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ABSTRACT
Artificial intelligence and machine learning applications 
are emerging as transformative technologies in medicine. 
With greater access to a diverse range of big datasets, 
researchers are turning to these powerful techniques 
for data analysis. Machine learning can reveal patterns 
and interactions between variables in large and complex 
datasets more accurately and efficiently than traditional 
statistical methods. Machine learning approaches open 
new possibilities for studying SLE, a multifactorial, 
highly heterogeneous and complex disease. Here, we 
discuss how machine learning methods are rapidly 
being integrated into the field of SLE research. Recent 
reports have focused on building prediction models and/
or identifying novel biomarkers using both supervised 
and unsupervised techniques for understanding disease 
pathogenesis, early diagnosis and prognosis of disease. 
In this review, we will provide an overview of machine 
learning techniques to discuss current gaps, challenges 
and opportunities for SLE studies. External validation 
of most prediction models is still needed before clinical 
adoption. Utilisation of deep learning models, access 
to alternative sources of health data and increased 
awareness of the ethics, governance and regulations 
surrounding the use of artificial intelligence in medicine 
will help propel this exciting field forward.

INTRODUCTION
Tremendous progress in our understanding 
of SLE pathogenesis, diagnosis and manage-
ment has been made over the past 75 years, 
with most studies relying on traditional 
statistical techniques to evaluate and test 
hypotheses. While these approaches are still 
widely used, many researchers are turning 
to machine learning (ML) as a complemen-
tary method for assessing patterns that are 
not readily tested using traditional statistics. 
In the last 5 years alone, there has been an 
explosion of studies that have leveraged the 
power of ML to study SLE patient identifi-
cation, risk prediction, diagnosis, disease 
subtype classification, progression, outcomes, 
monitoring and management. While it may 
seem that ML is the new shiny toy of the 21st 
century, the term ‘artificial intelligence’ (AI) 
was first described in 1955, the same year that 

antimalarial drugs were approved by the US 
Food and Drug Administration. The impact 
of AI on medicine has recently re-emerged as 
a valuable approach because of the enormous 
growth in computing power and increasing 
availability of extensive and comprehensive 
‘big data’ for analysis. As SLE researchers 
continue to amass more data on SLE, a 
complex, multifactorial and heterogeneous 
disease, traditional statistical techniques may 
no longer be the most effective or efficient 
methods, particularly in this era focused on 
precision medicine. In this review, we will 
provide an overview of ML and its current and 
future potential applications to SLE research.

WHY ML IN SLE?
Although ML and AI are often used inter-
changeably, ML is a subset of AI (figure 1). AI 
is the development of machines and systems 

WHAT IS ALREADY KNOWN ON THIS TOPIC

	⇒ Most machine learning models developed for SLE to 
date have been directed towards elucidating disease 
pathogenesis, improving diagnosis, and predicting 
disease-related outcomes.

WHAT THIS STUDY ADDS

	⇒ This study provides an overview of machine learning 
techniques to discuss current gaps, challenges, and 
opportunities for SLE research.Most SLE machine 
learning studies under-report key details of the 
model development and/or have not been externally 
validated to ensure they are effective, reliable, and 
safe to adopt into clinical practice.

	⇒ The application of more advanced machine learning 
algorithms such as deep learning and the utilisation 
of complex, alternative datasets including images, 
are increasing among SLE studies.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ As machine learning continues to provide unprec-
edented opportunities to deliver transformative dis-
coveries in SLE research and practice, researchers 
need to stay informed of the ethical, governance, 
and regulatory considerations around their use.
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that can imitate tasks that normally require intelligent 
human behaviour. ML algorithms allow computers to 
perform specific tasks by learning from the data rather 
than being explicitly programmed with instructions such 
as traditional statistical tests. Some other important differ-
ences between ML and traditional statistics are described 
in table 1. Understanding the advantages and disadvan-
tages of both approaches may help inform one’s decision 
on which methods to use. In general, if the purpose of a 
project is to create an algorithm that can make predic-
tions for a particular outcome and a large dataset is 
available, an ML approach may be a better option. If the 
purpose is to examine a relationship between variables or 
make inferences from a smaller dataset, then a traditional 
statistical model may be the better approach.

In this technological age, researchers have greater 
access to large datasets of different types of information 
on patients with SLE. Types of datasets in SLE include 
demographic, clinical, histological, genetic and immune-
related biomarkers (eg, autoantibodies, immune cell 

types, cytokines) in biological fluids, electronic medical 
records (EMR), images (eg, MRI, ultrasound) and other 
‘omics’ (eg, proteomics, metabolomics). While this pres-
ents an important opportunity to study a remarkably 
heterogeneous and complex disease like SLE, the volume 
and density of data can also make it challenging to draw 
statistical inferences from large datasets, especially given 
the potential to identify false positive associations. Hence, 
ML is a more efficient and accurate approach to under-
standing the patterns in complex datasets.

