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The purpose of this study is to describe the comprehensive commissioning process 
and initial clinical experience of the Mevion S250 proton therapy system, a gantry-
mounted, single-room proton therapy platform clinically implemented in the S. Lee 
Kling Proton Therapy Center at Barnes-Jewish Hospital in St. Louis, MO, USA. 
The Mevion S250 system integrates a compact synchrocyclotron with a C-inner 
gantry, an image guidance system and a 6D robotic couch into a beam delivery 
platform. We present our commissioning process and initial clinical experience, 
including i) CT calibration; ii) beam data acquisition and machine characteristics; 
iii) dosimetric commissioning of the treatment planning system; iv) validation 
through the Imaging and Radiation Oncology Core credentialing process, includ-
ing irradiations on the spine, prostate, brain, and lung phantoms; v) evaluation of 
localization accuracy of the image guidance system; and vi) initial clinical experi-
ence. Clinically, the system operates well and has provided an excellent platform 
for the treatment of diseases with protons.

PACS number(s): 87.55.ne, 87.56.bd
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I. INTRODUCTION

Proton therapy has been known for the capability of delivering highly precise radiation doses to 
tumor volumes while protecting healthy tissue from radiation side effects for better outcomes.(1,2) 
However, this advanced technology has not been widely accepted because of: i) cost, exceed-
ing $150 million for multiroom systems, ii) the space required to host accelerator, beamline, 
transport systems, and treatment rooms, and iii) complex delivery systems that require engineers 
specially trained and certified to run and maintain.

A compact proton therapy machine, specifically a single-room proton therapy unit, is appeal-
ing to hospitals with a population of regional patients who benefit from this technology, based 
on current clinical evidence. The benefits of a single-room system include reduced cost for  
i) the machine, ii) space, due to smaller footprint, iii) the construction and installation, and 
iv) maintenance, due to lower system complexity and power consumption. A compact system 
is much easier to integrate with the rest of the hospital geometrically and administratively, 
instead of being detached at remote location. It improves the flexibility of moving patients 
between proton rooms or from proton service to adjacent IMRT service in the event of a system 
breakdown. A compact system operates similar to a photon system as the beam is no longer 
orchestrated among multiple rooms by a team of engineers With a lower financial barrier, the 
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demand for single-room systems is expected to grow rapidly as more institutions can practi-
cally support such technology.

The world’s first single-room proton therapy system, the Mevion S250 (Mevion Medical 
Systems, Littleton, MA) was installed and commissioned in the S. Lee Kling Proton Therapy 
Center at Barnes-Jewish Hospital in St. Louis, MO, USA. The system has been in clinical opera-
tion since the December of 2013. In this study, we present the comprehensive commissioning 
process and initial clinical experience with the Mevion S250.

 
II. MATERIALS AND METHODS

The Mevion S250 system includes a synchrocyclotron (1.8 m in diameter and 22 tons in 
weight) mounted on a gantry that rotates from -5° to 185° around isocenter. A pair of annular 
superconducting coils made of Nb-Sn superconductor and a pair of shaped ferromagnetic 
poles are used to generate a solenoid magnetic field that peaks at 8.7 Tesla at the center of the 
synchrocyclotron to produce a bundle of protons with nominal energy of 250 MeV. The coils, 
hosted by a stainless steel bobbin inside a cryostat, are cooled to 4K by cyrocoolers connected 
to liquid helium. A magnetic regenerator is placed close to the extraction point to produce a 
bump in the magnetic field that disrupts the vertical focusing of protons. Angle and pitch of 
proton orbits are altered toward the extraction channel.

