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Abstract.—Understanding the processes that give rise to quantitative measurements associated with molecular sequence data
remains an important issue in statistical phylogenetics. Examples of such measurements include geographic coordinates in
the context of phylogeography and phenotypic traits in the context of comparative studies. A popular approach is to model
the evolution of continuously varying traits as a Brownian diffusion process acting on a phylogenetic tree. However, standard
Brownian diffusion is quite restrictive and may not accurately characterize certain trait evolutionary processes. Here, we relax
one of the major restrictions of standard Brownian diffusion by incorporating a nontrivial estimable mean into the process.
We introduce a relaxed directional random walk (RDRW) model for the evolution of multivariate continuously varying
traits along a phylogenetic tree. Notably, the RDRW model accommodates branch-specific variation of directional trends
while preserving model identifiability. Furthermore, our development of a computationally efficient dynamic programming
approach to compute the data likelihood enables scaling of our method to large data sets frequently encountered in
phylogenetic comparative studies and viral evolution. We implement the RDRW model in a Bayesian inference framework
to simultaneously reconstruct the evolutionary histories of molecular sequence data and associated multivariate continuous
trait data, and provide tools to visualize evolutionary reconstructions. We demonstrate the performance of our model on
synthetic data, and we illustrate its utility in two viral examples. First, we examine the spatiotemporal spread of HIV-1 in
central Africa and show that the RDRW model uncovers a clearer, more detailed picture of the dynamics of viral dispersal
than standard Brownian diffusion. Second, we study antigenic evolution in the context of HIV-1 resistance to three broadly
neutralizing antibodies. Our analysis reveals evidence of a continuous drift at the HIV-1 population level towards enhanced
resistance to neutralization by the VRC01 monoclonal antibody over the course of the epidemic. [Brownian Motion; Diffusion
Processes; Phylodynamics; Phylogenetics; Phylogeography; Trait Evolution.]

Phylogenetic inference has emerged as an important
tool for understanding patterns of molecular sequence
variation over time. Along with the increasing
availability of molecular sequence data, there has been
a growth of associated sources of information, such
as spatial and phenotypic trait data, underscoring
the need for integrated models of sequence and trait
evolution on phylogenies, which promise to deliver more
precise insights and increase opportunities for statistical
hypothesis testing.

Much of the development of trait evolution models
has been motivated by phylogenetic comparative
approaches focusing on phenotypic and ecological traits.
Traditional comparative methods assess the correlation
between traits through standard regression models that
assume taxa traits are generated independently by the
same distribution. This assumption is obviously violated
by taxa traits due to their shared ancestry. A proper
understanding of patterns of correlation between traits
can be achieved only by accounting for their shared
evolutionary history (Felsenstein 1985; Harvey and
Pagel 1991), and comparative methods focus on relating
observed phenotype information to an evolutionary
history.

Trait evolution has been tackled from another angle
in phylogeographic approaches focusing on geographic

locations rather than phenotypic traits. Evolutionary
change is better understood when accounting for its
geographic context, and phylogeographic inference
methods aim to connect the evolutionary and spatial
history of a population (Bloomquist et al. 2010).
Phylogeographic techniques have allowed researchers
to better understand the origin, spread, and dynamics
of emerging infectious diseases. Examples include the
human influenza A virus (Lemey et al. 2009b), rabies
viruses (Biek et al. 2007; Seetahal et al. 2013), dengue
virus (Bennett et al. 2010; Allicock et al. 2012), and
hepatitis B virus (e.g., Mello et al. 2013).

While methods for phenotypic and phylogeographic
analyses are developed with different data in mind,
they address similar situations and it is appropriate
to speak more generally of trait evolution. Two key
components required for modeling phylogenetic trait
evolution are a method for incorporating phylogenetic
information and a model of an evolutionary process
on a phylogeny giving rise to the observed trait
values. Many popular approaches first reconstruct a
phylogenetic tree and condition inferences pertaining to
the trait evolution process on this fixed tree. However,
computational advances, particularly in Markov chain
Monte Carlo (MCMC) sampling techniques, have made
it possible to control for phylogenetic uncertainty
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(as well as uncertainty in other important model
parameters) through integrated models that jointly
estimate parameters of interest (Huelsenbeck and
Rannala 2003; Lemey et al. 2010).

The evolution of discrete traits has typically been
modeled using continuous-time Markov chains(CTMC)
(Felsenstein 1981; Pagel 1999; Lemey et al. 2009a),
analogous to substitution models for molecular
sequence characters. For continuously varying traits,
a discrete trait analysis via partitioning of the state–
space into finite parts is sometimes the best approach
(Boucher and Démery 2016). In many instances, however,
stochastic processes with continuous state–spaces are
more suitable. A popular choice to model continuous
trait evolution along the lineages of a phylogenetic
tree is Brownian diffusion (Felsenstein 1985; Hansen
and Martins 1996; Martins 1999; Freckleton et al. 2002).
Lemey et al. (2010) and Pybus et al. (2012) have recently
developed a computationally efficient Brownian
diffusion model for evolution of multivariate traits in a
Bayesian framework that integrates it with models for
phylogenetic reconstruction and molecular evolution.
Notably, their full probabilistic approach accounts for
uncertainty in the phylogeny, demographic history, and
evolutionary parameters. Trait evolution is modeled as a
multivariate time-scaled mixture of Brownian diffusion
processes with a zero-mean displacement along each
branch of the possibly unknown phylogeny.

While adopting a mixture of Brownian diffusion
processes is a popular and useful approach, it may
not appropriately describe the evolutionary process in
certain situations. Such scenarios are more realistically
modeled by more sophisticated diffusion processes.
There may, for example, be selection toward an
optimal trait value. To address this phenomenon, there
has been considerable development of mean-reverting
Ornstein–Uhlenbeck process models for trait evolution,
featuring a stochastic Brownian component along with a
deterministic component (Hansen 1997; Butler and King
2004; Bartoszek et al. 2012).

Another trait evolutionary process inadequately
modeled by standard Brownian diffusion is one
characterized by directional trends. The need for
relaxing the assumption of a zero-mean displacement
is highlighted by a number of evolutionary scenarios
in which there are apparent trends in the direction
of variations, including antigenic drift in influenza
(Bedford et al. 2014), the evolution of body mass in
mammals (Lartillot and Poujol 2011; Pant et al. 2014)
and dinosaurs (Sookias et al. 2012), the evolution
of plant defense traits (Agrawal and Fishbein 2008;
Agrawal et al. 2009), and dispersal patterns of viral
outbreaks (Pybus et al. 2012). To address this, more
general Brownian diffusion models featuring nonzero
estimable displacement means have been implemented
and applied in evolutionary contexts (Hunt 2006; Slater
et al. 2012a). These models posit a displacement mean
that is a product of elapsed evolutionary time and a
constant directional trend parameter. While inclusion of
a nonzero displacement mean represents a promising

first step, a directional trend with a constant rate may not
hold over an entire evolutionary history. Trait evolution
modeling has been advanced by the development
of relaxed models characterized by parameters that
vary over evolutionary histories. Examples include
Brownian diffusion models with displacement variance
rate changes along branches of a phylogeny (O’Meara
et al. 2006; Thomas et al. 2006; Lemey et al. 2010; Eastman
et al. 2011; Slater et al. 2012b) as well as Ornstein–
Uhlenbeck process models that feature similar variation
of selection and stochastic variance parameters (Beaulieu
et al. 2012) and of optimum trait parameters (Butler
and King 2004; Hansen et al. 2008). In this spirit, we
extend the Bayesian multivariate Brownian diffusion
framework of Lemey et al. (2010) to a flexible model
that permits multiple directional trend parameters on a
phylogenetic tree in a computationally efficient manner.
Importantly, we equip the model with machinery
to infer the number of different directional trends
supported by the data as well as the locations of trend
changes.

Through analyses of simulated data, we demonstrate
the ability of our model to accurately recover diffusion
parameters, and we show the necessity of appropriate
displacement mean modeling in order to do so. We
also evaluate model selection techniques to compare
the nested Brownian diffusion models featuring no
directional trend, a constant trend parameter, and
multiple trends. Finally, we apply our methodology
to two viral examples of clinical importance. In
the first example, we illustrate our approach in a
phylogeographic setting by investigating the spatial
diffusion of HIV-1 in central Africa. For the second
example, we explore antigenic evolution in the context
of enhanced resistance of HIV-1 to broadly neutralizing
antibodies over the course of the epidemic. We
demonstrate a better fit by relaxing the restrictive
constant trend assumption, and an improved ability
to uncover and quantify key aspects of trait evolution
dynamics.

METHODS

We start by assuming we have a data set of N aligned
molecular sequences X= (X1,...,XN) along with N
associated values Y= (Y1,...,YN) of an M-dimensional,
continuously varying trait. The different coordinates
of the “trait” may in fact represent several different
phenotypes, but for simplicity, and without loss of
generality, we consider it a single multidimensional trait.
The sequence and trait data correspond to the N tips
of an unknown yet estimable phylogenetic tree �. Later
we will discuss accounting for phylogenetic uncertainty,
modeling the molecular evolution process giving rise to
X and integrating it with a model for trait evolution. But
first, we explore trait evolution on a fixed phylogeny via
a diffusion process acting conditionally independently
along its branches.
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The N-tipped bifurcating phylogenetic tree � is a graph
with a set of vertices V = (V1,...,V2N−1) and edge weights
T = (t1,...,t2N−2). The vertices correspond to nodes of
the tree and, as the length of the tree � is measured
in units of time, T consists of times corresponding to
branch lengths. Each external node (tree tip) Vi for i=
1,...,N is of degree 1, with one parent node Vpa(i) from
within the internal or root nodes. Each internal node Vi
for i=N+1,...,2N−2 is of degree 3 and the root node
V2N−1 is of degree 2. An edge with weight ti connects
Vi to Vpa(i), and we refer to this edge as branch i. In
addition to the observed trait values Y1,...,YN at the
external nodes, we posit for mathematical convenience
unobserved trait values YN+1,...,Y2N−1 at the internal
nodes and root.