The more technical aspects of ML as they apply to 
systemic autoimmune rheumatic diseases are reviewed 
in greater detail elsewhere.1–5 In brief, the ML categories 
that are often applied to study medical data are super-
vised and unsupervised. In supervised ML, or a task-
driven approach, a ‘training dataset’ is used to develop an 
algorithm to recognise patterns that are associated with 
‘labels’. This algorithm is then tested in a ‘test dataset’ 
to see how well it performs. In unsupervised ML or a 
data-driven approach, the training data are ‘unlabeled’, 

Figure 1  Categories of machine learning. Machine learning is a type of artificial intelligence. Within machine learning, there are 
three main categories: supervised, unsupervised and reinforcement learning. Deep learning is a subtype of machine learning 
that can involve supervising, unsupervised or reinforcement learning. Within each category, there are many different types of 
machine learning algorithms. Many factors can influence the choice of a specific algorithm. These include amount and type of 
data (eg, if images or videos are included in the data, a neural network will probably be preferred); how important interpretability 
is to your context (eg, decision trees or regression models are typically more interpretable, although this is an active area of 
research); and any computer memory or computational restriction. As no particular model consistently performs better than 
the others, it is typical to develop several models using multiple algorithms and then compare their performance using different 
metrics. CNN, convolutional neural network; CVD, cardiovascular disease; LASSO, least absolute shrinkage and selection 
operator; RNN, recurrent neural network.
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and the algorithm attempts to identify patterns within 
the dataset. In addition to supervised and unsupervised 
ML, another less commonly applied type of ML is called 
reinforcement learning. This type of ML is based on trial 
and error, with ‘reward’ or ‘punishment’ driving the 
learning process and skills acquisition. Within the three 
ML categories, a variety of ML algorithms exist, such 
as deep learning algorithms based on artificial neural 
networks (ANN), a modality that involves multiple layers 
of connected data, which can recognise complex patterns 
across different types of data, including images, video, 

and acoustic data. As we will discuss later, most ML studies 
in SLE employ both supervised and unsupervised models.

To determine which ML model to use, researchers 
consider several important factors including the charac-
teristics of the input data (labelled vs unlabelled), the 
desired outcome (predicting a category or quantity), 
the modality of the data (eg, text, image) and volume 
of input data (figure 1). It is common to employ several 
algorithms and then compare their performance using 
different metrics to select the best model. For supervised 
models, it is ideal to assess the sensitivity, specificity, posi-
tive predictive value, negative predictive value, accuracy, 
F-score and area under the receiver operating character-
istic curve (AUC), although particular emphasis may be 
placed on a subset of metrics depending on the context. 
The F-score is a single metric that combines the sensi-
tivity and the positive predictive value of a model, and a 
high F-score requires good performance by both of those 
metrics. In traditional statistics, this is often referred to as 
the accuracy or line of best fit, but with ML, the F-score 
may be better suited to assess the training of a model. For 
unsupervised clusters, several techniques exist to ensure 
the number of identified clusters accurately reflects the 
data. These include the elbow method,6 the Bayes infor-
mation criterion7 or a gap statistic.8 Once satisfied, statis-
tical differences between clusters can be assessed using 
traditional methods, such as χ2 tests or analysis of variance.

Building and evaluating the ML models occur as the 
final steps of an established ML pipeline (figure 2). After 
the data are collected, it is preprocessed (data cleaning, 
filling in missing data, etc), followed by data splitting, 
feature importance evaluation and selection, and then 
finally the ML models are built and evaluated. Feature 

Table 1  Key differences in machine learning and traditional 
statistical approaches

Machine learning Traditional statistics

Large dataset. Small to mid-sized dataset.

Low interpretability. High interpretability.

Can include 10s–1000s of variables in 
a single model.

Limited in number of variables 
included in a single model (<10).

Certain models have considerable 
flexibility around data distribution and 
can model many different types of 
non-linear relationships.

Often assumes normality of data and/
or linear relationships.

Can tailor which performance 
parameter to maximise (accuracy, 
sensitivity, etc).

Maximises accuracy.

Uses a portion of the data to develop 
the model.

Uses all available data to develop the 
model.

Can capture patterns across multiple 
variables.

Limited ability to capture patterns 
across multiple variables (interaction 
terms).

Can adjust the generalisability/
penalty for the coefficients to prevent 
overfitting.

Unable to adjust the generalisability/
penalty for the coefficients to prevent 
overfitting.

Figure 2  Machine learning pipeline with consideration of the ethical, governance and regulation issues at every stage before 
clinical adoption of the model.
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selection is a process that allows the researcher to identify 
the best set of features that will help build optimised ML 
models (reviewed in ref 9). Feature selection is typically 
used with supervised algorithms, while dimensionality 
reduction is used in unsupervised clustering. Reports 
often use multiple supervised and unsupervised feature 
selection methods together. Examples of feature selec-
tion include recursive feature elimination,10 least abso-
lute shrinkage and selection operator (LASSO)11, and 
support vector machines (SVM).12 These methods help 
identify covariables that are of greatest clinical and statis-
tical importance.