The unique design in mounting the synchrocyclotron on the gantry eliminates the need for a 
transportation beamline and further reduces the requirement on space. However, the output and 
energy are impacted. As the gantry rotates, the gravity on the superconducting coils can shift the 
magnetic field by tenths of a millimeter with respect to the magnetic field regenerator designed 
to deviate protons into the extraction channel. To compensate for the gantry-angle-dependent 
energy fluctuations of protons into the extraction channel, a variable-thickness wedge is intro-
duced at the entrance to the extraction channel to fine-tune the proton energy. Although this 
mechanism produces consistent mean energy output at all gantry angles, the energy spectrum 
differs slightly as protons go through various thickness of scattering material. As no energy 
selection system is present downstream in the beamline to filter out undesired energies, the 
variations in energy spectrum could have a direct impact on the monitor unit (MU) chamber 
and cause moderate output dependence on gantry angle. This effect has to be evaluated in com-
missioning, and accounted for in determination of output for each treatment field.

The beam extracted at 250 MeV is adjusted to the energy required for the treatment by 
absorber wheels that are made of graphite, and a pair of coarse energy absorber and a fine 
absorber that are made of Lexan. However, a magnetic analyzer is not present in the beamline 
to maintain a tight energy width after being degraded. This design is different from commer-
cially available models from other vendors. Its dosimetric impact needs to be evaluated at the 
entry region and distal falloff.

Twenty-four options are available for treating targets with range up to 32 cm with maximum 
field size of 14 cm, and up to 25 cm in depth with maximum field size increased to 25 cm. 
The beam-shaping system includes a first scatter with 21 steps, a pair of alternate coarse range 
absorbers, a fine range absorber, three secondary scatters and 14 range modulation wheels. 
Steps in the modulation wheels are compensated for scattering with an appropriate ratio of lead 
and Lexan. All options are categorized into three groups, “small,” “deep,” and “large,” based 
on maximum field size and range. “Small” options treat targets up to 20 cm in depth with a 
maximum field size of 14 cm and modulation width from 2 cm to the range. “Deep” options 
treat targets with depth less than 32 cm but larger than 20 cm. The maximum field size of deep 
options is 14 cm and the maximum modulation width is limited to 10 cm. The deep options are 
mainly designed for prostate treatment. “Large” options treat targets up to 25 cm in depth with 
maximum field size of 25 cm and modulation width up to 20 cm. Options in the same group 
share the same secondary scatter. The nominal SAD of the machine is 200 cm.
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A.  CT Calibration
Conversion from Hounsfield units (HU) to relative proton stopping power ratio (PSPR) plays 
a vital role in proton therapy. General perception of uncertainty of 3.5% on range is accepted 
and applied widely in proton therapy due to the uncertainty associated with CT imaging and 
conversion from HU to PSPR. It has been found that stoichiometric CT calibration is more 
precise than the tissue substitute calibration.(3) Following Schneider’s original implementation,(4) 
an electron density phantom CIRS model 062(5) (Computerized Imaging Reference Systems 
Inc., Norfolk, VA) was selected for evaluation of HU vs. PSPR due to its popular availability 
and easy access to the published data on substitutes’ composition. The phantom was made of 
an inner cylindrical part (head) and an outer ring (body). The base material of the phantom was 
water-equivalent plastic with holes to accommodate 17 inserts. The dimensions of the phantom 
were 33 cm in width and 27 cm in height. All tissue substitutes were built with physical and 
electron densities similar to the recommendations of ICRU Report 44.

