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I, INTRODUCTION

The static and dynamic analysis of structures can be completely
automated. ' During the past ten years several general purpose computer
programs have been developed which automatically evaluate the displace-
ments and member forces within the structure. In order to use sucha
program it -is only necessary.to ideglize the structure by a system of
joints (nodal points) interconnected by structural members (elements).
The computer input is a simple numerical listing.of the geometry of the
Joints, properties of the members and the location and magnitude of the
1oads. Therefore, it is now possible for professional engineers to
perform complex structural analyses without a complete knowledge of the
basic assumptions and theory which have been incorporated into the
computer program. - This "black box'" use of computer programs for
structural analysis has caused problems in the interpretation of the
results of the analysis. : Because of these problems many professional
engineers do not have faith in the use of general purpose programs and
still use simplified approximate methods which can be checked by hand
calculations.

In many Universities the teaching of structural analysis methods to
both undergraduate and graduate students does not properly emphasize the
direct stiffness method which is the most common computer method imple-
mented. One: of the reasons for this practice is because most modern
books on matrix analysis of . structures do not contain a simple
explanation of the direct stiffness method. Also, it is very cumbersome
to teach using hand calculation techniques.

In the teaching of structural dynamics,strong background in static

analysis of complex structures is not normally required. Therefore,



dynamic structural analysis is often taught using very simple two-
dimensional models. Hence, dynamic courses almost never illustrate the
dynamie behavior of a significant three-dimensional system.

As a result of the present limitation of our education system,
which still emphasize hand methods of structural analysis, professional
engineers have not been able to use effectively the completely automated
general purpose computer programs for structural analysis. The :purpose
of this report and the computer program CAL is an attempt to bridge the
educational gap between the traditional hand calculation methods and the
use of a completely automated program for structural analysis.

The computer program CAL is a significant extension of the program
SMIS, Symoblic Matrix Interpretive System, which was developed in 1963.
SMIS has been very useful in the teaching of structural analysis. : The
program was designed to perform the formal matrix transformation techniques
of the force and displacement methods for structural analysis. The initial
version of the program did not have direct stiffness options or the auto-
mated  formulation of element stiffness matrices. Therefore, the use of
SMIS did not illustrate to the student the methods used in automated
computer programs for structural analysis. Also, the dynemic analysis
operations were very limited.

CAL is a completely new program which is based on a different
internal organization structure. The program is designed to work on
several different types of computer including the small 16 bit minicomputer.
The program has options which allow tlie user to debug data without
printing previously obtained reéults. Also, looping operations provide
a compact language for the evaluation of numerical algorithms which

involve iteration.



In the use of CAL it should be remembered that the basic purpose of
the program is educational. The automated structural analysis methods
which are used in large general purpose programs have been subdivided into
a series of simple operations which are under the control of the user.
Also, no attempt has been made to extend the capacity of the program to
effectively use low speed storage. .In.addition, all matrices are stored
in rectangular matrix form including zero terms, without taking advantage
of symmetry. Since CAL is designed for small problems, these limitations
are not serious. For practical problems over 100 degrees of freedom one
of the "black box" general purpose programs should be used.

The operation for general matrix inversion has been omitted intentionally
from the. set.of CAL operatioﬁs. The educational reason for this is. that
it is a numerically inefficient operation which is rarely required in
structural analysis; therefore the student should learn to use the more
efficient solve operation. Also, I hope to reverse the trend set in many
modern text books which imply that matrix inversion is a necessary opera-

tion for the analysis of structural systems when using matrix notation.




IT. COMPUTER ANALYSIS LANGUAGE - CAL

A, FORM AND RESTRICTION OF THE LANGUAGE.

CAL is an interpretive language which is designed to manipulate
arrays and matrices and to perform several standard structural analysis
operations. A CAL program run involves the reading of the input deck
once and executing the commands designated by the operation cards as they
are encounfered. Looping operations allow a sequence of commands to be
executed more than once.

The input deck is composed of operation cards and data cards. The
data cards directly follow each operation card which requires data (see
LOOP operation for exception to this). The operation card contains the
name of the operation to be executed, names of arrays associated with
the operation and integer constants. =~ Examples of the general form of
this card are

OP,M1,M2,M3,M4 ,M5,N1 ,N2,N3, Nk

OoP,M1,N1,N2

oP,N1

oP
in which OP is the name of the operation to be executed, Mi is the name
of an array and Ni is an interger. The names of OP or Mi are one to six
alphabetic characters to be selected by the user. These sequence of terms
OP, Mi and Ni must be separated by commas and terminated by a blank.

If an operation attempts to load or generate an array which previously
existed the program will delete the array before the execution of the
operation. A new array need not be the same size of the old array which

had the same name.



B. GENERAL MATRIX OPERATIONS

CAL has most of the standard matrix operations plus some special array
operations which are useful in structural analysis. The theoretical back-
ground for matrix notation is given in Reference [2]. The following
is a list of apprbximately 25 operations which are used for control and

general matrix or array manipulation.

START

This operation eliminates all arrays which were previously loaded or
generated

STOP

This operation causes normal termination of a CAL program

‘ +
LOAD,M1,N1,N2,N3

This operation will load an array of real numbers named M1l which has N1
rows and N2 column.. The terms of the array are punched in row-wise
sequence on data cards following this operation. If N3 is zero or blank
the cards are punched in a format of (8F10.0).

If N3 is nonzero an additional card containing the format of the data
cards must follow this operation and preceed the data cards. If the

data is to be U4 numbers per card in field widths of 15 the additional
card would contain the following information: (LF15.0).

+
ZERO,M1,N1,N2,N3 , N4

A real matrix named M1 with N1 rows and N2 columns will be generated.
The terms in this matrix will have the following values.

[}

ML(I,I)
M1L(I,J)

N3 I=1,....N
Nb J=1,....N2

|

Therefore, this operation can be used to form null or unit matrices.

+ indicates the formation of a new matrix - a matrix previously defined
with the same name will be deleted.
- indicates modification of an existing matrix.




NO
YES

These operations are used to selectively suppress output from CAL. The
NO operation suppresses all printing, except diagnostics, until the
operation YES is encountered. Therefore, in subsequent runs of the same
CAL program, output which was previously correct need not be reprinted
if these cards are inserted in the data deck.

PRINT,M1,N1

This operation will print the real array named Ml in a matrix format of 8
columns per line. If N1 is greater than zero the operation will read and
print N1 comment cards which follow the operation card.

LABEL, N1

This operation will read and print N1 comment cards which follow this
operation card. Column 1 of each card will be interpreted as a stand-
ing carrage control symbol (i.e. 0 for double space and 1 for a skip
to the top of the next page).

DUP, M1, M2

This operation will form an array named M2 which is identical to the
array.named Ml.

ADD,M1,M2

This operation will replace matrix ML with the sum of the matrices
ML and M2.

SUB,M1,M2

This operation will replace matrix M1 with matrix Ml less matrix M2.

+
MULT, M1, M2 ,M3

This operation generates a new matrix M3 which is the product of matrices
Ml and M2, or M3 =Ml - M2,




TRAN, M1, M2

This operation generates a new matrix M2 which .is the transpose of
matrix Ml.

SCALE,M1,M2

. This operation replaces each term in the matrix named ML with the term
multiplied by the term M2(1,1) of matrix named M2.

SOLVE, M1,M2 OR SOLVE,M1,N1 OR SOLVE,M1,M2,N1

If N1 = 0, this operation solves the set of equations AX = B. In which
Ml is the name of the symmetric A matrix and M2 is the name of the B
matrix. Matrix A is trlangularlzed and the results X are stored where
the matrix B was 1n1t1ally stored and is named M2.

If N1 = 1 Matrix A is triangularized only.
N1 =2 For a given B matrix and the A matrix previously triangularized
the B matrix is replaced by the results X.
N1 = 3 Matrix A is replaced by it inverse A-l.
For N = 0 or 1 matrix A is factored into the LDL~ form. The diagonal D
matrix is stored on the diagonsl of A.

+
DUPSM,M1,M2,N1,N2,N3, N4

This operation forms a new submatrix named M2 with N3 rows and N4 colunns
from terms within the matrix named Ml. The first term of matrix M2,
M2(1,1), will be from row N1 and column N2 of matrix M1, or M1(N1,N2).

STOSM,M1,M2,N1,N2

This operation stores a submatrix named M2 within the matrix named Ml.
The first term of the submatrix M2 will be stored at row N1 and column
N2 of matrix Ml. The terms within the area of ML in which M2 is
stored will be destroyed.

+
DUPDG, M1, M2

This operation forms a new row matrix named M2 from the diagonal terms
of matrix M1.

STODG, M1, M2

This operation stores a row or column matrix named M2 at the diagonal
locations of matrix MlL.




+
MAX,M1,M2

This operation forms a column matrix named M2 in which each row contains
the maximum absolute value of the corresponding row in matrix Ml. The
maximum and its column number is printed for each row.

N
NORM, M1, M2, N1

If N1 = 0 a row matrix named M2 is formed in which each column contains
the sum of the absclute values of the corresponding column of matrix Ml.

If. N1 # 0 a row matrix named M2 is formed in which each column contains
the sguare root of the sum of the squares of the values of the
corresponding column of matrix Mi.

INVEL, M1

This operation replaces each term in the matrix named Ml with it's
inverse.

SQREL,MI

This operation replaces each term in the matrix named Ml with the square
root of the term.

LOG, M1

This operation replaces each term in the matrix named Ml with the natural
log of the term.

+
PROD, M1, M2

This operation forms a 1 x 2 array named M2 which contains the product
of all terms in the matrix M1l. The product, X, is stored as two numbers
of the form

in which M2(1) = P and M2(2) = E.

DELETE, M1

This operation will cause the elimination from storage of the . array
named Ml. '




C. GSTRUCTURAL ANALYSTS OPERATIONS

The purpose of this series of operations is to form the total stiff-
ness and diagonal mass matrices for. systems of three-dimensional beam and
truss elements. If the appropriate properties and boundary conditions are
given two-~dimensional truss and beam systems may also be treated.

After the creation of an array containing the coordinates of the
Joints of the system, the specification of displacement boundary conditions,
the tabulation of material and section properties, the mass and stiffness
matrices areformed for each structural member and placed in sequence on
low speed storage along with the global equation number. which are
associated with their stiffness terms. In addition the member force-
displacement transformation matrices. are formed and stored on a separate
low speed storage file along with the appropriate displacement numbers.

The ‘NODES operation is used to specify or generate the geometry of
the system. The operation BOUND specifies which joint displacements exists
and assigns internal equation numbers to these displacements, Therefore,
eaéh Joint may have from zero to six displacement degrees of freedom.
Tables of material and section properties for the various members are
loaded and printed as standard arrays of information.

A special operation ADDSF is used for the direct addition of element

stiffnesses to form the total stiffness and diagonal mass matrix of the
gystem. The LOADES operation specifies the concentrated joint loads for
all load conditions. After the direct solution for joint displacements
due to static or dynamic loads the member forces can be

evaluated using the FORCE operation. The DISPL operaticn is used to

print the displacement in Joint number order.

9




+
NODES, M1,N1

The cards following this operation provide information for the creation
of a N1 x 3 array which will contain the coordinates for all the joints
in the system. Where

Ml = Name of new coordinate array to be loaded.
N1 = DNumber of joints (or nodes) in the system.
The following sequence of cards punched in a (e1, 3F10.0) format must

follow this operation.

Columns 1- 5 Node number selected by user
6-10  blank
11 - 20 X~-ordinate
21 - 30 Y-ordinate
31 - L0 Z-ordinate

Node cards may be supplied in any order; however, all nodes must be defined.
If nodes are defined more than once the last definition will be used. This
sequence of data must be terminated with a blank card.

Z

% ' }

zZ
POSITIVE COORDINATE SYSTEMS

10

[



+
BOUND, M1

This operation specifies the displacements which are nonzero for the
structural sytems of joints specified by the NODES operation. . Where

Ml = Name of boundary condition code array to be generated.

This operation is followed by a series of cards containing the following
information and punched in a (8I5) format.

Columns 1 -5 Node number for the first node .in a series of nodes
with identical displacement specification.

6 - 10 Node number for the last node in the series.
11 - 15 X-translation |
16 - 20 Y-translation EQ. z§ro for zero or undefined
> - displacements
21 - 25 Z~translation
EQ. 1 for nonzero displacements
26 - 30 X-rotation to:be evaluated by other
operations

31:=:35 Y-rotation

¢
36 - Lo Z-rotation J
b1 - 45 Node mumber increment used to generate boundary

conditions for additional nodes.

If a node boundary condition is not specified all displacementsat that
node are assumed zero. Cards may be supplied in. any order. ' If node
boundary conditions are ‘specified more than once, the last definition
is used. This sequence of data must be terminated by a blank card.

The selection by the user of which nodes have nonzero displacements
requires an understanding of the direct stiffness procedure. Displacement
degrees of freedom which have no stiffness associated with the displace-
ment must be considered to be undefined since it is not:-possible to
develop an equilibrium equation for that direction. The total number of
nonzero displacements specified will be the size of the total stiffness
matrix to be defined by the ADDSF operation.

11




+
BEAM, M1,M2,M3,Mh

This operation calculates the element stiffness, mass and force-displacement
transformation matricés for 3D beam members.: -These array are stored in
sequence on low speed storage to be used by other operations where:

Ml is the name of the beam element group
M2 is the name of the coordinate array
" M3 is the name of the boundary condition array
M4 is the name of an array which contains beam properties
and has been loaded by the standard matrix LOAD operation.

One card for each beam in this gfoup of beam elements must follow this
operation. - The beam cards are punched in the following FORMAT (5I5).

Columns 1 - 5 Beam identification number
6 - 10 Node number I
11.- .15 Node number J
16 - 20 Node number K
21 - 25 Beam property number. NP

This sequence of cards must be terminated with a blank card.

The material and geometric properties for —each element are given in the
M4 array in the following order: :

M4(NP,1) = Axial area of member, A.

Mk(NP,2) = Torsional moment of Inertia, J

ML (NP,3) = Moment of Inertia about axis 2, Ip2
M4(NP,4) = Moment of Inertia about axis 3, I3g
ML (NP,5) = Modulus of Elasticity, E.

M4(NP,6) = Shear Modulus, G.

M4U(NP,7) = Mass per unit length of beam

where NP is the specific material property number specified in columns
21~25 of the beam ‘card.

The local 'sign convention for the beam element is given in the figure
shown ‘on ‘page 13.

12



= N

local beam reference system.
Axes 1 and 2 are in the
plane defined by plane

i, J and k nodes. Axis 1
is defined by line i-j.
Axis 3 is perpendicular

Bz Y the i,J, k plane.

LOCAL SIGN CONVENTION

DEFINITION OF POSITIVE BEAM FORCES

13




TRUSS, M1,M2,M3, M4

This operation forms the element stiffness, mass and force~displacement
transformation matrices for 3D truss members.

These arrays are stored on low speed storage in sequence and will be used
by other structural operations.

Ml is the name of this group of truss members

M2 is the name of the coordinate array

M3 is the name of the boundary condition array

MLk is a NP by 3 array of section properties in
which NP is the number of different section
properties and

ML(N,1) = the cross-sectional area
Mi4(N,2) = the modulus of elasticity
M4(N,3) = mass per unit length of member

This matrix can be loaded by the LOAD operation.

This operation is followed by one card per truss member with the following
information:

Columns 1 -5 Truss member identif?.ation number
6 - 10 Joint Number I
11 - 15 Joint Number J
16 - 20 Section property number, N. (See Mh above)

The operation must be terminated by a blank card

LOADI,#i1,N1,N2,N3

This operation will load an integer array named Ml which has Nl rows and
N2 columns. The terms of the array are punched in row-wise sequence on
Data Cards which follow this operation. If N3 is zero or blank the data
must be punched in a format of (16I5). If N3 is nonzero an additional
card containing the format of the data cards must follow this operation
and preceed the data cards.

1k




+

PLANE,M1,M2,M3, M4, N1,N2

This operation calculates the element stiffness, mass and stress-~displacement
transformation matrices for 3 to 8 node isoparametric elements. (Y-Z plane only).
These arrays are stored in sequence as a group on low speed storage to be used
later by other operations (i.e. ADDSF and FORCE). The erguments are defined as

M1
M2
M3
Mh

is the
is the
is the
is the
of the

ML (NP,1)
M4 (NP, 2)
M4 (NP,3)
ML (NP, L)

user defined name of the element group

name of the Joint coordinate array

name of the boundary condition array :

name of the array which contains the material properties
elements (one row per different material) where

Modulus of Elasticity, E

Poissons Ratio, 7~

Thickness of the element (for plane problems)
Mass density of element :

mn nn

in which NP is the material identification number.

N1 and N2 are the number of integration points in the r and s directions.

One card for each 3 to 8 node element in the group must follow the operation card.
The card is punched in a (10I5, 6F5.0) format and contains the following informa-

tion:
Columns:
1 -5 element identification number
6 - 10 Node Number Ny
11 - 15 " ‘" N2 )
16 - 20 " " Ny
21 - 25 " 1"t Nh
26 - 30 : B N5 Optional midsid d t b
1- 35 " i i ptional midside nodes - must be
36 e " i N6 within center half of side.
b1 - L5 " " N7
46 - 50 Material Idengification (row number in array M4)
51 - 55 and 56 - 60 Natural Coordinates of Stress Output r; and sj
61 - 65 and 66 - 70 " " e " ro and sp
7L - 75 and 76 - 80 " " w " " - ry and s3

The local numbering system for the eleméent is shown below.  Stresses will be
printed by the FORCE operation at three points, where

[ o [ (1)

P T
o o)
. R
3 XY) oy
. (2)
)4 T
r | = | @
5 Tyy
. (2)
6 Ty
F (3
o 3)
8 | Yy
- RAE)
L 9] L XY

15



+
LOADS, M1,M2,N1

This operation forms a load matrix named ML of N1 columns (N1 load condi~
tions) where M2 is the name of the boundary condition array generated by
the operation BOUND. This operation is followed by a series of cards--
one for each loaded joint for each load condition.  These cards are
punched in the following format (2I5,F10.0).

Column 1 - 5 - Joint Number
6 - 10 - Load Condition Number
11 - 20 - Load in X-direction
21 - 30 - Load in Y-direction
31 - 40 - Load in Z-direction
41 - 50 - Moment about X-axis
51 - 60 -~ Moment about Y-axis
61 - 70 - Moment about Z-axis

These series of cards must be terminated by a blank card.

+ + o+
ADDSF,M1 OR ADDSF, M1,M2

This operation forms the total stiffness matrix named Ml and a lumped mass
matrix named M2 for the structural system from the element stiffness and
mass matrices which are stored on low speed storage. These matrices can
be printed with the PRINT operation. If M2 is not specified the row mass
matrix M2 will not be formed.

DISPL,M1,M2

This operation prints the displacements named M1 in joint sequence order.
Where M2 is the name of the boundary condition. array.

+
FORCE ,M1,M2 OR FORCE,M1,M2,M3

This operation calculates the member forces for a group of elements in
which

M1 = the name of the element group
M2 = ‘the displacement matrix
M3 = the name of the matrix in which the forces are stored
in the order calculated. TIf this array is not specified
the element forces will be printed only and will not be
retained in storage.
For the TRUSS element only the member axial force F will be -calculated
for each member. TFor the BEAM element eight forces will be printed wiith
reference to the positive definition shown on page 13.
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D. QPERATIONS FOR’THE DYNAMIC ANALYSIS OF STRUCTURAL SYSTEMS

The following operations were designed to evaluate the dynamic
response of structures subjected to arbitrary time-dependent loads.

If these operations are used in connection with the standard matrix
operations and the structuralvanalysis operations a dynamic analysis

is a relatively simple procedure. The user has the option of using the
mode superposition method or a direct step-by-step integration of the
dynamic equations of motion. The user may examine the spectra of both
input loading and calculated displacements. In addition, the contribu-
tions of the individual modes may be evaluated and compared.

