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ABSTRACT OF THE DISSERTATION

Geometric current response in Chern systems

and topological delocalization in Floquet class AIII systems

by

Albert Nikola Brown

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor Rahul Roy, Chair

Topological phases are phases of matter that are characterized by discrete quantities known

as topological invariants. This thesis explores two such phases, the static Chern insula-

tor phase (symmetry class A) in two dimensions and the dynamical Floquet chiral phase

(symmetry class AIII) in one dimension.

A Chern insulator is a gapped single particle system on a lattice with a non-zero first

Chern number for some of its energy-momentum bands. We consider subjecting a Chern

insulator to a non-uniform external electric field. The response is band geometric which

means it is robust to deformations of the energy bands which do not cause band touchings.

We find a connection between this response and previous work on band geometric quantities.

A Floquet insulator is a unitary time evolved system defined by a time periodic Hamil-

tonian. We first describe an existing model of a 1D chain with 2D onsite Hilbert space and

chiral symmetry. Then we introduce a disordered model of the system and look at how its

topological properties are robust to the disorder. We find a power law scaling of ν = 2 for

the localization-delocalization transition of the eigenstates of the unitary operator as the

drive evolves towards the midway point of its evolution.
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CHAPTER 1

Introduction and Overview

The concept of topological properties in condensed matter physics has redefined how we con-

sider the classification of phases of matter. Instead of being characterized by the spontaneous

breaking of a symmetry, a topological phases are characterized by discrete quantities known

as topological invariants. Topological phases have applications to a significant amount of

condensed matter physics. The main application is insulator physics which we will discuss in

this paper, but they can also exist in superconductors [QZ11, LW16], semimetals [AMV18],

cold atoms [CDS19], optics [OPA19], and others, some still to be discovered. Even though

a number of these topics started as purely theoretical models, all I mentioned have seen a

matching field of experimental research and realization.

One large advantage that has continued to motivate and advance this field of research is

the implications of the discrete nature of the invariant. As there is no halfway for a topo-

logical phase, one can make very strong statements about a phase’s robustness to disorder

[HK10], universality [Kit09], or stability [Kit03]. This makes it a powerful tool in studying

condensed matter systems.

In my research I have considered both static and dynamical properties of single particle

(non-interacting) Chern Insulators and Floquet Topological Insulators. Chern insulators

started as a set of toy model systems to understand the quantum Hall effect without external

magnetic field, but grew to be its own field of study. Floquet physics is the time dependent

extension of static topological insulating systems and realizes physics unique to its dynamics.

The thesis as follows will be organized as so. Chapter 2 will give a pedagogical and

historical background on quantum Hall and the development of the field of topological phases.

1



Chapter 3 will study band geometrical properties and present my research on non-uniform

Chern insulator current response. Chapter 4 introduces Floquet topological phases and talks

about their properties and classification. Chapter 5 gives my research on disordered Floquet

evolutions and the localization properties of their eigenstates.
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CHAPTER 2

Topological Phases

2.1 Classical Hall

We start by considering the movement of an electron in a uniform magnetic field, ~B which

can be said, without loss of generality, to point in the ẑ direction, ~B = Bẑ. The Lorentz

force from the field acts perpendicular to the motion of the electron,

~F` = e~v × ~B = ~Fc =
mv2

r

This perpendicular force acts as a centripetal force that moves the electron in a circular orbit

normal to the direction of the magnetic field. The resulting angular frequency of the motion,

known as the cyclotron frequency, is independent of the velocity of the particle,

r =
mv

eB
⇒ ωc =

v

r
=
eB

m

This frequency will be the B-dependent constant that sets the energy scale of our problem.

Writing down the Lagrangian,

L =
mṙ2

2
+ e ~A · ~̇r

we can find the form of the canonical momentum,

~p =
∂L
∂~̇r

= m~̇r + e ~A

3



where we see that ~A, the vector potential, enters. Using this form, we can write down the

Hamiltonian for the system

H =
1

2me

(~p− e ~A)2

From here we can approach the quantum problem.

2.2 Landau Levels

Given the canonical commutation relations, we can see that the kinetic momentum, ~Π, do

not commute with each other,

[Πx,Πy] = [px − eAx, py − eAy] = ie~(∇xAy −∇yAx) = ie~Bz

Given this, we can form creation and annihilation operators,

a = (2e~B)−
1
2 (Πx + iΠy)

a† = (2e~B)−
1
2 (Πx − iΠy)

where the normalization is the inverse of what was found above to ensure that [a, a†] = 1.

Inverting these equations, we get,

Πx =

√
e~B

2
(a+ a†)

Πy = −i
√
e~B

2
(a− a†)

and plugging this into our Hamiltonian, we see that we are left with a quantum harmonic

oscillator with frequency ωc,

4



H = ~ωc(a†a+
1

2
)

These equispaced energy levels are known as Landau levels. Unlike a harmonic oscillator,

however, we have a two dimensional system, and therefore another set of operators, as well

as the gauge freedom inherent to the vector potential to consider before we can write down

the wavefunctions.

2.3 Choice of Gauge

Because of the gauge freedom in the vector potential,

~A(~r)→ ~A(~r) + ~∇φ(~r)

there are many equivalent ways to write our kinetic momentum operators. There are two

common choices given a constant B field, the Landau gauge and the rotationally symmetric

gauge.

2.3.1 Landau Gauge

Choosing A = (0, Bx) is a simple choice to give a constant out of plane magnetic field. With

this choice, a significant simplification of the Hamiltonian occurs.

H =
p2
x

2m
+

1

2m
(py − eBx)2

We see here that py commutes with the Hamiltonian, so the two operators are mutually

diagonalizable and we can substitute the operator with its eigenvalue, ky.

H =
p2
x

2m
+

1

2m
(~ky − eBx)2 =

p2
x

2m
+

1

2
mω2

c (x−
~ky
mωc

)2

We see that we have the harmonic oscillator Hamiltonian just as when we used ladder

operators. We also notice translational symmetry along the y direction. The Landau gauge

5



is therefore sometimes referred to as the translationally invariant gauge. Our eigenstates

can be simply written down as a combination of solutions to the harmonic oscillator and

translationally invariant plane waves,

Ψn,ky(~r) = eikyyψn(x− ~ky
mωc

)

where the ψn is the nth harmonic oscillator wave function. This form is exponentially

localized along the x-direction and completely delocalized along the y-direction as will be

relevant in later discussion.

Additionally, we see that the position of the harmonic oscillator is offset by a momentum

dependent factor. Returning to the statement of the Hamiltonian, we can think of writing

it in terms of the center of the harmonic oscillator.

H =
~Π2

2me

=
1

2
mω2

c (x−X)2 +
1

2
mω2

c (y − Y )2

where the new cyclotron center operators are,

X = x+
Πy

mωc
and Y = y − Πx

mωc

These center of position operators also do not commute with each other. Additionally, both

of them commute with Πx and Πy,

[Πx, X] = [Πx, x] +
1

mωc
[Πx,Πy] = −i~ +

1

mωc
i~eB = 0

[Πy, Y ] = [Πy, y] +
1

mωc
[Πy,Πx] = −i~− 1

mωc
(−i~eB) = 0

where the [Πy, X] and [Πx, Y ] commutators are trivially zero. This means we can create a

distinct set of creation and annihilation operators for X, Y .

b =

√
eB

2~
(X − iY )

6



b† =

√
eB

2~
(X + iY )

so we can specify eigenstates of the Hamiltonian as harmonic oscillator states in two indices.

The b index, however, doesn’t contribute any energy, so there is a massive degeneracy to

our system. To see the structure of the degenerate subspace, we consider the rotationally

symmetric gauge.

2.3.2 Rotationally Symmetric Gauge

If we chose a symmetric vector potential, A = (−By/2, Bx/2), then our eigenstates are

rotationally symmetric. First consider the form of the creation and annihilation operators,

a = (2e~B)−
1
2 (Πx + iΠy) = (2e~B)−

1
2 [−i~(∇x + i∇y)−

ieB

2
(x+ iy)]

= −i
√

~
2eB

(2
∂

∂z̄
+
eB

2~
z)

where we have used the substitution of the complex variable z = x + iy. A factor of two is

required so that the derivative ∂
∂z
z = 1 and vice versa. We then have our two independent

variables be z and z̄, as can be seen by taking the partial derivative,

∂

∂z̄
z =

1

2
(∇x + i∇y)(x+ iy) = 0

and again, similarly vice versa. Also we can find a† just by complex conjugation,

a† = −i
√

~
2eB

(2
∂

∂z
− eB

2~
z̄)

Now, finding the ground state is as simple as looking for solutions to the equation,

a|Ψ〉 = 0 = −i
√

~
2eB

(2
∂

∂z̄
+
eB

2~
z)Ψ(z, z̄)

for which there are an entire family of solutions,

7



Ψ(z, z̄) = p(z)e−eBz̄z/4~

The function p(z) can be any analytic complex function, we choose a basis of polynomials,

{zm} to represent them. The normalization of these functions is then related to m

Nm =
1√
m!π

(
eB

2~

)m+1
2

To make sense of the index m within the scope of the problem, we calculate the action

of the b or b† operators on a wavefunction of this form. In terms of the new variables, our

operators are

b =

√
eB

2~
(X − iY ) =

√
~

2eB
(2
∂

∂z
+
eB

2~
z̄)

b† =

√
~

2eB
(−2

∂

∂z̄
+
eB

2~
z)

so if we take

bΨ0,m(z, z̄) =

√
~

2eB
(2
∂

∂z
+
eB

2~
z̄)Nmz

me−eBz̄z/4~

= m

√
~

2eB
Nmz

m−1e−eBz̄z/4~ =
√
mΨ0,m−1(z, z̄)

we see that the power of m is just the index of the ladder state for the b, b† operators. The

0 index here is just denoting that we are using the function for the lowest energy state, also

referred to as the Lowest Landau Level or LLL. Now that we have solved for the eigenstates,

we can refer to them compactly using a ket of their a and b ladder operator eigenvalues,

|n,m〉.

To understand the massive degeneracy in each Landau level, consider the action of the

angular momentum operator on Ψ0,m. The angular momentum operator Lz can be written

in complex variables as

8



Lz = xpy − ypx = −i~(x∇y − y∇x) =

=
z + z̄

2
i(
∂

∂z
− ∂

∂z̄
)− z − z̄

2i
(
∂

∂z
+

∂

∂z̄
)

= ~(z
∂

∂z
− z̄ ∂

∂z̄
)

We can then translate our complex variables into creation and annihilation operators,

z =

√
2~
eB

(b† + ia)

∂

∂z
=

√
eB

8~
(b+ ia†)

z̄ =

√
2~
eB

(b− ia†)

∂

∂z̄
= −

√
eB

8~
(b† − ia)

so that we can write Lz as

Lz =
1

2
~
[
(b† + ia)(b+ ia†) + (b− ia†)(b† − ia)

]
=

1

2
~
[
b†b− aa† + bb† − a†a

]
= ~(b†b− a†a)

so state Ψn,m will have angular momentum ~(m−n). However, this is not a physical quantity,

the “higher” degenerate states within a Landau level are not actually spinning faster. This

is because the form of the angular momentum was written in terms of canonical momentum

and not the kinetic momentum. Therefore this number is dependent on the fact that we

chose the rotationally symmetric gauge.

9



If we calculate kinetic angular momentum instead, we see each state only has −(2n+ 1)~

of angular momentum,

xΠy − yΠx = x(py −
eB

2
x)− y(px +

eB

2
y) = Lz −

eB

2
z̄z

= ~(b†b− a†a)− ~(b† + ia)(b− ia†)

= −~(2a†a+ 1) + i~(b†a† − ab)

with the second set of terms not giving a contribution to the expectation value on any

eigenstate. This is consistent with the state having only rotational kinetic energy given by

1
2
ωL.

From here, we can make an approximate statement about the degeneracy of these Landau

levels. For the kinetic angular momentum, we calculated the term z̄z = r2. As we are dealing

with a very large number of states, we can think of looking at the largest value of m such

that it’s peak distance, 〈r2〉, is contained within some finite system size radius R. Given

this, we find that

r2
max ≈ 〈z̄z〉 =

2~
eB
〈(b† + ia)(b− ia†)〉 =

2~
eB

(mmax + n+ 1)

We can safely drop the n + 1 from the expression as they will both be of order 1 in any

applicable case, as we care to study low energy systems. Given this, we can then compare

to our system size and see that

mmax ≈
eBR2

2~
=
eΦ

h

where Φ is the total magnetic flux piercing the system. Due to the presence of h, this will

be an enormous number for a system in a macroscopic magnetic field.

Despite starting with relatively simple assumptions, Landau levels have shown to be a

rich quantum system. In the next section we will see its applications as a model for the

Integer Quantum Hall Effect.
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2.4 Integer Quantum Hall Effect (IQHE)

The Integer Quantum Hall Effect (henceforth IQHE) was first seen by Wakabayashi and

Kawji in 1978.[WK78] They looked at MOSFET transistors under high magnetic fields and

saw small plateaus of the transverse Voltage while, at the same time, the longitudinal Volt-

age through the device went to zero. Shortly after in 1980, von Klitzing, with samples

prepared by Dorda and Pepper, saw plateaux in the transverse Voltage at exactly quantized

values[KDP80]. One can talk about the transverse or Hall conductivity σxy = J
VH

, com-

puted from the experimental voltage and induced current. From there we can define a Hall

resistivity ρxy as well as a longitudinal resistivity ρxx, data for which can be seen in figure

2.1.

Figure 2.1: Here is data by von Klitzing on an Aluminum doped Gallium Arsenide het-

erostructure at fixed carrier density, presented for his Nobel Prize acceptance in 1985[Kli86].

The plateaux are incredibly flat and corresponded exactly with the current response of an

integer number of filled Landau levels.

The plateaux of transverse (or Hall) conductivity occur at integer multiples of a quantity
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similar to the one we found at the end of the previous section

σH = σxy =
e2ν

h

where ν is the plateau index. Also called the filling fraction, ν corresponds to the number

of filled Landau levels in a model of our system. Like our statement of the Landau level

degeneracy, the result depends on the constant e
h

= φo which is referred to as the flux

quantum.

The flatness and broadness of the plateaux can be understood by acknowledging the

presence of disorder. As shown by Aoki and Ando[AA81], disorder broadens the Landau

level bands, but also localizing all states except those close to the central Landau level

energy. The effect of this is that shifting the relative placement of the Fermi energy to the

conducting states when you are in a plateau by changing the magnetic field only causes

population of localized states. When the Fermi level passes through the extended, Landau

level-like portion of the density of states, there is a quick increase up to the next plateau. A

cartoon picture of this process can be seen in figure 2.2.

