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Abstract

The evolution of an Inertial Fusion Energy (IFE) chamber involves a repetition

of short, intense depositions of energy (from target ignition) into a reaction cham-

ber, followed by the turbulent relaxation of that energy through shock waves and

thermal conduction to the vessel walls. We present an algorithm for 2D simulations

of the fluid inside an IFE chamber between fueling repetitions. Our finite-volume

discretization for the Navier-Stokes equations incorporates a Cartesian grid treat-

ment for irregularly-shaped domain boundaries. The discrete conservative update

is based on a time-explicit Godunov method for advection, and a two-stage Runge-

Kutta update for diffusion accommodating state-dependent transport properties.

Conservation is enforced on cut cells along the embedded boundary interface us-

ing a local redistribution scheme so that the explicit time step for the combined

approach is governed by the mesh spacing in the uniform grid. The test problems

demonstrate second-order convergence of the algorithm on smooth solution profiles,

and the robust treatment of discontinuous initial data in an IFE-relevant vessel

geometry.
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1 Introduction

In inertial confinement fusion scenarios, a small target containing frozen

deuterium and tritium (DT) is compressed and heated to fusion temperatures

by powerful laser or particle beams. With the careful design of the target and

beam pulses, a fusion burn can be initiated in the target, which subsequently

releases large quantities of energy into its surrounding environment. The en-

ergy must then be removed from the chamber housing the target and beam

lines, and the environment inside the chamber returned to a quiescent state

so that a new fusion target may be positioned for the next cycle. In an inertial

fusion energy (IFE) system, it is envisioned that this process will be repeated

at a frequency of approximately 5-10 Hz. In order to analyze and design such

systems, it is therefore necessary understand the time-dependent response of

the chamber environment between target ignitions over these time scales.

There are two phases that characterize the IFE chamber evolution and rel-

evant energy transfer. The IFE target is ignited essentially instantaneously

(over less than a nanosecond) and its energy is released in the chamber in

the form of X-rays (mainly bremsstrahlung radiation), neutrons (fusion prod-

ucts), and ions (both fusion products and target debris). The first phase of

chamber evolution, lasting up to a few microseconds, includes the transport of

this energy through the chamber fill gas toward the vessel walls. The fill gas

absorbs a portion of the radiated energy, helping to reduce the peak energy

flux transmitted to the vessel wall. During this process, peak temperatures in

the chamber may reach 1 keV or more, but then quickly decay to a few eV

predominantly through radiative transport processes. A significant fraction of

the energy is dissipated as well through slower hydrodynamic processes, such

as shock waves, which propagate throughout the chamber. This first phase
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after ignition is known as the “fast phase”, and is immediately followed by a

much longer period of time, the “slow phase” over which convection and shock

hydrodynamics distribute energy throughout the chamber and to the vessel

wall. The slow phase extends for 100-200 ms or longer until the next target is

inserted and ignited to initiate the process over again, and is the focus of the

present study.

Because of the vastly disparate time scales and dominant physical phenom-

ena, studies of the heat transport problem for IFE target chambers may be

similarly separated into the two phases discussed above. The environment in

the slow-evolution phase has a sufficiently low temperature to allow reasonable

modelling with the compressible Navier-Stokes equations. Due to the longer

time scales involved however, multidimensional geometry effects become im-

portant in this phase as the fluid interacts with the vessel wall containing

various beam access ports.

An extensive overview of approaches to modeling the IFE chamber physics is

given in Ref. [1]. Several computer codes have been used to model the chamber

environment behavior. BUCKY is a one-dimensional radiation-hydrodynamics

code [2] that has been used to model blast-wave propagations through IFE

chambers, laser-ablation-driven shocks in gases, and X-ray-driven shocks in

solids. BUCKY results are used in this study as a model for the fast-phase

physics, and to provide initial conditions for a longer-time simulation of slow

phase chamber relaxation.

TSUNAMI (Transient Shockwave Upwind Numerical Analysis Method for

Inertial Confinement Fusion) [3] is a two-dimensional gas dynamics code and

has been used to model the slow phase of IFE chamber evolution using the

Euler equations for polytropic gas dynamics. Because the code treats the fluid
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as an inviscid, nonconducting ideal gas with constant specific heat and no

radiation transport, it is most useful for studying the early stages of the slow

phase prior to the onset significant transport effects. Recently, researchers at

Osaka University’s Institute of Laser Engineering have used a DSMC (Direct

Simulation of Monte Carlo) code to model the KOYO IFE power plant cham-

ber [4]. This DSMC code was developed by NASA and integrates Boltzmann’s

equations directly, providing a mechanism to assess the effects transport in the

system evolution. Ref. [4] includes a comparison of long-time DSMC simula-

tions of the KOYO IFE chamber with those performed with TSUNAMI. The

comparisons demonstrated that many key features of the full evolution of the

slow-phase solution are not properly captured when conduction and viscous

transport are neglected.

The simulation approach described in this paper represents the assembly

of several well-documented algorithmic components to enable the study of

a more broad range of timescales in the slow phase of IFE chamber evolu-

tion, while also affording a reasonably general capability for multidimensional

geometries. The core numerical scheme here is based on the Cartesian-grid

Godunov integration method for the compressible Euler equations detailed in

Ref. [5] (hereafter referred to as the “base scheme”). In the Cartesian grid

approach, irregular (cut) cells are formed at the intersection of the uniform

mesh and the problem domain boundary, and state variables are defined at

the geometric centers of the rectangular mesh. In cells away from the embed-

ded boundary, the difference algorithm in the base scheme reduces to a time-

explicit second-order algorithm for advection. Fluxes into the cut cells are

treated in a post-processing step that ensures temporal stability, consistency

and accuracy. Stability of the overall integration scheme is governed by a time
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step condition that is based on the cell size in the uniform mesh. Background

literature justifying this approach for compressible gas dynamics, and details

of implementation of the base scheme are discussed at length in the reference.

