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The stability of empty resonators (or cold cavities) has been widely studied, 

and is well understood. Here we consider the stability of symmetric resonator sys­

tems when there is a free-electron laser (FEL) interaction present within the cavity. 

We first construct a linear thick-Ien.s model of the FEL and analytically study the 

dependence of resonator stability on its geometry. Next, we employ a nonlinear, 

three-dimensional FEL oscillator code to study the dependence of FEL performance 

on the cavity configuration. The analytic and numerical appr~aches are compared 

and it is shown that they agree quite welL It is found that the region of stability 

is shifted toward longer cavities, and beyond the concentric configuration, Between 

the confocal and the concentric configurations, where the empty-resonator analysis 

predicts stability, there now appear regions of instability. We find that operation 

near the concentric configuration is preferable, and operation very near the confocal 

should be avoided. 
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I. INTRODUCTION 

'The stability of modes in an empty optical cavity has been well studied and can be 

found in standard texts[l]. It is found that changing the geometry of the resonator af­

fects its stability, and that near-concentric and near-confocal resonators are the most 

stable. Based on these studies, in applications to conventional lasers, the preferred 

configuration is near-confocal. In applications to free-electron lasers (FELs) the choice 

is less unanimous, though more often near-concentric; however these choices seem to 

be motivated more by considerations of the amount of power incident on the mirrors, 

than by those of stability. (Recently, a study of resonators in the confocal configura­

tion has been made by Pantell and Ozcan[2], based on considerations different from 

ours.) 

In the ca~e of FELs, the presence of a wiggler within the resonator introduces a 

strong, nonlinear; interaction, that must necessarily affect the stability of the system. 

In the paper paper we study this effect, both analytically (in the linear approximation) 

. and with a computer simulation (that uses the full, nonline9-r; FEL equations of 

motion). 

In Section 2 we sketch, briefly, the usual empty-resonator analysis - mainly to 

define parameters and notation. We also introduce the formalism of Kogelnik [3] for 

studying resonators with internal optical systems. In Section 3 we construct a 'simple 

linear model of the FEL interaction, and apply Kogelnik's formalism to derive the 

stability criterion. In Section 4 we present details of a three-dimensional, nonlinear, 

FEL oscillator simulation program that we have developed[4], based on an amplifier 

program written by Tran and Wurtele[5]. We employed this program to investigate 

cavity stability in the presence of FEL interactions; results are presented in Section 5. 

Finally, in Section 6 we present some discussion and conclusions. 
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II. STABILITY OF RESONATOR SYSTEMS 

In the first sub-section, we give a brief over-view of the usual empty-cavity analy­

sis, in order to define notation and to provide a basis of comparison. Next we sketch 

the elements of Kogelnik'sanalysis of resonators with internal optical systems, in 

order to provide the basis for the linear analysis of the next section. 

A. Empty Resonators 

Consider a resonator system comprising two concave mirrors with radii of cur­

vature R1 and R2 respectively, placed a distance D apart. Within the framework of 

geometrical optics, we can write down a transfer matrix that takes a light ray through 

one pass within the resonator. Starting out at the right surface of the mirror on the 

left, this one~turn matrix M1 can be written as, 

. ( 1 0) (1 D) ( 1 0) (1 D) 
M1 = -2/ R11 0 1 -2/ R21 0 1 .' 

(1) 

Since each of the individual matrices has unit determinant, so does the matrix 

M 1 , and hence the whole transformation is symplectic. The condition for stability is 

/Tr(M1 ) / ::; 2. Defining the stability parameters9i,2, 

9 -1 D 1,2 - - R12' (2) 

the stability criterion can be written as, 

(3) 

The stability diagram in 91 +-+ 92 space is shown in Figure 1. As can be seen, 

the region of stability is small, and largely confined to the near-concentric and near­

confocal configurations. Note that the symmetric resonator is represented by the line 

91 = 92 (= 9, say). The stability criterion then reduces to -1 ::; 9 ::; 1. 
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B. Resonators with an internal optical system 

A resonator that has an optical system (a set of lenses or lens-like media) within it, 
\ 

can be reduced to an equivalent empty resonator, by suitably redefining the stability 

parameters gl ~nd g2. The stability criterion of Eq. 3, then applies to the modified 

parameters, and determines the stability of the system. 

