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ORIGINAL RESEARCH

The use of CT is required in radiation therapy treatment 
planning (1). CT offers excellent anatomic localization 

information and provides the necessary electron density in-
formation needed for dose calculation (2). CT planning is 
increasingly complemented with MRI, as MRI enables su-
perior soft-tissue visualization in many anatomic sites (3). 
However, nonrigid misalignment between CT and MR 
image sets introduces localization errors in target volumes 
and critical normal anatomy that are especially problematic 
for modern treatment modalities, such as intensity-modu-
lated radiation therapy, which rely on accurately delineated 
anatomy (4–9). Furthermore, multiple imaging studies can 
be cost prohibitive and burdensome to the patient. In light 
of these challenges, MR-only treatment planning has be-
come an attractive alternative. However, MR-to-CT image 
translation is technically challenging because of the non-
linear intensity and spatial translation between modalities.

In recent years, convolutional neural networks (CNNs) 
have been used for a broad range of volumetric prediction 
problems, including dose calculation, semantic segmenta-
tion, and synthetic CT generation from MR images (10–
14). Conventional MR and CT image–synthesis CNNs 
learn to predict the most likely volume by minimizing 
voxel-to-voxel differences between MR and CT image 
pairs (15,16). This approach is prone to prediction deg-
radation in the form of blurring and unsharpening due to 
anatomic misalignment (7,8).

Generative adversarial networks (GANs) provide an 
alternative to pure voxel-to-voxel learning by adding a dis-
criminator CNN that encourages realistic predictions (17). 
Existing approaches use an encoder-decoder CNN called 
the generator to predict the translated image, which is 
passed into a discriminator CNN that classifies the quality 
of the translated image (18,19). The generator and discrim-
inator compete to reach the Nash equilibrium, which is the 
minimax loss of the aggregate training protocol. However, 
this method still relies on voxel-to-voxel alignment because 
the objective function incorporates synthesis CNN loss. 
Because obtaining perfectly aligned MR and CT datasets 
is not possible, conventional GANs that rely on paired im-
ages have similar disadvantages as conventional CNNs.

Recently, a class of solutions has emerged that uses cy-
cle-consistent GANs (CycleGANs) to solve image-to-im-
age translation using unpaired images (20). These solutions 
solely rely on adversarial loss based on the discriminator, so 
they are not prone to translation degradation due to mis-
alignment. Cycle consistency is introduced to encourage 
image translations that spatially correspond to their input 
images. Cycle consistency is accomplished by adding an 
additional GAN that predicts the original image based on 
the predicted translation. The difference between the re-
constructed input image and the original image is added 
to the loss function to enforce spatial consistency between 
images. However, conventional unpaired CycleGANs rely 
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Purpose: To suggest an attention-aware, cycle-consistent generative adversarial network (A-CycleGAN) enhanced with variational auto-
encoding (VAE) as a superior alternative to current state-of-the-art MR-to-CT image translation methods.

Materials and Methods: An attention-gating mechanism is incorporated into a discriminator network to encourage a more parsimonious 
use of network parameters, whereas VAE enhancement enables deeper discrimination architectures without inhibiting model conver-
gence. Findings from 60 patients with head, neck, and brain cancer were used to train and validate A-CycleGAN, and findings from 
30 patients were used for the holdout test set and were used to report final evaluation metric results using mean absolute error (MAE) 
and peak signal-to-noise ratio (PSNR).

Results: A-CycleGAN achieved superior results compared with U-Net, a generative adversarial network (GAN), and a cycle-consistent 
GAN. The A-CycleGAN averages, 95% confidence intervals (CIs), and Wilcoxon signed-rank two-sided test statistics are shown for 
MAE (19.61 [95% CI: 18.83, 20.39], P = .0104), structure similarity index metric (0.778 [95% CI: 0.758, 0.798], P = .0495), and 
PSNR (62.35 [95% CI: 61.80, 62.90], P = .0571).