Brownian diffusion (also known as a Wiener process
or unbiased random walk) is a continuous-time
stochastic process originally developed to model the
random motion of a physical particle (Brown 1828;
Wiener 1958). For a multivariate Brownian diffusion
process W(t), the increment W(t2)−W(t1) of the process
starting at time t1 and ending at time t2 ≥ t1 is
multivariate normally distributed with mean 0 and
variance (t2 −t1)I, where I is an M×M identity matrix.
The process is time-homogeneous in that the variance
depends only on time differences and not on actual
time points. Brownian diffusion is also characterized
by independent increments: if t1 < t2 ≤ t3 < t4, then
the displacements W(t2)−W(t1) and W(t4)−W(t3) are
independent.

Recent phylogenetic comparative methods
(Felsenstein 1988; Revell and Harmon 2008; Vrancken
et al. 2015) aim to model the correlated evolution between
multiple traits and, to this end, employ a correlated
multivariate Brownian diffusion with displacement
variance (t2 −t1)P−1 and displacement mean 0. Here,
P is an M×M infinitesimal precision matrix that
determines the intensity and correlation of the trait
diffusion after controlling for shared evolutionary
history. Recall that in our development the different
coordinates of an M-dimensional “trait” may in fact
represent different traits, in which case the correlation
between traits can be recovered from the appropriate
coordinates of (t2 −t1)P−1. The displacement mean of
0 posits that the traits do not evolve according to any
systematic directional trend.

The Brownian diffusion process along a phylogeny
produces the observed trait values by starting at the
root node and proceeding down the branches of �. The
displacement Yi −Ypa(i) along a branch is multivariate
normally distributed, centered at 0 with variance tiP−1

proportional to the length of the branch. Therefore,
conditioning on the trait value Ypa(i) at the parent node,
we have

Yi|Ypa(i) ∼N
(

Ypa(i),tiP
−1
)
. (1)

Throughout this article, we refer to this correlated
standard Brownian diffusion model for phylogenetic
trait evolution as simply the random walk (RW) model.

An extension that introduces branch-specific mixing
parameters �i into the process that rescale ti �→�iti yields
a mixture of Brownian processes and remains popular in
phylogeography (Lemey et al. 2010).

Trends
Incorporating a nontrivial displacement mean into

the diffusion process is beneficial in several ways.
First, we can estimate and quantify directional trends.
More importantly, it enables inference of aspects of the
evolutionary process that may be poorly approximated
or completely unaccounted for by standard Brownian
diffusion. More accurate modeling of trait evolution
dynamics opens the door to better ancestral trait
reconstructions which can, for example, have important
implications for elucidating the origin and spread
of viral epidemics and ultimately improving disease
surveillance and outbreak management (Woolhouse
et al. 2015).

To model a constant directional trend, we adopt
a multivariate correlated Brownian diffusion process
with a nonzero displacement mean. This extension of
standard Brownian diffusion is known as a biased
random walk, or Brownian diffusion with drift (in the
biology literature, “trend” is often used instead of “drift”
in order to avoid confusion with genetic drift). We
replace the zero mean of the increment W(t2)−W(t1)
with the time-scaled mean vector (t2 −t1)μ, where μ is
referred to as the trend. The expected difference between
the trait values of a descendant and its ancestor is
determined by the trend vector μ and the time elapsed
between descendant and ancestor. This yields what we
will call the constant directional random walk (CDRW)
model:

Yi|Ypa(i) ∼N
(

Ypa(i) +tiμ,tiP
−1
)
. (2)

While this approach is useful for modeling a general
directional tendency, it is quite restrictive in that the
trend μ is fixed over the entire phylogeny. We can relax
this assumption by introducing branch-specific trend
vectors μi:

Yi|Ypa(i) ∼N
(

Ypa(i) +tiμi,tiP
−1
)

(3)

for i=1,...,2N−2. In the case of both constant and
branch-specific trends, we assign the root trait value a
conjugate prior

Y2N−1 ∼N
(
μ∗,(�P)−1

)
, (4)

that is relatively uninformative for small values of �.
It should be noted that trait data must generally

be observed at different times in order to estimate
a constant directional trend. In the case of an
ultrametric phylogenetic tree where the trait data
are contemporaneous, a strong prior on the trait
value at an internal node, particularly the root
node, may still enable inference of a constant trend
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(Oakley and Cunningham 2000; Slater et al. 2012a). On
the other hand, contemporaneous trait data can contain
sufficient information to infer directional trends that
vary along the tree (even without a strong prior on an
internal node trait value). As a simple example, consider
an ultrametric tree with a clade whose tips correspond
to relatively large univariate trait values while all tips
outside of the clade correspond to small trait values.

Conditioning on the trait value Y2N−1 at the root of �,
the joint distribution of observed trait values Y1,...,YN
can be expressed as

vec[Y]|(Y2N−1,P,V�,μ�

)
∼N

(
Yroot +

(
T⊗IM

)
μ�,P

−1 ⊗V�

)
, (5)

building on a similar construction for standard Brownian
diffusion (Felsenstein 1973; Freckleton et al. 2002).
Here, vec[Y] is the vectorization of the column vectors
Y1,...,YN , while IM is an M×M identity matrix, and
⊗ is the Kronecker product. Yroot is the NM×1 vector
(Yt

2N−1,...,Y
t
2N−1)t, and μ� is the (2N−2)M×1 trend

vector (μt
1,...,μ

t
2N−2)t. The N×N variance matrix V�

is a deterministic function of � and represents the
contribution of the phylogenetic tree to the covariance
structure. Its diagonal entries Vii are equal to the distance
in time between the tip Vi and the root node V2N−1,
and off-diagonal entries Vij correspond to the distance
in time between the root node V2N−1 and the most
recent common ancestor of tips Vi and Vj. Finally, the
N×(2N−2) matrix T is defined as follows: Tij = tj, the
length of branch j, if branch j is part of the path from the
external node i to the root, and Tij =0 otherwise.

Our development thus far clarifies some important
issues. First, while it is tempting to model a unique trend
on each branch, not all μi are uniquely identifiable in the
likelihood in Equation (5). Care must be taken to impose
necessary restrictions to ensure identifiability while still
permitting sufficient trend variation, and we discuss
an approach to achieve this later in the article. Second,
the variance matrix P−1 ⊗V� in Equation (5) suggests a
computational order of O(N3M3) to evaluate the density.
Repeated evaluation of (5) is necessary for numerical
integration in Bayesian modeling, and viral data sets may
encompass thousands of sequences. Fortunately, Pybus
et al. (2012) demonstrate that phylogenetic standard
Brownian diffusion likelihoods can be evaluated in
computational order O(NM2) by modeling in terms of
the precision matrix P (as opposed to the variance) and
adopting a dynamic programming approach. In the next
section, we present an adaptation of their algorithm for
our more general diffusion likelihood.

Multivariate Trait Peeling
To compute the distribution of the observed trait

values, we extend a dynamic programming approach
that is analogous to Felsenstein’s pruning method

(Felsenstein 1981) and has been employed for standard
Brownian diffusion likelihoods (Pybus et al. 2012;
Vrancken et al. 2015). The algorithm begins with the
joint density of observed trait values at the tips of � and
unobserved trait values at each of the tree’s root and
internal nodes. The marginalized density of observed
trait values can be obtained by integrating over all
possible realizations of the unobserved trait values. This
high-dimensional integration is accomplished through
a tree traversal over the root and internal nodes. When
a node is visited, we integrate out the hypothesized trait
value at that node and arrive at a partial density that is
used later in the traversal to integrate out the unobserved
trait value at another node. The partial density yielded
at a given nodal visit is the density of the trait values
at the tips descendent to that node conditional on the
unobserved trait value of the parent of the node. Each
integration amounts to integrating the product of two
such partial densities and the density of an unobserved
trait value conditional on the trait value of its parent,
and the structure of these three densities enables us
to perform the integration by computing partial mean
vectors, precision scalars, and remainder terms.

Under our Brownian diffusion process with trends, the
joint distribution of all trait values is straightforwardly
expressed as the product

P(Y1,...,Y2N−1|�,P,μ,�)=
⎛
⎝2N−2∏

i=1

P(Yi|Ypa(i),P,ti,μi)

⎞
⎠

×P(Y2N−1|P,μ∗,�), (6)

where μ= (μ1,...,μ2N−2,μ
∗). We wish to compute the

density

P(Y1,...,YN)=
∫

···
∫

P(Y1,...,Y2N−1)dYN+1 ...dY2N−1

(7)

=
∫

···
∫ ⎛
⎝2N−2∏

i=1

P(Yi|Ypa(i))

⎞
⎠

×P(Y2N−1)dYN+1 ...dY2N−1. (8)

Here, we omit dependence on the parameters
�,P,μ1,...,μ2N−2,μ∗ and � from the notation for
the sake of clarity. The integration proceeds in a
postorder traversal integrating out one internal node
trait value at a time. Let {Yi} denote the set of observed
trait values descendant from and including the node
Vi, and suppose pa(i)=pa(j)=k. Our traversal requires
computing integrals of the form

P({Yk}|Ypa(k))=
∫

P({Yi}|Yk)P({Yj}|Yk)P(Yk|Ypa(k))dYk.