We have improved the accuracy of the base scheme in the cut cells through

the use of a flux interpolation procedure outlined in Ref. [6], and added the

ability to treat diffusion terms (viscosity and conduction) using ideas which

first appeared in Ref. [7] related to Cartesian grid methods for Poisson’s equa-

tion. Variable transport properties in the evolution of the parabolic diffusion

terms are incorporated with an iterative, time-explicit Runge-Kutta method.

Like the base method, implementation of our combined solution approach is

well-suited for incorporation into a block-structured adaptive-grid algorithm,

and is extensible to three dimensions. Detailed convergence analyses and a

sample application relevant to IFE chamber scenarios are used to validate the

assembled algorithm in a simplified two-dimensional, non-adaptive setting.

2 Model and Numerical Algorithm

The compressible Navier-Stokes equations may be written for an ideal poly-

tropic gas with viscosity, µ, and conductivity, k:

ρt + ∇ · ρ~u = 0

(ρ~u)t + ∇ · (ρ~u~u) + ∇p = ∇ · τ

(ρE)t + ∇ ·
(

(ρE + p) ~u
)

= ∇ · (τ · ~u + k∇T )

τ = µ
(

∇~u + ∇T~u − 2

3
(∇ · ~u) I

)

(1)

Here, ρ is the mass density, ~u = ux̂+vŷ is the velocity, E = CvT +~u·~u/2 is the

total energy, Cv is the specific heat of the gas at constant volume, p = ρRT

is the pressure, and τ is the stress tensor.

A Cartesian grid finite volume discretization for hyperbolic flow was de-
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scribed in detail in Ref. [5]. We give an overview of this algorithm, discussing

first the the algorithm on a uniform grid, and then outlining the modifications

necessary to accommodate the cut cells at the embedded boundary. This sum-

mary provides context for the subsequent description of our extensions that

improve the scheme’s accuracy at the embedded boundary, and expand its

applicability to diffusive systems.

2.1 Base Uniform Grid Discretization

The equations (1) may be written in conservation form

Ut + F (U)x + G(U)y = 0 (2)

where U = {ρ, ρu, ρv, ρE} is the state vector, and F and G are the fluxes in

the x̂ and ŷ directions, respectively. Each component direction of the fluxes

may be written as a sum of advection and diffusion components. For example,

F = F A + F D, where F A = {ρu, ρu2 + p, ρuv, ρuE + up}. If µ = k = 0, the

system is hyperbolic and we recover the model discretized in Ref. [5].

Following Ref. [5], the hyperbolic component of equation (1) is integrated

in time with a second-order time-explicit Godunov method from t = tn to

tn+1 = tn + ∆t on a uniform grid, spaced (∆x, ∆y) in the (x̂, ŷ) directions,

respectively. The advection fluxes are centered in time at tn+1/2, and in space at

the geometric center of the faces bounding each cell. The fluxes are evaluated

using data extrapolated in space and time from the centers to the faces of each

cell. Prior to extrapolation, the state vector, U , is transformed into primitive

variables, Q = {ρ, u, v, p} using a polytropic (constant ratio of specific heats,

γ = 1.4) equation of state. The extrapolations from cell centers to face centers

are evaluated in terms of derivatives only in space at time tn by substituting
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the model equations (1) to replace the time derivative. Double-valued face

states are generated by extrapolating data from cell centers on both sides of

the interface, and are resolved with the approximate Riemann solver discussed

in Ref. [8]. The resulting primitive edge state is used to construct second-order

conservative advection fluxes, which are scaled by the respective face area and

time increment, ∆t, and then differenced across each cell to form a volume-

weighted advective forcing, SA, for the state update for each cell:

U(tn+1) = U(tn) − ∆t

V
SA (3)

SA =
(

F A
r Ar − F A

` A`

)

+
(

GA
t At − GA

b Ab

)

The subscripts r, `, t, b refer to the right, left, top and bottem face of the

cell, respectively, A# is the area of the #th face, and V is the volume of the

cell (= ∆x × ∆y). This algorithm is time-explicit, and stable only for ∆t <

min (∆x/λx, ∆y/λy), where λ# = max (|λ#,j|) and λ#,j are the eigenvalues of

the flux Jacobian for the advective transport in the #th-direction.

2.2 Cut Cell Modifications in the Base Scheme

In order to extend the second-order Godunov algorithm to the Cartesian grid

case, geometrical information about the cut cells must be included in the area

and volume terms in equation (3). This includes partial cell volumes and edge

areas, specified as fractions of the respective quantities from the underlying

uniform grid. We must also accomodate fluxes through the interface in cut

cells separating the fluid and body regions.

The volume fraction, Λ, at each mesh location is the ratio of cell volume

inside the flow domain to total cell volume (e.g., Λ = 1 for cells entirely

inside the domain, Λ = 0 for cells in the uniform mesh but completely outside

the fluid domain). The area fraction a indicates the portion of a cell face
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inside the flow domain. The quantities Λ and a may be extracted for realistic

flow geometries by tools, such as Cart3D [9], that can process the output

of computer-aided drawing packages. However, the geometries used in the

examples here are simple enough that the requisite data may be generated

with a few lines of computer code.