ML REPORTS IN SLE
A scoping review was performed to summarise the major 
ML reports of SLE to date. A PubMed search of ‘lupus’ 
and ‘machine learning’ Medical Subject Heading terms 
was performed on 24 November 2023 (figure  3). One 
hundred and ninety-one publications from 1992 to 2023 
were identified, of which 133 were original reports. The 
remaining publications were review articles or unre-
lated topics (eg, not SLE, non-human, not ML). Over 
the last 31 years, there has been an exponential increase 
in the number of ML and SLE-related publications, 
similar to trends reported in other autoimmune rheu-
matic diseases.1 5 13 As this was not a systematic review, 
we acknowledge that we may have omitted some studies 
related to ML and SLE. However, we believe that we have 
captured most publications allowing for an accurate 
representation of the field and an in-depth discussion in 
our paper.

As ML research becomes increasingly recognised and 
valued in SLE, it is imperative that it is conducted in a 
methodologically rigorous manner to yield meaningful 

and useful results to relevant stakeholders and end users. 
Since ML methods are relatively new to the field, assessing 
the quality or technical aspects of these reports may be 
challenging to most non-ML researchers. A recent system-
atic review by Munguía-Realpozo et al14 assessed 45 SLE 
reports that used ML to build diagnostic and/or predic-
tive algorithms and determined whether they adhered to 
the Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis (TRIPOD) 
reporting standards.15 The review concluded that most 
reports were deficient in multiple domains of the TRIPOD 
recommendations, often under-reporting relevant details 
about their data preprocessing, model-building process, 
model specification and model performance.

In this scoping review, we will discuss ML approaches 
used in SLE reports following the outline of an ML pipe-
line (figure  2). While the aim of the study was not to 
systematically evaluate the reporting adherences of these 
reports, in general, we found similar limitations identi-
fied by Munguía-Realpozo et al.14 This highlights that 
there is a need to improve transparency and reporting of 
prediction models in future ML SLE studies.

Data collection
Given that SLE is an uncommon disease, it was not unex-
pected that the sample sizes for most reports (median 
158 patients with SLE (IQR 61–681)) were relatively 
small. Overfitting and inappropriate generalisation from 
a small training dataset are important limitations of ML.16 
Twenty-five (18.7%) reports evaluated greater than 1000 
patients and seven (5.2%) reports assessed greater than 
5000 patients. Most of these larger reports used EMRs 
and administrative databases to identify patients with 
SLE, recognising that these types of data may be limited 

Figure 3  Number of SLE-related studies using machine learning methods. There has been an exponential growth of reports 
over the past 31 years based on PubMed database of publications when we searched ‘machine learning’ and ‘lupus’. The 
majority of reports were related to diagnosis (including neuropsychiatric and dermatological manifestations), followed by 
disease activity (including renal flares, extrarenal flares and treatment response), complications, pathogenesis, and mixed 
reports.
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by diagnostic misclassification.17–21 Many reports experi-
enced ‘class imbalance’, where the SLE group sample size 
was considerably smaller compared with healthy controls, 
potentially biasing ML in favour of the more prevalent 
class. To address this, some reports used generative adver-
sarial networks22 23 and Synthetic Minority Oversampling 
TEchnique (SMOTE)20 24 to generate synthetic data.

The data density for most SLE reports does not derive 
from the patient cohort size but from the large number of 
variables on each patient considered for the ML models. 
Types of data used included demographic (n=43 reports) 
and clinical (n=51) data from cohort registries and 
several using EMRs (n=13). Data from biopsies included 
renal (n=6) and lymph node tissue (n=1). Biomarker data 
included autoantibodies (n=37), immune cell subtypes 
(eg, CD4+ and CD8+ T cells) (n=26) and other immune 
markers (eg, complement levels, platelet counts) (n=24), 
cytokines (n=8), genetics and transcriptomics (n=47), 
urinary markers (n=9), proteomics (n=5) and lipidomics/
metabolomics (n=11). The application of ML to genetics 
and transcriptomics (eg, RNA sequencing (RNA-seq)) is 
particularly popular, largely due to the flexibility of ML 
for managing the vast amount of data obtained from each 
patient. The feature selection and dimensionality reduc-
tion techniques of ML offer a means to handle the large 
number of potentially relevant covariables. Alternative 
datasets included images (brain MRI for neuropsychi-
atric SLE (NPSLE) (n=9), clinical images of cutaneous 
lupus erythematosus (LE) (n=1) and funduscopic images 
for lupus retinopathy (n=1)), EKG abnormalities (n=1) 
and meteorological/environmental indicators (eg, air 
humidity, air pressure, sulfur dioxide, nitrogen dioxide, 
particle pollution from fine particulates) (n=2).

Data preprocessing and splitting
As identified by Munguía-Realpozo et al,14 handling 
of missing data was a major limitation of SLE reports. 
Median imputation and removal of data to use complete 
cases were common methods. Four reports used multiple 
imputation by chained equations,25 a more advanced 
imputation methodology, and six reports used SMOTE24 
to address class imbalance with respect to missing data. 
Some ML models such as extreme gradient boosting 
(XGBoost)26 are able to address missing data due to 
built-in imputation functions.