(9)
Because the integrand is proportional to a multivariate
normal density, it suffices to keep track of partial mean
vectors mk , partial precision scalars pk , and normalizing
constants �k .
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Let MVN(.;κ,�) denote a multivariate normal
probability density function with mean κ and precision
�. We can rewrite conditional densities to facilitate
integration with respect to the trait at the parent node:

P(Yi|Yk) = MVN
(

Yi;tiμi +Yk,
1
ti

P
)

(10)

= MVN
(

Yi −tiμi;Yk,
1
ti

P
)

. (11)

For i=1,...,N, set normalizing constant �i =1, partial
mean

mi =Yi −tiμi (12)

and partial precision

pi = 1
ti

. (13)

Then,

P({Yi}|Yk)P({Yj}|Yk)=�i�j ×MVN(mi;Yk,piP) (14)

×MVN(mj;Yk,pjP)

=�k ×MVN(Yk;m∗
k ,(pi +pj)P)

(15)

where partial unshifted mean

m∗
k = pimi +pjmj

pi +pj
, (16)

and normalizing constant

�k =�i�j

(
pipj

2�(pi +pj)

)d/2

|P|1/2
exp

[
−pi

2 m′
iPmi − pj

2 m′
jPmj

]
exp

[
−pi+pj

2 m∗′
k Pm∗

k

] . (17)

Multiplying by P(Yk|Ypa(k)) and integrating with respect
to Yk , we get

P({Yk}|Ypa(k)) =
∫

P({Yi}|Yk)P({Yj}|Yk)P(Yk|Ypa(k))dYk

(18)

= �k ×MVN(Ypa(k);mk,pkP), (19)

where
mk =m∗

k −tkμk, (20)

and

pk = 1

tk + 1
pi+pj

. (21)

Integrating out all internal node trait values yields

P(Y1,...,YN |Y2N−1)=�2N−1 ×MVN(Y2N−1;m∗
2N−1,

(p2N−2 +p2N−3)P). (22)

For the final step, we multiply by the conjugate root prior
and integrate:

P(Y1,...,YN) =
∫

P(Y1,...,YN |Y2N−1)P(Y2N−1)dY2N−1

(23)

= �2N−1MVN(m∗
2N−1;μ∗,p2N−1P), (24)

where

p2N−1 = (p2N−2 +p2N−3)�
p2N−2 +p2N−3+�

. (25)

In practice, the algorithm visits each node in the
phylogeny once and computes partial unshifted means
m∗

k , partial means mk , partial precisions pk , and
normalizing constants �k .

Identifiability and the Relaxed Directional Random Walk
Model

Ideally, we would like to model a unique trend μi on
each branch i of the phylogenetic tree. However, such
lax assumptions open the door to misleading inferences.
Adopting the notation of the Trends section, there can
exist distinct trend vectors μ� 
=μ∗

� such that(
T⊗IM

)
μ� =(T⊗IM

)
μ∗

�, (26)

yielding identical trait likelihoods in Equation (5).
The lack of model identifiability presents an obstacle
to uncovering the “true” values of the trends that
characterize the trait evolution process.

We propose a relaxed directional random walk
(RDRW) model that allows for trend variation
along a phylogenetic tree while maintaining model
identifiability. This is achieved by having branches
inherit trends from ancestral branches by default, but
allowing a random number of specific types of trend
changes to occur along the tree. We describe the model
here and refer readers to the Appendix for a detailed
argument establishing identifiability.

We begin at the unobserved branch leading to the
root, or most recent common ancestor (MRCA), of the
phylogenetic tree � and associate with it the trend μMRCA.
Then the two branches emanating from the root node
either both inherit the trend μMRCA, or a trend change
occurs and one branch receives a new trend while
the other branch assumes the trend μMRCA. Similarly,
whenever a branch splits into two anywhere in �, either
both child branches assume the same trend as the parent
branch, or one child branch takes on a new value while
the other inherits its trend from the parent branch. Both
child branches taking on different trends than the parent
branch is not permitted.

Importantly, rather than fix the type of trend transfer
that occurs at a given node, we estimate it from the data.
The benefits of this choice are twofold. First, a trend
change is not forced when the data do not suggest a
need for one. Unnecessarily imposing a large number
of unique trends to be inferred from limited data can
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lead to high variance estimates. Second, in the event
of a trend change occurring at a node, only one of the
two child branches can assume a new trend. We let the
data determine which of the child branches assumes
the new trend. The data may support new trends on
both child branches. While our model may appear too
restrictive to accommodate such a scenario at first glance,
we are able to infer the relative support for each child,
and it is reflected in the posterior distribution in terms
of the probabilities of the two types of changes. Thus,
summaries of the posterior distribution can capture the
true nature of trend variation in spite of the identifiability
restrictions.

It is important to handle the initial trend μMRCA with
care. One option is to estimate μMRCA from the data just
as with all other trends. However, such a choice may not
be ideal for data sets that exhibit relatively long periods
of divergence from the MRCA to the sampling times.
There is generally more information about diffusion
dynamics during time periods overlapping with or close
to sampling times. Likewise, the further removed the
MRCA is from sampling times, the less information
there is about μMRCA and other trends near the MRCA.
Because of the interconnectedness of trends associated
with different branches in the RDRW model, estimates of
μMRCA and neighboring trends under such circumstances
may primarily reflect information about trends on
branches near sampling times. To mitigate misleading
inferences of trends near the MRCA, we can adopt an
initial trend μMRCA =0 and still interpret changes in trends
across the tree.

To parameterize the model, we associate a ternary
variable δk with each internal node k specifying how it
passes on its trend to its child nodes. Suppose node k
has left child node i and right child node j. If δk =−1,
then μi =μk and node j assumes a new rate μj =μk +αj.
If δk =1, then node i assumes a new rate μi =μk +αi
while μj =μk . If δk =0, then no trend changes occur and
μk =μi =μj. To map the ternary δk variables to binary
indicators γi of trend changes for child branches, we
define

γi =
1+δk

2
|δk|, (27)

and

γj =
1−δk

2
|δk|. (28)

Thus,

μi =μpa(i) +γiαi, (29)

for i=1,...,2N−2. Working with the binary γi eases our
understanding of the MCMC procedure to infer trend
changes, discussed below. However, we parameterize the
model in terms of the ternary δk to facilitate enforcement
of the model restrictions.

Of particular interest is the random number K ∈
0,...,N−1 of trend changes that occur in �. We can write

K in terms of the δi,

K =
2N−1∑

i=N+1

|δi|, (30)

and it provides us with a natural way to think of the
vector δ= (δN+1,...,δ2N−1). For example, we can express
our prior beliefs about δ in terms of K. A popular prior
for count data is the Poisson distribution

K ∼Poisson(�). (31)

Here, � is the expected number of trend changes in �. In
our analyses, we set �= log(2), which places 50% prior
probability on the hypothesis of no trend changes.

In order to infer the nature of the trend transitions that
occur at the nodes of the phylogenetic tree, we borrow
ideas from Bayesian stochastic search variable selection
(BSSVS) (George and McCulloch 1993; Kuo and Mallick
1998; Chipman et al. 2001). BSSVS is typically applied to
model selection problems in a linear regression setting.
In this framework, we begin with a large number P
of potential predictors X1,...,XP and seek to determine
which of them associate linearly with an N-dimensional
outcome Y. The full model with all predictors is

Y=X1β1 +···+XPβP +ε, (32)

where the βi are regression coefficients and ε is a vector of
normally distributed error terms with mean 0. When a
particular βi is determined to differ significantly from
0, the corresponding Xi helps predict Y. If not, Xi
contributes little additional information and is fit to be
removed from the model by forcing βi =0. Predictors
may be highly correlated, and deterministic model
selection strategies tend not to find the optimal set
of predictors without exploring all possible subsets.
There exists 2P such subsets, so exploring all of
them is computationally unfeasible in general and fails
completely for P>N.

BSSVS efficiently explores the possible subsets of
model predictors by augmenting the model state–space
with a vector δ= (δ1,...,δP) of binary indicator variables
that dictate which predictors to include. The indicators
δi impose a prior on the regression coefficients β=
(β1,...,βP) with mean 0 and variance proportional to
a P×P diagonal matrix with its diagonal equal to δ. If
δi =0, then the prior variance on βi shrinks to 0 and forces
βi =0 in the posterior. The joint space (β,δ) is explored
simultaneously through MCMC.

We apply BSSVS in our RDRW setting to determine
the types of trend transfers that occur. We achieve this
by exploring the joint space (α,δ) of trend differences
between parent and child branches, and ternary trend
change indicators. The δk map to binary indicators γi, as
shown in Equations (27) and (28). We assume that trend
differences αi =μi −μpa(i) are a priori independent and
normally distributed,

αi ∼N(0,γi�
2I). (33)
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If γi =0, then the prior variance on the components of αi
shrinks to 0. This forces αi =0, and hence μi =μpa(i), in
the posterior.

