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ABSTRACT OF THE DISSERTATION

Deep Anomaly Detection and Distribution Shifts
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Anomaly detection is important in various applications, from cyber-security, transportation,

industry, and finance to healthcare. The anomaly detection problem is to identify anomalies

originating from a different data-generating process from normal data. The rare occurrence of

anomalies and their unknown causes makes it hard to collect and model them. Thus, anomaly

detection methods utilize normal data to build anomaly detectors. In this dissertation, we

apply deep anomaly detection methods–methods that apply deep learning techniques–to

solve anomaly detection problems. We contribute multiple generic frameworks for various

anomaly detection setups.

First, we challenge the common clean training data assumption (free of anomalies) and stress

that practical training data is often contaminated with unnoticed anomalies. We propose

a novel unsupervised training strategy for training an anomaly detector in the presence of

unlabeled anomalies that is compatible with a broad class of models.

Second, selecting informative data points for expert feedback can significantly improve

anomaly detection performance. The critical challenges are selecting the most informative

samples for expert review and effectively incorporating their feedback to bolster anomaly

detection capabilities. To address these challenges, we propose a new data labeling strategy

and a new learning framework for active and semi-supervised anomaly detection.
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Third, real-world applications may face distribution shifts. We consider the online learning

problem where the shifts occur at unknown positions and with unknown intensities. We

derive a new Bayesian online inference approach to automatically infer these distribution

shifts and adapt the model to the detected changes. This approach applies to both supervised

and unsupervised learning settings. We also consider the problem of adapting an anomaly

detector to drift in the normal data distribution, especially when no training data is available

for the “new normal.” This setting is called zero-shot anomaly detection. We propose a

simple yet effective method that combines batch normalization and meta-training for zero-

shot anomaly detection.

The learning frameworks introduced in this dissertation are model-agnostic and apply to var-

ious data types. Extensive experiments demonstrate the efficacy of our proposed approaches.

xvi



Chapter 1

Introduction

Anomaly detection, identifying data points that deviate from most collected data, is an

important area in machine learning and holds interests and applications in various real-world

settings. Examples include scientific discovery [Shapere, 1964], network security [Fernandes

et al., 2019], data cleaning [Ilyas and Chu, 2019], financial fraud detection [Hilal et al.,

2022], industrial fault detection [Xie et al., 2024, Mokhtari et al., 2021, Bergmann et al.,

2019], medical diagnosis [Fernando et al., 2021, Baur et al., 2021], and more.

Anomalies, also referred to as outliers or novelties1, are also of significance and interest within

the realm of statistics [Kutner et al., 2005, Chapter 3] and data mining [Syarif et al., 2012,

Dokas et al., 2002, Agrawal and Agrawal, 2015]. The objective is to detect anomalies within

a collection of data. In machine learning, anomaly detection aims to learn to characterize

data considered “normal” with associated regions in feature space so that the normal data

can be discriminated from data following a different distribution. 2

Anomalies originate from a different data-generating distribution from normal data. Anoma-

lies occur less frequently, and their causes are unknown, making them difficult or costly to

1We differentiate them in detail in Appendix A.
2We discuss more details and the connections to out-of-distribution detection in Appendix A.
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Figure 1.1: Anomaly score contour plots on 2D toy data demonstrate the difference between
(a) DeepSVDD [Ruff et al., 2018] and (b) binary classification. Binary classification (b) is
problematic for anomaly detection since it cannot detect new anomalies, e.g. in the upper
right corner of the plot. DeepSVDD (a) relies on an inductive bias that assigns high anomaly
scores to regions far from normal data.

acquire, e.g., for discriminative training purposes. Additionally, anomalies may cause severe

consequences in some safety-critical applications. These characteristics present challenges

for anomaly detection and set it apart from supervised classification. The problem would

be easy to solve if one collected sufficiently many representative anomalies. However, due to

the difficulties mentioned above, although some anomalous data can be collected in practice,

they may be biased and only represent a small portion of the full spectrum of anomalies.

Figure 1.1 (b) demonstrates the issues when applying binary classification to anomaly de-

tection.

On the other hand, it is easy to collect normal data. Consequently, anomaly detection

primarily leverages normal data for training, aiming to learn a detector to identify previously

unseen anomalies at test time. Figure 1.1 (a) presents a concrete example of anomaly

detection to contrast Deep Support Vector Data Description (DeepSVDD) [Ruff et al., 2018],

an anomaly detection method with binary classification. Unlike discriminative training,

anomaly detection methods train exclusively on normal data to learn a parametric anomaly

scoring function. The scoring function assigns low scores to normal data while high scores

2



to abnormal data. Applying a threshold to these scores makes it possible to classify data as

normal or anomalous.

Methods for solving anomaly detection tasks span from traditional non-deep learning-based

methods [Chandola et al., 2009, Ruff et al., 2021] to deep learning-based methods, which

the anomaly detection literature refers to as deep anomaly detection [Ruff et al., 2021, Cha-

lapathy and Chawla, 2019, Pang et al., 2021a]. Deep anomaly detection, known for its high

expressiveness and the ability to handle complex, high-dimensional data, has emerged as a

crucial field spanning various methods. For example, one line of methods aims to learn a

neural network that maps all normal data to a pre-defined center in the feature space and

maps anomalous data away, referred to as deep one-class classification [Ruff et al., 2018,

Liznerski et al., 2020]. Another line of methods is motivated by the advances of deep gener-

ative models, thereby modeling the density of normal data Zong et al. [2018], Schlegl et al.

[2017], Livernoche et al. [2024]. Self-supervised learning or contrastive learning, able to learn

robust and informative representations for downstream tasks [Hendrycks et al., 2019], has

been stimulating methods designed for various data types such as images, tables, time se-

ries, and so on [Bergman and Hoshen, 2020, Golan and El-Yaniv, 2018, Hendrycks et al.,

2019, Qiu et al., 2021, Tack et al., 2020, Shenkar and Wolf, 2021]. Others utilize transfer

learning, pre-trained foundation models, or unstructured public datasets to improve existing

anomaly detection methods [Deecke et al., 2021, Liznerski et al., 2022, Hendrycks et al.,

2018]. In Chapter 2, we will explain the details of some representative methods used in the

experiments of this dissertation. While more methods are being developed for various data

and anomaly types, this dissertation is not dedicated to novel model architectures. Instead,

we propose generic frameworks to enable diverse deep anomaly detection methods to work

effectively across various learning environments, e.g., active learning and zero-shot learning.

Anomaly detection tasks vary along with specific scenarios and underlying assumptions.

These tasks can be categorized in different aspects. One aspect is the availability of labeled
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anomalies in the training data. When the training dataset comprises normal and abnormal

data and the anomaly labels are provided, this setup is referred to as supervised anomaly

detection. This supervised condition is hard to achieve as acquiring the datum-wise labels

requires significant human effort. Another common assumption is that a clean, normal

dataset clear from anomalies is available at training time. Most of the recent work is de-

veloped under this assumption. However, most real-world datasets already contain hidden

anomalies, known as corrupted or contaminated data. Contaminated data can occur due

to various factors, such as an absence of labeling or a rough screening that only eliminates

evident anomalies, often due to limited labor or expertise. Training an anomaly detector

with contaminated data is called the unsupervised contaminated setting3. Consider tumor

detection in a medical setting. An automatic detection system will be developed to iden-

tify which medical images contain malignant tumors. The training images presented to the

system are naturally a mixture of normal and tumor images. Chapter 3 is dedicated to

introducing an unsupervised training strategy that enhances deep anomaly detectors under

this contaminated training data assumption.

Introducing human-expert interaction during training can enhance performance, especially if

informative data points are chosen for expert labeling. In the same tumor detection example,

this human-involvement setup suggests that the anomaly labels of some images are available

through a doctor. The critical challenges are how to select the most informative samples

for expert review and effectively incorporate their feedback to bolster anomaly detection

capabilities4. This approach, blending active querying and semi-supervised techniques, is

often termed active and semi-supervised deep anomaly detection. In Chapter 4, we present

a framework for deep anomaly detection under limited expert labeling budgets.5

3Some literature refers to this setting as “unsupervised anomaly detection.”
4with an assumption that labeled anomalies are informative and reflect some anomalous modes.
5In the literature, some works refer to the clean training data setup as “semi-supervised anomaly de-

tection.” We need clarification on these names, e.g., semi-supervised anomaly detection is a larger concept
than merely ensuring a clean training dataset. Therefore, we instead adopt our naming standards, i.e., using
“clean training dataset” or “semi-supervised anomaly detection” based on context.

4



Additionally, the tumor detector may face distribution shifts. The medical images may have

been recorded with new imaging technologies and formats, or the patients are from a different

demographic the anomaly detector has not seen. The notion of what constitutes normal data

can shift, and anomalies might evolve in response to detection efforts adversarially (e.g.,

in cybersecurity). These data shifts challenge adapting the detection model to new data

distributions. To tackle this problem, Chapter 6 introduces a generic adaptation framework

with Bayesian online learning in a data-streaming environment. The framework applies to

both supervised and unsupervised learning.

Finally, acquiring sufficient training data from new distributions proves formidable, and

fast adaptation is preferred. Various solutions within the realms of few-shot and zero-shot

learning have been proposed. Chapter 5 contributes a new lightweight zero-shot anomaly

detection framework compatible with various deep anomaly detection methods and multiple

data types.

1.1 Dissertation Organization

As follows, Chapter 2 introduces the problem setup and representative deep anomaly detec-

tion methods, setting the stage for the rest of this dissertation. In Chapter 3, we introduce

a novel framework called Latent Outlier Exposure that improves the performance of deep

anomaly detection methods in the contaminated training dataset setting. Chapter 4 develops

an effective active learning strategy and a novel semi-supervised anomaly detection objec-

tive for deep anomaly detection under labeling budget constraints. Chapter 5 introduces

a lightweight zero-shot anomaly detection framework with batch normalization. Chapter 6

provides a general adaptation framework compatible with Bayesian online learning. Finally,

Chapter 7 concludes this dissertation.
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Chapter 2

Background

In this chapter, we start by setting up the notation and defining the anomaly detection

task, followed by an overview of several widely used deep anomaly detection techniques.

Additional sections set up the stage for subsequent chapters. Section 2.3 provides semi-

supervised anomaly detection background for Chapters 3 and 4. Section 2.4.1 introduces

Bayesian online learning and variational continual learning for Chapter 6. Section 2.4.2

gives an overview of few-shot and zero-shot anomaly detection for Chapter 5.

2.1 Notation and Problem Statement

In the following, we borrow notations from Ruff et al. [2021]. Assume the probability density

functions of normal and abnormal data distributions exist, denoted by pn(x) and pa(x),

respectively. Let X ∈ RD denote the data space of interest. Consider a dataset {xi ∈ X}Ni=1

where data points xi are i.i.d. samples from a mixture distribution

p(x) = (1− α)pn(x) + αpa(x) (2.1)
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where pn(x) is the normal data distribution and pa(x) corresponds to the abnormal data.

We assume the anomalous data is non-dominant in the mixture, i.e., the contamination

ratio is small 0 ≤ α < 0.5. In Section 2.2, we make the most common assumption that

the dataset is clean and only contains normal data, i.e., α = 0. We will relax the clean

training data assumption in subsequent sections and chapters and allow α > 0. Each data

point is possibly labeled normal or anomalous, as indicated by the binary anomaly label

yi := y(xi) ∈ {0 := “normal”, 1 := “abnormal”}.

The anomaly detection problem is identifying the low-probability region under the normal

data distribution. The region corresponds to A := {x ∈ X |pn(x) ≤ γ}. γ ≥ 0 is a low-

density region threshold. Adjusting the threshold trades off the false positive against the

false negative rates, which can be customized based on the task preference.

While the low-density region can be unbounded, an underlying assumption in anomaly detec-

tion is that the normal data concentrates in a high-density region. The high-density region

corresponds to a bounded density level set {x ∈ X |pn(x) > γ}. This assumption is known

as the Concentration Assumption [Ruff et al., 2021]. More concretely, we consider learning

desired density level sets of normal data. Two options are available. One is to learn a density

estimator based on the given dataset. One can model the normal data density pn(x) with a

parametric density function p(x; θ). Deep generative models1 like variational auto-encoders

(VAEs)2 [Kingma and Welling, 2014, Rezende et al., 2014] and flow-based models [Kingma

and Dhariwal, 2018], are utilized for density estimation and, in turn, for anomaly detection

by applying a threshold to the log-likelihood of the learned model [Nalisnick et al., 2019].

However, generative models often perform poorly for complex data, e.g., CIFAR-10, due to

their tendency to model low-level statistics, overlook high-level semantics, and assign higher

1Generative adversarial networks (GANs) [Goodfellow et al., 2014] are not included as their likelihoods
are hard to evaluate [Bond-Taylor et al., 2021]. That said, the discriminator of GANs can be used for
anomaly detection [Schlegl et al., 2017].

2VAE models a lower bound of pn(x). The lower bound often serves as a surrogate of pn(x).
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likelihoods to simpler datasets [Nalisnick et al., 2019].

Another line of research learns to output a transformation of the data density function

T (pn(x)), in the form of a parametric anomaly scoring function S(x; θ) ∈ R such that the

anomaly scores preserve the ranking between normal and anomalous data, that is, S(xa; θ) >

S(xn; θ) if3 y(xn) = 0 and y(xa) = 1. T (pn(x)) or S(x; θ) is not necessarily a probability

density function. The non-probabilistic relaxation eases the problem as learning the anomaly

score function S(x; θ) does not require the normalization constant to be learned4. Once

trained, the output anomaly scores can be applied with a threshold to identify anomalies.

This chapter focuses on designing and learning the parametric anomaly score functions.

Evaluation Metric. Multiple metrics can be used to evaluate the performance of a

learned anomaly detector, e.g., AUROC, F1 score, and AUPR. We mainly rely on AU-

ROC to evaluate an anomaly detector S(x; θ) as AUROC directly evaluates the bipartite

ranking quality [Mohri et al., 2018, 10.5.2][Cortes and Mohri, 2003]. It estimates the prob-

ability of ranking abnormal data higher than normal data in terms of their scores, i.e.,

Exa∼pa(x),xn∼pn(x)[1(S(xa; θ) > S(xn; θ))].

2.2 Deep Anomaly Detection

Deep anomaly detection exploits the feature representation ability of deep neural networks

to detect anomalies in complex and high-dimensional data such as images or videos. This

section will review some deep anomaly detection methods used in this thesis’s experiments.

We refer readers for more deep anomaly detection methods to review articles [Chalapathy

3Here, we assume the uniqueness of the anomaly label.
4Consider an energy-based model p(x; θ) = exp(−S(x; θ))/Z(θ) with the normalization constant Z(θ) =∫

exp(−S(x; θ))dx. The anomaly score function S(x; θ) is an energy function, and p(x; θ) is a probability
density. Since we only optimize S(x; θ), we do not evaluate the normalization constant during training,
which makes the learning problem easier than fitting a density model.
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Figure 2.1: DeepSVDD learns a deep neural network-based transformation ϕ(·; θ) that maps
a data point in data space X to a corresponding point in feature space F . DeepSVDD
operates such that in the feature space, all normal data (black dots) are mapped to a tight
neighborhood of the center c. The size of the neighborhood is measured by its radius R.
Minimizing R is equivalent to minimizing each normal data’s distance to the center c, which
is the objective function Equation (2.2). Image adapted from Ruff et al. [2018].

Figure 2.2: Self-supervised learning for images predicts various image augmentations. For
example, an image can be flipped or rotated and then used as input to a classifier to decide if
a type of augmentation is applied. The learned classifier can be used for anomaly detection.

and Chawla, 2019, Pang et al., 2021a, Ruff et al., 2021].

Common deep anomaly detection methods rely on one-class classification or self-supervised

learning techniques to learn an anomaly score function that preserves the ranking between

normal and abnormal data. The anomaly score is a parametric function S(x; θ) where

the learnable parameters θ are neural network weights. We introduce some deep anomaly

detection methods in the clean training data setup in the following. These methods differ in

the self-supervised learning objectives.

Deep Support Vector Data Description (DeepSVDD) [Ruff et al., 2018] is a deep

learning-enabled version of one-class support vector machine [Schölkopf et al., 2001, Tax
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Figure 2.3: NTL applies neural networks to learn diverse views (neural transformations) of
the original data and performs contrastive learning. The transformed and original data are
then encoded into a feature space such that each transformed data is supposed to be close
to the original data and far from the other. The benefit of using learnable transformations
is that the method applies to various data types such as time series and tabular data that
lack manually designed augmentations, in contrast with image data whose augmentations
are designed by human experts. Images are adapted from Qiu et al. [2021].

and Duin, 2004b]. The idea of DeepSVDD is to learn a parametric feature representation

ϕ(x; θ) ∈ Rk such that, in the representation space, all normal training data is mapped

to either a pre-defined or learned center c ∈ Rk. Since the model only saw normal data

during training, anomalies will not be mapped to the same vicinity by default. Figure 2.1

illustrates this idea. In the implementation, the feature representation mapping ϕ(x; θ) is an

instantiation of a multi-layer neural network. One can learn feature mapping by minimizing

the Euclidean distance between the mapped representation vector of each normal data point

and the center

L(θ) = 1

N

N∑
i=1

Lθ
SVDD(xi)

with Lθ
SVDD(x) = ∥ϕ(xi; θ)− c∥22. (2.2)
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Once trained, the same Euclidean distance is also used as the anomaly score to identify

anomalies, i.e., S(x; θ) = Lθ
SVDD(x). Only normal data is employed to minimize the anomaly

score during training. The anomalies will exhibit higher scores than normal data. For more

details on parameter initialization and selection of the center c, we refer readers to Ruff et al.

[2018].

Multi-Head Rotation Net (MHRot) [Hendrycks et al., 2019] amounts to learning a

multi-head classifier to predict whether an image is augmented by handcrafted transfor-

mations such as rotations, horizontal shifts, and vertical shifts. Figure 2.2 provides some

common examples of image augmentations used in self-supervised learning. Suppose M

different transformations are available. Each image can be applied with multiple trans-

formations, giving various augmentations due to transformation compositions. Since each

transformation can be added or not independently, the number of transformation composi-

tions is K = 2M . Denote these compositions by {Tk}Kk=1. The multi-head classifier has M

prediction heads with parameters θm, each representing p(tk,m|Tk(x); θm), where tk,m ∈ {0, 1}

indicates whether or not a transformation m is used5 in Tk. Aiming to predict the correct

transformations for normal samples, we minimize the negative log-likelihoods of the ground

truth label tk,m for each transformation m and for each transformation composition Tk,

resulting in the loss function for each data point x

Lθ
MHRot(x) := −

K∑
k=1

M∑
m=1

log p(tk,m|Tk(x); θm). (2.3)

The loss function on the training dataset is L(θ) = 1
N

∑N
i=1 Lθ

MHRot(xi). At test time, the

anomaly score is the same as the loss function S(x; θ) = Lθ
MHRot(x), or the entropy6 of

the model predictions S(x; θ) =
∑K

k=1

∑M
m=1H(p(·|Tk(x); θm)). Since abnormal data is not

observed during training, the anomaly score is expected to be higher for anomalous data

5In practice, multi-class classification is also possible for each head. For example, various rotation angles
can be applied to augment an image, and then the head predicts which angle is applied.

6The entropy of a discrete probability distribution is H(p(x)) = −∑
x p(x) log p(x).
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than normal data at test time.

Neural Transformation Learning (NTL). Rather than using hand-crafted transfor-

mations, NTL [Qiu et al., 2021] learns K neural transformations {Tθ,1, ..., Tθ,K} and an

encoder fθ from data and uses the learned transformations to detect anomalies. Each

neural transformation generates a view xk = Tθ,k(x) of sample x. For normal samples,

NTL encourages each transformation to be similar to the original sample and to be dis-

similar from other transformations. To achieve this objective, NTL maximizes the nor-

malized outputs zk(x; θ) = h(xk,x; θ)
/(

h(xk,x; θ) +
∑

l ̸=k h(xk,xl; θ)
)
for each view where

h(a,b; θ) = exp(cos(fθ(a), fθ(b))/τ) measures the similarity of two views7,

Lθ
NTL(x) := −

K∑
k=1

log zk(x; θ).

Similar to MHRot and DeepSVDD, the overall loss function is an average of losses incurred

by each training data point. The anomaly score is the same as the loss function used during

training S(x; θ) = Lθ
NTL(x). Figure 2.3 provides an overview of NTL.

2.3 Semi-Supervised Anomaly Detection

In semi-supervised anomaly detection, most of the training data is unlabeled, while a small

portion is annotated with anomaly labels. A semi-supervised learning approach is effective

if the labeled anomalies in the training dataset are informative, meaning they reflect some

modes of abnormality. Incorporating these identified anomalous modes into deep anomaly

detection models can enhance its performance.

Denote the index set of labeled and unlabeled data byQ and U , respectively. Ruff et al. [2019]

7where τ is the temperature and cos(a,b) := a⊤b/∥a∥∥b∥
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proposed Deep Semi-supervised Anomaly Detection (Deep SAD) that extends DeepSVDD

to utilize labeled and unlabeled data during training. The objective is

L(θ) = 1

|U|
∑
i∈U

Lθ
SVDD(xi)︸ ︷︷ ︸

unsupervised loss

+
λ

|Q|
∑
j∈Q

(1− yj)Lθ
SVDD(xj) + yj

(
Lθ

SVDD(xj)
)−1︸ ︷︷ ︸

supervised loss

. (2.4)

The supervised loss concentrates the labeled normal data around the center in the feature

space and maps the known abnormal data far away from the center by minimizing the

inverse distance. When no labels are available, i.e., Q is empty, Deep SAD regresses to

DeepSVDD (Equation (2.2)). λ, a trade-off hyperparameter, controls how much the learned

model focuses on the labeled data points.

Outlier Exposure (OE) [Hendrycks et al., 2018] is another semi-supervised method that uses

public image data as auxiliary outliers to improve the performance of anomaly detection

methods. The difference from Deep SAD lies in the formation of unlabeled and labeled sets

U and Q. While Deep SAD assumes all data is from a mixture of normal and abnormal data

(Equation (2.1)), OE assumes a clean normal dataset and synthesizes anomalies randomly

sampled from large unrelated public datasets.

The first unsupervised loss in Equation (2.4) suggests Deep SAD regards all unlabeled data

as normal and leaves unlabeled anomalous data fitted by the model, leading to the inability

to detect similar anomalies at test time. In Chapters 3 and 4, we introduce new training

procedures and objective functions that utilize the information of unlabeled anomalies in the

training dataset to improve a deep anomaly detector.

Another assumption Deep SAD makes is that a subset of labeled data exists. This assump-

tion raises the question of whether or not choosing a more informative subset for labeling

could boost the performance of semi-supervised anomaly detection. The concept of actively
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selecting data for labeling based on the model’s current training state introduces us to active

anomaly detection. A commonly adopted approach is the positive querying strategy, which

prefers selecting data points exhibiting higher anomaly scores, as highlighted in the litera-

ture [Trittenbach et al., 2021]. Once the queried data points are labeled, a semi-supervised

training objective is employed to refine the anomaly detection capabilities further. In Chap-

ter 4, we derive theoretical conditions under which anomaly scores generalize from labeled

queries to unlabeled data. Motivated by these results, we propose a data labeling strategy

with optimal data coverage under labeling budget constraints.

2.4 Adapting to Shifts in Data Distributions

Real-world data distributions may change over time and space. Adaptation is, for instance,

required for security applications when malicious attacks evolve to avoid firewalls. Patients

may present demographic disparities in medical domains, and medical images with different

imaging technologies vary in resolution, lightness, and preprocessing procedures. In the

following, we set the grounds for Chapters 5 and 6: one online learning setup where data

from a distribution after shift is available for updating the model and another fast-adaptation

setting without updating the model parameters.

2.4.1 Variational Continual Learning

In this part, we consider the problem of online learning in the presence of distribution shifts

of unknown strengths (for example, as measured by Kullback-Leibler distance, Wasserstein

distance, or total variation distance). We stress that multiple distribution shifts may oc-

cur over time. A Bayesian approach to this problem is Variational Continual Learning

(VCL) [Nguyen et al., 2018b], a recursive method applicable to supervised and unsupervised
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learning setups. VCL relies on the capacity of deep neural networks and the regularization

provided by Bayesian online learning to remember different tasks to achieve adaptations to

distribution shifts.

Variational Inference. Before presenting the recursive methods to the Bayesian online

learning problem, we introduce variational inference (VI) [Blei et al., 2017, Zhang et al.,

2018], an approximate inference technique to Bayesian inference when the exact posterior is

intractable.

Consider observing dataset D and assuming a data-generating model p(D|θ) for D. Adopting

a Bayesian treatment, we put a prior distribution p(θ) over the model parameters and infer

their posterior p(θ|D) conditioned on observing D.

Most interesting models lack a tractable posterior for the parameters. We need to estimate

their posterior. One approach is variational inference. One first specifies a variational family

Q that is a class of probability distributions q(θ;λ) with parameters λ. q(θ;λ) and λ are

called variational distributions and variational parameters respectively8. For instance, a

frequent choice of the variational family is Gaussian distributions N (θ;µ,Σ) with mean µ

and covariance matrix Σ. The variational parameters of the Gaussian family are λ := {µ,Σ}.

We aim to search a particular distribution q ∈ Q among the variational family to approximate

the exact posterior p(θ|D) by optimizing an objective function (derived below). Selecting

q(θ;λ) corresponds to finding an instance of the variational parameter λ that governs the

distribution shape.

Next, we derive the objective function used to select the variational distribution q that

approximates the posterior p(θ|D). We derive a lower bound of the marginal probability of

8We abuse the notation Q, which denoted the labeled index set in active anomaly detection (Section 2.3).
Their meanings are clear from the context.
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observations

log p(D) = log

∫
p(D|θ)p(θ)dθ (2.5)

= log

∫
p(D|θ)p(θ)
q(θ;λ)

q(θ;λ)dθ (2.6)

≥
∫

q(θ;λ) log
p(D|θ)p(θ)
q(θ;λ)

dθ (By Jensen’s inequality) (2.7)

= Eq(θ;λ) [log p(D|θ)p(θ)− log q(θ;λ)] := L(λ) (2.8)

Equation (2.8) is called the Evidence Lower BOund, or ELBO, denoted by L(λ). We can

maximize the ELBO with respect to λ to get an optimal variational distribution q(θ;λ∗)

that maximizes L(λ) as well as tighten the lower bound of the marginal probability of the

observations.

This optimal variational distribution q(θ;λ∗) approximates the posterior p(θ|D) of interest,

which becomes clear if we re-write the ELBO

L(λ) := Eq(θ;λ) [log p(D|θ)p(θ)− log q(θ;λ) + log p(D)− log p(D)] (2.9)

= Eq(θ;λ) [log p(θ|D)− log q(θ;λ)] + log p(D) (2.10)

= −DKL(q(θ;λ)|p(θ|D)) + log p(D) (2.11)

whereDKL(q|p) = Eq[log q−log p] is the Kullback–Leibler divergence which satisfiesDKL(q|p) ≥

0 and DKL(q|p) = 0 only if q = p. It is clear from the last equation that maximizing the

ELBO is equivalent to minimizing the KL divergence between the variational distribution

q(θ;λ) and the true posterior probability p(θ|D).

Bayesian Online Learning. Given a sequence of datasets {Dt}Tt=1, which are i.i.d. sam-

pled from a stationary data distribution. Dataset Dt arrives at time t, and the model

parameters are updated upon the data arrival. The datasets can be either for discriminative
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learning with labels Dt = {(xi, yi)}Nt
i=1 or for unsupervised learning Dt = {xi}Nt

i=1. The likeli-

hood model p(Dt|θ) reflects the differences: assuming i.i.d. samples, discriminative learning

employs conditional distribution p(Dt|θ) =
∏

i p(yi|xi, θ) and unsupervised learning uses

p(Dt|θ) =
∏

i p(xi|θ). Bayesian online learning places a prior distribution p(θ) over neural

network weights and recursively incorporates each dataset by updating the posterior of θ.

In particular, it applies the posterior at the previous time step t− 1 as the prior distribution

for the current time step t,

p(θ|D1:t) ∝ p(Dt|θ)p(θ|D1:t−1), t = 1, . . . , T. (2.12)

Variational Continual Learning [Nguyen et al., 2018b]. VCL instead assumes each

dataset can be displaced from the previous one due to a time-varying data-generating process.

Adapting to each dataset relies on the capacity of deep neural networks and the regulariza-

tion provided by Bayesian online learning to remember different datasets. The posterior

distribution is intractable in most cases. Thus VCL applies variational inference (VI) [Blei

et al., 2017, Zhang et al., 2018] to approximate the true posterior for each dataset Dt at time

step t. That is, it iteratively finds the optimal approximate posterior qt(θ) for dataset Dt

among a set of variational distributions Q

qt(θ) = argmin
q∈Q

DKL

[
q(θ)

∣∣∣∣qt−1(θ)p(Dt|θ)
Zt

]
, t = 1, . . . , T. (2.13)

Zt is an intractable normalizing constant of qt−1(θ)p(Dt|θ) which does not affect the mini-

mizing of the KL divergence with respect to q. VCL sets q0(θ) := p(θ) for t = 1. The KL

divergence in Equation (2.13) is also called negative evidence lower bound (ELBO). Gaussian

distribution is a common choice for Q. Optimizing Equation (2.13) is often intractable and

requires Monte Carlo VI [Blundell et al., 2015].

The fact that VCL assumes a non-stationary data-generating process but uses the posterior
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at the previous time step as the new prior at the current time step suggests an inconsistency

between the i.i.d. modeling assumption and the non-stationary data-generating process

assumption. The i.i.d. modeling assumption leads to slower adaptation over time. In

Chapter 6, we propose a Bayesian adaptation framework for supervised or unsupervised

learning to adjust a model to irregular distribution shifts. The adaptation is achieved by

automatically retaining and discarding previous information as necessary.

2.4.2 Few-Shot and Zero-Shot Anomaly Detection

We now refocus on the specific anomaly detection problem under distribution shifts. We

further assume the model lacks access to substantial training data from new distributions,

thus precluding re-training of the model. This assumption is common in practice. For ex-

ample, a tumor detection system may encounter medical images produced by a new imaging

technology.

One line of research for fast adaptation is to exploit existing few-shot learning or meta-

learning techniques for anomaly detection. These techniques enable the model to adapt

using a small support set from a new distribution at test time. For instance, model-agnostic

meta-learning [Finn et al., 2017] has been applied for one-class classification [Frikha et al.,

2021], GANs [Lu et al., 2020b], and autoencoders [Wu et al., 2021b] to detect anomalies in

a changing environment.

Unlike few-shot anomaly detection, zero-shot anomaly detection requires no support set to

adapt a model. Most zero-shot anomaly detection methods rely on the inherent zero-shot

learning capabilities of pre-trained foundational models on images, as demonstrated in stud-

ies [Radford et al., 2021, Yu et al., 2022, Jia et al., 2021, Yuan et al., 2021]. An instance

is the Contrastive Language–Image Pre-training (CLIP) by Radford et al. [2021], which

learns visual representations by leveraging a vast collection of open-source images paired

18



with natural-language text descriptions. The resulting network projects visual images and

language descriptions into a shared feature space. The pre-trained model can provide mean-

ingful representations for downstream tasks such as image classification and anomaly detec-

tion. In the context of zero-shot anomaly detection, as explored by Liznerski et al. [2022],

CLIP employs a unique approach by comparing test images to a pair of natural language

descriptions for normal and abnormal data: {ln = “A photo of {NORMAL CLASS}”, la =

“A photo of something”}. The anomaly score of a test image x is the relative distance

between x to ln and x to la in the feature space,

S(x; θCLIP) =
exp(⟨fx(x), fl(la)⟩)∑

c∈{ln,la} exp(⟨fx(x), fl(c)⟩)
, (2.14)

where fx and fl are the CLIP image and description feature extractors and ⟨·, ·⟩ is the inner

product. We call this method CLIP-AD.

CLIP-AD requires a relevant language description for the image; an assumption may only be

practical for some image datasets. For example, in Omniglot Lake et al. [2015], describing the

written alphabet in natural language can be challenging. Moreover, CLIP-AD is unsuitable

for other data types like tabular or time-series data. Additionally, its ability to adapt to

new distributions beyond its initial training data distribution is limited. To address these

issues, Chapter 5 introduces a novel lightweight zero-shot anomaly detection method that

circumvents the limitations associated with foundation models.
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Chapter 3

Latent Outlier Exposure for Anomaly

Detection with Contaminated

Training Data

This chapter is based on a published paper at ICML 2022: Latent Outlier Expo-

sure for Anomaly Detection with Contaminated Data by Chen Qiu∗, Aodong

Li∗, Marius Kloft, Maja Rudolph, Stephan Mandt [Qiu et al., 2022b]

3.1 Introduction

From industrial fault detection to medical image analysis or financial fraud prevention:

Anomaly detection—the task of automatically identifying anomalous data instances without

being explicitly taught how anomalies may look like—is critical in industrial and technolog-

ical applications.

The common approach in deep anomaly detection is to first train a neural network on a large
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dataset of “normal” samples minimizing some loss function (such as a deep one-class classifier

(DeepSVDD) [Ruff et al., 2018]) and then construct an anomaly score from the output of

the neural network (typically based on the training loss). Anomalies are then identified as

data points with larger-than-usual anomaly scores and obtained by thresholding the score

at particular values.

A standard assumption in this approach is that clean training data are available to teach

the model what “normal” samples look like [Ruff et al., 2021]. In reality, this assumption is

often violated: datasets are frequently large and uncurated and may already contain some of

the anomalies one is hoping to find. For example, a dataset of medical images may already

contain cancer images, or datasets of financial transactions could already contain unnoticed

fraudulent activity. Naively training an unsupervised anomaly detector on such data may

suffer from degraded performance.

In this chapter, we introduce a new unsupervised approach to training anomaly detectors on a

corrupted dataset. Our approach uses a combination of two coupled losses to extract learning

signals from both normal and anomalous data. We stress that these losses do not necessarily

have a probabilistic interpretation; rather, many recently proposed self-supervised auxiliary

losses can be used [Ruff et al., 2018, Hendrycks et al., 2019, Qiu et al., 2021, Shenkar and

Wolf, 2022]. In order to decide which of the two loss functions to activate for a given datum

(normal vs. abnormal), we use a binary latent variable that we jointly infer while updating

the model parameters. Training the model thus results in a joint optimization problem over

continuous model parameters and binary variables that we solve using alternating updates.

During testing, we can use a threshold on only one of the two loss functions to identify

anomalies in constant time.

Our approach can be applied to a variety of anomaly detection loss functions and data types,

as we demonstrate on tabular, image, and video data. Beyond detection of entire anomalous

images, we also consider the problem of anomaly segmentation which is concerned with
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finding anomalous regions within an image. Compared to established baselines that either

ignore the anomalies or try to iteratively remove them [Yoon et al., 2021], our approach

yields significant performance improvements in all cases.