Accurate data labelling is particularly important for 
diseases that are heterogeneous with a fluctuating and 
variable disease course, such as SLE. Identification of SLE 
cases using EMRs may be inaccurate and inefficient as it 
relies on coding systems such as the International Clas-
sification of Diseases (ICD), which historically has poor 
diagnostic specificity.27 Similarly, identification of SLE-
related manifestations may be challenging given the wide 
range of features and lack of specific administrative codes 
for different phenotypes of presentation. Some manifes-
tations are difficult to distinguish between primary and 
secondary features of SLE, for example, NPSLE versus 
secondary to other conditions (eg, infections or metabolic 

disturbances). Regardless of whether a model was devel-
oped through traditional means or by ML, any errors in 
data labelling in the preprocessing stage that are then 
used to train the model will continue to mislabel future 
cases. To overcome this, one ML SLE study used a tech-
nique called ‘noisy labeling’, where the training labels 
were created using EMR data based on a threshold of 
multiple ICD-9 codes, followed by model testing against 
expert clinician-labelled data with good performance 
metrics.28

Most reports split a single dataset into three groups: 
training, validation, and a testing set. While this is an 
acceptable approach to internally validate a model, an 
external validation dataset with an independent cohort 
of patients is needed to ensure replicability and generalis-
ability of the model before clinical adoption and to assess 
the degree of potential model overfitting.29 We discuss 
external validation separately below.

Feature selection and dimension reduction
Feature selection methods were primarily random forest 
(RF) (n=41), followed by LASSO (n=21), and SVM 
(n=16). Several reports also used filter methods such as 
relief-based feature selection (n=7) and mutual infor-
mation (n=2), which were often performed in reports 
that used genetic datasets. Dimensionality reduction 
techniques were applied (n=32), which included prin-
cipal component analysis (PCA) (n=19), t-distributed 
stochastic neighbour embedding30 (n=9), and Uniform 
Manifold Approximation and Projection31 (n=7).

Model development
Most reports (n=102) developed one or more predic-
tion algorithms. The remaining reports (n=31) focused 
only on the identification of SLE clusters or features, for 
example, biomarkers. For supervised models, the most 
common technique was RF (n=49), followed by SVM 
(n=42), logistic regression (LR) (n=42), ANNs32 (n=24), 
XGBoost (n=20), LASSO (n=17), decision trees (n=16), 
Naïve Bayes33 (n=14), and k-nearest neighbour (n=13). 
A few reports used a gradient-boosted tree,34 classifica-
tion and regression tree35 and light gradient-boosting 
machine.36 For unsupervised models, primarily clus-
tering and dimensionality reduction were performed, 
for example, hierarchica (n=9) and k-means clustering 
(n=9).

There was an increasing number of SLE reports using 
deep learning methods over time; in this review, 34 
such reports were identified. Most of the reports (n=23) 
included a simple neural network with one or two hidden 
layers as a comparison between other techniques. As 
little hyperparameter optimisation was done, these ANNs 
often were outperformed by models such as RF, SVM 
and XGBoost. Even with tasks such as natural language 
processing which commonly use deep learning models 
like recurrent neural networks (RNN),32 one study found 
that RF outperformed deep learning models when proper 
preprocessing and feature selection were performed.37
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RNN and its derivatives (long short-term memory 
(LSTM)38 and gated recurrent unit)39 are typically used 
in natural language processing, time series data and large 
image data. In terms of SLE reports, these models were 
used to analyse EMR data for hospitalisation risk20 40–42 
and image data for SLE diagnosis.43 44 However, no report 
in our review used large language models and attention 
to text data was uncommon, highlighting the need for 
more complex models in analysing text data from elec-
tronic health records.

Five reports used convolutional neural networks 
(CNN)45 on image data with topics ranging from NPSLE 
diagnosis from MRI images,46 diagnosis of SLE retinop-
athy from funduscopic images,23 diagnosis of cutaneous 
lupus from lesion images,47 segmentation of staining 
from lupus nephritis (LN) pathology images48 and 
segmentation of glomeruli on LN biopsy images.43 Three 
of the reports used a deep learning technique called 
Grad-CAM49 that identifies the region of an image that will 
contribute the most to the final model. As SLE imaging 
data can be challenging to obtain with large enough 
numbers for robust ML reports, an ML technique called 
transfer learning was used to create powerful discrimina-
tive models, even with sparse data. Four reports in this 
review used this method to work with the smaller data-
sets.23 43 47 48 Liu et al23 posited that transfer learning using 
diabetic retinopathy funduscopic images could serve as a 
strong base model for lupus retinopathy prediction as the 
base model would be more ‘accustomed’ to pathological 
fundus images. This principle could be applied to other 
areas of SLE research such as the diagnosis of cutaneous 
LE through images of other skin lesions from similar but 
more common diseases including psoriasis.

Model evaluation
The approach taken by most reports was to develop 
multiple ML models and then select the best model, 
usually based on the AUC. Other performance metrics 
including the F-score were not always used or even 
reported. This is similar to the findings by Munguía-
Realpozo et al, where only 21 (46.7%) reported AUC as 
their main performance metric, seven (15.6%) reported 
accuracy as their performance metric and the remaining 
used a combination of performance statistics.14 Five 
(11.1%) reports in their review did not report any perfor-
mance metrics.