To understand the exact quantization of the plateau conductance, Laughlin explains that

the current can only exist in integer increments of the flux quantum[Lau81]. The argument,

later refined by Halperin[Hal82], considers bending a finite two dimensional Landau level

system into a loop, for example by adding periodic boundary conditions in one of our spatial

directions. The current due to a potential drop V across the non periodic direction of our

system can be seen as the change in the system energy as a function of adiabatic insertion

of magnetic flux through the loop.

I ∝ ∂E

∂Φ
=

1

L

∂E

∂A

and due to the simplicity of the Landau level problem, we can consider a uniform vector

potential Ax in the direction of the loop and write the derivative in terms of ∂A. However the

effect of a change ∆Ax caused by the insertion of flux is to shift the phase of the wavefunction

in a spatially dependent way.
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Figure 2.2: This shows a cartoon picture of the effect of disorder on a Landau level. The

top picture shows the density of states after disorder breaks the degeneracy and localizes

states in the shaded region. The right picture shows the effect of this on a linear response

calculation of the conductivity which becomes the transition from one plateau to the next.

Ψ→ eiex∆Ax/~Ψ

For localized disordered states, this poses no issue, but for the extended Landau level

states that are required for conduction, the change must be by an amount

∆A = n
h

eL

so that the wavefunction phase is correct at the periodic boundary.

A transformation by this amount is a gauge invariance of the system and the current then

has to come from the motion of n electrons from one edge to the other, which is a current of

I =
neV

L∆A
=
ne2V

h

which gives the conductance seen in the experiment. It should be noted that these arguments

break down in the presence of interactions which become important when the conducting
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bands are not fully filled. This spawned its own Nobel prize winning field of the fractional

quantum Hall effect which is beyond the scope of this thesis[TSG82, STG99].

2.5 Chern Insulators

The next major step in understanding the integer quantization came by Thouless, Kohmoto,

Nightingale, and den Nijs in 1982[TKN82]. Starting from the Kubo formula linear response

as used by Aoki and others[AA81, Pra81, Tho81], they showed a proof for the quantization

in linear response. The Kubo formula is a general statement of conductivity given by the

linear response of an applied external electric field.

σH ∝
∑

Eα≤Ef
Ef<Eβ

〈 ∂H
∂k1
〉αβ〈 ∂H∂k2 〉βα − 〈

∂H
∂k2
〉αβ〈 ∂H∂k1 〉βα

(Eα − Eβ)2

The sum is taken over energy states by separating states below the Fermi energy (Eα)

and states above it (Eβ). The braket notation denotes the matrix element of the operator

between energy eigenstates |α〉 and |β〉. Due to how Landau levels function in the presence

of disorder, we expect the Fermi level to be in a mobility gap of disordered states between

conducting Landau levels, so α here will be Landau level states from filled bands and β will

be higher energy unfilled states. The different crystal momentum, k1 and k2, merely refer to

two different basis vector directions in our 2D system, making no additional assumptions to

the structure of our Hamiltonian or any underlying lattice.

We have assumed some form of translational invariance (discrete or continuous), so we

can write the states as Bloch states

Ψk(~r) = e−i
~k·~ruk(~r)

We can also write the derivatives of the Hamiltonian as velocity operators and those as

commutators of the position operators and the Hamiltonian.

∂H

∂k1

∝ v1 ∝ [r1, H]
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Plugging this in, we can act the Hamiltonian in the commutator on our states and cancel

the energy denominator. We are left with an expectation of position operators

σH ∝
∑

Eα≤Ef<Eβ

(
〈α|r1|β〉〈β|r2|α〉 − 〈α|r2|β〉〈β|r1|α〉

)
Since we have eliminated the energy denominator, we can look at the sum and see that if

we included states such that β = α, that part of the sum would be zero as there would be a

corresponding right term to cancel each left term. Therefore we can add in those states to

the sum and take out the sum over β as a complete set of states. If we write the states in

terms of our Bloch wave functions, the position operators are equivalent to k derivatives of

the periodic part.

σH ∝
1

2π

∑∫
d2k

∫
d2r
(∂u∗
∂k1

∂u

∂k2

− ∂u∗

∂k2

∂u

∂k1

)
where the sum is now just over independent filled bands and the integrals come from writing

the wavefunctions in Bloch form. Using Stokes theorem, we can write this expression as a

loop integral around the edge of the Brillouin zone.

σH ∝
1

4π

∑∮
dkj

∫
d2r
(
u∗
∂u

∂kj
− ∂u∗

∂kj
u
)

As the wavefunction is analytic, this is equivalent to the winding number of the phase around

the Brillouin zone. Therefore the conductivity must be quantized. However, an important

part here is the minimal amount of assumptions about our system that were required. The

analytic machinery at the end of this derivation is completely independent of the IQHE. The

only serious assumption we made was one of independent non-overlapping bands as well as

the initial one neglecting interactions.

In the next few years, Berry [Ber84] and Simon [Sim83] codify and update the mathe-

matics of Chern [Che46] to give language to this geometric property of a system, geometric

meaning computable from only the wavefunctions and their derivatives. The principle build-

ing block is the Berry connection of the periodic part of a wavefunction un(k) over momentum

~An(~k) = i〈un(~k)|~∇k|un(~k)〉
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This is a vector potential and therefore gauge dependent on the choice of phase of the

wavefunction. However, if we look at the path integral of this quantity along a curve C(t),

the integral, known as the Berry phase, is gauge independent if the path forms a loop

γn = i

∫ C(tf )

C(ti)
dt〈un(~k)|~∇k|un(~k)〉

|un(~k)〉 → eiθ(
~k)|un(~k)〉

γn(t)→ γn(t) + θ(t)− θ(ti)

so over a loop, θ(tf ) and θ(ti) will always cancel as they are the same point.

Additionally, we can define the Berry curvature

−iFn(~k) = ~∇k × An(~k) =
〈∂un(~k)

∂kx

∣∣∣∂un(~k)

∂ky

〉
−
〈∂un(~k)

∂ky

∣∣∣∂un(~k)

∂kx

〉
which is the integrand of above when performing a Stokes theorem transformation. Note

that this is working backwards along the same formula considered by TKNN. However, this

curvature form not only gives us the same Kubo formula, but also an equivalent statement

of the first Chern number of our space of wavefunctions∫∫
B.Z.

d2~k Fn(~k) = 2πiCn

This quantity is a quantized topological invariant which means that deformations of the

wavefunctions will not change it so long as they do not destroy the assumptions of isolated

(non-crossing) energy bands and periodicity. Shortly after the publication of this description

Kohmoto translated the results for the IQHE into the Chern formalism [Koh85]. The Chern

number of each Landau level is shown to be one.

A comprehensive example of a Chern band model was explored by Haldane [Hal88] who

adapted a model described by Semenoff [Sem84] and showed an example of a model that has

non-zero Chern number without the presence of an external magnetic field. The model is

one evocative of graphene and describes a single particle tight binding model on a hexagonal

lattice denoted by ~R. The unit cell on a hexagonal lattice contains two sites, here labeled
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(a) (b)

Figure 2.3: A visualization of the Haldane model. Fig 2.3a shows the hoppings and the lattice

vectors including the winding direction of the phase. Fig 2.3b shows the phase diagram where

the ratio M
t2

assumes t1 = 1. The indices ν correspond to the Chern number of the bottom

band in that phase [Hal88].

A and B with respective creation and annihilation operators cA(~r) and cB(~r) respectively,

acting at a site ~r. The Hamiltonian is as follows

H =
∑
~r∈~R

∑
i

t1
[
c†B(~r + ~ai)cA(~r) + c†A(~r + ~ai)cB(~r)

]
+
∑
j

t2
[
e±iφc†A(~r ± ~bj)cA(~r) + e∓iφc†B(~r ± ~bj)cB(~r)

]
+M

[
c†A(~r)cA(~r)− c†B(~r)cB(~r)

]
where the {ai} and {bj} are the NN and NNN lattice vectors respectively for the specified

lattice site and t1 and t2 are their hopping strengths. The idea behind the model is if we

assume that even without a magnetic field the underlying structure of the lattice can cause

fluctuations around zero in the magnetic flux even though the net flux through a cell remains

zero. NN hoppings traverse a hexagonal loop, enclosing net zero flux, but the NNN hops

cut through only part of the cell pick up the phase ±φ depending on the direction of the

winding. This phase factor breaks time reversal invariance. Finally, the term M is a splitting

between the sites within a unit cell.
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The solution of this Hamiltonian is a gapped two band spectrum for all but a specific

dividing curve in parameter space. If the Fermi level is put in the gap, we can calculate σxy

and find the phase diagram in figure 2.3. Not only is there a quantized conductance as in the

IQHE without needing an external magnetic field, but by adjusting the parameters of the

phase and the relative strengths of the splitting and NNN hopping, we see that the transport

physics is unchanged despite having different wave function solutions except for the exact

points where the two bands touch. This Chern Insulator (CI) shows that the key aspects of

the IQHE that were necessary for quantized conductance was a gapped multi-band model

(so as to be able to use the Berry phase formalism) with time reversal invariance breaking.

Haldane referred to this effect as a parity anomaly (after the effect in 2+1 D electromagnetism

[NN81]) and it is also known as the anomalous quantum Hall effect.

The Chern number we see in the Haldane model is of the bottom filled band. In each

phase, the top band has an opposite Chern number. Generally, the Chern numbers of a

system are such that a fully occupied system has Chern number zero. The IQHE appears a

notable exception with each Landau level contributing a Chern number of 1, though it has an

infinite number of energy bands in the model as it stands, so occupying every band is impossi-

ble. In fact, partially filling a Landau level and turning on perturbations or interactions split

band into subbands who still have a net Chern number 1 [TKN82, Str82]. This does not ac-

curately model experimental findings for the fractional quantum Hall effect[TSG82, STG99]

a fundamentally different description is needed. For this reason, we will not consider the

interactions between particles. Instead we consider the classification of Chern insulators

within the broader category of topological phases protected by symmetry.

2.6 Classification of Topological Phases

2.6.1 Other Topological Insulators

While you cannot talk about topological phases in terms of the traditional language of spon-

taneous symmetry breaking phase transitions, symmetry is still important in understanding
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the universality of topological phases. A topological phase is defined by an integer valued

order parameter called a topological invariant, named so because its integer nature means

it cannot change through continuous deformations of the band structure. Instead, it (and

therefore the phase of the system) can only change by the discrete event of the touching of

energy bands. The calculation of a Chern number is zero if the bands can be mapped into

each other by some symmetry (described in detail below) as the Chern numbers must cancel.

However the topological invariant need not always be a Chern number of the band.

A good example is topological insulators (TIs) which are similar to Chern insulators in

that they have conducting edge modes except they do not break time reversal symmetry.

Proposed by Kane and Mele[KM05a], they first considered graphene as it had spin orbit

coupling that was predicted to be necessary in initial investigations of the subject[SCN04]

so that spin and current could be related in a way to maintain time reversal symmetry. In

their explanation of the theory, Kane and Mele define an invariant in terms of the Pfaffian

of matrix elements of the time reversal operator[KM05b]. This effect was seen shortly af-

terward in HgTe quantum wells[KWB07, RBB09]. The invariant was later expressed in a

constructive manner based on the projector onto the filled band[Roy09]. Because of time

reversal invariance, this projector could be split into two projectors that are mapped onto

each other by time reversal symmetry

P (~k) = P1(~k) + P2(~k)

P1(~k) = ΘP2(−~k)Θ−1

where Θ is the time reversal operator. While the choice of P1 and P2 were not unique, the

Chern number of each modulo 2 was a topological invariant equivalent to the one defined by

Kane and Mele and was not dependent on the way P1 and P2 were chosen. This is notably

different than Chern insulators as there was only two possible values for the topological

invariant while Chern bands could have any integer Chern number.

This band projector approach was then expanded to time reversal invariant 3D systems

[Roy10, FKM07] to define 3D topological insulators. The Dirac cones describing conducting
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modes in these systems have spin-momentum locking to preserve time reversal invariance.

Unlike Chern insulators that hadn’t seen a non-trivial example in 3D systems, TIs seemed

present in 2D and 3D. Additionally, there was the difference in available topological indices.

Therefore there seemed a relation between available symmetries and available topological

phases that required further explanation.

2.6.2 The Periodic Table

We have looked at the band structure of every Hamiltonian to calculate topological invari-

ants. Therefore we are interested in global symmetries that map the band structure onto

itself. This means that we have 3 main symmetries to consider: time reversal (Θ), parti-

cle/hole or parity (P ), and chiral symmetry (C). Up to a unitary rotation, these can be

expressed as

ΘH(~k)Θ−1 = H∗(−~k)

PH(~k)P−1 = −H∗(−~k)

CH(~k)C−1 = −H(~k)

Both P and Θ have a freedom of sign in the square of the operator, giving each two possible

forms. Space group symmetries are not considered here, but classification of topological

phases based on the crystal symmetries as well as band symmetries has been a recent field

of the study of topological crystalline insulators[AF15, CTS16].

Given these symmetries, we can define equivalency classes of Hamiltonians based on what

combinations of these symmetries they posses. The three symmetries are not completely

independent, however

PTH(~k)T−1P−1 = PH∗(−~k)P−1 = −H(~k) = CH(~k)C−1

so any system with two symmetries will have the third, resulting in 10 total classes. These

are labeled by letter Altland-Zirnbauer classes which correspond to each combination of

these symmetries[AZ97]. By identifying the homotopy groups of the classifying space of the
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Clifford algebras corresponding to our 10 symmetry groups, Kitaev classified the possible

phases available for each symmetry class in any system dimension [Kit09]. This created a

“Periodic Table” for topological phases shown in table 2.1. The group shown for each entry

shows the space of indices is either trivial (∅), 1 or 0 (Z2), or any integer (Z). One result is

that any Hamiltonian in a topological phase can be continuously deformed to resemble any

other one with the same symmetries and dimension. Chern insulator systems correspond to

class A while TIs correspond to class AII, finally elucidating their differences.

class Θ P C d=0 1 2 3 4 5 6 7

A Z ∅ Z ∅ Z ∅ Z ∅

AIII 1 ∅ Z ∅ Z ∅ Z ∅ Z

AI +1 Z ∅ ∅ ∅ Z ∅ Z2 Z2

BDI +1 +1 1 Z2 Z ∅ ∅ ∅ Z ∅ Z2

D +1 Z2 Z2 Z ∅ ∅ ∅ Z ∅

DIII -1 +1 1 ∅ Z2 Z2 Z ∅ ∅ ∅ Z

AII -1 Z ∅ Z2 Z2 Z ∅ ∅ ∅

CII -1 -1 1 ∅ Z ∅ Z2 Z2 Z ∅ ∅

C -1 ∅ ∅ Z ∅ Z2 Z2 Z ∅

CI +1 -1 1 ∅ ∅ ∅ Z ∅ Z2 Z2 Z

Table 2.1: The periodic classification of topological phases. Each class has a ±1 for each

present symmetry operator based on the square of the operator. Chiral symmetry cannot

square to −1 here. The topological invariants of the phases belong to the representation of

the groups for each specific combination of symmetry and dimension. For d ≥ 8 the pattern

repeats as dictated by Bott periodicity[Bot59].
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CHAPTER 3

Current Per Wannier Orbital Response

3.1 Context and Overview

3.1.1 Band Geometry

Related to topological quantities is the concept of band geometric quantities. A band geo-

metric quantity is a function that is defined across the Brillouin zone and depends only on

the form of the momentum space wave functions. This means it does not depend on the

energy of the wave function, and is only made up of expectations of k-space derivatives. One

may notice that this definition applies to the Berry curvature and connection, but not the

Chern number, making geometric quantities a superset to topological quantities.