We complete our directional random walk model
specification by assigning the precision matrix P a
Wishart prior with degrees of freedom v and scale matrix
V. Importantly, the Wishart distribution is conjugate
to the observed trait likelihood. Indeed, invoking the
notation for partial means and precisions from the trait
peeling algorithm, the posterior

P(P|Y1,...,YN)∝P(Y1,...,YN |P)P(P) (34)

has a Wishart distribution with N+v degrees of freedom
and scale matrix(

V−1 +p2N−1(m∗
2N−1 −μ∗)(m∗

2N−1 −μ∗)′

+
2N−1∑

k=N+1

[pimim
′
i +pjmjm

′
j −(pi +pj)m

∗
km∗′

k ]
)−1

. (35)

Lemey et al. (2010) exploit a similar conjugacy to
construct an efficient Gibbs sampler for P, and our
adoption of the Wishart prior conveniently allows us to
extend use of the sampler to our model that now includes
estimable displacement means.

Joint Modeling and Inference
A major strength of our Bayesian framework is that it

jointly models sequence and trait evolution. It is possible
to first reconstruct a phylogenetic tree from molecular
sequence data and then condition trait evolutionary
inferences on the inferred tree. However, such an
approach ignores the error associated with phylogenetic
uncertainty. Adoption of a tree inferred exclusively
from sequence data also fails to take advantage of the
additional phylogenetic information the trait data may
provide, even though the sequence information will
generally dominate over the trait information (Baele
et al. 2016b). The extent to which traits can contribute
to adequately informing the tree will depend on their
phylogenetic signal. We note that such signal can be
quantified using various methods including one that
is implemented in the framework we focus on here
(Vrancken et al. 2015). Fortunately, Bayesian inference
provides the machinery to overcome these difficulties
by jointly estimating the phylogeny and trait and
molecular sequence evolution parameters from both
trait and sequence data. Notably, Bayesian methods
enable improved ancestral state reconstruction by
accounting for phylogenetic and evolutionary parameter
uncertainty (Ronquist 2004).

Adopting a standard phylogenetic approach, we
assume the sequence data X arise from a CTMC model
for character evolution acting along the unobserved
phylogenetic tree �. The CTMC is characterized by a
vector Q of mutation parameters that may include,
for instance, relative exchange rates among characters,

an overall rate multiplier and across-site variation
specifications. The trait data Y arise from a directional
random walk diffusion process acting on �, governed by
parameters �. A crucial assumption is that the processes
giving rise to the observed sequences and trait values are
conditionally independent given the phylogenetic tree �:

P(X,Y|�,Q,�)=P(X|�,Q)P(Y|�,�), (36)

enabling us to write the joint model posterior
distribution as

P(�,Q,�|X,Y)∝P(X|�,Q)P(Y|�,�)P(�)P(Q)P(�). (37)

We implement the joint model by integrating
our directional random walk framework for
trait evolution into the open source Bayesian
Evolutionary Analysis Sampling Trees (BEAST)
software package (Drummond et al. 2012), available at
https://github.com/beast-dev/beast-mcmc/.
BEAST provides an array of efficient methods for
Bayesian phylogenetic inference, particularly to estimate
phylogenies and model molecular sequence evolution.
For the phylogeny �, we choose from flexible coalescent-
based priors that do not make strong a priori assumptions
about the population history (Gill et al. 2013, 2016).
For sequence evolution, we have access to a range of
classic substitution models (Kimura 1980; Felsenstein
1981; Hasegawa et al. 1985), gamma-distributed rate
heterogeneity among sites (Yang 1994), and strict
and relaxed molecular clock models for branch rates
(Drummond et al. 2006).

Estimation of the full joint posterior in Equation (37)
is achieved through MCMC sampling (Metropolis et al.
1953; Hastings 1970). We employ standard Metropolis–
Hastings transition kernels available in BEAST to
integrate over the parameter spaces of Q and �. To sample
realizations of the trait evolution precision matrix P, we
adapt a Gibbs sampler developed for standard Brownian
diffusion (Lemey et al. 2010). For the RDRW model,
we need transition kernels to explore the space (α,δ)
of branch-specific trend differences and ternary trend
change indicators. We propose new trend differences
α∗

i component-wise through a random walk transition
kernel that adds random values within a specified
window size to the current αi.

For δ, we implement a trit–flip transition kernel that
chooses one of the N−1 ternary indicators δk uniformly
at random and proposes a new state δ∗

k assuming one
of the two possible values not equal to δk with equal
probability. For example, if δk =0, then

δ∗
k =

{
−1 with probability 1

2
1 with probability 1

2 .
(38)

We have parameterized our prior on δ in terms of the
number K of trend changes, and this parameterization
should be retained for the transition kernel in order to
ensure the correct Metropolis–Hastings proposal ratio
(Drummond and Suchard 2010). A proposed increase in
trend changes occurs when we choose a δk with value 0,

https://github.com/beast-dev/beast-mcmc/
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so
q(K∗ =K+1|K)= N−1−K

N−1
. (39)

If we choose a δk with a nonzero value, we propose the
other nonzero value with probability 0.5 (corresponding
to K∗ =K), and we propose 0 with probability 0.5 (which
means a decrease in rate changes, K∗ =K−1). Therefore,

q(K∗ =K|K)=q(K∗ =K−1|K)= 1
2

K
N−1

. (40)

These calculations yield the following proposal ratio for
K:

q(K|K∗)
q(K∗|K)

=

⎧⎪⎨
⎪⎩

1
2

K+1
N−1−K if K∗ =K+1

1 if K∗ =K
2(N−K)

K if K∗ =K−1.

(41)

In addition to the parameters characterizing the trait
and sequence evolution processes, we may wish to make
inferences about the posterior distribution of trait values
at the root and internal nodes, or at any arbitrary time
point in the past. We equip BEAST with the ability to
generate posterior trait value realizations at these nodes
by implementing a preorder, tree-traversal algorithm.

A popular choice to summarize the results of
a Bayesian phylogenetic analysis is a maximum
clade credibility (MCC) tree. To form an MCC
tree, the posterior sample of trees is examined
to determine posterior clade probabilities, and the
tree with the maximum product of posterior clade
probabilities is the MCC tree. The branches and
nodes in MCC tree clades can be annotated with
inferred drift rates and trait values, along with
other quantities of interest, from matching clades in
the posterior sample. Annotated MCC trees can be
summarized using TreeAnnotator, available as part of
the BEAST distribution, and visualized using FigTree
(http://tree.bio.ed.ac.uk/software/figtree/).

Model Selection
We can formally compare the CDRW and RDRW

models through Bayes factors. A Bayes factor (Jeffreys
1935, 1961) compares the fit of two models, M1 and M0,
to observed data (X,Y) by taking the ratio of marginal
likelihoods:

BF10 = P(X,Y|M1)
P(X,Y|M0)

= P(M1|X,Y)
P(M0|X,Y)

/
P(M1)
P(M0)

. (42)

BF10 quantifies the evidence in favor of model M1 over
M0. Kass and Raftery (1995) provide guidelines for
assessing the strength of the evidence against M0: Bayes
factors between 1 and 3 are not worth more than a bare
mention, while values between 3 and 20 are considered
positive evidence against M0. Bayes factors in the ranges
20–150 and >150 are considered to be strong and a very
strong evidence against M0, respectively.

Evaluation of Bayes factors has become a popular
approach to model selection in Bayesian phylogenetics
(Sinsheimer et al. 1996; Suchard et al. 2005). Marginal

likelihood estimation can be quite difficult in a
phylogenetic context, and (generalized) stepping-stone
sampling estimators have been implemented to address
this (Baele et al. 2016a). Following the approach of
Drummond and Suchard (2010), however, we are able
to straightforwardly compute the Bayes factor BFC
supporting the CDRW model MC over the RDRW model
MR. The model MC is nested within the more general
model MR and occurs when the number of trend changes
K =0. This enables us to write

BFC = P(X,Y|MC)
P(X,Y|MR)

= P(MC|X,Y)
P(MR|X,Y)

/
P(MC)
P(MR)

(43)

= P(K =0|X,Y,MR)
1−P(K =0|X,Y,MR)

/
P(K =0|MR)

1−P(K =0|MR)
, (44)

requiring only our prior probability of no trend changes
under the RDRW model, and the posterior probability
of zero trend changes.

MODEL PERFORMANCE

To evaluate the performance of the CDRW and RDRW
models, we simulate univariate trait values on the tips
of the MCC tree estimated from a data set of HIV-
1 sequences and traits that measure neutralization by
several broadly neutralizing antibodies (Euler et al. 2011).
(We analyze this data set in detail with our trait evolution
framework later in the article.) Trait values are simulated
on the tree tips according to a directional random walk
process with one or more trends. We consider three
different simulation scenarios: one with a constant trend,
and two with multiple trends. We set the diffusion
displacement variance rates to 0.13 and 0.06 for simulated
data sets with a constant trend and with multiple
trends, respectively. These are the estimated posterior
mean displacement variance rates for neutralization by
antibody VRC01 from the Euler et al. (2011) data under
the CDRW and RDRW models, respectively. For each
simulation scenario, we generate 100 simulated data sets
and analyze the data sets with the model used to generate
the data (the CDRW model or RDRW model) as well as
with the model nested immediately within it (the RW
model or CDRW model, respectively). We assess the
performance of our models by monitoring frequentist
coverage of true parameter values by 95% Bayesian
credibility intervals (BCIs). Ideally, estimated coverage
should approach the nominal coverage of 95%. Also, to
compare displacement variance rate estimates yielded
by the different models, we compute the percentage
error, which we define as

Percentage error

=100× |Estimated posterior mean rate - True rate|
|True rate| .

(45)

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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FIGURE 1. Phylogenetic tree with multiple simulated trends. Branches are colored according to different trend values. Simulation scenario
1 features a trend of 0.15 on all branches. In simulation scenario 2, red, orange, blue, and black branches have trends of 0.3, −0.5, 0.075, and 0,
respectively. Simulation scenario 3 is identical to scenario 2, except that blue branches have trends of 0.35. Trends are reported in units of trait
value units per year.