To evaluate the uncertainty in our CT calibration approximately, we did an inter-institute 
comparison with the institutional calibration curves employed in three other proton institutions: 
University of Pennsylvania, MD Anderson Cancer Center, and ProCure Oklahoma. The same 
phantom with inserts in exactly the same arrangement was circulated through all participating 
institutions. After the phantom was scanned with available CT protocols for proton therapy 
in participating proton institutions, the acquired CT images and CT calibration curves were 
collected through a secure FTP server. However, CT calibration curves from all participating 
institutions could not be compared directly because the CT scanners involved in building the 
calibration curves were different in terms of manufacture, model, and energy. The PSPRs of 
the inserts were instead determined by applying the corresponding institutional CT calibration 
curves on the collected CT images, and plotted with HUs from our institution. This process 
rebuilt CT calibration curves from all participating institutions on the same CT scanner for 
direct comparison. Assuming the average of all four calibration curves the ground truth, range 
uncertainties from the variations of CT calibration were evaluated on our clinical plans. This 
process transferred variations in CT calibration into range variations. It is estimated that the 
range uncertainty is ± 0.5% from imaging and calibration, and ± 0.5% from CT conversion to 
tissue if ionization energy is excluded.(6) We expect our range uncertainty from the CT cali-
bration alone is close to that estimation. Since we were only interested in comparing PSPRs 
obtained with the active CT protocols used in the participating institutions, where the selection 
of kVp, FOV, slice thickness, and filter matched the parameters used for commissioning their 
CT calibration curves, the impact of the variations in institutional CT protocols was not studied 
and reported in this manuscript.

The CT calibration was also tracked on historic data from 2008 to 2014 using measurements 
from annual QA tests. The purpose of this assessment was to evaluate the long-term reliability 
of CT calibration for proton therapy, which, if understood, would help to decide the frequency 
of quality assurance for the CT scanner. A replacement of X-ray tube was performed in 2011, 
which offered the best opportunity to check the stability of the CT scanner.

B.  Beam Data
The general guideline for acquiring beam data for photon beam commissioning has been 
described in the report of AAPM Task Group 106.(7) Many aspects apply to proton beam com-
missioning. Two special considerations apply to the Mevion S250.

First, the acquisition time for each measurement point has to be integrated over 2.08 s in 
order to allow the beam spot to be distributed equally over a rotating range modulation wheel 
(RMW). This period, coming from the interplay between the pulse frequency and modulation 
wheel rotation, allows the beam spot to be distributed evenly on the RMW. Otherwise, significant 
measurement uncertainties would be observed. However, this increases time for data acquisition.

Second, the output dependency on gantry angle has to be measured due to the presence of a 
fine wedge that compensates for the shifting of magnets during gantry rotation.
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The beam model was commissioned in an Eclipse V11.0.30 (Varian Medical Systems, Palo 
Alto, CA), which employs a pencil-beam algorithm.(8) As all TPS commercially available use 
similar algorithms with slight differences in the modeling of Bragg peak and the calculation 
of spread-out Bragg peak (SOBP), the results and discussion in this study apply generically.

For commissioning the pencil-beam algorithm for passive scattering, four sets of measure-
ments are required. They include (i) percent depth dose in water, (ii) longitudinal profile in air 
under a open block, (iii) lateral profiles in air under a half-block, and (iv) lateral profiles in air 
without blocking.

Percent depth-dose curves were acquired using a 3D scanning tank (Blue phantom, IBA 
Dosimetry America, Bartlett, TN) at nominal source-to-surface distance (SSD) of 200 cm 
with water surface leveled at radiation isocenter, using a parallel-plate chamber (PPC05, IBA 
Dosimetry). The PPC05 chamber has a sensitive volume of 0.046 cc with 9.9 mm in diameter and 
0.6 mm in electrode spacing. An open ring aperture was used for all depth-dose measurements 
to minimize collimator scatter. The entrance window of the PPC05 is made of air-equivalent 
plastic C-552 with physical thickness of 1 mm. A shift of 2.2 mm away from the source was 
applied on the acquired depth-dose curve to account for i) 1.55 mm downstream shift of the 
effective measurement point at the inner surface of the entrance window, and ii) 0.65 mm rise 
of water surface after the moving parts holding the chamber holder submerged under the water 
surface. The dimensions of the moving parts are illustrated in Fig. 1.

The width of a pristine Bragg peak is defined at the 90% of the peak dose. Distal penumbra 
is defined as the distance from the 80% to the 20% in the distal falloff region. Both properties 
were measured and reported as they provided important information on range straggling and 
energy spread of protons.