The chapter is structured as follows. In Section 3.2, we discuss related work. In Section 3.3,

we introduce our main algorithm, including the involved losses and optimization procedure.

Finally, in Section 3.4, we discuss experiments on both image and tabular data and discuss

our findings in Section 3.5 1.

3.2 Related Work

We divide our related work into methods for deep anomaly detection, learning on incomplete

or contaminated data, and training anomaly detectors on contaminated data.

Deep anomaly detection. Deep learning has played an important role in recent advances

in anomaly detection. For example, Ruff et al. [2018] have improved the anomaly detection

accuracy of one-class classification [Schölkopf et al., 2001] by combining it with a deep fea-

ture extractor, both in the unsupervised and the semi-supervised setting [Ruff et al., 2019].

An alternative strategy to combine deep learning with one-class approaches is to train a one-

class SVM on pretrained self-supervised features [Sohn et al., 2020b]. Indeed, self-supervised

learning has influenced deep anomaly detection in a number of ways: The self-supervised

criterion for training a deep feature extractor can be used directly to score anomalies [Golan

and El-Yaniv, 2018, Bergman and Hoshen, 2020]. Using a MHRot, Hendrycks et al. [2019]

improve self-supervised anomaly detection by solving multiple classification tasks. For gen-

eral data types beyond images, NTL [Qiu et al., 2021, 2022a] learns the transformations for

1Code is available at https://github.com/aodongli/Latent-Outlier-Exposure and https://

github.com/boschresearch/LatentOE-AD.git
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the self-supervision task and achieves solid detection accuracy. Schneider et al. [2022] com-

bine NTL with representation learning for detecting anomalies within time series. On tabular

data, anomaly detection with internal contrastive learning (ICL) [Shenkar and Wolf, 2022]

learns feature relations as a self-supervised learning task. Other classes of deep anomaly

detection includes autoencoder variants [Principi et al., 2017, Zhou and Paffenroth, 2017,

Chen and Konukoglu, 2018] and density-based models [Schlegl et al., 2017, Deecke et al.,

2018].

All these approaches assume a training dataset of “normal” data. However, in many prac-

tical scenarios there will be unlabeled anomalies hidden in the training data. Wang et al.

[2019], Huyan et al. [2021] have shown that anomaly detection accuracy deteriorates when

the training set is contaminated. Our work provides a training strategy to deal with con-

tamination.

Anomaly Detection on contaminated training data. A common strategy to deal

with contaminated training data is to hope that the contamination ratio is low and that the

anomaly detection method will exercise inlier priority [Wang et al., 2019]. Throughout our

paper, we refer to the strategy of blindly training an anomaly detector as if the training data

was clean as “Blind” training. Yoon et al. [2021] have proposed a data refinement strategy

that removes potential anomalies from the training data. Their approach, which we refer to

as “Refine”, employs an ensemble of one-class classifiers to iteratively weed out anomalies and

then to continue training on the refined dataset. Similar data refinement strategy are also

combined with latent SVDD [Görnitz et al., 2014] or autoencoders for anomaly detection [Xia

et al., 2015, Beggel et al., 2019]. However, these methods fail to exploit the insight of outlier

exposure [Hendrycks et al., 2018] that anomalies provide a valuable training signal. Zhou

and Paffenroth [2017] used a robust autoencoder for identifying anomalous training data

points, but their approach requires training a new model for identifying anomalies, which is
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impractical in most setups. Hendrycks et al. [2018] propose to artificially contaminate the

training data with samples from a related domain which can then be considered anomalies.

While outlier exposure assumes labeled anomalies, our work aims at exploiting unlabeled

anomalies in the training data. Notably, Pang et al. [2020] have used an iterative scheme to

detect abnormal frames in video clips, and Feng et al. [2021a] extend it to supervised video

anomaly detection. Our work is more general and provides a principled way to improve the

training strategy of all approaches mentioned in the paragraph “deep anomaly detection”

when the training data is likely contaminated.

3.3 Method

We will start by describing the mathematical foundations of our method. We will then de-

scribe our learning algorithm as a block coordinate descent algorithm, providing a theoretical

convergence guarantee. Finally, we describe how our approach is applicable in the context

of various state-of-the-art deep anomaly detection methods.

3.3.1 Problem Formulation

Setup. In this paper, we study the problem of unsupervised anomaly detection with con-

taminated training data. We consider a data set of samples xi; these could either come

from a data distribution of “normal” samples, or could otherwise come from an unknown

corruption process and thus be considered as “anomalies”. For each datum xi, let yi = 0 if

the datum is normal, and yi = 1 if it is anomalous. We assume that these binary labels are

unobserved, both in our training and test sets, and have to be inferred from the data.

In contrast to most anomaly detection setups where the training dataset comprises only

normal data, we assume that our dataset is corrupted by anomalies. That means, we assume

24



that a fraction (1−α) of the data is normal, while its complementary fraction α is anomalous.

This corresponds to a more challenging (but arguably more realistic) anomaly detection

setup since the training data cannot be assumed to be normal. We treat the assumed

contamination ratio α as a hyperparameter in our approach and denote α0 as the ground

truth contamination ratio where needed. Note that an assumed contamination ratio is a

common hyperparameter in many robust algorithms [e.g., Huber, 1992, 2011], and we test

the robustness of our approach w.r.t. this parameter in Section 3.4.

Our goal is to train a (deep) anomaly detection classifier on such corrupted data based on

self-supervised or unsupervised training paradigms (see related work). The challenge thereby

is to simultaneously infer the binary labels yi during training while optimally exploiting this

information for training an anomaly detection model.

Proposed Approach. We consider two losses. Similar to most work on deep anomaly

detection, we consider a loss function Lθ
n(x) ≡ Ln(fθ(x)) that we aim to minimize over

“normal” data. The function fθ(x) is used to extract features from x, typically based on a

self-supervised auxiliary task, see Section 3.3.4 for examples. When being trained on only

normal data, the trained loss will yield lower values for normal than for anomalous data so

that it can be used to construct an anomaly score.

In addition, we also consider a second loss for anomalies Lθ
a(x) ≡ La(fθ(x)) (the feature

extractor fθ(x) is shared). Minimizing this loss on only anomalous data will result in low

loss values for anomalies and larger values for normal data. The anomaly loss is designed

to have opposite effects as the loss function Lθ
n(x). For example, if Lθ

n(x) = ||fθ(x) − c||2

as in Deep SVDD [Ruff et al., 2018] (thus pulling normal data points towards their center),

we define Lθ
a(x) = 1/||fθ(x) − c||2 (pushing abnormal data away from it) as in [Ruff et al.,

2019].
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Temporarily assuming that all assignment variables y were known, consider the joint loss

function,

L(θ,y) = 1

N

N∑
i=1

(1− yi)Lθ
n(xi) + yiLθ

a(xi). (3.1)

This equation resembles the log-likelihood of a probabilistic mixture model, but note that

Lθ
n(xi) and Lθ

a(xi) are not necessarily data log-likelihoods; rather, self-supervised auxiliary

losses can be used and often perform better in practice [Ruff et al., 2018, Qiu et al., 2021,

Nalisnick et al., 2018].

Optimizing Eq. 3.1 over its parameters θ yields a better anomaly detector than Lθ
n trained

in isolation. By construction of the anomaly loss Lθ
a, the known anomalies provide an

additional training signal to Lθ
n: due to parameter sharing, the labeled anomalies teach Lθ

n

where not to expect normal data in feature space. This is the basic idea of Outlier Exposure

[Hendrycks et al., 2018], which constructs artificial labeled anomalies for enhanced detection

performance.

Different from Outlier Exposure, we assume that the set of yi is unobserved, hence latent. We

therefore term our approach of jointly inferring latent assignment variables y and learning

parameters θ as LOE. We show that it leads to competitive performance on training data

corrupted by outliers.

3.3.2 Optimization problem

“Hard” Latent Outlier Exposure (LOEH). In LOE, we seek to both optimize both

losses’ shared parameters θ while also optimizing the most likely assignment variables yi. Due

to our assumption of having a fixed rate of anomalies α in the training data, we introduce a
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constrained set:

Y = {y ∈ {0, 1}N :
N∑
i=1

yi = αN}. (3.2)

The set describes a “hard” label assignment; hence the name “Hard LOE”, which is the

default version of our approach. Section 3.3.3 describes an extension with “soft” label as-

signments. Note that we require αN to be an integer.

Since our goal is to use the losses Lθ
n and Lθ

a to identify and score anomalies, we seek

Lθ
n(xi) − Lθ

a(xi) to be large for anomalies, and Lθ
a(xi) − Lθ

n(xi) to be large for normal

data. Assuming these losses to be optimized over θ, our best guess to identify anomalies

is to minimize Equation (3.1) over the assignment variables y. Combining this with the

constraint (Equation (3.2)) yields the following minimization problem:

min
θ

min
y∈Y
L(θ,y). (3.3)

As follows, we describe an efficient optimization procedure for the constraint optimization

problem.

Block coordinate descent. The constraint discrete optimization problem has an elegant

solution.

To this end, we consider a sequence of parameters θt and labels yt and proceed with alter-

nating updates. To update θ, we simply fix yt and minimize L(θ,yt) over θ. In practice,

we perform a single gradient step (or stochastic gradient step, see below), yielding a partial

update.

To update y given θt, we minimize the same function subject to the constraint (Equa-
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tion (3.2)). To this end, we define training anomaly scores,

Strain
i = Lθ

n(xi)− Lθ
a(xi). (3.4)

These scores quantify the effect of yi on minimizing Equation (3.1). We rank these scores

and assign the (1−α)-quantile of the associated labels yi to the value 0, and the remainder to

the value 1. This minimizes the loss function subject to the label constraint. We discuss the

sensitivity of our approach to the assumed rate of anomalies α in our experiments section.

We stress that our testing anomaly scores will be different (see Section 3.3.3).

Assuming that all involved losses are bounded from below, the block coordinate descent

converges to a local optimum since every update improves the loss.

Stochastic optimization. In practice, we perform stochastic gradient descent on Equa-

tion (3.1) based on mini-batches. For simplicity and memory efficiency, we impose the label

constraint Equation (3.2) on each mini-batch and optimize θ and y in the same alternating

fashion. The induced bias vanishes for large mini-batches. In practice, we found that this

approach leads to satisfying results2.

Algorithm 1 summarizes our approach.

3.3.3 Model extension and anomaly detection

We first discuss an important extension of our approach and then discuss its usage in anomaly

detection.

2Note that an exact mini-batch version of the optimization problem in Equation (3.3) would also be
possible, requiring memorization of y for the whole data set.
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Algorithm 1: Training process of LOE

Input: Contaminated training set D (α0 anomaly rate)
hyperparamter α

Model: Deep anomaly detector with parameters θ
foreach Epoch do

foreach Mini-batchM do
Calculate the anomaly score Strain

i for xi ∈M
Estimate the label yi given Strain

i and α
Update the parameters θ by minimizing L(θ,y)

end

end

“Soft” Latent Outlier Exposure (LOES). In practice, the block coordinate descent

procedure can be overconfident in assigning y, leading to suboptimal training. To overcome

this problem, we also propose a soft anomaly scoring approach that we term Soft LOE. Soft

LOE is very simply implemented by a modified constraint set:

Y ′ = {y ∈ {0, 0.5}N :
N∑
i=1

yi = 0.5αN}. (3.5)

Everything else about the model’s training and testing scheme remains the same.

The consequence of an identified anomaly yi = 0.5 is that we minimize an equal combination

of both losses, 0.5(Lθ
n(xi) + Lθ

a(xi)). The interpretation is that the algorithm is uncertain

about whether to treat xi as a normal or anomalous data point and treats both cases as

equally likely. A similar weighting scheme has been proposed for supervised learning in the

presence of unlabeled examples [Lee and Liu, 2003]. In practice, we found the soft scheme

to sometimes outperform the hard one (see Section 3.4).

Anomaly Detection. In order to use our approach for finding anomalies in a test set,

we could in principle proceed as we did during training and infer the most likely labels as

described in Section 3.3.2. However, in practice we may not want to assume to encounter the

same kinds of anomalies that we encountered during training. Hence, we refrain from using
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Lθ
a during testing and score anomalies using only Lθ

n. Note that due to parameter sharing,

training Lθ
a jointly with Lθ

n has already led to the desired information transfer between both

losses.

Testing is the same for both “soft” LOE (Section 3.3.2) and “hard” LOE (Section 3.3.3).

We define our testing anomaly score in terms of the “normal” loss function,

Stest
i = Lθ

n(xi). (3.6)

3.3.4 Example loss functions

As follows, we review several loss functions that are compatible with our approach. We con-

sider three advanced classes of self-supervised anomaly detection methods. These methods

are i) MHRot [Hendrycks et al., 2019], ii) NTL [Qiu et al., 2021], and iii) ICL [Shenkar and

Wolf, 2022]. While no longer being considered as a competitive baseline, we also consider

deep SVDD for visualization due to its simplicity.

Multi-Head Rotation Net (MHRot) [Hendrycks et al., 2019] amounts to learning a

multi-head classifier to predict whether an image is augmented by handcrafted transfor-

mations such as rotations, horizontal shifts, and vertical shifts. Figure 2.2 provides some

common examples of image augmentations used in self-supervised learning. Suppose M

different transformations are available. Each image can be applied with multiple transfor-

mations, giving various augmentations as a result of compositions of transformations. Since

each transformation can be added or not independently, the number of transformation com-

positions isK = 2M . Denote these compositions by {Tk}Kk=1. The multi-head classifier hasM

prediction heads with parameters θm, each representing p(tk,m|Tk(x); θm), where tk,m ∈ {0, 1}

indicates whether or not a transformation m is used3 in Tk. Aiming to predict the correct

3In practice, multi-class classification is also possible for each head. For example, various rotation angles
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transformations for normal samples, we minimize the negative log-likelihoods of the ground

truth label tk,m for each transformation m and for each transformation composition Tk,

resulting in the loss function for each data point x

Lθ
MHRot(x) := −

K∑
k=1

M∑
m=1

log p(tk,m|Tk(x); θm). (3.7)

The loss function on the training dataset is L(θ) = 1
N

∑N
i=1 Lθ

MHRot(xi). At test time, the

anomaly score is the same as the loss function S(x; θ) = Lθ
MHRot(x), or the entropy4 of

the model predictions S(x; θ) =
∑K

k=1

∑M
m=1H(p(·|Tk(x); θm)). Since abnormal data is not

observed during training, the anomaly score is expected to be higher for anomalous data

than normal data at test time.

Neural Transformation Learning (NTL). Rather than using hand-crafted transforma-

tions, NTL learns K neural transformations {Tθ,1, ..., Tθ,K} and an encoder fθ parameterized

by θ from data and uses the learned transformations to detect anomalies. Each neural trans-

formation generates a view xk = Tθ,k(x) of sample x. For normal samples, NTL encourages

each transformation to be similar to the original sample and to be dissimilar from other

transformations. To achieve this objective, NTL maximizes the normalized probability pk =

h(xk,x)
/(

h(xk,x) +
∑

l ̸=k h(xk,xl)
)
for each view where h(a,b) = exp(cos(fθ(a), fθ(b))/τ)

measures the similarity of two views 5. For anomalies, we “flip” the objective for normal

samples: the model instead pulls the transformations close to each other and pushes them

away from the original view, resulting in

Lθ
n(x) := −

K∑
k=1

log pk, Lθ
a(x) := −

K∑
k=1

log(1− pk).

can be applied to augment an image, and then the head predicts which angle is applied.
4The entropy of a discrete probability distribution is H(p(x)) = −∑

x p(x) log p(x).
5where τ is the temperature and cos(a,b) := aTb/∥a∥∥b∥
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Internal Contrastive Learning (ICL). ICL is a state-of-the-art tabular anomaly detec-

tion method [Shenkar and Wolf, 2022]. Assuming that the relations between a subset of the

features (table columns) and the complementary subset are class-dependent, ICL is able to

learn an anomaly detector by discovering the feature relations for a specific class. With this

in mind, ICL learns to maximize the mutual information between the two complementary fea-

ture subsets, a(x) and b(x), in the embedding space. The maximization of the mutual infor-

mation is equivalent to minimizing a contrastive loss Lθ
n(x) := −

∑K
k=1 log pk on normal sam-

ples with pk = h(ak(x), bk(x))
/∑K

l=1 h(al(x), bk(x)) where h(a, b) = exp(cos(fθ(a), gθ(b))/τ)

measures the similarity of two feature subsets in the embedding space of two encoders fθ

and gθ. For anomalies, we flip the objective as Lθ
a(x) := −

∑K
k=1 log(1− pk).

3.4 Experiments

We evaluate our proposed methods and baselines for unsupervised anomaly detection tasks

on different data types: synthetic data, tabular data, images, and videos. The data are

contaminated with different anomaly ratios. Depending on the data, we study our method

in combination with specific backbone models. MHRot applies only to images and ICL to

tabular data. NTL can be applied to all data types.

We have conducted extensive experiments on image, tabular, and video data. For instance,

we evaluate our methods on all 30 tabular datasets of Shenkar and Wolf [2022]. Our proposed

method sets a new state-of-the-art on most datasets. In particular, we show that our method

gives robust results even when the contamination ratio is unknown.
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(a) Blind (b) Refine (c) LOES (d) LOEH (e) G-truth

Figure 3.1: Deep SVDD trained on 2D synthetic contaminated data (see main text) trained
with different methods: (a) “Blind” (treats all data as normal), (b) “Refine” (filters out
some anomalies), (c) LOES (proposed, assigns soft labels to anomalies), (d) LOEH (pro-
posed, assigns hard labels), (e) supervised anomaly detection with ground truth labels (for
reference). LOE leads to improved region boundaries.

3.4.1 Toy Example

We first analyze the methods in a controlled setup on a synthetic data set. For the sake

of visualization, we created a 2D contaminated data set with a three-component Gaussian

mixture. One larger component is used to generate normal samples, while the two smaller

components are used to generate the anomalies contaminating the data (see Figure 3.1). For

simplicity, the backbone anomaly detector is the deep one-class classifier [Ruff et al., 2018]

with radial basis functions. Setting the contamination ratio to α0 = α = 0.1, we compare

the baselines “Blind” and “Refine” (described in Section 3.2, detailed in Appendix B.2) with

the proposed LOEH and LOES (described in Section 3.3) and the theoretically optimal G-

truth method (which uses the ground truth labels). We defer all further training details to

Appendix B.1.

Figure 3.1 shows the results (anomaly-score contour lines after training). With more latent

anomaly information exploited from (a) to (e), the contour lines become increasingly accu-

rate. While (a) “Blind” erroneously treats all anomalies as normal, (b) “Refine” improves

by filtering out some anomalies. (c) LOES and (d) LOEH use the anomalies, resulting in a

clear separation of anomalies and normal data. LOEH leads to more pronounced boundaries
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than LOES, but it is at risk of overfitting, especially when normal samples are incorrectly

detected as anomalies (see our experiments below). A supervised model with ground-truth

labels (“G-truth”) approximately recovers the true contours.

3.4.2 Experiments on Image Data

Anomaly detection on images is especially far developed. We demonstrate LOE’s benefits

when applied to two leading image anomaly detectors as backbone models: MHRot and NTL.

Our experiments are designed to test the hypothesis that LOE can mitigate the performance

drop caused by training on contaminated image data. We experiment with three image

datasets: CIFAR-10, Fashion-MNIST, and MVTEC [Bergmann et al., 2019]. These have

been used in virtually all deep anomaly detection papers published at top-tier venues [Ruff

et al., 2018, Golan and El-Yaniv, 2018, Hendrycks et al., 2019, Bergman and Hoshen, 2020,

Li et al., 2021b], and we adopt these papers’ experimental protocol here, as detailed below.

Backbone models and baselines. We experiment with MHRot and NTL. In consistency

with previous work [Hendrycks et al., 2019], we train MHRot on raw images and NTL on

features outputted by an encoder pre-trained on ImageNet. We use the official code by the

respective authors67. NTL is built upon the final pooling layer of a pre-trained ResNet152

for CIFAR-10 and F-MNIST (as suggested in Defard et al. [2021]), and upon the third

residual block of a pre-trained WideResNet50 for MVTEC (as suggested in Reiss et al.

[2021]). Further implementation details of NTL are in the Appendix B.3.

Many existing baselines apply either blind updates or a refinement strategy to specific back-

bone models (see Section 3.2). However, a recent study showed that many of the classical

anomaly detection methods such as autoencoders are no longer on par with modern self-

6https://github.com/hendrycks/ss-ood.git
7https://github.com/boschresearch/NeuTraL-AD.git
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Table 3.1: AUC (%) with standard deviation for anomaly detection on CIFAR-10 and F-
MNIST. For all experiments, we set the contamination ratio as 10%. LOE mitigates the
performance drop when NTL and MHRot trained on the contaminated datasets.

CIFAR-10 F-MNIST

N
T
L

Blind 91.3±0.1 (-4.4) 85.0±0.2 (-9.7)
Refine 93.5±0.1 (-2.2) 89.1±0.2 (-5.6)
LOEH (ours) 94.9±0.2 (-0.8) 92.9±0.7 (-1.8)
LOES (ours) 94.9±0.1 (-0.8) 92.5±0.1 (-2.2)

M
H
R
ot

Blind 84.0±0.5 (-4.2) 88.8±0.1 (-4.9)
Refine 84.4±0.1 (-3.8) 89.6±0.2 (-4.1)
LOEH (ours) 86.4±0.5 (-1.8) 91.4±0.2 (-2.3)
LOES (ours) 86.3±0.2 (-1.9) 91.2±0.4 (-2.5)

supervised approaches [Alvarez et al., 2022, Hendrycks et al., 2019] and in particular found

NTL to perform best among 13 considered models. For a more competitive and unified

comparison with existing baselines in terms of the training strategy, we hence adopt the two

proposed LOE methods (Section 3.3) and the two baseline methods “Blind” and “Refine”

(Section 3.2) to two backbone models.

Image datasets. On CIFAR-10 and F-MNIST, we follow the standard “one-vs.-rest” pro-

tocol of converting these data into anomaly detection datasets [Ruff et al., 2018, Golan and

El-Yaniv, 2018, Hendrycks et al., 2019, Bergman and Hoshen, 2020]. We create C anomaly

detection tasks (where C is the number of classes), with each task considering one of the

classes as normal and the union of all other classes as abnormal. For each task, the training

set is a mixture of normal samples and a fraction of α0 abnormal samples. For MVTEC, we

use image features as the model inputs. The features are obtained from the third residual

block of a WideResNet50 pre-trained on ImageNet as suggested in Reiss et al. [2021]. Since

the MVTEC training set contains no anomalies, we contaminate it with artificial anomalies

that we create by adding zero-mean Gaussian noise to the features of test set anomalies. We

use a large variance for the additive noise (equal to the empirical variance of the anomalous

features) to reduce information leakage from the test set into the training set.
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Table 3.2: AUC (%) with standard deviation of NTL for anomaly detection/segmentation
on MVTEC. We set the contamination ratio of the training set as 10% and 20%.

Detection Segmentation
10% 20% 10% 20%

Blind
94.2±0.5 89.4±0.3 96.17±0.08 95.09±0.17
(-3.2) (-8.0) (-0.78) (-1.86)

Refine
95.3±0.5 93.2±0.3 96.55±0.04 96.09±0.06
(-2.1) (-4.2) (-0.40) (-0.86)

LOEH 95.9±0.9 92.9±0.4 95.97±0.22 93.29±0.21
(ours) (-1.5) (-4.5) (-0.98) (-3.66)
LOES 95.4±0.5 93.6±0.3 96.56±0.04 96.11±0.05
(ours) (-2.0) (-3.8) (-0.39) (-0.84)

LOE-H LOE-S Blind Refine G-truth

0 5 10 15 20
contamination ratio (%)

88

90

92

94

96

98

AU
C 

(%
)

(a) CIFAR-10

0 5 10 15 20
contamination ratio (%)

78

82

86

90

94

98

AU
C 

(%
)

(b) F-MNIST

0 5 10 15 20
contamination ratio (%)

52

56

60

64

68

72

F1
-s

co
re

 (%
)

(c) Arrhythmia

0 5 10 15 20
contamination ratio (%)

25
35
45
55
65
75
85

F1
-s

co
re

 (%
)

(d) Thyroid

Figure 3.2: Anomaly detection performance of NTL on CIFAR-10, F-MNIST, and two tab-
ular datasets (Arrhythmia and Thyroid) with α0 ∈ {5%, 10%, 15%, 20%}. LOE (ours) con-
sistently outperforms the “Blind” and “Refine” on various contamination ratios.

Results. We present the experimental results of CIFAR-10 and F-MNIST in Table 3.1,

where we set the contamination ratio α0 = α = 0.1. The results are reported as the mean

and standard deviation of three runs with different model initialization and anomaly samples

for the contamination. The number in the brackets is the average performance difference

from the model trained on clean data. Our proposed methods consistently outperform the

baselines and mitigate the performance drop between the model trained on clean data vs.

the same model trained on contaminated data. Specifically, with NTL, LOE significantly

improves over the best-performing baseline, “Refine”, by 1.4% and 3.8% AUC on CIFAR-10

and F-MNIST, respectively. On CIFAR-10, our methods have only 0.8% AUC lower than

when training on the normal dataset. When we use another state-of-the-art method MHRot

on raw images, our LOE methods outperform the baselines by about 2% AUC on both

36



Table 3.3: F1-score (%) for anomaly detection on 30 tabular datasets studied in [Shenkar
and Wolf, 2022]. We set α0 = α = 10% in all experiments. LOE (proposed) outperforms
the “Blind” and “Refine” consistently. (See Tables B.1 and B.2 for more details, including
AUCs.)

NTL ICL
Blind Refine LOEH (ours) LOES (ours) Blind Refine LOEH (ours) LOES (ours)

abalone 37.9±13.4 55.2±15.9 42.8±26.9 59.3±12.0 50.9±1.5 54.3±2.9 53.4±5.2 51.7±2.4
annthyroid 29.7±3.5 42.7±7.1 47.7±11.4 50.3±4.5 29.1±2.2 38.5±2.1 48.7±7.6 43.0±8.8
arrhythmia 57.6±2.5 59.1±2.1 62.1±2.8 62.7±3.3 53.9±0.7 60.9±2.2 62.4±1.8 63.6±2.1
breastw 84.0±1.8 93.1±0.9 95.6±0.4 95.3±0.4 92.6±1.1 93.4±1.0 96.0±0.6 95.7±0.6
cardio 21.8±4.9 45.2±7.9 73.0±7.9 57.8±5.5 50.2±4.5 56.2±3.4 71.1±3.2 62.2±2.7
ecoli 0.0±0.0 88.9±14.1 100±0.0 100±0.0 17.8±15.1 46.7±25.7 75.6±4.4 75.6±4.4
forest cover 20.4±4.0 56.2±4.9 61.1±34.9 67.6±30.6 9.2±4.5 8.0±3.6 6.8±3.6 11.1±2.1
glass 11.1±7.0 15.6±5.4 17.8±5.4 20.0±8.3 8.9±4.4 11.1±0.0 11.1±7.0 8.9±8.3
ionosphere 89.0±1.5 91.0±2.0 91.0±1.7 91.3±2.2 86.5±1.1 85.9±2.3 85.7±2.8 88.6±0.6
kdd 95.9±0.0 96.0±1.1 98.1±0.4 98.4±0.1 99.3±0.1 99.4±0.1 99.5±0.0 99.4±0.0
kddrev 98.4±0.1 98.4±0.2 89.1±1.7 98.6±0.0 97.9±0.5 98.4±0.4 98.8±0.1 98.2±0.4
letter 36.4±3.6 44.4±3.1 25.4±10.0 45.6±10.6 43.0±2.5 51.2±3.7 54.4±5.6 47.2±4.9
lympho 53.3±12.5 60.0±8.2 60.0±13.3 73.3±22.6 43.3±8.2 60.0±8.2 80.0±12.5 83.3±10.5
mammogra. 5.5±2.8 2.6±1.7 3.3±1.6 13.5±3.8 8.8±1.9 11.4±1.9 34.0±20.2 42.8±17.6
mnist tabular 78.6±0.5 80.3±1.1 71.8±1.8 76.3±2.1 72.1±1.0 80.7±0.7 86.0±0.4 79.2±0.9
mulcross 45.5±9.6 58.2±3.5 58.2±6.2 50.1±8.9 70.4±13.4 94.4±6.3 100±0.0 99.9±0.1
musk 21.0±3.3 98.8±0.4 100±0.0 100±0.0 6.2±3.0 100±0.0 100±0.0 100±0.0
optdigits 0.2±0.3 1.5±0.3 41.7±45.9 59.1±48.2 0.8±0.5 1.3±1.1 1.2±1.0 0.9±0.5
pendigits 5.0±2.5 32.6±10.0 79.4±4.7 81.9±4.3 10.3±4.6 30.1±8.5 80.3±6.1 88.6±2.2
pima 60.3±2.6 61.0±1.9 61.3±2.4 61.0±0.9 58.1±2.9 59.3±1.4 63.0±1.0 60.1±1.4
satellite 73.6±0.4 74.1±0.3 74.8±0.4 74.7±0.1 72.7±1.3 72.7±0.6 73.6±0.2 73.2±0.6
satimage 26.8±1.5 86.8±4.0 90.7±1.1 91.0±0.7 7.3±0.6 85.1±1.4 91.3±1.1 91.5±0.9
seismic 11.9±1.8 11.5±1.0 18.1±0.7 17.1±0.6 14.9±1.4 17.3±2.1 23.6±2.8 24.2±1.4
shuttle 97.0±0.3 97.0±0.2 97.1±0.2 97.0±0.2 96.6±0.2 96.7±0.1 96.9±0.1 97.0±0.2
speech 6.9±1.2 8.2±2.1 43.3±5.6 50.8±2.5 0.3±0.7 1.6±1.0 2.0±0.7 0.7±0.8
thyroid 43.4±5.5 55.1±4.2 82.4±2.7 82.4±2.3 45.8±7.3 71.6±2.4 83.2±2.9 80.9±2.5
vertebral 22.0±4.5 21.3±4.5 22.7±11.0 25.3±4.0 8.9±3.1 8.9±4.2 7.8±4.2 10.0±2.7
vowels 36.0±1.8 50.4±8.8 62.8±9.5 48.4±6.6 42.1±9.0 60.4±7.9 81.6±2.9 74.4±8.0
wbc 25.7±12.3 45.7±15.5 76.2±6.0 69.5±3.8 50.5±5.7 50.5±2.3 61.0±4.7 61.0±1.9
wine 24.0±18.5 66.0±12.0 90.0±0.0 92.0±4.0 4.0±4.9 10.0±8.9 98.0±4.0 100±0.0

datasets.

We also evaluate our methods with NTL at various contamination ratios (from 5% to 20%) in

Figure 3.2 (a) and (b). We can see 1) adding labeled anomalies (G-truth) boosts performance,

and 2) among all methods that do not have ground truth labels, the proposed LOE methods

achieve the best performance consistently at all contamination ratios.

We also experimented on anomaly detection and segmentation on the MVTEC dataset.

Results are shown in Table 3.2, where we evaluated the methods on two contamination

ratios (10% and 20%). Our method improves over the “Blind” and “Refine” baselines in all

experimental settings.
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3.4.3 Experiments on Tabular Data

Tabular data is another important application area of anomaly detection. Many data sets

in the healthcare and cybersecurity domains are tabular. Our empirical study demonstrates

that LOE yields the best performance for two popular backbone models on a comprehensive

set of contaminated tabular datasets.

Tabular datasets. We study all 30 tabular datasets used in the empirical analysis of

a recent state-of-the-art paper [Shenkar and Wolf, 2022]. These include the frequently-

studied small-scale Arrhythmia and Thyroid medical datasets, the large-scale cyber intrusion

detection datasets KDD and KDDRev, and multi-dimensional point datasets from the outlier

detection datasets8. We follow the pre-processing and train-test split of the datasets in

Shenkar and Wolf [2022]. To corrupt the training set, we create artificial anomalies by

adding zero-mean Gaussian noise to anomalies from the test set. We use a large variance for

the additive noise (equal to the empirical variance of the anomalies in the test set) to reduce

information leakage from the test set into the training set.

Backbone models and baselines. We consider two advanced deep anomaly detection

methods for tabular data described in Section 3.3.4: NTL and ICL. For NTL, we use nine

transformations and multi-layer perceptrons for neural transformations and the encoder on

all datasets. Further details are provided in Appendix B.3. For ICL, we use the code provided

by the authors. We implement the proposed LOE methods (Section 3.3) and the “Blind”

and “Refine” baselines (Section 3.2) with both backbone models.

Results. We report F1-scores for 30 tabular datasets in Table 3.3. The results are reported

as the mean and standard derivation of five runs with different model initializations and

8http://odds.cs.stonybrook.edu/
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Table 3.4: AUC (%) for different contamination ratios for a video frame anomaly detec-
tion benchmark proposed in [Pang et al., 2020]. LOES (proposed) achieves state-of-the-art
performance.

Method Contamination Ratio
10% 20% 30%∗

[Tudor Ionescu et al., 2017] - - 68.4
[Liu et al., 2018] - - 69.0
[Del Giorno et al., 2016] - - 59.6
[Sugiyama and Borgwardt, 2013] 55.0 56.0 56.3
[Pang et al., 2020] 68.0 70.0 71.7
Blind 85.2±1.0 76.0±2.7 66.6±2.6
Refine 82.7±1.5 74.9±2.4 69.3±0.7
LOEH (ours) 82.3±1.6 59.6±3.8 56.8±9.5
LOES (ours) 86.8±1.2 79.2±1.3 71.5±2.4
∗Default setup in [Pang et al., 2020], corresponding to α0 ≈ 30%.

random training set split. We set the contamination ratio α0 = α = 0.1 for all datasets.

More detailed results, including AUCs and the performance degradation over clean data, are

provided in Appendix B.4 (Tables B.1 and B.2).

LOE outperforms the “Blind” and “Refine” baselines consistently. Remarkably, on some

datasets, LOE trained on contaminated data can achieve better results than on clean data

(as shown in Table B.1), suggesting that the latent anomalies provide a positive learning

signal. This effect can be seen when increasing the contamination ratio on the Arrhythmia

and Thyroid datasets (Figure 3.2 (c) and (d)). Hendrycks et al. [2018] noticed a similar

phenomenon when adding labeled auxiliary outliers; these known anomalies help the model

learn better region boundaries for normal data. Our results suggest that even unlabelled

anomalies, when properly inferred, can improve the performance of an anomaly detector.

Overall, we conclude that LOE significantly improves the performance of anomaly detection

methods on contaminated tabular datasets.
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Figure 3.3: A sensitivity study of the robustness of LOEH , LOES, and “Refine” to the mis-
specified contamination ratio. We evaluate them with NTL on CIFAR-10 in terms of AUC.
LOEH and LOES yield robust results and outperform “Refine” in the most cases.