Kogelnik[3] has studied the problem 6f deriving the equivalent empty resonator 
'\ 

for an arbitrary internal optical system. He does this by first considering a simple 

thin lens within the resonator, and deriving the modified stability parameters for 

this case, using imaging rules. He then generalizes to an arbitrary optical system by 

noting that such a system can be completely described by its effective focal-length j, 

and the positions of its principal planes, hI and h2. 

Now, since the optical parameters, j, hI and h2' can always be written in terms 

of the elements of the ray matrix for the optical system, it must be possible to write 

the modified stability parameters gl and g2 (of the equivalent empty resonator) in 

terms of the matrix elements A, B, C, D (of the internal optical system). Kogelnik 

finds that[3] 

gl = (A - !), 
g2= (D - :2). (4) 

The stability of the resonator with the internal optical system is then given by Eq.(3), 

i.e. 0 ::; g1g2 < 1. 

III. LINEAR FEL MODEL 

In this Section we apply the above formalism, particularly Eqs. 3 and 4, to the 

case where there is a FEL interaction within the resonator. The wiggler does not 

completely occupy the space within the resonator; the relevant geometry is shown in 
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Figure 2. 

In order to describe the FEL we choose a liI~lear model wherein the FEL is de­

scribed by a lens-like medium that has a transversly dependent refractive 'index n 

given by 

(5) 

We let the length of the FEL be I, and let it be placed symmetrically within the 

resonator, a distance w from each mirror (Fig. 2). 

The optical system under c~nsideration then consists of a drift space, followed by 

an FEL interaction, followed by a drift space. The ray transfer matrix for this system 

can be written as, 

Mt=(IU') ( cosbl (l/nOb)Sinbl) (lW) 

o 1 -nob sin bl cos biOI 
(6) 

Multiplying the matrices we can write down the individual elements of the ray matrix: 

A = cos bl - wnob sin bl 

B = 2w cos bi + 2..b sin bl - w 2 nob sin bl 
no 

C = -nob sin bl 

D = cos bl - wnob sin bl. 

(7a) 

(7b) 

(7c) 

(7d) 

Noting that A = D and assuming, for simplicity, that the mirrors are symmetric so 

that Rl = R2, we ~nd, from Eqs. 4, that for the symmetric case g1 = g2. Further, 

the stability condition (Eq. 3) becomes, as before, 

-1::; 9 ::; 1, (8) 

where, 
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(9) 

Note that if there is no FEL, then I = 0, w = D /2, and the equation reduces to 

9 =, (1- D / R) - which is just the equation for the symmetric, empty resonator case. 

Equations 8 and 9 completely describe the stability of the FEL oscillator system. 

There are five independent parameters that describe the system - three for the FEL 

and two for the empty resonator. Since we are primarily interested in how the stability 

of the system changes with the length D (= 2w + I) of the resonator, we now assign 

numerical values to the other parameters, and plot 9 as a function of x ;= D / R. Note 

that x = 1 corresponds to the confocal configuration, and x = 2 to the concentric. 

For an empty resonator, the regime of stability is b ::; x ::; 2. 

The results are shown in Figure 3 w)l('rc b has been \·aried and the other param­

eters have been held fixed. For small b t II(' stability region is not very different from 

that in the empty resonator case. As b increases, however, it becomes possible to 

have regions of stability even for x > 2, i.e. for configurations that are longer than 

concentric. This is really not surprising, because the extra focusing provided by the 

FEL keeps the optical beam from diverging. Note also that for sufficiently large b 

regions of instability appear even for x ::; 2 ('over-focusing'). This is potentially an 

important observation, because this is precisely the region where most FEL oscillators 

operate. 

IV. NONLINEAR FEL OSCILLATOR SIMULATION 

The FEL model we 'chose in the last section was linear and therefore rather 

simple. The real FEL interaction is nonlinear, and therefore rather complex. One 

is consequently forced to take recourse to computer simulations. For this purpose 

we use a three-dimensional FEL oscillator simulation program 'TDAOSC' that we 

have developed[4]. It is based on the program 'TDA' developed Tran and WurteleI5], 
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which is a time-indep~ndent, three-dimensional, axisymmetric FEL code. It uses the 

nonlinear KMR[6] equations of motion for the electrons: 

d, = -ks (1 _ Ww) awasfB sin ((} + <Ps) , 
dz cks , 

(lOa) 

d(}._ Ww _ (_ Ww) 1+a~+p;+p;+2awasfBcos((}+<ps) 
d - kw + . ks 1 k 2 2 ' 