Source size was determined by acquiring profiles in air at various distances from the 
nominal source position under half-beam block using edge detector (Sun Nuclear Corporation, 
Melbourne, FL). The diode in the edge detector had a dimension of 0.8 mm in both width and 
length, making it ideal for measuring the sharp dose gradient. The snout position for all lateral 
profiles was fixed to 40 cm. The source size was modeled as a function of residual range of 
proton, which was achieved with various nozzle-equivalent thicknesses (NET) by setting the 
modulation wheel at various steps.

Fig. 1. The dimensions of the moving parts that hold the chamber holder. There is a pair of the moving parts on both sides 
of the water tank. The dashed line indicates the water surface in our setup.
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Virtual source-axis-distance (VSAD) was determined by acquired profiles in air at transverse 
planes, 20 cm upstream from the machine isocenter, along isocenter, and 20 cm downstream 
from the machine isocenter under a square block using the edge detector.

Effective source-axis-distance (ESAD) was determined by acquired longitudinal profiles 
along the central axis using a cylindrical type ionization chamber (FC65, IBA Dosimetry). 
Measurements were taken at 11 points equally distributed around the machine isocenter on a 
span of 40 cm. The ESAD was calculated by fitting measurements according to the inverse 
square law. The ESAD was a function of residual range of proton, as well.

C.  Dosimetric commissioning
Validation measurements were taken for all 24 options using open fields. They included percent 
depth dose along the central axis and transverse profiles at various depths (middle of SOBP, 
one-third of modulation width upstream, and downstream from the middle of SOBP). Measured 
doses were compared to predictions from the TPS. We performed 1D gamma analysis using 
3%/1 mm criteria and deemed pass with results larger than 90%. The use of 1D gamma analysis 
was mainly used as a metric for evaluating the accuracy of beam modeling on SOBP except 
the distal falloff region. Any discrepancy larger than 3% on the proximal shoulder or larger 
than 5% in the entrance region was tuned by adjusting the partial shinning correction(9,10) and 
entrance region correction.

As historically noted, prediction of output and monitor unit (MU) is not supported in current 
treatment planning systems. Although our treatment planning system was fully commissioned 
to ensure accurate calculation of dose distribution, MUs are assigned to each field by explicit 
measurement. A verification plan was generated for each beam by duplicating the beamline onto 
a digital water phantom that mimicked the measurement phantom. Apertures were maintained 
and the range compensator was removed in the verification plans to eliminate the perturbation in 
dose measurement from compensator scattering. The treatment isocenter was set in the middle 
of SOBP where the dose output (cGy / MU) was measured. Measurements were performed with 
same geometry and beam parameters. A standard 10 cm × 10 cm square aperture and a 0.6 cc 
cylindrical ionization chamber were used for all measurements, except fields with radius less 
than 2 cm. Special measurements for small fields were taken with the corresponding apertures 
in place and a small cylindrical ionization chamber due to its small sensitive volume. In addi-
tion, a MU prediction model based on the work by Kooy et al.(11) was developed as a secondary 
check for measurements.(12) The input parameters of the MU prediction model were range and 
modulation width. The model predicted the output by fitting all measured data. The accuracy 
of the prediction is expected to increase with the accumulation of additional measurements.

An inhomogeneous phantom with half-bone-half-water interface was used to evaluate the 
TPS regarding heterogeneous media. The physical thickness of the bone slab was 2 cm and 
the relative stopping power ratio was 1.63. Profile was acquired on the transverse plane at the 
middle of SOBP in water with a pinpoint chamber (CC04, IBA Dosimetry). A proton field with 
range 32 cm and modulation width 10 cm was used for the test. It presented the worst-case 
scenario as the measurement plane was 27 cm from the bone-water interface, maximizing the 
width and amplitude of the heterogeneity in dose distribution.