3.4.4 Experiments on Video Data

In addition to image and tabular data, we also evaluate our methods on a video frame

anomaly detection benchmark also studied in [Pang et al., 2020]. The goal is to identify

video frames that contain unusual objects or abnormal events. Experiments show that our

methods achieve state-of-the-art performance on this benchmark.

Video dataset. We study UCSD Peds19, a popular benchmark for video anomaly detec-

tion. It contains surveillance videos of a pedestrian walkway. Non-pedestrian and unusual

behavior is labeled as abnormal. The data set contains 34 training video clips and 36 testing

video clips, where all frames in the training set are normal and about half of the testing

frames are abnormal. We follow the data preprocessing protocol of Pang et al. [2020] for

dividing the data into training and test sets. To realize different contamination ratios, we

randomly remove some abnormal frames from the training set but the test set is fixed.

Backbone models and baselines. In addition to the “Blind” and “Refine” baselines,

we compare to [Pang et al., 2020] (a ranking-based state-of-the-art method for video frame

9http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
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anomaly detection already described in Section 3.2) and all baselines reported in that pa-

per [Sugiyama and Borgwardt, 2013, Liu et al., 2012, Del Giorno et al., 2016, Tudor Ionescu

et al., 2017, Liu et al., 2018].

We implement the proposed LOEmethods, the “Blind”, and the “Refine” baselines with NTL

as the backbone model. We use a pre-trained ResNet50 on ImageNet as a feature extractor,

whose output is then sent into an NTL. The feature extractor and NTL are jointly optimized

during training.

Results. We report the results in Table 3.4. Our soft LOE method achieves the best

performance across different contamination ratios. Our method outperforms Deep Ordinal

Regression [Pang et al., 2020] by 18.8% and 9.2% AUC on the contamination ratios of 10%

and 20%, respectively. LOES outperforms the “Blind” and “Refine” baselines significantly

on various contamination ratios.

3.4.5 Sensitivity Study

The hyperparameter α characterizes the assumed fraction of anomalies in our training data.

Here, we evaluate its robustness under different ground truth contamination ratios. We run

LOEH and LOES with NTL on CIFAR-10 with varying true anomaly ratios α0 and different

hyperparameters α. We present the results in a matrix accommodating the two variables.

The diagonal values report the results when correctly setting the contamination ratio.

LOEH (Figure 3.3 (a)) shows considerable robustness: the method suffers at most 1.4%

performance degradation when the hyperparameter α is off by 5%, and is always better

than “Blind”. It always outperforms “Refine” (Figure 3.3 (c)) when erroneously setting a

smaller α than the true ratio α0. LOES (Figure 3.3 (b)) also shows robustness, especially

when erroneously setting a larger α than α0. The method is always better than “Refine”
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(Figure 3.3 (c)) when the hyperparameter α is off by up to 15%, and always outperforms

“Blind”.

3.5 Conclusion

We propose Latent Outlier Exposure (LOE): a domain-independent approach for training

anomaly detectors on a dataset contaminated by unidentified anomalies. During training,

LOE jointly infers anomalous data in the training set while updating its parameters by solv-

ing a mixed continuous-discrete optimization problem; iteratively updating the model and

its predicted anomalies. Similar to outlier exposure [Hendrycks et al., 2018], LOE extracts

a learning signal from both normal and abnormal samples by considering a combination of

two losses for both normal and (assumed) abnormal data, respectively. Our approach can be

applied to a variety of anomaly detection benchmarks and loss functions. As demonstrated

in our comprehensive empirical study, LOE yields significant performance improvements on

all three of image, tabular, and video data.

42



Chapter 4

Deep Anomaly Detection under

Labeling Budget Constraints

This chapter is based on a published paper at ICML 2023: Deep Anomaly

Detection under Labeling Budget Constraints by Aodong Li∗, Chen Qiu∗, Marius

Kloft, Padhraic Smyth, Stephan Mandt, Maja Rudolph [Li et al., 2023]

4.1 Introduction

Detecting anomalies in data is a fundamental task in machine learning with applications

across multiple domains, from industrial fault detection to medical diagnosis. The main idea

is to train a model (such as a neural network) on a data set of “normal” samples to minimize

the loss of an auxiliary (e.g., self-supervised) task. Using the loss function to score test data,

one hopes to obtain low scores for normal data and high scores for anomalies [Ruff et al.,

2021].

In practice, the training data is often contaminated with unlabeled anomalies that differ
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in unknown ways from the i.i.d. samples of normal data. No access to a binary anomaly

label (indicating whether a sample is normal or not) makes learning the anomaly scoring

function from contaminated data challenging; the training signal has to come exclusively

from the input features (typically real-valued vectors). Many approaches either assume that

the unlabeled anomalies are too rarely encountered during training to affect learning [Wang

et al., 2019] or try to detect and exploit the anomalies in the training data (e.g., Qiu et al.

[2022b]).

While anomaly detection is typically an unsupervised training task, sometimes expert feed-

back is available to check if individual samples are normal or not. For example, in a medical

setting, one may ask a medical doctor to confirm whether a given image reflects normal or

abnormal cellular tissue. Other application areas include detecting network intrusions or

machine failures. Anomaly labels are usually expensive to obtain but are very valuable to

guide an anomaly detector during training. For example, in Figure 4.1, we can see that

our method, with only one labeled query (Figure 4.1 d) is almost on par with supervised

anomaly detection (Figure 4.1 a). However, the supervised setting is unrealistic, since ex-

pert feedback is typically expensive. Instead, it is essential to develop effective strategies for

querying informative data points.

Previous work on anomaly detection under a labeling budget primarily involves domain-

specific applications and/or ad hoc architectures, making it hard to disentangle modeling

choices from querying strategies [Trittenbach et al., 2021]. In contrast, this chapter theo-

retically and empirically studies generalization performance using various labeling budgets,

querying strategies, and losses.

In summary, our main contributions are as follows:

1. We prove that the ranking of anomaly scores generalizes from labeled queries to unlabeled

data under certain conditions that characterize how well the queries cover the data. Based
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on this theory, we propose a diverse querying strategy for deep anomaly detection under

labeling budget constraints.

2. We propose SOEL, a semi-supervised learning framework compatible with a large number

of deep anomaly detection losses. We show how all major hyperparameters can be elim-

inated, making SOEL easy to use. To this end, we provide an estimate for the anomaly

ratio in the data.

3. We provide an extensive benchmark for deep anomaly detection with a limited label-

ing budget. Our experiments on image, tabular, and video data provide evidence that

SOEL outperforms existing methods significantly. Comprehensive ablations disentangle

the benefits of each component.

This chapter is structured as follows. Section 4.3 introduces the problem setting we address

and our main algorithm. Section 4.2 discusses related work in deep anomaly detection.

Section 4.4 discusses experimental results on each of image, video, and tabular data. Finally,

we conclude this work in Section 4.5.

4.2 Related Work

Deep Anomaly Detection. Many recent advances in anomaly detection are in the area

of deep learning [Ruff et al., 2021]. One early strategy was to use autoencoder- [Prin-

cipi et al., 2017, Zhou and Paffenroth, 2017] or density-based models [Schlegl et al., 2017,

Deecke et al., 2018]. Another pioneering stream of research combines one-class classification

[Schölkopf et al., 2001] with deep learning for unsupervised [Ruff et al., 2018, Qiu et al.,

2022a] and semi-supervised [Ruff et al., 2019] anomaly detection. Many other approaches to

deep anomaly detection are self-supervised. They employ a self-supervised loss function to

train the detector and score anomalies [Golan and El-Yaniv, 2018, Hendrycks et al., 2019,

Bergman and Hoshen, 2020, Qiu et al., 2021, Shenkar and Wolf, 2022, Schneider et al., 2022].
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Our work resides in the self-supervised anomaly detection category and can be extended to

other data modalities if an appropriate loss is provided.

While all these methods assume that the training data consists of only normal samples,

in many practical applications, the training pool may be contaminated with unidentified

anomalies [Vilhjálmsson and Nordborg, 2013, Steinhardt et al., 2017]. This can be prob-

lematic because the detection accuracy typically deteriorates when the contamination ratio

increases [Wang et al., 2019]. Addressing this, refinement [Zhou and Paffenroth, 2017, Yoon

et al., 2021] attempts to cleanse the training pool by removing anomalies therein, although

they may provide valuable training signals. As a remedy, Qiu et al. [2022b] propose to jointly

infer binary labels to each datum (normal vs. anomalous) while updating the model param-

eters based on outlier exposure. Our work also makes the contaminated data assumption

and employs the training signal of abnormal data.

Querying Strategies for Anomaly Detection. Querying strategies play an important

role in batch active learning [Sener and Savarese, 2018, Ash et al., 2020, Citovsky et al.,

2021, Pinsler et al., 2019, Hoi et al., 2006] but are less studied for anomaly detection. The

human-in-the-loop setup for anomaly detection has been pioneered by Pelleg and Moore

[2004]. Query samples are typically chosen locally, e.g., close to the decision boundary of a

one-class SVM [Görnitz et al., 2013, Yin et al., 2018] or sampled according to a density model

[Ghasemi et al., 2011]. Siddiqui et al. [2018], Das et al. [2016] propose to query the most

anomalous instance, while Das et al. [2019] employ a tree-based ensemble to query both

anomalous and diverse samples. A recent survey compares various aforementioned query

strategies with one-class classifiers [Trittenbach et al., 2021].

Pimentel et al. [2020] query samples with the top anomaly scores for autoencoder-based

methods, while Ning et al. [2022] improve the querying by considering the diversity. Tang

et al. [2020] use an ensemble of deep anomaly detectors and query the most likely anomalies

for each detector separately. Russo et al. [2020] query samples where the model is uncertain
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Figure 4.1: Anomaly score contour plots on 2D toy data demonstrate that SOEL [ours,
(d)] with only one labeled sample can achieve detection accuracy that is competitive with a
fully supervised approach (a). Binary classification (b) is problematic for anomaly detection
since it cannot detect new anomalies, e.g. in the upper right corner of the plot. Subplot (c)
demonstrates that unsupervised anomaly detection is challenging with contaminated data.
Even a single labeled query, in combination with our approach, can significantly improve
anomaly detection.

about the predictions. Pang et al. [2021b] and Zha et al. [2020] propose querying strategies

based on reinforcement learning, which requires labeled datasets.

All these querying strategies do not optimize coverage as defined in Theorem 4.1, and as a

result, their generalization guarantees are less favorable than our method. Most querying

strategies from the papers discussed above are fairly general and can be applied in com-

bination with various backbone models. Since more powerful backbone models have been

released since these earlier publications, we ensure a fair comparison by studying all querying

strategies in combination with the same backbone models as SOEL.

4.3 Methods

4.3.1 Notation and Problem Statement

Consider a dataset {xi}Ni=1 where the datapoints xi are i.i.d. samples from a mixture dis-

tribution p(x) = (1 − α)pn(x) + αpa(x). The distribution pn(x) corresponds to the normal

data, while pa(x) corresponds to anomalous data. We assume that 0 ≤ α < 0.5, i.e., that
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the anomalous data is non-dominant in the mixture; in practice, α≪ 0.5.

In the anomaly detection problem, we wish to use the data to train an anomaly detector in

the form of a parametric anomaly score function S(x; θ). Once trained this score function is

thresholded to determine whether a datapoint xi is anomalous, as indicated by the binary

anomaly label yi := y(xi) ∈ {0 := “normal”, 1 := “abnormal”}.

We focus on the situation where the training data is unlabeled (only xi is known, not yi),

but where we have access to an oracle (e.g., a human expert) that is able to provide labels

yi for a budgeted number K of the N training points.

4.3.2 Outline of the Technical Approach

Our work addresses the following questions: How to best select informative data points for

labeling – this is called the querying strategy, how to best learn an anomaly detector from

both the labeled and unlabeled data in a semi-supervised fashion, and how to make the

approach easy to use by eliminating a crucial hyper-parameter.

Querying Strategy. A successful approach for deep anomaly detection under labeling

budget constraints will require a strategy for selecting the most beneficial set of queries. We

choose a theoretically-grounded approach based on generalization performance. For this, we

exploit that at test-time an anomaly detection method will threshold the anomaly scores to

distinguish between normal samples and anomalies. This means that the quality of a scoring

function is not determined by the absolute anomaly scores but only by their relative ranking.

In Section 4.3.4, we characterize a favorable property of the query set which can guarantee

that the ranking of anomaly scores generalizes from the labeled data to unlabeled samples.

Since this is desirable, we derive a querying strategy that under a limited labeling budget

best fulfills the favorable properties put forth by our analysis.
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Semi-supervised Outlier Exposure. As a second contribution, we propose a semi-

supervised learning framework that best exploits both the labeled query set and the unlabeled

data. It builds on supervised anomaly detection and LOE which we review in Section 4.3.3.

We present SOEL in Section 4.3.5. The SOEL training objective is designed to receive op-

posing training signals from the normal samples and the anomalies. An EM-style algorithm

alternates between estimating the anomaly labels of the unlabaled data and improving the

anomaly scoring function using the data samples and their given or estimated labels.

Hyperparameter Elimination. Like related methods discussed in Section 3.2, SOEL has

an important hyperparameter α which corresponds to the expected fraction of anomalies

in the data. While previous work has to assume that α is known [Qiu et al., 2022b], our

proposed method presents an opportunity to estimate it. The estimate has to account for

the fact that the optimal querying strategy derived from our theory in Section 4.3.4 is not

i.i.d.. In Section 4.3.6, we provide an estimate of α for any stochastic querying strategy.

4.3.3 Background: Deep Anomaly Detection

In deep anomaly detection, auxiliary losses help learn the anomaly scoring function S(x; θ)

(we also write S(x) for simplicity when model parameters θ are not of interest). Popular

losses include autoencoder-based losses [Zhou and Paffenroth, 2017], the deep SVDD loss

[Ruff et al., 2018], or the neural transformation learning loss [Qiu et al., 2021]. It is assumed

that minimizing such a loss Lθ
n(x) ≡ Ln(S(x; θ)) over “normal” data leads to a desirable

scoring function that assigns low scores to normal samples and high scores to anomalies.

Most deep anomaly detection methods optimize such an objective over an entire unlabeled

data set, even if it contains unknown anomalies. It is assumed that the anomalies are rare

enough that they will not dilute the training signal provided by the normal samples (inlier

priority, [Wang et al., 2019]). Building on the ideas of Ruff et al. [2019] that synthetic
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anomalies can provide valuable training signal, Qiu et al. [2022b] show how to discover and

exploit anomalies by treating the anomaly labels as latent variables in training.

The key idea of Ruff et al. [2019] is to construct a complementary loss Lθ
a(x) ≡ La(S(x; θ))

for anomalies that has an opposing effect to the normal loss Lθ
n(x). For example, the deep

SVDD loss Lθ
n(x) = ||fθ(x)−c||2, with feature extractor fθ, pulls normal data points towards

a fixed center c [Ruff et al., 2018]. The opposing loss for anomalies, defined in Ruff et al.

[2019] as Lθ
a(x) = 1/Lθ

n(x), pushes abnormal data away from the center.

Supervised anomaly detection. Using only the labeled data indexed by Q one could

train S(x; θ) using a supervised loss [Hendrycks et al., 2018, Görnitz et al., 2013]

LQ(θ) =
1

|Q|
∑
j∈Q

(
yjLθ

a(xj) + (1− yj)Lθ
n(xj)

)
. (4.1)

Latent Outlier Exposure. Latent outlier exposure (LOE, [Qiu et al., 2022b]) is an unsu-

pervised anomaly detection framework that uses the same loss as Equation (4.1) but treats

the labels y as latent variables. An EM-style algorithm alternates between optimizing the

model w.r.t. θ and inferring the labels y.

In this work, we propose semi-supervised outlier exposure with a limited labeling budget

(SOEL) which builds on these ideas. We next present the querying strategy and when the

querying strategy leads to correct ranking of anomaly scores (Section 4.3.4), the SOEL loss

(Section 4.3.5), and how the hyperparameter α can be eliminated (Section 4.3.6)

4.3.4 Querying Strategies for Anomaly Detection

The first ingredient of SOEL is a querying strategy for selecting informative data points to

be labeled, which we derive from theoretical considerations. An important property of the

querying strategy is how well it covers unlabeled data. The quality of a querying strategy is
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determined by the smallest radius δ such that all unlabeled points are within distance δ of

one queried sample of the same type. In this paper, we prove that if the queries cover both

the normal data and the anomalies well (i.e., if δ is small), a learned anomaly detector that

satisfies certain conditions is guaranteed to generalize correctly to the unlabeled data (The

exact statement and its conditions will be provided in Theorem 4.1). Based on this insight,

we propose to use a querying strategy that is better suited for deep anomaly detection than

previous work.

Theorem 4.1. Let Q0 be the index set of datapoints labeled normal and Q1 the index set of

datapoints labeled abnormal. Let δ ∈ R+ be the smallest radius, such that for each unlabeled

anomaly ua and each unlabeled normal datum un there exist labeled data points xa, a ∈ Q1

and xn, n ∈ Q0, such that ua is within the δ-ball of xa and un is within the δ-ball around xn.

If a λs-Lipschitz continuous function S ranks the labeled data correctly, with a large enough

margin, i.e. S(xa) − S(xn) ≥ 2δλs, then S ranks the unlabeled points correctly, too, and

S(ua) ≥ S(un).

In Appendix C.1, we prove Theorem 4.1 and discuss the assumptions. An implication of

this theorem is that a smaller δ corresponding to a tighter cover of the data leads to better-

generalized ranking performance. As detailed in Appendix C.1, there is a connection between

correct anomaly score ranking and high AUROC performance, a common evaluation metric

for anomaly detection.

Existing methods use querying strategies that do not have good coverage and are therefore

not optimal under Theorem 4.1. For a limited querying budget, random querying puts too

much weight on high-density areas of the data space, while other strategies only query locally,

e.g., close to an estimated decision boundary between normal and abnormal data.

Proposed Querying Strategy. Based on Theorem 4.1, we propose a querying strategy

that encourages tight coverage: diverse querying. In practice, we use the seeding algorithm of
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k-means++ which is usually used to initialize diverse clusters.1 It iteratively samples another

data point to be added to the query set Q until the labeling budget is reached. Given the

existing queried samples, the probability of drawing another query from the unlabeled set U

is proportional to its distance to the closest sample already in the query set Q:

pquery(xi) = softmax
(
h(xi)/τ

)
∀i ∈ U , (4.2)

The temperature parameter τ controls the diversity of the sampling procedure, and h(xi) =

minxj∈Q d(xi,xj) is the distance of a sample xi to the query setQ. For a meaningful notion of

distance, we define d in an embedding space as d(x,x′) = ∥ϕ(x)−ϕ(x′)∥2, where ϕ is a neural

feature map. We stress that all deep methods considered in this paper have an associated

feature map that we can use. The fact that L2 distance is used in the querying strategy is

not an ad-hoc choice but rather aligned with the δ-ball radius definition (Equation (C.1) in

Appendix C.1) in Theorem 4.1.

In Appendix C.1, we discuss the cover radius and empirically validate that diverse querying

leads to smaller δ than others and is hence advantageous for anomaly detection.

4.3.5 Semi-Supervised Outlier Exposure Loss

We next consider how to use both labeled and unlabeled samples in training. We propose

SOEL whose loss combines the unsupervised anomaly detection loss of LOE [Qiu et al.,

2022b] for the unlabeled data with the supervised loss (Equation (4.1)) for the labeled

samples. For all queried data (with index set Q), we assume that ground truth labels yi are

available, while for unqueried data (with index set U), the labels ỹi are unknown. Adding

1This has complexity O(KN) which can be reduced to O(K logN) using scalable alternatives [Bahmani
et al., 2012].
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both losses together yields

L(θ, ỹ) = 1

|Q|
∑
j∈Q

(
yjLθ

a(xj) + (1− yj)Lθ
n(xj)

)
+

1

|U|
∑
i∈U

(
ỹiLθ

a(xi) + (1− ỹi)Lθ
n(xi)

)
.

(4.3)

Similar to Qiu et al. [2022b], optimizing this loss involves a block coordinate ascent scheme

that alternates between inferring the unknown labels and taking gradient steps to minimize

Equation (4.3) with the inferred labels. In each iteration, the pseudo labels ỹi for i ∈ U are

obtained by minimizing Equation (4.3) subject to a constraint of
∑

i∈Q yi +
∑

i∈U ỹi = αN .

The constraint ensures that the inferred anomaly labels respect a certain contamination

ratio α. To be specific, let α̃ denote the fraction of anomalies among the unqueried set U ,

so that α̃|U| + ∑
j∈Q yj = αN . The constrained optimization problem is then solved by

using the current anomaly score function S to rank the unlabeled samples and assign the

top α̃-quantile of the associated labels ỹi to the value 1, and the remaining to the value 0.

We illustrate SOEL’s effect on a 2D toy data example in Figure 4.1, where SOEL (d) almost

achieves the same performance as the supervised AD (c) with only one queried point.

In theory, α could be treated as a hyperparameter, but eliminating hyperparameters is im-

portant in anomaly detection. In many practical applications of anomaly detection, there

is no labeled data that can be used for validation. While Qiu et al. [2022b] have to as-

sume that the contamination ratio is given, SOEL provides an opportunity to estimate α.

In Section 4.3.6, we develop an importance-sampling based approach to estimate α from

the labeled data. Estimating this ratio can be beneficial for many anomaly detection algo-

rithms, including OC-SVM [Schölkopf et al., 2001], kNN [Ramaswamy et al., 2000], Robust

PCA/Auto-encoder [Zhou and Paffenroth, 2017], and Soft-boundary deep SVDD [Ruff et al.,

2018]. When working with contaminated data, these algorithms require a decent estimate

of the contamination ratio for good performance.
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Another noteworthy aspect of the SOEL loss is that it weighs the averaged losses equally

to each other. In Appendix C.5.9, we empirically show that equal weighting yields the best

results among a large range of various weights. This provides more weight to every queried

data point than to an unqueried one, because we expect the labeled samples to be more infor-

mative. On the other hand, it ensures that neither loss component will dominate the learning

task. Our equal weighting scheme is also practical because it avoids a hyperparameter.

4.3.6 Contamination Ratio Estimation.

To eliminate a critical hyperparameter in our approach, we estimate the contamination ratio

α, i.e., the fraction of anomalies in the dataset. Under a few assumptions, we show how to

estimate this parameter using mini-batches composed of on non-i.i.d. samples.

We consider the contamination ratio α as the fraction of anomalies in the data. We draw on

the notation from Section 4.3.1 to define y(x) as an oracle, outputting 1 if x is an anomaly,

and 0 otherwise (e.g., upon querying x). We can now write α = Ep(x)[y(x)].

Estimating α would be trivial given an unlimited querying budget of i.i.d. data samples.

The difficulty arises due to the fact that (1) our querying budget is limited, and (2) we query

data in a non-i.i.d. fashion so that the sample average is not representative of the anomaly

ratio of the full data set.

Since the queried data points are not independently sampled, we cannot straightforwardly

estimate α based on the empirical frequency of anomalies in the query Q. More precisely, our

querying procedure results in a chain of indices Q = {i1, i2, ..., i|Q|}, where i1 ∼ Unif(1 : N),

and each conditional distribution ik|i<k is defined by Equation (4.2). We will show as follows

that this sampling bias can be compensated using importance weights.

As follows, we first propose an importance-weighted estimator of α and then prove the
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estimator is unbiased under certain idealized conditions specified by two assumptions about

our querying strategy. Justifications for the two assumptions will be provided below.

For a random queryQ, its anomaly scores {S(xi) : i ∈ Q} and anomaly labels {y(xi) : i ∈ Q}

are known. Write S(xi) as si and let ps(si) denote the marginal density of population anomaly

scores and qs(si) denote the marginal density of the queried samples’ anomaly scores. Our

importance-weighted estimator of the contamination ratio is

α̂ =
1

|Q|

|Q|∑
i=1

ps(si)

qs(si)
y(xi). (4.4)

As discussed above, y(xi) are the ground truth anomaly labels, obtained from querying Q.

The estimator takes into account that, upon repulsive sampling, we will sample data points

in the tail regions of the data distribution more often than we would upon uniform sampling.

In practice, we learn ps and qs using a kernel density estimator in the one-dimensional space of

anomaly scores of the training data and the queried data, respectively. We set the bandwidth

to the average spacing of scores. With the following two assumptions, Equation (4.4) is

unbiased.

Assumption 1. The anomaly scores {S(xi) : i ∈ Q} in a query set Q are approximately

independently distributed.

Assumption 2. Let ys(S(x)) denote an oracle that assigns ground truth anomaly labels

based on the model’s anomaly scores S(x). We assume that such an oracle exists, i.e., the

anomaly score S(x) is a sufficient statistic of the ground truth anomaly labeling function:

ys(S(x)) = y(x).

Assumptions 1 and 2 are only approximations of reality. In our experiment section, we will

show that they are good working assumptions to estimate anomaly ratios. Below, we will

provide additional strong evidence that assumptions 1 and 2 are well justified.
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The following theorem is a consequence of them:

Theorem 4.2. Assume that Assumptions 1 and 2 hold. Then, Equation (4.4) is an unbiased

estimator of the contamination ratio α, i.e., E[α̂] = α.

The proof is in Appendix C.2. Theorem 4.2 allows us to estimate the contamination ratio

based on a non-iid query set Q.

Discussion. We empirically verified the fact that Theorem 4.2 results in reliable estimates

for varying contamination ratios in Appendix C.2.4. Since Assumptions 1 and 2 seem strong,

we discuss their justifications and empirical validity next.

While verifying the independence assumption (Assumption 1) rigorously is difficult, we tested

for linear correlations between the scores (Appendix C.2.2). We found that the absolute

off-diagonal coefficient values are significantly smaller than one on CIFAR-10, providing

support for Assumption 1. A heuristic argument can be provided to support the validity of

Assumption 1 based on the following intuition. When data points are sampled diversely in

a high-dimensional space, the negative correlations induced by their repulsive nature tend

to diminish when the data is projected onto a one-dimensional subspace. This intuition

stems from the fact that a high-dimensional ambient space offers ample dimensions for

the data points to avoid clustering. To illustrate this, consider the scenario of sampling

diverse locations on the Earth’s surface, with each location representing a point in the high-

dimensional space. By including points from various continents, we ensure diversity in their

spatial distribution. However, when focusing solely on the altitude of these locations (such as

distinguishing between mountain tops and flat land), it is plausible that the altitude levels are

completely uncorrelated. While this heuristic argument provides an intuitive understanding,

it is important to note that it does not offer a rigorous mathematical proof.

To test Assumption 2, we tested the degree to which the anomaly score is a sufficient statistic

for anomaly scoring on the training set. The assumption would be violated if we could find
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Table 4.1: A summary of all compared experimental methods’ query strategy and training
strategy irrespective of their backbone models.

Name Reference Querying Strategy Loss (labeled) Loss (unlabeled)

Mar Görnitz et al. [2013] margin query superv. (Equation (4.1)) one class
Hybr1 Görnitz et al. [2013] margin diverse query superv. (Equation (4.1)) one class
Pos1 Pimentel et al. [2020] most positive query superv. (Equation (4.1)) none
Pos2 Barnabé-Lortie et al. [2015] most positive query superv. (Equation (4.1)) one class
Rand1 Ruff et al. [2019] random query superv. (Equation (4.1)) one class
Rand2 Trittenbach et al. [2021] positive random query superv. (Equation (4.1)) one class
Hybr2 Das et al. [2019] positive diverse query superv. (Equation (4.1)) none
Hybr3 Ning et al. [2022] positive diverse query refinement weighted one class

SOEL [ours] diverse (Equation (4.2)) semi-supervised outlier exposure loss (Equation (4.3))

pairs of training data xi and xj, where xi ̸= xj, with identical anomaly scores S(xi) = S(xj)

but different anomaly labels ys(si) ̸= ys(sj)
2. On FMNIST, we found 38 data pairs with

matching scores, and none of them had opposite anomaly labels. For CIFAR-10, the numbers

were 21 and 3, respectively. See Appendix C.2.3 for details.

4.4 Experiments

We study SOEL on standard image benchmarks, medical images, tabular data, and surveil-

lance videos. Our extensive empirical study establishes how our proposed method compares

to eight anomaly detection methods with labeling budgets implemented as baselines. We

first describe the baselines and their implementations (Table 4.1) and then the experiments

on images (Section 4.4.1), tabular data (Section 4.4.2), videos (Section 4.4.3) and finally

additional experiments (Section 4.4.4).

Baselines. Most existing baselines apply their proposed querying and training strategies to

shallow anomaly detection methods or sub-optimal deep models (e.g., autoencoders [Zhou

and Paffenroth, 2017]). In recent years, these approaches have consistently been outper-

formed by self-supervised anomaly detection methods [Hendrycks et al., 2019]. For a fair

2The condition S(xi) ̸= S(xj) for xi ̸= xj hints we can assign a unique label to each data point based on
their scores.
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Table 4.2: AUC (%) with standard deviation for anomaly detection on 11 image datasets
when the query budget |Q| = 20. SOEL outperforms all baselines by a large margin by
querying diverse and informative samples.

Mar Hybr1 Pos1 Pos2 Rand1 Rand2 Hybr2 Hybr3 SOEL

CIFAR10 92.4±0.7 92.0±0.7 93.4±0.5 92.1±0.7 89.2±3.2 91.4±1.0 85.1±2.2 71.8±7.4 96.3±0.3
FMNIST 93.1±0.4 92.6±0.4 92.2±0.6 89.3±1.0 84.0±3.8 90.6±1.1 88.7±1.4 82.6±4.3 94.8±0.6
Blood 68.6±1.8 69.1±1.3 69.6±1.8 72.2±4.9 70.6±1.6 69.2±1.7 72.2±2.7 58.3±5.2 80.5±0.5
OrganA 86.4±1.3 87.4±0.7 81.7±2.9 81.8±2.1 82.9±0.6 86.5±0.7 88.6±1.5 68.8±3.1 90.7±0.7
OrganC 86.5±0.9 87.0±0.7 84.6±1.9 79.6±2.0 85.5±0.9 86.4±0.8 84.8±1.2 68.9±3.0 89.7±0.7
OrganS 83.5±1.1 84.1±0.4 83.2±1.3 78.6±1.0 82.2±1.4 83.8±0.4 82.3±0.7 66.9±4.3 87.4±0.8
OCT 64.4±3.7 63.3±1.8 63.8±4.4 63.0±4.0 59.7±1.9 62.1±4.3 63.0±7.6 56.2±4.5 68.5±3.4
Path 82.7±2.4 86.0±1.1 77.5±2.0 80.2±3.5 83.2±1.6 83.9±2.9 86.1±2.0 75.1±4.2 88.1±1.1
Pneumonia 72.1±7.0 75.1±5.3 75.5±8.8 83.6±6.1 68.1±5.9 76.0±8.0 88.4±3.3 63.4±17.7 91.2±1.4
Tissue 60.2±1.5 61.3±1.7 65.8±1.7 63.5±2.0 59.9±1.7 59.5±1.3 62.1±1.7 50.8±1.6 66.4±1.4
Derma 62.6±3.8 63.1±4.7 66.6±2.3 66.4±4.3 64.5±4.8 68.3±2.1 57.2±13.3 48.0±13.6 73.5±2.5
Average 77.5 78.3 77.3 77.6 75.4 78.0 78.0 64.6 84.3

comparison, we endow all baselines with the same self-supervised backbone models also used

in our method. By default we use NTL [Qiu et al., 2021] as the backbone model, which was

identified as state-of-the-art in a recent independent comparison of 13 models [Alvarez et al.,

2022]. Results with other backbone models are shown in Appendix C.5.2.

The baselines are summarized in Table 4.1 and detailed in Appendix C.3. They differ in

their querying strategies (col. 3) and training strategies (col. 4 & 5): the unlabeled data is

either ignored or modeled with a one-class objective. Most baselines incorporate the labeled

data by a supervised loss (Equation (4.1)). As an exception, Ning et al. [2022] remove all

queried anomalies and then train a weighted one-class objective on the remaining data. All

baselines weigh the unsupervised and supervised losses equally. They differ in their querying

strategies, summarized below:

• Margin query selects samples close to the boundary of the normality region determinis-

tically. The method uses the true contamination ratio to choose an ideal boundary.

• Margin diverse query combines margin query with neighborhood-based diversification.

It selects samples that are not k-nearest neighbors of the queried set. Thus samples are

both diverse and close to the boundary.

• Most positive query always selects the top-ranked samples ordered by their anomaly
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scores.

• Positive diverse query combines querying according to anomaly scores with distance-

based diversification. The selection criterion combines anomaly score and the minimum

Euclidean distance to all queried samples.

• Random query draws samples uniformly.

• Positive random query samples uniformly among the top 50% data ranked by anomaly

scores.

Implementation Details. In all experiments, we use a NTL [Qiu et al., 2021] back-

bone model for all methods. Experiments with other backbone models are shown in Ap-

pendix C.5.2. On images and videos, NTL is built upon the penultimate layer output of a

frozen ResNet-152 pre-trained on ImageNet. NTL is trained for one epoch, after which all

|Q| queries are labeled at once. The contamination ratio α in SOEL is estimated immedi-

ately after the querying step and then fixed for the remaining training process. We follow

Qiu et al. [2022b] and set ỹi = 0.5 for inferred anomalies. This accounts for the uncertainty

of whether the sample truly is an anomaly. More details are given in Appendix C.4 and

Algorithm 2.

4.4.1 Experiments on Image Data

We study SOEL on standard image benchmarks to establish how it compares to eight well-

known baselines with various querying and training strategies. Informative querying plays an

important role in medical domains where expert labeling is expensive. Hence, we also study

nine medical datasets from Yang et al. [2021b]. We describe the datasets, the evaluation

protocol, and finally the results of our study.

Image Benchmarks. We experiment with two popular image benchmarks: CIFAR-10 and

Fashion-MNIST. These have been widely used in previous papers on deep anomaly detection
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Figure 4.2: Running AUCs (%) with different query budgets. Models are evaluated at
20, 40, 80, 160 queries. SOEL performs the best among the compared methods on all query
budgets.

[Ruff et al., 2018, Golan and El-Yaniv, 2018, Hendrycks et al., 2019, Bergman and Hoshen,

2020].

Medical Images. Since medical imaging is an important practical application of anomaly

detection, we also study SOEL on medical images. The datasets we consider cover different

data modalities (e.g., X-ray, CT, electron microscope) and their characteristic image features

can be very different from natural images. Our empirical study includes all 2D image datasets

presented in Yang et al. [2021b] that have more than 500 samples in each class, including

Blood, OrganA, OrganC, OrganS, OCT, Pathology, Pneumonia, and Tissue. We also include

Dermatoscope but restricted to the classes with more than 500 training samples.