Finally, we evaluate our model selection procedure by
recording the proportional of simulants for which the
Bayes factor supports the true model in favor of the
nested model according to different thresholds.

The first simulation scenario features a constant trend
of 0.15. For the second and third simulation scenarios,
we divide the branches of the phylogenetic tree into
four different groups (Fig. 1). In the second simulation
scenario, we assign red, orange, blue and black branches
trends of 0.3, −0.5, 0.075, and 0, respectively. The third
simulation scenario is exactly like the second, except
we replace the relatively modest trend of 0.075 on blue
branches with 0.35. In this synthetic example, the trait is

abstract and is not measured in concrete units. However,
trends are generally reported in units of whatever the
trait value units are, per year.

The results (Table 1) demonstrate that the directional
random walk models do adequately well at recovering
the true model and its parameters when applied to data
simulated according to the same model. Bayes factors
express support in favor of true models over the simpler
nested models at high rates. Furthermore, coverage of
true trends and displacement variance rates is generally
close to nominal for the CDRW model in scenario 1
and for the RDRW model in scenarios 2 and 3. The
notable exception is the poor coverage of the trends on
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TABLE 1. Performance of trait evolution models on data simulated under three different simulation scenarios.
We report coverage of true trends and displacement variance rates and, for simulation scenarios with multiple
trends, the posterior mean number of trend changes. We also report Bayes factor (BF) support for the true model.

Scenario 1 Scenario 2 Scenario 3

Constant Trend Coverage (CDRW) 92 — —
Red Trend Coverage (RDRW) — 94 93
Orange Trend Coverage (RDRW) — 94 92
Blue Trend Coverage (RDRW) — 50 93
Black Trend Coverage (RDRW) — 94 95
Displacement Variance Rate Coverage (RW) 78 — —
Displacement Variance Rate Coverage (CDRW) 93 0 0
Displacement Variance Rate Coverage (RDRW) — 93 93
Percentage Error for D.V. Rate Estimate (RW) 39 — —
Percentage Error for D.V. Rate Esimate (CDRW) 22 54 65
Percentage Error for D.V. Rate Esimate (RDRW) — 26 22
Percentage of BF > 3 93 100 100
Percentage of BF > 20 62 100 100
Percentage of BF > 150 30 100 100
Mean Trend Changes (RDRW) — 2.21 3.11

blue branches in scenario 2. In the second simulation
scenario, the mean number of trend changes, averaged
over 100 simulated data sets, is 2.21. Although the RDRW
model detects the two trend changes that correspond
to the red and orange lineages, it does not identify the
trend change that corresponds to the blue lineage. This
may be due to the relatively small deviation of the 0.075
blue lineage trend from the trivial trend of 0 along black
branches. Indeed, when the blue branches are assigned
a greater trend in scenario 3, we infer a mean number
of 3.11 trend changes under the RDRW model. Finally,
in each of the three simulation scenarios, the models
under which the data were generated greatly outperform
the more restrictive nested models in estimation of
displacement variance rates. This demonstrates that a
failure to adequately model trends in the diffusion
process can lead to inaccurate displacement variance rate
estimates. We discuss this issue in more detail in the
HIV-1 phylogeography example.

THE SPREAD OF HIV-1 IN CENTRAL AFRICA

Faria et al. (2014) explore the early spatial expansion
and epidemic dynamics of HIV-1 in central Africa by
analyzing sequence data sampled from countries in
the Congo River basin. The authors employ a discrete
phylogeographic inference framework (Lemey et al.
2009a) and show that the pandemic likely originated in
Kinshasa (in what is now the Democratic Republic of
Congo) in the 1920s. Furthermore, viral spread to other
population centers in sub-Saharan Africa was aided
by a combination of factors, including strong railway
networks, urban growth, and changes in sexual behavior.

We follow up the analysis of Faria et al. (2014)
by applying our continuous directional random walk
approach to one of the data sets analyzed in their
study. The data set consists of HIV-1 sequences sampled
between 1985 and 2004 from the Democratic Republic

of Congo and the Republic of Congo and includes
96 sequences from Kinshasa (Vidal et al. 2000, 2005;
Kalish et al. 2004; Yang et al. 2005), 96 sequences
from Mbuji-Mayi (Vidal et al. 2000, 2005), 96 from
Brazzaville (Bikandou et al. 2004; Niama et al. 2006),
76 from Lubumbashi (Vidal et al. 2005), 33 from
Bwamanda (Vidal et al. 2000), 24 from Likasi (Kita
et al. 2004), 23 from Kisangani (Vidal et al. 2005), and
22 sequences from Pointe-Noire (Bikandou et al. 2000).
Sampling bias is a common obstacle in phylogeographic
analyses, and to mitigate sampling effects, Faria et al.
(2014) down-sample from the most densely sampled
location (Kinshasa, for which 422 sequences were
available). We reconstruct the spatial dynamics under
standard correlated Brownian (RW), CDRW, and RDRW
diffusion models on a MCC tree estimated from the
sequences and their locations of sampling. The traits
in this instance are bivariate longitude and latitude
coordinates, with observed trait values corresponding to
sampling locations. Table 2 reports posterior estimates of
trends.

Under the CDRW model, we infer a significant
longitudinal trend with posterior mean 0.30 degrees per
year and a 95% BCI (0.26, 0.33), as well as a significant
latitudinal trend with posterior mean of −0.09 degrees
per year and BCI (−0.11, −0.06). Furthermore, for each
coordinate the Bayes factor in favor of a CDRW model
over the RW model is greater than 1000, indicating
substantially a better fit for the CDRW model. These
results imply general eastward and southward trends
in the spread of HIV from the Kinshasa–Brazzaville–
Pointe-Noire area to other population centers. They
also reflect the composition of sampling locations: in
terms of longitude, a majority are far to the east of
the believed origin while the rest are relatively close
to it. Similarly, nearly 90% of the sequences come
from locations south of Kinshasa or from neighboring
locations of similar latitude. On the other hand, the
existence of samples from cities north of Kinshasa,
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TABLE 2. Spatiotemporal dynamics of HIV-1 in central Africa. Model comparison of RW, CDRW, and RDRW
diffusion models. We report posterior mean estimates along with 95% BCIs for trends and displacement variance
rates. Trends for latitude and longitude coordinates are reported in units of degrees per year.

RW CDRW RDRW

Trend (Lat.) — — —0.09 (−0.11, −0.06) —0.03 (—0.05, —0.01)
Trend Changes (Lat.) — — — — 28.13 (27.0, 29.0)
Variance (Lat.) 0.25 (0.23, 0.27) 0.23 (0.21, 0.25) 0.13 (0.12, 0.14)
Trend (Long.) — — 0.30 (0.26, 0.33) 0.12 (0.08, 0.16)
Trend Changes (Long.) — — — — 1.48 (1.00, 3.00)
Variance (Long.) 0.59 (0.55, 0.64) 0.37 (0.34, 0.40) 0.43 (0.39, 0.45)
Correlation −0.47 (−0.54, −0.40) −0.40 (−0.47, −0.32) −0.84 (−0.87, −0.82)

Bwamanda, and Kisangani, suggests that diffusion with
a northward trend may more accurately characterize part
of the spatial history. We explore this possibility with the
RDRW model.

Under the RDRW model, there is significant evidence
of multiple longitudinal trends. We estimate a posterior
mean of 1.48 trend changes with BCI (1, 3), and the
Bayes factor in favor of RDRW over CDRW is greater
than 1000. The posterior mean longitudinal trend across
all branches is 0.12 with BCI (0.08, 0.16). The MCC
tree (Fig. 2) consists of a green-colored clade with
inferred eastward trends of 0.18 degrees per year and
a brown-colored clade with inferred trends close to
or equal to 0. The observed and inferred longitudes
provide better understanding of the difference in trends
between the two clades. During the period 1960–2004,
there is generally greater eastward movement along the
lineages of the green clade. Although the lineages of
the brown clade show greater eastward spread during
the first half of the evolutionary history, the trends
in the two clades are driven by the trends of the
second half of the evolutionary history. The second half
accounts for a much greater proportion of tree branches
and, because it overlaps with all sampling times,
contains more information about the spatial diffusion
process.

For the latitudinal trend, we estimate 28.13 trend
changes with BCI (27, 29). Furthermore, RDRW is
supported over CDRW with a Bayes factor greater
than 1000. The overall posterior mean trend across all
branches of the MCC tree (Fig. 3) is −0.03 with BCI
(−0.05, −0.01). Notably, external branches with positive
inferred trends lead to samples from locations north of
the origin (Bwamanda and Kisangani), whereas external
branches with nonpositive trends lead to samples from
locations with latitudes south of or similar to the
origin.

Importantly, adopting a zero-mean displacement
distribution when the diffusion process is more
accurately described with a nontrivial mean can result
in inflated displacement variance rate estimates. (Recall
that the displacement variance along a branch of length
ti is tiP−1, so by “displacement variance rates,” we
mean the diagonal elements of the variance rate matrix
P−1.) By incorporating trends into the model, we are
able to disentangle the displacement mean from the

displacement variance and uncover a clearer picture of
the movement. The variance rate estimates in Table 2
illustrate this point. Including a constant trend reduces
the variance rate of the displacement of the longitude
coordinate from 0.59 to 0.37. For the latitude, on the
other hand, the variance rate decreases modestly from
0.25 to 0.23 and the BCIs of (0.23, 0.27) and (0.21,
0.25) overlap. The lack of an appreciable reduction in
variance rate may be explained by the fact that the
apparent northward trend to Bwamanda and Kisangani
remains unaccounted for by inclusion of a constant
southward trend. Indeed, by accommodating trend
changes under the RDRW model, the variance rate of
the latitudinal displacement drops to 0.13 with BCI
(0.12, 0.14).