A straighforward application of equation (3) to the case of partial cell leads

to an update for U which involves a division by Λ, and is numerically unstable

for fixed ∆t and Λ → 0. A method to circumvent this stability issue, as

suggested in Ref. [5], involves the calculation of an alternative update, the so-

called “reference” state, by using equation (3) without accounting specifically

for the reduction in face areas and cell volume. The reference state will be

stable and mathematically consistent with equations (1), but not discretely

conservative. The computed difference between the reference state and the

update via equation (3) with proper area and volume reductions provides the

degree to which the former update violates conservation in each field quantity.

A stable, consistent and conservative update is formed by redistributing this

error over nearby cells in the fluid (see Ref. [10]).

Computation of the reference state requires that face-centered fluxes be

available on all four regular faces of any cell with Λ > 0. However, some of

these faces may be entirely outside the fluid (i.e., a = 0). In these cases cell-

centered data may not be readily available for constructing the extrapolation

that generates the double-valued face flux data. Since there is no valid state

data at positions beyond edges outside the domain, a heuristic is used to

create so-called “extended-states” from a simple low-order extrapolation of

flow field from just inside the domain. The simple prescription detailed in

Ref. [5] is sufficient for generating these values for the algorithm performance

9



tests discussed in the next section.

The final modification in the base scheme is to accommodate the pressure

on the fluid exerted by the embedded boundary interface. For the hyperbolic

component of the model, this is the only non-trivial component of the conser-

vation flux that is communicated through the embedded boundary. The wall

pressure is obtained by constructing a special Riemann problem at the inter-

face that represents a reflecting boundary condition for hyperbolic waves. The

update, equation (3), is augemented to include this flux modification (suitably

scaled by the area of the embedded boundary interface of that cell).

2.3 Extensions to the Base Scheme

The base scheme for integration of the compressible Navier-Stokes equations

in the Cartesian grid setting is extended in three ways in order to improve the

algorithm’s accuracy in the cut cells, and to incorporate diffusion terms aris-

ing when µ 6= 0 or k 6= 0. We outline a procedure for computing diffusion

fluxes that is based on a centered difference approximation to the relevant

differential operators. Once computed, the diffusion fluxes are treated very

similar to the hyperbolic fluxes above, in terms of “reference state” computa-

tion and the local redistribution procedure for conservation. We then discuss

a simple improvement that increases the accuracy of the conservation fluxes

used to compute the conservative update. The correction is applied to both

the parabolic and hyperbolic fluxes. Finally, a procedure is outlined for the

construction of diffusion fluxes at the embedded boundary due to viscous shear

and heat conduction.
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2.3.1 Runge-Kutta Scheme for Diffusion

In order to incorporate diffusion fluxes into the discretization of equation

(1), we construct an algorithm based on centered differences that reverts to a

second order, symmetric stable and consistent approximation in the interior of

the domain away from the cut cells along the embedded boundary. It will also

remain stable for Λ → 0, and will consistently treat the case where the trans-

port coefficients depend on the state (i.e., nonlinear diffusion). The procedure

involves computing a flux divergence analagous to that for the advection fluxes

already discussed. In particular, we define a diffusion flux divergence based on

data at tn:

SD,n =
1

V

[(

F D,n
r Ar − F D,n

` A`

)

+
(

GD,n
t At − GD,n

b Ab

)

+ F D,n
EB AEB

]

(4)

where AEB is the surface area of embedded boundary interface, and F D,n
EB

represents the diffusion flux through that interface. The boundary flux term

will be discussed in the next section. Dropping the time index, n, for simplicity

and using F D as an example, we parameterize the diffusive flux as an arbitrary

sum of terms involving ∇⊥U , the gradient of U perpendicular to a face, and

∇‖U , the gradient of U tangential to the face, F D = D
(

α∇⊥U + β∇‖U
)

.

What remains then is to define the ∇⊥ and ∇‖ operators, and a procedure for

computing D.

The perpendicular gradient approximation at the r, ` faces of cell (i, j) are

evaluated using centered differences:

∇⊥
r Ui,j = (Ui+1,j − Ui,j) /∆x ∇⊥

` Ui,j = (Ui,j − Ui−1,j) /∆x

Analagous expressions apply for ∇⊥
t and ∇⊥

b in the ŷ-direction.

The tangential griadient approximation at the r, ` faces of cell (i, j) are

evaluated using a centered average of centered differences:
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∇‖
rUi,j = 0.5 (Ui+1,j+1 − Ui+1,j−1 + Ui,j+1 − Ui,j−1) /∆x

∇‖
`Ui,j = 0.5 (Ui,j+1 − Ui,j−1 + Ui−1,j+1 − Ui−1,j−1) /∆x

Analagous expressions apply for ∇‖
t and ∇‖

b .

The temperature-dependent transport coefficients, µ and k, are evaluated

with state data at the cell centers, and interpolated to cell edges using a

harmonic averaging procedure. In particular, for the x̂–direction faces of the

cell (i, j),

Dr (Ui,j) =
1

1/D(Ui,j) + 1/D(Ui+1,j)

D` (Ui,j) =
1

1/D(Ui−1,j) + 1/D(Ui,j)

Analagous expressions apply for Dt (Ui,j) and Db (Ui,j).

We note that the existence “extended states”, computed for the purposes of

constructing the nonconservative “reference state” update discussed in Section

2.2 above guarantees that we will have sufficient data defined “inside” the

embedded body for computing the above differences and averages.

A two-stage second-order Runge-Kutta method for integrating the diffusion

terms with a constant advection forcing, SA (taken directly from base scheme,

as discussed above), may now be defined over a time interval, ∆t:

U∗ =Un − ∆t
(

SD,n + SA
)

Un+1 =Un − ∆t

2

(

SD,n + SD,∗
)

− SA∆t (5)

The iteration defines a predictor-corrector procedure for a trapezoidal time-

integration of diffusion terms, and a midpoint integration for hyperbolic terms.