Conclusion: A-CycleGANs were a superior alternative to state-of-the-art MR-to-CT image translation methods.
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Figure 1: The gating mechanism used in the discriminator network is shown for the gating signal a2, 
input signal a1, and resulting gated signal ag. ReLU = rectified linear unit.

tively. CT images were acquired helically using 120 kVp and 
450–720 mAs and using a SOMATOM Sensation CT scanner 
(Siemens Medical Solutions, Ann Arbor, Mich). T1-weighted 
MR images were acquired using a repetition time of 8.48 msec, 
an echo time of 10.584 msec, and a flip angle of 111° using 
a Discovery MR750 T3 MRI scanner (GE Medical Systems, 
Chicago, Ill). All images were normalized prior to training by 
subtracting the mean and dividing by the standard deviation.

Attention-Aware Discrimination
The discriminators use an attention-gated 70 × 70 pixels 
“PatchGAN” classifier, which selectively captures local style 
statistics (20,22). The attention mechanism imposed on our 
discriminator networks encourages a more parsimonious use 
of image information and aids in generalization over changes 
in data distribution, enforcing compatibility between local 
feature vectors extracted at intermediate stages in the CNN 
pipeline and the final output function (23,25). Additive self-
attention gates were used to modulate feature responses from 
the intermediate multiscale stages of the network (26,27). 
Each intermediate multiscale output is modulated by adding 
the output of the final multiscale stage (a1) to the output of 
each intermediate stage (a2). The combined activations (a1,2) 
are rectified linear unit (ReLU)–activated and passed through a 
1 × 1 channel-wise convolutional layer before being batch nor-
malized and sigmoidally activated to form b1,2. The a1 is then 
multiplied by b1,2 to form ag. The ag from each multiscale stage 
is concatenated to the final aggregated output stage. A sche-
matic of the attention-gating mechanism is shown in Figure 1.

Training attention-gated classifier networks is nontrivial 
because of the gradient saturation problem (26). To help the 
network attend to each scale, previous attention-gated classifier 
networks have used a staged learning routine (23,28,29). Staged 
training in a CycleGAN is challenging because the generator and 
discriminator need to progress in unison. VAE is used as a Cycle-
GAN-compatible alternative to staged learning (24,30,31). VAE 
facilitates convergence of the core network and attention mecha-
nism while simultaneously allowing the discriminator network 
to progress in synchrony with the generator network.

The VAE uses an information bottleneck convolutional layer 
followed by three deconvolutional decoding layers to reproduce 
the discriminator input (30,31). Figure 2 shows the discrimina-
tor network.

Training and CycleGAN Framework
This work uses the general CycleGAN framework described by 
Zhu et al and Jin et al (20,21). Our model is composed of four 

on the network’s ability to distinguish a translation between do-
mains, so they are limited by the network’s ability to attend to 
specific anatomy (21).

An attention mechanism has been proposed to help the dis-
criminator attend to specific anatomy within an image by selec-
tively enhancing portions of the network during training (22). 
However, attention-gated classification networks are difficult to 
train (23). Recently, variational autoencoding (VAE) has been 
used to facilitate model convergence and improve the general-
ization of CNNs (24). This study suggests an attention-aware 
CycleGAN (A-CycleGAN) with VAE enhancement as an alter-
native to current state-of-the art MR-to-CT image translation 
algorithms.

Materials and Methods

Data
Findings from 90 patients with head, neck, and brain cancer 
who previously received radiation therapy were used to train, 
validate, and test A-CycleGAN (institutional review board 
identifier 14-15452). To mitigate multiple-hypothesis testing, 
this study followed Kaggle-style competition rules, in which 
studies from 60 patients (4138 axial slices) were used to train 
and validate the model. Studies from an additional 30 holdout-
test patients (1422 axial slices) were deconstructed into axial 
slices for prediction and then reconstructed 
into three-dimensional volumes to report final 
test scores. All evaluation metrics and statistics 
were conducted using three-dimensional image 
volumes as opposed to separate slices. For each 
patient, a single CT and T1-weighted MR im-
age set was used. All images were rescaled to 
1 × 1 × 2 mm in the left-right, anterior-pos-
terior, and superior-inferior directions, respec-

Abbreviations
A-CycleGAN = attention-aware CycleGAN, CNN = convolutional 
neural network, CycleGAN = cycle-consistent GAN, GAN = 
generative adversarial network, MAE = mean absolute error, PSNR 
= peak signal-to-noise ratio, ReLU = rectified linear unit,  SSIM = 
structure similarity index metric, VAE = variational autoencoding

Summary
An architecture that uses a variational autoencoder-enhanced, 
attention-aware, cycle-consistent generative adversarial network (A-
CycleGAN) for MR-to-CT image translation is described; this is the 
first time, to our knowledge, that an A-CycleGAN has been used to 
solve MR-to-CT image translation. 