The most common and convenient form for time-dependent data to be
specified is as straight line segments between given time points.
Therefore, an operation which generatés values at equal intervals is
necessary. Another common characteristic of time-varyingloads on struc-
tures is that it is normally possible to represent the loads at all
points on the structure by the product of two matrices--a column matrix
indicating the spacial distribution df loads times a row matrix which
indicates the values at a function of various times. If a more complicated
1oading'is required it is possible to perform more analyses, each within
the regtrictions of the program, and then add the results of each
analysis.

In addition to several other matrix operations within CAL the
following operations have been added for the major purpose of performing

dynamic analysis.
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FUNG,M1,M2, M3,NI1,N2

This operation generates a matrix named M2 which contains values, at
equal intervals, of the function specified in the array named ML.

The
array Ml must be a 2 by k array of the form

tl t2 t3 th t5 t6.. deebeee .tk
ML =
fl f2 f3 fh f5 f6. ceeena .o fk

which numerically represents a function of the form shown below

B, 5y
£ f] tify /A\

£(t)

/ Nn

k'k

The time interval At .is specified in the 1 by 1 matrix named M3. NL

specifies the total number of values to be generated which is the number
of columns in M2. If N2 = 0 the array M2 will be a 1 x N1 row matrix

in which the first value will be f,. If N2 # 0 the array M2 will be a
2 x N1 matrix of the following form

tl tl + At t o+ 2At
M2

£, f(tl+At) £t
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STEP,M1,M2,M3, M4, M5,M6,M7,M8 ,N1,N2

This operation calculates the dynamic response of a structural system
using direct step-by-step integration of the following linear matrix
equations of motion: :

Mi+CU+KU = R(t) = PF(t)
where

Ml is:the name.of. the

N N stiffness matrix K.
M2:is the name. of the N N

N

N

by

by N mass matrix M.

by N damping matrix C.

by 3 initial condition matrix U in which:

M3 is the name of the
ML is the name of the

UO(I,l) is a vector of displacements U_.
U (I,2) is a vector of velocities U: .

o 0" ..
UO(I,B) is a vector of accelerations yo'

M5 is the -name of. the N by N2 matrix of calculated displacements. in
which column "i" represents the displacements at time i*Nl°At.

M6 is the name of the N by 1 load distribution matrix P.

MT is the name of the 1 by k row matrix representing the load
multipliers at equal time increments F, where k = N2/N1.

M8 is the name of the 1 by 1 matrix containing At.

N1 is the output interval for the displacements.

N2 is the total number of displacement vectors to be calculated.
Therefore, the total time for which results will be calculated.

will be N1-N2<At.

This operation must be followed with one data card containing the following
information:

Column 1-10 "6
11 - 20 o
21 - 30 9

Different values of §, o and 6 will allow the user to select different
methods of step-by-step integration. The following table lists some
possibilities: :

§ o 0
Newmarks Average Acceleration 1/2 1/k 1.0
Linear Acceleration 1/2 1/6 1.0
Wilson's 6 Method (low damping) 1/2 1/6 1.k2
Wilson's 6 Method (high damping) | 1/2 1/6 2.00

The method of integration used is given on pages 32 to 36.
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EIGEN,M1,M2,M3,N1

This operation solves the following eigenvalue problem;
K¢=Mo A

In which the N by N, symmetric, positive-definite matrix K is named MI.
The matrix M is a diagonal matrix of positive terms designated by M3.
The matrix M3 must be a row or column matrix containing only the diagonal
terms of M.

The eigenvalues A are stored in matrix M3. The eigenvalues are ordered
in numerically increasing order and the eigenvectors ¢ are stored in the
corresponding columns of the matrix M2.

The number N1 specifies the approximate number of significant figures of
the eigenvalues. If N1 is zero or blank b figure accuracy will be used.

The program reduces the problem to standard eigenvalue form by the follow-
ing transformation

K* = 'K m
_..T
where I =mMm
in which m, = 1
M. .
ii

The calculated mode shapes ¢ are normallized as follows:

oT M ¢
0" K ¢

]
-

]
>

The program uses the standard Jacobi diagonalization method to . solve for
all eigenvalues and eigenvectors. See page 445, reference [2], for a
complete discussion of the Jacobi method.
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DYNAM, M1, M2, M3, Mt M5, M6 , N1

This operétion evaluates the following set of uncoupled second order
differential equations associated with the mode superposition method
for the dynamic analysis of a structural system. ‘

iy 2 o T
X; + 2h0. X, +X, = Pi(t) i = 1 to N modes

Ml is the name of a row or column matrix which contain the N w; terms
(frequencies in rad/sec). M2 is the name of a row or column matrix which
contain the N Ai terms (ratio of modal damping to critical damping).

The ‘generalized time-varing forces Pi(t) are not specified directly but
are evaluated from more fundamental information. The forces for all
modes are evaluated at specific times by the program from the following
matrix equation:

£=I)_£=M3'Mh
4 In which p is a specified N by 1 vector named M3, and f is a 1 by N1 row
matrix which will be generated from the 2 by k array named My . (The array

My is the same form as the input array described under the operation
FUNG; therefore, it is not necessary to use FUNG before the DYNAM operation.)

M5 is the name of the N x N1 array which contain the generalized displace-
- ment Xi(t).

M6 is the name of the 1 x.1 array which contains the time increment
associated with the generalized displacements.

N1 is the number of displacements to be generated.

The method of integration used is exact for straight line segments and is
summarized on page 52.

PLOT,M1,N1

This operation will prepare a printer plot of selective rows of the matrix
named M1. N1 is the number of rows of Ml which will be plotted by this
operation. This operation is followed by N1 cards--one for each row
plotted with the following information:

Columns 1 Plot symbol--any key punch symbol.
2 -5 Row number to be plotted.
The program automatically searches the information to be plotted for the

maximum and minimum values. The difference in this numbers divided by 120
spaces is selected as the plot scale.
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E. LOOPING OPERATIONS WITHIN CAL

LOOP, N1 NEXT,M1 and SKIP,M1

CAL has a five level looping ability. The first operation is LOOP
and the last operation is NEXT. Operations within CAL are normally
executed as they are encountered and if the operation requires data the
data cards follow the operation card. In the case of looping, however,
all operatibn cards from the Tirst LOOP card to the last NEXT card are
stored within the computer before they are executed; therefore, if
operations within the loops require data, the data card be supplied in the
order required after the last NEXT operation. The general form of the

operation is

LOOP,N1

Where N1 is the number of times the loop is to be executed. Associated
with each LOOP operation there must be a corresponding NEXT operation which
signifies the end of the loop and the return of the control to the beginning
of the loop. The following is a possible series of looping operations.

LOOP, 5 -

LO0oP,2 =—— second level loop
operations executed
S 2 times (total of 10)

NEXT I First level loop
r executed a total
of 5 .times

L
LooP, second level loop
operations executed
4 times (total of 20)
NEXT
NEXT S

} data for all operations within all loops
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It is apparent which LOOP and NEXT cards afe associated if there are an
equal number of each. ‘After all loops are executed the computer storage
required for these operations is automatically released by the program.
The operation NEXT,Ml will cause the loop to terminate if the first term

in matrix named M1l is negative.

SKIP,MI,N1

This operation will cause the skip of the next N1 operations if the first
term in the matrix named Ml is negative. The operation cannot be used to
skip in or out of é specific loop; therefore, it can be used only to skip

operations within the same level of looping.

F. USER DEFINED OPERATIONS

USERA and USERB
These names which are reserved for operations to be defined and programmed

by the user. In order to program these operations it is necessary to
understand the internal organization of CAL.
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ITI. NUMERICAL METHODS FOR DYNAMIC ANALYSIS

A. INTRODUCTION

Some of the numerical techniques used in the program CAL are presented
here; however; several additional numerical methods for dynamic analysis
are given in order to expose the CAL user to more advanced methods of
dynamic analysis.

The value of the results of a dynamic analysis depends on the approxi-
mations involved in the establishment of mathematical models for the
structure and foundation and in the selection of the various dynamic load
conditions. In general, the establishment of the models and the inter-
pretation of the results are the most critical phases of a dynamic analysis.
This assumes that the particular method of dynamic analysis used does not
introduce additional errors in the solution of the model for the specified
Toads. It is important that the computer cost for any one analysis is not
large in order that inexpensive reanalysis is possible and the results of
the analysis can be used by the engineer to influence the basic design of
the structure. Also, an economical computer analysis will allow some of
the basic assumptions used in selecting the model and loads to be varied
and the sensitivity of the results evaluated.

The effectiveness of a numerical method for dynamic analysis depends
primarily on two factors--the minimization of computer storage and of
computer execution time. The purpose of this section is to present a
summary of various numerical methods which are used in the dynamic analy-
sis of complex structures and to comment with respect to their computer

implementation and efficiency.
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It should be noted that all structures, regardless of their
simplicity, have an infinite number of degrees of freedom when subjected
fo dynamic loading. One of the main objectives of selecting a mathe-
matical model is to reduce the fnfinite degree of freedom system to a
model with a limited degreezof freedom which will capture the significant
physical behavior of the system. Therefore, a considerable insight into
the expécted dynamic behavior of the system must be present if a realistic
mathematical model is to be established. The mode! must be capable of
representing both the significant wave propagafion and structural
vibration behavior.

The force equilibrium of a complex structure modeled as a system

with a finite number of degrees of freedom may be written as

in which all forces are a function of time and defined as

L4

Fi = The inertia force

Fd = The internal and external damping forces

FS = The forces carried by the structural members
F = The external applied forces

Equation (1) holds for both linear and nonlinear systems. However, the
appropriate numerical method for solution will depend on the degree of

nonlinearity which is present and if linearization is possible.



B. LINEAR DYNAMIC ANALYSIS

For linear systems with viscous damping equation (1) can be written
in the form
MU(t) + CO(t) + KU(t) = F(t) (2)
in which M is the mass matrix {lumped or consistent), C is the damping
matrix (nprma11y not given in the form) and K is the stiffness ﬁatrix
for the system of structural elements. The time dependent vector u(t),
U(t) and U(t) are the displacements, velocities and accelerations,

respectively.

The time dependent forces F(t) may be due to moving equipment, blast,
wind, wave or seismic forces. Depending on the type of structure the
calculation of these forces can be complicated and will not be discussed

here. However; in case of earthquake motion in three-dimensions the

lToading is of the form:

F(t) = - Mxeg - MyUyg - MZUzg (3)

where Uig is the ground acce1eration in direction i and Mi is a column
matrix which represents the sum of all columns in the mass matrix M
associated with displacements in the i-direction [1]., This definition
of the seismic loading is valid only if the vector is defined as the
displacement relative to the displacement at the base of the structure.
In many cases wave and seismic loads in each direction are
specified in terms of a spectrum of maximum response values. In the
case of three-dimensional behavicr, however, great care must be taken
in the application of the technique since the basic input in the various
directions must be statistically independent if the results are to be

combined in a probabilistic manner.
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BASIC EQUATION

MU + C0 + KU = F(t)

e MODE SHAPES AND FREQUENCIES
[K - o.M ¢, =0
e TRANSFORMATION TO MODAL EQUATIONS

. . ) )
Xp + 28w X, + we X = cp f(t)

N

DIRECT ANALYSIS IN DIRECT MODE RESPONSE
STEP BY STEP FREQUENCY SUPERPOSITION SPECTRA
INTEGRATION . -DOMAIN ANALYSIS ANALYSIS
e DISPLACEMENT @ LOADING e MODAL e MAXIMUM
_ ; DISPLACEMENTS MODAL
* = F% . =
KE Upppg = F Fy(t) “ RESPONSE
. 0. X
s Fj(w)ethdw n ¥ (max)
- <o A | )
o MEMBER FORCES @ COMPLEX e DISPLACEMENTS e=0
DISPLACEMENT m // £ =0.05
m = TmUteat [K + iuC + u(t) =n§1¢nxn(t) ::éjjifi::::::?\
w? M] Y(w) , -
= Flw) e MEMBER FORCES
xn(max) =
® DISPLACEMENTS Gm = TmU(t)
Cp vn(max)
Uj(t) =
5 ) ' e MAXIMUM MODAL DISP.
r Yj(w)e1wtdw . RESPQNSE
o 'U(max)n =
e MEMBER FORCES ¢nxn(max)
o =T U(t) o MAXIMUM MODAL
MEMBER FORCES
cm(max)n =
TmU(max)n
Figure 1. METHODS FOR LINEAR DYNAMIC ANALYSIS
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Figure (1) indicates the possible solution techniques which can be
employed for the dynamic analysis of linear systems. Four different
solution approaches are possible. Two methods involve the evaluation of
the undamped mode shapes and frequencies as the first step in the
analysis--the mode superposition method and the spectrum analysis method.
The frequency domain method involves the expansion of the load in a
Fourier Integral which reduces the dynamic analysis into a series of
solutions of linear sets of complex equations. Another method which
can be very efficient for certain systems is the direct step-by-step
integration of the equations of motion. ;

Each phase of the possible solution methods suggested in Figure (1)
involve a numerical method which must be formulated in effective form
for computer implementation. Solution of linear equations, evaluation

+ of eigenvalues and eigenvectors, numerical evaluation of integrals,
. transformation to the frequency domain, evaluation by the fast Fourier
'transform and the step-by-step numerical integration of the coupled

equations of motion will be discussed in detail in the following sections.

1. Solution of Linear Equations

The solution in the frequency domain, the evaluation of eigenvectors
and step-by-step solution methods can involve the solution of a set of
linear equations; therefore, an efficient solution method for this phase
can be very worthwhile. The set of equations to be solved can be

written symbolically as
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where A is an N x N symmetrical matrix, X is a vector of unknowns correspond-
ing with the spécified vector b. One of the most imporfant aspects in the
computef solution of a large set of equations is the method used to store

the terms in the A matrix. One method which has been found to be very
effective is the active column storage technique in which only the non-

zero terms in the reduced matrix are stored. If a basic elimination method
is used the only storage required will be from the first non-zero terms in

each column down to the diagonal term in that column. Therefore, the

matrix with terms initially located as indicated in Figure 2a can be stored
és_a one-dimensional array as shown in Figure 2b along with an integer
pointer array indicating the location of each diagonal term. Figure 2c
indicates how the storage technique is extended to approximately equal
size blocks which can be stored on low speed stor&ge. The solution tech-
nique requires two blocks in high speed core storage at any particular
Ejme. It has been demonstrated that most of the popular methods for the
sbiution of equations are very similar, with respect to the number of
numerical operations, and they can be considered to be variations of the
Gauss elimination method [2].

The basic factorization algorithm for the solution of equation
stored in active column form may be summarized by the following three

steps:

a. Triangularization of A (j = 2 to‘N)

A=LU or A=LDLT (5)
in which the jth column of upper triangular matrix U is eva]uated from

=A..- T L

U,. U i=fjto] (6)
ij L ik “kj _
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and the jt row of lower triangular matrix is given by

Ly = Uy5/045 | i=fjtoj-1 (7)

where D fs a diégonal matrix, fj is the first non-zero term in column j
and fi is the first non-zero term in column i. The symbol km represents
maximum of fj and fi. | |

The diagonal terms Uss and Dii are identical since Lii is normalized
as 1.0. It.is most convenient to evaluate Uij within a computer program
column-wise with i = fj to j. After each column is complete Lji is
evaluated row-wise with i = fj to j-1 and stored in transposed form as
L$j where Uij was preVibus]y located. The diagonal term Uii or Dii,remain

at the same location és Aii'

b. Forward Reduction

Equation (4) can be written as Lz = b, where z = DLT. Therefore
i-1. (&)
T ' z; =by; - I L¥. z i=1toN 8
i Top=f; ki7k
If y is defined as y = D! 7z then y = LTx;or
vi =2/ i=1toN (9)
¢. Backsubstitution
From y = LTx
;L | (10)
X; =Y. - L L., ¥y i=Ntol 0
i T =i+ ik 7k

It is important to note that all zero operations are skipped by this
technique and that the number of operations or the required storage is
not a function of the band width. Also, the triangu]érization, operations

on the A matrix, is independent of the forward or backsubstitution operations;
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therefore, this operation need be done only once, The forward and back-
substitution phases for each load condition normally involve a small number
of operations compared to triangularization. Recognition of this can
greatly minimize the numerical effort required in some eigenvalue methads

and in the direct step-by-step integration of the equations of motion.

2. Step-by-Step Integration

The direct integration of the linear dynamic equations of motion is a
simple approach which ban have considerable advantages for some problems.
The basic equation is satisfied at discrete points in time, 0, At, 2At,
3at, . . . . t, tHAL, . . . . T. The solution starts from a point in time
where the displacements, velocities and accelerations are known. Based on
an assumption on the behavior of the system during the next small increment
of time the displacements, velocities and acce]erétions at the next point
gn time can be evaluated. Many different methods have been developed for
this purpose, References [2] to [12]. However, only two techniques will

be summarized in this paper.

a. The Central Difference Method

In the case of a diagonal mass and damping matrix and for systems
where the shortest period is not too small the central difference method
has proven to be most effective. At time t the equation to be satisfied
is

MUt + CUt + KU, = F

t = Ft (11)

The following standard finite difference relationships are used:

—l—(U

At?

Ug = teat = 2Ug * Upiat) (12)
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_
Up = 28 Utat = Ye-nt! (13)

Equation (12) and (13) can be substituted into equation (11) to form a set

of linear equations of the form

MUpypg = F* (14)
where
VCJS VR B | (15)
At? 2At
Fé = Fy - KU, + LY (20, - Uy_\) + e Up_xe (16)
At? 2At

If M and C are diagonal one notes that the solution of equation (14) is
trivial; also, computer storage will be minimized. Another very important
technique which can be used to further minimize the number of numerical
operations and computer storage requirements is not to form the complete
stiffness K. The structural forces KUt can be evaluated element by
é]ément, or

Fg = KUt = K, U

m

in which K is the stiffness matrix for element m. If elements have
identical stiffness matrices a further reduction in computer storage can
be realized.

The solution Ut+At is based on using the equilibrium at time t;
therefore, this approach is called an "explicit integration method." One
of the most significant disadvantages of the central difference method is
that it is only conditionally stable [2]. In order for the method to
produce finite results the time step At must be less than Tn/n. Where T
is the shortest period in the discrete model. For many structures this

requires time steps so small that the method may be impractical.
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b. The Newmark-Wilson Method

One of the most flexible step-by-step integration methods has been
presented by Newmark [8]. This method is based on the following expressions

for the velocity and displacement at the end of the time interval:

0 =t‘Jt+At(1-a)ﬁt+Ataﬂ (17)

t+at t+At

U = Ut + At U, + At? C% - a) Ut + At? aﬁ (18)

t+at t t+At
where o and & are selected to produce the desired accuracy and stability.
If 8 = 1/2 and a = 1/6 the well known linear acceleration is produced,
which is also a conditionally stable method. One of the most widely used
methods is the constant-average-acceleration method (6§ = 1/2 and o = 1/4)
which is an unconditioné]ly stable method withouf numerical damping.

This method is called an "implicit integration method" since it

satisfies the equilibrium equations of motion at time t+At, or

MU F ' (19)

cu tHAt At

KU

teat T Yt *

This equation can be solved by iteration; however, equations (17), (18)
and (19) can be combined into a step-by-step algorithm which involves

the solution of a set of equations at each time step of the form

K*U F* (20)

t+at

Since K* is'not a function of time it can be triangularized once at the
beginning of the calculations. The computer solution time for this type
of’algorithm is basically proportional to the number of time steps
requiréd.'