HIV-1 RESISTANCE TO BROADLY NEUTRALIZING

ANTIBODIES

It is widely believed that a successful HIV-1 vaccine
will require the elicitation of neutralizing antibodies
(Johnston and Fauci 2007; Barouch 2008; Walker and
Burton 2008). Most neutralizing antibodies are strain-
specific and therefore not so attractive for vaccine
design (Weiss et al. 1985; Mascola and Montefiori 2010).
It is important to identify and characterize antibody
specificities that are effective against a large number of
currently circulating HIV-1 variants (Burton 2002, 2004).
Several broadly neutralizing monoclonal antibodies
have been recently isolated, including PG9 and PG16
(Walker et al. 2009), and VRC01 (Zhou et al. 2010).

Studies comparing viruses isolated from individuals
who seroconverted early in the HIV-1 epidemic to
viruses from individuals who seroconverted in recent
years have shown that HIV-1 has become increasingly
resistant to antibody neutralization over the course of the
epidemic (Bunnik et al. 2010; Euler et al. 2011; Bouvin-
Pley et al. 2013). Bunnik et al. (2010) demonstrate a
decreased sensitivity to polyclonal antibodies and to
monoclonal antibody b12. Euler et al. (2011) extend
those findings by investigating whether HIV-1 has
adapted to the neutralization activity of PG9, PG16,
and VRC01. Their results show that HIV-1 has become
significantly more resistant to neutralization by VRC01
and also provide some support for increased resistance
to neutralization by PG16.
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FIGURE 2. Maximum clade credibility tree for spread of HIV-1 in central Africa. The posterior mean longitudinal trend, in units of degrees
per year, is depicted using a color gradient along the branches. Green indicates an eastward trend while brown signifies trends close to or equal
to zero. Tree nodes are depicted as circles of different sizes. The size of each circle is determined by the longitude of the observed or inferred
location corresponding to the node. Larger circles represent more eastward locations.

These studies typically do not account for
phylogenetic dependence among the sampled viruses.
Vrancken et al. (2015) examine the data set of Euler et al.
(2011) with a Brownian diffusion trait evolution
model that simultaneously infers phylogenetic
signal, the degree to which resemblance in traits
reflects phylogenetic relatedness. They find moderate

phylogenetic signal and, through ancestral trait value
reconstruction, more evidence of decreased sensitivity
of HIV-1 to VRC01 and PG16 neutralization at the
population level.

We follow up on the analysis of Vrancken et al.
(2015) by incorporating trends into the Brownian trait
evolution. The data set comprises clonal HIV-1 variants
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FIGURE 3. Maximum clade credibility tree for spread of HIV-1 in central Africa. The posterior mean latitudinal trend, in units of degrees
per year, is depicted using a color gradient along the branches. The colors range between red and blue, with the former indicating a southward
trend and the latter a northward trend. Tree nodes are depicted as circles of different sizes. The size of each circle is determined by the longitude
of the observed or inferred location corresponding to the node. Larger circles represent more northward locations.

from “historic” and “contemporary” seroconverters
with an acute or early subtype B HIV-1 infection. The
14 historic seroconverters have a known seroconversion
date between 1985 and 1989, and the 21 contemporary
seroconverters have a seroconversion date between 2003
and 2006. The percentage neutralization is determined
by calculating the reduction in p24 production in the

presence of the neutralizing agent compared to the p24
levels in the cultures with virus only. The trait values
of interest are 50% inhibitory concentration (IC50) assay
values that summarize the percentage neutralization by
antibodies PG9, PG16, and VRC01, measured in units
of 	g/ml. We take the log-transform of IC50 values in
order to ensure that concentration values are strictly
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TABLE 3. HIV-1 resistance to broadly neutralizing antibodies. Mean
trends under CDRW, and RDRW models for log(IC50) measurements
corresponding to monoclonal neutralizing antibodies PG9, PG16, and
VRC01. Higher log(IC50) values represent lower sensitivity to antibody
neutralization, and positive trends indicate a drift over time toward
greater resistance. We report posterior means along with 95% BCIs.
Trends are reported in units of log-	g/ml per year.

Antibody CDRW RDRW

PG9 0.08 (−0.05, 0.19) 0.07 (−0.04, 0.18)
PG16 0.10 (−0.02, 0.20) 0.11 (−0.01, 0.24)
VRC01 0.15 (0.06, 0.24) 0.15 (0.09, 0.21)

positive under the diffusion process. Higher log(IC50)
values correspond to greater resistance to antibody
neutralization. For viruses with log(IC50) values that
fall outside the tested antibody concentration range, we
integrate out the concentration over a plausible IC50
interval.

First, we analyze the data with the CDRW model (see
Table 3). The results are essentially consistent with the
findings of Euler et al. (2011). For VRC01, we estimate a
posterior mean trend of 0.15 with 95% BCI (0.06, 0.24),
signaling a significant trend toward higher resistance
to VRC01 neutralization. Furthermore, a Bayes factor
of 32.33 lends strong support to the CDRW model
over the standard RW. There is not as much evidence
of a trend for PG16. On the one hand, the posterior
probability that the trend is positive is 0.953, providing
some corroboration for a decreased sensitivity to PG16
neutralization. However, we infer a mean trend of
0.10 with a 95% BCI (−0.02, 0.20) that contains zero.
Furthermore, the Bayes factor in favor of CDRW over
RW is just 1.32, showing little support for inclusion of
a trend vector. We do not detect a significant trend in
the case of PG9: the posterior mean is 0.08 with 95% BCI
(−0.05, 0.19) and the Bayes factor is 1.17.

To take a closer look, we fit the data to the RDRW
model. Along with branch-specific trends, we examine
the posterior mean trends over the entire evolutionary
history (see Table 3). First, we consider the results for
PG9 and PG16. The posterior mean trends are similar
to the inferred trends under the CDRW model, and
their 95% BCIs contain 0. There is little support for any
trend changes occurring along the phylogeny. The mean
estimated number of trend changes are 0.17 and 0.2 for
PG9 and PG16, respectively, and the Bayes factors in favor
of RDRW over CDRW are 0.19 and 0.20. Hence there is
not much evidence of localized directional trends that
differ from the overall directional trends.

We illustrate the evolutionary pattern for resistance
against VRC01 under the RDRW model in Figure 4. We
obtain a posterior mean estimate of 1.13 trend changes,
with a posterior probability of 0.88 for exactly one
trend change and probability greater than 0.99 for at
least one trend change. Furthermore, the Bayes factor
in favor of RDRW over CDRW is 359.04, providing very
strong support for RDRW. As shown in Table 4, the
displacement variance rate decreases as we move from
the RW model with no trend to the CDRW model, and

then to the RDRW model. Figure 4 shows a trend change
occurring at the common ancestral node of samples from
subjects P001 and P002. Apart from the two branches
leading to tips P001 and P002 (which we refer to as
“branch P001” and “branch P002,” respectively), the
branches have essentially identical mean trends of about
0.15 with 95% BCI (0.09, 0.21). For the blue-colored
branch P001, we have an estimated trend of 2.13 with
95% BCI (0.06, 4.89), and for the red-colored branch P002,
the estimated trend is −1.18 with 95% BCI (−4.46, 0.22).
Both estimated trends are drastically different from the
parent branch trend, and their BCIs are also much wider.
If either subject P001 or P002 is deleted from the data
set, we infer a constant, significant trend of 0.15 over the
entire evolutionary history. Notably, we do not infer any
trend changes after deleting either P001 or P002.

Under the RDRW model, situations in which both
child branches have trends that differ from the trend
of the parent branch must be handled with care. In
any given tree in the posterior sample, one of the two
branches must inherit its trend from the parent branch.
An examination of the posterior distribution of the trend
change indicator at the parent node of tips P001 and P002
reveals that branch P001 inherits the parent branch trend
with posterior probability of about 40% and branch P002
inherits the parent trend with the other 60% probability
mass. Thus, the posterior trend estimate for each of
the branches P001 and P002 averages over the cases
where it inherits the parent trend and the cases where it
differs from the parent trend. While the potentially large
departures from the parent trend are still apparent in
the “averaged” posterior estimates, it is of interest to find
out how representative they are of the true trends. It is
conceivable that the “inherited” portion of the posterior
may bias the estimate, shifting the mean and widening
the BCI. In the case of branch P002, for example, the
posterior mass near the parent trend extends the BCI
into the positive axis so that it includes zero. It is also
conceivable that the “inherited” part of the posterior
represents a part of the distribution that would show
up even without the restrictions of the RDRW model.