The Imaging and Radiation Oncology Core (IROC) performed further validation via an on-
site audit as well as off-site dosimetry verification by anthropomorphic phantoms irradiation. 
The on-site visit reviewed all the aspects of our practice, including CT calibration, treatment 
planning, delivery, QA, dosimetry, and workflow. In addition, dosimetric validation was per-
formed on anthropomorphic phantoms representing four clinical sites including craniospinal, 
prostate, brain, and lung.(13,14) Irradiation of the IROC phantoms served both as an admission 
to NCI-funded cooperative group clinical trials and a stringent test of our institute’s capability 
of planning and delivering treatments with heterogeneity correctly accounted for.
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D.  Imaging guidance and 6D robotic couch
The Mevion S250 proton therapy unit is equipped with a 6D robotic couch and image guidance 
system (Verity). Setup images were provided by a pair of orthogonal planar X-ray imagers with 
sources embedded in lateral wall and floor. The patient alignment process allows corrections in 
six degrees of freedom: translation {x,y,z}, pitch, roll, and yaw {θ, ϕ, ψ}. Geometric accuracy 
of couch corrections and imaging vs. radiation isocenter coincidence were quantified before 
clinical implementation. In addition, a gantry star shot and a couch star shot were performed 
to evaluate the isocentricity of gantry and couch rotation around radiation isocenter.

A commercial phantom with 16 2 mm tungsten BBs was mounted rigidly on the couch and 
imaged with CT. Seventeen rigid translations/rotations of known magnitude were digitally 
applied to the original CT image using commercial software, initially validated with Varian’s 
OBI system. For each altered image, phantom was mounted on robotic couch in original position, 
then Verity 2D:2D match — posterior–anterior (PA), and left lateral (LLAT) — was performed 
using DRRs from the altered images. Corrections were recorded and applied. The phantom 
was imaged a second time and residual corrections recorded. Physical measurements verified 
that applied couch corrections coincided with both physical couch shifts/rotations and known 
CT image translations/rotations. Additionally, imaging vs. radiation isocenter coincidence was 
quantified over couch treatment angles (± 90° from the setup position) using radiochromic film 
and an image-guided couch star shot. The PA and LLAT kV radiographs were taken before each 
beam was delivered to verify imaging/radiation isocentricity.

 
III. RESULTS 

A.  CT calibration
Four operating proton therapy facilities participated in this study. As demonstrated in Fig. 2(a), 
reproduced CT calibration curves agreed well in general in the soft-tissue region with maximum 
deviation of 1.1% from the average, but deviated more significantly in the bone region with 
variation up to 2.8%. Range uncertainty from the deviation was determined to be 0.7% ± 0.2% 
in our lung cases, and 0.9% ± 1.2% in brain cases.

Our CT calibration curve is plotted against the one predicted by IROC from their site visit 
six months after the first patient in Fig. 2(b). Maximum deviation was measured to be only1.2%.

Calibration curves generated with annual QA data demonstrated tight variations from 2008 
to 2013, as shown in Fig. 2(c). The absolute variation (maximum – minimum) in relative stop-
ping power ratios was measured to be 0.019 in the span of six years in a hard bone insert with 
physical density of 1.25 g / cm3, or 1.27% with respect to the mean value.
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Fig. 2. Variations in the stopping power ratios (a) of the CIRS phantom from four proton institutes. The error bars indi-
cated the absolute range of the variations and the digits under the error bars were the percentage variations with respect to 
the mean values. (b) CT calibration from our institute (red) plotted against the prediction from IROC. (c) CT calibration 
generated with historic annual QA data from 2008 to 2013.