In our review, RF (n=25), SVM (n=16), XGBoost 
(n=10), LR (n=10) and LASSO (n=7) models were often 
reported as the best performing models, compared with 
more complex models like ANNs (n=4), LSTM (n=3) 
and CNN (n=2). As many of the datasets of the reports 
included in this review have features on the scale of 100s, 
we expect that simpler models would perform better 
compared with gradient boosting and neural networks 
that require larger datasets, and where performance 
is enhanced with multiple layers of data. Additionally, 
models such as RF and LASSO have capabilities for 
feature importance, which helps with explainability such 

as identifying important clinical and genetic biomarkers 
for future research.

External validation
Overfitting of ML models to the training datasets 
should be evaluated using optimism-adjusted measures. 
Although these can be approximated using internal vali-
dation (eg, data splitting), they are more robustly assessed 
using external validation from a separate data cohort. 
This step ensures that the developed ML model is gener-
alisable beyond the collected data alone. Only 15 reports 
in our review specified that they evaluated their model 
using an external cohort. External validation is particu-
larly relevant for complex ‘black box’ ML models such as 
deep learning. In deep learning, the internal processes of 
the model are usually unknown or ‘hidden’. This makes 
it difficult to assess whether certain model features could 
be subject to selection or other biases that may affect the 
generalisability of the model.50 51

KEY SLE FINDINGS BY ML REPORTS
In our scoping review, ML models were 
used to elucidate disease pathogenesis 
(n=31),48 52–81 predict SLE diagnosis and identify cases 
(n=61),23 28 37 43 44 46 47 53 63 70 73 79 82–130 disease activity and 
treatment response (n=33),56 59 63 66 69 74 77 78 101 106 113 131–152 
complications (n=22)18 21 40 53 83 147 153–168 and healthcare 
utilisation (n=6)17 20 41 42 142 169 (table 2). Refer to online 
supplemental table 1 for a glossary of key terms.

Pathogenesis
Among the reports that examined SLE pathogen-
esis, many used genetic and RNA-seq datasets. Novel 
markers identified by these reports include ST8SIA4,57 
CMTM4,57 C2CD4B,57 LCK,69 cuproptosis-related genes,72 
TNFSF13B,79 OAS1,79 ABCB1,81 CD247,81 DSC1,81 
KIR2DL381 and MX2.81 Immune-related biomarkers 
including autoantibodies, immune cell subtypes and 
cytokines were also analysed. These were often combined 
with other clinical features to reveal unique SLE endo-
types via cluster analysis.62 63 70 74 75 80 Important immune 
pathways were identified including extrafollicular B cell 
involvement,54 DNA methylation,65 expansion of major 
helper T cell subsets and unique proliferating (Ki-67+) 
immune cell subsets,76 and signalling lymphocytic acti-
vation molecule family receptors on peripheral blood 
mononuclear cells.64

Diagnostic models
SLE diagnostic models were used to identify patients with 
SLE compared with healthy controls and from other auto-
immune rheumatic diseases (eg, rheumatoid arthritis, 
Sjögren disease, systemic sclerosis, multiple sclerosis), 
Kikuchi disease and other forms of nephropathy for 
LN reports23 28 37 43 44 47 53 63 70 79 82–121 (AUC 0.70–0.99). A 
validated diagnostic algorithm called the SLE Risk Prob-
ability Index (SLERPI) was developed using LASSO-LR 
based on 14 SLE clinical and serological features.84 

https://dx.doi.org/10.1136/lupus-2023-001140
https://dx.doi.org/10.1136/lupus-2023-001140
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A SLERPI score of greater than 7 was highly accurate 
(94.2%) and sensitive for detecting early disease (93.8%) 
and severe manifestations including kidney (97.9%) and 

neuropsychiatric involvement (91.8%). There were also 
specific diagnostic algorithms for LN,85 107 112 117 118 122 
NPSLE44 46 100 102 109–111 121 123–130 and cutaneous LE.47 73 

Table 2  Key SLE findings in machine learning studies

Type of study References Type of dataset Types of machine learning models

Pathogenesis Endotypes, immune dysregulation, genetic 
risk48 52–81

Autoantibodies, clinical, cytokines, 
demographic, EMR, genetics, images (renal 
histopathology slides), immune cell types, 
urinary biomarkers

ANN, CART, CNN, decision tree, ElasticNet, GLM, 
gradient tree boosting, hierarchical clustering, 
k-means, KNN, LASSO, LR, Naïve Bayes, PCA, 
RF, RFE, ridge regression, SHAP, SMOTE, SVM, 
t-SNE, UMAP, XGBoost, other

Diagnosis Differentiate between healthy controls, other 
autoimmune diseases (rheumatoid arthritis 
and systemic sclerosis)23 28 37 43 44 47 53 63 70 

79 82–121

Autoantibodies, biopsy, clinical, demographics, 
EMR, genetics, other immune markers 
and cell subtypes, other omics, images 
(MRI, funduscopic images), protein, urinary 
biomarkers

AdaBoost, ANN, CART, CNN, decision tree, GLM, 
gradient tree boosting, hierarchical clustering, 
KNN, k-means, LASSO, LDA, LGB, LR, Naïve 
Bayes, natural language, noisy labelling, PCA, RF, 
RFE, ridge regression, RNN, SHAP, SMOTE, SVM, 
XGBoost, UMAP, other

Lupus nephritis85 107 112 117 118 122 Autoantibodies, biopsy, clinical, cytokines, 
demographics, EMR, genetics, immune cell 
types, lipidomics, metabolomics, urinary 
biomarkers