The Wilson 6 method is a technique which can be used to modify the

basic Newmark method in order to increase the stability limits and to
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TABLE 1. The Newmark-Wilson Algorithm for Linear
Step-by-Step Integration

A. INITIAL CALCULATIONS:
1. Form stiffness matrix K, mass matrix M and damping matrix C.
2. Initialize Uo’ Uo’ and Uo'
3. Specify algorithm parameters o, § and 6
§>0.50 ; o>0.25(0.5+6)2 ;3 6>1.0

4. Calculate integration constants:

T =6At a3=’2—u'—"] a7=At6
. =8 = at2(L .
ao—a-l_‘z' .a4—a-1 a8—At(2 Ol.)
a =8 ap = I-(G/a- 2) a, = alAt?
T at 5 2 9
a -1 a, = At(1 - §)
2 ot 6
5. . Form effective stiffness matrix: K* =K + aOM + a]C

6. Triangularize K*: K* = LDLT

B. FOR EACH TIME STEP:
1. Calculate effective load vector at time t + 1:

F*x = Ft+T + M(aOUt +\a2Ut + a3Ut)

+ C(a]Ut +a U + aSUt)
2. Solve for displacements at time t + T:
T = F%
LDL Ut+T = F
3. Calculate Accelerations, Velocities and Displacement at t + At:

Uppr = 3gUppr = Up) - Uy - agly
.. ] . s

Utsat t)

u

t+1

® .

teat = Up T Uyt a7"Ut+At

Ut + AtUt + a8Ut + a9U

Utsat t+At
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add numerical damping [13]. The 6 method was first appiied to the linear
acceleration method in order to improve stability and has been used to
damp out high frequency occillations which often develop in linear and
nonlinear step-by-step integration. The technique involves usiné the
Newmark method to find the solution at t + 6At, then, based on linear
acceleration, calculating the results at t+At for use as initial conditions
for the next time step. The Newmark-Wilson algorithm is summarized in
Table 1. With 6 = 1 the approach is the standard Newmark method. An
unconditionally stable method with large damping in the higher modes is

produced with § = 1/2, o = 1/6 and 6 = 1.4 [12].

+3. Frequency Domain Approach

An alternative to the direct integration of the coupled linear
equations of motion is to use a formal mathematical transfcrmation to
‘eliminate the time function from the equations before so]ufion.progresses
i]]. The basic approach involves the expansion of the time-dependent
loads in terms of a series of harmonic functions. One can use the
standard Fourier Series in which the loads F(t) are expanded in a series
of the form

F(t) = = An cos %ﬂt + T
n=0 n=0

B, sin gt (21)
in which d is the duration of the loading. The Fourier Coefficients can
be evaluated and exact solutions found for the harmonic functions

An cos-%Et and Bn sin gﬂt. It is assumed that the loading can be
approximated by a finite number of terms. Therefore, the total solution
in time is a summation of the exact solution for each harmonic function.
For systems without damping this straight-forward Fourier Series approach

is numerically very effective since the response of an undamped structure

to a harmonic sin or cos function loading is also sin or cos displacement

solution. 36




An alternate method of eliminating the time variable from the dynamic

equilibrium equations is to express the loads as an infinite integral, or

F(t) = f (A(w) cos wt + B(w) sin wt) dw © o (22)

o 8

The functions A(w) and B(w) in the Fourier integral are given by

d

Alw) = =/ F(t) cos wt dt (23)
0

Blw) = =/ F(t) sin wt dt (24)
o :

Also, the Fourier integral can be written in complex form as

F(t) = J Flo) %t g (25)
in which ,
Flw) = 3 [Aw) - iB(w)] (26)
, F-w) = 3 [Alw) * iB(w)] (27)
S%nce
elwt 4 gmiwt _ 5 cos wt
Tt omi0t - 94 sinwt

e -e
The general equilibrium equations can now be written as
MU+ CO+ KU = £ Flu) '@t gy (28)

The solution is assumed to be of the form

U(t) = s Y(w) ety (29)
therefore
U(t) = 7 iw Vo) 9 du (30)
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ﬁ(t) = 7 - w?Y(w) olut (31)

Hence, the following complex set of equations must be solved for various
values of w;

(K + iw C - w?M) Y(w) = Flw) : (32)

If F(w) requires a large number of points to define the complete
function, it is apparent that a large number of solutions of complex
equations will be necessary. This large numerical effort can be minimized
by solving for the basic eigenvalues of the system and transforming the
equations to a smaller system expressed in model coordinants, Eq. 67. The
evaluation of the complex loads E(w) is not a major computational problem
as compared to the multiple solution of a large system of complex equations,
Furthermore, the Fast Fourier Transform algorithm can minimize both the
5eva1uation of the Fourier transforms and the recovery of the displacements,
equation (29).

The major advantage of the Frequency Domain approach is in its
application to substructure analysis. Structure-foundation or structure-
fluid systems are considered by the development of the frequency-dependent
matrices for the separate systems. Ritz techniques can also be used to

effectively reduce the size of the system.

4. Numerical Evaluation of Mode Shapes & Freauencies

For large structural systems one of the most time consuming phases
of a dynamic analysis may be the evaluations of eigenvalues and eigen-

vectors of the N x N matrix equation

MU + w?kKU = 0 (33)
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The undamped free vibration of the structural.model has a solution form of

N ..
u(t) = £ et

n=1
Therefore, the resulting eigenvalue problem must be solved

(K - G2 M) o, =0 (34)

a. Static Condensation

One téchnique which is often used to reduce the size of the system
before the evaluation of eigenvalues is to eliminate the massless degrees

of freedom from the system. For this case equation (34) is rewritten as

Kaa  Kab M [0 o o,
= | (35)

'The first submatrix equation is

Kaa ¢a * Kab ¢b =0 (36)

Therefore, the massless degrees of freedom are related to the degrees of

freedom at the mass points by

¢, = T ¢ | (37)
where
_ -1 ,
T=-K, Ky (38)

The resulting eigenvalue problem is of the form

Kbb ¢b = Mb ¢b (39)
in which
KSb = ob + Kpa T (40)
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Within a computer program, however, these submatrix operations are not
necessary since it is more efficient to perform the "static condensation”
directly on the massless degrees of freedom similar to the Gauss elimina-
tion procedure [14] without requiring submatrix storage. One important
disadvantage of the static condensation approach is that the matrix Kgb
tends to fill as more massless degrees of freedom are eliminated.
Therefore, the reduction in size of the system may not be economical from
a computational viewpoint. In addition, if the mass is physically lumped
at the time of creating the mathematical model additional errors may be

introduced.

b, Reduction of Size of System by Ritz Functions

A more general approach to the reduction of the size of the eigen-

value problem (equation (34)) is the application of the Ritz method.

tThis technique is not restricted to a particular mass distribution--a‘fu11
mass matrix does not increase the computational effort significantly.
However, for systems with a limited number of masses the method can be
identical to the static condensation method [15].

The method can be very accurate if some physical insight into the
behavior of the structure is known. Static load patterns are selected
and corresponding displacement vectors are calculated. Or

KR = P (41)
The true displacements of the system are approximated by a linear
combination of the discrete Ritz Vectors R. Or, the true eigenvectors
are approximated by

b = RX = RyXq + RyXp + RaXg + o o o - RiX (42)

where L is the number of load patterns and is smaller than the size of

the system N. The load patterns can be very simple; however, they must
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be 1inearly independent. In order to produce-the lower frequencies the
load pattern should activate the large masses and areas of maximum flexi-
bi1ity. If a single unit load is used as a load pattern the method
mathematically Tumps the consistent mass of the system at that degree of
freedom.

The reduced eigenvalue problem is produced by'the substitution of

equation (42) into equation (34) and premultiplication by RY. Or,

K*X - MXR = 0 (43)

where
| K* = RIKR = R'P (44)
M* = RTMR , ©(45)
R = diag (v}) (46)

Both K* and M* are full matrices because the Ritz Vectors are not
‘orthogonal. Since all the eigenvalues and eigenvectors are required and
"the system is relatively small, less than 100, the Jacobi method is one
of the most effective for this type of eigenvalue problem [2].

One advantage of the Ritz method for the reduction of the number of
degrégs‘of freedom for a very large structure is that it involves only a
solution of a set of linear equations which may have a large number of
zero terms in the stiffness matrix, equation (41). Therefore, a large
number of structural elements can be used to model the basic structural
behavior. The use of Ritz functions can bé considered as a formal
mathematical method of evaluating an approximate generalized mass matrix
for the purpose of dynamic analysis.

Figure 3 illustrates the selection of static load patterns for a
simple tower type'structure. This structure has 6 unconstrained joints

or 36 degrees of freedom. It is of interest to point out that for the
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lateral load pattern shown the resulting disp]acement‘is complex and
involves movements in all directions in addition to torsional bhehavior.

For a structure of this type one WOu1d expect the lateral behavior
to be expressed/by the first six mode shapes; Because of the geometric
arrangement of the members, joints 1, 2 and 3 and joints 4, 5 and 6 will
act as separate units with very 1itt1e relative movement between joints.
Therefore,.the six possible load patterns which will capture this funda-
mental behavior are easily established and are shown in Figure 3a. Of
course, the first six vibrational mode shapes for this structure will be
composed of a linear combination of the resulting displacement patterns.
Figure 3b illustrates six other load patterns which could have been used
to produce idéntica] results.

The physical modes which have been neglected by this approach are
the breathing modes between joints T, 2 and 3 and joints 4, 5 and 6.
Also, the vertical vibrational modes have been omitted; but axial

deformations are included in the six lateral modes.

c. Subspace Iteration

The subspace iteration method for the determination of eigenvalues
and eigenvectors of very large structural systems is a significant
extension of the Ritz reduction approach [16], [17] and [18]. It is the
only modern cpmputer method for very large systéms {over 5000 degrees of
freedom) which will converge to the exact eigenvalues.

Table 2 summarizes the subspace iteration method. Thé combuter
implementation of the method and a FORTRAN listing is given in reference
[2]. From Table 2 one notes that the initial calculations are identical
to the Ritz method in which the first set of load patterns must be

specified. After one Ritz solution is found and the first approximation
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of the first L eigenvalues of the system i35 calculated as

o1 < R Xq (47)

an improved set of load patterns can be calculated from
= m (1)
P2 - M ¢

It is assumed that P2 is an improved estimation of the inertia forces

associated with the basic mode shapes. From Table 2 it is clear that

this iteration technique can be carried out to any desired degree of
accuracy, assuming the method converges. The convergence Qf the
method for various conditions is given in reference [2].
Some additional comments associated with the advantages of the sub-
space iteration method with respect to numerical effort are:
a) The total stiffness matrix for the system need be triangularized
only on;e.
b) Since K(k) and M(k) tend to become diagonal as the iteration
progresses the Jacobi method is very effective for this type
of eigenvalue problem.
c) The size of the subspace L should be approximately 30% more
vectors more than the number of accurate eigenvalues required.
d) In order to insure participation of all modes one additional
random vector should be added to the load pattern set before
each iteration.
e) Since the'approach is basically a power method the Towest
eigenvalues converge faster and are more accurate.
f) For most structures a high degree of accuracy is not required for
the highest modes, because of their low participation in the
dynamic response. Therefore, the subspace iteration produces

practical results with respect to required accuracy.
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TABLE 2. SUMMARY OF THE SUBSPACE ITERATION
ALGORITHM FOR SOLUTION OF LARGE
EIGENVALUE PROBLEM K¢ = w; M¢n

INITIAL CALCULATION:
1. Form Stiffness Matrix K and: Mass Matrix M.

2. Triangularize K:
T

K=LDL , (N x N)
3. Spécify Initial Load Patterns:
P] =N x L matrix where L << N
FOR EACH ITERATION, k =1, 2, 3, . . . . :
1. Solve for Ritz Vectors‘Rk: (N x L)
T -
LDL Rk = Pk '
2. Calculate Generalized Stiffness in Subspace:
(k) _ T _ sl
3. Ca]cu]ate Generalized Mass in Subspace:
| (k) - T |
| M Rk M Rk | (L xL)
4. Solve Eigenvalue Problem in Subspace:
K(kx, =)y o) (L xL)
5. Ca]cu]ate’Imprbved Approximate Eigenvectors:
6. Check for Convergence:
Q(k) + diag. (m;) and ¢(k) + ¢ as k> =

stop if converged - perform Sturm sequence check
7. Calculate Improved Load Patterns for Next Iteration:
- wo (k) |
Pk+1 = Mo (N x L)
8. Return toStep B-1.
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d. Additional Numerical Techniques for Eigenvalue Problems

In a general computer program for the calculation of eigenvalues and
eigenvectors several different numerical techniques may be useful in the
solution strategy in order to improve the convergence and to minimize
numerical effort.

Inverse Iteration

If on1y one load pattern is used in the iteration procedure given in
Table 2 the subspace iteration approach is the standard inverse iteration
method and will converge to the lowest eigenvalue. For this case the

eigenvalue problem in the subspace is trivial. Or

A = a2 = k(K m) (49)

which is better known as thé Rayleigh quotient [6]. After the first
eigenpair M and,¢1 are determined inverse iteration can be used to
’ca1cu1ate accurately édditioha] eigenpairs if the techniques of shifting,
ideterminant search, deflation and Sturm sequence checking are introduced.

Determinant Search

This numerical technique can be explained by considering the
following equation:
[K-2aM] X=0 (50)

For any numerical value of xk the following triangularization is possible
T

The determinant of this matrix forxk is

where N is the order of the matrix.
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If the numerical value of the determinant is evaTﬁated for a large
number of different values of A a function can be generated of the form
shown in Figure (4). This function, p(}), which in this case is evaluated
numerically, is.a plot of the’characteristic polynomial. As Aos 13,
A4, o e XN’ are the eigenvalues of the system and correspond to zero
values of the det (K - AM).

Def]at{on

A numerical plot of a po1ynomia1‘with the first root suppressed, or
deflated, can be computed and would have the approximate shape as shown
in Figure 5. The only reason fof numefica]]y evaluating p1(uk) and
p](uk+]) is to obtain a better estimation for Ag from the extrapolation

equation

TR e <
LS k p1~(“k+1) - p] (Uk

y Pyl (53)
It is this type of_strategy which is used to obtain a value of xs which
15 close to a desired root. For this case two triangularizations are
required in order to evaluate Age Therefore, this technique is effective
for matrices with small band widths which can be triangularized with a
minimum of numerical effort [19].
Shifting

Inverse iteraticn converges to the numerically smallest eigenvalue.

In order for the method to be used for other eigenvalues the following

change of variable can be introduced

A= top (54)
Therefore, equation (50) can be written as

(% - oMl X = 0 (55)
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where

K = K = AM (56)

If Ag is closer to Ao than to A] the inverse iteration method when
applied to equation (55) will converge to A This follows from the
standard power method proof [1] [2]. |

Sturm Sequence Cheek

One of the potentially serious problems which can develop in the
numerical evaluation of frequencies and mode shapes in a
prdctica] dynamic analysis is if important frequencies are neglected.
The Sturm Sequence Check is a method which allows the engineer to verify
the results of an eigenvalue problem. One can prove the Sturm Sequence
Theorem as presented here from a direct examination of the complete
family of deflated polynomials, p(}), pl(x), pz(x), ..... One notes
‘that they are all derived from the basic sequence for a given value of
As Or
| . D

33 ° ° 0 NN

For a given value of A the basic properties of this sequence of numbers

are i]]ustrated'in Figure 6. It ié apparent that the properties of this
sequence of numbers can be used as a powerful technique in the numerical
strategy of evaluating eigenvalues. If 1owest eigenvalues are evaluated
by any method the Sturm sequence can be calculated for

A =1.000 A | (58)

If all eigenvalues have been calculated the Sturm sequence should have
n negative terms [2]. This assumes a desired accuracy of .007.
Another important application of the Sturm Sequence Technique is

to evaluate the number of frequencies in a certain frequency range--say
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between A and A,. Therefore, LoL’

triangularizations of [K - AHM] and

[K - ALM] will indicate the number of eigenvaiues below each value. The
difference will be the number of values within the range. In order to
calculate the eigenpairs in the range one can shift into the range and use
inverse iteration or subspace iteration to evaluate only the values of

interest.

5. Transformation To Uncoupled Modal Equations

The basic numerical properties of the undamped free vibration mode
shapes are

ME = oM ¢ = 1 (59)

K+ = ¢'K ¢ = diag (52) (60)

In which the mode shapes have been normalized so the generalized mass
'is one. Or

oM ¢, = 1 (61)

The following transformation, change of variable, is introduced into the
basic equilibrium equations.
M
U(t) = I 4X (t) = oX(t) (62)
n=1 : :

Therefore, the velocities and accelerations are

0(t) = ok(t) , (63)

U(t) = X(t) (64)

If equations (62), (63) and (64) are substituted into equation (2) and

the resulting matrix equation premultiplied by ¢T we obtain

MRX(t) + CK(t) + K¥K(t) = P(t) (65)
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The matrices M* and K* are diagonal; however, C* is nof diagonal unless
an assumption is made on the basic form of viscous damping which exists
in the structure. Since damping is normally small and is difficult to

physically model and identify the following assumption is norma11y made:
C* = diag (2£nmn) - (66)

“where En is the ratio of damping in mode n to the critical damping for
the mode. With this assumption of uncoupled modal damping the typical
modal equation can be written as

X (t) + 26, & X (t) + &2 X (t) = p(t) =c  F(t) (67)

Afterthe modal equations are eva]uated4the timé dependent displacements
are calculated from equation (62).

The same technique can be used to uncouple equation (32) in order
to avoid the solution of a large numbér of compTex’1inear equations. For
this case the following transformation is intfoduced

Y(w) = ¢Z(w) (68)

The substitution of equation (68) into equation (32) yields a typical
modal equation in the frequency domain.

[02 + 2iw & & -0?] Z () = ¢, Flw) (69)

For structures which are formulated in the frequency domain and their
behavior can be represented by a limited number of natural frequencies

this is numerically the most efficient approach.

6. Solution of Modal Equations

The solution to the single-degree of freedom modal equation given
by equation (67) can be accomplished by one of several methods. For
certain loading which can be expressed as an analytic function exact

mathematical solutions are possibie [1].
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2. Direct Step-by-Step Solution

The most direct approach to the solution of this second order ordinary
differential equation is to use a numerical finite difference method.
The same techniques are possible which were used for the coupled equation.
The step-by-step solution method given in Table 1 is numerically very

efficient when applied to equation (67).

b.. Duhamel Integral

In the case of arbitrary loading it is very common to express the
solution in the form of the Duhamel Integral [1]. The Duhamel Integral
is then numerically integrated. Since this numerical integration approach
involves many numerical evaluations of trigonometric and exponential
functions, which require series expansions within a digital computer,
the method cannot be considered a good numerical method. Also, for
lhigh frequencies a very small integrgtion interval is required for

accuracy.

c¢. Transformation To The Frequency Domain

The single degree of freedom modal equations can be transformed
into the frequency domain. The Fourier integrals and transforms can
be numerically evaluated by the Fast Fourier transform technique. This,
of course, is identical to the approach suggested by equation (69). This
method introduces the same types of errors which are normally associated

with the approximation of a function by a Fourier series or integrals.

d. Piecewise Exact Method

Many types of loading can be represented by a series of straight
lines between unequal time intervals. Most earthquake ground acceleration

data is in this form. An exact mathematical solution is possible for a
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Table 3. PIECEWISE EXACT SOLUTION METHOD

BASIC EQUATION:
X + 280k + w?X = £(t) = a + bt

SPECIFIED LOAD (t)
£(t))

a=f(t;) ; b=t) - flt)

1° Y

EXACT DISPLACEMENT SOLUTION:

X(t) = A, + A, t+A e 0t o5 wrt + A, e 59t sin wrt
70 1 2 3
- a b
where AO = 2 2 %?
‘ _b
A'l - Bz

'l a
A3 = E*(X(to) +Ew A2 - A])
EXACT SOLUTION FOR VELOCITY:
X(t) = A] + (w* Ay - B AZ) e 80t o5 rt

- (w* A2 + gm_A3) e B0t gin w*t

53




straight Tine loading subjected to displacement and velocity initial
conditions. Therefore, exact numerical values at any convenient time
interval can be calculated. Table 3 summarizes the necessary equations
for this approach for the numerical evaluation of the modal equations.
This may not be the most numerically efficient method; but, it is
definitely the most accurate. For most structures the numerical solution
of the modé] equations involves an insignificant amount of computer time
compared to the computer time required for the other phases of the
problem--formation of stiffness and mass matrices, solution of eigenvalue
problem, calculation of displacement and member stresses. For these

reasons the piecewise exact method should be used whenever possible.

e. Response Spectra Analysis

For many structura] problems the dynamic load is not given in terms

"of a time dependent function; but, the load is specified as a response
'Fpectra. By definition a response spectra is a plot of maximum values
of displacement response v(max) obtained from the solution of the
following equation for various values of w.

v(t) + 20EV(t) +w?v(t) = f(t) (70)
A typical plot of the maximum, v(max), for specified w and damping ratios
£ is shown in Figure 1.