Evaluation Protocol. We follow the community standard known as the “one-vs.-rest”

protocol to turn these classification datasets into a test-bed for anomaly detection [Ruff

et al., 2018, Hendrycks et al., 2019, Bergman and Hoshen, 2020]. While respecting the

original train and test split of these datasets, the protocol iterates over the classes and treats
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Table 4.3: F1-score (%) with standard deviation for anomaly detection on tabular data when
the query budget |Q| = 10. SOEL performs the best on 3 of 4 datasets and outperforms all
baselines by 3.2 percentage points on average.

Mar Hybr1 Pos1 Pos2 Rand1 Rand2 Hybr2 Hybr3 SOEL

BreastW 81.6±0.7 83.3±2.0 58.6±7.7 81.3±0.8 87.1±1.0 82.9±1.1 55.0±6.0 79.6±4.9 93.9±0.5
Ionosphere 91.9±0.3 92.3±0.5 56.1±6.2 91.1±0.8 91.1±0.3 91.9±0.6 64.0±4.6 88.2±0.9 91.8±1.1
Pima 50.1±1.3 49.2±1.9 48.5±0.4 52.4±0.8 53.6±1.1 51.9±2.0 53.8±4.0 48.4±0.7 55.5±1.2
Satellite 64.2±1.2 66.2±1.7 57.0±3.0 56.7±3.2 67.7±1.2 66.6±0.8 48.6±6.9 56.9±7.0 71.1±1.7
Average 72.0 72.8 55.1 70.4 74.9 73.3 55.4 68.3 78.1

each class in turn as normal. Random samples from the other classes are used to contaminate

the data. The training set is then a mixture of unlabeled normal and abnormal samples with

a contamination ratio of 10% [Ruff et al., 2019, Wang et al., 2019, Qiu et al., 2022b]. This

protocol can simulate a “human expert” to provide labels for the queried samples because

the datasets provide ground-truth class labels. The reported results (in terms of AUC %)

for each dataset are averaged over the number of experiments (i.e., classes) and over five

independent runs.

Results. We report the evaluation results of our method (SOEL) and the eight baselines

on all eleven image datasets in Table 4.2. When querying 20 samples, our proposed method

SOEL significantly outperforms the best-performing baseline by 6 percentage points on av-

erage across all datasets. We also study detection performance as the query budget increases

from 20 to 160 in Figure 4.2. The results show that, with a small budget of 20 samples,

SOEL (by querying diverse and informative samples) makes better usage of the labels than

the other baselines and thus leads to better performance by a large margin. As more samples

are queried, the performance of almost all methods increases but even for 160 queries when

the added benefit from adding more queries starts to saturate, SOEL still outperforms the

baselines.
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4.4.2 Experiments on Tabular Data

Many practical use cases of anomaly detection (e.g., in health care or cyber security) are

concerned with tabular data. For this reason, we study SOEL on four tabular datasets from

various domains. We find that it outperforms existing baselines, even with as few as 10

queries. We also confirmed the fact that our deep models are competitive with classical

methods for tabular data in Appendix C.5.13.

Tabular Datasets. Our study includes the four multi-dimensional tabular datasets from

the ODDS repository which have an outlier ratio of at least 30%. This is necessary to ensure

that there are enough anomalies available to remove from the test set and add to the clean

training set (which is randomly sub-sampled to half its size) to achieve a contamination

ratio of 10%. The datasets are BreastW, Ionosphere, Pima, and Satellite. As in the image

experiments, there is one round of querying, in which 10 samples are labeled. For each

dataset, we report the averaged F1-score (%) with standard deviations over five runs with

random train-test splits and random initialization.

Results. SOEL performs best on 3 of 4 datasets and outperforms all baselines by 3.2

percentage points on average. Diverse querying best utilizes the query budget to label the

diverse and informative data points, yielding a consistent improvement over existing baselines

on tabular data.

4.4.3 Experiments on Video Data

Detecting unusual objects in surveillance videos is an important application area for anomaly

detection. Due to the large variability in abnormal objects and suspicious behavior in

surveillance videos, expert feedback is very valuable to train an anomaly detector in a semi-

supervised manner. We use NTL as the backbone model and study SOEL on a public
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Figure 4.3: Results on the video dataset UCSD Peds1 with different query budgets. SOEL
achieves the leading performance.

surveillance video dataset (UCSD Peds1). The goal is to detect abnormal video frames that

contain non-pedestrian objects.

Following Pang et al. [2020], we subsample a mix of normal and abnormal frames for training

(using an anomaly ratio of 0.3) and use the remaining frames for testing. Before running any

of the methods, a ResNet pretrained on ImageNet is used to obtain a fixed feature vector

for each frame. We vary the query budget from |Q| = 20 to |Q| = 160 and compare SOEL

to all baselines. Results in terms of average AUC and standard error over five independent

runs are reported in Figure 4.3. SOEL consistently outperforms all baselines, especially for

smaller querying budgets.

4.4.4 Additional Experiments

In Appendix C.5, we provide additional experiments and ablations demonstrating SOEL’s

strong performance and justifying modeling choices. The three most important findings are:

• SOEL vs. Active Learning: Our framework is superior to its extension to the sequential

active learning (Figure C.6).
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• Varying Contamination Ratio: Figure C.4 demonstrates that SOEL dominates un-

der varying contamination ratios (1%, 5%, 20%). In addition, Table C.1 confirms that

Equation (4.4) reliably estimates α on both CIFAR-10 and F-MNIST.

• Backbone Models: Table C.3 shows that SOEL also performs best for the backbone

models MHRot [Hendrycks et al., 2019] and DSVDD [Ruff et al., 2018].

In addition, we provide an ablation of the temperature τ (Table C.5), a discussion on the

effects of initialization randomness (Appendix C.5.1), an ablation study of the pseudo-label

ỹ values (Table C.6), a comparison to binary classification (Figure C.5), an ablation of the

SOEL loss components, an ablation of querying strategies (Figure C.7), additional meth-

ods for inferring y (Figure C.10), and comparison to additional semi-supervised baselines

(Figure C.10, Table C.7).

4.5 Conclusion

We introduced semi-supervised outlier exposure with a limited labeling budget (SOEL).

Inspired by a set of conditions that guarantee the generalization of anomaly score rankings

from queried to unqueried data, we proposed to use a diversified querying strategy and a

combination of two losses for queried and unqueried samples. By weighting the losses equally

to each other and by estimating the unknown contamination rate from queried samples, we

were able to make our approach free of its most important hyperparameters, making it easy

to use. An extensive empirical study on images, tabular data, and video confirmed the

efficacy of SOEL as a semi-supervised learning framework compatible with many existing

losses for anomaly detection.

Limitations: The success of our approach relies on several heuristics that we demonstrated

were empirically effective but that cannot be proven rigorously. Estimation of the contam-

ination ratio can be noisy when the query set is small—but the LOE loss is robust even
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under misspecification of the contamination ratio [Qiu et al., 2022b]. The diversified sam-

pling strategy becomes expensive when the dataset is large, but this can be mitigated by

random data thinning.

Societal Impacts: The use of human labels for anomaly detection runs the risk of introduc-

ing potential human biases in the definition of what is anomalous, particularly for datasets

involving human subjects. Since our approach relies heavily on a relatively small number of

human labels, the deployment of our approach with real human labelers would benefit by

having guidelines for the labelers in terms of providing fair labels and avoiding amplification

of bias.
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Chapter 5

Zero-Shot Anomaly Detection via

Batch Normalization

This chapter is based on a published paper at NeurIPS 2023: Zero-Shot Anomaly

Detection via Batch Normalization by Aodong Li∗, Chen Qiu∗, Marius Kloft,

Padhraic Smyth, Maja Rudolph, Stephan Mandt [Li et al., 2024]

5.1 Introduction

Anomaly detection—the task of identifying data instances deviating from the norm [Ruff

et al., 2021]—plays a significant role in numerous application domains, such as fake review

identification, bot detection in social networks, tumor recognition, and industrial fault de-

tection. AD is particularly crucial in safety-critical applications where failing to recognize

anomalies, for example, in a chemical plant or a self-driving car, can risk lives.

Consider a medical setting where an anomaly detector encounters a batch of medical im-

ages from different patients. The medical images have been recorded with a new imaging
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technology different from the training data, or the patients are from a demographic the

anomaly detector has not been trained on. Our goal is to develop an anomaly detector that

can still process such data using batches, assigning low scores to normal images and high

scores to anomalies (i.e., images that differ systematically) without retraining. To achieve

this zero-shot adaptation, we exploit the fact that anomalies are rare. Given a new batch of

test data, a zero-shot anomaly detection method [Liznerski et al., 2022, Esmaeilpour et al.,

2022, Schwartz et al., 2022, Jeong et al., 2023] has to detect which features are typical of the

majority of normal samples and which features are atypical.

We propose ACR, a lightweight zero-shot anomaly detection method that combines two sim-

ple ideas: batch normalization and meta-training. Assuming an overall majority of ”normal”

samples, a randomly-sampled batch will typically have more normal samples than anoma-

lies. The effect of batch normalization is then to draw these normal samples closer to the

center (in its recentering and scaling operation), while anomalies will end up further away

from the center. Notably, this scaling and centering is robust to a distribution shift in the

input, allowing a self-supervised anomaly detector to generalize to distributions never en-

countered during training. We propose a meta-training scheme to unlock the power of batch

normalization layers for zero-shot anomaly detection. During training, the anomaly detector

will see many different anomaly detection tasks, mixed from different choices for normal and

abnormal examples. Through this variability in the training tasks, the anomaly detector will

learn to rely as much as possible on the batch normalization operations in its architecture.

Advantages of ACR include that it is theoretically grounded, simple, domain-independent,

and compatible with various backbone models commonly used in deep anomaly detection

[Ruff et al., 2018, Qiu et al., 2021]. Contrary to recent approaches based on foundation

models [Jeong et al., 2023], applicable only to images, ACR can be employed on data from

any domain, such as time series, tabular data, or graphs.

We begin by presenting our assumptions and method in Section 5.2. Next, with the main
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idea in mind, we describe the related work in Section 5.3. We demonstrate the effectiveness

of our method with experiments in Section 5.4. Finally, we conclude our work and state the

limitations and societal impacts.

Our contributions can be summarized as follows:

• An effective new method. Our results for the first time show that training off-the-

shelf deep anomaly detectors on a meta-training set, using batch normalization layers,

gives automatic zero-shot generalization for anomaly detection. For which we derive a

generalization bound on anomaly scores.

• Zero-shot anomaly detection on tabular data. We provide the first empirical study

of zero-shot anomaly detection on tabular data, where our adaptation approach retains

high accuracy.

• Competitive results for images. Our results demonstrate not only a substantial im-

provement in zero-shot anomaly detection performance for non-natural images, including

medical imaging but also establish a new state-of-the-art in anomaly segmentation on the

MVTec AD benchmark [Bergmann et al., 2019].

5.2 Method

We begin with the problem statement in Section 5.2.1 and then state the assumptions in

Section 5.2.2. Finally we present our proposed solution in Section 5.2.3. The training

procedure is outlined in Algorithm 3 in Appendix D.3.
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Figure 5.1: a) Demonstrations of concrete examples of a meta-training set and a testing
distribution. It is not necessary for the meta-training set to include the exact types of
samples encountered during testing. For instance, when detecting lions within geese, the
training data does not need to include lions or geese. b) Illustration of zero-shot batch-level
anomaly detection with ACR using a one-class classifier [Ruff et al., 2018]. The approach
encounters three tasks (P π

1:3, Equation (5.6)) during training (black arrows) and learns to
map each task’s majority of samples (i.e., the normal samples) to a shared learned center in
embedding space. At test time (blue arrow), the learned model maps the normal (majority)
samples to the same center and the distance from the center serves as anomaly detection
score.

5.2.1 Problem Statement and Method Overview

We consider the problem of learning an anomaly detector that is required to immediately

adapt (without any further training) when deployed in a new environment. The main idea

is to use batch normalization as a mechanism for adaptive batch-level anomaly detection.

For any batch of data containing mostly ”normal” samples, each batch normalization shifts

its inputs to the origin, thereby (1) enabling the discrimination between normal data and

outliers/anomalies, and (2) bringing data from different distributions into a common frame

of reference. (Notably, we propose applying batch norm in multiple layers for different

anomaly scorers.) For the algorithm to generalize to unseen distributions, we train our

model on multiple data sets of “normal” data simultaneously, making sure each training

batch contains a majority of related data points (from the same distribution) at a time.

Figure 5.1a illustrates this idea, where all distributions are exemplified based on the example

of homogeneous groups of animals (only dogs, only robins, etc.) The goal is to detect a lion

among geese, where neither geese nor lions have been encountered before. Figure 5.1b
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illustrates the scheme based on the popular example of deep support vector data description

(DeepSVDD) [Ruff et al., 2018], where samples are mapped to a pre-specified point in an

embedding space and scored based on their distance to this point. All training distributions

are mapped to the same point, as enabled through batch normalization.

5.2.2 Notation and Assumptions

To formalize the notion of a meta-training set, we consider a distribution of interrelated

data distributions (previously referred to as groups) as commonly studied in meta-learning

and zero-shot learning [Baxter, 2000, Finn et al., 2017, Frikha et al., 2021, Huang et al.,

2022]. This inter-relatedness can be expressed by assuming that K training distributions

P1, . . . , PK and a test distribution P∗ are sampled from a meta-distribution P :

P1, · · · , PK , P∗
i.i.d.∼ P . (5.1)

We assume that the distributions in P share some common structure, such that training

a model on one distribution has the potential to aid in deploying the model on another

distribution. For example, the data x could be radiology images from patients, and each

Pj or P∗ could be a distribution of images from a specific hospital. These distributions

share similarities but differ systematically because of differences in radiology equipment,

calibration, and patient demographics1. Each of the distributions P ∈ P defines a different

anomaly detection task. For each task, we have to obtain an anomaly scoring function S(x; θ)

that assigns low scores to normal samples x ∼ P and high scores to anomalies.

We now consider a batch B ⊂ D of size B, taken from an underlying data set D ∼ P of size

1The divergence between distributions can be much larger than shown in this example. See our experi-
ments.
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N . The batch can be characterized by indexing data points from D:

B ≡ (i1, ..., iB) ∼ Unif({1, ..., N}). (5.2)

We denote the anomaly scores on a batch level by defining a vector-valued anomaly score

S(xB; θ) =
(
Si1(xB; θ), · · · ,SiB(xB; θ)

)
, (5.3)

indicating the anomaly score for every datum in a batch. By thresholding the anomaly scores

Si(xB; θ), we obtain binary predictions of whether data point xi is anomalous in the context

of batch xB.

By conditioning on a batch of samples, our approach obtains distributional information

beyond a single sample. For example, an image of a cat may be normal in the context

of a batch of cat images, but it may be anomalous in the context of a batch of otherwise

dog images. This is different from current deep anomaly detection schemes that evaluate

anomaly scores without referring to a context.

Before presenting a learning scheme of how to combine batch-level information in conjunc-

tion with established anomaly detection approaches, we discuss the assumptions that our

approach makes. (The empirical or theoretical justifications as well as possibilities of remov-

ing or mitigating the assumptions can be found in Appendix D.1.)

A1 Availability of a meta-training set. As discussed above, we assume the availability of

a set of interrelated distributions. The meta-set is used to learn a model that can adapt

without re-training.

A2 Batch-level anomaly detection. As mentioned above, we assume we perform batch-level

predictions at test time, allowing us to detect anomalies based on reference data in the batch.
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A3 Majority of normal data. We assume that normal data points take the majority in every

i.i.d. sampled test batch.

Due to the absence of anomaly labels (or text descriptions) at test-time, we cannot infer the

correct anomaly labels without assumptions A2 and A3. Together, they instruct us that

given a batch of test examples, the majority of the samples in the batch constitute normal

samples.

5.2.3 Adaptively Centered Representations

Batch Normalization as Adaptation Modules. An important component of our method

is batch normalization, which shifts and re-scales any data batch xB to have a sample mean

zero and variance one. Batch normalization also provides a näıve parameter-free zero-shot

batch-level anomaly detector:

Snäıve
i (xB) = ||(xi − µ̄xB)/σ̄xB ||22, (5.4)

where µ̄ and σ̄2 are the coordinate-wise sample mean and sample variance. µ̄ is dominated

by the majority of the batch, which by assumption A3, is the normal data. If the xi lie in

an informative feature space, anomalies will have a higher-than-usual distance to the mean,

making the approach a simple, adaptive anomaly detection method, illustrated in Figure D.1

in Appendix D.4.

While the example provides a proof of concept, in practice, the normal samples typically do

not concentrate around their mean in the raw data space. Next, we integrate this idea into

neural networks and develop an approach that learns adaptively centered representations for

zero-shot anomaly detection.
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Deep Neural Networks with Batch Normalization Layers as Scalable Zero-shot

Anomaly Detectors. In deep neural networks, the adaptation ability is obtained for free

with batch normalization layers [Ioffe and Szegedy, 2015]. Batch normalization has become

a standard and necessary component to facilitate optimization convergence in training neu-

ral networks. In common neural network architectures [He et al., 2016, Huang et al., 2017,

Radosavovic et al., 2020], batch normalization layers are used after each non-linear trans-

formation layer, making a zero-shot adaptation with respect to its input batch. The entire

neural network, stacking up many non-linear transformation and normalization layers, has

powerful potential in scalable zero-shot adaptation and learning adaptation-needed feature

representations for complex data forms.

Training Objective. As discussed above, we can instantiate S(x; θ) as a deep neural

network with batch normalization layers and optimize the neural network weights θ. We

first provide our objective function and then the rationality. Our approach is compatible

with a wide range of deep anomaly detection objectives; therefore we consider a generic loss

function Lθ
n(xB) := Ln[S(xB; θ)] =

(
Ln[Sii(xB; θ)], · · · ,Ln[SiB(xB; θ)]

)
that is a function of

the anomaly score2. For example, in many cases, the loss function to be minimized is the

anomaly score itself (averaged over the batch). We denote the loss function on each data

point in the batch by Lθ
n,i(xB) := Ln[Si(xB; θ)] for simplicity.

The availability of a meta-data set (A1) gives rise to the following minimization problem:

θ∗ = argmin
θ

1
K

∑K
j=1ExB∼Pj

Lθ
n(xB). (5.5)

Typical choices for Lθ
n(xB) include DeepSVDD [Ruff et al., 2019] and NTL [Qiu et al., 2021].

Details and modifications of this objective will follow.

2The subscript n suggests the loss function acts on normal data.
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Figure 5.2: Comparisons between the proposed zero-shot anomaly detection method and
the regular anomaly detection approach where the normal data distribution is stationary.
When training with mini-batches, both set the batch norm layers in the training mode.
While stationary anomaly detection minimizes the loss function of a single normal data
distribution, our method optimizes over K distributions. At test time, stationary anomaly
detection sets the batch norm layers in inference mode, but our method still sets them in
the training mode. Our approach allows the generalization of the test data from an unseen
distribution P∗ and its anomaly distribution P̄∗.

Why does it work? Batch normalization helps re-calibrate the data batches of different dis-

tributions into similar forms: normal data will center around the origin. Such calibration

happens from granular features (lower layers) to high-level features (higher layers), result-

ing in powerful feature learning and adaptation ability3. We visualize the calibration in

Figure D.2 in Appendix D.9.2. Therefore, optimizing Equation (5.5) are able to learn a

(locally) optimal S(x; θ∗) that is adaptive to all K different training distributions. Such

learned adaptation ability will be guaranteed to generalize to unseen related distributions

P∗. Figure 5.2 compares the proposed zero-shot anomaly detection framework against the

regular anomaly detection framework at the training and testing time. See Section 5.2.4

below and Appendix D.2 for more details.

Meta Outlier Exposure. While Equation (5.5) can be a viable objective, we can signif-

icantly improve over it while avoiding trivial solutions4. The approach builds on treating

3Without batch normalization, optimizing Equation (5.5) can be meaningless for some objectives. See
Appendix D.9.1.

4We explain how this objective avoids trivial solutions in Appendix D.7 and show the benefits in Table D.1
of Appendix D.9.1.
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samples from other distributions as anomalies during training. The idea is that the syn-

thetic anomalies can be used to guide learning a tighter decision boundary around the nor-

mal data [Hendrycks et al., 2018]. Drawing on the notation from Eq. 5.1, we thus simulate

a mixture distribution by contaminating each Pj by admixing a fraction (1 − π) ≪ 1 of

data from other available training distributions. The resulting corrupted distribution P π
j is

thereby

P π
j := πPj + (1− π)P̄j, P̄j :=

1
K−1

∑
i ̸=jPi (5.6)

This notation captures the case where the training distribution is free of anomalies (π = 1).

Next, we discuss constructing an additional loss for the admixed anomalies, whose identity

is known at training time. As discussed in [Hendrycks et al., 2018, Qiu et al., 2022b], many

loss functions Lθ
n(xB) allow for easily constructing a loss Lθ

a(xB) that behaves inversely. That

means, we expect each item in Lθ
a(xB) to be large when evaluated on normal samples, and

small for anomalies. Importantly, both losses share the same parameters. In the context of

DeepSVDD, we define Lθ
n(xB) = 1/Lθ

a(xB), but other definitions are possible for alternative

losses [Ruff et al., 2018, 2019, Qiu et al., 2022b]. Using the inverse score, we can construct

a supervised anomaly detection loss on the meta training set as follows.

We define a binary indicator variable yji , indicating whether data point i is normal or anoma-

lous in the context of distribution Pj (i.e., yji = 0 iff xB,i ∈ Pj). We later refer to it as

anomaly label. A natural replacement for the loss only on normal data Lθ
n in Equation (5.5)

is therefore

Lθ(xB) =
1

B

∑
i∈B

{(1− yi)L
θ
n,i(xB) + yiL

θ
a,i(xB)}. (5.7)

The loss function resembles the outlier exposure loss [Hendrycks et al., 2018], but as opposed

to using synthetically generated samples (typically only available for images), we use samples
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from the complement P̄j at training time to synthesize outliers. The training pseudo-code is

in Algorithm 3 of Appendix D.3.

In addition to DeepSVDD, we also study backbone models such as binary classifiers and

NTL [Qiu et al., 2021]. For NTL, we adopt the Lθ
n and Lθ

a used by Qiu et al. [2022b]. For

binary classifiers, we set Lθ
n(x) = − log

(
1− σ(fθ(x))

)
and Lθ

a(x) = − log σ(fθ(x)).

Batch-level Prediction. After training, we deploy the model in an unseen production

environment to detect anomalies in a zero-shot adaptive fashion. Similar to the training set,

the distribution will be a mixture of new normal samples P∗ and an admixture of anomalies

from a distribution never encountered before. For the method to work, we still assume that

the majority of samples be normal (Assumption A3). Anomaly scores are assigned based

on batches, as during training. For prediction, the anomaly scores are thresholded at a

user-specified value.

Time complexity for prediction depends on the network complexity and is constant O(1)

relative to batch size, because the predictions can be trivially parallelized via modern deep

learning libraries. We compare our zero-shot anomaly detection framework against the sta-

tionary anomaly detection approach.

5.2.4 Theoretical Results

Having described our method, we now establish a theoretical basis for ACR by deriving a

bounded generalization error on an unseen test distribution P∗. We define the generalization

error in terms of training and testing losses, i.e., we are interested in whether the expected

loss generalizes from the meta-training distributions P1, · · · , PK to an unseen distribution

P∗.
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To prepare the notations, we split Lθ(x) into two parts: a feature extractor z = fθ(x) that

spans from the input layer to the last batch norm layer that performs batch normalization,

and a loss function L(z) that covers all the remaining layers. When the input is only an

individual data point, and there are no batch norm layers to shift the data, we write L(z) to

differentiate the vector-valued loss. We use P z
j to denote the data distribution Pj transformed

by the feature extractor fθ. We assume that P z
j satisfies Ez∼P z

j
[z] = 0 and Varz∼P z

j
[z] = 1

for j = 1, . . . , K, ∗ because fθ ends up with a batch norm layer.

Theorem 5.1. Assume the mini-batches are large enough such that, for batches from each

given distribution Pj, the mini-batch means and variances are approximately constant across

batches. Furthermore, assume the loss function L(z) is bounded by C for any z. Let ∥·∥TV

denote the total variation. Then, the generalization error is upper bounded by

∣∣∣∣∣ExB∼P∗

[
1

B

B∑
i=1

Lθ
i (xB)

]
− 1

K

K∑
j=1

ExB∼Pj

[
1

B

B∑
i=1

Lθ
i (xB)]

]∣∣∣∣∣
≤ C

∥∥∥∥∥P z
∗ −

1

K

K∑
j=1

P z
j

∥∥∥∥∥
TV

.

The proof is shown in Appendix D.2. Note that Theorem 5.1 still holds if Pj or P∗ are

contaminated distributions P π
j or P π̃

∗ .

Remark. Theorem 5.1 suggests that the generalization error of the expected loss function

is bounded by the total variation distance between P z
∗ and 1

K

∑K
j=1 P

z
j . While we leave a

formal bound of the TV distance to future studies, the following intuition holds: since fθ

contains batch norm layers, the empirical distributions 1
K

∑K
j=1 P

z
j and P z

∗ will share the

same (zero) mean and (unit) variance. If both distributions are dominated by their first two

moments, we can expect the total variation distance to be small, providing an explanation

for the approach’s favorable generalization performance.
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5.3 Related Work

Deep Anomaly Detection. Many recent advances in anomaly detection are built on deep

learning methods [Ruff et al., 2021] and early strategies used autoencoder [Principi et al.,

2017, Zhou and Paffenroth, 2017, Chen and Konukoglu, 2018] or density-based [Schlegl et al.,

2017, Deecke et al., 2018] models. Another pioneering stream of research combined one-class

classification [Schölkopf et al., 2001] with deep learning [Ruff et al., 2018, Qiu et al., 2022a].

Many other approaches to deep anomaly detection are self-supervised, employing a self-

supervised loss function to train the detector and score anomalies [Golan and El-Yaniv,

2018, Hendrycks et al., 2019, Sohn et al., 2020b, Bergman and Hoshen, 2020, Qiu et al.,

2021, Schneider et al., 2022, Shenkar and Wolf, 2021, Li et al., 2023].

All of these approaches assume that the data distribution will not change too much at test

time. However, in many practical scenarios, there will be significant shifts in the abnormal

distribution and even the normal distribution. For example, Dragoi et al. [2022] observed

that existing anomaly detection methods fail in detecting anomalies when distribution shifts

occur in network intrusion detection. Another line of work in this context requires test-time

modeling for the entire test set, e.g., COPOD [Li et al., 2020], ECOD [Li et al., 2022], and

robust autoencoder [Zhou and Paffenroth, 2017], preventing real-time deployment.

Few-shot Anomaly Detection. Several recent works have studied adapting an anomaly

detector to shifts by fine-tuning a few test samples. One stream of research applies model-

agnostic meta learning (MAML) [Finn et al., 2017] to various deep anomaly detection mod-

els, including one-class classification [Frikha et al., 2021], generative adversarial networks [Lu

et al., 2020a], autoencoder [Wu et al., 2021a], graph deviation networks [Ding et al., 2021],

and supervised classifiers [Zhang et al., 2020, Feng et al., 2021b]. Some approaches extend

prototypical networks to few-shot anomaly detection [Kruspe, 2019, Chen et al., 2022]. Koz-
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erawski and Turk [2018] learn a linear SVM with a few samples on top of a frozen pre-trained

feature extractor, while Sheynin et al. [2021] learn a hierarchical generative model from a few

normal samples for image anomaly detection. Wang et al. [2022] learn an energy model for

anomaly detection. The anomalies are scored by the error of reconstructing their embeddings

from a set of normal features that are adapted with a few test samples. Huang et al. [2022]

learn a category-agnostic model with multiple training categories (a meta set). At test time,

a few normal samples from a novel category are used to establish an anomaly detector in

the feature space. Huang et al. [2022] does not exploit the presence of a meta-set to learn

a stronger anomaly detector through synthetic outlier exposure. While meta-training for

object-level anomaly detection (e.g., [Frikha et al., 2021]) is generally simpler (it is easy to

find anomaly examples, i.e., other objects different from the normal one), meta-training for

anomaly segmentation (e.g., [Huang et al., 2022]) poses a harder task since image defects

may differ from object to object (e.g., defects in transistors may not easily generalize to

subtle defects in wood textures). Our experiments found that using images from different

distributions as example anomalies during training is helpful for anomaly segmentation on

MVTec-AD (see Appendix D.9.5).

In contrast to all of the existing few-shot anomaly detection methods, we propose a zero-shot

anomaly detection method and demonstrate that the learned anomaly detection model can

adapt itself to new tasks without any support samples.

Zero-shot Anomaly Detection. Foundation models pre-trained on massive training

samples have achieved remarkable results on zero-shot tasks on images [Radford et al., 2021,

Yu et al., 2022, Jia et al., 2021, Yuan et al., 2021]. For example, contrastive language-image

pre-training (CLIP) [Radford et al., 2021] is a pre-trained language-vision model learned

by aligning images and their paired text descriptions. One can achieve zero-shot image

classification with CLIP by searching for the best-aligned text description of the test im-
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ages. Esmaeilpour et al. [2022] extend CLIP with a learnable text description generator for

out-of-distribution detection. Liznerski et al. [2022] apply CLIP for zero-shot anomaly de-

tection and score the anomalies by comparing the alignment of test images with the correct

text description of normal samples. In terms of anomaly segmentation, Trans-MM [Chefer

et al., 2021] is an interpretation method for Transformer-based architectures. Trans-MM

uses the attention map to generate pixel-level masks of input images, which can be applied

to CLIP. MaskCLIP [Zhou et al., 2021] directly exploits CLIP’s Transformer layer poten-

tial in semantic segmentation to generate pixel-level predictions given class descriptions.

MAEDAY [Schwartz et al., 2022] uses the reconstruction error of a pre-trained masked au-

toencoder [He et al., 2022] to generate anomaly segmentation masks. WinCLIP [Jeong et al.,

2023], again using CLIP, slides a window over an image and inspects each patch to detect

local defects defined by text descriptions.

However, foundation models have two constraints that do not exist in ACR. First, foundation

models are not available for all data types. Foundation models do not exist for example for

tabular data, which occurs widely in practice, for example in applications such as network

security and industrial fault detection. Also, existing adaptations of foundation models for

AD (e.g., CLIP) may generalize poorly to specific domains that have not been covered in their

massive training samples. For example, Liznerski et al. [2022] observed that CLIP performs

poorly on non-natural images, such as MNIST digits. In contrast, ACR does not rely on

a powerful pre-trained foundation model, enabling zero-shot AD on various data types.

Second, human involvement is required for foundation models. While previous pre-trained

CLIP-based zero-shot AD methods adapt to new tasks through informative prompts given

by human experts, our method enriches the zero-shot AD toolbox with a new adaptation

strategy without human involvement. Our approach allows the anomaly detector to infer

the new task/distribution based on a mini-batch of samples.
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Connections to Other Areas. Our problem setup and assumptions share similarities

with other research areas but differences are also pronounced. Those areas include test-time

adaptation [Schneider et al., 2020, Nado et al., 2020, Lim et al., 2023, Wang et al., 2021, Choi

et al., 2022], unsupervised domain adaptation [Kouw and Loog, 2019], zero-shot classification

[Xian et al., 2018], meta-learning [Finn et al., 2017], and contextual anomaly detection [Gupta

et al., 2013]. Appendix D.8 details the connections, similarities, and differences.

5.4 Experiments

We evaluate the proposed method ACR on both image (detection/segmentation) and tabular

data, where distribution shifts occur at test time. We compare ACR with established base-

lines based on deep anomaly detection, zero-shot anomaly detection, and few-shot anomaly

detection methods. The experiments show that our method is suitable for different data

types, applicable to diverse anomaly detection models, robust to various anomaly ratios,

and significantly outperforms existing baselines. We report results on image and tabular

data in Section 5.4.1 and Section 5.4.2, and ablation studies in Section 5.4.3. Results on

more datasets are in Appendices D.9.3 to D.9.6.

5.4.1 Experiments on Images

Visual anomaly detection consists of two major tasks: (image-level) anomaly detection and

(pixel-level) anomaly segmentation. The former aims to accurately detect images of abnor-

mal objects, e.g., detecting non-dog images; the latter focuses on detecting pixel-level local

defects in an image, e.g., marking board wormholes. We test our method on both tasks and

compare it to existing SOTA methods.
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Anomaly Detection

We evaluate ACR on images when applied to two simple backbone models: DeepSVDD [Ruff

et al., 2018] and a binary classifier. Our method is trained from scratch. The evaluation

demonstrates that ACR achieves superior anomaly detection results on corrupted natural

images, medical images, and other non-natural images.

Datasets. We study four image datasets: CIFAR100-C [Hendrycks and Dietterich, 2019],

OrganA [Yang et al., 2021a] (and MNIST [LeCun et al., 1998], and Omniglot [Lake et al.,

2015] in Appendix D.9.4). We consider CIFAR100-C is the noise-corrupted version of CI-

FAR100’s test data, thus considered as distributionally shifted data. We train using all

training images from original CIFAR100 and test all models on CIFAR100-C. OrganA is a

medical image dataset with 11 classes (for various body organs). We leave two successive

classes out for testing and use the other classes for training. We repeat the evaluation on

all combinations of two consecutive classes. Across all experiments, we apply the “one-vs-

rest” setting at test time, i.e., one class is treated as normal, and all the other classes are

abnormal [Ruff et al., 2021]. We report the results averaged over all combinations.

Baselines. We compare our proposed method with a SOTA stationary deep anomaly

detector (anomaly detection with an inductive bias (ADIB) [Deecke et al., 2021]), a pre-

trained classifier used for batch-level zero-shot anomaly detection (ResNet152 [He et al.,

2016]), a SOTA zero-shot anomaly detection baseline (CLIP-AD [Liznerski et al., 2022]),

and a few-shot anomaly detection baseline (one-class model-agnostic meta learning (OC-

MAML) [Frikha et al., 2021]). ResNet152-I and ResNet152-II differ in the which statis-

tics they use in batch normalization: ResNet152-I uses the statistics from training and

ResNet152-II uses the input batch’s statistics. See Appendix D.5 for more details.

Implementation Details. We set π = 0.8 in Equation (5.6) to apply Meta Outlier Expo-

sure. For each approach, we train a single model and test it on different anomaly ratios. Two
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backbone models are implemented: DeepSVDD [Ruff et al., 2018] (ACR-DeepSVDD) and a

binary classifier with cross entropy loss (ACR-BCE). More details are given in Appendix D.6.