The combined integration is second-order accurate in time and space, as

demonstrated in the next section. This time-explicit integration algorithm

for advection and hyperbolic terms is stable only for numerical time step sizes

12



satisfying the CFL and diffusional stability criteria:

∆t < min



f1
∆x

(|~v| + c)
,

f2∆x2

2 max
(

µ
ρ
, k

ρCp

)



 (6)

where c =
√

γp/ρ is the local sound speed, and the min and max operations

are performed over the entire computational domain. We take the “safety”

factors, f1 = f2 = 0.9 for the examples presented below, and operate the

algorithm in a regime where the advection-based stability condition is most

restrictive, unless otherwise noted.

2.3.2 Flux Interpolation

In order to improve the accuracy of the treatment of the cut cells in the

present context, we apply the advection flux interpolation procedure discussed

in Ref. [6]. The procedure properly centers the evaluation of the conservative

fluxes at the centroid of the partial cell faces, which are partially obscured

by the embedded boundary. That is, since the cell-centered data is extrapo-

lated along coordinate axes, the fluxes are second order accurate only at the

centers of the underlying uniform grid. Flux values accurate to second order

at the centroid of the partial faces may be constructed simply by linearly in-

terpolating between full-face-centered fluxes at adjacent faces, as discussed in

Refs. [7,6]. The procedure is simple to implement as a post-processing step

after computing fluxes from the Riemann solution and the diffusion fluxes

in equation (4), dramatically improves the accuracy of the solution along the

embedded boundary, and has no advese affects on the time step-size limitation.

2.4 Fluxes at the Embedded Boundary

To complete the specification of our algorithm for diffusive transport in

the presence of an embedded boundary, we need to define a procedure for
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computing the parallel and normal components of shear stress, and energy

conduction at the wall. The expressions for the stress are particularly simple

because the no-slip condition requires that both components of velocity, and

therefore all gradients of velocity along the boundary are zero identically. The

nontrivial component of the velocity derivatives relevant to boundary fluxes

lead to the parallel, τEB
‖,i,j , and normal, τEB

⊥,i,j components of shear stress:

τEB
‖,i,j = 4

3
µi,j

(

∂u‖

∂n

)EB

i,j

τEB
⊥,i,j = µi,j

(

∂u⊥

∂n

)EB

i,j

(7)

Here, u‖ and u⊥ are the components of the velocity locally parallel and per-

pendicular to the embedded interface, and ∂φ/∂n is the normal derivative of φ

evaluated at the centroid of the embedded interface. The viscosity is evaluated

with the state in the partial cell containing the interface. The heat conduction,

qEB
i,j , into the embedded boundary is:

qEB
i,j = −ki,j

(

∂T

∂n

)EB

i,j

(8)

.

The normal derivatives in equations (7) and (8) are estimated using a three-

point interpolation formula, which is second order accurate and stable for fixed

∆x, ∆y and Λ → 0. A vector which is normal to the boundary is located with

its origin at the centroid of the embedded boundary interface. This vector ex-

tends into the fluid at least three layers of cells, as shown in Figure 1. The state

values at the origin of the normal are prescribed from the physical boundary

conditions. The remaining values are computed using parabolic interpolations

of the nearby state data, according to the prescription in Ref. [7]. These three

points are sufficient to define a well-behaved parabola, from which a slope is
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evaluated at the embedded interface.

3 Algorithm performance and convergence

We illustrate the performance of our algorithm with two test cases. The first

case focuses on the convergence of the algorithm with an isothermal condition

implemented at the embedded boundary. The analysis is based on the prop-

agation of a smooth temperature distribution in a channel not aligned with

the underlying uniform grid. The second case demonstrates the performance of

the algorithm in modeling conditions more specifically relevant to the intended

application–simulations of the evolution of an IFE chamber environment.

3.1 Propagation of a Smooth Isobaric Disturbance in a Straight Channel

The numerical quality of our embedded boundary algorithm may be evalu-

ated by monitoring the evolution of gas with a nontrivial temperature distri-

bution as it passes through a bounded channel with no-slip, isothermal walls.

The calculation is performed over the square region shown in Figure 2, 1.6 m

on a side. Within this area, a straight-wall channel 1 m wide is oriented 30◦

counter-clockwise from the horizontal axis. This choice of embedded boundary

shape has the advantage of providing a range of partial volumes between 0

and 1 within the domain, while being analytically smooth so as not to pollute

the convergence analysis.

Xenon is used as the transport medium, and is treated as an ideal gas with

viscosity and conductivity specified by the Sutherland Law [11]:

η(T ) = ηo

(

T

To,η

)1.5
To,η + Ts,η

T + Ts,η

(9)

where viscosity, µ, or conductivity, k should be substituted for the general
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property η. The conductivity-related constants in this model Ts,k = 320.93 K,

To,k = 800 K and ko = 0.0132 W/(mK) were determined by fitting the exper-

imental data reported in Ref. [12] on the range 800-2000 K. The equivalent

constants for viscosity, Ts,µ = 320.26 K, To,µ = 800 K and µo = 4.88 ·10−5 Ns/

m2 were based on the experimental data found in Ref. [13]. The initial flow

velocity is fixed at 120 m/s, and is aligned with the walls of the channel. To

avoid discontinuity between the wall and the fluid, the wall is set to move at

the same speed as the initial flow. The initial pressure is set constant at 100 Pa

throughout the domain, and the initial temperature distribution is prescribed

as

T (x, y, 0) =































T∞ + 50
(

1.0 + cos(2π
√

x2 + y2)
)

, for x2 + y2 ≤ (L/2)2

T∞, elsewhere

(10)

In order to approximate the span of conductivity and viscosity in the IFE

chamber environment, the temperature of the surrounding gas and channel

walls was given the value T∞ = 105 K. As the system evolves, the peak in the

temperature profile advects downstream, and heat is conducted through the

embedded boundary. The system was integrated in time long enough to effect

sufficient changes to the solution to allow a reasonable convergence analysis.