The typical modal equation is of the form

. )
X0+ 2 £k o+ @2 = 6 F(t) = ¢ f(t) (71)

Therefore, the maximum modal response can be calculated from

Xn(max) = ¢, vn(max) (72)

where vn(max) is the value obtained from Figure 1 for values of w,

and En‘



After the maximum response in each modal equation is evaluated the
maximum displacement in each modeshape for the complete structure is

given by U(max)n = ¢an(max) (73)

For any particular degreé of freedom a probabilistic value of displacement

may be calculated from

N A4 2 2 2
u —‘Lﬁ Pup t Uzt (74)

Other methods exist for adding maximum modal response; however, the
square root of the sum of the squares of the maximum modal values is
one of the most common.

In order to evaluate member stresses it is first necessary to
evaluate the member stresses due to each of the maximum modal responses..
Or | : :
o(max) =T U(max)n (75)

where T is a stress-displacement transformation matrix for the member.

The probabilistic member stress is estimated by

o =‘/0$ + og + og + 0. .. cﬁ ‘ (76)

Note that the probabilistic member stress cannot be calculated from the

probabilistic displacements.
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NONLINEAR ANALYSIS

For complex structures several different types of nonlinear
behavior for both static and dynamic loads are possible. Nonlinear
behavior implies that the displacements and stresses produced by the
different load conditions cannot be directly added; or, the basic principle
of superposition does not hold. Because there are so many different types
of non]ineérities there 1is not one general method which can be applied
to all problems.

Large structures for which their weight is significant may have a
dead Toad stress distribution which is highly dependent on the method of
construction and installation sequence. The correct theoretical method

-of evaluating these stresses is to perform a complete analysis at each
stage of construction with the internal stresses from the analysis of the
‘previous stage used as initial conditions for the new analysis. This
?na]ysis technique can be used for the evaluation of installation stresses
also. For subsequent analysis of the structure in which additional
nonlinear stresses are developed due to static or dynamic loads it may be
extremely important to start the analysis with an accurate estimation of
the initial stress conditions.

Perhaps the most common type of nonlinear behavior is due to non-
linear materials. Most structural design requires that the structural
materials remain in the elastic range during the design loads. However,
foundation stresses in soil may be nonlinear under low stress levels.

Under dynamic loads soil nonlinearities are often approximated by an
effective damping factor to be used in a linear dynamic analysis. Also,
during earthquake orother load conditions some nonlinear material behavior

can be tolerated without the collapse of the structure.
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- One of the most unlikely types of nonlinear behavfors to expect in
a practical structure_is the existence of large strains which require
an alternate definition of stress. This type of nonlinearity exists in
only rubber 1like materials. |

For tall structures or structures supported by cables large dis-
placements may exist under design loading. For this case it is extremely
important that the static or dynamic equilibrium equations are satisfied
in the deformed geometry.

For fixed offshore structures where the velocities of the structure
are comparable to the water partical velocities, the wave forces are
nonlinear and may be expfessed as | |

F(t) = F(u(t), 0(t)) (77)
This type of non]inear behavior can be considered by the linear step-by-
step methods. Based on the previous increment the velocity of the

structure can be predicted from

.
o

Opppe = O + 8L U, (78)

t+at t

and a good estimate of the nonlinear drag forces can be estimated.
Since the properties of the structures do not change the effective
stiffness matrix need not be modified or triangularized at each time
incremént., Therefore, the method given in Table 1 can be used for
this form of nonlinearity. ’

A general formulation for the nonlinear analysis of a structural

system can be developed if equation (1)'is rewritten at time

i i red d s Sy -
(Fy + AF ) + (Fy + AF) + (FL + AF7) = Foo (79)
in which the force changes are given by
sFD =M, AU aFd = ¢, Al AFS = KU (80)
t t ot t t™t Tt Tttt
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where Mt’ Ct and Kt are the approximate mass,.damping and stiffness

matrices at time t. Therefore, equation (79) can be rewritten as

M, AU + €, D, + K, AU, = F* (81)
where
F*=F. . -Fl .fd_FfS (82)
teAt T Tt T Tt T Tt

A direct step-by-step method, as presented for linear systems, can be

used for the evaluation of Aﬂt s Aﬂt and AUt. Because the matrices

Mt’ Ct and Kt can only be approximated over the time interval it is
recommended that the forces Fl, Fg and Fi be recomputed at the end of

the time increment. For example, the structural forces Fi which are
consistent with Ut should be evaluated as follows:
1. From the displacement Ut calculate in member m the strain €ne
2. From the specified nonlinear stress strain behavior calculate
the stress Ty
3. Using virtual work calculate the structural forces acting on
element
_ T
Fm = f Am T dVm
 where Am is the strain-displacement transformation matrix for

member-m.

4. Calculate the total structural forces at time t from

For structures with slight nonlinearities this type of analysis may be
accurate. However, for very nonlinear behavior it may be necessary
to iterate within a time step in order to minimize the accumulation
of errors. For a more complete discussion of dynamic nonlinear

analysis methods the reader is referred to references [12], [21], [22],

[23], [24].
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FINAL REMARKS

Several different numerical methods for the dynamic analysis of linear
structural systems have been presented. Many of these methods have been
incorporated into general purpose programs and have been successfully used
in the solution of complex structural systems [24], [25], [26]. General
purpose programs for non]inear analysis have been developed based on the
technidues presented [22], [24]. |

The computer program CAL has a limited number of operations at the
present timé. It's present purpose is to solve small linear systems which
are associated with courses on the static and dynamic analysis of struc-
turés. It is possible to expand CAL into a general purpose program capable
of effectively solving very large problems. Such an extension will depend

on the rate of development and economy of minicomputer systems.
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APPENDIX A ‘Example Problems

1. Solution of Nonsymmetrical Set of Equations

The symmetrical equation - operation SOLVE can be used to solve the
set of equations AX = B where A is not a symmetrical matrix. . The set of
equations is premultiplied by A$ which results in a modified symmetrical
set of equations A¥X = B¥ where A¥ = ATA‘and B¥ = ATB. The CAL opera-
tions to complete this series of matrix operations are listéd on the
attached page. It is of interest to note that after the first blank on
a CAL operation card user comments can be used té clarify the language. After
each CAL operation is executed the computer time required for the opera¥
tion is.printed. It should be noted that it requires a fixed amount of
time to read and print information aésociated with each operation. For

the CDC 6400 this is approximately .03 seconds; therefore, this tends

to be the dominant factor for small probiems.

2. Example of LOOP Operation - Inverse Iteration

Table 2, page 4L, is a summary of the subspace iteration method for
the evaluation of the mode shapes and frequencies of structural systems.
The inverse iteration method is essentially the same approach with only
one vector used in the iteration. The basic iterative equation can be

written in the form

K¢(S+l) = 3(s) M¢(S) - gis)

(S+l)_

in which the set of equations is solved for ¢ The approximation

of the eigenvalue is calculated from
(s)

(s+1)

T
W) ol golert) - glen)

‘ T (s+l1)
ol g :

R
(s+1)T

Md

Al




EXAMPLE PROBLEM -~ SOLUTION OF SET OF LINEAR EQUATIONS

a. Given AX=2B8 b. CAL input data

where: TQPT MPLE 1 — SOLUTION OF NOMSVIIFETRICH. ¢
COATD. 1
LéF

A
'4

[)Y
%]
d

10
177
18 8
27 10

rswhqxhu;v

o
il
—
AT e L] = o
To =1 00 (= et
BRI ru

n o+ N
'-._'ia—a»-—h.—-.»-, i

oW
w W N
oW o oE
P i

e T
—d Ty
[y

[y e

LRI i R ool XN g T 3 &
pr

::j

18,
TRAN.ALAT
MULT.AT.H.ATH
MHLT AT. 8.5
SOLVE . HTH,“
PRINT.
MULT. A5G E

SUEL.E.S

PRINT:E ~ERROR IM SOLUTION. B =.N¥ - O
STORP

SOLUTION.

c. Output from CAL
#RSTART . EHAMPLE 1 - iﬂllalul 0F H“4

“E?HL SET OF FOUATIONS

Aokl OED . A, <t . L
4 RIS & COLUMMS

#kPREIHT. A

)

A B

i
= 170

Bt
.

-

i

SECOHTS

**LHHD B2
LIS COLUMNE

—————————————————————————————————— CRED SECDMTS
Hok TREH. AL AT

RO | Fﬂ'H1W
e o ot e e e e PR SRS
AskMUL T AT . B A

4 FOLIS 4 lﬂtHHH

e AT SECOMDE

2 LuLHlM
e CAZE SECOHDG

SRS

SELOHDG

AMUL T . [ L E
s ROLS 2oL UHHE
——————————————————————————————————————— LATER SECOMDS
5] H . F B :
e e L “rl.;H

sl THT B IFPMP I ZUIU'IHH o=

1 B. ;
4 ;
T T o5 W1 = I R T

FRSTOR
A2




LOOP EXAMPLE - TINVERSE INTERATION

Problem to be solved

where

The CAL operatiéns

START
LOAD,K, b, 4,1
(kF2.0)

(4F1.0)
1111
‘PRINT,P
LOAD,L,1,1

1.0
PRINT,L
SOLVE,K,1
LOOP,10
MULT,M,P,F
SCALE,F,L
DUP,F,P
SOLVE,K,P,2
TRAN,P,PT
MULT,PT,F,N
MULT,PT ,M,PTM
MULT ,PTM,P,D
INVEL,D
MULT,D,N,L
YES
PRINT,L
NO
NEXT
YES
PRINT,P
STOP
NEXT

LOOP
STOP

K¢ = Mo
2 .1 0 0] [0 0 o0 o]
-1 2 -1 o0 | 0 2 0 o0
M =
0 -1 2 -1 o 0 0 o0
0 0 -1 1] (0 0 0 1]

are

EXAMPLE OF INVERSE ITERATION

4 x 4 STIFFNESS MATRIX

4 x 4 MASS MATRIX

4 x 1 STARTING VECTOR

STARTING EIGENVALUE
LDLT TRIANGULARIZATION

SOLVE FOR NEW EIGENVECTOR

NEW EIGENVALUE

FINAL EIGENVECTOR

A3




The attached list of CAL operations indicates how LOOP and NEXT operations
can be used to solve the inverse iteration problem. The limits of the
LOOP have been set to 10; however, a preferable approach would have been
to specify a tolerance on the eigenvalue and to terminate the calcula-
tion with the NEXT,TOL operation. Where TOL would be a 1 x 1 matrix
which is evaluated during each pass through the loop. This example

is discussed in more detail in reference [2], page L21. Because the CAL
output is relatively large for this problem it is not .shown. The use of
the YES and NO operations, as illustrated in this problem, will tend to

reduce repetitive output which can be generated with the loop operations.
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EXAMPLE: BRIDGE ANALYSIS

DECK PROPERTIES

%2

A = 3000 IN2
: J =1100000 IN4
X T 55 = 2000000 IN*
I33=700000IN?
COLUMN PROPERTIES E = 3000000 PSI.

A2 A =1000 IN2 G=1200000PSI.
- N ' m=0.675LB.- SEC%/IN.
: J =116000 IN.¢

3  Ipp=Izz=82500IN*4
E = 3000000 PSI.

G =1200000 PS|.
m=0.225 LB.- SEC¥IN.

PART A: STATIC
Solve for the static displacement and member forces due to a 1K force
at joint 4 in the X direction. Check 3D static.
PART B: DYNAMIC
B.1. Use the STEP operation to solve for the time dependent Toad shown below.

Use: At = 0.05 o = 1/6
§=1/2 6 =1.42

P

e

I
!
!
1

)

0 1.0 20 3.0 4.0 50 1ime-Seconds

Use a total of 100 steps, and use the PLOT operation to plot the X
displacement at joint 4.

B.2. Use the EIGEN operation to evaluate all mode shapes and frequencies.
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MEMBERS 1&2 264917 IN.~LB.

SIGN CONVENTION alo. 35LB\* /zeosow LB,

; Fs i
Fs
B /iK 28060 IN.- La/?'\:m 35L Fs\f /

226195 IN.- LB-T 21045.5IN~LB. /
/ e \ /
'=;\ ?IBOZ.ZZ IN~LB. Fp Fg /

J2e5.2 e i=4 /
/ "\ 324.45LB. /
[1] 4o06.2m-L8 /

K=2 / /FS
%

198130 IN~LB.

265.2 L;\T : .
il Y Fs

21045.5 IN~LB. .
6
[] F4
80674.5IN-LB. / =2
N '/*\324.4&3.
1302.22 IN~LB.
, EQUILIBRIUM OF JOINT 4
227497 IN~ LB,
y $ 28060 IN~L.B.
0 P=1000LB. \IO 35 5. ZF =
X \ ZMZ=
226195 IN.-LB. _

/49106.2 IN~LB.
21045.5 IN.-LB. / '

265.2 LB. é 324.45 LB.
1302.22 IN.~ LB.
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PART A - INPUT

START
LAREL.3 o )
***W*M*W*WWMWMW**W****
#k STATIC ANALYSIS EXAMPLE ok
*****Hf?k:k:mi-:;k)k*ﬁ:***m**:k*)km**)k)k)k)k*
NODES. JO1.4 sk GEOMETRY OF THE STRUCTURE ik
1 9. Coa. 489,
2 8. 1606.0 8.
3 0. 2890.0 468
4 B. 1660.0 408, _
PRINT.JOI #k NODE NUMBERS AND COORDINATES siok
BOUND, BC Aok MOM ZERU DISPLACEMENTS sk
4 ] 1 i i 1 ot
LOARD.BPR.2,.7.1 sok BEAM PROPERTIES - sk
(FE18.8)

2.6E@3 .}.IE@S 2.0E06 ¢ BEBS 3.BEBG i.ZEEG B.675E00
1.9E83 . 11.6EB4 82.5ER3 82.5E03 3.BEBB .2EB6 . 8.225E8B0
PRIMNT.BPR - , :
BEAM.BRIDGE. JOI.BC:BPR
1 1 4 - 2 1

2 4 3 2 1
3 4 2 3 2

ADDSF . K, MAS %ok FORM STIFFNESS AND MASS MATRICES sok

PRINT.K sok STIFFMESS MATRIX sok
LOADS,LDS.BC. | . Mk LOAD VECTOR ek , _
4 { {bed.o 9.0 @.9 B.d D.8 0.8
SOLVE,K.LDS ‘
DISPL.LDS,BC |- sok DISPLACEMENTS ok
nggE.BRIDGE.LDS sk MEMBER FORCES
T N

PART A - OUTPUT

—————————————————— mme-—e—ioeoeee . @B1 SECONDS

WRSTRRT
T e e e e ——— P28 SECOHNDS
skl ABEL . 3 : .
SksotoRR o ok dokoRok stk skkskololokskokokokok
ok STATIC AMALYSIS EXAMPLE ok
' Aojedokoractsk doolosk R RRIcRRlook Rokokokok
e e e mmm———e——ses RS54 SECONDS :
HHNUDES ., JO1. 4 4 GEOHETRY OF “THE STRUCTURE. ok
4 ROWS - 3 COLUMNS
HODE NO ’ bes : Y Z
¢ 1 - 0. A, 408. 080
z 8. 1605, ann a.
3 B. 28a1. aop 480 .908
4 a. 1680, BeR : 408, roa
———————————————————————————— =—--- ., 85%0 SECUNDS
BOKPRINT, JO1 1y sk HODE NUMBERS AND gDORDINRTES ok
2 , .
1 0. 8. .4DRBAOBE+D3
2 0A. . 1E0RRABEC+a4. A,
2..0. . 2BRQVERE+A4 . 400808A0E+A3
4 8. . 1600AROE+AY " [ 40UPPEVE+D3
———————————————————————————————— 0325 SECNMDS
HKBOUND, BC ) K CONUN ZERO DISPLACEMENTS ek
4 RS 5 COLUMNS - .

4 B L 1L 1)y

EQUATION MUMBERS FOR MNOLAL DISPLACEMENTS |
NODE X Y Z XA oYY oz

1 4] 4 5] B 8 0

2 4] 8 4] 5} 4] a

3 8 8 9 B9
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PART A - OUTPUT (continued)

SQM0D3S s98°

‘@ SB+39816b " - P - CA+IAPL8B8T - pB+I22ETI mo+m7w¢4w. g g1
2 S [N 12 : Z 1 2 334d04-a607
“B. BB+IOCLEET ' ‘B 90+ 3ITer9e” ‘SB8+319B32° ~ M®+mm0@«v ‘9 ‘g 1
8 2 9 L8 ey Z s 2 mumowxaqog
‘8 .98+371i861°- "8 -8@+3619¢2° - SE+3SFEICT m&+wsmmwm 3 ‘g :
8 2 Q g : 12 1 1 mqa 303807
Hok mwumou mmm:mz HOH Sq139q149 - w;mou**
SANOJ35 288" ——=- -
Sg-3102rLe” PB-3L66662"° ‘g ‘a ‘Qa 14-352€821.° I 1%
21 Al X1 2n - Al XN a0 34d0N
‘8 ‘B a i’ "B '8 1 z
21 AL oKLl 2n AN ) »n ayol  3d0oN
‘g ‘g ) . a8 "G g I <
21 AL XL 2n AN %0 qy¥oT - -3490N
‘8 ‘8 ) "a ‘9 ‘g %] I 1§
2L AL XL 20 A »N JHgT AqoN
Ak SIHINITIPILSIA Hek . 3B Sl T1451 Mk
STNOZAS 1887 —==m e s
SAT Y 3IAT0SHK
SUNOJ3S 2rB" & mmm e m s e oo
‘@ ‘g "0 @ ‘8 to+3E0EET i
2K A piA] 24 Ad X4 a0 300N
SHNMGA0T 1 o 9
#eac JDLAFA AHOTT ok 1438751075180 Tk
SUHODAS 8PP° oo m e e
1i+38e8pese” Ce'g ‘8 a ‘G £0+3B522€601° g
‘8 Bl+3000800k1" .83 ) "a um+m&mmﬁmmm - S
‘0 , . ‘3 ti+3seczerre 2B+35zi8z3e” 2B+3B521826° ‘B v
‘ ‘8 . ‘@ /lpB+3szigess” 2B+3982825, " ) ‘8 ¢
"B ‘g /pi3BG2182E° . ‘8 m+mﬁv~mﬁm~ ‘B 2
wm+wmmnmmsﬂ - mm+mmmm~mmm.n : ‘B @ ‘@ 9@+381596p1° 1
14 £ Z 1
#wok XTdLBKW SSIMA4TLS skeke A7 LHI ddHox
SONO23S BPB° o e e
SMJINI0D 9 SMNd 9
SHWNT03 1 orind s
dok SITTHLUW SSHW ANY SSIHNASILS MN0d *k SHL 77 450 Aok
SANOJ3S E3T° —momm e
: . SMUNT0D S sSMod T
BszZ"- ‘BEERAZI  "pBBBGBE “BBSZS *9psces "gBes11 0@ 8081 4 £ 2 v g
P529" ‘BueBeZ!  "O0rBBET " BBEDBEZ ‘8EBBRBZ  "EREERIT  88°east 1 b4 £ v 2
@s/9° ‘gBBRAZI ‘geepngs  "B00802 ‘B30EBEE  "BLOEBIT  P3°BB.eS 1 Z 12 1 i
W 3 3 eel écl 1ir ¢ dM A { 1 ‘13
448738710 3971 48" Eqwm**
SANOJIS 2EB° ——mo o
86+386068522° 28+36668821 " 28+30B888608¢ ° S68+300808528° SB8+36088578 " QB+33688911 ° ¥o+30880val1 - e
wm+m&mmmmnw. ma+mmmmmmmﬁ. mm+m&mmmmmm. 98+3b00BRLS " 26+380600662 " JA+3068B0BIT " wa+mom®®®mm. i
) 4 z : 4
add " LNI ddtex
SANOJAS EPB° =~ m e e
SNWNT0J 2 ohod ¢

Bk S3TLY¥3d0dd WE3F ok
SQNO3J3S spe’
S S v g 4 i 14

17272 dd8 " qu0Tor
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PART B - INPUT

START
" LABEL.3
schottoksiolsisiolotsiokskokok ook lolotolskolsiolork
*hk DYMAMIC ANALYS IS EXAMPLE ok
Aokl AsiortokdolokkotoiololkoioRollololekek kkok
NODES. JO1.4
i . B, 400. .
2 a. 16080.8 a.
3 a. 2u08.0 460 .
4 . 1609.8 490 ;
LOAD.BPR(2.7)4
(FE18.03
3.0E03 . 1EBE < .BEDBG 7 .BEG3 3.0EB6 2EP6  @.F7S5EBB
1.0E£03 11.6E04 82.5E83 B2.5E03 3.8E06 .2EBE  B.225E08
PRINT.BPR ) %k BEAM PROPERTIES
EOUND., BC

a e 1 1 1 | 1
BEAI, BR1DGE. JOI.BC,BPR
1 i 4 2

2 4 3 2
3 4 2 3

ADDSF ., K, MAas

DUF . K . KK

ZERD.MASS(6.6)0.08

 STODG.MASS.MAS

ZEROD.C(6.6)8.8

LOAD, DELTACL, 1) 1
(F10.2)

8.05 :
PRINT.DELTA %ok INCREMENT ok
LOAD.FUA(2,4) 1

(4F10.0) _

‘ 0. 1.0 2.