Results. We report the results in terms of the AUROC averaged over five independent

test runs with standard deviation. We apply the model to tasks with different anomaly

ratios to study the robustness of ACR to the anomaly ratio at test time. Our method

ACR significantly outperforms all baselines on Gaussian noise-corrupted CIFAR100-C and

OrganA in Table 5.1. In Tables D.5 and D.6 in Appendix D.9, we systematically evaluate

all methods on all 19 corrupted versions of CIFAR100 and on non-nature images (MNIST,

Omniglot). The results show that on non-natural images (OrganA, MNIST, Omniglot) ACR

performs the best among all compared methods, including the large pre-trained CLIP-AD

baseline; on corrupted natural images (CIFAR-100C), ACR achieves results competitive

with CLIP-AD and significantly outperforms other baselines. ACR is also robust on various

anomaly ratios: without any (hyper)parameter tuning, the results are consistent and don’t

vary over 3%. The deep anomaly detection baseline, ADIB, doesn’t have adaptation ability

and thus fails to perform the testing tasks, leading to random guess results. Pre-trained

ResNet152 armed with batch normalization layers can adapt but with limited ability, which

is in contrast with our method that directly learns to adapt. Few-shot OC-MAML suffers

because it requires a large support set at test time to achieve adaptation effectively. CLIP-

AD has a strong performance on corrupted natural images but struggles with non-natural

images, presumably because it is trained on massive natural images from the internet.

Anomaly Segmentation

We benchmark our method ACR on the MVTec AD dataset [Bergmann et al., 2019] in a zero-

shot setup. Experiments show that ACR achieves new state-of-the-art anomaly segmentation

performance.
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Table 5.1: AUC (%) with standard deviation for anomaly detection on CIFAR100-C with
Gaussian noise [Hendrycks and Dietterich, 2019] and medical image dataset, OrganA. ACR
with both backbone models perform best.

CIFAR100-C OrganA

1% 5% 10% 20% 1% 5% 10%

ADIB [Deecke et al., 2021] 50.9±2.4 50.5±0.9 50.6±0.9 50.2±0.5 49.9±6.3 50.3±2.4 50.2±1.3
ResNet152-I [He et al., 2016] 75.6±2.3 73.2±1.3 73.2±0.8 69.9±0.6 54.2±1.1 53.9±0.5 53.2±0.6
ResNet152-II [He et al., 2016] 62.5±3.1 61.8±1.7 61.2±0.6 60.2±0.4 54.2±1.7 53.5±0.8 52.9±0.3
OC-MAML [Frikha et al., 2021] 53.0±3.6 54.1±1.9 55.8±0.6 57.1±1.0 73.7±4.7 72.2±2.6 74.2±2.4
CLIP-AD [Liznerski et al., 2022] 82.3±1.1 82.6±0.9 82.3±0.9 82.6±0.1 52.6±0.8 51.9±0.6 51.5±0.2

ACR-DSVDD (ours) 87.7±1.4 86.3±0.9 85.9±0.4 85.6±0.4 79.0±1.0 77.7±0.4 76.3±0.3
ACR-BCE (ours) 84.3±2.2 86.0±0.3 86.0±0.2 85.7±0.4 81.1±0.8 79.5±0.4 78.3±0.3

Table 5.2: Pixel-level and image-level AUC (%) on MVTec AD. On average, our method
outperforms the strongest baseline WinCLIP by 7.4% AUC in pixel-level anomaly segmen-
tation.

MAEDAY
[Schwartz et al., 2022]

CLIP
[Radford et al., 2021]

Trans-MM
[Chefer et al., 2021]

MaskCLIP
[Zhou et al., 2021]

WinCLIP
[Jeong et al., 2023]

ACR (ours)

pixel-level 69.4 - 57.5±0.0 63.7±0.0 85.1±0.0 92.5±0.2
image-level 74.5 74.0±0.0 - - 91.8±0.0 85.8±0.6

Datasets. MVTec AD comprises 15 classes of images for industrial inspection. The goal

is to detect the local defects accurately. To implement our method for zero-shot anomaly

segmentation tasks, we train on the training sets of all classes except the target one and

test on the test set of the target class. For example, when segmenting wormholes on wood

boards, we train a model on the other 14 classes’ training data except for wood and later test

on wood test set. This satisfies the zero-shot definition as the model doesn’t see any wood

data during training. We apply this procedure for all classes.

Baselines. We compare our method to four zero-shot anomaly segmentation baselines:

Trans-MM [Chefer et al., 2021], MaskCLIP [Zhou et al., 2021], MAEDAY [Schwartz et al.,

2022], and WinCLIP [Jeong et al., 2023]. The details are described in Section 5.3. We report

their results listed in Schwartz et al. [2022], Jeong et al. [2023].

Implementation Details. We first extract informative texture features using a sliding

window, which corresponds to 2D convolutions. The convolution kernel is instantiated with

the ones in a pre-trained ResNet. We follow the same data pre-processing steps of Cohen
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and Hoshen [2020], Rippel et al. [2021], Defard et al. [2021] to extract the features (the

third layer’s output in our case) of WideResNet-50-2 pre-trained on ImageNet. Second, we

detect anomalies in the extracted features in each window position with our ACR method.

Specifically, each window position corresponds to one image patch. We stack into a batch the

patches taken from a set of images that all share the same spatial position. For example, we

may stack the top-left patch of all testing wood images into a batch and use ACR to detect

anomalies in that batch. Finally, the window-wise anomaly scores are bilinearly interpolated

to the original image size to get the pixel-level anomaly scores. In implementing meta outlier

exposure, we tried two sources of outliers: one is noise-corrupted images, and the other is

images of other classes. We report results of the former in the main paper and the latter in

Appendix D.9.5. More implementation details are given in Appendix D.6.

Results. Similar to common practice, we report both the pixel-level and image-level results

in Table 5.2. We use the largest pixel-level anomaly score as the image-level score. All meth-

ods are evaluated with the AUROC metric. It shows that 1) our method is competitive to

the SOTA method in image-level detection tasks, and 2) it surpasses the best baseline Win-

CLIP by a large margin (7.4% AUC on average) in anomaly segmentation tasks, achieving

a new SOTA performance and testifying the potential of our method. We report class-wise

results in Appendix D.9.5.

5.4.2 Experiments on Tabular Data

Tabular data is an important data format in many real-world anomaly detection applications,

e.g, network intrusion detection and malware detection. Distribution shifts in such data occur

naturally over time (e.g., as new malware emerges) and grow over time. Existing zero-shot

anomaly detection approaches [Liznerski et al., 2022, Jeong et al., 2023] are not applicable to

tabular data. We evaluate ACR on tabular anomaly detection when applied to DeepSVDD
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Table 5.3: AUC (%) with standard deviation for anomaly detection on Anoshift with different
anomaly contamination rations (1% - 20%) and on different splitting strategies AVG and
FAR [Dragoi et al., 2022]. ACR with either backbone model outperforms all baselines.
Especially, under the distribution shift occuring in the FAR split, ACR is the only method
that is significantly better than random guessing.

1% 5% 10% 20%

FAR AVG FAR AVG FAR AVG FAR AVG

OC-SVM [Schölkopf et al., 1999] 49.6±0.2 62.6±0.1 49.6±0.2 62.6±0.1 49.5±0.1 62.7±0.1 49.5±0.1 62.6±0.1
IForest [Liu et al., 2012] 25.8±0.4 54.6±0.2 26.1±0.1 54.7±0.1 26.0±0.1 54.6±0.1 26.0±0.1 54.7±0.1
LOF [Breunig et al., 2000] 37.3±0.5 59.6±0.3 37.0±0.1 59.5±0.1 37.0±0.1 59.5±0.1 37.1±0.1 59.5±0.1

KNN [Ramaswamy et al., 2000] 45.0±0.3 70.8±0.1 45.3±0.2 70.9±0.1 45.1±0.1 70.8±0.1 45.2±0.1 70.8±0.1
DSVDD [Ruff et al., 2018] 34.6±0.3 62.3±0.2 34.7±0.1 62.5±0.1 34.7±0.2 62.5±0.1 34.7±0.1 62.5±0.1

AE [Aggarwal, 2017] 18.6±0.2 25.3±0.1 18.7±0.2 25.5±0.1 18.7±0.1 25.5±0.1 18.7±0.1 25.5±0.1
LUNAR [Goodge et al., 2022] 24.5±0.4 38.3±0.4 24.6±0.1 38.6±0.2 24.7±0.1 38.7±0.1 24.6±0.1 38.6±0.1
ICL [Shenkar and Wolf, 2021] 20.6±0.3 50.5±0.2 20.7±0.2 50.4±0.1 20.7±0.1 50.4±0.1 20.8±0.1 50.4±0.1

NTL [Qiu et al., 2021] 40.7±0.3 57.0±0.1 40.9±0.2 57.1±0.1 41.0±0.1 57.1±0.1 41.0±0.1 57.1±0.1
BERT-AD[Dragoi et al., 2022] 28.6±0.3 64.6±0.2 28.7±0.1 64.6±0.1 28.7±0.1 64.6±0.1 28.7±0.1 64.7±0.1

ACR-DSVDD (ours) 62.0±0.5 74.0±0.2 61.3±0.1 73.3±0.1 60.4±0.1 72.5±0.1 59.1±0.1 71.2±0.1
ACR-NTL (ours) 62.5±0.2 73.4±0.1 62.2±0.1 73.2±0.1 62.3±0.1 73.1±0.1 62.0±0.1 72.7±0.1

and NTL. ACR achieves a new SOTA of zero-shot anomaly detection performance on tabular

data with temporal distribution shifts.

Datasets. We evaluate all methods on two real-world tabular anomaly detection datasets

Anoshift [Dragoi et al., 2022] and Malware [Huynh et al., 2017] where data shifts over time.

Anoshift is a data traffic dataset for network intrusion detection collected over ten years

(2006-2015). We follow the preprocessing procedure and train/test split suggested in Dragoi

et al. [2022]. We train the model on normal data collected from 2006 to 2010 5, and test on

a mixture of normal and abnormal samples (with anomaly ratios varying from 1% to 20%)

collected from 2011 to 2015. We also apply similar protocols on Malware [Huynh et al., 2017],

a dataset for detecting malicious computer programs, and provide details in Appendix D.9.6.

Baselines. We compare with state-of-the art deep and shallow detectors for tabular anomaly

detection [Dragoi et al., 2022, Alvarez et al., 2022, Han et al., 2022] and study their per-

formance under test distribution shifts. The shallow anomaly detection baselines include

OC-SVM [Schölkopf et al., 1999], IForest [Liu et al., 2012], LOF [Breunig et al., 2000], and

KNN [Ramaswamy et al., 2000]. The deep anomaly detection baselines include DeepSVDD [Ruff

5validate on a mixture of normal and abnormal samples collected from 2006 to 2010
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et al., 2018], Autoencoder (AE) [Aggarwal, 2017], LUNAR [Goodge et al., 2022], ICL [Shenkar

and Wolf, 2021], NTL [Qiu et al., 2021], and BERT-AD [Dragoi et al., 2022]. We adopt the

implementations from PyOD [Han et al., 2022] or their official repositories.

Implementation Details. To formulate meta-training sets, we bin the data against their

timestamps (year for Anoshift and month for Malware) so each bin corresponds to one

training distribution Pj. The training tasks are mixed with normality ratio π = 0.8. To

create more training tasks, we augment the data using attribute permutations, resulting in

additional training distributions. These attribute permutations increase the variability of

training tasks and encourage the model to learn permutation-invariant features. At test

time, the attributes are not permuted. Details are in Appendix D.6.

Results. In Table 5.3, we report the results on Anoshift split into AVG (data from 2011 to

2015) and FAR (data from 2014 and 2015). The two splits show how the performance de-

grades from average (AVG) to when strong distribution shifts happen after a long time inter-

val (FAR). The results of Malware with varying ratios are in Table D.9 and Appendix D.9.6.

We report average AUC with standard deviation over five independent test runs. The results

on Anoshift and Malware show that ACR outperforms all baselines on all distribution-shifted

settings. Remarkably, ACR is the only method that clearly outperforms random guessing

on shifted datasets (the FAR split in Anoshift and the test split in Malware). All baselines

perform worse than random on shifted test sets even though they achieve strong results

when there are no distribution shifts (see results in Dragoi et al. [2022], Alvarez et al. [2022],

Han et al. [2022]). This worse-than-random phenomenon is also verified in the benchmark

paper AnoShift [Dragoi et al., 2022]. The reason is that in cyber-security applications (e.g.,

Anoshift and Malware), the attacks evolve adversarially. The anomalies (cyber attacks) are

intentionally updated to be as similar to the normal data to spoof the firewalls. That’s why

static anomaly detection methods like KNN flip their predictions during test time and achieve

worse than random performance. In terms of robustness, although ACR-DeepSVDD’s per-
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formance degrades a little (within 3%) when the anomaly ratio increases, ACR-NTL is fairly

robust to high anomaly ratios. The degradation is attributed to the fact that the majority of

normal samples get blurred as the anomaly ratio increase, leading to noisy batch statistics.

5.4.3 Ablation Studies

We perform several ablation studies in Appendix D.9.1, including 1) demonstrating the ben-

efit of the Meta Outlier Exposure loss, 2) studying the effect of batch normalization, and 3)

analyzing the effects of the batch sizes and the number of meta-training classes. To show that

Meta Outlier Exposure is a favorable option, we compare it against the one-class classifica-

tion loss and a fine-tuned version of ResNet152 on domain-specific training data. Table D.1

shows that our approach outperforms the two alternatives on two image datasets. To ana-

lyze the effect of batch normalization, we adjust batch normalization usage during training

and testing listed in Table D.2. More details and the studies on the batch size, the number

of meta-training classes, other normalization techniques (LayerNorm, InstanceNorm, and

GroupNorm), effects of batch norm position, and robustness of the mixing hyperparameter

π can be found in Appendix D.9.1.

5.5 Conclusion

We studied the problem of adapting a learned anomaly detection method to a new data

distribution, where the concept of “normality” changed. Our method is a zero-shot approach

and requires no training or fine-tuning to a new data set. We developed a new meta-training

approach, where we trained an off-the-shelf deep anomaly detection method on a (meta-)

set of interrelated datasets, adopting batch normalization in every layer, and used samples

from the meta set as either normal samples and anomalies, depending on the context. We

88



showed that the approach robustly generalized to new, unseen anomalies.

Our experiments on image and tabular data demonstrated superior zero-shot adaptation

performance when no foundation model was available. We stress that this is an important

result since many, if not most anomaly detection applications in the real world rely on

specialized datasets: medical images, data from industrial assembly lines, malware data,

network intrusion data etc. Existing foundation models often do not capture these data,

as we showed. Ultimately, our analysis shows that relatively small modifications to model

training (meta-learning, batch normalization, and providing artificial anomalies from the

meta-set) will enable the deployment of existing models in zero-shot anomaly detection

tasks.

Limitations & Societal Impacts Our method depends on the three assumptions listed

in Section 5.2. If those assumptions are broken, zero-shot adaptation cannot be assured.

Anomaly detectors are trained to detect atypical/under-represented data in a data set.

Therefore, deploying an anomaly detector, e.g., in video surveillance, may ultimately dis-

criminate against under-represented groups. Anomaly detection methods should therefore

be critically reviewed when deployed on human data.
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Chapter 6

Detecting and Adapting to Irregular

Distribution Shifts in Bayesian Online

Learning

This chapter is based on a published paper at NeurIPS 2021: Detecting and

Adapting to Irregular Distribution Shifts in Bayesian Online Learning by

Aodong Li, Alex Boyd, Padhraic Smyth, Stephan Mandt [Li et al., 2021a]

6.1 Introduction

Deployed machine learning systems are often faced with the problem of distribution shift,

where the new data that the model processes is systematically different from the data the

system was trained on [Zech et al., 2018, Ovadia et al., 2019]. Furthermore, a shift can

happen anytime after deployment, unbeknownst to the users, with dramatic consequences

for systems such as self-driving cars, robots, and financial trading algorithms, among many
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other examples.

Updating a deployed model on new, representative data can help mitigate these issues and

improve general performance in most cases. This task is commonly referred to as online or

incremental learning. Such online learning algorithms face a tradeoff between remembering

and adapting. If they adapt too fast, their performance will suffer since adaptation usually

implies that the model loses memory of previously encountered training data (which may

still be relevant to future predictions). On the other hand, if a model remembers too much,

it typically has problems adapting to new data distributions due to its finite capacity.

The tradeoff between adapting and remembering can be elegantly formalized in a Bayesian

online learning framework, where a prior distribution is used to keep track of previously

learned parameter estimates and their confidences. For instance, variational continual learn-

ing (VCL) [Nguyen et al., 2018a] is a popular framework that uses a model’s previous pos-

terior distribution as the prior for new data. However, the assumption of such continual

learning setups is usually that the data distribution is stationary and not subject to change,

in which case adaptation is not an issue.

This paper proposes a new Bayesian online learning framework suitable for non-stationary

data distributions. It is based on two assumptions: (i) distribution shifts occur irregularly

and must be inferred from the data, and (ii) the model requires not only a good mechanism to

aggregate data but also the ability to partially forget information that has become obsolete.

To solve both problems, we still use a Bayesian framework for online learning (i.e., letting

a previous posterior distribution inform the next prior); however, before combining the

previously learned posterior with new data evidence, we introduce an intermediate step.

This step allows the model to either broaden the previous posterior’s variance to reduce the

model’s confidence, thus providing more “room” for new information, or remain in the same

state (i.e., retain the unchanged, last posterior as the new prior).
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We propose a mechanism for enabling this decision by introducing a discrete “change vari-

able” that indicates the model’s best estimate of whether the data in the new batch is com-

patible with the previous data distribution or not; the outcome then informs the Bayesian

prior at the next time step. We further augment the scheme by performing beam search

on the change variable. This way, we are integrating change detection and Bayesian online

learning into a common framework.

We test our framework on a variety of real-world datasets that show concept drift, including

basketball player trajectories, malware characteristics, sensor data, and electricity prices. We

also study sequential versions of SVHN and CIFAR-10 with covariate drift, where we simu-

late the shifts in terms of image rotations. Finally, we study word embedding dynamics in an

unsupervised learning approach. Our approach leads to a more compact and interpretable

latent structure and significantly improved performance in the supervised experiments. Fur-

thermore, it is highly scalable; we demonstrate it on models with hundreds of thousands of

parameters and tens of thousands of feature dimensions.

Our paper is structured as follows: we review related work in Section 6.2, introduce our

methods in Section 6.3, report our experiments in Section 6.4, and draw conclusions in

Section 6.6.

6.2 Related Work

Our paper connects to Bayesian online learning, change detection, and switching dynamical

systems.

Bayesian Online and Continual Learning There is a rich existing literature on Bayesian

and continual learning. The main challenge in streaming setups is to reduce the impact of
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old data on the model which can be done by exponentially decaying old samples [Honkela

and Valpola, 2003, Sato, 2001, Graepel et al., 2010] or re-weighting them [McInerney et al.,

2015, Theis and Hoffman, 2015]. An alternative approach is to adapt the model posterior

between time steps, such as tempering it at a constant rate to accommodate new informa-

tion [Kulhavỳ and Zarrop, 1993, Kurle et al., 2020]. In contrast, continual learning typically

assumes a stationary data distribution and simply uses the old posterior as the new prior. A

scalable such scheme based on variational inference was proposed by [Nguyen et al., 2018a]

which was extended by several authors [Farquhar and Gal, 2018, Schwarz et al., 2018]. A

related concept is elastic weight consolidation [Kirkpatrick et al., 2017], where new model

parameters are regularized towards old parameter values.

All of these approaches need to make assumptions on the expected frequency and strengh

of change which are hard-coded in the model parameters (e.g., exponential decay rates,

re-weighting terms, prior strengths, or temperature choices). Our approach, in contrast,

detects change based on a discrete variable and makes no assumption about its frequency.

Other approaches assume situations where data arrive in irregular time intervals, but are

still concerned with static data distributions [Titsias et al., 2019, Lee et al., 2020, Rao et al.,

2019].

Change Point Models There is also a rich history of models for change detection. A pop-

ular class of change point models includes “product partition models” [Barry and Hartigan,

1992] which assume independence of the data distribution across segments. In this regime,

Fearnhead [2005] proposed change detection in the context of regression and generalized it to

online inference [Fearnhead and Liu, 2007]; Adams and MacKay [2007] described a Bayesian

online change point detection scheme (BOCD) based on conditional conjugacy assumptions

for one-dimensional sequences. Other work generalized change detection algorithms to mul-

tivariate time series [Xuan and Murphy, 2007, Xie et al., 2012] and non-conjugate Bayesian
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inference [Saatçi et al., 2010, Knoblauch and Damoulas, 2018, Turner et al., 2013, Knoblauch

et al., 2018].

Our approach relies on jointly inferring changes in the data distribution while carrying out

Bayesian parameter updates for adaptation. To this end, we detect change in the high-

dimensional space of model (e.g., neural network) parameters, as opposed to directly in the

data space. Furthermore, a detected change only partially resets the model parameters, as

opposed to triggering a complete reset.

Titsias et al. [2020] proposed change detection to detect distribution shifts in sequences

based on low-dimensional summary statistics such as a loss function; however, the proposed

framework does not use an informative prior but requires complete retraining.

Switching Linear Dynamical Systems Since our approach integrates a discrete change

variable, it is also loosely connected to the topic of switching linear dynamical systems.

Linderman et al. [2017] considered recurrent switching linear dynamical systems, relying on

Bayesian conjugacy and closed-form message passing updates. Becker-Ehmck et al. [2019]

proposed a variational Bayes filtering framework for switching linear dynamical systems.

Murphy [2012] and Barber [2012] developed an inference method using a Gaussian sum

filter. Instead, we focus on inferring the full history of discrete latent variable values instead

of just the most recent one.

Bracegirdle and Barber [2011] introduce a reset variable that sets the continuous latent vari-

able to an unconditional prior. It is similar to our work, but relies on using low-dimensional,

tractable models. Our tempering prior can be seen as a partial reset, augmented with beam

search. We also extend the scope of switching dynamical systems by integrating them into

a supervised learning framework.
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6.3 Methods

Overview Section 6.3.1 introduces the setup and the novel model structure under consid-

eration. Section 6.3.2 introduces an exact inference scheme based on beam search. Finally,

we introduce the variational inference extension for intractable likelihood models in Sec-

tion 6.3.3.

6.3.1 Problem Assumptions and Structure

We consider a stream of data that arrives in batches xt at discrete times t.1 For supervised

setups, we consider pairs of features and targets (xt,yt), where the task is to model p(yt|xt).

An example model could be a Bayesian neural network, and the parameters zt could be the

network weights. For notational simplicity we focus on the unsupervised case, where the

task is to model p(xt) using a model p(xt|zt) with parameters zt that we would like to tune

to each new batch.2 We then measure the prediction error either on one-step-ahead samples

or using a held-out test set.

Furthermore, we assume that while the xt are i.i.d. within batches, they are not necessarily

i.i.d. across batches as they come from a time-varying distribution pt(xt) (or pt(xt,yt) in

the supervised cases) which is subject to distribution shifts. We do not assume whether

these distribution shifts occur instantaneously or gradually. The challenge is to optimally

adapt the parameters zt to each new batch while borrowing statistical strength from previous

batches.

As follows, we will construct a Bayesian online learning scheme that accounts for changes in

the data distribution. For every new batch of data, our scheme tests whether the new batch

is compatible with the old data distribution, or more plausible under the assumption of a

1In an extreme case, it is possible for a batch to include only a single data point.
2In supervised setups, we consider a conditional model p(yt|zt,xt) with features xt and targets yt.
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change. To this end, we employ a binary “change variable” st, with st = 0 for no detected

change and st = 1 for a detected change. Our model’s joint distribution factorizes as follows:

p(x1:T , z1:T , s1:T ) =
T∏
t=1

p(xt|zt)p(zt|st; τt)p(st). (6.1)

We assumed a factorized Bernoulli prior
∏

t p(st) over the change variable: an assumption

that will simplify the inference, but which can be relaxed. As a result, our model is fully-

factorized over time, however, the model can still capture temporal dependencies through

the informative prior p(zt|st; τt). Temporal information enters this prior through certain

sufficient statistics τt that depend on properties of the previous time-step’s approximate

posterior.

In more detail, τt is a functional on the previous time step’s approximate posterior, τt =

F [p(zt−1|x1:t−1, s1:t−1)].
3 Throughout this paper, we will use a specific form of τt, namely

capturing the previous posterior’s mean and variance.4 More formally,

τt ≡ {µt−1,Σt−1} ≡ {Mean,Var}[zt−1|x1:t−1, s1:t−1]. (6.2)

Based on this choice, we define the conditional prior as follows:

p(zt|st; τt) =


N (zt;µt−1,Σt−1) for st = 0

N (zt;µt−1, β
−1Σt−1) for st = 1

(6.3)

Above, 0 < β < 1 is a hyperparameter referred to as inverse temperature5. If no change

is detected (i.e., st = 0), our prior becomes a Gaussian distribution centered around the

3Subscripts 1 : t− 1 indicates the integers from 1 to t− 1 inclusively.
4In later sections, we will use a Gaussian approximation to the posterior, but here it is enough to assume

that these quantities are computable.
5In general it only requires β > 0 to be inverse temperature. We further assume β < 1 in this paper as

this value interval broadens and weakens the previous posterior. See the following paragraphs.
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previous posterior’s mean and variance. In particular, if the previous posterior was already

Gaussian, it becomes the new prior. In contrast, if a change was detected, the broadened

posterior becomes the new prior.

For as long as no changes are detected (st = 0), the procedure results in a simple Bayesian

online learning procedure, where the posterior uncertainty shrinks with every new observa-

tion. In contrast, if a change is detected (st = 1), an overconfident prior would be harmful for

learning as the model needs to adapt to the new data distribution. We therefore weaken the

prior through tempering. Given a temperature β, we raise the previous posterior’s Gaussian

approximation to the power β, renormalize it, and then use it as a prior for the current time

step.

The process of tempering the Gaussian posterior approximation can be understood as remov-

ing equal amounts of information in any direction in the latent space. To see this, let z be a

multivariate Gaussian with covariance Σ and u be a unit direction vector. Then tempering

removes an equal amount of information regardless of u, Hu = 1
2
log(2πeu⊤Σu) − 1

2
log β,

erasing learned information to free-up model capacity to adjust to the new data distribution.

See Supplement E.2 for more details.

Connection to Sequence Modeling Our model assumptions have a resemblance to time

series modeling: if we replaced τt with zt−1, we would condition on previous latent states

rather than posterior summary statistics. In contrast, our model still factorizes over time

and therefore makes weaker assumptions on temporal continuity. Rather than imposing

temporal continuity on a data instance level, we instead assume temporal continuity at a

distribution level.

Connection to Changepoint Modeling. We also share similar assumptions with the

changepoint literature [Barry and Hartigan, 1992]. However, in most cases, these models
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Figure 6.1: a) A single inference step for the latent mean in a 1D linear Gaussian model.
Starting from the previous posterior (a1), we consider both its broadened and un-broadened
version (a2). Then the model absorbs the observation and updates the priors (a3). b)
Sparse inference via greedy search (b1) and variational beam search (b2). b) Solid lines
indicate fitted mean µt over time steps t with boxes representing ±1σ error bars. See more
information about the pictured “shy” variant in Supplement E.3.

don’t assume an informative prior, effectively not taking into account any sufficient statistics

τt. This forces these models to re-learn model parameters from scratch after a detected

change, whereas our approach allows for some transfer of information before and after the

distribution shift.

6.3.2 Exact Inference

Before presenting a scalable variational inference scheme in our model, we describe an exact

inference scheme when everything is tractable, i.e., the special case of linear Gaussian models.

According to our assumptions, the distribution shifts occur at discrete times and are un-

observed. Therefore, we have to infer them from the observed data and adapt the model

accordingly. Recall the distribution shift is represented by the binary latent variable st at

time step t. Inferring the posterior over st at t will thus notify us how likely the change

happens under the model assumption. As follows, we show the posterior of st is simple in

a tractable model and bears similarity with a likelihood ratio test. Suppose we moved from

time step t− 1 to step t and observed new data xt. Denote the history decisions and obser-

vations by {s1:t−1,x1:t−1}, which enters through τt. Then by Bayes rule, the exact posterior
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over st is again a Bernoulli, p(st|s1:t−1,x1:t) = Bern(st;m), with parameter

m = σ

(
log

p(xt|st=1, s1:t−1,x1:t−1)p(st=1)

p(xt|st=0, s1:t−1,x1:t−1)p(st=0)

)
= σ

(
log

p(xt|st=1, s1:t−1,x1:t−1)

p(xt|st=0, s1:t−1,x1:t−1)
+ ξ0

)
.

(6.4)

Above, σ is the sigmoid function, and ξ0=log p(st=1)− log p(st=0) are the log-odds of the

prior p(st) and serves as a bias term. p(xt|s1:t,x1:t−1) =
∫
p(xt|zt)p(zt|st; τt)dzt is the model

evidence. Overall, m specifies the probability of st = 1 given x1:t and s1:t−1.

Eq. 6.4 has a simple interpretation as a likelihood ratio test: a change is more or less likely

depending on whether or not the observations xt are better explained under the assumption

of a detected change.

We have described the detection procedure thus far, now we turn to the adaptation procedure.

To adjust the model parameters zt to the new data given a change or not, we combine the

likelihood of xt with the conditional prior (Eq. 6.3). This corresponds to the posterior of

zt, p(zt|x1:t, s1:t) = p(xt|zt)p(zt|st;τt)
p(xt|s1:t,x1:t−1)

, obtained by Bayes rule. The adaptation procedure is

illustrated in Fig. 6.1 (a), where we show how a new observation modifies the conditional

prior of model parameters.

As a result of Eq. 6.4, we obtain the marginal distribution of zt at time t as a binary

mixture with mixture weights p(st = 1|s1:t−1,x1:t) = m and p(st = 0|s1:t−1,x1:t) = 1 − m:

p(zt|s1:t−1,x1:t) = mp(zt|st=1, s1:t−1,x1:t) + (1−m)p(zt|st=0, s1:t−1,x1:t).

Exponential Branching We note that while we had originally started with a posterior

p(zt−1|x1:t−1, s1:t−1) at the previous time, our inference scheme resulted in p(zt|s1:t−1,x1:t)

being a mixture of two components as it branches over two possible states.6 When we iterate,

we encounter an exponential branching of possibilities, or hypotheses over possible sequences

6See also Fig. E.1 in Supplement E.3.
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of regime shifts s1:t. To still carry out the filtering scheme efficiently, we need a truncation

scheme, e.g., approximate the bimodal marginal distribution by a unimodal one. As follows,

we will discuss two methods—greedy search and beam search—to achieve this goal.

Greedy Search In the simplest “greedy” setup, we train the model in an online fashion by

iterating over time steps t. For each t, we update a truncated distribution via the following

three steps:

1. Compute the conditional prior p(zt|st; τt) (Eq. 6.3) based on p(zt−1|x1:t−1, s1:t−1) and eval-

uate the likelihood p(xt|zt) upon observing data xt.

2. Infer whether a change happens or not using the posterior over st (Eq. 6.4) and adapt the

model parameters zt for each case.

3. Select st ∈ {0, 1} that has larger posterior probability p(st|s1:t−1,x1:t) and its correspond-

ing model hypothesis p(zt|s1:t,x1:t) (i.e., make a “hard” decision over st with a threshold

of 1
2
).

The above filtering algorithm iteratively updates the posterior distribution over zt each time

it observes new data xt. In the version of greedy search discussed above, the approach

decides immediately, i.e., before observing subsequent data points, whether a change in zt

has occurred or not in step 3. (Please note the decision is irrelevant to history, as opposed to

the beam search described below.) We illustrate greedy search is illustrated in Fig. 6.1 (b1)

where VGS is the variational inference counterpart.

Beam Search A greedy search is prone to missing change points in data sets with a low

signal/noise ratio per time step because it cannot accumulate evidence for a change point

over a series of time steps. The most obvious improvement over greedy search that has the
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ability to accumulate evidence for a change point is beam search. Rather than deciding

greedily whether a change occurred or not at each time step, beam search considers both

cases in parallel as it delays the decision of which one is more likely (see Fig. 6.1 (b2)

and Fig. 6.2 (left) for illustration). The algorithm keeps track of a fixed number K > 1

of possible hypotheses of change points. For each hypothesis, it iteratively updates the

posterior distribution as a greedy search. At time step t, every potential continuation of the

K sequences is considered with st ∈ {0, 1}, thus doubling the number of histories of which

the algorithm has to track. To keep the computational requirements bounded, beam search

thus discards half of the sequences based on an exploration-exploitation trade-off.

Beam search simultaneously tracks multiple hypotheses necessitating the differentiation be-

tween them. In greedy search, we can distinguish hypotheses based on the most recent st’s

value since only two hypotheses are considered at each step. However, beam search considers

at most 2K hypotheses each step, which exceeds the capacity of a single st. We thus resort

to the decision history s1:t−1 to further tell hypotheses apart. The weight p(s1:t|x1:t) of each

hypothesis can be computed recursively:

p(s1:t|x1:t) ∝ p(st,xt|s1:t−1,x1:t−1)p(s1:t−1|x1:t−1)

∝ p(st|s1:t−1,x1:t)p(s1:t−1|x1:t−1) (6.5)

where the added information p(st|s1:t−1,x1:t) at step t is the posterior of st (Eq. 6.4). This

suggests the “correction in hindsight” nature of beam search: re-ranking the sequence s1:t

as a whole at time t indicates the ability to correct decisions before time t.

Another ingredient is a set Bt, which contains the K most probable “histories” s1:t at time

t. From time t− 1 to t, we evaluate the continuation of each hypothesis s1:t−1 ∈ Bt−1 as the

first two steps of greedy search, leading to 2K hypotheses. We then compute the weight of

each hypothesis using Eq. 6.5. Finally, select top K hypotheses into Bt and re-normalize the
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weights of hypotheses in Bt.

This concludes the recursion from time t−1 to t. With p(zt|s1:t,x1:t) and p(s1:t|x1:t), we can

achieve any marginal distribution of zt, such as p(zt|x1:t) =
∑

s1:t
p(zt|s1:t,x1:t)p(s1:t|x1:t).

Beam Search Diversification Empirically, we find that the naive beam search procedure

does not realize its full potential. As commonly encountered in beam search, histories over

change points are largely shared among all members of the beam. To encourage diverse

beams, we constructed the following simple scheme. While transitioning from time t−1 to t,

every hypothesis splits into two scenarios, one with st=0 and one with st=1, resulting in 2K

temporary hypotheses. If two resulting hypotheses only differ in their most recent st-value,

we say that they come from the same “family.” Each member among the 2K hypotheses

is ranked according to its posterior probability p(s1:t|x1:t) in Eq. 6.5. In a first step, we

discard the bottom 1/3 of the 2K hypotheses, leaving 4/3K hypotheses (we always take

integer multiples of 3 for K). To truncate the beam size from 4/3K down to K, we rank

the remaining hypotheses according to their posterior probability and pick the top K ones

while also ensuring that we pick a member from every remaining family. The diversification

scheme ensures that underperforming families can survive, leading to a more diverse set of

hypotheses. We found this beam diversification scheme to work robustly across a variety of

experiments.