An important application of geometric quantities is in projected density operators. The

properties of these operators for the lowest Landau level Hamiltonian were studied and used

by Girvin, MacDonald, and Platzman who defined them in terms of a commutator algebra

(the GMP algebra) [GMP86]

[ρ̄γ,~q1 , ρ̄γ,~q2 ] = 2i exp
(~q1 · ~q2`

2

2

)
sin
( ẑ · (~q1 × ~q2)l2

2

)
ρ̄γ,~q1+~q2

where ρ̄q = P̂γρqP̂γ is the momentum space density operator projected, P̂ , onto a specific

band indexed by γ. The magnetic length ` is the length scale of the Landau level, defined

by the magnitude of the magnetic field, `2 = ~
e|B| . They projected fractional quantum Hall

states onto the lowest Landau level so as to compute a single mode approximation of the

many body gap. However, the algebraic structure they created to relate quantities of this

type had further reaching applications.
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Roy et. al. [PRS12, Roy14] considered these projected density operators for Chern

insulators to see if the same algebra holds in the low energy limit to discuss the low energy

physics of fractional Chern insulators. What they found is that, provided the Berry curvature

of the system was sufficiently flat to be replaced by its average, B̄, the algebra would hold

to order q2 with B̄ replacing l2B from the Landau level. To hold to order q3 and higher,

an additional band geometric quantity, the Fubini-Study metric (gαβ) must be flat in the

Brillouin zone as well.

gαβ = 1/2
(〈∂uk

∂~kα

∣∣∣∂uk
∂~kβ

〉
+
〈∂uk
∂~kβ

∣∣∣∂uk
∂~kα

〉
−
〈∂uk
∂~kα

∣∣∣uk〉〈uk∣∣∣∂uk
∂~kβ

〉
−
〈∂uk
∂~kβ

∣∣∣uk〉〈uk∣∣∣∂uk
∂~kα

〉)
The Fubini-Study metric can be seen as a compliment to the Berry curvature as they are

the symmetric and anti-symmetric parts (respectively), or alternatively real and imaginary

parts of the curvature tensor

Rαβ = Tr[PγrαQγrβPγ]

where Qγ = 1 − Pγ and Pγ is the projector on a single band as defined above. Written in

the language of projectors, we obtain similarly compact descriptions of F and g

Fα,β =
1

2i
Tr[PγrαQγrβPγ − PγrβQγrαPγ]

gα,β =
1

2
Tr[PγrαQγrβPγ + PγrβQγrαPγ]

In this chapter we will consider the electric response and conductivity of Chern insulators

within the language of geometric quantities.

3.1.2 Hall Viscosity

Another place where geometrical effects have been relevant is in the study of semiclassical

electron fluids. Avron et. al. described a notion of viscosity for quantum fluids and calculated

it for quantum Hall systems [ASZ95]. The antisymmetric component of this viscosity, called

the Hall viscosity, describes the effect that an external shearing of the electron motion has

on transport in Hall systems. It was shown that the Hall viscosity changed only with
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the changing of the Chern number and was therefore topological in nature. However, the

magnatude of its contribution to transport is geometric as found by Bradlyn et. al. who

derived the effect of the Hall viscosity in linear response [BGR12]. They showed that it

contributed to the leading non-zero order term in the expansion of the linear current density

response to a general non-uniform electric field.

In a 2013 paper, Biswas derived the same response using a semi-classical method in

the lowest Landau level [Bis13]. He expanded the response to a spatially inhomogeneous

external potential and noticed that the perturbative current response for any single state in

the Landau system is also proportional to the Hall viscosity to first subleading order. This

semi-classical approach was mirrored by Roy and Harper to find the same response in a fully

quantum way for the lowest Landau level and the Hofstadter model in the limit of small flux

[HBJ18]. I extended these techniques in calculating the response of a Chern band.

3.2 Current response per state

The main quantity we adopted from Biswas is the current per state. The current response

per state is equivalent to looking at the current contributed by a single particle in a specific

momentum state in a specific band. Expanding in first order of perturbation theory, denoted

by the superscript (1)

〈ĵy〉n = 〈ψ(0)
n |ev̂y|ψ(1)

n 〉+ 〈ψ(1)
n |ev̂y|ψ(0)

n 〉

〈ĵy〉n = 〈ψn|ei[ŷ, Ĥ]
∑
m 6=n

|ψm〉
〈ψm|V (~r)|ψn〉
Em − En

+ h.c.

〈ĵy〉n = 〈ψn|eiŷ
∑
m6=n

|ψm〉〈ψm|V (~r)|ψn〉+ h.c.

we can write the current per state in terms of the perturbing potential. For now, we have

abstracted any momentum band structure away into an index m,n. Now, much like in linear

response, we assume that the external field form the potential V (~r) varies periodically but

very slowly so that a Taylor expansion in wave number of the potential is a valid perturbation

around constant potential. Without loss of generality, we can assume that the potential varies
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in the direction perpendicular to which we are calculating current per state. We expand the

potential about a point X

V (x) =
∑
p

V (p)(X) (x̂−X)p

and similarly split our current per state into a sum of the contributions from each term in

the expansion

〈ĵy〉n =
∑
p

〈ĵy〉p,n =

= ie
∑
p

V (p)(X)〈ψn|ŷ

(∑
m6=n

|ψm〉〈ψm|

)
(x̂−X)p|ψn〉+ h.c.

The sum in parentheses acts as a projector onto every state except n so we can replace it

with 1− |ψn〉〈ψn| and simplify using the fact that [ŷ, x̂] = 0

〈ĵy〉p,n = ieV (p)(X)〈ψn|ŷ(1− |ψn〉〈ψn|)(x̂−X)p − (x̂−X)p(1− |ψn〉〈ψn|)ŷ|ψn〉

= ieV (p)(X)〈ψn|[ŷ, (x̂−X)p]− [PnŷPn, Pn(x̂−X)pPn]|ψn〉

= 〈ψn|[Pn(x̂−X)pPn, PnŷPn]|ψn〉

where Pn is different from our band projector as it projects upon the specific state. Until this

point we have assumed locality of the basis of wavefunctions to match the local expansion

of the Taylor series. To apply this to Chern insulators, we introduce a convenient choice of

basis in the form of hybrid Wannier orbitals.

3.3 Hybrid Wannier orbitals

3.3.1 Definition

Our description of current per state can be applied to any complete set of wave functions

on the structure of the bands. However, to obtain a valid approximation to the first few

orders of the Taylor series, we need to consider a narrow range of x − X. When Biswas

applied the expansion of the potential semi-classically, he expanded around the center of

the classical cyclotron orbit in the translationally invariant gauge to use their localization
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along one spatial direction. To mirror that, we construct a set of localized wave functions.

Qi describes a map between the Landau level wave functions and what is referred to as

hybrid Wannier states [Qi11]. The name comes from the complete set of localized states,

introduced by Wannier, and built from Bloch states in a 1 dimensional system [Wan37]. In

contrast, hybrid Wannier states are when the Wannier transformation is performed on 2-D

Bloch states, |Ψ〉 = e−i
~k·~r|u〉, across one of the spatial dimension to localize it along one

direction

|Rx, ky, γ〉 ≡
√
N

∫
dkxe

ikxRx|Ψ~k,γ〉

=
√
N

∫
dkxe

−ikx(x−Rx)|u~k,γ〉

where Rx in the 1-D Wannier transformation is the center of localization and N is a nor-

malization coefficient. The choice of the x direction in performing the transformation is

chosen to match our choice of coordinates for current response, but the transformation is al-

lowed along any direction. Hybrid Wannier functions have the same periodicity of the Bloch

functions in the y direction, but are localized at a single point in the x direction. Instead,

they are mapped to each other by discrete lattice translations in the x direction and the set

of points {Rx} index unit cell translations. When the Chern insulator is already a lattice

system, this means the hybrid Wannier orbitals will be arranged identically to a slice of the

Bravais lattice along the chosen direction.

It should be noted that the traditional Wannier transformation that exponentially local-

izes in both x and y directions is impossible for a Chern system[Tho84]. The existence of

such a basis means that the projected x and y position operators are each valid quantum

numbers of the Wannier basis, a constructed property of maximally local Wannier functions.

Furthermore, as they are each Hermitian operators and they both share the wannier function

as their eigenfunction, they must commute. However this commutation relation

[PxP, PyP ]

is the Berry curvature and therefore, if the Chern number is non-zero, cannot be zero for

the operators to commute.
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Finally, for a Chern insulator system the center of localization of the Wannier states

depends on ky.

〈Rxky|x̂|Rxky〉 = Rx + θ(ky)

θ(ky) =

∫ 2π

0

dpx〈px, ky|∇px|px, ky〉

If we consider a unit cell with periodic boundary conditions (i.e. on a torus), for a non-zero

Chern number, a full translation in ky across the Brillouin zone winds a number of times

around the torus equal to the Chern number. Therefore, we can combine Rx and ky to index

Wannier orbitals localized at every x position along the system by defining Ky = ky + 2πRx.

3.3.2 Localization and Gauge

A subtlety that was not addressed in the definition of the Wannier transform was that it

does not preserve the invariance of the Bloch functions under a ~k dependent phase change.

This means the set of Wannier states are not unique and instead depends on a gauge choice

in the Bloch functions. Each choice of phase for the Bloch wave functions changes the extent

to which the Wannier orbitals are localized. To see this, consider the spread of a Wannier

orbital, as defined by Marzari and Vanderbilt [MV97]

Ω ≡
∑
γ

[〈r2〉γ − 〈~r〉2γ]

Where γ as well as m and n are band indices. We can separate it into a gauge invariant part

ΩI =
∑
γ

[〈r2〉γ −
∑
Rx,m

|〈Rxm|~r|0n〉|2]

And a gauge dependent one

Ω̃ =
∑

Rx,m 6=0n

|〈Rxm|~r|0n〉|2

In momentum space, the expectation value can be written as

〈Rxm|~r|0n〉 = i
√
N

∫
d~keikxRx〈u~kn|~∇k|u~kn〉

where it is apparent how an arbitrary k-dependent phase factor would add additional terms.

The gauge dependent term is obviously positive definite, so a with a gauge choice that
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eliminates it, the Wannier orbitals would be maximally localized. As Vanderbilt et. al.

showed, this choice is equivalent to choosing each |Rn〉 to be an eigenfunction of the projected

position operator, Px̂P |Rn〉 = R|Rn〉. This eliminates the term as Wannier functions at

different R are orthogonal. Other than the superficial degrees of freedom of ordering, choice

of origin for Rx, and overall phase, the maximally localized Wannier orbitals are unique.

The gauge independence of ΩI may not be obvious, but when we rearrange the term

slightly

ΩI =
∑
γ

〈r̂ ·
(
I −

∑
Rxm

|Rxm〉〈Rxm|
)
· r̂〉γ

=
∑
γ

∑
a

〈Pγ r̂aQγ r̂aPγ〉

it can be written as a trace of band projectors which are themselves manifestly gauge in-

variant. One may also note that this term is proportional to the trace of the quantum

metric.

3.4 Current per hybrid Wannier orbital

We can now look at calculating current per hybrid Wannier orbital by expanding the potential

around the center of the chosen orbital. Because the state is exponentially localized to that

position, the Taylor series becomes a valid approximation even to low orders. Without loss

of generality, we can choose the point we expand V (x) around to be the center of the 0th unit

cell of our Wannier states. We can then write the response to an order p of the expansion

in V in terms of the Bloch states under the integral of the Wannier transform as so

〈ĵy〉(p) =
eV (p)(Rx)

ip

∫
dkx〈uk|

∂

∂~ky

(
|uk〉〈uk|

∂p

∂~kpx
|uk〉

)
−〈uk|

∂p

∂~kpx

(
|uk〉〈uk|

∂

∂~ky
|uk〉

)
≡ eV (p)(Rx)

ip

∫
dkxJ p

y

The details of this calculation are shown in the appendix 3.A. The band geometric quantity

J p
y is connected to the greater structure of the GMP algebra. We can see this by separating
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its gauge dependent and gauge invariant parts. To construct a similar gauge independent

term, we consider the projector trace

Tr[
[
PxmP, PyP

]
] ≡ Jmy

This term is manifestly gauge independent as the only information about the state is in terms

of a projector, where any gauge transform will cancel. Writing our integrand expressions J p
y

expanded at each order in p (calculated in appendix 3.B.3) in terms of Jmy we find a general

expression

J 1
y = J1

y = B

J 2
y = J2

y − 2
〈 ∂u
∂kx

∣∣∣u〉J 1
y = J2

y + 2AxJ
1
y

J 3
y = J3

y − 3
〈 ∂u
∂kx

∣∣∣u〉J 2
y − 3

〈∂2u

∂k2
x

∣∣∣u〉J 1
y

J p
y = Jpy −

p−1∑
n=1

C(p, n)
〈∂nu
∂knx

∣∣∣u〉J p−n
y

⇒ Jpy =

p∑
n=0

C(p, n)
〈∂nu
∂knx

∣∣∣u〉J p−n
y

where C(p, n) is the nth binomial coefficient of order p. The last step uses the fact that

J 0
y = J0

y = 0 to complete the lower limit of the sum. These J are structured like higher

order forms of the Berry curvature. If one can also connect to even more general quantities

that have the form

Tr[
[
PxmP, PynP

]
]

then this could calculate the Chern analogue of the GMP algebra in terms of the coefficients

of the non-linear response of a singe filled Chern band system. With the terms here, we

express the response in a way that it may connect to the conditions put forth in [Roy14] to

the electric response of the system.
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APPENDICES FOR CHAPTER 3

3.A Explicit Derivation of Jy

Here contains a formal and step by step proof of the formula for J p
y , shown in section 3.4.