The simulation was performed using six consecutive uniform mesh resolu-

tions (the cell size was halfed consecutively). The coarsest simulation was

performed with ∆x = 50 mm, corresponding to a 32×32 uniform grid. We

define the discretization error, Ei,j for any state variable Ui,j as

Ei,j = Ui,j − U exact
i,j (11)

where U exact
i,j represents the “exact” solution, which we take here from 2D
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quadratic interpolations of the solution on our finest grid (1024×1024). The

convergence rate of the algorithm was estimated using the norms L∞, L1, L2

as defined in Table I. As the performance of the algorithm near the embedded

boundary will be different from that of the uniform grid far away from the

boundary, a special norm, L2,EB, was also included (see Table I). For each

norm, the rate of convergence, p, for a grid spacing ∆x = ∆y = h is calculated

from:

p(h) = log2







‖Ei,j‖h
∥

∥

∥En
i,j

∥

∥

∥

h/2





 (12)

In this measure, if the boundary cells show a first-order local convergence

rate in grid spacing, while the interior cells converge at second order, we expect

that errors in the L1 norm would show a second-order overall convergence rate,

while the L2 norm would exhibit a rate between first and second order, and

the L∞ norm would be first order. However, if the boundary cells converge

to second order, the L1 and L2 norm measures should indicate a convergence

rate 2 < p < 3. Rates based on the L∞ norm indicates the convergence

performance of the domain’s worst regions, and would show a value of 1 in

the former example, but a value of 2 in the latter.

Convergence rates for the various norms are presented in Table II. Clearly,

the convergence rates for the L1 and L2 measures are consistent with the in-

terpretation that the boundary cells, like the interior cells, are converging at

near the designed second-order rate. The values for the L∞ norm confirm that

all regions in the calculation are indeed converging near second-order. The

values for L2,EB confirm these observations specifically for the cut cells, show-

ing that with increasing resolution, the accuracy of the cut cells approaches

second-order for nearly all the state components.
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In this test problem, the energy equation exhibits the slowest convergence

rates, particularly in measures concentrated at the embedded boundary. In

fact, the second-order rate expected of the algorithm is not fully achieved for

the energy equation even though the momentum and continuity equations are

well-behaved at this resolution. Evidently, the asymptotic convergence rate

is realized for the momentum equation on coarser grids than for the energy

equation. The same test case is analyzed but with the conductivity uniformly

decreased by a factor of four from the values given through equation (9).

Convergence rates and error norms for this set of calculations are given in

Table III. With this reduced conductivity, the energy equation (and all others)

clearly exhibit second-order convergence.

Such a confirmation could alternatively have have been achieved by further

refining the solution. However, for these parameters, the grid spacing would

have been such that the diffusion-based criteria in equation (6) would have

been more restrictive than the advective CFL condition. We note that this oth-

erwise well-behaved system is likely to be an ideal candidate for a time-implicit

variation of our algorithm. A time-implicit scheme would require solution of a

linear equation set for the diffusive update corresponding to equation (5), but

could be constructed as a sequential update to the velocity and energy fields

separately, as discussed in Ref. [14], for example. However, the present algo-

rithm will be perfectly adequate for a broad range of IFE-relevant applications

where such fine grids along the embedded boundary would not be routinely

required to achieve acceptable levels of absolute error. An example of such a

problem is the subject of the next section.

Finally, the second-order convergence of our algorithm for this problem may

come somewhat as a surprise, given the lack of error cancellations at the cut

18



cells that is required for second-order accuracy of the centered differences in

the interior of the domain. Johansen [15] presents a modified equation analysis

for this diffusion operator showing that the discrete errors associated with

Dirichlet boundary conditions at cut cells exhibit a dipole-like influence on the

solution away from the boundary that decrease with ∆x3. This is consistent

with our convergence analyses above, showing that in the asymptotic regime

the solution errors become dominated by our second-order time-discretization

and treatment of the advection terms.

3.2 A Neutral Gas Response to High Energy Target Blast for an Inertial

Fusion Energy Chamber

We have demonstrated second order convergence both inside the domain

and at the boundary for our algorithm on a smooth problem. In order to

demonstrate the behavior of the algorithm for treating discontinuous profiles,

we select a simplified 2D model of an IFE chamber (as described in Sec. 1).

The chamber body is approximated by a cylinder of radius 6.5 m. Laser beam

ports are represented as four beam lines, each 20 m long and 1 m wide (see

Figure 3). The chamber gas is Xenon, with temperature-dependent viscosity

and conductivity given by equation (9). Prior to injecting the target into the

chamber, the quiescent gas is at T = 298 K and p = 6.67 Pa (50 mTorr).

A “direct-drive” target yielding 160 MJ [16] is ignited at the center of the

chamber, and heats the Xenon gas through direct X-rays and energetic ion

absorption. The “fast” phase of chamber evolution is modeled prior to shock

colleisions with the vessel boundary using the 1D radiation-hydrodynamics

code BUCKY [2]. The BUCKY solution profiles at 500 µs for density, velocity

and pressure are interpolated onto a uniform grid to form cylindrically sym-
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metric 2D initial profiles. The 1D profiles of temperature and pressure shown

in Figure 4 indicate that 500 µs after the initial X-ray heating (and prior to

shock/wall impact), the hottest regions in the chamber have cooled to under

2 eV. We evolve the system for 0.1 s, corresponding to the time interval before

the next fusion target insertion.