6.3.3 Variational Inference

In most practical applications, the evidence term is not available in closed-form, leaving

Eq. 6.4 intractable to evaluate. However, we can follow a structured variational infer-

ence approach [Wainwright and Jordan, 2008, Hoffman and Blei, 2015, Zhang et al., 2018],

defining a joint variational distribution q(zt, st|s1:t−1) = q(st|s1:t−1)q(zt|s1:t), to approximate
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p(zt, st|s1:t−1,x1:t) = p(st|s1:t−1,x1:t)p(zt|s1:t,x1:t). This procedure completes the detection

and adaptation altogether.

One may wonder how the exact inference schemes for st and zt are modified in the structured

variational inference scenario. In Supplement E.1, we derive the solution for q(zt, st|s1:t−1).

Surprisingly we have the following closed-form update equation for q(st|s1:t−1) that bears

strong similarities to Eq. 6.4. The new scheme simply replaces the intractable evidence term

with a lower bound proxy – optimized conditional evidence lower bound L(q∗|s1:t) (CELBO,

defined later), giving the update

q∗(st|s1:t−1) = Bern(st;m); m = σ
(
1
T
L(q∗|st=1, s1:t−1)− 1

T
L(q∗|st=0, s1:t−1) + ξ0

)
. (6.6)

Above, we introduced a parameter T ≥ 1 (not to be confused with β) to optionally downweigh

the data evidence relative to the prior (see Experiments Section 3.4).

Now we define the CELBO. To approximate p(zt|s1:t,x1:t) by variational distribution q(zt|s1:t),

we minimize the KL divergence between q(zt|s1:t) and p(zt|s1:t,x1:t), leading to

q∗(zt|s1:t) = argmax
q(zt|s1:t)∈Q

L(q|s1:t), (6.7)

L(q|s1:t) := Eq[log p(xt|zt)]−KL(q(zt|s1:t)||p(zt|st; τt)).

Q denotes the variational family (i.e., factorized normal distributions), and we term L(q|s1:t)

CELBO.

The greedy search and beam search schemes also apply to variational inference. We name

them variational greedy search (VGS, VBS (K=1)) and variational beam search (VBS)

(Fig. 6.1 (b)).
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Algorithm Complexity VBS’s computational time and space complexity scale linearly

with the beam size K. As such, its computational cost is only about 2K times larger than

greedy search7. Furthermore, our algorithm’s complexity is O(1) in the sequence length t. It

is not necessary to store sequences s1:t as they are just symbols to distinguish hypotheses. The

only exception to this scaling would be an application asking for the most likely changepoint

sequence in hindsight. In this case, the changepoint sequence (but not the associated model

parameters) would need to be stored, incurring a cost of storing exactly K × T binary

variables. This storage is, however, not necessary when the focus is only on adapting to

distribution shifts.

6.4 Experiments

Overview The objective of our experiments is to show that, compared to other methods,

variational beam search (1) better reacts to different distribution shifts, e.g., concept drifts

and covariate drifts, while (2) revealing interpretable and temporally sparse latent struc-

ture. We experiment on artificial data to demonstrate the “correct in hindsight” nature of

VBS (Section 6.4.1), evaluate online linear regression on three datasets with concept shifts

(Section 6.4.3), visualize the detected change points on basketball player movements, demon-

strate the robustness of the hyperparameter β (Section 6.4.3), study Bayesian deep learning

approaches on sequences of transformed images with covariate shifts (Section 6.4.4), and

study the dynamics of word embeddings on historical text corpora (Section 6.4.5). Unstated

experimental details are in Supplement E.7.

7This also applies to the baselines “Bayesian Forgetting” (BF) and Variational Continual Learning”
(VCL) introduced in Section 6.4.2.
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Figure 6.2: a) Inferring the mean (black line) of a time-varying data distribution (black sam-
ples) with VBS. The initially unlikely hypothesis begins dominating over the other at step 23.
b) Basketball player tracking: ablation study over β for VBS while fixing other parameters.
We used greedy search (K=1) and run the model under different β values. Increasing β leads
to more sensitivity to changes in data, leading to more detected changepoints. c) Document
dating error as a function of model sparsity, measured in average words update per year. As
semantic changes get successively sparsified by varying ξ0 (Eq. 6.6), VBS maintains a better
document dating performance compared to baselines.

6.4.1 An Illustrative Example

We first aim to dynamically demonstrate the “correction in hindsight” nature of VBS based

on a simple setup involving artificial data. To this end, we formulated a problem of tracking

the shifting mean of data samples. This shifting mean is a piecewise-constant step function

involving two steps (seen as in black in Fig. 6.2 (a)), and we simulated noisy data points

centered around the mean. We then used VBS with beam size K = 2 to fit the same latent

mean model that generated the data. The color indicates the ranking among both hypotheses

at each moment in time (blue as “more likely” vs. orange as “less likely”). While hypothesis

1 assumes a single distribution shift (initially blue), hypothesis 2 (initially orange) assumes

two shifts. We see that hypothesis 1 is initially more likely, but gets over-ruled by the better

hypothesis 2 later (note the color swap at step 23).

6.4.2 Baselines

In our supervised experiments (Section 6.4.3 and Section 6.4.4), we compared VBS against

adaptive methods, Bayesian online learning baselines, and independent batch learning base-
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lines.8 Among the adaptive methods, we formulated a supervised learning version of Bayesian

online changepoint detection (BOCD) [Adams and MacKay, 2007].9 We also implemented

Bayesian forgetting (BF) [Kurle et al., 2020] with convolutional neural networks for proper

comparisons. Bayesian online learning baselines include variational continual learning (VCL)

[Nguyen et al., 2018a] and Laplace propagation (LP) [Smola et al., 2003, Nguyen et al.,

2018a]. Finally, we also adopt a trivial baseline of learning independent regressors/classifiers

on each batch in both a Bayesian and non-Bayesian fashion. For VBS and BOCD we always

report the most dominant hypothesis. In unsupervised learning experiments, we compared

against the online version of word2vec [Mikolov et al., 2013] with a diffusion prior, dynamic

word embeddings [Bamler and Mandt, 2017].

6.4.3 Bayesian Linear Regression Experiments

As a simple first version of VBS, we tested an online linear regression setup for which the

posterior can be computed analytically. The analytical solution removes the approximation

error of the variational inference procedure as well as optimization-related artifacts since

closed-form updates are available. Detailed derivations are in Supplement E.4.

Real Datasets with Concept Shifts. We investigated three real-world datasets with

concept shifts :

• Malware This dataset is a collection of 100K malignous and benign computer programs,

collected over 44 months [Huynh et al., 2017]. Each program has 482 counting features and

a real-valued probability p ∈ [0, 1] of being malware. We linearly predicted the log-odds.

8As a reminder, a “batch” at discrete time t is the dataset available for learning; on the other hand, a
“mini-batch” is a small set of data used for computing gradients for stochastic gradient-based optimization.

91) Although BOCD is mostly applied for unsupervised learning, its application in supervised learning
and its underlying model’s adaptation to change points are seldom investigated. 2) When the model is non-
conjugate, such as Bayesian neural networks, we approximate the log evidence log p(y|x) by the evidence
lower bound.
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Table 6.1: Evaluation of Different Datasets

Models CIFAR-10 SVHN Malware SensorDrift Elec2 NBAPlayer

(Accuracy)↑ (MCAE 10−2)↓ (LogLike 10−2)↑

VBS (K=6)∗ 69.2±0.9 89.6±0.5 11.61 10.53 7.28 29.49±3.12
VBS (K=3)∗ 68.9±0.9 89.1±0.5 11.65 10.71 7.28 29.22±2.63
VBS (K=1)∗ 68.2±0.8 88.9±0.5 11.65 10.86 7.27 29.25±2.59

BOCD (K=6)♯ 65.6±0.8 88.2±0.5 12.93 24.34 12.49 22.96±7.42

BOCD (K=3)♯ 67.3±0.8 88.8±0.5 12.74 24.31 12.49 20.93±7.83

BF¶ 69.8±0.8 89.9±0.5 11.71 11.40 13.37 24.17±2.29

VCL† 66.7±0.8 88.7±0.5 13.27 24.90 16.59 3.48±25.53

LP‡ 62.6±1.0 82.8±0.9 13.27 24.90 16.59 3.48±25.53

IBS 63.7±0.5 85.5±0.7 16.6 27.71 12.48 -44.87±16.88

IBS (Bayes) 64.5±0.3 87.8±0.1 16.6 27.71 12.48 -44.87±16.88

∗ proposed, ♯ [Adams and MacKay, 2007], ¶ [Kurle et al., 2020]
† [Nguyen et al., 2018], ‡ [Smola et al., 2003], S Independent Batch

Figure 6.3: Sparse word mean-
ing changes in “simulation” and
“atom”.

• SensorDrift A collection of chemical sensor readings [Vergara et al., 2012]. We predicted

the concentration level of gas acetaldehyde, whose 2,926 samples and 128 features span 36

months.

• Elec2 The dataset contains the electricity price over three years of two Australian states

[Harries and Wales, 1999]. While the original problem formulation used a majority vote to

generate 0-1 binary labels on whether the price increases or not, we averaged the votes out

into real-valued probabilities and predicted the log-odds instead. We had 45,263 samples

and 14 features.

At each step, only one data sample is revealed to the regressor. We evaluated all methods

with one-step-ahead absolute error10 and computed the mean cumulative absolute error

(MCAE) at every step. In Table 6.1, we didn’t report the variance of MCAEs since there is

no stochastic optimization noise. Table 6.1 shows that VBS has the best average of MCAEs

among all methods. We also reported the running performance in Supplement E.7.2, where

other experimental details are available as well.

10We measured the error in the probability space for classification problems (Malware and Elec2) and the
error in the data space for regression problems (SensorDrift).
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Basketball Player Tracking. We explored a collection of basketball player movement

trajectories.11 Each trajectory has wide variations in player velocities. We treated the

trajectories as time series and used a Bayesian transition matrix to predict the next position

xt+1 based on the current position xt. This matrix is learned and adapted on the fly for each

trajectory.

We first investigated the effect of the temperature parameter β in our approach. To this end,

we visualized the detected change points on an example trajectory. We used VBS (K=1,

greedy search) and compared different values of β in Fig. 6.2 (b). The figure shows that the

larger β, the more change points are detected; the smaller β, the detected change points get

sparser, i.e., β determines the model’s sensitivity to changes. This observation confirms the

assumption that β controls the assumed strength of distribution shifts.

In addition, the result also implies the robustness of poorly selected βs. When facing an

abrupt change in the trajectory, the regressor has two adapt options based on different βs

– make a single strong adaptation or make a sequence of weak adaptations – in either case,

the model ends up adapting itself to the new trajectory. In other words, people can choose

different β for a specific environment, with a trade-off between adaptation speed and the

erased amount of information.

Finally, regarding the quantitative results, we evaluated all methods with the time-averaged

predictive log-likelihood on a reserved test set in Table 6.1. Our proposed methods yield

better performance than the baselines. In Supplement E.6, we provide more results of change

point detection.

11https://github.com/linouk23/NBA-Player-Movements
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6.4.4 Bayesian Deep Learning Experiments

Our larger-scale experiments involve Bayesian convolutional neural networks trained on

sequential batches for image classification using CIFAR-10 [Krizhevsky et al., 2009] and

SVHN [Netzer et al., 2011]. Every few batches, we manually introduce covariate shifts

through transforming all images globally by combining rotations, shifts, and scalings. Each

transformation is generated from a fixed, predefined distribution (see Supplement E.7.3).

The experiment involved 100 batches in sequence, where each batch contained a third of

the transformed datasets. We set the temperature β=2/3 and set the CELBO temperature

T =20, 000 (in Eq. 6.6) for all supervised experiments.

Table 6.1 shows the performances of all considered methods and both data sets, averaged

across all of the 100 batches. Within their confidence bounds, VBS and BF have comparable

performances and outperform the other baselines. We conjecture that the strong performance

of BF can be attributed to the fact that our imposed changes are still relatively evenly spaced

and regular. The benefit of beam search in VBS is evident, with larger beam sizes consistently

performing better.

6.4.5 Unsupervised Experiments

Our final experiment focused on unsupervised learning. We intended to demonstrate that

VBS helps uncover interpretable latent structure in high-dimensional time series by detecting

change points. We also showed that the detected change points help reduce the storage size

and maintain salient features.

Towards this end, we analyzed the semantic changes of individual words over time in an

unsupervised setup. We used Dynamic Word Embeddings (DWE) [Bamler and Mandt,

2017] as our base model. The model is an online version of Word2Vec [Mikolov et al., 2013].
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Word2Vec projects a vocabulary into an embedding space and measures word similarities by

cosine distance in that space. DWE further imposes a time-series prior on the embeddings

and tracks them over time. For our proposed approach, we augmented DWE with VBS,

allowing us to detect the changes of words meaning.

We analyzed three large time-stamped text corpora, all of which are available online. Our

first dataset is the Google Books corpus [Michel et al., 2011] in n-grams form. We focused on

1900 to 2000 with sub-sampled 250M to 300M tokens per year. Second, we used the Congres-

sional Records dataset [Gentzkow et al., 2018], which has 13M to 52M tokens per two-year

period from 1875 to 2011. Third, we used the UN General Debates corpus [Jankin Mikhaylov

et al., 2017], which has about 250k to 450k tokens per year from 1970 to 2018.

Our first experiments demonstrate VBS provides more interpretable step-wise word meaning

shifts than the continuous shifts (DWE). Due to page limits, in Fig. 6.3 we selected two

example words and their three nearest neighbors in the embedding space at different years.

The evolving nearest neighbors reflect a semantic change of the words. We plotted the

most likely hypothesis of VBS in blue and the continuous-path baseline (DWE) in grey.

While people can roughly tell the change points from the continuous path, the changes

are surrounded by noisy perturbations and sometimes submerged within the noise. VBS,

on the other hand, makes clear decisions and outputs explicit change points. As a result,

VBS discovers that the word “atom” changes its meaning from “element” to “nuclear”

in 1945–the year when two nuclear bombs were detonated; word “simulation” changes its

dominant context from “deception” to “programming” with the advent of computers in the

1950s. Besides interpretable changes points, VBS provides multiple plausible hypotheses

(Supplement E.7.4).

Our second experiments exemplify the usefulness of the detected sparse change points, which

lead to sparse segments of embeddings. The usefulness comes in two folds: 1) while allevi-

ating the burden of the disk storage by storing one value for each segment, 2) the sparsity
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preserves the salient features of the original model. To illustrate these two aspects, we design

a document dating task that exploits the probabilistic interpretation of word embeddings.

The idea is to assign a test document to the year whose embeddings provide the highest

likelihood. In Figure 6.2 (c), we measure the model sparsity on the x-axis with the average

updated embeddings per step (The maximum is 10000, which is the vocabulary size). The

feature preservation ability is measured by document dating accuracy on the y-axis. We

adjust the prior log-odds ξ0 (Eq. 6.6) to have successive models with different change point

sparsity and then measure the dating accuracy. We also designed an oracle baseline named

“binning” (grey, Supplement E.7.4). For VBS, we show the dominant hypothesis (blue) as

well as the subleading hypotheses (orange). The most likely hypothesis of VBS outperforms

the baseline, leading to higher document dating precision at much smaller disk storage.

6.5 Discussion

Beyond Gaussian Posterior Approximations. While the Gaussian approximation is

simple and is widely used (and broadly effective) in practice in Bayesian inference [e.g.,

Murphy [2012], pp.649-662], our formulation does not rule out the extensions to exponential

families. τt in Eq. 6.2 could be generalized by reading off sufficient statistics of the previous

approximate posterior. To this end, we need a sufficient statistic that is associated with some

measure of entropy or variance that we broaden after each detected change. For example,

the Gamma distribution can broaden its scale, and for the categorical distribution, we can

increase its entropy/temperature. More intricate (e.g. multimodal) possible alternatives for

posterior approximation are also possible, for example, Gaussian mixtures.
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6.6 Conclusions

We introduced variational beam search: an approximate inference algorithm for Bayesian

online learning on non-stationary data with irregular changes. Our approach mediates the

tradeoff between a model’s ability to memorize past data while still being able to adapt

to change. It is based on a Bayesian treatment of a given model’s parameters and aimed

at tuning them towards the most recent data batch while exploiting prior knowledge from

previous batches. To this end, we introduced a sequence of a discrete change variables whose

value controlled the way we regularized the model. For no detected change, we regularized

the new learning task towards the previously learned solution; for a detected change, we

broadened the prior to give room for new data evidence. This procedure is combined with

beam search over the discrete change variables. In different experiments, we showed that

our proposed model (1) achieved lower error in supervised setups, and (2) revealed a more

interpretable and compressible latent structure in unsupervised experiments.

Broader Impacts. As with many machine learning algorithms, there is a danger that more

automation could potentially result in unemployment. Yet, more autonomous adaptation to

changes will enhance the safety and robustness of deployed machine learning systems, such

as self-driving cars.
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Chapter 7

Conclusion

7.1 Technical Summary and Conclusion

Chapters 3 to 5 delve into deep anomaly detection across different scenarios, while Chapter 6

introduces a generic framework for adapting to sequential distribution shifts in supervised

and unsupervised learning contexts. We generalize the outlier exposure idea to various

settings as shown in the proposed objective functions in Equations (7.1) to (7.3). As follows,

we summarize the technical contributions of each chapter.

Chapter 3 Contaminated data–training data containing unnoticed anomalies–is prevalent in the

real world. We proposed a new unsupervised approach, Latent Outlier Exposure

(LOE), to exploit contaminated data to train a deep anomaly detector. LOE is com-

patible with various data types and loss functions.

We denoted the loss function used by an anomaly detector by Lθ
n, intended to be

minimized on normal data. For most loss function instances, we can design a com-

plementary loss Lθ
a on abnormal data which shares the parameters with Lθ

n, aimed at
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increasing the values of Lθ
n on those data. For example, Lθ

a = 1/Lθ
n. By optimizing

the two loss functions, we explicitly ensured Lθ
n is low on normal data while high on

abnormal data. Hendrycks et al. [2018], Ruff et al. [2019] reported the efficacy of the

two complementary losses in supervised anomaly detection settings. The supervised

setting makes use of the following objective function:

min
θ
L(θ) = 1

N

N∑
i=1

(1− yi)Lθ
n(xi) + yiLθ

a(xi)

where the training dataset comprises labeled data points {(xi, yi)}Ni=1. yi := y(xi) ∈

{0 := “normal”, 1 := “abnormal”} is a binary label indicating whether or not xi is

normal.

Instead of supervised learning, we considered an unlabeled training dataset D :=

{xi}Ni=1 corrupted by unnoticed anomalies with a corruption ratio α (see the gener-

ating distribution in Equation (2.1)). The dataset came with no anomaly labels. To

represent which datum is potentially anomalous data, we adopted a binary latent vari-

able ỹi ∈ {0 := “normal”, 1 := “abnormal”}. We stressed that the whole model may

not be probabilistic. We proposed to solve the constrained optimization problem below

to simultaneously learn the model parameters and infer the latent anomaly labels

min
ỹ

min
θ
L(θ, ỹ) = 1

N

N∑
i=1

(1− ỹi)Lθ
n(xi) + ỹiLθ

a(xi) (7.1)

such that ỹ ∈ {0, 1}N and
N∑
i=1

ỹi = αN

where α is a hyperparameter, and the constraint guarantees the inferred anomalies

constitute a ratio α of the whole dataset.

We further derived a block coordinate descent algorithm to solve the constrained op-

timization problem Equation (7.1). The algorithm iteratively optimizes the objective

function with respect to θ and ỹ – updating one when fixing the other. We demon-
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strated the efficacy of our approach LOE on tabular, image, and video data with

multiple backbone models.

Chapter 4 In general, machine learning algorithms, including LOE presented in Chapter 4, cannot

correctly classify all data. Further improving the anomaly detection performance needs

human feedback. One solution is to actively request some ground-truth anomaly labels

from experts. In this direction, we addressed two questions: i) how do we select data

points to label? ii) How do we integrate the acquired label information into the model

training?

i) How do we select data points to label? We derived a theoretical condition about

when the anomaly scores of the labeled data can generalize to unlabeled data. The

condition suggests a diverse selection strategy. To this end, we proposed to use the

initialization algorithm of k-means++. We made all selections at once, given a budget.

ii) How do we integrate the acquired label information into the model training? Once

we collected the labeled data, we proposed to minimize the following semi-supervised

outlier exposure loss (SOEL) combined with LOE to incorporate the labeling informa-

tion,

min
ỹ

min
θ
L(θ, ỹ) = 1

|Q|
∑
j∈Q

(
yjLθ

a(xj) + (1− yj)Lθ
n(xj)

)
+

1

|U|
∑
i∈U

(
ỹiLθ

a(xi) + (1− ỹi)Lθ
n(xi)

)
(7.2)

such that ỹ ∈ {0, 1}N and
∑
i∈U

ỹi +
∑
j∈Q

yj = αN

Q denotes the indices of the selected data for labeling, where the ground-truth binary

labels are represented by yj. U represents the remaining data indices with no labels.

Like LOE, we inferred the data labels in U during training.

Setting the hyperparameter – anomaly ratio α in Equation (7.1) – requires expert
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knowledge. We derived an importance-weighted unbiased estimator of α from the

labeled data to eliminate this hyperparameter. This unbiased estimation is nontrivial

as the data for labeling are selected in a diversity-driven strategy and are thus not i.i.d.

samples that otherwise can be formed for an unbiased estimation.

Chapter 5 We considered zero-shot anomaly detection in a changing environment where the nor-

mal data distribution at test time may differ from training. We approached this prob-

lem through a simple intuition – consider a thought experiment where a cat photo

is mixed with a bunch of photos of sheep. One can quickly identify the anomalous

cat image given most sheep images as the context. Motivated by this intuition, we

proposed to apply a batch-level prediction strategy and exploited batch normalization

layers as a zero-shot adaptation tool to standardize any data batches. Batch normal-

ization layers are prevalent in deep anomaly detection models. Our approach can turn

these models into zero-shot adaptive models. To ensure a model uses the batch norm

layers to adapt to unseen data distributions at test time, we used meta-training on a

meta-dataset during training to promote the zero-shot learning ability.

Suppose we collected a meta-training dataset comprisingK different anomaly detection

tasks {Dk ∼ Pk}Kk=1 where Pk denotes the data distribution for task k. We minimized

the objective function below

min
θ
L(θ) = 1

K

K∑
k=1

ExB∼Pj

[
1

|B|
∑
i∈B

(
(1− yi)L

θ
n,i(xB) + yiL

θ
a,i(xB)

)]
(7.3)

where in practice we sampled iid mini-batches xB from the collected dataset Dk and B

is the index set. Lθ
n(xB) (or L

θ
a(xB)) is a vector of loss functions evaluated on the mini-

batch xB in a parallelized batch mode with active batch norm layers. Each component

of the vectorized loss Lθ
n,i(xB) (or Lθ

a,i(xB)) corresponds to the loss of an individual

data point xB,i, after passing through the deep anomaly detection model along with

other data points in the mini-batch. We named the resulting learned representation
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automaically centered representation (ACR).

Our method applies to different data types other than images. We reported the

first zero-shot anomaly detection result on tabular data and state-of-the-art results

on anomaly segmentation.

Chapter 6 We considered updating a model (either in supervised or unsupervised learning1) to

a sequence of data batches {Dt}Tt=1 that arrive at discrete times t = 1, . . . , T . We

assumed the data points within each batch are i.i.d.2 and batches come from piece-

wise constant data distributions. However, the time points when data distributions

shift and the strengths of distribution shifts are unknown.

We proposed a Bayesian framework to simultaneously detect when distribution shifts

happen and, as a result, adapt the model. To model the distribution shifts, we in-

troduced a Bernoulli latent “change variable” st ∈ {0, 1} at time t indicating whether

or not Dt comes from a different data distribution than the previous Dt−1. If there

is no shift (st = 0), we used the posterior distribution at the previous step t − 1 as

the prior distribution at current step t like Bayesian online learning; if a shift happens

(st = 1), which means the previous posterior distribution is no longer an appropriate

prior for the current step, a shift model for parameters θt is more desired in this case.

We proposed a broadening scheme as the shift model to erase part of the information

stored in the previous posterior to allow more room to adapt to the distribution shift.

With the change variable st in mind, the idea of detecting the shifts is simple: given

the observed data batch Dt, its marginal likelihood p(Dt|st) conditioned on each value

of st, and the prior distribution p(st) at time t, we detected whether a distribution shift

happens by inferring the posterior p(st|Dt) through the Bayes rule, which is equivalent

to a likelihood-ratio test3.

1The learning settings differ in whether or not data labels are available and which likelihood model is in
use.

2Each data batch may contain only one data point in the extreme data streaming case.
3We omit temporal dependencies in the notation to simplify the illustration.
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We derived a scalable variational inference algorithm accompanying our models to

jointly infer the posteriors of the model parameters θt and the change variables st on

the fly. Furthermore, the number of model configurations specified by s1:t increases

exponentially over time at the speed of O(2t); we thus proposed to use beam search to

trade off the expressivity against computational tractability. We pruned and retained

the K most probable model configurations at every time step. Maintaining multiple

model configurations with beam search over time allows one to select the correct model

in hindsight when more evidence accumulates. We named our method variational beam

search (VBS).

In this thesis, we gave an overview of the deep anomaly detection task and its challenges.

Our contribution lies in proposing novel learning frameworks for various anomaly detection

setups. These setups range from unsupervised training with contaminated data, active and

semi-supervised anomaly detection, to zero-shot adaptive anomaly detection. Our frame-

works are compatible with varied deep anomaly detection methods and data types. We

demonstrated the utilities in images, tabular data, and video experiments. In addition, we

proposed a change-point detection and adaptation framework for Bayesian online learning

in supervised and unsupervised learning settings.

7.2 Research Outlook

7.2.1 Anomaly Detection with Foundation Models

Foundation models are large deep learning models trained on broad data on the internet.

Pre-trained foundation models can be applied to various downstream tasks through few-shot

or zero-shot learning. Anomaly detection can be one of the tasks. The literature has seen

a surge of interest in language-assisted visual anomaly detection with pre-trained vision-
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language model CLIP [Jeong et al., 2023, Zanella et al., 2023, Huang et al., 2024, Zhou

et al., 2024]. While CLIP has motivated numerous new anomaly detection applications,

its output–numeric anomaly scores–requires threshold and expert explanation. With the

development of large language models (LLMs), interactive chatbots have the potential to

help explain and characterize anomalies in human languages. Vision anomaly detection can

ground the applications on LLMs combined with a vision module such as LLaVA [Liu et al.,

2023] so that the model can explain to users in text which elements in an image make the

image abnormal. Users can improve the anomaly definition in multi-round interactions to

align the detector behavior. The closest work is Gu et al. [2024]. However, Gu et al. [2024]

requires normal data during training and does not have zero-shot or few-shot generalization

ability.

Tabular data is another important data type in anomaly detection [Rayana, 2016]. Un-

like images, tabular data is structured data containing categorical and numerical features

designed by experts. Each feature has concrete meanings indicated by the feature names.

Large language models (LLMs) rely on understanding the feature names and values to detect

factual errors in tabular data [Narayan et al., 2022]. However, in practice, the domains of

tabular data can be out of LLM’s training data distribution, and the feature values may be

pre-processed or anonymous. These two practical situations may break the working assump-

tion of LLMs, causing them to have difficulty understanding the feature names and values,

posing challenges to applying LLMs in detecting anomalies for tabular data. A potential

solution is to apply retrieval-augmented generation (RAG) [Lewis et al., 2020] to help relate

the LLM’s generation to a specialized domain knowledge base.

RAG maintains an external knowledge base for a specialized domain. The knowledge base

can store related research articles, databases, or user manuals. When a user asks a question,

RAG retrieves the question-relevant information from the knowledge base. It then presents

the user question and the RAG-retrieved information to the LLM for answering. Using RAG
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for tabular anomaly detection requires users to specify the definition of normalcy and requires

the RAG-retrieved information to be relevant and applicable to LLMs. One possible retrieved

information format is “feature # is important, and it is positively/negatively correlated with

the extent of being anomalous.”

7.2.2 Continual Anomaly Detection

We presented automatically centered representations (ACR) for zero-shot anomaly detection

under distribution shifts in Chapter 5. However, ACR requires batch-level predictions. In a

data streaming setup where real-time prediction is valued, assembling a batch may incur a

prediction delay. For instance, slow detection of cyber attacks may cause loss of high-stakes

information.

A deployed anomaly detection system may face distribution shifts in the data streams. The

features related to normality can change over time, and an established detection system may

need to be updated. Data shifts can happen in cybersecurity, where cyber attacks evolve

adversarially to deceive the detection system. Therefore, a detector should be adaptive to

data streams when a distribution shift happens. Even worse, the time when the distribution

shift happens can be unobserved. The anomaly detection system should automatically detect

changepoints and adapt. This setup is similar to the problem setting that motivates our

variational beam search (VBS, in Chapter 6). One potential solution is assuming piece-wise

constant data streams and applying VBS in this data streaming setup.

Another complication is that real-world application data streams are mixed with normal

data points and anomalies. The occurrence of anomalies may appear to be fake changepoints,

which confuses VBS when detecting true distribution shifts. Similarly, the true changepoints

may also appear to be anomalies. To address these challenges, we may need to re-design the

modeling assumptions of VBS (by augmenting the latent states to incorporate the occurrence
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of anomalies) or distinguish the changepoints from anomalies by checking whether or not

the changes persist over time. Sankararaman et al. [2022] proposed an anomaly detection

method in a similar setup, but their method does not generalize to high-dimensional and

complex data.

7.2.3 Anomaly Detection for Scientific Data

We evaluated deep anomaly detection methods on vision and tabular data in the experi-

ments. Some recent research work investigated the application of deep anomaly detection

on scientific data types such as water distribution system data and chemical process data

[Tian et al., 2023, Hartung et al., 2023]. However, whether or not deep anomaly detection

methods generalize to other scientific data types still needs to be studied. One example

is detecting heat waves or extreme rainfalls in the climate data. Climate projections rely

on physics simulations and demand for massive computations. Due to restricted compu-

tation resources, simulation error exists [Yu et al., 2023]. A robust detection method is

demanded. One possible approach is to treat the simulated spatial measurements as pixels

and measurements along longitudes and latitudes form an “image.” Different measurements

like temperature or humidity serve as different channels in the “image.” Suppose we treat

extreme weather events as anomalies in the “image.” In that case, our task is to detect

those events by segmenting image anomalies. This detection manner is similar to anomaly

segmentation in tumor segmentation for medical images and defect segmentation for indus-

trial images. Our methods of Latent Outlier Exposure (LOE) and Automatically Centered

Representations (ACR) may play a role. Due to the complexity, impreciseness, and unique

textures of the climate data, more domain knowledge for inductive bias and designing ap-

propriate loss functions are anticipated, providing opportunities to develop novel anomaly

detection methods.
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augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information
Processing Systems, 33:9459–9474, 2020.

Aodong Li, Alex Boyd, Padhraic Smyth, and Stephan Mandt. Detecting and adapting to
irregular distribution shifts in bayesian online learning. Advances in neural information
processing systems, 34:6816–6828, 2021a.

Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Stephan Mandt, and Maja Rudolph.
Deep anomaly detection under labeling budget constraints. In International Conference
on Machine Learning, pages 19882–19910. PMLR, 2023.

Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja Rudolph, and Stephan Mandt.
Zero-shot anomaly detection via batch normalization. Advances in Neural Information
Processing Systems, 36, 2024.

130



Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cutpaste: Self-supervised
learning for anomaly detection and localization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 9664–9674, 2021b.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-
learning for domain generalization. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018a.

Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod: copula-based
outlier detection. In 2020 IEEE international conference on data mining (ICDM), pages
1118–1123. IEEE, 2020.

Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George Chen. Ecod:
Unsupervised outlier detection using empirical cumulative distribution functions. IEEE
Transactions on Knowledge and Data Engineering, 2022.

Zhun Li, ByungSoo Ko, and HoJin Choi. Pseudo-labeling using gaussian process for semi-
supervised deep learning. In 2018 IEEE International Conference on Big Data and Smart
Computing (BigComp), pages 263–269. IEEE, 2018b.

Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha Choi. Ttn: A domain-shift aware
batch normalization in test-time adaptation. In The Eleventh International Conference
on Learning Representations, 2023.

Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam
Paninski. Bayesian learning and inference in recurrent switching linear dynamical systems.
In Artificial Intelligence and Statistics, pages 914–922, 2017.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee
international conference on data mining, pages 413–422. IEEE, 2008.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly detection. ACM
Transactions on Knowledge Discovery from Data (TKDD), 6(1):1–39, 2012.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
NeurIPS, 2023.

Yusha Liu, Chun-Liang Li, and Barnabás Póczos. Classifier two sample test for video
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Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in vari-
ational inference. IEEE transactions on pattern analysis and machine intelligence, 41(8):
2008–2026, 2018.

Shen Zhang, Fei Ye, Bingnan Wang, and Thomas G. Habetler. Few-shot bearing anomaly
detection via model-agnostic meta-learning. 2020 23rd International Conference on Elec-
trical Machines and Systems (ICEMS), pages 1341–1346, 2020.

Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep autoencoders.
In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery
and data mining, pages 665–674, 2017.

Chong Zhou, Chen Change Loy, and Bo Dai. Denseclip: Extract free dense labels from clip.
arXiv preprint arXiv:2112.01071, 2021.

Qihang Zhou, Guansong Pang, Yu Tian, Shibo He, and Jiming Chen. AnomalyCLIP: Object-
agnostic prompt learning for zero-shot anomaly detection. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?

id=buC4E91xZE.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and
Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly
detection. In International conference on learning representations, 2018.

140

https://openreview.net/forum?id=buC4E91xZE
https://openreview.net/forum?id=buC4E91xZE


Appendix A

Chapter 1

Anomalies, Outliers, and Novelties. We borrow the definitions of these concepts from

Ruff et al. [2021]. While anomalies, outliers, and novelties all occur with low probabilities,

anomalies originate from a different data-generating process from the normal process. Out-

liers come from the same data-generating process as the normal data. Novelties are a new

mode of a non-stationary normal data-generating process.

Anomaly Detection in Other Disciplines. Anomaly detection holds significance

within the field of statistics [Kutner et al., 2005, Chapter 3]. Outliers can manifest in

predictor or response variables, impacting statistical modeling in two primary ways. Firstly,

outliers can pose modeling difficulties to statistical analysis, such as distorting a regression

model and causing issues like lack of fit. Secondly, the presence of outliers following a pattern

may signal a need to re-evaluate modeling assumptions.

Anomaly detection is also interesting within data mining [Syarif et al., 2012, Dokas et al.,

2002, Agrawal and Agrawal, 2015]. When presented with a dataset, the objective is to detect

outliers within it, a process often referred to as transductive learning. Conversely, in machine
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learning, anomaly detection seeks to grasp the concept of normality from a dataset and then

predict whether a potential unseen data point aligns with that notion of normalcy, known as

inductive learning. While anomaly detection in data mining has a different goal, the learning

procedure often results in a detection model that can predict the label of unseen data.