We will consider a general hybrid Wannier function without using the freedom of placing the

unit cell at the origin and simplify later.

3.A.1 Preliminaries

We will use the formal definition of the position operator that is robust to use in periodic

systems.

x̂ ≡ lim
α→0

eiαx − 1

iα

Proof:

lim
α→0

eiαx − 1

iα
= lim

α→0

1 + iαx+ 1
2!

(iαx)2 + · · · − 1

iα
= lim

α→0
x+

1

2!
iαx2 +O(α2) = x+ 0 + 0 + . . .

Corollary:

ipx̂p = lim
α→0

(
eiαx − 1

α

)p
This can be seen by expanding out the right side in the same way and seeing that everything

except the leading order in the Taylor series will have too many factors of α. In more than

one dimension, a vector form is preferable for ~α ≡ αx̂

ipxp ≡ lim
|~α|→0

(
ei~α·~r − 1

|~α|

)p

3.A.2 Derivation

Starting with:

〈P ŷP x̂pP 〉 − 〈Px̂pP ŷP 〉 = 〈~R, ky, α|P ŷP x̂pP |~R, ky, α〉 − 〈~R, ky, α|Px̂pP ŷP |~R, ky, α〉

where ~R is a vector in the x direction with that being the localized direction of our hybrid

Wannier states. Let us write P using the Bloch states |Ψ~k〉 and then use the integral form
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of our hybrid Wannier functions as presented in section 3.3.1∫ ∫ ∫
dkxd

2~k′dk′′x〈Ψ~k|e
−ikxRŷ|Ψ~k′〉e

ik′xRe−ik
′
xR〈Ψ~k′|x̂

peik
′′
xR|Ψ~k′′〉

− 〈Ψ~k|e
−ikxRx̂p|Ψ~k′〉e

ik′xRe−ik
′
xR〈Ψ~k′|ŷe

ik′′xR|Ψ~k′′〉

We are free to add the exponentials in terms of k′ as they multiply to 1. Next, we separate

out our Bloch functions into |Ψ~k〉 = ei
~k·~r|Uk〉.∫ ∫ ∫

dkxd
2~k′dk′′x〈Uk|ŷei(

~k−~k ′)·(~̂r−~R)|Uk′〉〈Uk′|x̂pei(
~k ′−~k ′′)·(~̂r−~R)|U~k ′′〉

− 〈Uk|x̂pei(
~k−~k ′)·(~̂r−~R)|Uk′〉〈Uk′ |ŷei(

~k ′−~k ′′)·(~̂r−~R)|U~k ′′〉

From this point, we need to make a shift in our coordinates to the unit cell Rx that the

Wannier states are located within. We will also multiply through by factors of i to prepare

to transform our position operators into derivatives.

i−(p+1)

∫ ∫ ∫
dkxd

2~k′dk′′x〈Uk|iŷei(
~k−~k ′)·~̂r|Uk′〉〈Uk′ |(ix̂+ iRx)

pei(
~k ′−~k ′′)·~̂r|U~k ′′〉

− 〈Uk|(ix̂+ iRx)
pei(

~k−~k ′)·~̂r|Uk′〉〈Uk′|iŷei(
~k ′−~k ′′)·~̂r|U~k ′′〉

For this next transformation, we will consider only the leading xp term in i−p(ix̂+ iRx)
p

to show the derivative formalism works in general, then we will come back at the end and

fill in. As we substitute our limit forms of x and y using ~α = αêx and ~β = βêy, note that

the form of x̂p is expanded in terms of binomial coefficients
(
m
n

)
lim

|α|,|β|→0

1

ip+1|α|p|β|

∫ ∫ ∫
dkxd

2~k′dk′′x

〈Uk|(ei
~β·~r − 1)ei(

~k−~k ′)·~r|Uk′〉×

〈Uk′ |(epi~α·~r −
(
p
1

)
e(p−1)i~α·~r +

(
p
2

)
e(p−2)i~α·~r − · · · − 1)ei(

~k ′−~k ′′)·~r|U~k ′′〉

− 〈Uk|(epi~α·~r −
(
p
1

)
e(p−1)i~α·~r +

(
p
2

)
e(p−2)i~α·~r − · · · − 1)ei(

~k−~k ′)·~r|Uk′〉×

〈Uk′ |(ei
~β·~r − 1)ei(

~k ′−~k ′′)·~r|U~k ′′〉

=
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lim
|α|,|β|→0

1

ip+1|α|p|β|

∫ ∫ ∫
dkxd

2~k′dk′′x

〈Uk|(ei(
~k ′−~k+~β)·~r − ei(~k ′−~k)·~r)|Uk′〉〈Uk′ |(ei(

~k ′′−~k ′+p~α)·~r − · · · − ei(~k ′′−~k ′)·~r)|Uk′′〉

− 〈Uk|(ei(
~k′−~k+p~α)·~r − · · · − ei(~k′−~k)·~r)|Uk′〉〈Uk′|(ei(

~k ′′−~k ′+~β)·~r − ei(~k ′′−~k ′)·~r)|Uk′′〉

Here, term by term, we can make a shift of variable in ~k ′ and then ~k ′′ to absorb β and α

into the periodic part of the Bloch function

lim
|α|,|β|→0

1

ip+1|α|p|β|

∫ ∫ ∫
dkxd

2~k′dk′′x

〈Uk|ei(
~k ′−~k)·~r

(
|Uk′−~β〉〈Uk′−~β|(e

i(~k ′′−~k ′+p~α+~β)·~r − · · · − ei(~k ′′−~k ′+~β)·~r)|Uk′′〉

− |Uk′〉〈Uk′|(ei(
~k ′′−~k ′+p~α)·~r − · · · − ei(~k ′′−~k ′)·~r)|Uk′′〉

)
− 〈Uk|ei(

~k′−~k)·~r
(
|Uk′−p~α〉〈Uk′−p~α|(ei(

~k ′′−~k ′+p~α+~β)·~r − ei(~k ′′−~k ′+p~α)·~r)|Uk′′〉

− · · · − |Uk′〉〈Uk′|(ei(
~k ′′−~k ′−~β)·~r − ei(~k ′′−~k ′)·~r)|Uk′′〉

)

=

lim
|α|,|β|→0

1

ip+1|α|p|β|

∫ ∫ ∫
dkxd

2~k′dk′′x

〈Uk|ei(
~k ′−~k)·~r

(
|Uk′−~β〉〈Uk′−~β|e

i(~k ′′−~k ′)·~r|(Uk′′−p~α−~β〉 − · · · − |Uk′′−~β〉)

− |Uk′〉〈Uk′|ei(
~k ′′−~k ′)·~r(|Uk′′−p~α〉 − · · · − |Uk′′〉)

)
− 〈Uk|ei(

~k′−~k)·~r
(
|Uk′−p~α〉〈Uk′−p~α|ei(

~k ′′−~k ′)·~r(|Uk′′−p~α−~β〉 − |Uk′′−p~α〉)

− · · · − |Uk′〉〈Uk′|ei(
~k ′′−~k ′)·~r(|Uk′′−~β〉 − |Uk′′〉)

)
Due to the infinitesimal nature of α and β, these inner products between Uk states are

approximately diagonal and therefore, in the limit, k, k′, k′′ must all be equal. This simplifies

from 3 to only 1 integral and forces the exponentials to unity. This is equivalent to identifying

the integral form of the delta function here. Then, noting that the limit form of the pth

derivative is
∂pf

∂~kpn̂
= lim
|γ|→0

f(~k + p~γ)−
(
p
1

)
f(~k + (p− 1)~γ) + · · · − f(~k)

|γ|p
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where n̂ = ~γ
|γ| and ~kn̂ = (~k · n̂)n̂, we can make the substitution of α → −α and β → −β

without changing the overall sign and evaluate the α limit and then the β limit to get

derivatives in U .

i−(p+1)

∫
dkx〈Uk|

∂

∂~ky

(
|Uk〉

〈
Uk

∣∣∣∂pUk
∂~kpx

〉)
− 〈Uk|

∂p

∂~kpx

(
|Uk〉

〈
Uk

∣∣∣∂Uk
∂~ky

〉)
Now reintroduce iRx from the original calculation.

i−(p+1)

∫
dkx〈Uk|

∂

∂~ky

(
|Uk〉〈Uk|(

∂

∂~kx
+ iRx)

p|Uk〉
)
− 〈Uk|(

∂

∂~kx
+ iRx)

p
(
|Uk〉〈Uk|

∂

∂~ky
|Uk〉

)
where choosing Rx to be zero gives the formula for J p

y that we state in section 3.4. Keeping

the factor of Rx through the calculation of these expressions may have use in calculations

that wish to compare multiple unit cells, but is not necessary here.

3.B Calculation of J p
y for p = 2, 3 for a general Chern insulator

Here we calculate the first few terms of J p
y that were used to find the recursive relations in

terms of existing band geometric quantities.

3.B.1 p = 2 term in terms of geometric quantities

Starting from

−i
∫
dkx〈Uk|

∂

∂~ky

(
|Uk〉〈Uk|(

∂

∂~kx
+ iRx)

2|Uk〉
)
− 〈Uk|(

∂

∂~kx
+ iRx)

2
(
|Uk〉〈Uk|

∂

∂~ky
|Uk〉

)
we can act the outermost derivatives and cancel a few terms as so

−i
∫
dkx〈Uk|

∂

∂~ky
|Uk〉〈Uk|(

∂

∂~kx
+ iRx)

2|Uk〉+ 〈Uk|
∂†

∂~ky
(
∂

∂~kx
+ iRx)

2|Uk〉

+ 〈Uk|
∂

∂~ky
(
∂

∂~kx
+ iRx)

2|Uk〉 − 〈Uk|(
∂

∂~kx
+ iRx)

2 ∂

∂~ky
|Uk〉 − 2iRx〈Uk|

∂

∂~kx

(
|Uk〉〈Uk|

) ∂

∂~ky
|Uk〉

− 〈Uk|
∂2

∂~k2
x

(
|Uk〉〈Uk|

) ∂

∂~ky
|Uk〉 − 2〈Uk|

∂

∂~kx

(
|Uk〉〈Uk|

) ∂

∂~kx

∂

∂~ky
|Uk〉
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The 3rd and 4th term cancel. We can expand the quadratic derivative factors for more

cancellations

−i
∫
dkx〈Uk|

∂

∂~ky
|Uk〉〈Uk|

∂2

∂~k2
x

|Uk〉+ 2iRx〈Uk|
∂

∂~ky
|Uk〉〈Uk|

∂

∂~kx
|Uk〉 −R2

x〈Uk|
∂

∂~ky
|Uk〉

+ 〈Uk|
∂†

∂~ky

∂2

∂~k2
x

|Uk〉+ 2iRx〈Uk|
∂†

∂~ky

∂

∂~kx
|Uk〉 −R2

x〈Uk|
∂†

∂~ky
|Uk〉

− 2iRx〈Uk|
∂

∂~kx
|Uk〉〈Uk|

∂

∂~ky
|Uk〉 − 2iRx〈Uk|

∂†

∂~kx

∂

∂~ky
|Uk〉

− 〈Uk|
∂2

∂~k2
x

|Uk〉〈Uk|
∂

∂~ky
|Uk〉 − 〈Uk|

∂†2

∂~k2
x

∂

∂~ky
|Uk〉 − 2〈Uk|

∂

∂~kx
|Uk〉〈Uk|

∂†

∂~kx

∂

∂~ky
|Uk〉

− 2〈Uk|
∂

∂~kx
|Uk〉〈Uk|

∂

∂~kx

∂

∂~ky
|Uk〉 − 2〈Uk|

∂†

∂~kx

∂

∂~kx

∂

∂~ky
|Uk〉

Here, the 1st term on the 1st and 4th lines cancel, the last term on the 1st and 2nd lines

combine to be −R2
x
∂

∂~ky
〈Uk|Uk〉 which is zero as it is a derivative of a constant. The 2nd term

on the 1st line and the 1st term on the 3rd line cancel. Rearranging the remaining terms we

get

−i
∫
dkx2iRx〈Uk|

∂†

∂~ky

∂

∂~kx
|Uk〉 − 2iRx〈Uk|

∂†

∂~kx

∂

∂~ky
|Uk〉

+ 〈Uk|
∂†

∂~ky

∂2

∂~k2
x

|Uk〉 − 〈Uk|
∂†2

∂~k2
x

∂

∂~ky
|Uk〉 − 2〈Uk|

∂

∂~kx
|Uk〉〈Uk|

∂†

∂~kx

∂

∂~ky
|Uk〉

− 2〈Uk|
∂

∂~kx
|Uk〉〈Uk|

∂

∂~kx

∂

∂~ky
|Uk〉 − 2〈Uk|

∂†

∂~kx

∂

∂~kx

∂

∂~ky
|Uk〉

We then see that we can pull out the Berry curvature F in multiple places. The first line

is just in the right form and the 2nd and 3rd line require adding zero to pull out an overall

derivative in kx

−i
∫
dkx2iRxF +

∂

∂~kx

(
〈Uk|

∂†

∂~ky

∂

∂~kx
|Uk〉 − 〈Uk|

∂†

∂~kx

∂

∂~ky
|Uk〉

)

− 〈Uk|
∂†

∂~ky

∂†

∂~kx

∂

∂~kx
|Uk〉 − 〈Uk|

∂†

∂~kx

∂

∂~kx

∂

∂~ky
|Uk〉

− 2〈Uk|
∂

∂~kx
|Uk〉〈Uk|

∂

∂~kx

∂

∂~ky
|Uk〉 − 2〈Uk|

∂

∂~kx
|Uk〉〈Uk|

∂†

∂~kx

∂

∂~ky
|Uk〉
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We can rewrite the 2nd line by pulling out a derivative of ky and we can add zero to the 3rd

line, to de the same to the 1st term. Then we find the pair for the 2nd term to become the

Berry Curvature

−i
∫
dkx2iRxF +

∂

∂~kx
F

− ∂

∂~ky
〈Uk|

∂†

∂~kx

∂

∂~kx
|Uk〉

− 2〈Uk|
∂

∂~kx
|Uk〉

∂

∂~ky
〈Uk|

∂

∂~kx
|Uk〉+ 2F〈Uk|

∂

∂~kx
|Uk〉

The 1st term on the 3rd line is also a total derivative of a square, se we can rearrange the

terms to simplify further.

−i
∫
dkx

(
2〈Uk|

∂

∂~kx
|Uk〉+ 2iRx +

∂

∂~kx

)
F

− ∂

∂~ky

(
〈Uk|

∂†

∂~kx

∂

∂~kx
|Uk〉+ 〈Uk|

∂

∂~kx
|Uk〉〈Uk|

∂

∂~kx
|Uk〉

)
Finally the term on the 2nd line can now be recognized as the ky derivative of the diagonal

part of the quantum metric, afterward denoted as gxx. Also on the first line we see the x

component of the Berry connection which will be denoted as −iAx.