Key Points
 n An alternative to current state-of-the-art MR-to-CT image transla-

tion algorithms is suggested. 
 n Improved MR-to-CT image translation will facilitate MR-only ra-

diation therapy treatment planning and MR-to-CT image fusion 
for diagnostic or therapeutic images. 

 n Successful implementation of this technique could help reduce the 
burden for patients who require MR and CT imaging in radiology 
and radiation oncology.
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learning rate of 0.0002 and then linearly annealed to zero for the 
remaining 600 epochs. Hyperparameter tuning was conducted 
for all algorithms using the training and validation set to deter-
mine the optimal number of filters at each layer, filter size, stride, 
position of batch normalizations, type of activations, learning 
rate, batch size, number of epochs, and architectural design.

Results
The quality of the synthesized CT images was evaluated using 
mean absolute error (MAE) (21), defined as follows:

1

real synthetic real
0

1MAE CT ( ) CT (MR [ ])
−

=

= −∑
N

i
i i

N ,

where i is the index of corresponding CT-MR slices and N is 
the number of slices in the real CT image. The peak signal-
to-noise ratio (PSNR) was also used to evaluate the similarity 
between the real and synthetic CT images (18,21). PSNR is 
defined as follows:

2
max

10PSNR 10 log
MSE
im 

= ⋅  
 

,

where immax (maximum possible pixel value of the image) is 
255.

The similarity of the synthetic CT images and real CT images 
was also quantified using the structure similarity index metric 

distinct CNNs: a generator that translates an MR image to a 
CT image (generator A), a discriminator that distinguishes be-
tween real and fake CT images (discriminator A), a generator 
that translates CT images to MR images (generator B), and a dis-
criminator that distinguishes between real and fake MR images 
(discriminator B). In one cycle, a real MR image (Real MRX) is 
translated to a synthetic CT image (Fake CTX) by generator A. 
Fake CTX is translated to Fake MRX by generator B and com-
pared with Real MRX. Discriminator A tries to label Fake CTX 
as 0 and simultaneously aims to label a random real CT image 
(Real CTR) as 1. The exact mirror opposite procedure is simulta-
neously executed starting with a random unpaired real CT im-
age (Real CTY) (20). Image series X and Y are from unpaired MR 
and CT slices and do not necessarily belong to the same patient. 
Images from series R for MR and CT slices are taken randomly 
and are also not necessarily from the same patient. The overall 
model framework is described in Figure 3.

This study’s generator networks used an adaptation of U-
Net-128 described by Jin et al (21). The A-CycleGAN model was 
trained on two Nvidia Ti 1080 GTX (Nvidia, Santa Clara, Ca-
lif ) GPUs using a distributed learning framework, with a mini-
batch size of two and Adam optimization. Synchronized batch 
normalization was used as an alternative to instance normaliza-
tion or batch normalization, providing accurate aggregation of 
network statistics within a distributed learning framework (32). 
To improve generalization, images were randomly cropped, left-
right flipped, intensity skewed, and histogram renormalized dur-
ing training. The model was trained for 10 epochs with a fixed 

Figure 2: A schematic of the attention-gated discriminator network using variational autoencoder enhancement. ReLU = 
rectified linear unit.
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GAN method uses adversarial loss, it still relies on some conven-
tional generator loss, so it is sensitive to anatomic misalignment. 
The CycleGAN method performed much better than the U-Net 
and GAN methods. A-CycleGAN had the best performance for 
all evaluation metrics.

Figure 4 shows the visual differences among the real MR, 
real CT, and predicted CT slices for each of the algorithms. 
Although the U-Net and GAN methods performed well in 
some regions of the images, they tended to produce image 
artifacts or blurred anatomy in some circumstances. The 
CycleGAN method produced realistic-looking images but 
still introduced some imaging artifacts. The A-CycleGAN 
method produced the most realistic CT slices compared with 
the alternative methods. The attention maps shown in Figure 

(SSIM) (33). SSIM is an image-quality assessment that is based 
on the degradation of structural, luminance, and contrast infor-
mation between two images.