ANN, CART, decision tree, hierarchical clustering, 
KNN, LASSO, LDA, LR, Naïve Bayes, RF, RFE, 
SVM, other

Neuropsychiatric SLE including anxiety, 
depression, cognitive impairment44 46 100 102 

109–111 121 123–130

Autoantibodies, clinical, demographic, immune 
cells, 1H-MRS images, metabolites, MRI 
images, proteins

AdaBoost, ANN, CNN, decision tree, ELM, GLM, 
gradient descent, gradient tree boosting, GRU, 
hierarchical clustering, k-means, KNN, LASSO, 
LR, LSTM, Naïve Bayes, natural language, PCA, 
RF, RFE, ridge regression, RNN, SHAP, SVM, 
XGBoost, other

Cutaneous47 73 Cytokines, images, immune cells, genetics CART, CNN, gradient descent, hierarchical 
clustering, LR, Naïve Bayes, RF, SMOTE, SVM, 
other

Disease 
activity

Renal flares131–136 Autoantibodies, biopsy features, clinical 
characteristics, cytokines, demographics, 
genetics, renal ultrasonic radiomics, urinary 
biomarkers

ANN, CART, LASSO, LR, RF, RFE, SVM, XGBoost

Extrarenal flares, SLEDAI score59 63 66 101 106 

113 137–148
Autoantibodies, biometrics data, clinical, 
demographics, EMR, genetics, immune cell 
subtypes by PBMC scRNA-seq, patient-
reported outcomes, meteorological data, other 
omics, proteomics, quality of life

Adaptive boosting, ANN, Bayesian network, CART, 
consensus clustering, decision tree, ElasticNet, 
GLM, gradient tree boosting, hierarchical 
clustering, k-means, KNN, LDA, LGB, LR, 
multivariable ordinal regression, Naïve Bayes, NLP, 
PCA, ReliefF model, RF, ridge regression, SHAP, 
SMOTE, SVM, t-SNE, UMAP, XGBoost, other

Treatment response56 69 74 77 78 113 131 132 134 139 

142 149–152
Autoantibodies, biopsy, clinical, cytokines, 
demographic, genetics, immune cells, urine

ANN, CART, consensus clustering, decision tree, 
GLM, hierarchical clustering, k-means, LASSO, 
LDA, LR, Naïve Bayes, PCA, PLS-DA, ReliefF, 
SMOTE, SVM, t-SNE, XGBoost

Disease 
complications

Organ damage40 Autoantibodies, clinical, demographics, EMR ANN, LR, RNN

Atherosclerosis, cardiovascular events, 
arrhythmia, heart failure18 153–159 168

Carotid intima thickness, clinical, demographics, 
EKG, EMR, genetics, lipids/metabolites

ANN, consensus clustering, decision tree, 
hierarchical clustering, KNN, LASSO, LDA, LR, 
multivariate adaptive regression spline, PCA, PLS-
DA, RF, SMOTE, SVM

Antiphospholipid syndrome/thrombosis21 53 Autoantibodies, clinical, demographic, genetic Hierarchical clustering, KNN, LASSO, LR, Naïve 
Bayes, RF

Adverse pregnancy outcome147 160–162 Autoantibodies, clinical, demographic, genetic, 
metabolites

ANN, decision trees, ElasticNet, gradient descent, 
hierarchical clustering, KNN, LASSO, LDA, LR, 
PCA, PLS-DA, RFE, RF, super learner, SVM

Renal transplant163 Autoantibodies, clinical, demographic, genetic, 
images

ANN, ‘bestfire’ feature selection, decision tree, 
‘genetic search’ feature selection, LR

Other: hypothyroidism, herpes, breast 
cancer, joint erosion83 164–167

Clinical, demographic, immune cells, 
autoantibodies

ANN, decision tree, hierarchical clustering, KNN, 
LASSO, LR, RF, RFE, SVM, UMAP, XGBoost, other

Healthcare 
resource 
utilisation

Hospitalisation and costs17 20 41 42 142 169 Administrative database, clinical, 
demographics, EMR

ANN, decision tree, ElasticNet, GRU, hierarchical 
clustering, k-means, KNN, LASSO, LR, LSTM, 
Naïve Bayes, natural language processing, RF, 
RFE, RNN, SHAP, SMOTE, XGBoost, other

ANN, artificial neural network; CART, classification and regression tree; CNN, convolutional neural network; ELM, extreme learning machine; EMR, electronic medical record; GLM, 
generalised linear model; GRU, gated recurrent units; 1H-MRS, proton magnetic resonance spectroscopy; KNN, k-nearest neighbour; LASSO, least absolute shrinkage and selection 
operator; LDA, linear discriminant analysis; LGB, light gradient-boosting machine; LR, logistic regression; LSTM, long short-term memory; NLP, natural language processing; PBMC, 
peripheral blood mononuclear cell; PCA, principal component analysis; PLS-DA, partial least squares discriminant analysis; RF, random forest; RFE, recursive feature elimination; RNN, 
recurrent neural network; scRNA-seq, single-cell RNA sequencing; SHAP, SHapley Additive exPlanations; SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; SMOTE, 
Synthetic Minority Oversampling TEchnique; SVM, support vector machine; t-SNE, t-distributed stochastic neighbour embedding; UMAP, Uniform Manifold Approximation and 
Projection; XGBoost, extreme gradient boosting.
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Cases of SLE28 98 114 and births from mothers with SLE87 
could also be derived from EMR using ML.