Connection to Out-of-Distribution (OOD) Detection. OOD detection has different

motivations from anomaly detection. OOD detection aims to make a classifier safe. Because

classifiers tend to make confident predictions even if the input (or the OOD data) differs

from the classifier’s training data distribution, OOD detection detects OOD data and rings

an alarm for the classifier.

The motivation decides that OOD detection and anomaly detection have different training

data resources. While OOD detection has a per-class labeled multi-class training dataset, a

pre-trained classifier, or both for training, anomaly detection only has a normal dataset, but

any potential fine-grained labels within the normal dataset may be missing.
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Appendix B

Chapter 3

B.1 Details on Toy Data Experiments

We generate the toy data with a three-component Gaussian mixture. The normal data is gen-

erated from pn = N (x; [1, 1], 0.07I), and the anomalies are sampled from pa = N (x; [−0.25, 2.5], 0.03I)+

N (x; [−1., 0.5], 0.03I). There are 90 normal samples and 10 abnormal samples. All samples

are mixed up as the contaminated training set.

To learn a anomaly detector, we used one-class Deep SVDD [Ruff et al., 2018] to train a

one-layer radial basis function (RBF) network where the Gaussian function is used as the

RBF. The hidden layer contains three neurons whose centers are fixed at the center of each

component and whose scales are optimized during training. The output of the RBF net is

a linear combination of the outputs of hidden layers. Here we set the model output to be a

1D scalar, as the projected data representation of Deep SVDD.

For Deep SVDD configuration, we randomly initialized the model center (not to be confused

with the center of the Gaussian RBF) and made it learnable during training. We also
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added the bias term in the last layer. Although setting a learnable center and adding bias

terms are not recommended for Deep SVDD [Ruff et al., 2018] due to the all-zero trivial

solution, we found these practices make the model flexible and converge well and learn a

much better anomaly detector than vice verse, probably because the random initialization

and small learning rate serve as regularization and the model converges to a local optimum

before collapses to the trivial solution. During training, we used Adam [Kingma and Ba,

2015] stochastic optimizer and set the mini-batch size to be 25. The learning rate is 0.01,

and we trained the model for 200 epochs. The decision boundary in Figure 3.1 plots the

90% fraction of the anomaly scores.

B.2 Baseline Details

Across all experiments, we employ two baselines that do not utilize anomalies to help training

the models. The baselines are either completely blind to anomalies, or drop the perceived

anomalies’ information. Normally training a model without recognizing anomalies serves

as our first baseline. Since this baseline doesn’t take any actions to the anomalies in the

contaminated training data and is actually blind to the anomalies that exist, we name it

Blind. Mathematically, Blind sets yi = 0 in Eq. 3.1 for all samples.

The second baseline filters out anomalies and refines the training data: at every mini-batch

update, it first ranks the mini-batch data according to the anomaly scores given current

detection model, then removes top α most likely anomalous samples from the mini-batch.

The remaining samples performs the model update. We name the second baseline Refine,

which still follows Alg. 1 but removes Lθ
a in Eq. 3.1. Both these two baselines take limited

actions to the anomalies. We use them to contrast our proposed methods and highlight the

useful information contained in unseen anomalies.
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B.3 Implementation Details

We apply NTL to all datasets including both visual datasets and tabular datasets. Below

we provide the implementation details of NTL on each class of datasets.

NTL on image data NTL is built upon the final pooling layer of a pre-trained ResNet152

on CIFAR-10 and F-MNIST (as suggested in Defard et al. [2021]), and upon the third

residual block of a pre-trained WideResNet50 on MVTEC (as suggested in Reiss et al.

[2021]). On all image datasets, the pre-trained feature extractors are frozen during training.

We set the number of transformations as 15 and use three linear layers with intermediate

1D batchnorm layers and ReLU activations for transformations modelling. The hidden

sizes of the transformation networks are [2048, 2048, 2048] on CIFAR-10 and F-MNIST, and

[1024, 1024, 1024] on MVTEC. The encoder is one linear layer with units of 256 for CIFAR-

10 and MVTEC, and is two linear layers of size [1024, 256] with an intermediate ReLU

activation for F-MNIST. On CIFAR-10, we set mini-batch size to be 500, learning rate to be

4e-4, 30 training epochs with Adam optimizer. On F-MNIST, we set mini-batch size to be

500, learning rate to be 2e-4, 30 training epochs with Adam optimizer. On MVTEC, we set

mini-batch size to be 40, learning rate to be 2e-4, 30 training epochs with Adam optimizer.

For the “Refine” baseline and our methods we set the number of warm-up epochs as two on

all image datasets.

NTL on tabular data On all tabular data, we set the number of transformations to

9, use two fully-connected network layers for the transformations and four fully-connected

network layers for the encoder. The hidden size of layers in the transformation networks

and the encoder is two times the data dimension for low dimensional data, and 64 for high

dimensional data. The embedding size is two times the data dimension for low dimensional

data, and 32 for high dimensional data. The transformations are either parametrized as
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the transformation network directly or a residual connection of the transformation network

and the original sample. We search the best-performed transformation parameterization and

other hyperparameters based on the performance of the model trained on clean data. We

use Adam optimizer with a learning rate chosen from [5e−4, 1e−3, 2e−3]. For the “Refine”

baseline and our methods we set the number of warm-up epochs as two for small datasets

and as one for large datasets.

NTL on video data Following the suggestions of Pang et al. [2020], we first extract

frame features through a ResNet50 pretrained on ImageNet. The features are sent to an

NTL with the same backbone model as used on CIFAR-10 (see NTL on image data) except

that 9 transformations are used. Both the ResNet50 and NTL are updated from end to end.

During training, we use Adam stochastic optimizer with the batch size set to be 192 and

learning rate set 1e-4. We update the model for 3 epochs and report the results with three

independent runs.

MHRot on image data MHRot [Hendrycks et al., 2019] applies self-supervised learning

on hand-crafted image transformations including rotation, horizontal shift, and vertical shift.

The learner learns to solve three different tasks: one for predicting rotation (r ∈ R ≡

{0◦,±90◦, 180◦}), one for predicting vertical shift (sv ∈ Sv ≡ {0 px,±8 px}), and one for

predicting horizontal shift (sh ∈ Sh ≡ {0 px,±8 px}). We define the composition of rotation,

vertical shift, and horizontal shift as T ∈ T ≡ {r ◦ sv ◦ sh | r ∈ R, sv ∈ Sv, sh ∈ Sh}. We

also define the head labels t1k = ra, t
2
k = svb , t

3
k = shc for a specific composed transformation

Tk = ra ◦ svb ◦ shc . Overall, there are 36 transformations.

We implement the model on the top of GOAD [Bergman and Hoshen, 2020], a similar self-

supervised anomaly detector. The backbone model is a WideResNet16-4. Anomaly scores

is used for ranking in the mini-batch in pseudo label assignments. For F-MNIST, we use
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Lθ
n, the normality training loss, as the anomaly score. For CIFAR-10, we find that using

a separate anomaly score mentioned in [Bergman and Hoshen, 2020] leads to much better

results than the original training loss anomaly score.

During training, we set mini-batch size to be 10, learning rate to be 1e-3 for CIFAR-10 and

1e-4 for F-MNIST, 16 training epochs for CIFAR-10 and 3 training epochs for F-MNIST

with Adam optimizer. We report the results with 3-5 independent runs.

B.4 Additional Experimental Results

We provide additional results of the experiments on tabular datasets. We report the F1-

scores in Table B.1 and the AUCs in Table B.2. The number in the brackets is the average

performance difference from the model trained on clean data. Remarkably, on some datasets,

LOE trained on contaminated data can achieve better results than on clean data (as shown in

Tables B.1 and B.2), suggesting that the latent anomalies provide a positive learning signal.

Overall, we can see that LOE improves the performance of anomaly detection methods on

contaminated tabular datasets significantly.
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Table B.1: F1-score (%) with standard deviation for anomaly detection on 30 tabular
datasets which are from the empirical study of Shenkar and Wolf [2022]. For all experiments,
we set the contamination ratio of the training set as 10%. The number in the brackets is the
average performance difference from the model trained on clean data. LOE outperforms the
“Blind” and “Refine” baselines.

NTL ICL
Blind Refine LOEH (ours) LOES (ours) Blind Refine LOEH (ours) LOES (ours)

abalone
37.9±13.4 55.2±15.9 42.8±26.9 59.3±12.0 50.9±1.5 54.3±2.9 53.4±5.2 51.7±2.4
(-25.3) (-8.0) (-20.4) (-3.9) (-11.2) (-7.8) (-8.7) (-10.4)

annthyroid
29.7±3.5 42.7±7.1 47.7±11.4 50.3±4.5 29.1±2.2 38.5±2.1 48.7±7.6 43.0±8.8
(-21.6) (-8.6) (-3.6) (-1.0) (-12.0) (-2.6) (+7.6) (+1.9)

arrhythmia
57.6±2.5 59.1±2.1 62.1±2.8 62.7±3.3 53.9±0.7 60.9±2.2 62.4±1.8 63.6±2.1
(-3.0) (-1.5) (+1.5) (+2.1) (-7.6) (-0.6) (+0.9) (+2.1)

breastw
84.0±1.8 93.1±0.9 95.6±0.4 95.3±0.4 92.6±1.1 93.4±1.0 96.0±0.6 95.7±0.6
(-8.4) (+0.7) (+3.2) (+2.9) (-2.4) (-1.6) (+1.0) (+0.7)

cardio
21.8±4.9 45.2±7.9 73.0±7.9 57.8±5.5 50.2±4.5 56.2±3.4 71.1±3.2 62.2±2.7
(-35.0) (-11.6) (+16.2) (+1.0) (-19.5) (-13.5) (+1.4) (-7.5)

ecoli
0.0±0.0 88.9±14.1 100±0.0 100±0.0 17.8±15.1 46.7±25.7 75.6±4.4 75.6±4.4
(-95.6) (-6.7) (+4.4) (+4.4) (-55.5) (-26.6) (+2.3) (+2.3)

forest cover
20.4±4.0 56.2±4.9 61.1±34.9 67.6±30.6 9.2±4.5 8.0±3.6 6.8±3.6 11.1±2.1
(-44.2) (-8.4) (-3.5) (+3.0) (-37.8) (-39.0) (-40.2) (-35.9)

glass
11.1±7.0 15.6±5.4 17.8±5.4 20.0±8.3 8.9±4.4 11.1±0.0 11.1±7.0 8.9±8.3
(-6.7) (-2.2) (+0.0) (+2.2) (-13.3) (-11.1) (-11.1) (-13.3)

ionosphere
89.0±1.5 91.0±2.0 91.0±1.7 91.3±2.2 86.5±1.1 85.9±2.3 85.7±2.8 88.6±0.6
(-3.5) (-1.5) (-1.5) (-1.2) (-5.7) (-6.3) (-6.5) (-3.6)

kdd
95.9±0.0 96.0±1.1 98.1±0.4 98.4±0.1 99.3±0.1 99.4±0.1 99.5±0.0 99.4±0.0
(-2.4) (-2.3) (-0.2) (+0.1) (-0.1) (+0.0) (+0.1) (+0.0)

kddrev
98.4±0.1 98.4±0.2 89.1±1.7 98.6±0.0 97.9±0.5 98.4±0.4 98.8±0.1 98.2±0.4
(+0.2) (+0.2) (-9.1) (+0.4) (-0.9) (-0.4) (+0.0) (-0.6)

letter
36.4±3.6 44.4±3.1 25.4±10.0 45.6±10.6 43.0±2.5 51.2±3.7 54.4±5.6 47.2±4.9
(-11.0) (-3.0) (-22.0) (-1.8) (-15.5) (-7.3) (-4.1) (-11.3)

lympho
53.3±12.5 60.0±8.2 60.0±13.3 73.3±22.6 43.3±8.2 60.0±8.2 80.0±12.5 83.3±10.5
(-20.0) (-13.3) (-13.3) (+0.0) (-40.0) (-23.3) (-3.3) (+0.0)

mammogra.
5.5±2.8 2.6±1.7 3.3±1.6 13.5±3.8 8.8±1.9 11.4±1.9 34.0±20.2 42.8±17.6
(-21.3) (-24.2) (-23.5) (-13.3) (-14.0) (-11.4) (+11.2) (+20.0)

mnist tabular
78.6±0.5 80.3±1.1 71.8±1.8 76.3±2.1 72.1±1.0 80.7±0.7 86.0±0.4 79.2±0.9
(-6.6) (-4.9) (-13.4) (-8.9) (-10.5) (-1.9) (+3.4) (-3.4)

mulcross
45.5±9.6 58.2±3.5 58.2±6.2 50.1±8.9 70.4±13.4 94.4±6.3 100±0.0 99.9±0.1
(-50.5) (-37.8) (-37.8) (-45.9) (-29.6) (-5.6) (+0.0) (-0.1)

musk
21.0±3.3 98.8±0.4 100±0.0 100±0.0 6.2±3.0 100±0.0 100±0.0 100±0.0
(-79.0) (-1.2) (+0.0) (+0.0) (-93.8) (+0.0) (+0.0) (+0.0)

optdigits
0.2±0.3 1.5±0.3 41.7±45.9 59.1±48.2 0.8±0.5 1.3±1.1 1.2±1.0 0.9±0.5
(-24.7) (-23.4) (+16.8) (+34.2) (-62.4) (-61.9) (-62.0) (-62.3)

pendigits
5.0±2.5 32.6±10.0 79.4±4.7 81.9±4.3 10.3±4.6 30.1±8.5 80.3±6.1 88.6±2.2
(-56.3) (-28.7) (+18.1) (+20.6) (-67.9) (-48.1) (+2.1) (+10.4)

pima
60.3±2.6 61.0±1.9 61.3±2.4 61.0±0.9 58.1±2.9 59.3±1.4 63.0±1.0 60.1±1.4
(-1.2) (-0.5) (-0.2) (-0.5) (-2.2) (-1.0) (+2.7) (-0.2)

satellite
73.6±0.4 74.1±0.3 74.8±0.4 74.7±0.1 72.7±1.3 72.7±0.6 73.6±0.2 73.2±0.6
(-1.0) (-0.5) (+0.2) (+0.1) (-2.1) (-2.1) (-1.2) (-1.6)

satimage
26.8±1.5 86.8±4.0 90.7±1.1 91.0±0.7 7.3±0.6 85.1±1.4 91.3±1.1 91.5±0.9
(-65.2) (-5.2) (-1.3) (-1.0) (-82.0) (-4.2) (+2.0) (+2.2)

seismic
11.9±1.8 11.5±1.0 18.1±0.7 17.1±0.6 14.9±1.4 17.3±2.1 23.6±2.8 24.2±1.4
(-0.6) (-1.0) (+5.6) (+4.6) (-3.0) (-0.6) (+5.7) (+6.3)

shuttle
97.0±0.3 97.0±0.2 97.1±0.2 97.0±0.2 96.6±0.2 96.7±0.1 96.9±0.1 97.0±0.2
(+0.3) (+0.3) (+0.4) (+0.3) (-0.4) (-0.3) (-0.1) (+0.0)

speech
6.9±1.2 8.2±2.1 43.3±5.6 50.8±2.5 0.3±0.7 1.6±1.0 2.0±0.7 0.7±0.8
(-2.6) (-1.3) (+33.8) (+41.3) (-4.1) (-2.8) (-2.4) (-3.7)

thyroid
43.4±5.5 55.1±4.2 82.4±2.7 82.4±2.3 45.8±7.3 71.6±2.4 83.2±2.9 80.9±2.5
(-34.4) (-22.7) (+4.6) (+4.6) (-31.4) (-5.6) (+6.0) (+3.7)

vertebral
22.0±4.5 21.3±4.5 22.7±11.0 25.3±4.0 8.9±3.1 8.9±4.2 7.8±4.2 10.0±2.7
(-8.7) (-9.4) (-8.0) (-5.4) (-7.8) (-7.8) (-8.9) (-6.7)

vowels
36.0±1.8 50.4±8.8 62.8±9.5 48.4±6.6 42.1±9.0 60.4±7.9 81.6±2.9 74.4±8.0
(-40.7) (-26.3) (-13.9) (-28.3) (-37.5) (-19.2) (+2.0) (-5.2)

wbc
25.7±12.3 45.7±15.5 76.2±6.0 69.5±3.8 50.5±5.7 50.5±2.3 61.0±4.7 61.0±1.9
(-39.1) (-19.1) (+11.4) (+4.7) (-8.2) (-8.2) (+2.3) (+2.3)

wine
24.0±18.5 66.0±12.0 90.0±0.0 92.0±4.0 4.0±4.9 10.0±8.9 98.0±4.0 100±0.0
(-68.0) (-26.0) (-2.0) (+0.0) (-86.0) (-80.0) (+8.0) (+10.0)
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Table B.2: AUC (%) with standard deviation for anomaly detection on 30 tabular datasets
which are from the empirical study of Shenkar and Wolf [2022]. For all experiments, we
set the contamination ratio of the training set as 10%. The number in the brackets is the
average performance difference from the model trained on clean data. LOE outperforms the
“Blind” and “Refine” baselines.

NTL ICL
Blind Refine LOEH (ours) LOES (ours) Blind Refine LOEH (ours) LOES (ours)

abalone
91.4±1.7 93.3±1.7 93.4±1.0 94.6±1.4 83.1±1.5 91.2±0.8 93.5±1.0 93.6±0.8
(-2.4) (-0.5) (-0.4) (+0.8) (-10.1) (-2.0) (+0.3) (+0.4)

annthyroid
66.1±2.8 78.2±6.6 83.9±7.0 85.9±4.8 65.5±2.3 73.1±2.5 82.4±5.6 76.7±6.8
(-19.1) (-7.0) (-1.3) (+0.7) (-8.7) (-1.1) (+8.2) (+2.5)

arrhythmia
80.5±1.1 82.5±0.8 82.7±1.8 84.8±1.7 75.5±0.3 77.1±0.7 79.2±0.2 78.4±0.8
(-0.7) (+1.3) (+1.5) (+3.6) (-2.3) (-0.7) (+1.4) (+0.6)

breastw
89.5±2.1 96.1±0.8 99.0±0.3 98.2±0.5 97.1±0.8 97.4±0.8 98.7±0.3 98.8±0.4
(-6.8) (-0.2) (+2.7) (+1.9) (-1.0) (-0.7) (+0.6) (+0.7)

cardio
63.5±3.8 76.9±3.8 92.6±3.7 85.3±4.2 80.0±1.4 83.3±0.9 91.1±1.9 87.5±2.1
(-19.7) (-6.3) (+9.4) (+2.1) (-10.0) (-6.7) (+1.1) (-2.5)

ecoli
74.9±8.2 99.6±0.5 100±0.0 100±0.0 80.4±4.2 85.8±1.5 88.5±1.8 89.1±0.8
(-24.9) (-0.2) (+0.2) (+0.2) (-8.8) (-3.4) (-0.7) (-0.1)

forest cover
91.2±2.2 98.6±0.7 97.7±2.7 98.6±2.1 73.0±11.7 77.8±6.7 78.9±3.2 81.7±2.7
(-7.4) (+0.0) (-0.9) (+0.0) (-22.3) (-17.5) (-16.4) (-13.6)

glass
75.1±4.0 76.6±3.3 77.8±4.8 77.1±4.6 54.7±11.4 66.6±5.7 65.4±12.0 71.5±9.2
(+2.6) (+4.1) (+5.3) (+4.6) (-25.9) (-14.0) (-15.2) (-9.1)

ionosphere
95.6±0.8 96.8±0.8 96.1±1.0 96.8±0.9 92.6±1.1 93.3±1.3 88.7±3.3 93.4±1.0
(-2.3) (-1.1) (-1.8) (-1.1) (-4.9) (-4.2) (-8.8) (-4.1)

kdd
99.7±0.0 99.4±0.2 99.7±0.0 99.7±0.0 99.9±0.0 99.9±0.0 99.9±0.0 99.9±0.0
(-0.2) (-0.5) (-0.2) (-0.2) (+0.0) (+0.0) (+0.0) (+0.0)

kddrev
99.5±0.1 99.4±0.1 96.1±0.9 99.5±0.1 99.5±0.2 99.7±0.1 99.8±0.0 99.6±0.1
(+0.0) (-0.1) (-3.4) (+0.0) (-0.3) (-0.1) (+0.0) (-0.2)

letter
79.8±0.5 83.5±0.8 76.2±6.0 84.3±4.8 82.3±2.9 84.1±2.0 86.2±2.8 83.7±2.0
(-5.0) (-1.3) (-8.6) (-0.5) (-5.4) (-3.6) (-1.5) (-4.0)

lympho
90.8±6.7 93.7±3.2 96.6±1.7 98.1±2.2 94.1±2.0 96.1±1.0 98.9±1.0 98.9±1.1
(-6.3) (-3.4) (-0.5) (+1.0) (-5.3) (-3.3) (-0.5) (-0.5)

mammogra.
68.7±6.2 67.8±2.0 69.2±3.8 78.5±3.2 64.2±4.3 69.7±4.7 80.0±7.7 84.0±4.3
(-13.8) (-14.7) (-13.3) (-4.0) (-14.8) (-9.3) (+1.0) (+5.0)

mnist tabular
96.1±0.2 96.7±0.4 94.7±0.5 96.1±0.4 94.1±0.4 96.4±0.3 97.9±0.1 96.3±0.2
(-1.9) (-1.3) (-3.3) (-1.9) (-3.1) (-0.8) (+0.7) (-0.9)

mulcross
81.7±7.5 91.2±1.4 90.8±4.5 82.6±10.5 93.7±4.4 99.4±0.7 100±0.0 100±0.0
(-17.9) (-8.4) (-8.8) (-17.0) (-6.3) (-0.6) (+0.0) (+0.0)

musk
76.2±2.3 100±0.0 100±0.0 100±0.0 78.8±2.9 100±0.0 100±0.0 100±0.0
(-23.8) (+0.0) (+0.0) (+0.0) (-21.2) (+0.0) (+0.0) (+0.0)

optdigits
31.0±3.7 38.7±3.8 70.9±27.8 72.6±33.6 13.8±4.2 16.3±4.3 15.9±5.1 14.6±3.7
(-53.7) (-46.0) (-13.8) (-12.1) (-83.6) (-81.1) (-81.5) (-82.8)

pendigits
64.0±9.3 85.9±6.6 99.1±0.5 98.9±0.4 77.9±6.8 83.3±4.7 99.2±0.6 99.7±0.1
(-33.1) (-11.2) (+2.0) (+1.8) (-21.3) (-15.9) (+0.0) (+0.5)

pima
59.5±3.4 60.6±2.6 60.8±1.8 60.8±1.0 58.2±3.7 59.0±1.4 64.1±1.5 61.1±1.4
(-2.2) (-1.1) (-0.9) (-0.9) (-2.1) (-1.3) (+3.8) (+0.8)

satellite
80.9±0.4 82.2±0.3 82.6±0.4 82.9±0.3 78.5±1.2 78.3±1.0 79.3±0.9 79.5±1.0
(-1.5) (-0.2) (+0.2) (+0.5) (-6.7) (-6.9) (-5.9) (-5.7)

satimage
92.3±2.1 99.7±0.1 99.7±0.1 99.7±0.1 89.8±1.6 99.6±0.2 99.7±0.1 99.7±0.1
(-7.5) (-0.1) (-0.1) (-0.1) (-9.9) (-0.1) (+0.0) (+0.0)

seismic
51.6±0.5 49.7±2.0 50.3±3.0 55.6±3.8 56.9±2.7 58.4±2.3 68.0±1.9 66.3±1.6
(-1.3) (-3.2) (-2.6) (+2.7) (-6.5) (-5.0) (+4.6) (+2.9)

shuttle
99.7±0.1 99.8±0.1 99.7±0.1 99.7±0.1 99.7±0.1 99.6±0.0 99.7±0.0 99.7±0.1
(+0.1) (+0.2) (+0.1) (+0.1) (-0.3) (-0.4) (-0.3) (-0.3)

speech
48.6±1.2 53.2±1.4 78.8±3.0 85.5±1.6 17.1±1.9 21.8±1.5 24.2±1.3 18.0±1.9
(-13.9) (-9.3) (+16.3) (+23.0) (-41.3) (-36.6) (-34.2) (-40.4)

thyroid
94.3±1.2 96.4±0.3 99.1±0.2 99.3±0.2 96.0±0.9 97.7±0.3 99.4±0.2 99.2±0.3
(-3.9) (-1.8) (+0.9) (+1.1) (-2.4) (-0.7) (+1.0) (+0.8)

vertebral
54.8±4.6 55.3±4.3 47.9±12.0 59.2±9.8 43.3±1.5 50.5±2.7 45.6±5.7 46.8±4.9
(-5.0) (-4.5) (-11.9) (-0.6) (-10.5) (-3.3) (-8.2) (-7.0)

vowels
87.6±2.2 92.6±3.5 96.3±1.9 92.7±2.7 91.0±2.6 95.6±2.0 99.2±0.3 98.3±0.6
(-10.4) (-5.4) (-1.7) (-5.3) (-7.9) (-3.3) (+0.3) (-0.6)

wbc
81.2±7.0 88.5±5.0 94.9±2.2 93.4±2.4 86.3±2.0 86.8±1.1 91.5±1.1 91.0±0.5
(-11.6) (-4.3) (+2.1) (+0.6) (-4.6) (-4.1) (+0.6) (+0.1)

wine
64.3±14.4 93.1±7.7 99.6±0.1 99.8±0.1 49.9±12.6 54.6±8.3 99.7±0.7 100±0.0
(-35.4) (-6.6) (-0.1) (+0.1) (-48.6) (-43.9) (+1.2) (+1.5)
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Appendix C

Chapter 4

C.1 Theorem 1
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Figure C.1: Cover radius δ (Equation (C.1)) resulted from different querying strategies on
the first class of CIFAR-10 and F-MNIST. Diverse queries systematically have smaller cover
radius than other querying strategies.

Proof. Since S is λs-Lipschitz continuous and ua and un are assumed to be closer than δ to xa

and xn respectively, we have S(xa)− δλs ≤ S(ua) and −S(xn)− δλs ≤ −S(un). Adding the

inequalities and using the condition S(xa)−S(xn) ≥ 2δλs, yields 0 ≤ S(xa)−S(xn)−2δλs ≤

S(ua)− S(un), which proves S(ua) ≥ S(un).
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Figure C.2: Ranking performance of unlabeled data. AUC of unqueried data is evaluated
using the fitted anomaly detector on the queried data. Our proposed diverse querying (k-
means++ ) provides better ranking of the unlabeled data.

In Theorem 4.1, we considered using the fixed-radius neighborhood (δ-ball) of the queried

data as the cover of the whole dataset, and mentioned diverse querying has a smaller radius

than other querying strategies. In this section, we will empirically verify this fact and further

illustrate diverse querying leads to good ranking of un-queried data (see also Figure C.7 on

test data).

As defined in Theorem 4.1, the radius is the smallest distance that is required for any un-

queried sample to be covered by the neighborhood of a queried sample of the same type.

Mathematically, we compute the radius as

δ = max
i∈U

min
j∈Q,yi=yj

d(xi,xj), (C.1)

where we adopt the euclidean distance in the feature space for a meaningful metric d. We

apply NTL on the first class of CIFAR-10 and F-MNIST dataset. We make queries with

different budgets, after which we compute δ by Equation (C.1). We repeat this procedure

for 100 times and report the mean and standard deviation in Figure C.1. We compared four

querying strategies: diverse queries (k-means++ ), uncertain queries (Mar), positive queries

(Pos1), and random queries (Rand1). It shows that diverse queries significantly lead the

smallest radius δ among the compared strategies on all querying budgets.
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Next, we provide an empirical, overall justification of Theorem 4.1 (see also Figure C.7 on

test data). An implication of Theorem 4.1 is that, assuming anomaly scores are fixed, a

smaller δ will satisfy the large anomaly score margin (S(xa) − S(xn)) more easily, hence it

is easier for S to correctly rank the remaining unlabeled points. To justify this implication,

we need a metric of ranking. AUC satisfies this requirement as it is alternatively defined

as [Mohri et al., 2018, 10.5.2][Cortes and Mohri, 2003]

AUC =
1

|U0|+ |U1|
∑

n∈U0,a∈U1

1(S(ua) > S(un)) ≈ Pn∈U0,a∈U1(S(ua) > S(un))

which measures the probability of ranking unlabeled samples ua higher than un in terms

of their scores. U = U0
⋃U1 is the un-queried data indices and U0 and U1 are disjoint un-

queried normal and abnormal data sets respectively. ua and un are instances of each kind. We

conducted experiments on CIFAR-10 and F-MNIST, where we trained an anomaly detector

(NTL) on the queried data for 30 epochs and then compute the AUC on the remaining un-

queried data. The results of four querying straties are reported in Figure C.2, which shows

that our proposed diverse querying strategy generalizes the anomaly score ranking the best

to the unqueried data among the compared strategies, testifying our analysis in the main

paper. A consequence is that diverse querying can provide accurate assignments of the latent

anomaly labels, which will further help learn a high-quality of anomaly detector through the

unsupervised loss term in Equation (4.3).

Optimality of Cover Radius. Although k-means++ greedily samples the queries which

may have a sub-optimal cover radius, greedy sampling strategies for selecting a diverse set

of datapoints in a multi-dimensional space are known to produce nearly optimal solutions

[Krause and Golovin, 2014], with significant runtime savings over more sophisticated search

methods. As a results, we follow common practice (e.g. Arthur and Vassilvitskii [2007]) and

also use the greedy approach. We check the diversity of the rustling query set by comparing
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all sampling strategies considered in the paper in terms of data coverage. Figure 4 shows

that the greedy strategy we use achieves the best coverage, i.e. results in the most diverse

query set.

On the Assumptions of Theorem 4.1. In the proof, we assume a Lipschitz continuous

S and a large margin between S(xa) and S(xn). Lipschitz continuity serves as a working

assumption and is a common assumption when analyzing optimization landscapes of deep

learning. Lipschitz continuity can be controlled by the strength of regularization on the

model parameters. The large margin condition is achieved by optimizing our loss function.

The supervised anomaly detection loss encourages a large margin as it minimizes the anomaly

score of queried normal data and maximizes the score of the queried abnormal data. If the

anomaly score function doesn’t do well for the queried samples, then it should be optimized

further. Our empirical results also show this is a reasonable condition.

C.2 Theorem 2

In this section, we will empirically justify the assumptions we made in Section 4.3.6 that are

used to build an unbiased estimator of the anomaly ratio α (Equation (4.4)). We will also

demonstrate the robustness of the estimation under varying α.

C.2.1 Proof

Proof. Let A1 and A2 denote Assumption 1 and 2, respectively. Furthermore, let q(x1, ...,x|Q|)

and qs(s1, ..., s|Q|) denote the query distribution in the data and anomaly score spaces, respec-

tively. A2 assumes ys(s) := ys(S(x)) = y(x) for all x. So the expectation of Equation (4.4)
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is

E[α̂] = Eq(x1,...,x|Q|)

 1

|Q|

|Q|∑
i=1

ps(S(xi))

qs(S(xi))
y(x)

 A2
= Eqs(s1,...,s|Q|)

 1

|Q|

|Q|∑
i=1

ps(si)

qs(si)
ys(si)


A1
= E∏|Q|

i=1 qs(si)

 1

|Q|

|Q|∑
i=1

ps(si)

qs(si)
ys(si)

 =
1

|Q|

|Q|∑
i=1

Eqs(si)

[
ps(si)

qs(si)
ys(si)

]
= Eps(s)[ys(s)]

= Ep(x)[ys(S(x))]
A2
= Ep(x)[y(x)] = α

where the change of variables makes necessary assumptions, including the existence of density

functions.

C.2.2 Assumption 1

We verify Assumption 1 by showing the correlation matrix in Figure C.3, where we jointly

queried 20 points with diversified querying strategy and repeated 1000 times on two classes

of CIFAR-10 and F-MNIST. Then the correlation between each pair of points are computed

and placed in the off-diagonal entries. For each matrix, we show the average, maximum, and

minimum of the off-diagonal terms

• CIFAR-10 Class 1: -0.001, 0.103, -0.086

• CIFAR-10 Class 2: -0.001, 0.085, -0.094

• F-MNIST Class 1: -0.001, 0.081, -0.075

• F-MNIST Class 2: -0.005, 0.087, -0.067

Which shows the correlations ⟨S(xi), S(xj)⟩ are negligible, and the anomaly scores can be

considered approximately independent random variables.
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Figure C.3: Anomaly score correlation matrix ⟨S(xi), S(xj)⟩, where xi and xj are jointly
sampled in the same query set. The result indicates that anomaly scores can be considered
as approximately independent random variables.

C.2.3 Assumption 2

We verify Assumption 2 by counting the violations, i.e., S(xi) = S(xj) but y(xi) ̸= y(xj)

(because Assumption 2 states ys(si) = y(xi) and ys(sj) = y(xj), S(xi) = S(xj) implies

y(xi) = ys(si) = ys(sj) = y(xj). The negation is S(xi) = S(xj) and y(xi) ̸= y(xj).). We

run the experiments on both CIFAR-10 and FMNIST. We apply the ”one-vs.-rest” setup for

both datasets and set the first class as normal and all the other classes as abnormal. We set

the ground-truth anomaly ratio as 0.1. After the initial training, we count the pairs of data

points that satisfy S(xi) = S(xj) but y(xi) ̸= y(xj) for i ̸= j. Our validation shows that

on FMNIST, among 6666 training data points, there are 38 pairs of matching scores, and
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none of them have opposite labels, and on CIFAR-10, among 5555 training data points, the

numbers are 21 and 3, respectively.

C.2.4 Contamination Ratio Estimation

Table C.1: Estimated contamination ratios on CIFAR-10 and F-MNIST when |Q| = 40 and
the backbone model is NTL. The first row shows the true contamination ratio ranging from
1% to 45%. The estimations are repeated 50 times.

1% 5% 10% 15% 20%

CIFAR-10 0.5%± 1.2% 6.0%± 3.3% 12.0%± 4.4% 15.3%± 4.5% 18.9% ± 5.4%
F-MNIST 1.0%± 1.5% 3.8%± 2.3% 8.7%± 4.1% 12.8%± 5.3% 19.3% ± 5.1%

25% 30% 35% 40% 45%

CIFAR-10 26.2% ± 6.0% 30.6% ± 5.5% 35.8% ± 6.9% 42.0% ± 7.7% 47.2% ± 6.7%
F-MNIST 27.9% ± 6.4% 31.8% ± 6.1% 38.3% ± 6.5% 43.1% ± 5.7% 48.9% ± 5.6%

We estimate the contamination ratio by Equation (4.4) under varying true ratios. This part

shows the estimated contamination ratio when the query budget is |Q| = 40. The estimations

from the backbone model NTL is shown in Table C.1. The first row contains the ground

truth contamination rate, and the second and third row indicate the inferred values for two

datasets, using our approach. Most estimates are withing the error bars and hence accurate.