(a)

(b)

(c)
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B.  Beam data
Figure 3 shows the effective SADs, effective source sizes, and virtual SADs for all options, 
plotted against fitting curves. Options sharing the same secondary scatter were grouped into 
three distinct groups. The effective SAD ranged between 177 cm and 183 cm for large options, 
189.1 cm and 192.8 cm for deep options, and 176.8 cm and 186.8 cm for small options. The 
effective source size ranged between 1.8 cm and 2.9 cm for large options, 1.0 cm and 1.3 cm 
for deep options, and 1.3 cm and 1.5 cm for small options. The virtual SAD ranged between 
183.2 cm and 195.1 cm for large options, 187.0 cm and 190.5 cm for deep options, and 177.5 cm 
and 181.7 cm for small options.

The measured pristine Bragg peaks of all 24 options are plotted in Fig. 4. The curves were 
corrected for the beam divergence and independent of any specific beamline parameters. All 
overlapped for comparison. Widths of the pristine Bragg peaks varied between 3.9 mm and 
8.0 mm, and distal penumbra varied between 5.9 mm and 6.7 mm as plotted for all options 
in Fig. 4(b) and 4(c). Fitting curves to demonstrate the trend with options in large, deep, and 
small bands were plotted as well.

(a)

(b)

(c)

Fig. 3. Measurements were plotted against fitting for (a) effective SAD; (b) effective source size; (c) virtual SAD.
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C.  Dosimetric commissioning
Examples of SOBP measurements are plotted against TPS modeling for option 1, 13, and 18 in 
Fig. 5, each of which possesses the largest range for the large, deep, and small bands. Prediction 
from modeling agreed very well with average 1D gamma rate 95.7%, ranging between 91.8% 
and 100%. Slight discrepancies on the order of 2% were observed near the distal falloff due to 
the soft distal shoulder systematically presented for all options. Discrepancies in SOBP between 
measurements and TPS modeling are summarized in Table 1.

Examples of profile measurements are shown in Fig. 6. All measurements were taken at 
the nominal SAD. Red lines were crossline profiles for a proton beam with range 15 cm and 
modulation width 10 cm under a nondivergent block. Collimate scatter was observed on both 
shoulders at shallow depths. The magnitude of the collimator scatter tapered off with depth. 
After changing to divergent apertures with inner surface in perfect alignment with the beam 
divergence, the measured profiles (green lines) agreed very well with TPS modeling (black 
dots). The passing rate of Gamma analysis increased as well, as demonstrated in Fig. 6(d). 
Divergent apertures are now used routinely in our clinic.

Measurements on the dependence of output on gantry angles are plotted in Fig. 7. The maxi-
mum variation was measured 0.7% in large options, 1.1% in deep options, and 2.0% in small 
options. As the maximum variation was less than 1% in large options, MU was corrected for 
gantry angle only for fields involving small and deep options in our clinic.

Fig. 4. Depth-dose curves (a) of all 24 options; (b) widths of the pristine Bragg peaks plotted against fitting; (c) distal 
penumbra plotted against fitting.

(a)

(b)

(c)
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(a)

(b)

(c)

Fig. 5. Examples of SOBP measurement plotted against TPS modeling for options 1, 13, and 18; each are options with 
largest range in large, deep, and small groups.

Table 1. Summary of SOBP comparisons of measurements vs. modeling.

    Range     Range 
  Range Modulation Diff. Gamma  Range Modulation Diff. Gamma
 Option (mm) (mm) (mm) (3%/1mm) Option (mm) (mm) (mm) (3%/1mm)

 1 250 200 0.30 96.7% 13 320 100 0.28 96.6%
 2 225 200 0.13 96.5% 14 295 100 0.28 96.9%
 3 208 200 1.46 94.3% 15 270 100 0.07 96.7%
 4 187 187 0.60 96.3% 16 245 100 0.04 99.8%
 5 167 167 0.61 96.5% 17 220 100 0.26 91.8%
 6 148 148 0.60 93.6% 18 200 200 0.68 96.7%
 7 131 131 0.68 92.6% 19 177 177 1.24 99.8%
 8 114 114 0.00 93.9% 20 153 153 0.46 96.3%
 9 99 99 0.07 99.1% 21 132 132 1.27 92.9%
 10 85 85 1.07 93.5% 22 110 110 0.89 93.6%
 11 72 72 0.38 94.3% 23 90 90 0.29 95.9%
 12 60 60 0.74 100% 24 69 69 0.08 92.1%
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(a)