−i
∫
dkx

(
2Ax + 2iRx +

∂

∂~kx

)
F − ∂

∂~ky
gxx

In the Landau level, this term vanishes. The metric is flat and Rx can be seen as the center

of the harmonic oscillator part of the wave function and cancel with Ax. Then we are left

with a boundary term for F which is zero as the Berry curvature must be smoothly periodic

within the Brillouin zone. In fact, in any case we wish to consider, we see that any sort of

kx derivative term will vanish due to the fact that it is under an integral over kx as we are

guaranteed smooth periodicity on the wavefunctions. The flatness of the metric, however is

not generically true, so there would be contributions to this order in general from that term.
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3.B.2 p = 3 term in terms of geometric quantities

Now that we understand the simplification process, we will skip the cancellation and show

our answer in terms of band geometric quantities.∫
dkx〈Uk|

∂

∂~ky

(
|Uk〉〈Uk|(

∂

∂~kx
+ iRx)

3|Uk〉
)
− 〈Uk|(

∂

∂~kx
+ iRx)

3
(
|Uk〉〈Uk|

∂

∂~ky
|Uk〉

)
=∫

dkx
∂2

∂~k2
x

F − 3i
∂

∂~kx

[
(Ax −Rx)F

]
− 3(Ax −Rx)

2F − 6gxxF

+ 3i(Ax −Rx)
∂

∂~ky
gxx +

∂

∂~ky

[
Gxxx −

∂

∂~kx
gxx

]
Where Gxxx is a band geometric quantity of a similar form to the metric

Gxxx = Tr[PxQxQxP ] = 2(〈Uk|
∂

∂~kx
|Uk〉)3 − 〈Uk|

∂2

∂~k2
x

|Uk〉〈Uk|
∂

∂~kx
|Uk〉

−〈Uk|
∂†

∂~kx

∂2

∂~k2
x

|Uk〉+ 2〈Uk|
∂

∂~kx
|Uk〉〈Uk|

∂†

∂~kx

∂

∂~kx
|Uk〉

Much like before we can impose continuity of the Brillouin zone boundary conditions to

remove terms from J3
y which don’t contribute to the current per hybrid Wannier orbital

〈ĵy〉(p) =

∫
dkx

[
−3(Ax −Rx)

2F − 6gxxF + 3i(Ax −Rx)
∂

∂~ky
gxx +

∂

∂~ky
Gxxx

]
Within the Landau level this simplifies to the expression given in [Bis13] with the Hall

viscosity terms coming from the first two terms containing the Berry curvature. Perturba-

tively, using the 1/N expansion of small flux within the Hofstadter model, we can write the

Bloch periodic wavefunctions as

|Uk〉Hof = U(a, a†)|Uk〉LL = ef(a,a†)|Uk〉LL

with

f(a, a†) = − π

96N
(a†4 − a4)− π2

N2
(

1

128
a†4 +

1

320
a†5a−H.c.)

Given this we can find that the effect on the order p = 2 is still zero. The effect at p = 3 to

order 1/N2 in the nth filled Hofstadter band is

3π2

144N2
l4B(n+

1

2
)(n2 + n+ 3)

which is consistent with the results found in [HBJ18].
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3.B.3 Relating J p
y and Jpy

Given the forms obtained in the previous sections, we can show how J p
y relates to the gauge

independent geometric quantities Jpy. Remembering the definition of Jpy and

Jmy ≡ Tr
[
[Pα

∂

∂~ky
Pα, Pα

∂m

∂~kmx
Pα]
]

It’s easy to see that it is just the Berry curvature

J1
y = J 1

y = F

This is not surprising as the first order would just be the response if we had a constant

electric field.

Now, consider the next two terms using the fact that Ax = 〈∂kx〉 = −〈∂†kx〉

J2
y = J 2

y + 2〈∂†kx〉J
1
y =

∂F
∂~kx

+
∂gxx

∂~ky

J3
y = J 3

y + 3〈∂†kx〉J
2
y + 3〈∂†2kx〉J

1
y

We notice that the difference between J3
y and J 3

y comes from the extra action of the kx

derivatives on the rightmost projector due to the cyclic periodicity of the trace. It is given

this understanding that allows us to generalize the relation as

Jpy =

p∑
n=0

C(p, n)
〈∂nu
∂knx

∣∣∣u〉J p−n
y
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CHAPTER 4

Floquet Topological Phases

4.1 Introduction to Periodically Driven Systems

It is important for the following research that we review topologically time dependent sys-

tems. Given a time dependent Hamiltonian H(t), the unitary evolution operator is defined

as so

U(t) = T exp

[
− i
∫ t

0

H(t′)dt′

]
where T denotes the time ordering operator. The rigorous expression of the exponential of

this exponentiated integral of a Hamiltonian is one of a Taylor series, so we need to make

sure that the integrals are evaluated in a causal way. The explicit form of T for two operators

V1(t1), V2(t2) is

T
[
V1(t1)V2(t2)

]
= Θ(t1 − t2)V1(t1)V2(t2) + Θ(t2 − t1)V2(t2)V1(t1)

where Θ(t) is the Heaviside step operator.

If the Hamiltonian is time periodic, H(t+T ) = H(t), for some period T , then our unitary

is not guaranteed to be periodic. To study a time periodic system, instead of looking at the

spectrum of the Hamiltonian as in a static system, we look at the spectrum of the unitary

operator. Particularly, the unitary after one whole evolution, U(T ), can be written in the

eigenspace of the unitary, |φn(t)〉, as

U(T )|φn(0)〉 = e−iεnT |φn(0)〉

which is an analogue of Bloch’s theorem. The values, εn, are known as quasienergies and can

only be defined modulo 2π/T . One would then be interested in defining a static Hamiltonian,
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HF , whose eigenvalues on the set {|φn(T )〉} are {εn}, such that

HF =
i

T
lnU(T )⇒ e−iHFT = U(T )

however, one must be careful. The spectrum of εn must be gapped at a quasienergy or else the

logarithm, and therefore HF , does not have a well defined branch cut. However, the choice

of branch cut must also respect the symmetries of H(t), like particle/hole or chiral symmetry

which both swap upper and lower bands. This generally means a choice of branch cut at

π,−π. If we can do this in a well defined way, we call HF the Floquet Hamiltonian. Note

that it is possible to find such band configuration to define an equivalent static Hamiltonian

for U(t) anywhere during the evolution, but the eigenstates will we different than at t = 0

or T .

4.2 The Loop Formalism

It is useful for our analysis to be able to consider periodic unitaries such that

U(T ) = U(0) = 1

where setting U(0) to the identity can be done without loss of generality by prepending

a Hamiltonian to the evolution that exponentiates to U(0)−1. However, it shouldn’t be

assumed that a general unitary evolution, even of a periodic Hamiltonian, has this property.

As we saw earlier, generally there may be a spectrum of quasienergies with one period of

evolution being free to give each eigenstate its own phase. Indeed, our definition of the

Floquet Hamiltonian gives the difference between the beginning and end of the evolution.

As will be demonstrated below, we can use this to always deconstruct an arbitrary unitary

evolution into a loop part and a constant part using the Floquet Hamiltonian that still

respects the underlying symmetries of H(t), via a construction further detailed in ref [RH17].

As we will consider a chiral symmetric system later, we will look at an example of

this construction using a Hamiltonian with only chiral symmetry. The statement of chiral
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symmetry requires any new Hamiltonian we construct to obey

CH(~k)C−1 = −H(~k)

but because of our construction of the Floquet Hamiltonian, it inherently respects the sym-

metries of the Hamiltonian. Additionally, by writing our Floquet Hamiltonian in terms

of the eigensystem of our unitary, it was shown that this construction gives us a local

operator[GT18]. Therefore, our exponentiated Floquet Hamiltonian is a local operator that

respects the symmetry of our system so we can homotopically deform our system to a loop

by defining a new Hamiltonian via HF .

HL(t) =


−2HF 0 ≤ t < 1

4
T

2H(2(t− 1
4
T )) 1

4
T ≤ t < 3

4
T

−2HF
3
4
T ≤ t < T

We have taken our original evolution and added evolutions by HF on either side of half the

constant Floquet Hamiltonian evolution, exp{−iHFT/2}, then rescaled everything so that

we have the same period. The unitary evolution of our new Hamiltonian is now a loop. Our

original evolution can be seen as equivalent to the evolution around the corresponding loop

we have constructed and a constant evolution of the Floquet Hamiltonian. The constant

Floquet Hamiltonian cannot contain any dynamical topological properties (as it is constant

and does not close the gap) so our dynamical properties of our unitary evolution are the

same as the properties of the loop. For our research we will only consider the dynamical

properties of loops and this equivalency shows that this will be sufficient to see the properties

of the corresponding class of unitary evolutions.

4.3 The Floquet Periodic Table

Our motivation for studying Floquet systems comes from the recent classification of Floquet

topological phases that mirrors the result for static topological insulators discussed earlier.

We can classify our unitaries into Altland-Zirnbauer classes by the symmetry of the time

dependent Hamiltonian.
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class Θ P C d=0 1 2 3 4 5 6 7

A Z× Z ∅ Z× Z ∅ Z× Z ∅ Z× Z ∅

AIII 1 ∅ Z× Z ∅ Z× Z ∅ Z× Z ∅ Z× Z

AI +1 Z× Z ∅ ∅ ∅ Z× Z ∅ Z2 × Z2 Z2 × Z2

BDI +1 +1 1 Z2 × Z2 Z× Z ∅ ∅ ∅ Z× Z ∅ Z2 × Z2

D +1 Z2 × Z2 Z2 × Z2 Z× Z ∅ ∅ ∅ Z× Z ∅

DIII -1 +1 1 ∅ Z2 × Z2 Z2 × Z2 Z× Z ∅ ∅ ∅ Z× Z

AII -1 Z× Z ∅ Z2 × Z2 Z2 × Z2 Z× Z ∅ ∅ ∅

CII -1 -1 1 ∅ Z× Z ∅ Z2 × Z2 Z2 × Z2 Z× Z ∅ ∅

C -1 ∅ ∅ Z× Z ∅ Z2 × Z2 Z2 × Z2 Z× Z ∅

CI +1 -1 1 ∅ ∅ ∅ Z× Z ∅ Z2 × Z2 Z2 × Z2 Z× Z

Table 4.1: The periodic classification of topological phases and mirrors the static case. Here

each nontrivial phase has two indices, and again for d ≥ 8 the pattern repeats as dictated

by Bott periodicity[Bot59].

The actions of the symmetries have a slightly different form when considered on uni-

taries. Time reversal symmetry has the additional mapping of t → T − t that has to be

considered. Additionally, we use the Taylor expansion of the integral of the unitary to see

that conjugation of the unitary and the Hamiltonian are equivalent

T exp

[
− i
∫ t

0

OH(t′)O−1dt′

]

= T

[
1− iO

∫ t

0

H(t′)dt′O−1 −O
∫ t

0

H(t′)dt′O−1O
∫ t

0

H(t′′)dt′′O−1 + . . .

]

= T O exp

[
− i
∫ t

0

H(t′)dt′

]
O−1

= OU(t)O−1
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Therefore we can write down the effect of the symmetries on the unitary evolution

ΘU(~k, t)Θ−1 = U∗(−~k, T − t)UT (−~k, T )

PU(~k, t)P−1 = U∗(−~k, t)

CU(~k, t)C−1 = −U(~k, T − t)U †(~k, T )

Using similar K-theory techniques as Kitaev, we can come up with a periodic table that

classifies Floquet insulators (table 4.1)[RH17]. Comparing the two classifications, we see

that the Floquet phases are classified by two invariants. These correspond to the static

and dynamical components that we have already separated in our loop formalism. Indeed,

the periodic table of static topological insulators just corresponds to the choice of trivial

dynamical invariant for every system. In this way, the static periodic table is contained

within the Floquet one.

4.4 1D Chiral Floquet Evolution

This section will show the concepts introduced here by considering an example system from

ref [LHR18]. The model considered here is that of a bipartite 1D single particle chain with

open boundary conditions and is shown schematically in fig 4.1. The chain has a number of

unit cells N each with A and B sublattice sites.

The evolution is comprised of two static Hamiltonians, evolved in sequence. The Hamil-

tonians are

H1 =
2π

T

∑
i

a†ibi + b†iai

H2 =
2π

T

∑
i

a†i+1bi + b†iai+1

where a†i , ai and b†i , bi are the creation and annihilation operators for A and B sites in unit

cell i. This model is based on the static Su-Schrieffer-Heeger (SSH) model [SSH79] which

combines the H1 and H2 each with different couplings into a single Hamiltonian. For the

static SSH Hamiltonian, if the coupling to H1 (the hop within the cell) is stronger, the system

is trivial. If the hopping between cells is stronger (H2), then the system is topological.
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(a)

(b)

Figure 4.1: The schematic picture of our Floquet evolution. 4.1a The two driving Hamilto-

nians we use. The filled (open) circles denote A (B) sites. Our trivial driving Hamiltonian,

H1, connects A and B sites in a single unit cell while the non-trivial H2 connects adjacent

unit cells. 4.1b The particles in the bulk of the chain move in closed trajectories, return-

ing to their initial site unchanged. The particles at the boundaries are also mapped onto

themselves but pick up a phase of π.

The unitary for the Floquet chiral chain comes from a sequential combination of the two

Hamiltonians.

H(t) =



H1 0 ≤ t < 1
4
T

H2
1
4
T ≤ t < 1

2
T

H2
1
2
T ≤ t < 3

4
T

H1
3
4
T ≤ t < T

Due to having static Hamiltonians at each step, we can think of the unitaries of each step

of the drive individually. As each Hamiltonian is a σx operator between two sites, expo-

nentiating it we can write the unitary within the basis of two connected sites for step i

as

Ui(t) =

 cos
(

2πt
T

)
i sin

(
2πt
T

)
i sin

(
2πt
T

)
cos
(

2πt
T

)


We see then that each step of U(t) is a swap between connected sites with a π
2

phase.
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The evolution of the drive over the whole system is shown in fig 4.1b. The combination

of 4 swaps brings particles that start in the bulk of the chain back to their starting point

with the phases adding up to unity. The particles on the edges only receive two swaps, still

returning to the starting point (as the unitary loop was inherently imposed to be the identity

at the end) but with a phase of π instead. These boundary ‘π modes’ are a signature of

topological Floquet phases(I feel like I need a reference here).