The boundary conditions at the vessel surface are no-slip wall, with the con-

stant temperature Twall = 973 K. The state gradients required for estimating

the shear stress and heat flux at the wall is resolved by the parabolic inter-

polant described in Ref. [7] if the boundary layer of velocity and temperature

field spans across at least several of the uniform grid cells. Such is the test

problem described in Section 3.1. In the present case, however, a rather thin

boundary layer in T and ~u suggests that the method from Ref. [7] cannot

be used. Within the scope of this study, we adopt a coarse grid approach,

which sets the embedded boundary a distance δ inside of the chamber wall.

An unresolved heat and momentum transfer region is located between the em-

bedded boundary and the physical wall, outside the computational domain.

The normal state gradient at the embedded boundary is approximated as:

∂U

∂n

∣

∣

∣

∣

∣

EB

=
1

δ
(UEB − Uwall) (13)

The state variables vx, vy and T should be substituted for U and δ is an arbi-

trary length scale taken here to be 1 cm. The state values denoted as UEB are

estimated by quadratic interpolations of the solution to the centroids of the

fluid-body cell interfaces, while Uwall are the values of velocities and tempera-

tures prescribed at the wall. Alternatively, in practical applications, adequate

resolution local to the boundary layer may be achieved using adaptive mesh

refinement.

The evolution of pressure and temperature is shown in Figure 5. At early
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times, the profiles are 4-fold symmetric, so 1/8 of the domain is sufficient to

show the entire solution. The initial position of the shock wave is 40 cm away

from the wall, as shown in Figure 5a. The elevated temperature ahead of the

shock results from the X-ray and ion energy deposition during the first 500 µs,

as computed from BUCKY. Figure 5b shows the chamber state 5 ms after the

solution was advanced by our integration algorithm. The shock is about to

hit the wall for the second time, after initially reflecting from the embedded

boundary, converging to the center of the chamber and expanding outward

again. The discontinuous profiles remain smooth and sharp. A secondary shock

structure is apparent in the figure, and results from the reflection of the initial

shock against the entrance to the beam channels. The core of the chamber is

heated from the initial temperature of 5.37 × 104 K to above 105 K by the

compression of the converging shock wave. At 13 ms, the temperature of the

core is relatively hot compared to the near-wall region, as shown in Figure 5c.

The temperature variation between the cold wall and the hot center causes

large variations in viscosity, µ (ranging from 5.67×10−5 to 9.12×10−4 kg/m-s)

and conductivity, k (ranging from 0.015 to 0.25 W/m-K) across the chamber.

The geometry of the beam channels initiates large-scale vortical structures

and a highly two-dimensional flow field in the late time solution, as seen in

Figure 6.

Strict convergence of the algorithm is difficult to characterize on this problem

because of the presence of discontinuities throughout the solution. However,

we expect an integral quantity such as the total heat transferred to the wall

to be a fairly smooth function of time and a useful indication of algorithm

performance and convergence. The shear stress components (τ‖, τ⊥) at the

wall can characterize the convergence of momenta and the heat flux q into the
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wall can be selected to characterize the convergence of the energy equation.

The chosen quantities are integrated along the wall and in time, at every time

step during the evolution. The results are shown in Figure 7 for three successive

mesh resolutions and demonstrate a measurable energy and momentum loss

of the chamber system to the environment. For reference, the total energy of

the gas was initially 26.9 ·104 J, which implies an energy loss of roughly 30 %,

for the duration of 0.1 s. The convergence rates of the boundary integrals from

Figure 7 at a time t may be approximated as

p∗(t) ≈ log

(

|S1200×1200
∗ (t) − S300×300

∗ (t)|
|S1200×1200

∗ (t) − S600×600
∗ (t)|

)

(14)

where * denotes q, τ‖ or τ⊥ and Sgrid size
∗ (t) is the value of the boundary

integral at t, for the given grid size. The average convergence rates based

on the expression (14) and the plots in Figure 7 were estimated for the time

interval of 0.1 s. Their values are p̄τ‖ = 1.639, p̄τ⊥ = 1.321 and p̄q = 2.334. This

indicates that the scheme is converging to better than first-order for an initially

discontinuous practically relevant scenario. In fact, Figure 7 indicates that the

largest discrepancies arise while highly two-dimensional flow is interacting

strongly with the vessel wall. Over most of the evolution, the profiles are

smoothly varying and converge at second-order, consistent with the results of

the first example.

4 Discussion and Conclusions

In this paper, we have presented an algorithm to solve the time-dependent

compressible Navier Stokes equations in complex 2D geometries. The algo-

rithm has been applied to study the behavior of a simple model for target

chamber dynamics for inertial fusion energy (IFE) in the “slow phase” where
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hydrodynamic energy transport processes are important. The problem involves

the evolution of discontinuous profiles (shocks), temperature-dependent diffu-

sion transport, and isothermal, no-slip irregular boundaries. The computa-

tional method has been constructed using a Godunov method for advection,

a Runge-Kutta method for diffusion, and an embedded boundary approach to

incorporate a flexible geometry capability.

