscillator connected to the input of the arc-current modulator. The related observed delays are: ~4 us
in the arc current modulator (suspected to be
dominated by the high current transistor switches) and \sim 6 μ s (suspected to be composed of the trans-
mission line's inductance⁴ and the arc impedance, $L/R \approx 4$ usec, and an ion transit time of 2 us).

The complex accelerator power supply output
impedance (Z_{accel}) was computed from a lumped
circuit model (Figure 3). It exhibited two
resonances, one dominated by the accel transformer's
leakage reactance $(\sim 3 \text{ H})$ int (In this calculation, the lumped circuit is driven at the output terminals with a current source; V_0 is short circuited.)

OPERATION

The simplest feedback configuration (Gaccuracy = 0), tried first, suffered from fluctuations (Figure 5) which increased during beam "turn-on". The initial rise in accelerator voltage was followed by increasingly large tra frequency for Zaccel x Yarc PS.

The application of a 2.5 K Ω , 20 nF snubber across the output produced two fundamental improvements.

ेरी

ž.

 \overline{c}

Before the output snubber was Figure 5 installed, the V_{accel} fluctuations"
increased until the beam attempt was aborted.

Figure 6 Z_{accel} (phase), calculated with the
output snubber 2.5 Ka/20 nF RC. Phase
lag at $f = 40$ kHz is -45°. (Z_{accel}
was reduced 33%.)

1. The calculated Z_{acc} phase lag at 40 kHz was
reduced by 45 (Figure 6).

2. The calculated magnitude was reduced (~1.5X).

 $\tilde{\mathcal{L}}$

The resulting beam "turn-ons" were smoother
(Figure 7) than those obtained during any prior standard operation.

The output drifted on a much slower time scale (Figures 8, 9), indicating that more feedback gain
(Gaccuracy >0) was desirable. With the attempt to
increase the feedback gain, oscillations were again observed around 40 kHz. In order to restabilize, the increased feedback gain had to be rolled off with a

Beam "turn-on" transient at $V_{\text{accel}} = 90$ kV with stabilizing RC snubber on Figure 7 the output. Trace No. $1 = V_{\text{accel}}$ Trace No. $2 = \text{Iprobe}$ ($\approx \text{Ibeam}$)
Trace No. $3 = \text{Igradient grid}$ (grid 2) Trace No. $\bar{4} = \frac{1}{3}$ subsets or (grid 3),
 $(+) \equiv 1$ on collection; $-$) \equiv electron collection

Figure 8 First 7 ms: a time-varying error causes the beam current to increase; this loads down the accel voltage (top trace). The current regulator (Traces 3 and 4) saturates at 7 ms. Then unregulated operation is observed.

time constant (τ_{error}) of ~30-60 µsec. (Gaccuracy
and τ_{error} have not yet been optimized.)

FUTURE PLANS

The 30 sec upgrade of the NBSTF⁵ will attempt beam current regulation where the transient response
is controlled in a manner similar to that above, but the slow time-scale regulation will take place in the arc power supply primary circuit.

ACKNOWLEDGEMENTS

The authors wish to thank PPPL, W.R. Baker, D.B. Hopkins and the Special Projects Group at LBL for the vision and enthusiam which were instrumental in the creation of the arc modulator used in these tests. We also thank D.B. Hopkins for reviewing this paper.

3

The drift in the beam current Figure 9 (seen in Figure 8) increases the back-streaming electron bombardment
of the second grid (I_{gg}, Trace 1).
Unregulated operation (after 7ms) is observed.

We are indebted to John Roberts for his help in the tests and to Carolyn Wong for her patient assistance in the preparation of this manuscript.

REFERENCES

- "Beam-pumping" applies to the reduction in ion
source output presumed to result from the $1.$ pressure decrease caused by a decrease
particle flow impedance when the beam
operating. (A.F.L.) in is
- D.B. Hopkins, et al., "The Lawrence Berkeley
Laboratory Power Supply System for TFTR Neutral
Beam Source Development", Proc. of the 7th Symp.
on Engr. Prob. of Fusion Research, IEEE Pub. No.
77CH1967 AMDS of Fusion Researc $2.$ 77CH1267-4-NPS, Knoxville, TN, LBL-6377, October, 1977.

 \mathcal{L}

爱

- 3. G.J. deVries, et al., "Arc Current Modulator for
Neutral Beam Source", Proc. of the 8th Symp. on
Engr. Prob. of Fusion Research, IEEE Pub. No., San Francisco, CA., LBL-9390, November, 1979.
- 4. W.R. Baker, Internal Report No. NTFD-2008-Rev.1. Lawrence Berkeley Laboratory, September 1977.
- 5. I.C. Lutz, et al., "The Lawrence Berkeley
Laboratory Neutral Beam Engineering Test Facility Power Supply System", To be presented at the 9th
Symp. on Engr. Prob. of Fus. Res., Chicago, IL.,
LBL-12722, October 1981.