(b)

(c)

(d)

(e)

Fig. 6. Comparison of crossline profiles of divergent aperture, nondivergent aperture, and treatment planning at various 
depths. Noticeable differences were observed along the field edges, both inside and outside of the fields. The differences 
vanished with increased depth in water.
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Discrepancies of the output predicted by our MU prediction model and measured with the 
FC65 chamber in a water tank for the first 400 fields are plotted in Fig. 8. The maximum dis-
crepancy was measured -2.60%. The mean discrepancy was 0.53%.

Figure 9(a) shows the phantom used to evaluate dose distribution under heterogeneous con-
ditions. The measurement was taken at the nominal SAD with a depth of 27 cm in the water 
tank. Measured crossline profile under the bone–air interface is plotted against prediction from 
TPS in Fig. 9(b). Maximum discrepancy was measured to be 4.7% right under the bone–air 
interface. 1D gamma rate (3%/1 mm) for this measurement was 94.6%.

Once we hit the six-month milestone for treating patients and had treated at least three differ-
ent disease sites, the IROC Houston group performed a two-day review of our system including 
independent measurement of absolute dose, profiles and percent depth dose, and CT calibration 
curves along with imaging verification accuracy. The output measured by TLDs was within 
1% of our institution’s designated output. The beam parameters including range, modulation 
width, flatness, and symmetry were all within the tolerance. The site visit revealed no issues.

In addition, four IROC phantoms have been irradiated and deemed to pass for spine, brain, 
prostate, and lung. The phantom end-to-end testing utilized the same personnel (physicists, 
dosimetrists, and therapists) as for any patient to conduct simulation, contouring, treatment 
planning, plan review, MU measurement, QA, and delivery. The results and criteria are sum-
marized in Table 2; all deemed pass as assessed by TLD and film measurement.

Fig. 7. Angular dependency of output in large (red), deep (green), and small (blue) options.

Fig. 8. Distribution of discrepancies between our MU prediction model and measurements.
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Fig. 9. The heterogeneous phantom (a) used for validation of dose distribution. The thickness of the bone slab was 2 cm 
and the stopping power ratio was 1.63. The measured crossline profile (b) was plotted against prediction from TPS. The 
maximum discrepancy was measured 4.7%.

(a)

(b)

Table 2. Summary of IROC phantom irradiation results for spine, prostate, head, and lung.

 Phantom Location IROC-H vs. Inst. Criteria

 Spine TLD Superior 0.96 0.93-1.07
  TLD Inferior 0.96 0.93-1.07
  Location IROC-H vs. Inst. Criteria
  Center Prostate (Left) 0.95 0.89-1.03

 Prostate Center Prostate (Right) 0.94 0.89-1.03
  Film Plane Gamma Index Criteria
  Coronal 99 ≥85%
  Sagittal 100 ≥85%
  Location IROC-H vs. Inst. Criteria
  Target TLD (Right) 0.95 0.95-1.05
 Head Target TLD (Left) 0.97 0.95-1.05
  Film Plane Gamma Index Criteria
  Coronal 99% ≥85%
  Sagittal 96% ≥85%
  Location IROC-H vs. Inst. Criteria
  Target Superior 0.95 0.92-1.02
  Target Inferior 0.96 0.92-1.02
 Lung Film Plane Gamma Index Criteria
  Axial 92% ≥80%
  Coronal 88% ≥80%
  Sagittal 94% ≥0%
  Average over 3 planes 91% ≥85%
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D.  Imaging guidance and 6D robotic couch
The Verity suggested couch corrections and known CT shifts/rotations agreed within ± 1 mm 
(average: Δlat = 0.5 mm; Δvert = 0.4 mm; Δlong = 0.3 mm) and ± 0.4° (average: Δpitch = 
0.24°; Δroll = 0.01°; Δyaw = 0.10°), as demonstrated in Fig. 10. Physical couch measure-
ments and Verity applied corrections agreed within ± 1 mm (average: Δlat = 0.5 mm; Δvert = 
0.4 mm; Δlong = 0.2 mm) and ± 0.2° (average: Δpitch = 0.03°; Δroll = 0.04°; Δyaw = 0.04°). 
The directionality of all translations and rotations were qualitatively verified. Figure 11 shows 
the KV images taken for the couch star shot. The image vs. radiation isocenter coincidence 
was < 1 mm and radiation isocenter precision was < 1 mm over the 180° of couch motion, as 
indicated by film analysis. These tests are conducted monthly.