0.0 2P0B0.0 8

PRINT.FUR .

 FUNG.FUA.FUAT.DELTA. 190.0
LUAD.SCALEP (K, 1) :

1 0. 9. 9. . B.

PRINT.GCALEP
ZERD, INCD(6.3)8.8
STEP.K.MASS. C. INCO.DISP,SCALEPLFUAL. DELTA. 1. 100

a8 4

5.0
: 0.0
TIME DEPENDENT LDAD ok

.5 . 16666667 1.42

PLOT.DISP, | wk ¥ DISPLACEMENT AT. JOINT 4 ok
* 1 .

E IGEN.KK,MODES. MAS ‘

PRINT,MODES %k MODE SHAPES %ok

SOREL..MAS

PRINT.MAS *k  FREQUEMCIES

STOP

A9




__________________________ e SECONDS

#kSTART

rmmmmmm e oo meemsienomn @27, SECONDS

Akl ABFL., 3 S o

skrAGK I oAk oo

b
sk DYNAMIC RHQLYSIS E {AMPLE. Aok

- .B54 SECONDS

w*NDDEy.Jnt,
4 ROU

3 COLUMNS
HODE ND X ¥
{ D, 8. Aﬂa;Bas
2 9. 1606.808
3 . 2800.000 40 .eed
4 8. 1608, A0 .0088
------------------------------- .P50 SECDHDS
%o DAD, BPR(2:7) 1
2 ROWS 7 -COLUMNS
—————————————————————————————— P44 'S ECUNDS
HkPRINT. BFR Hok asgn PROPERTIES - ok 4 . . .
7
1 .3aauaeas+@5 .1100888E+R7  .20PBABEE+D?  .VOPEPPRE+RE - .3PPBANBE+G? . 120B080E+87 - .6/560QBE+E8
2 .iponpBgE+e4  .1160906E+BE  .6250PPE+BS  .B250BBPE4BS - 3BBAVEBE+AT. . 2DBOROE+E?  .22508B0E+00
- ~-=  ,B39 SECONDS . .
#okBOUMD, BC
4 ROWS 65 COLUMNS
4 0 | i 1 1 1 | i
EQUATION NUMBERS FDR NODAL DISPLACEMENTS
NODE b Y p Yy o 2z \
a B 9 )
2 e 9 9 9 ) 9
3 @ B B 9 5] 2] .
4 1 2 3 4 5 £
------------------------------ mmem 042 SECONDS
#kBEAH, BRIDGE . JOI.BC.BPR
EL. ! 1 K HP A Jul 122 133 £ G M
1 1 4 2 | 3009.00 |!9PPEd. 2pEQ0OR. TDAGEA. 38V8080. 1200098, L6758
2 4 3 2 i pOD.P3 1100BEH. 209PAER. 7DAEED. 300800d. 1260800, .6754
3 4 2 3 2 fAp8.pe  116008. B250P. | B82508. 3000288 1200808, ;2250
1 ROUS 5 COLUMNS . i
-------------------------------- . 129 SECONDS N
+#ADDSF , K. MAS
& ROWS 1 COLUMNS
& ROWS 6 COLUMNS )
——————————————————————————————— .B53 SECONDS
#XDUP , K. KK
6 ROWS 6 COLUMNS
————————————————————————————————— .B28 sECONDS
*#ZERD, MASSL6.638. 8
6 ROLIS 6 COLUMNS )
——————————————————————————— .B27. SELONDS
| TODG. MASS. MAS
B L e S e .827 SECONDS
##ZERD. C(6.6)0 .
6 ROWS & CULUMNS :
———————————————————————————————— ,M27 SECOHDS
w*LGnD DELTQ(l 13
1 COLUHNS
--------------------------- ——— 5 SECONDS
*¥PRINT. DELTA mw IHEPEMEHT ok
1 .5p00038E- 0&
——————————————————————————————— .B28 SECONDS
#ok_0ARD, FUAL2. 4 |
2 ROWS 4 COLUMNS
———————————————————————————————— .P40 SECONDS
#kPRINT, FUR . * TIgF DEPENDENT LDAD &
1 0. . 1BONPRBE+D | zaaaaaas+a? .saaeaaae+a1
2 0. . 2PPDOBRE +8% 6.

—————————————————————————————— .832 sEcuHhs
meUNG FUA,FUAT.DELTA, 187, D
ROWS 180 COLUMNS

———————————————————————————————— .@42 secorbs
#4.ORD, SCALEP (6., 1)

6 ROUS } COLUMNS
———————————————————————————————— .B31 SECONDS
#*PRINT, SCALEP

!
1 . |PABOARE+B)

2 0.
3 0.
4 0.
5 @.
6 0.
———————————————————————————————— .B35 SECONDS
w¥ZERQ . thD(C 3)0.8
6 RO 3 COLUMNS
+HSTEP, K, MAS3, €. INCO, D1SP, SCALEP, FUAI DELTn 1.198 .
6 ROWS 188 COLUMNS
DEL= .50PPBOE+DB  ALFe . 166667E+08  THE= . 142pBBE+R |
—————————————————————————————— .451 SECONDS
HoPLOT, ISP, | ~ m X DISPLACEMENT RT JOINT 4 ok
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. APPENDIX B - INTERNAL ORGANIZATION OF CAL

1. List of Subroutines

CAL is composed of a sequence 6f FORTRAN subrqutines which can be

categorized as follows:

a. The main program CAL and GROUPl, GROUP2 or GROUP3 interpret the
next operation and transfers control to the appropriate subprograms.

b. A‘series of subroutines INPUT, OPREAD, OPSTOR and RCARD supply
the next operation to be executed.

¢. The individual operations are executed by different subroutines
which have been subdivided intokthree different groups.

d. A data management system, composed of subroutines LIST, FIND and
DELETE, is used by the individual operations to store, locate or
delete arrays from storage.

The operations are subdivided into three groups in order to reduce the

length of the main CAL program. For a small computer system it may be
desirable to make these separate overlays. A simple block diagram illustrat—v

ing the interconnection between these subprograms is shown below.

CAL INPUT ) INPUT

aroupy|—"1ENEUT | OPREAD
C ! |

GROUPZ LNPUT OPSTOR RCARD

# GROUP3 INPUT

Bl




The subroutines in GROUP 1 are the general matrix operations.

GROUP 1 TNPUT
— =|pErETE
LABEL
o~ L,OAD RLOAD
— e PRINT | RPRT
= 75RO ZEROS
DUP DUPL
ADD ABSP
oz MU, MULT
e~ TRAN TRANS
 MoP MOPS
syMsv | syMsor
Lo symIN
== SMOP SMOPS
L— =1 noop DGOPS

The subroutines in GROUP 2 are the structural analysis operations.

GROUP 2 | INPUT
STRUC | NODES )
BOUND
ADDSF
LOADS
DISPL
TRUSS
BEAM CROSS
L&l vyECTOR

LOADI

b | PTAPE

The subroutine in GROUP 3 are associated with the dynamic ansalysis operations.

GROUP 3 p——e={ INPUT
STEP STEPS
& PLOT PLOTS

izt EIGEN EIGENS
! &= DYNAM DYNAMS
== FUNG FUNGS
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2. Array Storage and Directories

All arrays defined by the user are stored in one internal array dimen-
sioned L(L000) the size of this array is variable and is set by the state-

ment MTOT = L000.

Arrays are stored sequentially, column-wise, in the L(X) array. Each
array is preéeeded by a 6 word directory which contains the following
information. |

(K) = Number of terms in array.
) = Number of computer storage locations per term.
) Number of columns in array.
) Form of storage (1 = rectangular form)

(K+h) = Name of Array
) —
)

Name of Associated Array (not used in this version of CAL)
First term in Array.

3. Incore Data Management System

The subroutine LIST will setup the directory and reserve storage at the
end of the L array and return the étarting address, NA, to the calling pro-
gram. The subroutine FIND will search through all directories to locate a
specific array and return its size and location to the calling program.. The
subroutine DELETE will eliminate an array and its directory from storage and
move all arrays and directories stored at higher locations in order to

compact storage. All new arrays generated will be stored at the end of the

L array.

B3



APPENDIX C

FORTRAN LISTING OF CAL

This listing may not be the
most current version of the program.
For the latest version, you

can obtain the source deck from:

NISEE/Computer Applications
Davis Hall
University of California
Berkeley, California 94720




PROGRAM CAL ¢ INPUT,OUTPUT ,TAPEL )
COMMON NOLJHMTOT yNARANSEZE ¢ NSP, NOP, NH) ND IR, L (3000}
COMMON /LOOPD/ LA, IN,TNDEX{S) LSTARTES) o L JKLM(S)
COMHON /TEMP/ SSS(1000
COMMON. /ANIR/ NA,L(10)
C~——-—SET COMPUTER PRECISION. INDICATORS AND.CONSTANTS
MYOT=S000
NO=0
NH=1
NSPo}
NDP= |
NDTRa4 02 SNH
LA=zO
IN=0
NARASO
NS 1ZE=1
CALL INPUT
LASTaL’
GO TO 110
SEARCH GRNUPS OF OPERAVIONS FOR INPUT. OPERATION
100 IF(LAST.EN.1) GO TO 300
110 CALL GROUPI(LAST}
IF(LAST.E0.2) GO TO 300
CALL GRDUPZ(LAST}
IF(LASY.EQ.3) GO TO 300
CALL GROUP3(LAST)
GH TO 100
300 PRINT 3000
sToP
3000 FORMAY (30HOOPERATION UNDEF INED OR. -BLANK )
END

[

SUBROUTINE ENPUT
CTOMMON ND¢MTOT ¢NARAJNSIZE ¢NSP ¢NOPyNH,NDIR L (1000}
COHMON ZL00PD/ LA, INg INDER(S)LSTART(S), 1 JKLM(S)
COHMON ZADIR/ NA,I(10)
DATA LNAME /6HLINAME/
Nez]l OkNH+4
IF(TO0.LT.0.0} CALL SECOND(TO)

100 CALL - SECONDC(Y)
TDEY=T0
IF(NOFQW0)PRINT 2000,TD
TORY
IF(LAEG.0} CALL OPREAD
IFILALEQ.O) GD TD 175
CALL _FINDILNAMNE )
CALL OPSTOR(L(NA),NU)
1F(LA.EC.0): GO YO 100

179 RE YURN

2000 FORMAT(1X¢30(1H=)yF64398H SECONDS )

¥NO

SUBROUTINE RCARO

COHMHMON NO

COMMON /CARD/ ENHOL(3,10),NN(4)yS1,52

COMMON /TYEMP/ INIBO),IH{20) .

DATA 1IBL/2H /9 LZERO/2HO /7 NINE/2H9 /ZoTA/Z2HA 741 2/2H2 7

DATA NC/10/¢HASK/TTB/ NB/S/ NN/ L/ JNCE/ 107
C DATA NC/6/MASKAITTR/ ¢NB/B/ yNU/3/ ¢NRCBU/S2 /-
OP M M2, M3, MEyMS N1y NZyNI NG wmem
1000, IN

FOR.16 BIVT COMPUTERS

READ
IF(NOFQ.0) PRINT 2000,1IN
1000 FORMAT {B80A1)
2000 FORMAT (3H t¥,80A1)
Cm==wxSET INITIAL CONDITIONS ~owoceccccanmemmewcne

DO 50 J=1,10
DO B0 Int,Nw

50 INHOL{1,J)=0
D0 60 J=1,4
60 NN(J)I=O0
J4=0
Ka0
L=l
70 DO A0 JJal gNC
80 JH({JJI)slBL
Man
90 JaJgey
Co=m==={NTERPRETE CHARACTER
I1=INE Y

IFCIT.GEL1ZEROAND LTI LENINE) GO TO 100
IF(RT2GEWIAAND.I1-LECRZY GO YO 2110
IF(KT .£0.,0) GO YO 120
LaLel
60 YO 190

CowmeNUMER [CAL DATA ~=—c—mem—ema-

100 NNNaMASK.ANNDGLEFTIL I=-12ER0,NE1

NNILIZ1OSNNIL ) + NNN

(321} B
GO0 YO so
Cmw===HOLLER]TH DAYTA
110 MoaMe |
(S TR LR
KY¥ a0
GO TO %0
ComerenSTORE HOLLERITH STRING =eenmecamacee
120 RoKel
JIm0

DO 130 [ul Nu

00 130 Mol NCw®

NELRNLY]

NNNaMASKAND LEFTEIME JJID o NOD
130 INKOLETXIoLEFTLINMOL (T oK) ,NB ) + NNN

CrumeeeCHECK FOR END OF INFORMAY JON  weeeaceeomas

190 IF(INTJILNE.IBL ? GO TO PO

REYUIAN

END

(]

SURROUTINE OPREAD
COMHMON NO, HTOT s NARAyNSTZE ¢ NSP ¢ NDPyNH,NDIR L ( 1000 )
COMMON /CARD/ INHCLEI 100 ¢NN(AD,S1,S2
COMHON /LDOPD/ LA IN, INDERIS) JLSTART(5) 41 JKLM(S)
DATA LOOP /BHLOOP /,NEKT. . /SHNEXY ./
DATA LNAKE | /6HL INAME /
LOGICAL COMP

Cmm=wwREAD AND PRINT ALL
NaNSIZEeNDIR -
INzo

100 CALL RCARD

IF(COMPCINHOL(141),1.00PD ) INaINSY
IF((IN<EG+1)cAND(LALEQ.O)D LAT]L
IFCLA.EQ.0) RETURN

Cmem==S5TORE ALL OPERATIONS BETHIN OUTER LOOP=mmemweo———e
Nwal QENHS
00 200 J=l,10
00 200 I=f,NH
LINISENNOLT S}

200 - NzN+)

DO 210 I=1,4

LINYaRNIT)

RN

IF(COMPUINHOL 1 oL ) yNEXT I } IN=IN-1

IF(IN«EQ.O} GO TO 280

LAsLASL

GO YO 100

< SET. NAME AND STORAGE FDR LOOP DATA

250 CALL LISTULNAME,NW,LA,1}

LAag
INsQ
RE TURN
END

INPUT . OPERATION .CARD

210

SUBROUTINE OPSTOR(LOOPA 4Nu)
COHMON NOyMTOT ¢NARANSIZE,NSP¢NDPyNH,NDEIR,L (1000}
COMMON /CARD/ INHOLU3,10),NN(8),51 .52
COMMON /LOOPD/ LA, IN, INDEX(S),LSTARTIS) s IJRLM(S)
COMMON /ADIR/NA,T11(10)
DIMENSION LOOPA(N®, 1)
DATA LOOP /SHLDOP /yNEXT /SHNEXT /SKIP /SHSKIP 7/,LNAME /G6HL INAME /
LOGICAL COMP
IF(LANE+1)..60 - T0 50
00 40 I=1,5
40 IJKLM{I)=0
IF(NO+EQ.0) PRINT 2001
C+w===TRANSFER OPERATION FROM STORAGE TO CARD CDHMON
80 I=}
00 100 J=1,10
00 100 K=l NH
INHOL UK, J)aLOOPA(L,LA)
100 =121
DO 110 41,8
NNEJSDaLOOPA(T LA}
110 Iolel
LAGLA4} .
IF(NOEQ. OIPRINT 2000, { { INHOLII y ) X101 yNH) 4 J=3,10])
1, CTIREAETD 021, IN)
IF(COMPIINHOL(1,1),SKIP)) GO TC 200
IF(CORP( INHOL(1,1),L00P)) GO TO 300
IF(COMPCINKOL (L, 1),NEXT)) GO YO 400
RE TURN
Crmm—=SKIP OPERATION- CHECK SIGN AND INCREMENT COUNTER————=m~
200 CALL PIND(INMOLIL1,2))
CALL WMOVECLINAD oS (NSP)
IF(NDoEQoOIPRINT 2002 INHOL(142)¢StyNNI1)
IF(S1eLT4040) LASLAGNNCLYD
GO Y0 So
C-===-LOOP OPERATION= SET .INDEX LIMIT FOR LOOP ~——wmmmemm—
300 INSIN+])
INDERCEIN) =NNIL)
TIKLMCINY=]
LSTARTL{IN)=LA
GO 70 S0
CowaaeNEXT "OPERATION~ "INCREMENT "INDEKR AND CHECK FOR ‘LAST OPERATION-=~«
Q00 INDEX(IN)AINDEX(IN)=~}
TIRLHG IN) o FIRLHCIN) @1
IF(NO-EQ.0) PRINT 2003, (N
IF(INHDLL1,2).E0.0) GO TO'450
CALL FINDCINHOLEL,2))
CALL MOVE(LINA) ¢Sl ,NSP)
IF{NGoEQ.OIPRINT 2002,INHOLI1,2},51
IF(51ol.T+04,0) INDEN(IN)=O
080 IF(INDEXCIN) e NE«O) -LASLSTARTCIND
IFCINDEX( INY.EQ.O) TIHLMLIINISO
IFCERDEXCINIAEQL0) IN=IN=)
IF(IN.FQ. 0 GO TO %500
GN TO SO
Crm====DELEVE ARRAY OF OPERAVIONS WITHIN LOOPS~==mw—=a
300 LAaD
CALL DELETE(LNAME)
RE YURNM
2000 FORWAT(SH GO0 L0AB IS, SHaL 1o, Il 2,18 3HoL I, S, 3Hm64a, 10, IHaLS)
2001 FORMAT(26HOSTARY OF LOOPING OPERATIONS D
2002 FORMAT (1X,ABe3H = E1BePoI7H. IF. NEGATVIVE SHIP
2003 FORMAT (25K LAST OPERATION IN LOGP L ,I1/1KO)
END .

18)




SUBROUTINE LIST{II oNRoNC NP} SUBROUTINE GROUPI(LAST?