A convergence analysis was performed using a pair of test problems. The

first, designed to evaluate the formal convergence properties of the algorithm,

was based on smooth initial and boundary data. The results demonstrated uni-

form second-order convergence. In order to test the robustness of the algorithm

in a context closer to the intended application, we simulated a two-dimensional

model of an IFE chamber. The initial conditions for the test were generated

with the BUCKY code, and included a strong radially-outward propagating

shock wave. We simulated 100 ms of the ensuing interaction of this shock

wave with the boundary and fluid environment. The resulting profiles exhib-

ited complex multi-dimensional flow patterns and secondary shock structures

due to interactions with the optical beam channels. A strict convergence anal-

ysis of this system was impossible due to the presence of discontinuities in

the initial data and boundary shape. Instead, we monitored the behavior of

the wall loads, such as the integral of shear stress components and heat flux

along the boundary and in time. We found that these quantities behaved rea-

sonably with increased grid resolution. This indicates that the algorithm is

robust enough to be suitable for long time-scale simulations of IFE chambers.

The embedded boundary algorithm presented in this paper shares the ge-

ometrical limitations discussed in Ref. [5]. In particular, long, narrow fin-like

(under-resolved) features in the embedded boundary shape are not correctly
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represented by the algorithm, which assumes a piecewise linear wall at the

resolution of the uniform grid. The construction of “extended-states” in a

data structure that is assumed logically rectangular requires that several full

uniform “body” cells (with Λ = 0) separate distinct fluid regions, and the

interpolation procedure for evaluating state gradients at Dirichlet boundaries

requires that several “fluid” cells (with Λ = 1) separate body regions normal

to the surface. These limitations notwithstanding, this embedded boundary

implementation has exhibited the appropriate level of geometrical flexibility

and accuracy to be used as the basis of a tool for investigating the slow phase

of IFE chamber phyiscs.

From the point of view of investigating IFE chamber scenarios, many ad-

ditional phenomena should be incorporated into the model. For example, the

chamber fill gas likely includes many distinct chemical constituents, gener-

ated by vessel wall ablation for example, particularly during the fast phase

and early parts of the slow phase. The algorithms presented here will extend

rather directly to multi-fluid implementations, such as the one described in

Ref. [8], or to the mass-fraction approach discussed in Ref. [14]. In addition,

our second example was interesting in that the convergence of blast waves

reflected from the chamber wall resulted in localized heating of the central

core region to above 10 eV, suggesting that radiative energy transport may

be an important physical process in the slow phase. As more detailed IFE

chamber scenarios are developed, three-dimensional simulations will become

more important, and will require concommitant extensions that allow local

dynamic adaptive mesh refinement. All these improvements are under current

development.
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Table I

Definition of Error Norms Used For Convergence Analysis

Error Norm L∞ L1 L2 L2,wall

Definition max |E| 1
V

∫

V

EdV
√

1
V

∫

V

E2dV
√

1
lEB

∫

lEB

E2dl

Discrete Form max
∣

∣

∣En
i,j

∣

∣

∣

∑

i,j

En
i,jΛi,j∆x∆y

∑

i,j

Λi,j∆x∆y

√

√

√

√

∑

i,j

(En
i,j

)2Λi,j∆x∆y

∑

i,j

Λi,j∆x∆y

√

√

√

√

√

∑

Λi,j<1

(En
i,j

)2Λi,j∆x

∑

Λi,j<1

Λi,j∆x
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Table II

Error norms L∗ and their rate of convergence, p∗ for Test case of Sec. 3.1

density x-momentum y-momentum energy

grid size L∗ p∗ L∗ p∗ L∗ p∗ L∗ p∗

L∞ , p∞

32×32 3.855 × 10−6 - 4.045 × 10−4 - 2.312 × 10−4 - 3.281 × 10−2 -

64×64 1.493 × 10−6 1.369 1.554 × 10−4 1.380 8.957 × 10−5 1.368 1.502 × 10−2 1.128

128×128 5.182 × 10−7 1.526 5.435 × 10−5 1.515 3.060 × 10−5 1.550 5.717 × 10−3 1.393

256×256 1.908 × 10−7 1.442 1.986 × 10−5 1.453 1.125 × 10−5 1.443 2.083 × 10−3 1.457

512×512 5.674 × 10−8 1.750 5.703 × 10−6 1.800 3.176 × 10−6 1.825 8.231 × 10−4 1.340

L1 , p1

32×32 3.195 × 10−7 - 3.311×10−5 - 1.917×10−5 - 2.809×10−3 -

64×64 6.947 × 10−8 2.201 7.189×10−6 2.204 4.165×10−6 2.203 8.476×10−4 1.729

128×128 1.379 × 10−8 2.333 1.430×10−6 2.330 8.386×10−7 2.312 3.100×10−4 1.451

256×256 2.609 × 10−9 2.402 2.785×10−7 2.360 1.726×10−7 2.281 1.186×10−4 1.386

512×512 4.774 × 10−10 2.450 5.481×10−8 2.345 4.186×10−8 2.044 3.680×10−5 1.688

L2 , p2

32×32 6.124×10−7 - 6.361×10−5 - 3.671×10−5 - 5.094×10−3 -

64×64 1.589×10−7 1.946 1.651×10−5 1.946 9.530×10−6 1.946 1.561×10−3 1.706

128×128 3.694×10−8 2.105 3.842×10−6 2.104 2.220×10−6 2.102 5.104×10−4 1.613

256×256 7.233×10−9 2.352 7.643×10−7 2.330 4.506×10−7 2.300 1.771×10−4 1.527

512×512 1.164×10−9 2.636 1.343×10−7 2.509 8.526×10−8 2.402 5.399×10−5 1.714

L2,EB , p2,EB

32×32 7.656×10−7 - 7.930×10−5 - 4.614×10−5 - 4.518×10−3 -

64×64 2.625×10−7 1.544 2.724×10−5 1.542 1.588×10−5 1.539 1.433×10−3 1.657

128×128 9.447×10−8 1.475 9.946×10−6 1.453 5.799×10−6 1.453 6.782×10−4 1.079

256×256 3.322×10−8 1.508 3.759×10−6 1.404 2.229×10−6 1.380 3.927×10−4 0.788

512×512 8.121×10−9 2.032 1.157×10−6 1.700 6.487×10−7 1.781 1.660×10−4 1.242
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Table III