To elucidate the true nature of the trend change
that occurs at the parent of tips P001 and P002,
we conduct a follow-up analysis. We introduce a
new parameterization of our directional random walk
diffusion model that posits three unique trends: one each
corresponding to branches P001 and P002, and another
for all remaining branches in the phylogenetic tree. The
results, presented in Table 5, are similar to the findings
from the RDRW model. Notably, the 95% BCIs for the
trend on branches P001 and P002 still contain the range
of credible values for the parent trend. There are also
some key differences between the two analyses. The
distributions for the trend on branches P001 and P002 are
bell-shaped rather than bimodal, and the 95% BCIs are
wider than under the RDRW model. Unlike the RDRW
model estimate, the 95% BCI for the trend on branch P001
contains 0. However, it has a 0.95 posterior probability
of being positive, so there is still some support that the
trend on branch P001 is statistically significant.
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FIGURE 4. Maximum clade credibility tree depicting evolutionary pattern of HIV-1 resistance to neutralization by antibody VRC01. Subject
identifiers corresponding to tree tips are listed to the right of the tree. The posterior mean trend is depicted using a color gradient along the
branches. Positive trends correspond to a trend toward greater resistance to neutralization. The estimated posterior mean trend along the purple
colored branches that make up most of the tree is 0.15. A trend change is inferred at the common ancestor of tips P001 and P002. The red-colored
branch leading to the tip P002 has an estimated posterior mean trend of −1.18, and the blue-colored branch leading tip P001 has an estimated
posterior mean trend of 2.13. Tree tips and internal nodes are annotated with observed and inferred log(IC50) values, measured in units of
log-	g/ml. Trends are in units of log-	g/ml per year.

TABLE 4. HIV-1 resistance to broadly neutralizing antibodies. Displacement variance rate under RW, CDRW and RDRW models for log(IC50)
measurements corresponding to monoclonal neutralizing antibodies PG9, PG16, and VRC01. We report posterior means along with 95% BCIs.

Displacement Variance
Antibody RW CDRW RDRW

PG9 0.28 (0.18, 0.57) 0.26 (0.16, 0.53) 0.26 (0.17, 0.55)
PG16 0.26 (0.17, 0.51) 0.23 (0.15, 0.49) 0.23 (0.15, 0.51)
VRC01 0.19 (0.11, 0.43) 0.13 (0.08, 0.27) 0.06 (0.04, 0.14)

An examination of the MCC tree annotated with
observed log(IC50) values and inferred ancestral trait
value realizations (Fig. 4) clarifies why we infer a trend
change. Consider node triples consisting of two nodes
and their common parent node. The triple of tips P001,
P002, and their common ancestor features a relatively

large difference in trait values at the child nodes
as well as relatively short branch lengths connecting
nodes P001 and P002, to their parent. While there are
other triples with child nodes possessing a comparable
difference in log(IC50) values, they have much longer
branches leading from the parent node to the children.
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TABLE 5. Rate changes in HIV-1 drift toward resistance to antibody VRC01. We report posterior means, 95%
BCIs, and posterior probabilities that the drift >0.

RDRW Fixed-Changes
Branch Mean 95% BCI P(Drift > 0) Mean 95% BCI P(Drift > 0)

P001 2.13 (0.06, 4.89) > 0.99 2.27 (−0.36, 5.10) 0.95
P002 −1.18 (−4.46, 0.22) 0.60 −1.81 (−4.61, 1.03) 0.10
Other 0.15 (0.09, 0.21) > 0.99 0.14 (0.08, 0.20) > 0.99

Similarly, while other triples feature relatively short
branches connecting the parent to the children, the trait
values at the child nodes do not differ as much. The
unique combination of short branches coupled with a
large difference between log(IC50) values at the child
nodes explains why the trend present on most of the
tree may be incompatible with the triple of P001, P002
and their parent.

Although there is strong evidence of a trend change
at the ancestral node of samples P001 and P002, the
wide BCIs for the branch P001 and branch P002 trend
estimates suggest that they are poorly informed by the
data. The type of trend change that occurs at the ancestral
node of tips P001 and P002 also remains unclear. Subjects
P001 and P002 are a transmission couple and it appears
that one person mounted a very different antibody
response than the other to a highly similar virus. Further
research may clarify the situation. Nevertheless, we infer
a clear, significant trend toward increased resistance to
neutralization by VRC01, and it is robust to deletion
of either subject P001 or P002. At the population level,
the phylogenetic structure of HIV is “starlike,” featuring
multiple co-circulating lineages, the dynamics of which
generally reflects neutral epidemiological processes
(Grenfell et al. 2004). It is therefore notable to find
evidence of population level evolution toward increased
resistance.

DISCUSSION

Standard Brownian diffusion is a popular and,
in many ways, natural starting point for modeling
continuous trait evolution in a phylogenetic context.
On the other hand, it is very restrictive and may not
adequately describe the dynamics of the underlying
evolutionary process. Development of non-Brownian
models, such as mean-reverting Ornstein–Uhlenbeck
processes, represents a promising avenue. However,
substantial gains can also be made through building
upon standard Brownian diffusion approaches. For
example, the displacement along a branch is typically
assumed to have variance equal to the product of the
branch length and a diffusion variance rate matrix P−1,
where P−1 does not vary along the phylogenetic tree.
O’Meara et al. (2006) and Lemey et al. (2010) demonstrate
improvements by relaxing this homogeneity assumption
via branch-specific diffusion rate scalars that yield a
mixture of Brownian processes. On the other hand,
Hunt (2006) and Slater et al. (2012a) show that progress

toward a more realistic trait evolution process can also
be made by relaxing the assumption of a zero-mean
displacement to incorporate a constant directional trend.
Here, we take the development of the displacement
mean a step further by introducing a framework
that accommodates multiple directional trends. Such
development is foundational to highly general trait
evolution processes. Notably, the Ornstein–Uhlenbeck
process is nested within the diffusion process defined
by

Yi|Ypa(i) ∼N
(
β1(ti)Ypa(i) +β2(ti)μi,	(ti)

)
. (46)

Consider the special case where μi =μ for every branch,
and

β1(ti)=e−
ti , β2(ti)=1−e−
ti , and

	(ti)= �2

2


[
1−e−2
ti

]
. (47)

This is equivalent to an Ornstein–Uhlenbeck process
on the phylogenetic tree defined by the stochastic
differential equation

dYt =
(μ−Yt)dt+�dWt, (48)

where Wt is a standard Brownian diffusion process
(Hansen 1997). Here, μ can be thought of as an optimal
trait value, 
 represents the strength of selection toward
μ, and �2 is the variance of the Brownian diffusion
component. Such generality enables formal testing
between a wide class of different Gaussian process
models.

We introduce a flexible new Bayesian framework for
phylogenetic trait evolution, modeling the evolutionary
process as Brownian diffusion with a nontrivial drift. By
allowing an estimable mean vector in the displacement
distribution, we can account for and quantify a
directional trend. However, imposing a constant
rate directional trend can make for an unrealistic
approximation of the underlying process. We overcome
this limitation through the RDRW model. The RDRW
model permits trend variation along a phylogenetic
tree while maintaining model identifiability. Trends
are generally passed on from parent branches to child
branches, and variation is achieved by allowing at most
one branch of any given pair of child branches to assume
a different trend than their common parent branch.

The utility of incorporating a trend into the diffusion
is corroborated by our analyses of two viral examples.
We apply our methodology to both geographic traits in
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a phylogeographic setting as well as phenotypic traits.
Our phylogeographic analysis of the spread of HIV-1 in
central Africa confirms the findings obtained by discrete
phylogeographic inference (Faria et al. 2014). Directional
random walk models fit the data better than an unbiased
random walk (standard Brownian diffusion), and we
uncover directional trends in the dispersal of the virus
from its origin to sampling locations. We also see
that trend variation characterizes real spatiotemporal
diffusion processes. The absence of a directional trend
in the diffusion model can lead to conflation of the
latent trend with other parameters, particularly the
displacement variance. Our analysis of the spread of
HIV-1 illustrates how inferred displacement variance
rates can decrease with appropriate directional trend
modeling, revealing a clearer, more detailed picture
of dispersal dynamics. Notably, this enables improved
ancestral location reconstructions, which are widely
used in in epidemiological analyses (Pybus et al. 2015).

While it is tempting to assume trend variation and
seek out the additional insight it may provide, the data
may not support multiple trends, even when there is a
significant constant trend. Parameterizing the model to
enforce the maximal number of unique trends can result
in numerous small trend changes that are a consequence
of the modeling choice and are not necessarily driven
by the data. Our RDRW framework overcomes this
issue by inferring the locations and types of trend
changes directly from the data as opposed to making
a priori assumptions about the number of unique trends
and their appropriate assignments. Bayesian stochastic
search variable selection enables efficient exploration of
all possible trend configurations.

Although our focus has been on directional trends, a
major strength of our approach is its implementation in
the larger Bayesian phylogenetic framework of BEAST.
Through BEAST, we have access to a plethora of
different models for molecular character substitution,
demographic history, and molecular clocks. Bayesian
inference provides a natural framework for controlling
for different sources of uncertainty in evolutionary
models, including the phylogenetic tree and trait and
sequence evolution parameters, and testing evolutionary
hypotheses.

The gains from introducing directional trends into our
real data examples are encouraging, and we anticipate
that our RDRW approach will be useful in other
scenarios not examined here. For example, antigenic drift
is the process by which influenza viruses evolve to evade
the immune system, and understanding its dynamics is
essential to public health efforts. Bedford et al. (2014)
have recently developed an integrated approach to
mapping antigenic phenotypes that combines it with
genetic information. It may be fruitful to model the
diffusion of the antigenic phenotype in their framework
with the RDRW model. Also, while we have focused
on viral examples in this article, comparative studies
of morphology have largely motivated continuous trait
evolutionary modeling. An important example can by
found in the work of Hunt (2007), who examines the fit

of different evolutionary models to a sample of over 250
cases of phenotypic traits evolving along fossil lineages.
The study finds that Brownian diffusion with a constant
directional trend was more strongly supported than
standard Brownian diffusion and stasis models in only
5% of the cases. Hunt (2007) suggests that this may
be due to directional evolution typically occurring only
for relatively short durations. The RDRW model may
provide the flexibility necessary to characterize such
evolutionary scenarios.