If we remind ourselves of the action of the chiral operator on the Hamiltonian and unitary

CH(t)C−1 = −H(−t)

CU(t)C−1 = U(T − t)U †(T )

we can see that the halfway time point of the drive commutes with the chiral symmetry

operator. This is due to the fact that we have constructed our drive as a loop, so U(0) =

U(T ) = 1.

CU(T/2)C−1 = U(T/2)U †(T ) = U(T/2)

This means that the midpoint unitary is diagonal with respect to chirality, or more simply

can be written as block diagonal in its action on the A and B lattice sites.

U(T/2) =

 UA 0

0 UB


In this drive, we can see that after the first two steps, there has been a swap of A and

B within a cell, followed by a swap of A and B between neighboring cells. This means that

A sites have moved one unit cell to the right and B sites have moved one site to the left.

Therefore, in our case UA = t̂ and UB = t̂† where t̂ is a translation left by a single cell.

A unitary translation cannot be generated by a finite set of local unitary transformations

meaning the eigenstates of the unitary will be delocalized. This fact will be considered more

in my own work later.

Given this model, X. Liu et. al were able to define a set of real space topological invari-

ants that showed a bulk-boundary correspondence. This construction was based on Kitaev
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who proved that such an invariant would be robust to disorder [Kit06]. This compares to

the existing k-space invariants defined by [Fru16] which are ill-defined in the presence of

disorder.
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CHAPTER 5

Disordered Chiral Floquet Evolution

5.1 Overview

In chapter 4 we introduced the Floquet loop formalism and a simple 1D chiral Floquet model.

In this chapter we will consider adding disorder to that model. We will introduce the class

of models as well as our numerical techniques. Our main investigative probe will be the

localization length of eigenstates of the unitary time evolution operator, sampled at times

during its evolution. We find numerical evidence to support the existence of topologically

protected delocalization and show universality.

5.2 Anderson Localization

It was Anderson, in 1958, who first formulated the problem of disordered systems their

property of localization [And58]. As it became more understood, Mott [MT61] and later

Thouless [Tho70, ATA73] showed that any amount of disorder is enough to exponentially

localize every eigenstate for a 1D single particle lattice system. Rigorous proofs of this

statement have been shown multiple times [GMP77, KS80] and rely on principles that will

be touched upon in section 5.6 which discusses transfer matrices. However, these results are

for Hamiltonian-type operators whose solutions obey Schrodinger type differential equations.
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5.3 Disordered Unitaries

To extend the concepts of Anderson localization to unitary evolutions, we fast forward sig-

nificantly to recent developments in the study of discrete time quantum unitary random

walks. The concept of a random walk with a quantum coin was introduced by Aharonov et.

al. [AAK01]. As opposed to a standard 1D random walk, where the walker moves left or

right each time step at some probability, the quantum walker has two internal coin states,

one left moving and one right moving. The state of the walker is comprised of a probability

amplitude on each site n with left and right moving components. A time step of the walk

involves acting with a unitary operation (the coin operator Ĉ) on the onsite Hilbert space of

the walker at each position, followed by the shift operator (denoted by Ŝ) of the left (right)

moving part of the coin space to the coin space of the walker in the left (right) neighboring

position.

Ĉ =
⊕
n

Ĉn, Ĉn ∈ U(2) and Ŝ =
∑
n

|n+ 1,→〉〈n,→ |+ |n− 1,←〉〈n,← |

where the →, ← correspond to the right and left moving subspaces and n is summed over

the different sites of the 1D system.

The different Ĉn need not be the same, even sometimes changing each time step. Disor-

dered models chose random unitaries from U(2) or some subset at for their coin operators. In

numerical models [KLM07, YKE08] and for continuous probability distributions with respect

to the Haar measure [ASW11], the disordered quantum random walk displays dynamical lo-

calization. Dynamical localization is an exponential decay in the tunneling probabilities

between sites as a function of distance and is equivalent to static Anderson localization in

the space of eigenstates of the unitary evolution operator.

The well studied field of quantum random walks inspires our research into disordered

Floquet evolutions. While our unitary operators are more specific, we can expect to see

localization if we disorder our system. However, the topological nature of our drives means

the physics will not always localize. Topological phases have shown to protect extended

edge modes coexistent with Anderson localization of the bulk in quantum random walks
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[OK11]. Additionally, disordered versions of class AIII static insulators have been shown to

support a topological phase until a transition at strong disorder [MHS14]. The study of the

AIII Floquet model predicts stability of the topological invariant under disorder [LHR18]

and some work has looked at protected modes at specific quasienergies [Gan15]. We wish to

understand the effects of disorder throughout the evolution of such a system.

5.4 Disordered Class AIII Floquet Insulator

Like the chiral Floquet chain, we consider a 1D spinless single particle tight binding model

with chiral symmetry only (class AIII). Our evolution will be built from a series of static

Hamiltonians which are each evolved for some time period.

H(t) =


H1 0 ≤ t < T1

H2 T1 ≤ t < T2

...
...

The model has two sublattice sites (A and B) per unit cell which gives an on-site Hilbert

space dimension of 2. In general, the Hamiltonians (and corresponding unitary evolutions)

that mix A and B degrees of freedom within a single unit cell will be referred to as ‘trivial’

and ones that connect unit cells will be referred to as ‘topological’. Hamiltonians that only

act on a single sublattice site will be referred to as ‘static’.

Building on the chiral chain model, we initially consider the Hamiltonians:

H1 =
∑
i

a†ibi + b†iai

H2 =
∑
i

a†i+1bi + b†iai+1

Hd =
∑
i

wai a
†
iai + wbi b

†
ibi

where a†i , ai and b†i , bi are the creation and annihilation operators for A and B sites in unit

cell i, and the w are random potentials taken from a uniform distribution. Exponentiating
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the matrix elements, we see that

U1(t) =
∑
i

cos(t)a†iai + cos(t)b†ibi + i sin(t)a†ibi + i sin(t)b†iai

U2(t) =
∑
i

cos(t)a†i+1ai+1 + cos(t)b†ibi + i sin(t)a†i+1bi + i sin(t)b†iai+1

Ud(t) =
∑
i

eitw
a
i a†iai + eitw

b
i b†ibi

This shows that evolution by π
2

gives us a unitary that directly swaps the respective adjacent

sites and evolving for π gives the identity. Therefore, our total period T will be 2π as we

consider a hopping strength of 1 for simplicity, but without loss of generality. From these

unitaries we can create the loop

U(T ) = U−1
d

(1

2
Td

)
U1

(π
2

)
U2(π)U1

(π
2

)
Ud

(1

2
Td

)
where we have denoted a separate period of application for the disordered unitaries. As

U1(t) and U2(t) are both the identity when evolved for T/2 = π the full evolution is a loop

in a trivial way.

Only applying the disorder at the beginning and the end of the evolution might seem

artificial, but if we consider disordering the Hamiltonian itself

H1 → U †dH1Ud

U1 = eitH1 → eitU
†
dH1Ud =

1 + itU †dH1Ud −
i

2
t2(U †dH1Ud)2 . . .

we see that

(U †dHUd)n = U †dHUdU
†
dHUd · · · = U †dH

nUd

so conjugating our unitary by the disorder is equivalent to disordering the Hamiltonian.

Additionally, because we evolve U2(t) back to the identity, it does not matter if we disorder

H1 and H2 in different ways as placing the disorder between U1 and U2 is equivalent.

As we saw in chapter 4, the combination of two swaps halfway through the drive gives a

translation operator for A sites as well as B sites in opposite directions. The non-local nature
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of the translation operator means that the eigenstates of the unitary will be extended at this

time point. We also saw that this property is tied to a topological invariant that is robust to

disorder so long as chiral symmetry is preserved. However, we saw that infinitesimal disorder

will localize trivial unitary evolutions in an Anderson way, so there will be a topological phase

transition. Between these two there will be a crossover region. The nature of delocalization

as the system approaches the transition is the focus of our numerical analysis.

5.5 Numerical Methods: Exact Diagonalization

5.5.1 Preliminary Information

Given the matrix form of the unitary evolution, a direct way to probe the localization-

delocalization transition of the drive is to generate and diagonalize U(t) for a realization of

disorder and then consider the localization length of its eigenstates. This method, known

as exact diagonalization (or ED for short), is the natural first look at the effect as any

Hamiltonian can be readily and directly implemented.

We can probe any time point during the evolution of the drive by evaluating the unitary

up to that point and since the generating Hamiltonian is piecewise static, the simple rule for

multiplication of unitary time evolutions applies

U(t1)U(t2) = U(t1 + t2)

For any specific U it allows us to look at some time point of our drive, U2(∆t)U1(π/2),

perform an analysis of the matrix, and then use the same unitary to generate the unitary at

an adjacent time step U2(∆t)U2(∆t)U1(π/2) = U2(2∆t)U1(π/2). This forms a discretization

of our evolution. The main advantage is we only need to keep in memory the unitary at the

current point of analysis to progress to the next point and we can use the existing form for

U2(t) to progress iteratively.

The localization length of an eigenstate, φn, in a system of size L is found by determining
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the center of mass of φn using a periodic position operator (if in periodic BC):

xCOM
n =

L

2π
Im[ln(〈φn|r̂x|φn〉)]

r̂x = e2πix̂/L

or just via the expectation of the position operator (in an open system). Given this, the

localization length is defined as

ξn = 〈φn||∆x̂n||φn〉

∆xn = x− xCOM
n

where the coordinate transformation centers the system on the center of the wavefunction

and then the localization length is the mean deviation of the probability distribution. It is

important to note that for an evenly distributed (i.e. constant or plane wave ψn ∝ eiknx)

wavefunction, the ξn is half the distance to the edge on each side of the center as each point

is equally probable. Therefore ξ = L/4 is the maximum localization length we can observe

for a finite 1D system of length L with periodic boundary conditions.

Finally, instead giving an index to each wavefunction, it is convenient to label them by

their quasienergy ε. The chiral drive starts as the identity which has a quasienergy spectrum

completely degenerate on ε = 0, but disorder smears the spectrum across the unit circle of

quasienergies allowing for states to be uniquely identified by quasienergy.

5.5.2 Adding Disorder

To investigate localization length of disordered eigenstates, it is first useful to talk about

what happens to the eigenstates of the non-disordered system over the course of the drive.

The trivial Hamiltonian, H1, hops only within each unit cell and is block diagonal. Therefore

the eigenstates of the unitary are just the solutions to the two level system in their respective

unit cells and zero everywhere else, essentially completely localized for the whole of U1. As

we begin acting U2 however, even the most infinitesimal translation operator part of the total

unitary paired with the discrete translation invariance of the Hamiltonians involved give a
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plane wave component to the eigenstates for every point during the evolution of U2(t)U1(π/2)

for t > 0. This is the topologically protected translation part of the unitary.

For reasonably large disordering potentials w the disordering unitary becomes equivalent

to random phases. Therefore we can disregard the disorder period Td and set t = 0 at the

beginning of the non-disordered part of the unitary.

(a) 40 site chain with periodic boundary condi-

tions over 40 time steps with 100 disorder real-

izations per step.

(b) 500 site chain with periodic boundary con-

ditions over 40 time steps with 5 disorder real-

izations per step.

Figure 5.1: ξ(ε) plotted for U(t) across the whole non-disorder part of the drive for a small

system in 5.1a, where finite size effects round off the delocalization, and a larger system in

5.1b where the behavior is (at least visually) indicative of all larger systems of this unitary.

A plot of the disordered evolution in Fig 5.1 shows the localization length of all φ(ε)

over the course of the drive. What we see here is that every single eigenstate of the unitary

evolution becomes delocalized, regardless of quasi-energy, at the midway point of the drive.

Delocalization in the presence of disorder confirms that the topological properties of the

clean drive are robust to disorder. It also means that for analysis, we will almost always

average across eigenstates of U so as to take advantage of the drive’s self averaging to require

averaging together fewer disorder realizations. Chiral symmetry guarantees the drive to be

symmetric around T/2 so we only need to do analysis of the first half of the evolution to

investigate the properties of the drive.
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Some limitations on the parameter space we can search with exact diagonalization is that

solving larger system sizes L corresponds to finding the eigensystem of an L×L dimensional

matrix which scales as, approximately O(L2.8) and therefore can be prohibitively long to

calculate for large system sizes [PCZ98]. This means that you generally have smaller system

sizes and more finite size effects. While the finite size scaling is possible for finding thermo-

dynamic quantities, you must also choose a larger number of disorder realizations for smaller

systems as an additional computational cost.

5.6 Numerical Methods: Transfer Matrix

5.6.1 Preliminary Information

Transfer matrix methods have been historically used to investigate Anderson localization.

By considering the transport of current through a wire containing impurities, we solve for the

electron wavefunction in a model problem of Anderson localization following the description

put forth in ref [MD10].

We assume the electron is spinless and non-interacting for simplicity of the example.

The impurities will be modeled as potential barriers that the electron must tunnel through,

allowing us to approach the problem as a scattering problem. We will assume the impurity

density n is sufficiently dilute (n << k) and their widths σ to be sufficiently narrow (kσ <<

1) compared to the electron wavenumber k such that they can be modeled as delta function

potentials and can be considered independently.

Assuming an incident plane wave, the simple quantum mechanical approach is to take

general plane wave functions for the left (ψL) and right (ψR) side of the barrier and solve for

the scattering matrix S from the boundary conditions.

ψL = ψin
L e

+ikx + ψout
L e−ikx

ψR = ψin
Re

+ikx + ψout
R e−ikx
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 ψout
L

ψout
R

 =

 r t′

t r′

 ψin
L

ψin
R


The r, t (r′, t′) refer to the reflection and transmission coefficients for waves incident on the

left (right) side of the barrier. Normalization of the wave function then becomes equivalent

to probability conservation and we know our S-matrix is unitary. This allows us to relate

r, r′, t, t′ for this simple case of a 2× 2 S-matrix.

t′ = t, r′ =
r∗t

t∗

However, this configuration does not allow for the effects of one impurity to be combined

with the effects of another in a simple way. Instead we want to split the wave function into

right and left moving pieces (ψ+ and ψ− respectively) that span the whole length of the

system and relate those pieces from one side of the obstacle to the other. This is equivalent

to a reconfiguration of the original matrix equation.