Z C C s ~ , 
(lOb) 

dpx ·1 a 2 

dz = - 2, ax aw , 
(10c) 

dpy 1 . a 2 

dz = - 2, ay aw , 
(10d) 

dx =Px 
dz , 

(10e) 

dy . py 

dz , 
(10f) 

Here ks, W s, as refer to the wayenumber, frequency and the rms value of the dimen­

sionless vector potent ial a~( = Cf1~/mc) of the radiation or signal field. Similarly, the 

wiggler is characterized by its wayenumber, frequency and dimensionless vector po­

tential, kw,ww and aw(= eBw/mckw). The longitudinal dynamical variables of the· 

electron are" the Lorentz factor, and the electron phase (} = (ks + kw)z - (ws - ww)t. 

The transverse dynamical variables are the positions x, y and the momenta Px,Py that 

have been normalized to mc. Finally, fB is the usual Bessel function factor that is 

unity for helical wigglers. 

The wave equation assumes a single frequency and the paraxial approximation: 

[
a 1 2] t¢. _ eZo IB 1 ~ . e-tOj 

-a + 2 k \7.L ase - Z-2 2k N L..J 8(x - xj)8(y - Yj)as(x,y)-. . ' (lOg) 
z z s mc s j=l . 'J 

where Zo is the vacuum impedance (= 377f2), and the SUpl is oVer all N simulation 

particles, each carrying a partial current 1/ N. 

In order to model an FEL oscillator, one has to transport the electromagnetic 

radiation from the end of the wiggler back to its entrance. To implement this we 

added three segments of a Fresnel-Kirchoff integral[7] that propagate the radiation 
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(a) from the end of the FEL to the right-hand mirror, (b) from this mirror backwards 

to the left-hand mirror, and (c) from the left-hand mirror onward to the entrance 

to the FEL. This completes one pass. In the second transport it is assumed that 

the radiation does not interact with the electron beam and does not see the wiggler 

aperture. For the next pass a fresh bunch of electrons is loaded, while the electric . . . 

field at the entrance to the wiggler is used' as input to the amplifier code. This process 

is iterated for as many passes as necessary; usually until the mode stabilizes and the 

optical beam power saturates. 

Parameters used in the simulations described below are shown in Table 1. In 

order to consider more realistic configurations, the parameters chosen were based 

on the then existing design parameters for the CRDL infra-red FEL proposed at the 

Lawrence Berkeley Laboratory[8]. In this scheme. hole-coupling is used for extracting 

the opticalbeam, so in the simulations the right-hand mirror had a hole in the centre. 

In the design the configuration of the cavity was near-concentric. In order to explore 

the consequences of changing the configuration, we held all other parameters fixed, 
\ 

and increased only the length of the cavity. The cavity length D 'was varied between 

6.3m and 13.3m . . (The confocal configuration corresponds to D = 6.3m and the 

concentric to D = 12.6m.) 

v. RESULTS OF THE SIMULATIONS 

For a given optical configuration to be acceptable, we require two things: first, 

the mode profile at the right-hand mirror must have a maximum at the centre, so 

that power can be effectively coupled out of the beam. Second, the mode profile 

within the wiggler must have the same characteristic, so that the overlap between the 

electron beam and the radiation field may be substantial. Note that the cold-cavity 

modes satisfy these criteria. 
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We found that for 6.8m < D < l2.6m (a region of stability for an empty res­

onator), the mode profile does, indeed, have a maximum at the centre (though there 

may be structure at larger radii). At D = 6.8m, however, even before the confo­

cal configuration is reached, there is an abrupt change in the profile; the mode now 

has a minimum at the centre, and the FEL cannot be operated in this configuration 

(Figure 4). 

Significantly, we find that at the concentric end, this situation does not develop 

until D = l3.3m, i.e. for a configuration longer than the concentric. This is in contrast 

to the empty-resonator case. Thus, the focusing effect of the FEL wiggler results in 

a shift in the region of stability toward and beyond the concentric configuration. 

A closer examination of the region 6.8m < D < l3.3m reveals further dynamical 

structure (Figure 5). We find that near the concentric configuration (D = l2.6m), 

the pass-by-pass evolution of the optical power is smooth, and it saturates in about 

10-20 passes. Between 8.3 - 10.3m, however, we find that there are fairly large pass­

to-pass oscillations in the optical power, and that it takes close to 40 passes before 

some level of stability is achieved. The mode profile too, has substantial structure at 

larger radii, and hence this regime is not conducive to stable operation of the FEL. 