While the RDRW framework has proven to be flexible
and useful, there is a need for continued development
of more realistic trait evolution models. The restrictive
parameterization of the RDRW model may render it
inappropriate for some evolutionary scenarios. One of
its limiting aspects is that trend changes can only occur
at phylogeny nodes. While permitting changes at nodes
has proven to be a popular technique for evolutionary
parameter variation in phylogenetic inference models,
it may be beneficial to relax this assumption to allow
trends to change between nodes. For example, Revell
et al. (2012) propose a standard Brownian diffusion
model with only two distinct displacement variance
rates in a tree and allow the single transition between
rates to occur at any position along a branch. However,
allowing trends to change more than once in such a way
results in identifiability issues in the data likelihood.
Overcoming these issues would require strong prior
information or considerable restrictions on the number
of unique trends. Another major restriction of the RDRW
parameterization is the way it forces trends to be
inherited. For example, once a trend appears anywhere
in the phylogenetic tree, the restrictions mandate that
it must be passed on and “survive” until it reaches an
external branch. From this perspective, sequences and
traits sampled throughout evolutionary history, as can
be obtained for rapidly evolving pathogens, represent
particularly interesting applications. We note that lack
of support for the survival of a specific trend may
not preclude its inclusion under the RDRW model. In
the analysis of HIV-1 resistance to neutralization, for
example, the parent branch of the two branches leading
to P001 and P002 must pass on its trend to one of these
two child branches in each tree in the posterior sample.
Yet, the branch which is forced to inherit the parent
trend alternates between P001 and P002 in the posterior
sample, reflecting the uncertainty and resulting in
posterior trend distributions for both child branches
that differ from that of their parent trend. However,
this unnatural mechanism of deflecting an unsupported
trend may contribute to misleading trend estimates.
It would be preferable to sidestep such problems by
developing alternative models that accommodate trend
variation while retaining identifiability.
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APPENDIX

Identifiability
To ensure that our results are meaningful, it is

important to understand the conditions under which
our model is identifiable. For convenience, and without
loss of generality, we assume here that traits are
one-dimensional. Following the development in the
“Methods” section, the observed trait values Y=
(Y1,...,YN)t at the tips of the phylogeny � are
multivariate-normal distributed:

P
(
Y|Y2N−1,P,V�,μ�

)
=MVN

(
Y;Yroot +Tμ�,P

−1 ⊗V�

)
. (A.1)

Here, Yroot is an N×1 vector with the root trait
value Y2N−1 repeated N times. The vector μ� =
(μ1,...,μ2N−2)t consists of branch-specific trends μi. The
N×N variance matrix V� is a deterministic function of �
and represents the contribution of the phylogenetic tree
to the covariance structure. Its diagonal entries Vii are
equal to the distance in time between the tip Vi and the
root node V2N−1, and off-diagonal entries Vij correspond
to the distance in time between the root node V2N−1
and the most recent common ancestor of tips Vi and Vj.
Finally, the N×(2N−2) matrix T is defined as follows:
Tij = tj, the length of branch j, if branch j is part of the path
from the external node i to the root, and Tij =0 otherwise.
In other words, the ith row of T specifies the path of
branches in � connecting external node i to the root.

Let V(μ�) denote the vector space of permissible
values of μ� for our model. With respect to the trend,
the model is identifiable if the equality

P
(
Y|Y2N−1,P,V�,μ�

)=P
(
Y|Y2N−1,P,V�,μ

∗
�

)
(A.2)

implies that μ� =μ∗
� . Because the trend vector appears

only in the mean of the distribution, we have an
identifiability problem if the same mean E(Y) can be

realized from different values of μ�. In other words, if
there exist μ� 
=μ∗

� such that Tμ� =Tμ∗
� . This can happen

if and only if the linear transformation T has a nontrivial
kernel. We know that

dimV(μ�)=dim ker(T)+dim range(T), (A.3)

and we also know that for any phylogeny �, T is of full
rank because its rows are linearly independent. It follows
that for the kernel of T to be trivial, we must have

dimV(μ�)≤N. (A.4)

If we allow a unique trend on each branch of �, we
have V(μ�)=R

2N−2. Therefore, we must take a different
approach.

It is illuminating to look at identifiability from the
perspective of linear equations. For a given μ�, T maps
μ� to an N×1 vector γ:

Tμ� =γ. (A.5)

Identifiability is then equivalent to the system (A.5) of N
linear equations having a unique solution.

To achieve identifiability, we introduce the RDRW
model. Starting with a trend on the unobserved branch
leading to the root node and moving down the tree
toward the external nodes, every time a branch splits into
two branches, one of two things happens. Either both of
the child branches inherit the trend of the parent branch,
or exactly one of the child branches inherits the trend
from the parent branch while the other gets a new trend.
Both child branches taking on different trends than the
parent branch is not permitted. To avoid confusion, we
continue to denote the 2N−2 branch-specific trends as
μ1,...,μ2N−2, with the understanding that they are not
all unique. We let μ∗

1,...,μ∗
K denote the unique trends,

where K ≤N.

Definition: We say that a row Ti = (Ti1,Ti2,...,Ti,2N−2) in
T is μ∗

k −dominated if its associated path from the root of
� to a tip ends with a branch with trend μ∗

k . We also refer
to the sum Tiμ� =∑2N−2

j=1 Tijμj and the path associated
with Ti as μ∗

k −dominated.

Note that each unique trend dominates at least one path.

Definition: An initial branch of the trend μ∗
k is a

branch whose parent branch has a different trend. The
unobserved branch leading to the root node is also
defined to be an initial branch.

Observe that every branch with trend μ∗
k is an initial

branch of μ∗
k or a descendant of an initial branch of μ∗

k .
A trend may have more than one initial branch. In order
to quantify how deep into the tree � a trend extends
(starting from the tips and going toward the root), we
make the following definition.

Definition: By a descendant path of a branch b, we mean a
series of connected branches, starting with a child branch
of b and ending with a branch leading to a tip. The depth
of a branch b is equal to the maximal number of branches
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in descendant paths of b. The depth of a trend μ∗
k is equal

to the maximal depth of its initial branches.

For example, if μ∗
k has one initial branch leading to a

tip, then μ∗
k has depth 0. If the number of unknowns

K is less than the number of equations N in the system
Tμ� =γ, a unique solution can be established by working
with a reduced system. We form the reduced system
by choosing K of the N rows in T, say Ti1 ,...,TiK ,
such that each is dominated by a different trend. If a
trend dominates more than one path, we choose a path
containing a maximal depth initial branch of the trend
for the reduced system.

Claim: The RDRW model is identifiable.

Proof: The reduced linear system
2N−2∑

j=1

Ti1jμj = γi1 (A.6)

2N−2∑
j=1

Ti2jμj = γi2 (A.7)

... (A.8)
2N−2∑

j=1

TiKjμj = γiK , (A.9)

consists of K equations and K variables. Therefore to
show that the solution is unique, it suffices to show
that the linear system is independent. To establish
independence, it suffices to show that if

a1

2N−2∑
j=1

Ti1jμj +a2

2N−2∑
j=1

Ti2jμj ···+aN

2N−2∑
j=1

TiKjμj =0,

(A.10)
for some constants a1,...,aK , then we must have

a1 =a2 =···=aK =0. (A.11)

Suppose Equation (A.10) holds. The idea behind the
proof is as follows: we consider all trends of depth 0,
conclude that each sum in (A.10) dominated by a trend
of depth 0 must have its corresponding coefficient ai =0,
then consider all trends of depth 1, conclude that each
sum in (A.10) dominated by a trend of depth 1 must have
corresponding coefficient ai =0, and so on until we have
gone through all possible depth values of trends in �.

Suppose μ∗
k has depth 0. Then μ∗

k only appears in the
single μ∗

k -dominated sum and cannot be canceled out by
a linear combination of the other sums. This forces the
coefficient ai of the μ∗

k -dominated sum in (A.10) to be
equal to zero. Having shown that any sum dominated
by a trend of depth 0 must have a zero coefficient in
(A.10), we can move on to the case of depth 1. Rather
than handle the case of depth 1 separately, we present a
general argument.

Suppose the coefficients of all sums in (A.10) that are
dominated by trends of depth less than m have been

shown to be zero. Consider trends of depth m. If μ∗
k

has depth m, then it appears in the μ∗
k -dominated path,

and it may appear in paths dominated by other rates.
Suppose μ∗

k appears in a path Pi dominated by a different
trend, say μ∗

i . By construction of the reduced system, Pi
contains an initial branch bi of μ∗

i of maximal depth.
This means the depth of bi is equal to the depth of
μ∗

i . Because bi is a descendant of a branch with trend
μ∗

k , the depth of μ∗
i must be less than the depth of μ∗

k .
But sums dominated by trends of depth less than m
have already been shown to have zero coefficients in
(A.10). Thus the sum associated with Pi has coefficient
zero. Because μ∗

k appears in only one sum which is
not already known to have a zero coefficient, the μ∗

k -
dominated sum, it follows that in order for (A.10) to hold,
the μ∗

k -dominated sum must also have a zero coefficient.
Therefore sums dominated by trends of depth m must
have zero coefficients in Equation (A.10).

Invoking this argument until we have gone through
all possible values of trend depth, it follows that a1 =
a2 =···=aK =0. �
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