ψ(x) = ψ+e+ikx + ψ−e−ikx

ψin
L = ψ+

L , ψout
L = ψ−L , ψin

R = ψ−R , ψout
R = ψ+

R ψ+
R

ψ−R

 =

 1/t∗ −r∗/t∗

−r/t 1/t

 ψ+
L

ψ−L


This matrix is the transfer matrix or T-matrix and allows us to combine the effect of ob-

structions in series. The wavefunction ψ1 after the first obstacle is related to the initial

wavefunction ψo by T1

ψ1 = T1ψo

and the wavefunction ψ2 after the second obstacle is related to ψ1 by T2

ψ2 = T2ψ1 = T2T1ψo

We see a chaining effect occurring, and therefore, at the end of our system, we can relate

the final transmitted wavefunction to our input wave after N impurities like so

ψN = TNTN−1 . . . T2T1ψo = T(N)ψo
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and the transmission probability with the modulo square

|ψN |2 = ψ†oT
†Tψo

where the matrix M(N) = T†T therefore encodes the entire system.

This is a Hermitian matrix and we can define the Lyapunov exponent

2γ = lim
N→∞

〈ln M(N)〉
N

where the expectation value encodes a statement of ergodicity and self averaging as proven by

Furstenberg [FK60, Fur63]. This quantity was introduced by Carmona in the efforts of giving

a rigorous mathematical foundation to Anderson localization, and encodes the exponential

decay of wavefunctions in a disordered system [Car82]

γ(E) = lim
x→∞

ln |ψ(x,E)|
x

We acknowledge here that we picked a certain momentum k in the construction of transfer

matrices which will correspond to a certain energy E. The Lyapunov exponents are real and

positive [GMP77] which implies an exponential tail to our wavefunction

|ψ(x,E)|2 ∝ exp(−2γ(E)x) = exp(−x/ξ)

This means that by using the T-matrix method to calculate the Lyapunov exponent for a

certain energy (or in our case quasienergy) we can calculate the localization length of the

corresponding wavefunction at that energy. As our system is uniformly smeared onto all

possible quasienergies, the existence of a state at any chosen quasienergy will be guaranteed.

5.6.2 Implementation

To see how our problem maps onto the T-matrix problem, we remind ourselves that during

the action of H2, our A sites are being swapped to the unit cell to the left and our B sites

are similarly swapped to the right. This means that our A and B sites can be identified

as left and right moving parts of the Hilbert space in each unit cell. This is exactly true
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at the halfway point of the drive. Therefore, we can use the T-matrix formalism with the

amplitude on A sites being ψ+ and the amplitude on B sites being ψ− and use the Lyapunov

exponent to find the localization length of our wavefunctions.

Firstly let us re-state the matrix form of our unitary operators so as to calculate the

analytical form of our T-matrix. Working in the position basis for an eigenstate of the

unitary

~ψ =
(
ψA1 , ψ

B
1 , ψ

A
2 , ψ

B
2 , . . . ψ

A
i , ψ

B
i , . . . ψ

A
L , ψ

B
L

)
we can write down simple forms of each unitary. Ud is diagonal and U1,2 are block diagonal

matrices evocative of a rotation except for at the boundary where U2 connects across the

boundary only in a periodic system.

Ud =



eiφA(1) 0 0 0

0 eiφB(1) 0 0

0 0 eiφA(2) 0

0 0 0
. . .



ψA1

ψB1

ψA2

...

U i
1(t) =

 cos(t) i sin(t)

i sin(t) cos(t)

 ψAi

ψBi

U i
2(t) =

 cos(t) i sin(t)

i sin(t) cos(t)

 ψBi

ψAi+1

Combining these, we can write the total unitary U2(t)U1(π/2)Ud as

U(t) =



. . . 0 0 0 0 0

0 0 eiφB(2) sin(t) 0 0 0

0 0 ieiφB(2) cos(t) 0 0 0

0 ieiφA(2) cos(t) 0 0 eiφB(3) sin(t) 0

0 eiφA(2) sin(t) 0 0 ieiφB(3) cos(t) 0

0 0 0 ieiφA(3) cos(t) 0 0

0 0 0 eiφA(3) sin(t) 0 0

0 0 0 0 0
. . .


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By taking the middle pair of rows, we can write down a simple recurrence relation between

unit cells using the eigenvalue equation. We leave the quasienergy as a free parameter.

U(t)~ψ = e−iε ~ψ

⇓

ieiφA(i) cos(t)ψAi + eiφB(i+1) sin(t)ψBi+1 = e−iεψBi

eiφA(i) sin(t)ψAi + ieiφB(i+1) cos(t)ψBi+1 = e−iεψAi+1

We separate the equations by the unit cell they apply to. ieiφA(i) cos(t) −e−iε

eiφA(i) sin(t) 0


︸ ︷︷ ︸

Mi

 ψA,i

ψB,i

 =

 0 −eiφB(i+1) sin(t)

e−iε −ieiφB(i+1) cos(t)


︸ ︷︷ ︸

Ni+1

 ψA,i+1

ψB,i+1



which finally allows us to write down the form of the transfer matrix ψA,i+1

ψB,i+1

 = N−1
i+1Mi

 ψA,i

ψB,i


=

 −ieiε cot(t) eiε

−e−iφB(i+1) csc(t) 0

 ieiφA(i) cos(t) −e−iε

eiφA(i) sin(t) 0

 ψA,i

ψB,i


=

 ei(ε+φA(i)) csc(t) i cot(t)

−iei(φA(i)−φB(i+1)) cot(t) e−i(ε+φB(i+1)) csc(t)

 ψA,i

ψB,i



∴ Ti =

 ei(ε+φA(i)) csc(t) i cot(t)

−iei(φA(i)−φB(i+1)) cot(t) e−i(ε+φB(i+1)) csc(t)


=

 ei(ε+φA(i)) sec(τ) i tan(τ)

−iei(φA(i)−φB(i+1)) tan(τ) e−i(ε+φB(i+1)) sec(τ)


where we change variables to τ = π/2− t, as it is zero at the transition, for convenience of

calculation as we will be investigating the physics close to the point t = T/2. Note that the

disorder from one transfer matrix is completely decoupled from the disorder for the next.
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This means we can generate matrices iteratively without storing the disorder strengths in

memory.

Once we have the form of the T -matrix, we can follow the existing formalism

T(L) = TLTL−1 . . . T2T1

M = T†T

to be able to probe the long length scale physics near the delocalization transition. The

localization length is calculated from the Lyapunov exponent as derived earlier. In practice

we use the largest eigenvalue λmax of M or the magnitude of a right or left incident wave to

calculate the expectation value of our scattering matrix M. The extra factor of 2 to compare

with exact diagonalization where the A and B sites are spatially separated.

ξ =
4N

ln(λmax)

Note that this calculates the localization length for states at a specific quasienergy. However,

due to our disorder spreading states out across the whole quasienergy spectrum, we can safely

assume there will be an eigenstate of our unitary at any quasienergy we choose. In practice,

we choose a random quasienergy and find our results to be completely independent of that

choice which agrees with exact diagonalization where we see the same localization length for

each eigenstate.

For our calculations, we generate and multiply N transfer matrices to simulate the trans-

fer across a system of N pairs of A and B sites. As each generation of T is microscopic

instance of disorder, we get the self averaging as seen in exact diagonalization and our An-

derson localization example. From exact diagonalization, we know that the system size must

be larger than the localization length for accurate results. However, as our eigenvalue is

exponentially decreasing in N/ξ away from the transition, the magnitude of the elements

of the matrix becomes too large for the datatype for localization lengths much below the

effective system length. We therefore re-scale the T-matrix at each step given a best guess

of the localization length ξo(τ) from our exact diagonalization data.

Ti(τ)→ r(τ)Ti(τ)
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r = exp(2/ξo)

ξ =
4N

ln(λ′) + 4N/ξo

This allows us to probe a larger set of scales while maintaining accuracy. Our guess needs to

be fairly close, but the leniency is greater the larger the localization length which allows us

to easily probe close to the transition, the region where the exact diagonalization estimate

is least accurate.

The main advantage of the transfer matrix method is that the finite size limitations we

face are proportional the number of T-matrices we chain together, N . This means that our

algorithmic scaling is very close to linear in our effective system size, allowing us to probe

much longer lengths than exact diagonalization.

The drawback for the method is that we had to calculate the transfer matrix analytically,

making it a difficult tool to investigate a broad range of models. Therefore, we will use

transfer matrices as an independent method to check the accuracy of the results to very long

localization lengths.

5.7 Delocalization Transition Power Law

We now consider the power law behavior of the topologically protected delocalization as well

as finite size effects. We use a standard phase transition nomenclature and label our tuning

parameter and power law in terms of deviation from the transition.

ξ∞ = |tc − t|ν ≡ τ ν

where the critical time point is the halfway point of the drive. We use the term ξ∞ to denote

the thermodynamical localization length of the theoretical system. This differs from the

actual numerical value we obtain by the effects of the finite size of our simulated system.

59



Figure 5.1: A log-log plot of average ξ of the exactly diagonalized onsite disordered drive.

The x-axis, τ = T/2− t, measures the time away from the halfway point and ranges from π
32

to π
4
. As the size increases, the trends converge towards a line which we fit below in figure

5.3. The error bars on the ξ∞ fit are from the error of the fit of the finite size scaling and

are too small to be seen except for the closest point to the transition.

5.7.1 Exact Diagonalization and Finite Size

A significant amount of the efforts of fitting data will be centered around the effects of finite

size. As was briefly mentioned before, the limitation of finite size of the system puts a limit of

L/4 on the maximum localization length of our exact diagonalization simulations. Therefore

we will always see a rounding off as we approach the t = T/2 point where the localization

length diverges.

We model the leading order effect of finite size in localization length coming from a single
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scaling function

ξ(τ, L) = ξ∞(τ)− f(L, τ)

where L is the size of the system we simulate and f(L, τ) is some unknown function that

trends to zero as we approach the limit of L→∞.

A comparison of different fits for the scaling function that was used for calculating the

line in figure 5.1 are shown for a single time point in figure 5.2. The exponential fit has the

form

ξ(t, L) = ξ∞(t)− Ce−αL

while the power law test function used the form

ξ(t, L) = ξ∞(t)− CL−α

The comparison heavily favors the exponential fit and we extracted our values and errors for

ξ∞ from its fitting parameters. The exponent α and constant C are non-universal quantities

and varied across the evolution, so we fit the data independently at each time point.

From the exponential fit, we can take the error from the covariance of the fit parameter.

We used scipy’s curve fit utility for the fit. Given the error, we can perform a least squares

fit of the ξ∞ data, weighted to minimize the error function, and get an exponent for the

power law scaling of 2.023 ± 0.015 (fig. 5.3). The error here only reflects statistical errors

in the fitting, we see a clear downward bias close to the transition point that was accounted

for as a systematic error in this number. As we move far from the transition point we see a

deviation from the power law as well (fig. 5.4) giving us a finite range of meaningful data.

5.7.2 Transfer Matrix

The higher computational freedom for the transfer matrix model allows us a much greater

ability to search the parameter space. Additionally, the lack of finite size effects as a hard

limit of our simulation (compared to ED) avoids the need for a fit of finite size effects as we

can easily simulate system sizes much greater than the localization length. A comparison

and fit of the T-matrix data to ED is shown in figure 5.5. The fit line uses only data for
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Figure 5.2: Length scaling for τ = π
16

under exact diagonalization. The number of disorder

realizations varies from 1000 down to 10 as the system size increases. The values of ξ∞

obtained here are 96.2 for the exponential fit and 26500 for the power law fit, clearly favoring

the hypothesis of an exponential scaling function.

N = 500, 000 multiplications which corresponds to an effective system size of one million

sites. The exponent from the fit gives 2.013 ± 0.004 which is consistent with the previous

fit of the ED data and further supports the non-critical nature of data points far from the

transition which deviate from the power law. As with the previous fit, the error in the

exponent only includes least squares error in the fitting parameter. Due to the need for

more leniency in the guessed parameters of r(τ), the T-matrix rescaling factor, we used a

smaller value of N for the points further from the transition to compare to the ED data.
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(a) (b)

Figure 5.3: Fitting ξ∞ using exact diagonalization with errors. We fit the log data to a line

and get a slope of 2.023± 0.015.

5.8 Universality

Until now we have discussed a single Hamiltonian with a single type of disorder. However

our results apply to a whole class of models with equivalent topological properties within

Class AIII called two band flattened models. A Class AIII Hamiltonian must have the block

form

HAIII =

 0 Q

Q† 0


where Q is some matrix and we have chosen the chiral basis for our matrix where each term

here is the block for the A and B sites with Q mixing the two. This is required to meet the

symmetry condition that HAIII anticommutes with the chiral symmetry operator

{HAIII, C} = 0, C =

 1 0

0 −1


If we want flatness of the bands, it is equivalent to requiring the eigenvalues of HAIII to be

either ±1. This can be done by choosing a unitary matrix U as our Q. In that case, H2 = 1.

In the case of the model we considered initially, the matrix on the subspace, U , is the

identity, 1, for the trivial evolution (maps sublattice sites within the same unit cell) and

a translation T (between unit cells) for the topological evolution. Within the class of flat
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Figure 5.4: A plot of exact diagonalization data from the first half of the evolution of H2.

These points far from the transition point decay down to a localization length of 0.5 which

is the only possible length for the evolution of H1. When plotted versus the power law fit,

we see a significant deviation due to this Hamiltonian specific dependence.

band Hamiltonians, this is always the case up to a unitary and differentiates topological and

trivial evolutions

H1 =

 0 1U1

1U †1 0

 , H2 =

 0 T nU2

T nU †2 0


Here T is the translation operator, so n represents the (non-zero) number of unit cells

translated by the topological drive. This corresponds to the Z set of dynamical topological

invariants for class AIII as seen on the periodic table 4.1. For our example, n = 1. There is

the additional restriction on each U that it must be locally generated. This means that each

U acts at any one site as a finite multiplication of nearest neighbor two site unitaries in an

infinite system. As an example, the translation operator cannot be locally generated.

As we saw before when we constructed our unitary evolutions, the unitary time evolution

of a flat band Hamiltonian has a convenient form

U = exp(−itH) = cos(t)1− i sin(t)H

64



Figure 5.5: T-matrix data shown along with the data from exact diagonalization for com-

parison. The fit line is a power law fit for the 500, 000 T-matrix iteration data and has a

slope of 2.013± 0.004 which is consistent with the previous fit. Lower iteration data (in red)

is used to compare due for leniency of the T-matrix rescaling factor r(τ) as N = 20, 000 is

still multiple orders of magnitude above the localization length.

which makes the evolution at the point t = T/2 in the chiral basis for a general flat band

AIII evolution

U(T/2) = U2(π/2)U1(π/2) = −H2H1 = −

 TU †2U1 0

0 TU2U
†
1


The total invariant of the full evolution is then the sum of the invariants of each part of

the evolution and our full drive is topological with n = 1. Given this, we have picked an

archetypical example for the topological phase. We have numerically tested and will show

in the appendix 5.A.1 that longer translations in the topological phase reduce and have

an equivalent T-matrix to the one we calculated for a single site translation. The very

simple choice of locally generated unitary we used will be briefly discussed as well, but the

delocalization is driven by the translation aspect of the drive and is blind to the structure

of the local unitary for a model.
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When considering disorder, we have already mentioned how our choice to factor the

disorder out of the Hamiltonian for our calculation is valid. However, we see that we are

also free to, within the universality class of flat band Hamiltonians, write the disordered

evolution as an equivalent, albeit complicated, non-disordered AIII model. This comes from

the fact that we have required our disorder to respect the chiral symmetry (that it does not

connect A and B sites) and that the disorder is local (and therefore locally generated). We

can see for the simple case of paired A and B disorder that

Ud =

 U †d 0

0 Ud

 , U1(π/2)Ud =

 0 1U1Ud

1U †1U
†
d 0

 = U ′1, U ′1 = U1Ud

and that the evolution is equivalent to a different one within the same universality class.