Reports using genomic and genetic expression datasets 
identified several important biomarker for LN including 
C1QA, C1QB, MX1, RORC, CD177, DEFA4, and HERC5 
for LN.118 For non-renal SLE, FOXP3,88 MX2,106 HLA-
DQA1,90 HLA-DQB1,90 HLA-DRB1,90 neutrophil extracel-
lular trap-related genes (HMGB1, ITGB2 and CREB5),70 
ABCB1,120 IFI27120 and PLSCR1120 have been reported. 
Other types of biomarkers included proteomics (IFIT3, 
MX1, TOMM40, STAT1, STAT2 and OAS3),101 metabolo-
mics,91 lipidomics94 and microRNA profiles.108

For the detection of LN, novel serum biomarkers as 
a form of ‘liquid biopsy’ included circulating cell-free 
methylated DNA.117 For NPSLE, different T and B cell 
subsets predicted depression in patients with SLE.127 128 
Proteomics using cerebrospinal fluid demonstrated that 
CST6, L-selectin, Trappin-2, KLK5 and TCN2 could distin-
guish NPSLE from SLE controls (non-NPSLE).124 Other 
reports using single-cell RNA sequencing data compared 
biomarkers for NPSLE to multiple sclerosis103 and 
vascular dementia.83 To differentiate cutaneous LE from 
other dermatological disorders such as psoriasis, eczema, 
atopic dermatitis and systemic sclerosis (RF model, AUC 
0.774–0.990), interferon gene signature, tumour necrosis 
factor, interleukin-23 (IL-23), interferon (IFN), IL-12, 
and immune cell-related genetic signatures were selected 
as important biomarkers.73

A variety of images were analysed using ML including 
brain MRI (functional MRI, cerebral perfusion, multi-
voxel proton magnetic resonance spectroscopy) for the 
detection of NPSLE,44 46 100 102 109–111 121 129 130 funduscopic 
images for lupus retinopathy23 and clinical images of 
the skin for acute cutaneous LE, subcutaneous LE and 
discoid LE.47

Disease activity and treatment response
For predicting renal flares,131–135 152 the best performing 
models contained both traditional clinical data and 
novel urine biomarkers, including cytokines, chemok-
ines and/or markers of kidney damage. The best models 
for predicting renal flares from these studies included 
XGBoost and ANN (AUCs 0.70–0.94). Quantitative data 
extracted from renal ultrasound based on features such 
as texture, shape and wavelength could also detect LN 
activity.133 Novel biomarkers for LN activity include renal 
IFI16135 and V-set immunoglobulin domain-containing 
protein 4.136

For extrarenal flares,59 63 66 101 106 113 137–148 approximately 
half of the reports used genetic or genetic expression data-
sets. Novel biomarkers predicting SLE flares or increased 
disease activity include MX2106 and M1143 gene expres-
sion and a nine-protein combination (PHACTR2, GOT2, 
L-selectin, CMC4, MAP2K1, CMPK2, ECPAS, SRA1 and 
STAT2).101 The AUC of the best models in these reports 
ranged from 0.70 to 0.99. One study also demonstrated 
that Systemic Lupus Erythematosus Disease Activity 

Index score can be estimated from unstructured clinical 
notes.137

Treatment response was predicted with a high degree 
of accuracy in some reports with the outcome of renal 
flares being the most commonly evaluated.69 131 132 134 149 152 
Clinical factors identified using feature importance ML 
models included C3, C4, age, race, sex, anti-dsDNA, base-
line estimated glomerular filtration rate, urine protein-to-
creatinine ratio as well as cytokine/protein factors such 
as CXCL8, pentraxin, adiponectin, MCP1, IL-8, IL-1a, 
IL-12, IL-6, IFNa2 and IFNy.131 152 The top performing 
predictive models for treatment response used a simple 
neural network (AUC 0.9735)134 and an RF model (AUC 
0.92).131 Predictors of disease remission (SVM, AUC 
0.713)139 and response to B cell therapies (RF, AUC 
0.88)77 were examined as well. Lastly, cluster analysis by 
k-means and consensus cluster to identify different SLE 
endotypes based on treatment response revealed a wide 
range of results, for example, the number of reported 
clusters ranged from 3 to 39.56 74 78 113 142 150 In our own 
study of 805 patients with SLE from the Systemic Lupus 
International Collaborating Clinics (SLICC) cohort, 
k-means clustering on PCA-transformed longitudinal 
autoantibody profiles over the first 5 years of disease 
revealed four distinct endotypes that were predictive of 
long-term disease activity, organ involvement, treatment 
requirements, and mortality risk.56