Error norms and their rate of convergence (L, p) for Test case of Sec. 3.1 and

modified gas properties†

density x-momentum y-momentum energy

grid size L∗ p∗ L∗ p∗ L∗ p∗ L∗ p∗

L∞ , p∞

32×32 3.928×10−6 - 4.092×10−4 - 2.357×10−4 - 2.818×10−2 -

64×64 1.590×10−6 1.305 1.653×10−4 1.307 9.541×10−5 1.305 1.257×10−2 1.165

128×128 5.647×10−7 1.493 5.876×10−5 1.492 3.392×10−5 1.492 4.712×10−3 1.415

256×256 1.776×10−7 1.669 1.848×10−5 1.669 1.075×10−5 1.658 1.582×10−3 1.574

512×512 4.451×10−8 1.997 4.615×10−6 2.002 2.622×10−6 2.035 3.964×10−4 1.997

L1 , p1

32×32 3.246×10−7 - 3.370×10−5 - 1.947×10−5 - 2.437×10−3 -

64×64 7.373×10−8 2.138 7.649×10−6 2.139 4.415×10−6 2.141 5.902×10−4 2.046

128×128 1.596×10−8 2.208 1.652×10−6 2.211 9.538×10−7 2.211 1.496×10−4 1.980

256×256 3.226×10−9 2.307 3.332×10−7 2.310 1.931×10−7 2.305 4.260×10−5 1.812

512×512 5.437×10−10 2.569 5.600×10−8 2.573 3.258×10−8 2.567 1.149×10−5 1.890

L2 , p2

32×32 6.239×10−7 - 6.482×10−5 - 3.742×10−5 - 4.613×10−3 -

64×64 1.691×10−7 1.884 1.757×10−5 1.884 1.014×10−5 1.884 1.280×10−3 1.849

128×128 4.331×10−8 1.965 4.499×10−6 1.965 2.595×10−6 1.966 3.450×10−4 1.891

256×256 1.040×10−8 2.059 1.081×10−6 2.057 6.232×10−7 2.058 9.098×10−5 1.923

512×512 1.928×10−9 2.431 2.007×10−7 2.429 1.159×10−7 2.426 2.093×10−5 2.120

L2,EB , p2,EB

32×32 7.663×10−7 - 7.955×10−5 - 4.604×10−5 - 5.250×10−3 -

64×64 2.506×10−7 1.613 2.602×10−5 1.612 1.507×10−5 1.611 1.655×10−3 1.665

128×128 7.953×10−8 1.656 8.283×10−6 1.651 4.795×10−6 1.652 5.447×10−4 1.604

256×256 2.387×10−8 1.736 2.521×10−6 1.716 1.466×10−6 1.710 1.827×10−4 1.576

512×512 5.671×10−9 2.074 6.293×10−7 2.002 3.615×10−7 2.020 5.675×10−5 1.687

† µ defined in eq. 9, k reduced by a factor of 4 from eq. 9
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l 1

l 2

Tw

T1

T2 θ

n

Fig. 1. Parabolic interpolation for estimating a second order temperature gradient

normal to the boundary. Wall temperature Tw is prescribed. Temperatures T1 and

T2 are estimated based on the second order interpolation from the values in the

open circles. The stencil of temperatures Tw, T1 and T2 is used for estimating the

temperature gradient.
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Fig. 2. Geometry and initial conditions for the straight channel flow. The temper-

ature field is represented by isothermal lines while the velocity field is represented

by arrows.
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Fig. 3. Geometry of the four-fold symmetric IFE chamber. One of the four optical

access ports is shown in the figure, as well as the initial position of the shockwave

relative to the chamber wall.
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Fig. 4. Initial temperature and pressure for the IFE chamber model. The density,

velocity and temperature profiles are obtained as a 1D solution from a Lagrangian

code BUCKY. The solution is interpolated onto the grid before being advanced by

the Godunov algorithm.
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(a) t = 0 s (b) t = 0.005 s (c) t = 0.013 s

Tmin = 973.16 K

Tmax = 5.37·104 K

pmin = 175.38 Pa

pmax = 1.12·103 Pa

pmin = 64.45 Pa

pmax = 1.4·103 Pa

Tmin = 973.16 K

Tmax = 1.37·105 K

pmin = 326.18 Pa

pmax = 1.69·103 Pa

Tmin = 973.16 K

Tmax = 1.43·105 K

Fig. 5. Pressure (lower triangular portion of the figure) and temperature (upper

portion of the figure) at three different times. A range of temperatures and pressures

from minimum to maximum is provided for each individual case, as shown above.
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Fig. 6. Detail of velocity field in the cylindrical portion of the chamber at time

t=0.013 s. The streamlines are accompanied by the color plot of velocity magnitude,

which peaks at 821.28 m/s (red area).
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Fig. 7. Integral quantities used as performance indicators for the algorithm. Part

(a) represents the integral of the parallel component of shear stress, τ‖ along the

wall and in time. Similarly, part (b) is obtained by using the normal component of

shear stress, τ⊥ as an integrand. Total energy conducted to the wall as a function of

time is shown in part (c) of the figure. Each of the results is provided for the grids

300 × 300 (16 cm cell size), 600 × 600 (8 cm cell) and 1200 × 1200 (4 cm cell).
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