However it is also easy to use this same method to push a non-correlated form of disorder

through to the center of the evolution where it cancels with its inverse on the second half of

the loop

Ud(T/2) = U2(π/2)U1(π/2)Ud = −

 TU †2U1UAd 0

0 TU2U
†
1UBd


U †2U1UAd = U †2U ′AdU ′1 = U ′′AdU

′†
2 U ′1

where pushing the disorder through a matrix switches the action of the disorder from A to

B as one could expect

U ′1 = U ′†AdU1UAd, U ′†1 = U ′†BdU
†
1UBd ⇒ U ′Ad = UBd, U ′Bd = UAd

In these ways, we are confident that our numerics encapsulates the topological properties

of the symmetry group as opposed to a special case. Tests and checks of this more general

formulation of disorder will also be considered in the appendix 5.A.2.

If we take the form of the unitary evolution at a point τ from the transition point, as we

do in our calculations, we can see the τ dependence. By taking the exponentiated form of

U2(t) in terms of sin and cos, we can write U(τ) in the chiral basis as

−

 TU †2U1UAd cos(τ) 1U1UBd sin(τ)

1U †1UAd sin(τ) TU2U
†
1UBd cos(τ)


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Figure 5.1: T-matrix data for N=5000 for the effective model of our system expanded in

small τ . The fit line has a slope of 2.00± 0.01 which is the universal exponent that matches

our numerics.

where the 1 only emphasizes that the total unitary acts trivially in that sector. Note that

the positions of cos and sin have switched from the transformation from t to τ . We can write

this in a simpler form in terms of our original Hamiltonians by representing the presence of

disorder more generally as some general transformation over the whole non disordered part

of the unitary U(T ) = U−1
d U ′(T )Ud

U(τ) = − cos(τ)H2H1Ud − i sin(τ)H1Ud

Here we see that the first term is topological and acts on the diagonal blocks of our chiral

basis and the second is the off diagonal blocks and is trivial, as seen above. In that way,

we can define T and D which correspond to the topological, translation part of the unitary

and the trivial, disordered part, respectively. We can to this because a unitary that is the

translation operator cannot be localized by a similarity transformation by a disorder unitary.

By then expanding in small τ we see the behavior near the transition as investigated by
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our numerics

U(τ) = −T − iτD

Here we see that, for small τ , it acts to leading order as a scaling of the disordered part of

the unitary. Calculating the T-matrix for this toy model numerically (fig. 5.1) as well as

analytic calculations (appendix 5.B.2) suggest that the localization length has a behavior

which is proportional
1

ξ
∝ τ 2

for the principal model studied here [RH19] which gives a critical exponent of 2 and that

more generally for flat band models, the localization length still retains a critical exponent

of 2 [Bro].
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APPENDICES FOR CHAPTER 5

5.A Generalizing Transfer Matrices

5.A.1 Different Hamiltonia

We wish to show that unitaries that function similarly to the onsite or intersite swap used in

our numerics have an equivalently identical transfer matrix representation. Our next most

simple example drive will be one that, instead of mixing A and B in cell for the trivial step,

will mix the A and B sites of pairs of unit cells. The Hamiltonian for this step is

H1 =

N/2∑
i

a†2i+1b2i + b†2i+1a2i + a†2ib2i+1 + b†2ia2i+1

where i now indexes the larger unit cell. The equivalent exponentiation would look like

U i
1(π/2) =


0 0 0 −i

0 0 −i 0

0 −i 0 0

−i 0 0 0


block diagonal for each pair of unit cells.

Using this extends our effective unit cell so when we write our system of equations for

the transfer matrix, we get a system of 4 equations

ieiφB(i)ψB,i cos(t) + eiφC(i)ψC,i sin(t) =e−iεψC,i

ieiφA(i)ψA,i cos(t) + eiφD(i+1)ψD,i+1 sin(t) =e−iεψD,i

eiφA(i)ψA,i sin(t) + ieiφD(i+1)ψD,i+1 cos(t) =e−iεψA,i+1

eiφB(i+1)ψB,i+1 sin(t) + ieiφC(i+1)ψC,i+1 cos(t) =e−iεψB,i+1

where C and D are the sublattice sites for the adjoining cell whereas i indexes the sites as

in the Hamiltonian above. The transfer matrix links adjacent two-unit-cell blocks and we

see this in the equations above. Only A and D have couplings across the unit cells where as
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B and C are an independent internal block. The equations reduce and we are left with the

same equation we had before to calculate the transfer matrix except with a larger effective

unit cell ieiφA(i) cos(t) −e−iε

eiφA(i) sin(t) 0

 ψA,i

ψD,i

 =

 0 −eiφD(i+1) sin(t)

e−iε −ieiφD(i+1) cos(t)

 ψA,i+1

ψD,i+1


We can see that choosing the trivial part of the drive to change was not special. As we

are picking out parts of the total unitary for the system of equations to calculate the transfer

matrix, changing the topological part in the same way would have just caused a shift in the

indices, but no change to the equations. Indeed, when we explicitly implement this step

in ED compared to the transfer matrix simplification we see the same physics. The main

difference of either version of this evolution to the original calculation is that the effective

unit cell size is reduced by a factor of 2, so we need a larger system size. The more the

unitaries we use connects adjacent sites, the less useful ED becomes.

5.A.2 Different Disorder

This construction and calculation can be mirrored for an arbitrary random unitary connect-

ing adjacent A sites and adjacent B sites (but not mixing to respect the symmetry). This

disorder would have the form

UdisU(2) =



uAC1
11 0 uAC1

12 0 0 0 0 0

0 uBD1
11 0 uBD1

12 0 0 0 0

uAC1
21 0 uAC1

22 0 0 0 0 0

0 uBD1
21 0 uBD1

22 0 0 0 0

0 0 0 0 uAC2
11 0 uAC2

12 0

0 0 0 0 0 uBD2
11 0 uBD2

12

0 0 0 0 uAC2
21 0 uAC2

22 0

0 0 0 0 0 uBD2
21 0 uBD2

22


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Figure 5.A.1: T-matrix data for the longer ranged unitary disorder. The fit line is a power

law fit for just the data on 500000 T-matrix iterations and has a slope of 1.976±0.008 which

is close to the previous fit. Lower iteration data (in red) is used due for leniency of the

T-matrix rescaling factor r(τ) and is consistent with the fit as well.

which acts as a U(2) matrix  u11 u12

u21 u22


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between sites A and C in each unit cell, and a different U(2) matrix between sites B and D

of the doubled unit cell. This gives us the system of equations for the recurrence relation

IψA,iu
AC
11 (i) cos(t) + ψB,iu

BD
21 (i) sin(t)

+ iψC,iu
AC
12 (i) cos(t) + ψD,iu

BD
22 (i) sin(t) = e−iεψB,i

ψA,iu
AC
11 (i) sin(t) + iψB,iu

BD
21 (i) cos(t)

+ ψC,iu
AC
12 (i) sin(t) + iψD,iu

BD
22 (i) cos(t) = e−iεψC,i

iψA,iu
AC
21 (i) cos(t) + ψB,i+1u

BD
11 (i+ 1) sin(t)

+ iψC,iu
AC
22 (i) cos(t) + ψD,i+1u

BD
12 (i+ 1) sin(t) = e−iεψD,i

ψA,iu
AC
21 (i) sin(t) + iψB,i+1u

BD
11 (i+ 1) cos(t)

+ ψC,iu
AC
22 (i) sin(t) + iψD,i+1u

BD
12 (i+ 1) cos(t) = e−iεψA,i+1

iψA,i+1u
AC
11 (i+ 1) cos(t) + ψB,i+1u

BD
21 (i+ 1) sin(t)

+ iψC,i+1u
AC
12 (i+ 1) cos(t) + ψD,i+1u

BD
22 (i+ 1) sin(t) = e−iεψB,i+1

ψA,i+1u
AC
11 (i+ 1) sin(t) + iψB,i+1u

BD
21 (i+ 1) cos(t)

+ ψC,i+1u
AC
12 (i+ 1) sin(t) + iψD,i+1u

BD
22 (i+ 1) cos(t) = e−iεψC,i+1

The first two and last two equations are contained completely within their respective unit

cells. They allow us to solve for and eliminate ψB,i, ψC,i, ψB,i+1, ψC,i+1 in terms of the re-
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maining A and D wave function components. This leaves us with the matrix equation

 iuAC21 (i) cos(t) 0 iuAC22 (i) cos(t) −e−iε

uAC21 (i) sin(t) 0 uAC22 sin(t) 0




ψA,i

ψB,i

ψC,i

ψD,i



=

 0 −uBD11 (i+ 1) sin(t) 0 −uBD12 (i+ 1) sin(t)

e−iε −iuBD11 (i+ 1) cos(t) 0 −iuBD12 (i+ 1) cos(t)




ψA,i+1

ψB,i+1

ψC,i+1

ψD,i+1


using Mathematica to compute the explicit form of the B and C components, this matrix

equation reduces to the form ψA,i+1

ψD,i+1

 =

 MAA MAD

MDA MDD

 ψA,i

ψD,i


where MAA,MAD,MDA,MDD are coefficient fractions that depend on the time, the compo-

nents of the disordering unitary, and the quasienergy and are too large to quote here. This

is our analytic form of the transfer matrix. By randomly generating the random unitary

components and choosing an eigenquasienergy as in the original T-matrix formulation, we

can numerically calculate the form and perform a similar analysis as before (see fig. 5.A.1).

While a little more computationally heavy, the calculation is similar and shows the expected

physics. Note that we use the whole disorder unitary for each cell, so we must store one

disorder unitary between iterations.

5.B Analytic T-matrix Calculation

5.B.1 Methods and First Order Calculation

This section is based on unpublished notes and discussions [RH19].
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From our simplified model of the divergence, we can write the recurrence relation equation

ieiφA(i)τψAi + ψBi+1 = e−iεψBi

ψAi + ieiφB(i+1)τψBi+1 = e−iεψAi+1

which can be reduced to the transfer matrix

Ti =

 eiε ieiφB(i+1)τ

−ieiφA(i)τ e−iε


=

 eiε 0

0 e−iε

+ τ

 0 ieiφB(i+1)

−ieiφA(i) 0


For more detail on these steps, please refer to section 5.6.2 where we initially derived the

transfer matrix for our system.

If we multiply N transfer matrices together and only keep to first order in τ , we see the

following coefficient matrices

T(N) =

 eiNε 0

0 e−iNε

+ τ

 0 i
∑N

i=0 e
i(φB(i+1)+(N−1)ε)

−i
∑N

i=0 e
i(φA(i)−(N−1)ε) 0


We can, however, redefine each φA and φB to absorb the offset due to the factors of ε as they

are random phases. This means the coefficient on τ is a sum of random phases. However,

this does not mean the coefficient for the Lyapunov exponent is zero. If we take find M we

confirm that to first order in τ our dependence on ε disappears

M = T†T =

 1 iNτ
∑N

i=0

[
eiφ
′
B(i+1) + e−iφ

′
A(i)
]

(−i)Nτ
∑N

i=0

[
eiφ
′
A(i) + e−iφ

′
B(i+1)

]
1


The function for an incident plane wave gives us the localization length

ξ = 4N ln

∣∣∣∣∣∣
∣∣∣∣∣∣
 1

(−i)Nτ
∑N

i=0

[
eiφ
′
A(i) + e−iφ

′
B(i+1)

]
∣∣∣∣∣∣
∣∣∣∣∣∣
−1

= 4N ln

(√
1 + τ 2

∑N

i=1

[
eiφ
′
A(i) + e−iφ

′
B(i+1)

]∑N

j=1

[
e−iφ

′
A(j) + eiφ

′
B(j+1)

])−1
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and we see we depend on the mean square value of the sum.∣∣∣∑N

i=0
eiφ

(i)
∣∣∣2 =

∑N

i=0
eiφ

(i)
∑N

j=1
e−iφ(j) =

∑N

i=0
1 +

∑
i 6=j

ei(φ(i)−φ(j))

= N

On average, the mod square is just proportional to the number of elements. However we

have broken our order of approximation in doing so. There are no terms in the Lyapunov

exponent of order τ , regardless of if we take an initial state, the largest exponent, or the

trace. Therefore we require a calculation to the next order in the initial taylor series.

5.B.2 Second Order Calculation

To compute the second order correction for the toy model (see fig. 5.1), we start by expanding

the cos(τ) term to the next order

U(τ) = −T (1− τ 2/2)− iτD

which gives the recurrance relation

ieiφA(i)τψAi + (1− τ 2/2)ψBi+1 = e−iεψBi

(1− τ 2/2)ψAi + ieiφB(i+1)τψBi+1 = e−iεψAi+1

which gives us a transfer matrix of

Ti =

 eiε(1− τ 2/2 + τ2ei(φA(i)+φB(i+1))
1−τ2/2 ) ieiφB(i+1)τ

1−τ2/2
−ieiφA(i)τ

1−τ2/2
e−iε

(1−τ2/2)


Here we can pull out a factor of (1 − τ 2/2)−1 to simplify things. This factor will scale

predictably, and the remaining matrix will be denoted by T ′i . Using this form, we can

consider the action of multiple transfer matrices to get a form of the T-matrix as a function

of N number of multiplications. If we look at the form of localization length, we see that

the prefactor of (1− τ 2)−N pulls right out
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1

ξ
=

1

2N
ln
(
T†T

)
= ln

(
1 + τ 2/4

)
+ ln

(
M′ 1

2N

)
The first term gives the expected factor of τ−2, the scattering matrix in the second term is

shown in [RH19] to scale linearly in N

M ≈ 1 + τ 2O(N)

ln
(
M′ 1

2N

)
= ln

(
(1 + τ 2O(N))

1
2N

)
lim
N→∞

(1 + aN)
1
N = 1

so the second term does not contribute in the thermodynamic limit and only the expected

scaling remains.
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