COMMON NO,HTOT (NARA,NSTZE,NSP4NOP; NH,NDIR LT 10000 COMMON MO HTOT NARA(NST 2E ;NSP GNDP olsH NDTRLT1 )
COMMON /ADIR/ NA,I1(10) COMMON /CARD/ INKOL {3,000y ME N2, NI NG,S1,82
1F(ND.EQ.0) PRINT 2001, NR,NC LOGE CAL COuP
1013 =NRENC OInENg 10N 10P (3,403
12)=Np DATA EOPQN ¢80 PGHETART #
1(3)anC DAVA [OPQ1,2)/76KLOAD /
1(8)ul 0AYA B0P(1,:3)70HPRINT /
CALL HOVE(IL, [(B)oNH} ‘ DAVA 30P(1,00/GNIERG 7
CrmmmmCHECK CAPACITY OF L ARRAV DAYA [OP(1,8)/GHDELETES
NN E(1)4T(2)¢NRIR DAVA EOPQ0,63/76HDUP  /
IF(NN.LT.MTOT-NSIZE) GO TO 80 BATA BOP(17D/GHADD /7
NX=NSIZENN DATA [0PQ1,00/0HEVD /
PRINT 2000,HTOT,NX DATA BOP(R¢9 DrGIWNO 7
svoP DATA 1@PQ19103/60WES 7
C=m===SET DIRECTORY AND RESERVE STORAGE FOR NEW ARRAV==—w== DAVA B0P(1,080/6HSTOP 7
S0 00 100 N=1,NOIR DATA JOP(Bo32)/6HRULY ~
INBNST ZE- 14N OATA TOP(1o13D/6HTRAN / :
100 LUIN)ST(N) DATA IOP(0438) JGHINVEL /
NASNSE ZE+NOIR . DATA 10P(1,38)/0HSCREL /
NARAGNARA®1 OATA IOP(1,18)/6H.06 /
NSIZEaNSTZE+NN DATA [OP(1,17)/GHSCALE /
RETURN DATA 10P(1,18)/6HSOLVE /
2000 FORMAY (19HOSTORAGE EMCEEDED~- 18y 11H RESERVED—— 18,8H REQUIRED) DATA 10P(1419) /GRUSERA 7
2001 FORMAT(IS,6H ROUS ,15,8H COLUMNS D DATA 10P(1,20)/6KUSERD /
END E DATA 10P(1421)/6HMAX =/
DATA 10P(1,22)/6HNORK /
: DATA 10P(1,23)/8HPROD /
SUBROUTINE FIND(IT) DATA - 30P( 1,20 ) /6HOUPSN. ./
COMMON NO,MTDToNARA NSTZE JNSP s NDP s NHoNDERsL{1000) OATA 1OB(1,250/6M570SH /7
COMMON /ADIR/ NA,1(10) DATA 10P(1,26) /GHOUPDG /7
LOGECAL COHP DATA  JOP(1,27)/6HSTODG /
Cawo=~UOCATE ARRAY AND ITS DIRECTORY-~ NA=0 1F ARRAY 11 13 NOT FOUND DATA 10P(1,28)/8HLABEL 7
Ne1 NUNDP=20
NASO 60 TO 175
100 IF(NJEQ.NSIZED GO TO 800 Cmeme READ GPERATION FROM CARD OR GTORAGE wwdmea—iwee awm——
IFECOMPCTT,LEN®A))) GO TO 200 200 CALL INPUT :
NeNOLIN )L (N®1)eNDIR Coomee [NTERPRETE OPERATION
GO TO 100 178 DO 200 Jal,NUMOP
C--===COMPUTE ADORESS AND TRANSFER DIRECTORY o
200 DO 300 K=1,NDIR I¥ (COMP(INKOL(1¢1),10P{1,J}0) GO YO 300
e 200 CONT INUE
300 I1(K)=L M) RETURN
NAsHel Comm=mEXECUTE APPROPRIATE OPERATION
RE.TURN 300 LAST=1
800 PRINT 2000, 11 GO TO (15203400816, 798¢9s10918012,33000985086,17918419,20423,22,
syae L 23,28,28,26,27,28) 4N
2000 FORMAT ( THOARRAY? AB,23HSNOT PREVIOUSLY DEFINED ) 1 NARASO
END . NSIZE=1
GO TD 100
SUBROUTINE DELETE(II) 2-cAtL-Loao
COMHON NO,HTOT yNARA,NSEZE,NSP;NDP ;NHNDIR,LL 1000) G0 Y4 100
COMMON #ADIR, NAT(10) 3 BF(NILGTe0) CALL LABELINI)
LOGICAL COMP IF{NDeEQo0) CALL PRINT
Caw==ml DCATE ARRAY TO GE DELETED GO 7O 100
Nel 4 CALL ZERO
NA=O G070 100
10 IF(N.EQ.NSTZE) RETURN B CALL OBLETE(INHOL(1,2})
IF(COMP(LI,LIN®4))) GO YO 20 ; : G0 :T0 100
NaN¢LINISLIN+1 ) +HDIR ‘ 8 caiL oue
G0 1O f0 GO TO 100
C-m=-=COMPUTE ADDRESS AND TRANSFER DIRECTORY T caul ADDUL.)
20 DO 30 K=1,NDIR 6o 7o 100
8 CALL ADD(~1.s)
HaheE-1 G0 TO 100
30 f(KYaL(M)
NAnM+] @ Mook
C----~DELETE ARRAY AND RELOCATE REMAINING ARRAYS €a To 100
3 10 NOmO
NARASNARA~1 60 T0 100
NNsNA+T(1)2102)
NLaNS1 ZE~1 11 svop
12 CALL A
NSHNDIR¢T(1)¢I( 2} e 7o 100
1€ (NNJEQ.NSIZE) ‘60 TO 200
13 CALL VRN
DO 100 N=NN,NL €0 70 100
100 L{N=NSH)aLIN) 14 CALL WOP1)
200 NSIZEaNSIZE<~NSH G0 30 100
LZ::gﬁia.o‘ PRINT 2000411 . ggL:O"OP(E’
100
2000 ::guar (8H “ARRAY® ‘AS ,BHEDELETVED ) 16 CALL MOR(S)
G0 TO 100
17 CALL MOP(a)
FUNCTION COMP(L,J) GO YO 100
DIMENSION 1(33,J413) 18 CALL SYMSVY
COMMON NOgMTOT s NARA, NSIZENSP , NDPyNHoNDIR,LL1000) GO TO 100
LOGICAL cOMP 19 CALL USERA
COMPa JFALSE. GO Y0 100
DO 100 Kni,Nu 20 cavLL usere
IFCIUK) JNELJ(KD ) RETURN GO YO 100
100 CONTINUE e 21 CALL HOP(S&)
COMPae TRUE o G0 YO0 100
RETUAN 22 CALL HOP(6)
END . €0 Ta 00
23 CALL WOP(T)
SUBROUT INE HOVE( T14JJ N} 24 :ﬂLIoSLg:(ID
DIMENSION IE(3), 553}
DO 100 Fai,N : : . G0 Y0 100
26 caLL SHOP(Z)
100 JJC(1)alTCI)
B TURN @0 YO 100
2un 26 CALL DGOPL1)
60 Y0 100
SUBROUT INE ERCOM BT CALL DGOP(2}
' PRINT 2000 oo 1O 100
. arop 28 IF(N1.G¥<0) CALL LABELINDD
2000 PORMAY (Z4HOMATRICES NOT COMPAYIBLE ) . Go Yo 100
P END




SUBROUTINE LOAD
COMMON NOyHTOT s NARA yNSI ZE ¢NSP (NDP yNH yNDIR,L( 1000 )
COMMON /CARD/ INHOL€3,10)yN1,N2,N3,N8¢51,52
COMHON /ADIR/ NALI(10)
CALL OELETECINHOLE1,2))
CALL  LISTOINHOLUL,42) 401 g N2, NSP)
CALL RLOADILINADI,NI,N2,NT)
RETURN
END
SUBROUT INE RLOAD(AINRyNCN3)
COMHMON /TEMP/ FOR(40)
DIMENSION A(NR,NC)
IF(N3.NE.O}) GO TO 100
READ 1000, ((A(LoJ) 4251 oNC) g lnl NR}
RETURN

100 READ 1001 ,FOR
READ FOR, {(ACL4dV4J514NChylal o NR)
RETURN

1000 FORMAT (8F)0.0)

1001 FORMAT (40A2)
END

SUBROUTINE PRINT
COHMMON ND.NYOY'NARA.NSIZE.NSP.NDP'NN'NDIR.L(IOOOl
COMHON /CARDy lNHOL('!quI.NI.NZ.NJ,NO'SI'SZ
COMMON ZADIR/ NA,T{10)
CALL FINDCINHOL(1,2))
NRast (LY /I(M)
CALL RPRT(LANAI,NR,I(3)}
RE TURN
END
SUBROUT INE RPRT (A, NR,NC)
DIMENS ION AINR,NC)
DO 100 Iaj,NC,8
IHaT+7
IF(IHeGT «NC) [HaNC
PRINT 2000y (KoK=[,IH)
DO 100 Jz1,NR
100 PRINT 2001, (I (ALK oKD T o KT )
RETURN
2000 FORMAT (8x,8115)
2001 FORMAT (18,BE15.7)
END

SUBROUTINE DUP
COMMON NO MTOT'NARA.NslZE.NSP.NDP.NH.ND!R'L(IODOl
COMMON /CARD/ INHOL (3420 )yM1yN2,N3,N&y 51,52
COMMON 7ADIR/ NA,1(10)
CALL DELETEC(INHOL(1,3))
CALL FIND (INHOL(142))
NR=I (1) /1(3)
NCaI(3)
NBaNA
CALL L ISTUINHOLL 1y 3} ,NRoNC ,NSP)
CALL DUPLILING) JLINA) yNRyNC)
RE TURN
END
SUBROUTINE DUPL{A.8 4NRyNC)
DIMENSION AINRyNC)4BINR oNC )
DO 100 I=1,NR
B0 100 J=1,NC
100 BUI, I =A(1,4)
RE TURN
END

SUBROUTINE LABEL(NK? .
COMMON NOJHMTOTY yNARA(NSIZE yNSPoNDP ¢ NH¢NDIR,L(1000D
COMMON /TEMP/ 11040}
DO 100 Y=l N1
READ 1000, It
IF(NO<€EQ.0) PRINT 1000 9= 11
100 CONTINUE
RETURN
1000 FORMAY (40A2)
END

SUBROUTYINE DGOP(N) ;
COMMON NO HMTOT ¢NARAJNSIZE yNSP yNDP yNH 4NDIRyLE 1000)
COHMON /CARD/ INKOL (3,10 3,N1N2,N3,NQ,S1,82
COMMON - ZADIR/ NALI(10)
C~==e3UBROUT INE TO OUPL ICATE OR STORE DlAGONAL--"'——’——
IFINLEQ.1) CALL OELETE(INHOL(1,3))
CALL FIND(INHOLU1,2))
Nial (3
IFCI(3)NET(1)/T(3)) CALL ERCDN
N2aNA Fee
IF(NNEeld GO YO 10O
CALL LISTUINHOLCG 1,30 4141 ,HSP)
GO Yo 200
100 CALL FIMDUISMAOLIL,3))
IPCE 1) NEaNL) CALL ERCOM
200 NIJaNA
CALL DGOPS(L(N!I'L(NBI.NI.N)
RETURN
eno
BUBROUTINE DGOPSIA B MoNd
DIKENSION Ath,Mb,8(8D
DO 300 [u)l,n
GO TO f1¢2)gM
1 BUl)mall )
eo Y0 300
2 AllsIdoBeD)
300 CONTINUE
RETURN
L I

SUBROUTINE HOP(N)
COMMON NO¢HMTOT ¢ NARANSIZE s NSP y NDP yNHyNDIR,L (1000)
COMMON /CARD/ INMHOLU3,10) Nt ¢N2 ¢N3 NG S1,52
COMMON /ADIR/ NA, 1109
IF(N.GTed) CALL OELETE(INNOL(L,30)
CALL .F IND( INHOL( 2,20}
NISNA
NCoT(3)
NReI (1175030 .
IF(NoEQoG)CALL FINDUINHOL(Ey3D)
IF(NCEG.B) CALL LIST(INMOLCL 3D ohRo1,NSP)
IF(NoEQe6) CALL LESTUINHOL (843DgBoNCoRSPD
IFENEOQLT) CALL LISTCINMOLEL 0300002 ,NSP)
CALL MOPS(LINZD,LENAD NR JNCoNoNED
RE TURN
END
SUBROUTINE MOPB{A; B¢NRNCoNgN1 D
DIMENSION ATNRNC) y BINC)
GO TO (100,200,300,800,6G0,600,700) N
Co==~=~REPLACE EACH ELEMENT WITH [TS INVERSEwoemm-
100 ©0 160 lal,NR
DO 150 J=1,NC
180 A(Jod¥m8.0/A(1,3)
RETURN
Co=~=—REPLACE EACH ELEMENT WITH ITS SQUARE ROOT<—-
20000 280 I51 NR
DO 2850 J=1oNC
280 AC1,J0oSORT(ACH, 2D}
RETURN .
Ce==—REPLACE EACH ELEMENT WITH 178 LOG=r——remem——
300 00 380 I=i,NR
00 380 Jo1oNC
380 ACT,J)=ALOGIAC L JD}
RETURN
Cr=-=—REPLACE EACH ELEMENT WITH I¥S SELF YIMES A SCALAR
400 DO 280 I=1,NR
DO 480 Jag,NC
450 AlRy2)mACE,003BC 1)
RETURN
ConcmEVALUATE THE MAXTNUM OF EACH ROW==ce—re—e———
500 DO BB0 Is1,NR
B(1)=000
DO 560 Jul NC
H=ABS(ACT,J) D
IF(RaLYeB(I}) GO TO S80
B{T)ox
JNAXDJ
840 CONTINUE
IF(NOEC0) PRINT 2000y JHMAX,A(L,JHAR)
2000 FORMAT (I18,E16.7)
SB0 CONT INUE
RETURN
CrewwmBYALUATE COLUMN NORM
600 DO 680 J=1,NC
8L =0:0
DO 680 I=1i.NR
IF{NLaGV20) GO TO 630
BV EBLI) ¢ABS(A(T, 1))
GO TO 840
630 BUIIBBIIICACT (JITALLoJ)
640 CONTINUE
IFINE oGT 0} B(Jb-sonr(a(Jll
"650 CONTINUE
RETURN
Cmee—=BYALUATE PRODUCT OF ALL ELEMENYS=~——wsrmm—=
700 B{1)mE.0
B8(2)=1.0
DO 780 I=1,NR
DO 740 JmiyNC
Bl1)=B(1 &AL, ) '
IF(BC80.60.00) GD TO 740
710 IF(ABSIB(10)oLTe1a) GO TO 720
B8¢1)=B(11/100
B8(23=6(21¢1.0
GO TO 710
720 EFP(ABS(B(1)0.GTe0o1) GO YO 740
B8(1)=8¢1¥210,
B(20=8(21=1,0
GO .:TO 720
740 CONTINUE
780 CONT INUE
RETURN
END

SUBROUTINE ZERQ
COMMON NDKTOT jNARAJNSIZE (NSP  NDP ,NHoNDIR,L(1000)
COHMON /CARD/ INHOLE39100oN1¢N2,N3,N8,81,82
COMMON /ADIR/ NA.1(10)
S1=ND
82aN8
CALL OELETEL(INNOLLL ,2))
CALL LISTOINHOLI 152D 4N1,N2oNSP)
CALL ZEROS(L(NAY)
RETURN
END
BUBACQUTIRE ZEROSCA)
COUMON /CARD/ INMDLE3o 80 DoNE (N2 N3 pNG o BheS2
DIMENSION A(1)
Ke )
BN 300 II=i,N2
A(R}=31
Kaxs
00 300 JJ4oiany
AlR)I0S2
300 KoKel
RE TURN
ENO




SUBROUTINE ADO(S)
COMMON NOMTOT ¢NARA(NSTZE,NSPyNOPoNHyNDIR L (1000)
COMMON /CARD/ INHOL (3, 10),N14N24N3N8sS1,52
COMMON ZADIR/ NALIC10D
CALL FINDCINHOL(1,31)

{ NR=1(3)
NCal{1)/NR
NBaNA
CALL FIND(INADLI(1,2))
IF (NR.NE. 1€ 3)) CALL ERCOM
CALL ADSRULINAD,LINBIJNRyNC,$)
RE TURN
END
SUBROUTINE ADSB(AByNRyNC,S}
DIMENSION A(NRGNC) B(NR¢NC)
DO 100 1a1,NR
DO 100 Jo14NC

100 ACL, SI=A(L+J)4SOB0L )

RE TURN
END

SUBROUTINE MUL
COMMON NOMTOT yNARA(NSTIZE,NSPyNOPy NH¢NDIR,L(1000)
COHMON /CARD/ INHOL(3¢109¢N1,N2,N3,N8¢51,52
COMMON /ADIR/ NAgi(tO0}
CALL DELETECINHOLIL sA0)
CALL FINOCINHOL(1,2))
NR=1(1)}/1(23)
NCaIC(3)
N1 oNA
CALL FINDCINHOLCL,3))
IF(NCaNE < I(1)/1(3)) CALL ERCOM
N2=aNA
N3=1{3)}
CALL LISTUINHOL(1,4),NRyN3,NSP) ‘
CALL MULTILINLY (LIN2),LINAD ¢NRyN3,NC)
RETURN
END
SUBROUTINE HULTIA.B.CeNRNCyNT)
DIMENSION A(NRyNT)¢BINTsNCICINR,NC)
DO 200 IskyNR .
DO 200 J=]1¢NC
X=0.0
DO 100 Kesly¢NT
100 XaR+A(IKIEBIK, )
200 C(IyJ)ox
RETURN
END

SUBROUTINE TRAN
COMMON NG, MTOT yNARANSEZE, NSPyNDPy NHyNOIR, L 11000)
COMMON /CARD/ INHOL( 3,100 ¢N1yN2yN3 N8 51,52
COMHMON /ADIR/ KAy IC10} °
CALL DELETE (INHOLCI,43))
CALL FIND{INHOL (1, 2))
NREI(1)/1(3)
NC=1(3)
NE=NA
CALL LISTCINHDLE133)7NCyNRyNSPD
CALL TRANSILIN1),L(NA)yNRyNC)
RETURN
END
SUBROUT INE TRANS (A, ByNR(NC)
DIMENSEON A(NRyNC) ¢BINC,NR)
00 100 Ta1,NR
DO 100 J=1,NC

100 BC(Jy 1mAlL, )
RETURN
END

SUBRQUTINE SHMOPIN) ¢
COMMON . ND¢MTOT ¢ NARAJNSIZENSPyNOPyNHyNDIR,L {10000
COMHON /CARD/ INHOL(3,10)¢N1 N2 N3 ¢N4;S1,S52
COMHMON ZADIR/ NAyIC10)
Cowm==SUBRBUTINE TO DUPLICATE OR STORE SUBHMATRICESw=wwwwm==

IFINJWNE.1) GO TO 100
CALL DELETE{INHOL(1,3))
CALL LISTCIRHOL(1,3)¢NIoNA,NSP)
60 TO 200

100 CALL FINODLINHOL(14+3))
N3 (1)/103)
Naal(3)

200 NB=NA
CALL P INDCINHOLI1,2))
NRat {1 3/1431}
NCs1(3)
TFINLENI=1GT «NR) CALL ERCOM
1F(N26NB=~1,.GT.NCh) CALL ERCOM
CALL SHOPSILINANLINB) gNRyNCyNIoN2 NI NS yN)
RE TURN
END
SUBROUTINE SHOPB(AGBeNRoNC N1 ¢N2yNIyNayN)
DIMENSION AINARGNC) +BINI NS D
| RELAY
DO 400 181 ,N3
JJoN2
DO 300 JolyN3
GO YO (1 ,42) N