(a)

(c)

(b)

(d)

Fig. 10. Differences between Verity applied 6D couch corrections and physically measured (a) translations and (b) rota-
tions; results show accuracy is less than 1 mm and 0.2°. Differences between Verity suggested shifts/rotations and known 
CT (c) translations and (d) rotations; results show accuracy is less than 1 mm and 0.2°.
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E.  Initial clinical experience
The majority of treatments (54/100) in our proton center involved brain and central nervous 
system (CNS) out of the first 100 patients who had completed their treatments by December 
2014. Among the 54 patients, 22 were pediatric patients, of whom 8 underwent craniospinal 
irradiation (CSI) under anesthesia. Other sites that had been treated were lung (26), prostate 
(6), pelvis (4), head and neck (4), esophagus (4), and GI/liver (2). We currently treat 20–24 
patients per day and up-time for most months has been better than 95%.

 

Fig. 11. Dedicated star shot phantom kV radiographs (left) and resulting radiochromic couch star shot used for calculating 
radiation isocenter precision (< 1 mm) and distance between imaging and radiation isocenters (< 1 mm).
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IV. DISCUSSION

The commissioning process and initial clinical experience were summarized in this study. With 
the lack of an energy selection system, the Mevion S250 system utilizes a coarse absorber in 
5 mm step and a fine absorber in 1 mm step to degrade protons to designed energy all the way 
down from 250 MeV. This design simplified the system and reduced the cost while offered 
some unique features: (i) all proton fields, regardless of range, modulation width and option, 
were measured with similar distal penumbra of 6.3 mm ± 0.3 mm, and (ii) the ratio of peak 
to entrance dose is higher in Mevion S250 than other systems due to the inelastic secondary 
particles generated in the beamline.

An outlier was observed in the derived VSAD of option 24 which didn’t follow the fitted 
trend. Option 24 has the least range for all small options. We believe that this outlying data 
point was caused by the lack of lead for scatter compensation in the range modulation wheel 
exclusively used by this option. This range modulation wheel is the only one without lead in 
all 14 wheels.

Profiles were taken for a beam with range 6.9 cm and full modulation width at various 
depths to verify our modeling of VSAD for option 24. The discrepancy in field size between 
measurements and TPS prediction was less than 0.5 mm, predominantly from measurement 
noise. No systematic deviation was observed.

 
V. CONCLUSIONS

The Mevion S250 has been fully commissioned and is in clinical operation in the S. Lee Kling 
Proton Therapy Center. Its characteristics as a compact single-room unit are well suited for our 
requirements on space and budget. The KV imaging is tightly integrated with a 6D robotic couch. 
Some unique features that come with the design of the system, such as the output dependency 
on gantry angle and lack of energy selection system, have been investigated and incorporated 
into our MU model. A variety of sites have been treated, including brain and spine tumors, 
lung, and other tumor sites. We passed the four IROC credentialing phantoms, complementing 
our phantom based end-to-end testing. Clinically, the system operates well and has provided 
an excellent system for the treatment of diseases with protons.
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