Prognostic models
For the prediction of SLE outcomes, ML has been used 
to predict disease damage (RN, AUC 0.77).40 Prediction 
of cardiovascular disease (atherosclerosis, cardiovascular 
events, arrhythmia and heart failure), a major cause of 
mortality in SLE, has been evaluated.153–159 168 Novel lipo-
protein metabolites and deficiency in vitamin D were 
associated with atherosclerosis.153 157 158 Several candidate 
hub genes (SPI1, MMP9, C1QA, CX3CR1, MNDA) could 
predict the risk of atherosclerosis in SLE, and expression 
of CCR7, RNASE2, RNASE3 and CXCL10 genes for heart 
failure. The AUCs ranged from 0.81 to 0.98 for the various 
models.154 A prediction score called SLE-venous throm-
boembolism (VTE) could predict VTE risk in patients 
with SLE (LR, AUC 0.808) based on 11 variables: sex, age, 
body mass index, hyperlipidaemia, hypoalbuminaemia, C 
reactive protein, anti-ß2-glycoprotein I antibodies, lupus 
anticoagulant, renal involvement, nervous system involve-
ment and hydroxychloroquine use.21 A prediction model 
for 3-year allograft survival in kidney transplant recipients 
with SLE has also been developed (LR and ANN, AUC 
0.73) using recipient age, race, maintenance regimen 
including prednisone, maintenance regimen, predom-
inate renal replacement modality in the pretransplant 
period, and whether dialysis was required during the first 
post-transplant week.163

Adverse pregnancy outcomes in patients with SLE 
were examined using different datasets. SLE activity was 
predicted in pregnant women (ElasticNet, AUC 0.978) 
using serum metabolites (glucose, alanine, acetoacetic 
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acid and alpha-ketoisovalerate levels).147 Potential genetic 
biomarkers identified with ML for predicting adverse 
pregnancy outcomes during early and mid-pregnancy in 
patients with SLE are SEZ6, NRAD1 and LPAR4.160 There 
were also prediction models that used only routinely avail-
able clinical variables (eg, levels of alanine transaminase, 
alkaline phosphatase, lactate dehydrogenase, gamma-
glutamyl transferase, erythrocytes, C3, C4, autoantibodies 
as well as maternal age, smoking status, hydroxychloro-
quine use and disease duration) (super learning, AUC 
0.78; RF, AUC 0.917).161 162

Other outcomes for patients with SLE included 
reduced risk of breast cancer with the presence of prog-
nostic genetic biomarkers (ie, IRF7, IFI35 and EIF2AK2 
gene expression) identified with LASSO.165 Models 
for the prediction of joint erosions LR model (AUC 
0.806),164 herpes infection (RF, AUC 0.942)167 and hypo-
thyroidism (RF, AUC 0.772)166 have also been developed 
using clinical and serological data. Among the selected 
features for these models, autoantibodies were found to 
be important predictors, for example, anti-carbamylated 
protein and anti-citrullinated protein antibodies for joint 
erosion164 and anti-dsDNA and anti-SSB/La for hypo-
thyroidism.167 ML models showed promise in predicting 
the risk of hospitalisation and length of stay from EMR 
data (best performing models LSTM and XGBoost, AUC 
0.88)20 41 42 142 169 and associated healthcare costs from 
administrative databases.17 142

FUTURE CONSIDERATIONS
AI applications have become ubiquitous in medicine, 
and their impact on SLE care and research is no excep-
tion.170 The range of AI applications and utilisation in 
SLE is expected to grow. Thus far, considerable work 
in SLE has been focused on developing ML models to 
predict disease, diagnosis and prognosis. Other applica-
tions of AI in SLE including drug discovery, clinical trial 
design and interpretation,171 diagnostic imaging analysis, 
personalised medicine and medical devices and technol-
ogies are just beginning. Increased availability and access 
to other types of data in the future will provide even more 
opportunities for SLE research. ML approaches in SLE 
may even make use of health data collected from mobile 
phones, wearable devices, social media and environmental 
datasets, which are becoming more popular in health 
research. Integration of more advanced ML methods in 
future reports will also allow for more efficient analysis 
of increasingly large and complex datasets. As discussed, 
there is already evidence of this trend with increased utili-
sation of deep learning and natural language processing 
approaches in SLE.

While AI facilitates discoveries that may improve 
patient outcomes and processes in the healthcare system, 
researchers should also be aware of the ethical, governance 
and regulatory considerations, including patient consent, 
confidentiality, transparency and privacy172 173 (figure 2). 
In 2019, the European League Against Rheumatism 

published recommendations that guide researchers on 
the collection, analysis, interpretation and implementa-
tion of big data through AI/ML.174 While these are not 
discussed in detail in this review, we emphasise that these 
issues can arise at any step of the ML pipeline. For instance, 
during data collection, diverse data sources increasingly 
used by ML approaches (eg, EMR, administrative data-
bases, social media, genetic or other multi-omics datasets, 
clinical trials and microbiome) are prone to potential 
sampling biases. These can exacerbate existing disparities 
in marginalised and underserved populations and violate 
the bioethical principles of justice. SLE is a disease that 
disproportionately affects racial and ethnic minorities 
and is therefore more sensitive to these issues (reviewed 
in ref 175). The lack of representation by minority popu-
lations in clinical research, genetic reports176 and clinical 
trials177 is a real concern. More work is needed to study 
how we can address these issues, minimise harm and 
promote ethical ML models in the future.
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