The Table shows the PSNR, MAE, and SSIM scores for the 
U-Net, GAN, CycleGAN, and A-CycleGAN methods. From 
the Anderson-Darling test, we determined that a normal distri-
bution could not be assumed for our data. A Wilcoxon signed-
rank two-sided test was used to compute comparator P values 
between A-CycleGAN and each alternative method. P values less 
than .05 were considered to be significant.

The Table indicates that the U-Net method had the worst 
performance for all evaluation metrics. Although the GAN 
method had some improvement over the U-Net method, it still 
performed poorly on PSNR, SSIM, and MAE. Although the 

Figure 3: The overall workflow for the cycle-consistent generative adversarial network architecture with attention-aware 
discrimination.

PSNR, MAE, and SSIM Scores for U-Net, GAN, CycleGAN, and A-CycleGAN Methods

Measure U-Net GAN CycleGAN A-CycleGAN

PSNR
 Mean 54.67 (95% CI: 53.65, 

55.69)
58.81 (95% CI: 58.00, 

59.63)
61.58 (95% CI: 61.09, 

62.06)
62.35 (95% CI: 61.80, 

62.90)
 P value 1.73 3 1026 3.18 3 1026 .057096 …
MAE
 Mean 26.12 (95% CI: 25.04, 

27.19)
23.32 (95% CI: 22.01, 

24.63)
21.34 (95% CI: 20.41, 

22.27)
19.61 (95% CI: 18.83, 

20.39)
 P value 1.92 3 1026 5.31 3 1025 .010444 …
SSIM

 Mean 0.672 (95% CI: 0.603, 
0.741)

0.712 (95% CI: 0.680, 
0.744)

0.742 (95% CI: 0.707, 
0.777)

0.778 (95% CI: 0.758, 
0.798)

 P value .008730 .001593 .049498 …

Note.—The P values compare each of the alternative methods to A-CycleGAN using a Wilcoxon signed-rank two-sided test 
with a sample size of 30. A-CycleGAN = attention-aware CycleGAN, CI = confidence interval, CycleGAN = cycle-consistent 
GAN, GAN = generative adversarial network, MAE = mean absolute error, PSNR = peak signal-to-noise ratio, SSIM = structure 
similarity index metric. 
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translation. It is also evident that the A-CycleGAN method 
achieved statistically significant improvement over alternative 
methods for MAE and SSIM.

Although direct comparison with the results of previous stud-
ies is not possible, previous studies that use CycleGANs report 
similar improvement over conventional GANs and U-Net–based 
algorithms when image alignment is difficult or impossible to 
achieve (21,34). Furthermore, we compared our algorithm with 
an adaptation of the original U-Net, conditional GAN, and Cy-
cleGAN for consistency (20,35,36).

Our U-Net method generated synthetic CT images by in-
corporating a six-multiscale-level-deep encoder-decoder ar-
chitecture with skip connections conjoining the convolutional 
downsampling and deconvolutional upsampling stages. The 
U-Net model used a dropout layer of 0.35, batch normaliza-
tion, and ReLU activation at every convolutional layer and did 
not use a discriminator network. Our GAN architecture used a 
five-multiscale-level-deep U-Net model as the generator and a 
three-multiscale-level-deep PatchGAN encoding network as the 
discriminator. The CycleGAN model used a pair of five-multi-
scale-level-deep U-Net architectures as the generators and a pair 
of three-multiscale-level-deep PatchGAN encoding networks for 
the discriminators. All networks used tanh activation on the last 
layer of their generators, and all discriminator networks derived 
their adversarial loss from the raw activations of their last layers. 

4 represent aggregate attention information from all multi-
scale levels. The attention mechanism works in unison with 
the primary discriminator pipeline and selectively highlights 
information propagation based on the interplay between all 
multiscale levels.

Figure 5 shows the adversarial training loss for discrimina-
tors A and B, illustrating how the two opposing network por-
tions progress in unison. The discriminator loss quickly pla-
teaus because the discriminators and generators compete. The 
loss function is relatively linear compared with conventional 
CNN loss because the generators get progressively better at cre-
ating fake images, whereas the discriminators get progressively 
better at distinguishing fake images.