1 BllyNealll o0
GO YO 300
2 ACILl+JdbaB(], 4}

300. . JJadJded

400 Jlalfol
RETURN
END

Ch

SUBROQUTINE SYMSY
COMMON NOyHMTOT yNARAYNSIZE ¢NSP oNOP jNHoNDIRyL( 1000}
COMMON /ZCARD/ INHOL{3410) N1 ¢N2¢N3,NB4S1¢S2
COHMMCN /ADIR/ Na,oI€(10)
IF(NOaNELG) GO TO 100
IF(N1+.EQ.1) PRINT 2000
IF (N1.EGe2) PRINT 2001
IFINLI.EQ.3) PRINT 2002
100 CALL FIND(INHOL(1,2))
NReaI{1I/8(3)
IF{N1.E0.3) GO TO 300
IF(NR.NESI(3)) CALL ERCOM
N2oNA
IF{NL1+EQ.1? GO TO 200
CALL FINDUINHOLLL,3))
IF{NRSNEI(1)/1(3) ) CALL ERCOM
200 CALL SYMSOLIL(N2)oLINA)IoNRy I{3ByNL)
RE TURN
300 CALL SYHIN(L{NAI NR)
RE TURN
2000 FORMAT (20H TRIANGULARIZE ONLY )
2001 FORMAT (44H FORWARD REDUCT ION ANMD BACKSUBSSTITUTION OMNLY )
2002 FORMAT (22H MATRIN INVERSION ONLY )
END

SUBROUTINE SYRSOL(A,BoNN,LLyHM)

[4 SYMMETRIC EQUATION SOLVER- E<ls WILSOM 1876

14 M=0 TRIANGULARIZE AND SCLVE

[ Mzl TRIANGULARIZE ONLY

c Ho2 PORWARD REDUCTION AND BACKSUBSTITUTION ONLY
DIMENSION AUINNyNN){ BINN,LL)

<

IF(M.EQe2) GO TO 500
DO 400 Nut 4NN
IF(N.EQ.NN) GO TO S00
DaAlNyN)
IF(D«EQe0a 0) PRINT 2000¢N
NiaNet
DO 300 J=N1yNN
IFIAIN,JP=EQ.0.0) GO YO 300
ANy JV=AIN,JI/D
00O 200 kaJyNN
ACTy NISALT I)=ACKoNIRA(NI}
200 ACJyIIBACL, J)
300 CONTINUE
400 CONTINUE
(4 FORWARD REDUCTION AND BACKSUBSTITUTION
500 IF(MaEGel) RETURN
DO 700 Noi (NN
DO 600 L=1,LL
600 BUN,LIZB{NJLIZA(NyN)
IF(NSEQ.NN} GO YD 800
NHioN+Y
DO 700 L=1,LL
00 700 IsNE.NN
700 B{Iol)aBlILI=ACTyNI®BINyL)

800 NimN
" Nen-1
IF(NEGs0) RETURN
DO 900 L=l bl
DO _900 J=N1,NN
900 BINJLIZAIN,LI=AIN, I #BLI,L)

GO TO B0OO
[
2000 FORMAY (39HO®USZERD DIAGONAL TERM EGUATION NUMBER 148)
END

SUBRDUYINE SYMINUA,H)
C====x INVERSION OF POSIYIVE DEFINITE SYMMETRIC MATRI-w——e=~-
DIMENSTON Al(M,H)
< EVALUATION OF NEGATIVE INVERSE
DO 400 'Nuil M
DuA(NyN}
00300 Tal g
AN=A(T4NY/D
IF(1.EQsN} GO TO 200
DO 100 JsTyM -
ACTyJ)=ALT,J)=~ANSAINyJ)
100 ACJyIIcALT+J)
200 A(IsNI=AN
300 A(Np1)zAN
800 A{NyNI=-1.0/D
< CHANGE SIGN OF INVERSE
00 800 I=l .4
00 S00 Jol M
800 AlI,J)u=Al{l.d)

RETURN
ENO




SUBROUTINE GROUP2(LASY)
COMMON NOHMTOT ¢NARAJNSEZE JNSP o NUP oNH (NDIRGLLEY
COMMON /CARD/ INHOL (3,10 )4N1yN2yN3yN2, 51,482
CDMMON /TE#MP/s SSS(100)
LAGICAL COWP
DIMENS ION 10P{3,20) -
DATA 10P(1, 1)/6HNODES /410P{1, 2)/6HACUND /,10P{1, 30/ 6HTRUSS /
DATA IOP(l, 4)/6HBEAHM /,10P(1, B)/6HADDSF /,10R(1, 6} /CHLOADS /
DATA 10P(1, T)/6HFORCE /,10P(1, B)/6HDISPL /¢lOPL1, 90/6H.O0ADT /'
NUHOPS 9
GO TO 175
C~=== READ DPERATION FROM CARD OR STORAGE
100 CALL INPUT
Cmm=m=[NTERPRETE OPERATION
178 DO 200 J=) ,NUMOP
NaJ
IF (COMP{INHOL(141),10P(1,J))) GO TO 300
200 CONTINUE

o ot At o i St it 0 o e

SUBROUTINE NODES(XVZ,NUMNP)
DIMENS ION XYZ{NUMNP,3)
Cow=m=READ AND PRINT OF NODAL POINT COORDINAYES—~—
COMMON NO
1F{NO.EQo0) PRINT 2001
READ 1000y NyXoVe2Z
IF{N<EQs0) RETURN
RVYZINo1)aX
XVZ(Ny2)Y
RYZ(N3)5Z
IFINDEQ.0IPRINT 2000, NoRYZINgB D ¢ XYZING2) 4 NVZIN,y3)
GO Y0 100
FORMAT (15,8X¢3F100)
FORMAT (BMONODE MO 14} ¢ BHX 1839 IHV §4 Ko IHZ)
FORMAT (E8,3F1B.30
END

100

1000
2001
2000

SUBROUT INE BOUND (1D NUMNPoNEGY

RE TURN.
COMMON NO
CumaauERECUTE APPROPRIATE OPERATION DINENS ION ID(NUMNP .60, 11(6)
300 LASTs2
CALL STRUC(N) Cewew=ZERO 1D ARRAY
GO TO 100 DO 100 Nm i NUKNP
END 00 100 Izl,&
100 IDIN,)=0
SUBROUTINE STRUCINOP) < SPECIFICATION OF UNKNOUWN DISPLACEMENTS
COMMON "ND¢MTOT y NARA ¢ NSTZENSP o NDP yNHyNDIR,LL1000) 200 READ 1000,KL yNHs(ITII}4 101463y INC

COMMON /CARD/ “INHOL {33109y N1 N2y N3, N4, 51 482
COMMON /STR/ NDoNS NRP,LH(12)5VE8120 o XMI120,0¢ 829120
COMMON /ADIR/ NA,1(10)
EQUIVALENCE (814 INHOL(1 92) ) o (M2 ENHOL L7530 ) (43, ENHOL QB8 )}
EQUIVALENCE (M8 INHOL(1¢8) ) (M8, INNOLU 146D ) o (M6 INNOLIToTI)D
GO TO (100,200,300,300,800,800,700,800,900),%0P
| Cm—==mREAD NODE COORDINATE
100 CALL DELETE(M1)
NUKNPaNL
CALL. LISTC(H1,N1y3,NSP)
CALL NODES(LINA}N1)
RETURN
Cmemm=-SPECIFICATION OF DISPLACEMENT BOUNDARY CONDITIONS
200 CALL DELETE(R1) :
CALL LIST(HL,NUMNP,6,1)
CALL HOUNDILENA) JNURNPyNEQ)
CALL PTAPE(1,19
NUMEL=0
RETURN
Cem===CALCULATION DF TRUSS AND BEAM STIFFMESS MATRICESeee===
300 CALL FIND(H2)
NiSNA
CALL FIND(M3)
N25NA ,
CALL FIND(MA)
NPROPEI(1)/1(3)
NISNL +NUNNP
N4 aN1¢2¢NUMNP
1FINOP.EQ.4) GO TO 350
C-=m==CALCULATION OF TRUSS ELEMENY MATRICES——~w==NOP=3
ND=6
NSsl
CALL TRUSSILINED oL (N3 ), L (NS}, LUN2) 5L ENA) , NUENP, NTRUSS o HPROP )
GO TO 200 .
Coem==CALCULATION OF BEAM ELEMENT STIFFNESS MATRICES== NOP24
350 NDs12
NSe8
CALL BEAMILINIDgLEN3) o LUNS Dy LUIN2),L (NAD, NUMNP, NTRUSS yNPROP )
400 CALL LIST(M1I.1¢541)
C{NAYaNTRUSS
L(NAS1)aND
L{NA®2)BNS
LNASG) SNUNEL *1
NUMELaNUMEL $NTRUSS
RETURN
C-—ev=-FORMATION OF TOTAL STIFFNESS AND MASS HATRICES
500 CALL OELETE(ML)
IF(M2aNE.0) CALL DELETE(M2)
CALL PTAPE(1,1} .
IFIH2.EQ.0) GO TO S50
CALL LISTC(H2,NEQ1NSP)
N1zNA
560 CALL LISTUHMI,NEQ,NEQ,NSP)
CALL ADOSEILINADJLINL Y NEGJNUMEL (42D
RETURN
ComaaneFORMATION OF LOAD MATRIN e w—o mw e e e e
600 CALL DELETE(ML)
CALL FIND{MZ)
N2oNA
CALL LISTUMLNEQyN1,NSP)
CALL LOADSILIN2) oL (NA} ¢ NEQuN1 ¢ NUENP)
RETURN
Cmm=—EVALUATION OF HEMBER FORCES
700 CALL FIND(M1}
NUME=L{NA)
NDaL{NA®L) : e
NSeL(NAS2)
NREL (NASS )
CALL PTAPE(1,NR)
CALL FIND(M2)
NiaNA
NLsT ()
NSSa0
IF(43.60.0) GO TO 1080
NSSoNSENUNE
CALL LISTIMI,NSS,NL,NSP)
1080 CALL FORCE(LINI) L {NA)NEONL (NUME (NSS)
RE TURN R
C~~=~=PRINT OF NOOE OISPLACEMENTS~=——=
BOO IF(NONE.O)} RETURN
CALL FIND(M1)
N2aNA
NL®l(3) *
CALL FIND(M2)
CALL DISPLAILINZ Y LINAYYNEQYNL Yy NURNP )
RE TURN
Cwm=== LOAD INYERGER ARRAY
900 CALL OELETVE(HMI)
CALL LIST(MI NI N2,1)
CALL LOADI(LINA)N1,N2,NI}
RE TURN
END
T

o mrem emnlom

IP(NL.EQ.0) GO T .300

IF(INC.EQa0) . INC2

IF{NDEQeO) PRINT. 10009 NLyNHs (11610 122,60, INC

DO 250 JuNLoNHy INC

00 2860 Iot,6

100 )=EIL1)

GO 7O 200

Crme=eEYALUAT ION OF . EQUATION NUMBERSswom=mesmmwe=s

300 NZ2o=0

D0 400 W=l yNUMNP

DO 380 Io1,6

IF(IDIN, 1) «EQ.0) GO YO 380

NEQO=NEQeL

10N, 1 InNEOC

CONTINUE

CONTINVE

IFIND.EQ.0) PRINY 2000.(N'(ID(N'li.l!lybbyNﬂlyNUHNPl

RE TURN

1000 FORMAT (9I8)

2000 PORMAT (A2ZHOEQUATION NUMBERS .FOR NOODAL DISPLACEMENYS . /.
1 384 NODE X A4 z 1.3:4 vy zz /718
END

280

380
400

SUBROUT INE ADDSF({AoBoaNEQNUNEL M2}
COMMON /BYR/ NDoNSoNRPLH(12),ST(8,121pXML12D,S(22412)
DIMENSION AINEBQNEQ) jBINEQ)

DO 100 I=f KEQ
IF{E2.NEQOY B(X)20.0
D0 100 Jol.NEQ
A{1yJ}=0.0
DO 300 N=1,NUNEL
CALL PTAPE(34NR)
OD 200 EalyNO
TIaLs(I)
IF(II.LE-0} GO TO 200
IF(M2.NE.0) BIII)aB(II)enuil)
DO 180 JuloND
et MtId
IF(JJoLE.0} GO YO 180
ALTEgJIIBALTT,J300SL1,J)
180 CONTENUE
200 CONTINUE
300 CONVINUE

RE YURN

END

SUBROUTINE LOADS(IDyR¢NECyNL,NUNNP)

DIMENSION RINEO,NL) o 1IDUNUMNP &)

CORMON NO

COMMON /TEHP/ RR6)

0D 100 Ne1.NEQ

00 1.00 Lol M.

R{NyLI=O0.O

IF (NOsEQo0) PRINT 2000

READ 1000, WyL,RR

1F(N.EQ0) RETURN

[P (NOEG.0) PRINT 2001, NyLyRR

0O 300 1=2(,6

I1alDIN, 1)

' IF(11.LE-0) GO YO 500

RULL L I=AR(T)

CONTINUE

GO TO 200

1000 FORMAT (218,6F1040)

2000 FORMAT (12H NODE LOAD
T OA3R 2HMY 13X 2HMZ )

2001 FORMAT (216,6E18.6)
£ND

100

300

I3X 2HEX 13X 2HFY 13K 2HFZ 13X 2HMK

SUBROUTINE DISPL (U 1D, NEQy NL ) MUNNP }
OIMENSION U(NEQ.NLYy IO(NUMNP,0) d
COMMON /TEMP/UU(E)

DA 200 W=, NUKNP
PRINT 2000
DD 200 Lol.h.
DO 100 (=146
VUi 1=0.0
11210(Ns 1)
IF(LI.LELO) GO TU 100
Ul YeUl LEvL)
CONT INUE
PRINT 2001 yNek UV
RETURN
2000 FORMAT {12H NODE ~ LOAD 13X 20UX 13X 2KUY L3R 2HUT “13X 2HTX
1 13x 2HYY 13K BHTZ )
2001 PORMAY (210,6E1G6.00
€ KD

100
200

v




SUBROUTINE FORCE(D % o NEQ o NL y NUME gNSS)
DIKENSION DINEGy ML) P(NSS,NLD

COMMON NO

COMMON /STR/ ND-NS'NﬁPvLMllZl.sT(G-lz)'Kullalos(linlﬂ)
DO 600 Nal oNUME

IF(NO.EG.0) PRINT 2000, Woll,Io),NS)
CALL PTAPE(I,NRY

DO B00 Lwl,pl

00 200 IsiyNS

RHL(II=0.0

DC 200 J=QyND

Jdali(Jd

IF{ JJalE. O} GO TO 200
XECEIoXMETI+STILoJISD(IS,L)

CONT INUZ

IF(NOGEQaD) PRINT. 2003, Lo(XH{I)olnl NS)
IF(NSS.EQ.0) GO TO BOO

MoNSSe{N=1)e¢1

DO 300. f=1,NS

FlgLboxnir)

Mool

CONTINUE

CONTINUE

RETURN

FORMAY (12H LOAD/FORCE I3,110,7138)
FORMAT (11048E168.6)

END

SUBRGBUTINE "BEAMIX,VZ; 1D P ¢NUMNP, NUKE 8P )
DEKENSION X{NUANPD » VCNUMNP) o Z (NUIMNP) o SDINUMNP 6 ) o PINPT)
COMMON NO
COMMON /STR/ No,ns.an.Lu(xzx.sr(a.lz).xuclax.slla.xzn
COMMON /TEMP/ A(6012)5T(3p3),v(8,8)
C===~+READ AND PRINT BEAN DATA
© NUMZ=0
IF(NO.EG.0D PRINT 2000
100 READ 1000y NplodykyNN
I1F(NJEQ.O) RETURN
IF(NO.EQs0) PRINT 2000y NoloJoKoNNolPINNL)LOL,T)
NUME eNUME ¢ 1
Coemm—FORM 3 % 3 TRANSFORMATION MATRX =—cmwmooo—w
CALL VECTOR(VIL o1 ) oXCIDyYIDoZURD R(IIoVLSDoZU DD
XLav(agl)
CALL VECTDRIVI1480,X(I)oV(EDp20Ide XKD VKD 42Z(K))
CALL CROSS(VEL 1) 4VI1,8),¥(1,3))
CALL ‘CROSSIV(143),V(1o13,¥(1,2))
00 200 K=1y3
oD 200 to1,3
200 TAKoLIBVIL oK)
Commw=~FORK DESTINATION VECTOR
00 300 La31,6
LMILIBI0{T L)
300 LHIL46ISIDIJ,L)
C-m===FORN STIFFNESS MATRIX IN LOCAL SYSTEHmmomews
00 .400 I=1,6
‘DO 800 Js1,6
Stdy 413000
SU1o1)uPINN 1D EP(NN,B) /XL
SU8,0)=P (NN, 2 V4P (NN, 6 /)L
QuaLEPINN,S) /XL
SU{B,BIDOEP(NN,3)
S{BB)zQ¥PINNG4 )
Q= To /¢ HLEXL)
S{3;3)=0%S (5,8}
5(292)2095(6,6)
QAo 1e 8/ R
S{246)5=-0%5(6,6)
St 6.2)=5(2,6)
S(3,8)m0¥S(8,8)
S(BeD)=S(3,8)
Co=memFORM LOCAL=GLOBAL TRANSF ORMA T ON—w—emmwm——
DO 800 1=i,6
00 800 Jo1.12
AllyJ)=0.0
D0 600 Jai,3
AL2,d03) =B T(3J)
A(3o 0431z XLEY(2,4)
DO 600 Ia1,3
AlTydbE=TlI,d)
ACT43,4¢3)5=TU1,J)
AlT,J46)8T(L,0)
600 AlI43,J49)aT1,4)
Co==we FORM GLOBAL STIFFNESS MATRIX
DO 800 1s1,6
DO 800 J=1,12
ST{IoJ3¥20.0 .
0Q 800 Koi,s ) :
800 STII,0)1ESTII,JI+SIT KICALR ()
DO 900 Inlyt2
ST(T, )= ST(3,1)ANL~STUB,1)
S¥(8, 1 )u~5T(2,1)¢XL-ST(8,1)
DO 900 J=l,12
0=0.0 e
DO. 680 Kal,6
880 QoG¢A(K,IIAST(KyJ)
S(Ey )50
900 B(Jofb=0
Cumwmm CALCULATE HMASS MATRIX
KMASSoP (NN 7 JOXL/24
VE1p) ) aRHASSEPINN2)/PENNg1 D
VU8, 1) o RMABSERLOXL /126
VISpbtavia )
00 960 21,3
KM Vo N4ASS
XM(146 0o HMASS
RM(1¢3000.0
DO 980 Jui,3
980 RM(IoI)oxM(Te3IoTI(S, 1DOVLII LD
HA(1+IImABBIRM{Fo3) )
960 RMIT4DITNMITD) '
Comwn~ GTOAE ELEMENT MATRICES ON LOY SPEED BYORAGE=-
CALL PVAPE(2,NRD
60 YO 100
1000 PORMAY(BIG)
2000 POANAT . (2BHO EL« 1 3 3
b SHISS ORy IHE s Oy LHG ¢ OK o EKH )
2001 FORMAT (BEB.1F10.2,6P10.0,710a80)

5”0

200

300
500
600

2000
2001

200

800

NP Oy BHA) PRo SHISL o TRy DNE 28, VX,

3

SUBROUTINE YECTORIVoRI VIpZEyRIgVIoZ D
DIEZNGION V(2)

LERE Ut

YevJey]

2R legl

V(4 )aBORT( XUXeVEVHRRZ)

Vi3 oRrveaD

vi{2)evsviay

visdexsvian

RE TURN

END

SUBROUTENE CROSBCA,B,CY

DILZNGION “Al&) 4BI8) oClO)
XoAlR)YB(I)~ALIDERL2)

YoAl 31041 )=-ACE }OBL3}

ZoA( B dLBL2)=AL02)28( 1)
C(Al-sonflxtxovcvoznzp

CLIP=E/CLOY
C(2)=v/Cta)
ctymx/c(a)
RETURN

ExD

SUBROUTINE TRUSS (X,
DIRZNBION R{1DoVI1)oZ(1) o ID(NUKNP 0} oEF (NPROP, 3D
COMMON . /STR/ NOJNSoNRPoLU(S2)oST(Bo 12V NME82),5(82,12)

Cmm=aewZVALUATION OF YRUSS ELEKENT . HAT R CEGmommmtean
COMMON - NO

NTRUSG20

IP{NO-EQ00) .PRINT 2000

READ 3008 oMo I ¢ J9NP o NPT

1F(M.E000): RETURN

AREASEE{NP ¢ 1)