A look at the amount of power coupled out ofthe hole is also instructive (Figure 6) .. 

We notice that at the· two extremes of the stability region, the power Ph that is 

coupled out through the hole is small, because the mode has a minimum at the hole. 

Starting just beyond the confocal end, at D = 6.3m, as the separation D increases, 

Ph also starts to increase. However, between 8.3m < D < 10.3m, where there is an 

instability that causes the saturated power to oscillate, Ph falls substantially. Once 

beyond this region it increases until beyond the concentric limit, before finally getting 

into the unstable regime. Note that even at D = l2.6m, for the exactly concentric 

configuration,the mode is smooth and the out-coupled power high. 
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Thus, our simulations indicate that, for this example, the best operating config­

uration would be very near the concentric. This allows for the best mode profile as 

well as the largest amount of out-coupled power. 

VI. DISCUSSION AND CONCLUSIONS 

In Section" 3 we constructed a simple, linear model for the FEL interaction, and 

were able to investigate, analytically, the stability of a symmetric resonator with 

an internal FEL wiggler. We found that the regime of stability changes relative to 

the empty resonator. In particular, that regime can extend beyond the concentric 

configuration. Additionally, areas of instability can occur even for configurations 

that were stable for the empty resonator. 

In Section 5 we used a nonlinear FEL oscillator program, 'TDAOSC', to extend 

the investigation into the more realistic regime where the FEL interaction is nonlinear. 

In addition, the three-dimensional nature of the simulation program allowed" us look 

at mode profiles. 

The introduction of nonlinearities can change the dynamics in a fundamental 

manner. Linear superposition no longer holds, and nonlinear stabilization can occur. 

This means that for given parameters the mode geometry can be preserved over 

many passes. However, as the cavity length is changed, there can still be a sudden 

change in the mode profile. For practical applications the precise nature of the profile 

is extremely important, because a stabie configuration that yields an unacceptable 

mode profile is still unusable. In this paper we have therefore taken the practical 

~pproach and used the nature of the mode profile as an indicator of stability in the 

system. 

We observe good agreement between the results of the simulations and the predic­

tions of the analytic linear model. In particular, the region of stability starts before 
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the confocal configuration, and eA'tends beyond the concentric. In addition, between 

the confocal and the concentric configurations there exists a region of instability 

wherein the FEL oscillator should not be operated. 

In conclusion, we find that for FEL oscillator applications the near-concentric 

resonator configuration is preferable, and that operation very near the confocal is not 

advisable. 

We would like to thank Ming Xie for useful conversations. This research was 

supported by the U.S. Department of Energy, Division of Nuclear and High Energy 

Physics, under contract No. DE-A9-03-SF-0009S . 
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FIGURES 

FIG. 1. Stability diagram for the empty asymmetric resonator. 

FIG. 2. Schematic of a symmetric resonator that contains a FEL wiggler within it. 

The length of the wiggler is 1, and the length of the drift spaces on either side is w. The 

FEL is modeled as a lens-like medium. 

FIG. 3. Stability parameter 9 as a function of the normalized cavity length x( = D / R), 

for the linear resonator system of Figure 2; for different b. The stability condition is -1 < 

9 < 1. For the empty resonator this is satisfied for 0 ~ x ~ 2. 

FIG. 4. From the simulation, transverse optical mode profile at the out-coupling mir-

ror, for (a) D = 11.3m, and (b) D = 6.Sm. 

FIG. 5. Total optical power as a function of the number of passes, for (a) D = 12.3m, 

and (b) D = IO.3m. Data from the simulations. 
J 

FIG. 6. The power coupled out through the hole, Ph, as a function of the cavity length 

D. Data from the simulations. 
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TABLES 

TABLE 1. Parameters used in the simulation 

Parameter 

Wiggler parameter (aw ) 

Wiggler length (L) 

Wiggler period (Aw) 

Wiggler bore radius 

Normalized beam emittance (En) 

Beam radius (rb) 

Beam energy (-r) 

Beam current (1) 

Optical wavelength (A) 

Initial optical power 

Radi us of curvature of mirrors 

Radius of cross-section of mirrors 

Separation between the mirrors 

Number of test particles 

Number of radial grid points 

Number of longitudinal integration steps 

14 

Value 

0.637 

2m 

5cm 

1'2.7 mm· 

2x10-5 m-rad 

0.63 mm 

37.95 

100 A 

25/Lm 

1MW 

6.3 m 

23 mm 

varied 

1024 

128 

40 
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