Discussion
This study details the model architecture and learning routine 
associated with VAE-enhanced A-CycleGANs for MR-to-CT 
image translation. A-CycleGANs have been used to solve non-
medical image-to-image translation, but this the first, to our 
knowledge, implementation of A-CycleGANs to this problem 
space. Additionally, to our knowledge, this is the first imple-
mentation of VAE-enhanced attention-aware discrimination in 
any problem space, including nonmedical applications.

From the results, it is clear that unpaired CycleGANs are a 
superior alternative to paired image–based MR-to-CT image 

Figure 4: The real MR images, corresponding real CT images, and fake CT images are shown for all methods (U-Net, generative adversarial 
network [GAN], cycle-consistent GAN [CycleGAN], and attention-aware CycleGAN [A-CycleGAN]) for patients 1 (top) through 6 (bottom) of the 
holdout test set. The composite attention maps are shown for A-CycleGAN algorithm for all six patients.

http://radiology-ai.rsna.org
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The GAN and CycleGAN models used synchronized 
batch normalization, leaky ReLU, and no dropout.

GANs excel at problems that do not have a well-
defined analytical evaluation metric. If the quality 
of a prediction cannot be completely captured by a 
standard loss function, then GANs might be a suit-
able alternative. GANs encourage realistic predictions 
and are well suited for medical problems that rely on 
qualitative clinical decisions that cannot be reduced to 
combinations of simple analytics such as mean squared 
error, intersection, union, or edge distances.

Nominally, adversarial discrimination will asymp-
totically approach 50% accuracy for fake images. 
Under this ideal circumstance, the network cannot 
distinguish between real and fake CT images because 
the fake CT images are ideal translations of their MR 
counterparts. However, GAN discriminators are usu-
ally very simple in order to facilitate model conver-
gence in the context of adversarial training. In contrast, 
top-performing classification CNN architectures can exceed 200 
layers, which dwarfs current CycleGAN discriminators, which 
consist of five convolutional layers. A network consisting of five 
convolutional layers will converge quickly but may not have the 
same predictive power as current state-of-the-art stand-alone 
classification CNN architectures. VAEs facilitate model conver-
gence and enable deeper architectures without compromising 
adversarial training. Furthermore, the attention mechanism al-
lows for parsimonious use of network parameters by focusing the 
network on relevant foreground and background image regions.

To be most effective, this technique might require a change in 
the clinical workflow, as many patients have undergone CT prior 
to undergoing MRI. However, many patients undergo MRI 
prior to undergoing a CT planning scan because MR images 
help physicians identify the extent of disease and can be used to 
aid in sensitive tissue delineation. Furthermore, patients will be 
spared unnecessary radiation doses in cases that enable an MR 
scan to completely replace a CT scan.

This study had some limitations. The image-to-image transla-
tion algorithm uses axial slices that are only 256 × 256, so the 
field of view is not big enough to encompass treatment sites that 
require larger image sizes. Because GANs are sensitive to hyper-
parameters, it cannot be assumed that our training routine, ar-
chitecture, and overall approach would generalize well to other 
larger fields of view. Additionally, this study only considered pa-
tients with head, neck, and brain cancer, so we cannot assume 
this model will generalize well to other body parts. Similarly, we 
do not know how well this model will transfer to separate but 
related tasks. MRI is more expensive than CT and is a somewhat 
limited resource in North America and elsewhere, so this tech-
nique may not be practical at every institution. That said, it can 
certainly be more cost-effective than performing both CT and 
MRI, which is routinely performed in radiation therapy applica-
tions. Although our method achieved a statistically significant 
improvement compared with alternative methods, the reader-
ship would still have to decide if the performance improvement 
that our algorithm offers is worth the transition from their cur-
rent solution. In spite of the limitations of this study, unpaired 

image-to-image translation solutions could prove useful in many 
medical imaging applications, as variations in patient anatomy 
and setup positions are a ubiquitous problem in therapeutic and 
diagnostic imaging. Additionally, MR-to-CT image translation 
could have other use cases, such as in perioperative planning, but 
those use cases would first have to be clinically validated. In ad-
dition to unpaired image-to-image translation problems, such as 
CT-to–cone beam CT image translation and MR-to-CT image 
translation, CycleGANs allow models to rely on pure adversarial 
loss while simultaneously making inferences based on their input 
image conditions (37,38).

In summary, this study demonstrated that unpaired A-Cycle-
GANs enhanced with VAE are a superior alternative to current 
state-of-the-art MR-to-CT image translation methods.
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