EaB8E(NP, 2 )

DENCEE (NPy 3)

IF(NDEQLO) PRINT 2001, #,19JoAREAE yDEN

DU Y=L JD
OVav(id=viJ?
DZuZ(X)=Z(J}

XL 22D XSD K¢ OVODYED2GO2
HLaSGRTINL2)
DENSCENTXL /2
RRoeSUAREA/ .
87141 )aDR/NL
ST ,2)=DY/RL
ST(1o3)=02/XL
ST(1,42aSTUL 10
SV(1¢8)me8T(1,2)
S5TqL,63a=87(1,3)

100

80 300 Le=1,y0
YYegTiip L)Xy

00 280 K=l 6
SIRyLI=STLL,K)BYY
S(LoKIaS{K,L)
S§T(i,oL)avyY
XML ) aDEN

DO 400 L=1,3
Ll s I00IeL)
LMLe3)mIN(I, LY
CALLPTAPE(2,NRD
NTRUSSaNTRUSS+1
GO 70O 100

280

30

40

o

FORMAT(BIS)
2000 FORMAT{ 7VHONUHBER 6X IMI 6X 1HJ 11X 2HAREA 44X IHE 12X 3+DEN )
2001 FORMAT (317,F15.342E18.6)
END
[

1001

SUBROBUTINE LOADI(L ¢NRyNC ¢N3)
COMMGN /TENP/ FOR(40)
OIRENSION L ENR,NC)
COMUON  NO
Comwe— SUBFROGRANM TO LOAD AND PRINT INTERGER ARRAYwwm=
IPININE.O) GO TO 100
READ 1000, CLET oD gInloNCIo Il MR )
GD TO 200
READ 1001,FOR
READ FOR, (LT ,02 5300 ¢NC)y 12l ,NR)
IFINCNE.OD RETURN
b0 300 l-l'NC.ZO
THaI 19
IFLIHoGT oNC) IMBNC
PRINTY 20000 (KololyalH)
DO 300 J=1,NR
PRINT 2008 9 (Jo (L (IR Iy T, IHD)
RE TURN
FORMAT (12180
FORKAT (80A2)
FORMAT (BX,2013)
FORMAT (2118)
END
L

100

aco

to00
1001
2000
2001

SUBROUT INE PYAPE(N,NRD
COMMON /8TR/ ND  NSyNRPLH(12) ¢5T(8412) pX8112)9S(12412)
GO TO (B04600,7000,M
Cm====POSI T1ON TAPE
50 HY=1
IF(NRsNE.1) GO TO 100
REUIND NT
NRPa {
100 IP{NRPLEG.NR) RETURN
NOBNR=NAP .
IF{NDeLF.0) GO TO .300
DO 200 NoiyND
200 READ (NT)
GD ¥0 800
300 NOw=ND
DO 400 Noml,ND
400 BACKIPACE NT
300 NRPuNR
Cor===YR1TE. RECORD ON LOV SPEED .STORAGE==temem—m
600 WRITE (1) ND,NS, LU, 8T ,RN,S
NRPoNAPe |
RE TURN
READ (1) NONS, LM ,BT,%i,8
NRPaNAPG |
RETURN
END

Too




SUBROUTINE GROUPI(LAST)
COMMON NO,MTOT (NARA,NSTZE o NSP o NDP, NH,NDIR,L (1)
COMMON 7CARD/ INHOLE3510) yN1 N2 (N3 N8, S1452
LOGICAL COMP
DIMENSION [OP(3,10)
DATA I0PUL, 1)/6HFUNG /.10P(1,
DATA IOP(L, 4)/6HDYNAM /,10P(1,
NUMOP a8
GO TO 178
C-==w= READ OPERATION FROM CARD OR STORAGE
100 CALL INPUT
C~m=wnm INTERPRETE OPERATION
178 00 200 J=1 ,NUNOP
Nog .
IF (COMP{INMOL (1413, 10P(1,J) P} GO TO 300
200 CONTINUE
RETURN
CmmmemE KECUTE APPROPRIATE OPERATION wmmmamwmescons
300 LAST=3
GO YO (1924340981, N
1 CALL PUNG
G0 YO 100
2 caLL STEP
G0 YO 100
3 CALL ET1GEN
GO TO 100
4 CALL DYNAM
GD TO 100
5 CALL PLOT
GO YO 100
END

2V/GHSTEP /,10P(1, 3V/6HEIGEN /
8P 76HPLOT 7/

e b et e e e et v

SUBROUTINE STEP

COMMON NOyMTOT NARANSIZE ¢NSP ¢NDPyNHNDIRgL (10000
COMMON /CARDZ INHOL(3,300,N1,N2,N3sNS,31,82
COHMMON /ADIR/ NAoI1(10)

CALL DELETECINKOLC1,8))

CALL FIND{INHOLCI,2))

IF{I(3).NE.I(2)}/71¢3)) CALL ERCOH

NKaNA

Nal(3)

CALL FINDCINHOL(1,30)

IF(I(3)eNELII1D/71(3)) CALL ERCON

NMaNA

CALL FINDUINHOL(1,4))
IFCI(3)NEI(1)/1(3})) CALL
NCuNA

CALL FIND{INHOL{1,5))
NlsNA .

CALL LISTOUINHOL{196)¢NoN2yNSP)
NU=aNA

ERCOM

READ 1000, DELALF,THE
1FIND.EQ.0) PRINY. 2000,
CALL ¥ IND{ INHOL (147} )
NDBNA
CALL FIND(INMOL(1,8))
NFaNA
CALL FINDCINHOLI1,9))
CALL -STEPSCLINK) 4L INM) g LENC) sLONED yLENDY jLARFD oL {NUD o8 oNB N2 oL INAY
1¢DELALF,THE)
RE TURN

1000 FORMAT (3F10.0)

2000 FORMAT(2XySHDELSE IS «6 ySHAHALFOELD o6y 3N ¢ AHTHERE LGB0 O
END
=

DEL ¢ ALF o THE

SUBROUT INE STEPS{S,HMyCoUL 0,7 yUyNyN1:N2,0TTiDEL JALF ¢ THE)
DIMENSION STNyND oXHINGN) yCONy NI oUT (Np3 ) gUINNZIoOC1 ) 4FI1D
COMPUTE INTEGRATION CONSTANTS.
IF(THE.EQs040) THE=1.0
DToTHESOTT
AOul « /L ALFSDTEDT)
AL=DEL/CALFEDT)
A2a1./UALFSDT}
A30.8/ALF-1a
AQEDEL/ALF =1,
AS20BUDTE{DEL/ALF=24)
AGEDYT#(1.-DEL)
ATSDTTSDEL
ABS(.S=ALFISOTTHE2
AQuALEEDTTENZ
FORM AND TRIAMGULARIZE EFFECTIVE STIPFNESS WATRE He———s—=s
DO 100 L=t N
DO 100 J=i,4N
S(EeJ)oB(lod) +ADEKMI T, J)0ATOCELydD
CALL SYMSOL(S,UL Nyl e1)
#OR EACH TIME SYE
wa
00 400 Ioi N2
DO 800 Jmi Nl
[4 1. CALCULATE EFFECTIVE LOAD AT VLME TeOV
KoKe)
PRreF (K)o THER (A(N)=FIK=1D)
00 200 LelN :
ULL, 1120(LIOPF
DO 250 Lol,N
HoAORUI(L, 1)6A2BUTIL,2)SATOUIIL,3)
YOALOUI (L 116A8GUTIL,2)$AB2ULIL,3)
00 280 Mal,N
UCHe T ZU (M, 1) OXM (8, L) OROCIH L DOV
c 2. SOLVE FOR DISPLACEHMZNT AT TeOT

CALL BYMSOLIS U141 )gNyio2)
c 3. CALCULATE ACCELERATIONS ARD VELOCETIES AT VING YoOU
0O 300 Lal,N
ABAGE(UIL y I1=UTliy 1) I=AZTUT(L, 2)=AIOUT(L o3}
DASCA=UI (Ly3) )/ THE
ASUTIL,31¢0A
VRUL(L,2)0AB2ULIL, 3 )0ATRA
ULy 119UTEL, 1 1 DTTOULITL 4 2D ¢ABCUT (L, 3)4A0%A
UL(L3bea .
UtiLe2bsv ‘
UL(Lad DUyl
CONT FNUE

[ ——

Lo

100

Commmm

300
400

RE TURN
END

c7

SUBROUTINE FUNG

COMMON NOWHTOT gNARANSIZE (NSO NDP yNHyNDERsLL1000 )
COMHON 7CARD/Z "INHOL (3,100 4N1 N2,N39N0,S1,82
COMMON ZADIR/ NA,I{10)

CALL DELETECINHOLCL 300

IFENL oLELOY CALL ERCON

IF(N2NE 0} NRa)

NIoN2SL

CaLL LEISTOEINNOLAL o3} oNRyNE 4 NSPD
WNIoNA

CAbL PFEIND{INHOLE1,9D)

NaaNA

CALL. FINDCINHOLE2,2))
IFCICLB/70(30oNE02) CALL ERCOM

CALL FPUNGBILINA) LINII1(3)oN1,NZyLINSD)
RETURN

eno

SUBRBUT INE PUNGS(GyGGoNC N1yN2,0TD
OEHTNITON GL2,4NCHyGGINZ4NL} :
TRGl1e1)

Jui

NCCuRC—1

00 200 I=al.NCC
Su(G(Re1¢23-Gl29 1D/ /EGUL 162 )=GlL1o DD
GGlloSdaT

GGIN2o JImGU2y 1) ¢BH(T-QL 10D
IP{J.ETaNl) RETURN

Jedek

T=aTeDT

IPF{ToL.ToG(L,1¢1}) GO -TO 100

CONT ENVE

CALL ERCOM

END

100

200

SUBROUTENE OVRAR
COMMON NO,MYOY JNARAGNSIZE NS o NOP NHoNDIR, L (1000)
COMMON /CARD/ INHOLU3,10) NI NR2oNI3oNE 5L 52
COMNMON ZADIR/ NAoI(10D
Comew=eGUBROUTINE TO EVALUATE HODAL DYNAMIC RESPONSE==—-w=we-=
CALL DELETE(INHOLILI,6D)
CALL FEND{IPMHOL(E.2))
H2aNA
N=E(1)
CALL FINDI{INHOL(E,3))
NISNA
TF(NNET(1)) CALL ERCOHW
CALL FINDUINHOL(1,400
NS 2NA
IFIN-NEI(1)} CALL ERCOM
CALL FINDI{INHOL(3,8))
NBwNA
CALL FINDCINHOLIL.T))
ReaNA
CALL LESTUINHOLEL 060 ¢NoN1NEPD
CALL DYRNAMS (L IN2D,L ANIDoLING I LENB) o LINAD ML NyLING))
RE TURN

END

SUBROUTINE - OYNARS{FQeDANPoPA
DIMZNSION FOUNMY DAMINMD ,PUNMY X (NN NTIME) PA(24 1)
[+ @VALUATION OF HMODAL REBPONSE oee USING EXPLICIT INTEGRATION
DO 700 Mzl NA
WaFQ{n)
DANPaDAKM(MD
YEayey
ZeoDANPGY
TIue2. 2
WOCYUYBOART( Lo O=DANPEB2)
FBaT 26/ (WYSuY )
FAaZdsuy
FyaZudyy
FUDoWHA( 2+ EDAMPESR=E 40D
FBO0I 2+ 20AMPEH2=100) /1Y
L=0
Itol
Y020 .o
VOU=0.
TOoPA(le1}

DYV=DDY

Bo (PA(R, 1141 1-PACR, T1D)I/IPACL, II¢1D=-PAL1,E1D)
BaeBTP{A)

AsP(MIEPAL2,11)0BR(TO~PALL,I1))

TTeT0:0T

IF(PAL1,31410aGT.TYT) GO TO 100

DELT2RA(L, 11410=T0

GO TO 200

100 DELT=0T
200 & R=f RP(~ZUGDELT)

FTaDEDELY

Cg=Cas{(FY)

BRoBINI(FT)

VTo({ VD04 ZusvO~-FASA+FBOSE ISBN/ W0

YTavYye (VO—A/WueFRaB) 2 CE

VT eV TOER S A/YY~PFBES cBS0EL T/ Y

VO To (A=Y V0= ZHE LYDOCB/78H) ) 8SN Y0
YOTeERA((VOO=B/uuduC SevDTIeB/hy

VODY n{ B2FVYEVOEPVOSVDO=RWeAl /YD

YOO TE XO( { A= YEBYO=-T ZUPVDO) $C3VDDTESND
vOoYT

veosvoT

IP(PALEoI2¢2}aGTOTV Y GO YO BOO
D V2D V=DELY

fioilel

TOaPACLloEL )
IF{DT.EQ.0.) GO YO 600
GO YO 80

TO= 7G0T

LeLet

Rl hoYT
IF(LLYNTIME) GO TO 10
CONT ENUE

800

600

ro00

HETURN
END




SUBRDUTINE EXGEN
COMMON NOyMTOT ¢MARANSEZE NSPoNDP o NH NDIR L2000 )
COMMON /CARD/ INHDL {3510 00Nl gN2 NI yNBoS1o82
COMHMON /ADIR/ NA,T1(10)
CALL DELETECINHOLCL+3))
CALL FIND{INHOL(1,2))
IFLII3V.NELTILED/TC(ID) CALL ERCOM
N2=I(1 /7 RED)
NI=NA
CALL FIND(INHOL(1,40))
IF(IUL)NELN2) CALL ERCON
Na=NA
CALL LISTUINHOLT143)4N2oN2,NSP)
CALL EIGENSILINIILINAFoLING D N2oNIoN3)
PRINT 2000, N1.N3
RETURN
2000 FORMAT(13,27H FIGURE TOLERANCE SPECIFIED 7 16y
1 20H ROTATIONS PERFORMED 1}

&

SUBROUTINE EIGENS(HyUE¢NoNSoRR)
DIMENS ION HINyN) UINyN),E(N)

IF(NS.EQe0) NSug
TESTa100/10. %8¢ 2ENS)
NNEN=1 ’
NR=20
NALMoSRNGa2
TOLER=041
== NORHMALIZE TO UNIT MATRI
DO 10 TaleN
10 E(I%=1.0/S0RTIECT)
DO 30 IslyN .
DO 20 Jsi,N
HULy P eBEUIIEHT T, JIRELS)
20 U(144)30.0
30 U(Is1)=2100
Cm=== REDUCE HATRIX
50 RMAXDO0L.O
DO 700 1I=14NN
Jimitel
DO 600 JJInJSLoN
Cmmwe-CHECK IF ROTATION §S REQUIRED —— o s b e
HiBeH{IT,11)
HIJo#{11,4d)
HIJsH JJ 4300
AsH] JEHIJ/(HT EBHII)
IF{XaGT o XHAKY XHAXAK
IF(X.LT-TOLER) GO TO 600
CmemanCOMPUTE TAN, STN AND (05 ———waccammmo mo e
NR=NRo L
HY o BRIHII=HJIJB/HTII .
TNa=HTE{ 1. ¢SORTllc+1 e ZLHTUHT)))
CS . 21e0/50RT. {1<4TN. B812)
SNeC SR TN
C2=Ccsus2
52=SNES2
Cmmw=eREDUCE 11, JJ ELEMENT 'TO ZERQD ~wwomweatawaaes
HTa2atHIJBCSHSN
HI1494)00.0
HUTE o TE)IDRT [SC24HT¢RIISS2
HEJS g J I BN I9S2-HT +HJSEC2
DO 830 I=1,N
EF(I=-E1) 370,530,020
370 HT=H(L,ILF
H(Iy 11 )nCS HHTESN BHIL (JJ)
HEly JJIm=SN SHTICS SMH{L.JJ)
60 ¥O 830
420 IF(1-JJ) 430,530,480
430 HTaH(TIel)
HOIT,1)RCS ®HTESN SH{T,J3)
HET,JS)o=SN AHTGCS OH{E,Jd)
GO vO 830
480 HToH(1L,1)
HUII 41 )uCS SHTHSN SHUJI, T)
HEJS 1) ==SN SHTSCS SH{JIJ 1)
$30 CONT INUE
Coem=aeOPERATE ON EIGENVECTORS wwwri it s o st i s i e
£540 DO HBS0 Ioi,N
HT=U(T T
UlI,11)18CS SHTSSN SULL,Jd)
8680 U(l,JJ¥c=5SN BHTECS 3UCE,JJ)
600 CONTINUE
700 CONTINUE
C=umueTESY FOR END OF ITERATION AND SET NEW TOLERANCE
IFINRLMaLT«NR) GO TO 1000
IF(XMARLTLTEST) GO . TO 710
TOLERTO. | OXMAX
GO TO GO
Cuem==NORKALIZE AND OROER EIGENVECTORS ~wwesmmweme
T10-00 800 §al,N
00 78O JslyN
FBO U4 ) aUlTJIBECTD
BOO EBUI)mK{E,L)
DO 900 Ial NN
Cmme==ORDER EEGENVALUZS AND El GZNVECTORS ===mweeeo
JLelel
HYaB( L)
=t
DD BE0 JuJL,yN
IF(HTLTSELS) D GD VO 0BO
HTBE(L)D
16ad
880 CONTINUE
ARERLL:ARE)
E(IDoNHT
00 9GO0 Jol N
HYsUlJeI)
UL, 1IsUt, 1H) .
800 U(J IH)IBNHT
AETURN

14
1000 PRINY 2000
RETURN

2000 FORHMAT(GIHOITERATION TEURMINATED UITHOUT CONVERGENCE )

2RD

Comme

100

Cormae

300

400
800

1000
2000
200}

2003
2008

SUBROUTINE PLOT

COMMON NOHTOT ¢NARANSTZENSPNDP o NHoNDIR, LT 1000)
COMMON - FCARD/ INKOL(3,10) N1 N2 NI N0,S1,82
COMMON /ADIR/ NA,I(10)

DAYA IPLOT /6HPLOTNK /

NYag 21eNI+NL

CALL LESTOIPLOV o 8oNT 1)

NPoNA

NRoNACLEL

NNoNKo N

CALL P INDCINRAOLEY 2D

CALL PLOTBALCNAD JLENP ) JLINKDoLINND o8 €D /8¢ 3D o0 Q3D oNID
CaLL DELETEC(IFLOT)

RETURN -

€8D

SUBRQUTINE PLOTSIA K, KODE; NROW, NA,NCoNY D
DEMENS EON AINRNC) o KC121),KODBINA D oNROWIMEY
COMMON NO

SUBROUTENE TO PRINTER PLOT NI ROYS OF ARRAY A
READ 1000, (KODE(LI)} NROU(I),I2l,NL1D
IP(NO.NE.O} RETURN

PRINT 2000, (KODE{IINROW(IYialoNl)

Commmaue LGCATE LARGEST AMD SHALLEST ELEHENYS=—mwwemo

13=NROU(1)
AL=ACIT41)

AS=AL

00 100 I=1,01

11aNROWET D

00 100" JoiyNC

AXBALTE 9D

IF(AR.GV.AL) ALaAX

IF(ARGLToAS) ASaAX

CONTINUE

AXn(AL~ASD/320.

PRINT 2001 AR, AS AL

KOm=AS/AK 1.

©O 500 1=1,NC

FILL LINE BUFFER WITH BLANKS AND CODESe—=
00 300 Jeiy121

(RO oLl

®(1)o1H1

€121 )=1H1

IF(K0aGTa0) KIKOIBIHO

00 400 Joi Nt

JInNAOY L)

FEatA(Jd, [ I=AS) /AKS Lo

X ¢ 11)5KODE ()

PRINY 2003 4K

PRINT 2008

RE TURN

FORMAT (141,14)

FORMAT (11 HOSYMBOL ‘ROW /{SH1AL18))

FORMAT (11H ONE SPACE® ENS.6/9KROMININUND E1Ge8,T4X 9MAAKIMUMA

1 Ei18.6/7 122(1HO)Y
FORMAT(1HO o 121410
FORMAT (12201100}
END

C8