The estimation errors for low ground-truth contamination ratios are acceptable as confirmed

by the sensitivity study in [Qiu et al., 2022b] which concludes that the LOE approach still

works well if the anomaly ratio is mis-specified within 5 percentage points. Interestingly,

we find the estimation error increases somewhat with the contamination ratio. However, a

contamination ratio larger than 40% is rare in practice (most datasets should be fairly clean

and would otherwise require additional preprocessing). In an anomaly detection benchmark

(https://github.com/Minqi824/ADBench), none of the datasets have an anomaly ratio

larger than 40%.
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C.3 Baselines Details

In this section, we describe the details of the baselines in Table 4.1 in the main paper. For

each baseline method, we explain their query strategies and post-query training strategies we

implement in our experiment. Please also refer to our codebase for practical implementation

details.

• Rand1. This strategy used by Ruff et al. [2019] selects queries by sampling uniformly

without replacement across the training set, resulting in the queried index set Q = {iq ∼

Unif(1, · · · , N)|1 ≤ q ≤ |Q|}. After the querying, models are trained with a supervised loss

function based on outlier exposure on the labeled data and with a one-class classification

loss function on the unlabeled data,

LRand1(θ) =
1

|Q|
∑
j∈Q

(
yjLθ

a(xj) + (1− yj)Lθ
n(xj)

)
+

1

|U|
∑
i∈U

Lθ
n(xi). (C.2)

As in SOEL both loss contributions are weighted equally. LRand1(θ) is minimized with

respect to the backbone model parameters θ.

• Rand2. The querying strategy of Trittenbach et al. [2021] samples uniformly among the

top 50% data ranked by anomaly scores without replacement. This leads to a random set

of “positive” queries. After the queries are labeled, the training loss function is the same

as LRand1(θ) (Equation (C.2)).

• Mar. After training the backbone model for one epoch, this querying strategy by Görnitz

et al. [2013] uses the α-quantile (sα) of the training data anomaly scores to define a

“normality region”. Then the |Q| samples closest to the margin sα are selected to be

queried. After the queries are labeled, the training loss function is the same as LRand1(θ)

(Equation (C.2)). Note that in practice we don’t know the true anomaly ratio for the α-

quantile. In all experiment, we provide this querying strategy with the true contamination
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ratio of the dataset. Even with the true ratio, the “Mar” strategy is still outperformed by

SOEL.

• Hybr1. This hybrid strategy, also used by [Görnitz et al., 2013] combines the “Mar”

query with neighborhood-based diversification. The neighborhood-based strategy selects

samples with fewer neighbors covered by the queried set to ensure the samples’ diversity

in the feature space. We start by selecting the data index argmin1≤i≤N ∥si − sα∥ into Q.

Then the samples are selected sequentially without replacement by the criterion

argmin
1≤i≤N

0.5 +
|{j ∈ NNk(ϕ(xi)) : j ∈ Q}|

2k
+ β

∥si − sα∥ −mini ∥si − sα∥
maxi ∥si − sα∥ −mini ∥si − sα∥

where the inter-sample distance is measured in the feature space and the number of nearest

neighbors is k = ⌈N/|Q|⌉. We set β = 1 for equal contribution of both terms. After the

queries are labeled, the training loss function is the same as LRand1(θ) (Equation (C.2)).

• Pos1. This querying strategy by Pimentel et al. [2020] always selects the top-ranked

samples ordered by their anomaly scores, argmax1≤i≤N si. After the queries are labeled,

the training loss only involves the labeled data

LPos1(θ) =
1

|Q|
∑
j∈Q

(
yjLθ

a(xj) + (1− yj)Lθ
n(xj)

)
.

Pimentel et al. [2020] use the logistic loss but we use the supervised outlier exposure loss.

The supervised outlier exposure loss is shown to be better than the logistic loss in learning

anomaly detection models [Hendrycks et al., 2018, Ruff et al., 2019].

• Pos2. This approach of [Barnabé-Lortie et al., 2015] uses the same querying strategy as

Pos1, but the training is different. Pos2 also uses the unlabeled data during training. After

the queries are labeled, the training loss function is the same as LRand1(θ) (Equation (C.2)).

• Hybr2. This hybrid strategy by Das et al. [2019] makes positive diverse queries. It com-

bines querying according to anomaly scores with distance-based diversification. Hybr2 se-
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lects the initial query argmax1≤i≤N si into Q. Then the samples are selected sequentially

without replacement by the criterion

argmax
1≤i≤N

si −mini si
maxi si −mini si

+ βmin
j∈Q

d(xi,xj)−mina̸=b d(xa,xb)

maxa̸=b d(xa,xb)−mina̸=b d(xa,xb)

where d(xi,xj) = ||ϕ(xi) − ϕ(xj)||2. We set β = 1 for equal contribution of both terms.

After the queries are labeled, Das et al. [2019] use the labeled set to learn a set of weights

for the components of an ensemble of detectors. For a fair comparison of active learning

strategies, we use the labeled set to update an individual anomaly detector with parameters

θ by optimizing the loss

LHybr2(θ) =
1

|Q|
∑
j∈Q

(
yjLθ

a(xj) + (1− yj)Lθ
n(xj)

)
.

• Hybr3. This baseline by [Ning et al., 2022] uses the same query strategy as Hybr2, but

differs in the training loss function,

LHybr3(θ) =
1

|Q|+ |U|
∑
j∈Q

wj(1− yj)Lθ
n(xj) +

1

|Q|+ |U|
∑
i∈U

ŵiLθ
n(xi),

where wj = 2σ(dj) and ŵi = 2 − 2σ(di) where σ(·) is the Sigmoid function and di =

10cd
(
||ϕ(xi)− c0||2− ||ϕ(xi)− c1||2

)
where c0 is the center of the queried normal samples

and c1 is the center of the queried abnormal samples in the feature space, and cd is the

min-max normalization factor.

We make three observations for the loss function. First, LHybr3(θ) filters out all labeled

anomalies in the supervised learning part and puts a large weight (but only as large as 2

at most) to the true normal data that has a high anomaly score. Second, in the unlabeled

data, LHybr3(θ) puts smaller weight (less than 1) to the seemingly abnormal data. Third,

overall, the weight of the labeled data is similar to the weight of the unlabeled data. This

is unlike SOEL, which weighs labeled data |U|/|Q| times higher than unlabeled data.
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Algorithm 2: Training Procedure of SOEL

Input: Unlabeled training dataset D, querying budget K
Procedure:
Train the model on D for one epoch as if all data were normal;
Query K data points from D diversely resulting in a labeled set Q and an unlabeled
set U ;
Estimate the contamination ratio α based on Q;
Finally train the model with {Q,U} until convergence:
For each iteration:
We construct a mini-batch with Q and a subsampled mini-batch of U
The sample in Q is up-weighted with 1/|Q| and the sample in U is down-weighted
with weight 1/|U|
The training strategy for Q is supervised learning; the training strategy for U is
LOE with the estimated anomaly ratio α.

C.4 Implementation Details

In this section, we present the implementation details in the experiments. They include an

overall description of the experimental procedure for all datasets, model architecture, data

split, and details about the optimization algorithm.

C.4.1 Experimental Procedure

We apply the same experimental procedure for each dataset and each compared method.

The experiment starts with an unlabeled, contaminated training dataset with index set U .

We first train the anomaly detector on U for one epoch as if all data were normal. Then we

conduct the diverse active queries at once and estimate the contamination ratio α by the

importance sampling estimator Equation (4.4). Lastly, we optimize the post-query training

losses until convergence. The obtained anomaly detectors are evaluated on a held-out test

set. The training procedure of SOEL is shown in Algorithm 2.
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C.4.2 Data Split

Image Data. For the image data including both natural (CIFAR-10 [Krizhevsky et al.,

2009] and F-MNIST [Xiao et al., 2017]) and medical (MedMNIST [Yang et al., 2021b])

images, we use the original training, validation (if any), and test split. When contaminating

the training data of one class, we randomly sample images from other classes’ training

data and leave the validation and test set untouched. Specifically for DermaMNIST in

MedMNIST, we only consider the classes that have more than 500 images in the training

data as normal data candidates, which include benign keratosis-like lesions, melanoma, and

melanocytic nevi. We view all other classes as abnormal data. Different experiment runs

have different randomness.

Tabular Data. Our study includes the four multi-dimensional tabular datasets from the

ODDS repository1 which have an outlier ratio of at least 30%. . To form the training and

test set for tabular data, we first split the data into normal and abnormal categories. We

randomly sub-sample half the normal data as the training data and treat the other half as

the test data. To contaminate training data, we randomly sub-sample the abnormal data

into the training set to reach the desired 10% contamination ratio; the remaining abnormal

data goes into the test set. Different experiment runs have different randomness.

Video Data. We use UCSD Peds12, a benchmark dataset for video anomaly detection.

UCSD Peds1 contains 70 surveillance video clips – 34 training clips and 36 testing clips. Each

frame is labeled to be abnormal if it has non-pedestrian objects and labeled normal otherwise.

Making the same assumption as [Pang et al., 2020], we treat each frame independent and

mix the original training and testing clips together. This results in a dataset of 9955 normal

frames and 4045 abnormal frames. We then randomly sub-sample 6800 frames out of the

1http://odds.cs.stonybrook.edu/
2http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
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normal frames and 2914 frames out of the abnormal frames without replacement to form

a contaminated training dataset with 30% anomaly ratio. A same ratio is also used in the

literature [Pang et al., 2020] that uses this dataset. The remaining data after sampling is

used for the testing set, whose about 30% data is anomalous. Like the other data types,

different experiment runs have different randomness for the training dataset construction.

C.4.3 Model Architecture

The experiments involve two anomaly detectors, NTL and MHRot, and three data types.

NTL on Image Data and Video Data. For all images (either natural or medical) and

video frames, we extract their features by feeding them into a ResNet152 pre-trained on

ImageNet and taking the penultimate layer output for our usage. The features are kept

fixed during training. We then train an NTL on those features. We apply the same number

of transformations, network components, and anomaly loss function Lθ
a(x), as when Qiu

et al. [2022b] apply NTL on the image data.

NTL on Tabular Data. We directly use the tabular data as the input of NTL. We apply

the same number of transformations, network components, and anomaly loss function Lθ
a(x),

as when Qiu et al. [2022b] apply NTL on the tabular data.

MHRot on Image Data. We use the raw images as input for MHRot. We set the same

transformations, MHRot architecture, and anomaly loss function as when Qiu et al. [2022b]

apply MHRot on the image data.
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DSVDD on Image Data. For all images (either natural or medical), we build DSVDD

on the features from the penultimate layer of a ResNet152 pre-trained on ImageNet. The

features are kept fixed during training. The neural network of DSVDD is a three-layer MLP

with intermediate batch normalization layers and ReLU activation. The hidden sizes are

[1024, 512, 128].

C.4.4 Optimization Algorithm

Model Dataset Learning Rate Epoch Minibatch Size τ

NTL

CIFAR-10 1e-4 30 512 1e-2
F-MNIST 1e-4 30 512 1e-2
MedMNIST 1e-4 30 512 1e-2
ODDS 1e-3 100 ⌈N/5⌉ 1e-2
UCSD Peds1 1e-4 3∗ 192 1e-2

MHRot
CIFAR-10 1e-3 15 10 N/A
F-MNIST 1e-4 15∗∗ 10 N/A
MedMNIST 1e-4 15 10 N/A

Deep SVDD
CIFAR-10 1e-4 30 512 1e-2
F-MNIST 1e-4 30 512 1e-2
MedMNIST 1e-4 30 512 1e-2

∗Hybr2, Hybr3, Pos1, and Pos2 train 30 epochs. All other methods train 3 epochs.
∗∗SOEL train 3 epochs.

Table C.2: A summary of optimization parameters for all methods.

In the experiments, we use Adam [Kingma and Ba, 2015] to optimize the objective function

to find the local optimal anomaly scorer parameters θ. For Adam, we set β1 = 0.9, β2 = 0.999

and no weight decay for all experiments.

To set the learning rate, training epochs, minibatch size for MedMNIST, we find the best

performing hyperparameters by evaluating the method on the validation dataset. We use

the same hyperparameters on other image data. For video data and tabular data, the

optimization hyperparameters are set as recommended by Qiu et al. [2022b]. In order to

choose τ (in Equation (4.2)), we constructed a validation dataset of CIFAR-10 to select the
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parameter τ among {1, 1e-1, 1e-2, 1e-3} and applied the validated τ (1e-2) on all the other

datasets in our experiments. Specifically, we split the original CIFAR-10 training data into

a training set and a validation set. After validation, we train the model on the original

training set again. We summarize all optimization hyperparameters in Table C.2.

When training models with SOEL, we resort to the block coordinate descent scheme that

update the model parameters θ and the pseudo labels ỹ of unlabeled data in turn. In

particular, we take the following two update steps iteratively:

• update θ by optimizing Equation (4.3) given ỹ fixed;

• update ỹ by sovling the constrained optimization in Section 4.3.5 given θ fixed;

Upon updating ỹ, we use the LOES variant [Qiu et al., 2022b] for the unlabeled data. We

set the pseudo labels ỹ by performing the optimization below

min
ỹ∈{0,0.5}|U|

1

|U|
∑
i∈U

ỹiLθ
a(xi) + (1− ỹi)Lθ

n(xi) s.t.

|U|∑
i=1

ỹi =
α̃|U|
2

,

where α̃ is the updated contamination ratio of U after the querying round, α̃ =
(
αN −∑

j∈Q y(xj)
)
/|U|, and α is computed by Equation (4.4) given Q. The solution is to rank the

data by Lθ
n(x)−Lθ

a(x) and label the top α̃ data abnormal (equivalently setting ỹ = 0.5) and

all the other data normal (equivalently ỹ = 0).

When we compute the Euclidean distance in the feature space, we construct the feature

vector of a sample by concatenating all its encoder representations of different transforma-

tions. For example, if the encoder representation has 500 dimensions and the model has 10

transformations, then the final feature representation has 10× 500 = 5000 dimensions.
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C.4.5 Time Complexity

Regarding the time complexity, the optimization uses stochastic gradient descent. The com-

plexity of our querying strategy is O(KN) where K is the number of queries and N is the

size of the training data. This complexity can be further reduced to O(K logN) with a

scalable extension of k-means++ [Bahmani et al., 2012].

C.5 Additional Experiments and Ablation Study

The goal of this ablation study is to show the generality of SOEL, to better understand the

success of SOEL, and to disentangle the benefits of the training objective and the query-

ing strategy. To this end, we applied SOEL to different backbone models and different

data forms (raw input and embedding input), performed specialized experiments to compare

the querying strategies, to demonstrate the optimality of the proposed weighting scheme in

Equation (4.3), and to validate the detection performance of the estimated ratio by Equa-

tion (4.4). We also compared SOEL against additional baselines including semi-supervised

learning frameworks and shallow anomaly detectors.

C.5.1 Randomness of Initialization

Random Initialization affects both the queried samples and downstream performance. To

evaluate the effects, we ran all experiments 5 times with different random seeds and reported

all results with error bars. In Figure C.1 we can see that the radius of the cover (a smaller

radius means the queries are more diverse) does have some variance due to the random

initialization. However, the corresponding results in terms of detection accuracy in Figure 4.2

do have very low variance. Our interpretation is that for the CIFAR10 and F-MNIST
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experiments, the random initialization has little effect on detection performance.

C.5.2 Results with Other Backbone Models

Table C.3: |Q| = 20. AUC (%) with standard deviation for anomaly detection on six
datasets (CIFAR-10, F-MNIST, Blood, OrganA, OrganC, OrganS). The backbone models
are MHRot [Hendrycks et al., 2019] and Deep SVDD [Ruff et al., 2018]. For all experiments,
we set the contamination ratio as 10%. SOEL consistently outperforms two best-performing
baselines on all six datasets.

MHRot Deep SVDD

SOEL Hybr1 Hybr2 SOEL Hybr1 Hybr2

CIFAR-10 86.9±0.7 83.9±0.1 49.1±2.0 93.1±0.2 89.0±0.6 91.3±1.0
F-MNIST 92.6±0.1 87.1±0.2 58.9±5.7 91.4±0.5 90.9±0.4 82.5±2.9
Blood 83.3±0.2 81.1±2.5 61.8±2.1 80.2±1.1 79.7±1.2 77.2±3.0
OrganA 96.5±0.3 94.1±0.3 61.1±4.8 89.5±0.3 87.1±0.7 71.3±3.8
OrganC 92.1±0.2 91.6±0.1 70.9±0.8 87.5±0.7 85.3±0.8 84.2±0.9
OrganS 89.3±0.2 88.3±0.3 68.2±0.1 85.5±0.7 83.4±0.3 81.2±1.3

We are interested whether SOEL works for different backbone models. To that end, we

repeat part of the experiments in Table 4.2 but using an self-supervised learning model

MHRot [Hendrycks et al., 2019] and a one class classification model Deep SVDD [Ruff et al.,

2018] as the backbone model. We compare SOEL to two best performing baselines —

Hybr1 and Hybr2. In this experiment, MHRot and Deep SVDD take different input types:

while MHRot takes raw images as input, Deep SVDD uses pre-trained image features. We

also set the query budget to be |Q| = 20.

We report the results in Table C.3. It showcases the superiority of SOEL compared to

the baselines. On all datasets, SOEL significantly outperforms the two best performing

baselines, Hybr1 and Hybr2, thus demonstrating the wide applicability of SOEL across

anomaly detection model types.
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Figure C.4: Running AUCs (%) with different query budgets and data contamination ratios
(1%-top row, 5%-middle row, 20%-bottom row). Models are evaluated at 20, 40, 80, 160
queries. SOEL performs the best on all three contamination ratio setups.

C.5.3 Robustness to Anomaly Ratios

Our method works for both low anomaly ratios and high anomaly ratios. In Figure C.4,

we compare SOEL against the best-performing baseline Hybr2 on CIFAR-10 and FMNIST

benchmarks. We vary the anomaly ratio among 1%, 5%, and 20%. On all these three

anomaly ratio settings, SOEL has significantly better performance than the baseline by over

2 percentage points on average.
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Table C.4: |Q| = 20. AUC (%) with standard deviation for anomaly detection on CIFAR-10
and F-MNIST. For all experiments, we set the contamination ratio as 10%. SOEL mitigates
the performance drop when NTL and MHRot trained on the contaminated datasets. Results
of the unsupervised method LOE are borrowed from Qiu et al. [2022b].

NTL MHRot

LOE k-means++ SOEL LOE k-means++ SOEL

CIFAR-10 94.9±0.1 95.6±0.3 96.3±0.3 86.3±0.2 64.0±0.2 86.9±0.7
F-MNIST 92.5±0.1 94.3±0.2 94.8±0.4 91.2±0.4 91.5±0.1 92.6±0.1

C.5.4 Disentanglement of SOEL

We disentangle the benefits of each component of SOEL and compare it to unsupervised

anomaly detection with latent outlier exposure (LOE) [Qiu et al., 2022b], and to supervised

active anomaly detection with k-means++ querying strategy. Both active approaches (k-

means++ and SOEL) are evaluated with |Q| = 20 labeled samples. The unsupervised

approach LOE requires an hyperparameter of the assumed data contamination ratio, which

we set to the ground truth value 10%. Comparing SOEL to LOE reveals the benefits of

the k-means++ active approach3; comparing SOEL to k-means++ reveals the benefits of

the unsupervised loss function in SOEL. Results in Table C.4 show that SOEL leads to

improvements for both ablation models.

C.5.5 Comparison to Binary Classifier

In the semi-supervised anomaly detection setup, the labeled points can be seen as an im-

balanced binary classification dataset. We, therefore, perform an ablation study where we

only replace deep anomaly detection backbone models with a binary classifier. All the other

training and querying procedures are the same. We report the results on four different

querying budget situations in Figure C.5. The figure shows that a binary classifier on all

3Notice that while LOE uses the true contamination ratio (an oracle information), SOEL only uses the
estimated contamination ratio by the 20 queries.
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Figure C.5: Running AUCs (%) with different query budgets. Models are evaluated at
20, 40, 80, 160 queries. Deep anomaly detection model (NTL) performs significantly better
than a binary classifier.

11 image datasets falls far short of the NTL, a deep anomaly detection model. The results

prove that the inductive bias (learning compact representations for normal data) used by

anomaly detection models are useful for anomaly detection tasks. However, such inductive

bias is lacking for binary classifiers. Especially when only querying as few as 20 points, the

model can’t see all anomalies. The decision boundary learned by the classifier based on the

queried anomalies possibly doesn’t generalize to the unseen anomalies.

C.5.6 Comparison to a Batch Sequential Setup

In Figure C.6, we extend our proposed method SOEL to a sequential batch active anomaly

detection setup. This sequential extension is possible because our querying strategy k-

means++ is also a sequential one. At each round, we query 20 points and update the

estimated contamination ratio. We plot this sequential version of SOEL and the original

SOEL in Figure C.6 and make comparisons. The sequential version is not as effective as a
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Figure C.6: Running AUCs (%) with different query budgets. Models are evaluated at
20, 40, 80, 160 queries. SOEL performs better than a sequential version.

single batch query of SOEL.

C.5.7 Comparisons of Querying Strategies

Figure C.7: Ablation study on the query strategy. K-Means++ significantly outperforms
other strategies for active anomaly detection on most of the datasets.

To understand the benefit of sampling diverse queries with k-means++ and to examine the

generalization ability (stated in Theorem 4.1) of different querying strategies, we run the
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following experiment: We use a supervised loss on labeled samples to train various anomaly

detectors. The only difference between them is the querying strategy used to select the

samples. We evaluate them on all image data sets we study for varying number of queries

|Q| between 20 and 160.

Results are in Figure C.7. On all datasets except OCT, k-means++ consistently outperforms

all other querying strategies from previous work on active anomaly detection. The difference

is particularly large when only few samples are queried. This also confirms that diverse

querying generalizes better on the test data than other querying strategies (see additional

results in Appendix C.1).

C.5.8 Ablation on Estimated Contamination Ratio
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Figure C.8: Model using the estimated ratio is indistinguishable from the one using the true
ratio.

To see how the estimated ratio affects the detection performance, we compare SOEL to

the counterpart with the true anomaly ratio. We experiment on all 11 image datasets. In

Fig. C.8, we report the average results for all datasets when querying |Q| = 20, 40, 80, 160

samples. It shows that SOEL with either true ratio or estimated ratio performs similar

given all query budgets. Therefore, the estimated ratio can be applied safely. This is very

important in practice, since in many applications the true anomaly ratio is not known.
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C.5.9 Ablations on Weighting Scheme
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Figure C.9: Ablation study on the weighting scheme in Equation (4.3). With different query
budgets |Q|, the performance on image datasets degrades both upon down-weighting (0.01,
0.1) or up-weighting (10.0) the queried samples. In contrast, equal weighting yields optimal
results.

We make the implicit assumption that the averaged losses over queried and unqueried data

should be equally weighted (Equation (4.3)). That means, if a fraction ϵ of the data is queried,

every queried data point weights 1/ϵ as much as an unqueried datum. As a consequence,

neither the queried nor the unqueried data points can dominate the result.

To test whether this heuristic is indeed optimal, we added a scalar prefactor to the supervised

loss in Equation (4.3) (the first term) and reported the results on the CIFAR-10 and F-

MNIST datasets with different query budgets (Figure C.9). A weight<1 corresponds to

downweighting the queried term, while a weight>1 corresponds to upweighting it. We use

the same experimental setup and backbone (NTL) as in the paper. The results are shown in

Figure C.9. We see that the performance degrades both upon down-weighting (0.01, 0.1) or

up-weighting (10.0) the queried samples. In contrast, equal weighting yields optimal results.
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Table C.5: Performance of ablation study on τ . AUROCs (%) on CIFAR-10 and F-MNIST
when |Q| = 20, the ground-truth contamination ratio is 0.1, and the backbone model is
NTL.

τ 1 0.1 0.01 0.001

CIFAR-10 93.2± 1.7 94.5± 0.8 96.3± 0.3 95.9± 0.4
F-MNIST 91.8± 1.4 92.7± 1.1 94.8± 0.6 94.9± 0.2

C.5.10 Ablations on Temperature τ

τ (in Equation (4.2)) affects the querying procedure and smaller τ makes the querying

procedure more deterministic and diverse because the softmax function (in Equation (4.2))

can eventually become a maximum function. We add an ablation study on different values of

τ . We did experiments under the ground truth contamination ratio being 0.1 and |Q| = 20.

As Table C.5 shows, the smaller τ results in better AUROC results (more diverse) and

smaller errors (more deterministic).

C.5.11 Ablations on Pseudo-label Values ỹ

Table C.6: Performance of ablation study on ỹ. AUROC (%) on CIFAR-10 and F-MNIST
when |Q| = 20, the ground-truth contamination ratio is 0.1, and the backbone model is
NTL.

ỹ 1.0 0.875 0.75 0.625 0.5 0.25

CIFAR-10 95.3 ± 0.6 95.7 ± 0.4 95.8 ± 0.4 96.0 ± 0.5 96.3 ± 0.3 94.5 ± 0.3
F-MNIST 94.5 ± 0.5 94.5 ± 0.4 94.6 ± 0.4 94.6 ± 0.3 94.8 ± 0.6 94.0 ± 0.4

Analyzing the effects of the pseudo-label values ỹ is an interesting ablation study. Therefore,

we perform the following experiments to illustrate the influence of different ỹ values. We

set the ground truth contamination ratio being 0.1 and |Q| = 20. We vary the ỹ from 0.25

to 1.0 and conduct experiments. For each ỹ value, we run 5 experiments with different

random seeds and report the AUROC results with standard deviation. It shows that ỹ = 0.5

performs the best. While the performance of CIFAR-10 degrades slightly as ỹ deviates from
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0.5, F-MNIST is pretty robust to ỹ. All tested ỹ outperform the best baseline reported in

Table 4.2.

C.5.12 Comparisons with Semi-supervised Learning Frameworks
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Figure C.10: Comparison with semi-supervised learning fraemworks, FixMatch [Sohn et al.,
2020a], k-nearest neighbors [Iscen et al., 2019], and Gaussian process [Li et al., 2018b]. On
F-MNIST, SOEL outperforms all baselines, while on CIFAR-10, SOEL has a comparable
performance with FixMatch with k-means++ querying.

SOEL exploits the unlabeled data to improve the model performance. This shares the same

spirit of semi-supervised learning. We are curious about how a semi-supervised learning

method performs in our active anomaly detection setup. To this end, we adapted an existing

semi-supervised learning framework FixMatch [Sohn et al., 2020a] to our setup and compared

with our method in Figure C.10. As follows, we will first describe the experiment results

and then state the adaptation of FixMatch to anomaly detection we made.

FixMatch, as a semi-supervised learning algorithm, regularizes the image classifier on a large

amount of unlabeled data. The regularization, usually referred to consistency regularization,

requires the classifier to have consistent predictions on different views of unlabeled data, thus

improves the classifier’s performance. FixMatch generates various data views through image

augmentations followed by Cutout [DeVries and Taylor, 2017]. We noticed that, although
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FixMatch focuses on making use of the unlabeled data, its performance is highly affected by

the quality of the labeled data subset. We investigated two variants depending on how we

acquire the labeled data. One is the original semi-supervised learning setting, i.e., assuming

the labeled data is a random subset of the whole dataset. The other one utilizes the same

diversified data querying strategy k-means++ as SOEL to acquire the labeled part. In

Figure C.10, we compared the performance of the two variants with SOEL. It shows that, on

natural images CIFAR10 for which FixMatch is developped, while the original FixMatch with

random labeled data is still outperformed by SOEL, FixMatch with our proposed querying

strategy k-means++ has a comparable performance with SOEL. However, such advantage

of FixMatch diminishes for the gray image dataset F-MNIST, where both variants are beat

by SOEL on all querying budgets. In addition, the FixMatch framework is restrictive and

may not be applicable for tabular data and medical data, as the augmentations are specially

designed for natural images.

FixMatch is designed for classification. To make it suit for anomaly detection, we adapted

the original algorithm4 and adopted the following procedure and loss function.

1. Label all training data as normal and train the anomaly detector for one epoch;

2. Actively query a subset of data with size |Q|, resulting in Q and the remaining data U ;

3. Finetune the detector in a supervised manner on non-augmented Q for 5 epochs;

4. Train the detector with the FixMatch loss Equation (C.3) on augmented {U ,Q} until

convergence.

We denote weak augmentation of input x by α(x) and the strong augmentation by A(x).
4We adapted the FixMatch implementation https://github.com/kekmodel/FixMatch-pytorch
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The training objective function we used is

LFixMatch(θ) =
1

|Q|
∑
j∈Q

(
yjLθ

a(α(xj)) + (1− yj)Lθ
n(α(xj))

)
+

1

|U|
∑
i∈U

1(S(α(xi)) < q0.7 or S(α(xi)) > q0.05)
(
ỹiLθ

a(A(xi)) + (1− ỹi)Lθ
n(A(xi))

)
(C.3)

where pseudo labels ỹi = 1(S(α(xi)) > q0.05)) and qn is the n-quantile of the anomaly

scores {S(α(xi))}i∈U . In the loss function, we only use the unlabeled samples with confi-

dently predicted pseudo labels. This is controlled by the indicator function 1(S(α(xi)) <

q0.7 or S(α(xi)) > q0.05). We apply this loss function for mini-batches on a stochastic opti-

mization basis.

We also extend the semi-supervised learning methods using non-parametric algorithms to

our active anomaly detection framework. We applied k-nearest neighbors and Gaussian

process for inferring the latent anomaly labels [Iscen et al., 2019, Li et al., 2018b] because

these algorithms are unbiased in the sense that if the queried sample size is large enough,

the inferred latent anomaly labels approach to the true anomaly labels. For these baselines,

we also queried a few labeled data with k-means++ -based diverse querying strategy and

then annotate the unqueried samples with k-nearest neighbor classifier or Gaussian process

classifer trained on the queried data.

Both methods become ablations of SOEL. We compare SOEL with them on CIFAR-10

and F-MNIST under various query budgets and report their results in Figure C.10. On

both datasets, SOEL improves over the variant of using only queried samples for training.

On F-MNIST, SOEL outperforms all ablations clearly under all query budgets, while on

CIFAR-10, SOEL outperforms all ablations except for FixMatch when query budget is low.

In conclusion, SOEL boosts the performance by utilizing the unlabeled samples properly,

while other labeling strategies are less effective.
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C.5.13 More Comparisons

Table C.7: Comparisons with kNN method. We reported the F1-score (%) with standard
error for anomaly detection on tabular datasets when the query budget K = 10. SOEL
outperforms the kNN baseline.

kthNN ALOE

BreastW 92.5±2.1 93.9±0.5
Ionosphere 88.1±1.3 91.8±1.1
Pima 40.5±4.7 55.5±1.2
Satellite 61.1±2.2 71.1±1.7
Average 70.6 78.1
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Figure C.11: Comparison with gradient diversity querying strategy (BADGE) [Ash et al.,
2020]. The gradients wrt. the penultimate layer representation don’t provide as informative
queries as the representation itself, thus outperformed by our querying strategy SOEL. The
true contamination ratio is 10%.

Comparisons to kNN [Ramaswamy et al., 2000] We compared against kNN in two

ways. First we confirmed that our baseline backbone model NTL is competitive with kNN,

which is shown to have a strong performance on tabular data [Shenkar and Wolf, 2022]. To

this end, NTL has been shown to yield 95.7% AUC on clean CIFAR-10 data, see Shenkar

and Wolf, 2022, Table 1 column 1. In contrast, Qiu et al. [2022b] reported 96.2% AUC in

Table 2, which is very close.

Second, we tested the performance of the kNN method on our corrupted training data set.

We gave kNN the advantage of using the ground truth contamination ratio (otherwise when
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under-estimating this value, we saw the method degrade severely in performance).

KNN has two key hyperparameters: the number of nearest neighbors k and the assumed

contamination ratio of the training set. The method uses this assumed contamination ra-

tio when fitting to define the threshold on the decision function. In our experiments, we

tried multiple values of k and reported the best testing results. Although the ground truth

anomaly rate is unknown and our proposed methods don’t have access to it, we gave kNN

the competitive advantage of knowing the ground truth contamination ratio.

We studied the same tabular data sets as in our paper: BreastW, Ionosphere, Pima, and

Satellite. We used the same procedure for constructing contaminated data outlined in our

paper, where the contamination ratio was set to 10%. The results are summarized in Ta-

ble C.7.

We adopted PyOD’s implementation of kNN5 and set all the other hyperparameters to their

default values (“method, radius, algorithm, leaf size, metric, p, and metric params”). We

repeated the experiments 10 times and reported the mean and standard deviation of the

F1 scores in Table C.7. We find that our active learning framework outperforms the kNN

baseline.

In more detail, the F1 scores for different values of k are listed below, where k = 1, 2, 5, 10, 15, 20,

respectively:

• BreastW: 84.3±7.6, 86.5±3.1, 89.9±3.9, 90.7±3.4, 92.5±2.1, 91.9±1.5

• Ionosphere: 88.1±1.3, 87.6±2.6, 84.5±3.9, 75.2±2.5, 70.4±3.6, 67.4±3.4

• Pima: 34.4±3.6, 32.3±3.4, 36.9±6.4, 40.5±4.7, 35.3±3.6, 35.5±4.5

• Satellite: 51.0±1.1, 53.5±0.7, 54.7±1.3, 57.4±1.8, 59.3±1.3, 61.1±2.2
5https://github.com/yzhao062/pyod
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Comparisons to Gradient Diversity Querying Strategy (BADGE) [Ash et al.,

2020] We compared against a popular active learning method, BADGE [Ash et al., 2020],

which is a diversity-driven active learning method that exploits sample-wise gradient di-

versity. We start with observing that BADGE doesn’t work well for anomaly detection in

Figure C.11, where we only replaced the objects that k-means++ works on in SOEL with

gradients demanded in BADGE [Ash et al., 2020] while keeping all other settings fixed.

This variant is referred to as ”Gradient Diversity” while ours is denoted by ”Representation

Diversity”. Figure C.11 shows the performance of Gradient Diversity is outperformed by a

large margin, failing in querying informative samples as our Representation Diversity.

To understand which part of BADGE breaks for anomaly detection tasks, we check the

gradients used by BADGE in an anomaly detection model. Before that, we start with

describing how BADGE works. BADGE is developed for active learning in classification

tasks. Given a pre-trained classifier, it first predicts the most likely label ŷ (pseudo labels)

for the unlabeled training data x. These pseudo labels are then used to formulate a cross

entropy loss lCE(x, ŷ). BADGE computes every data point’s loss function’s gradient to the

final layer’s weights as the data’s representation. Upon active querying, a subset of data

are selected such that their representations are diverse. In particular, the gradient to each

class-specific weight Wk is ∇Wk
lCE(x, ŷ) = (pk − 1(ŷ = k))ϕ(x) where pk is the predicted

probability of being class k and ϕ(x) is the output of the penultimate layer. Proposition 1

of Ash et al. [2020] shows the norm of the gradient with pseudo labels is a lower bound of

the one with true labels. In addition, note that the gradient is a scaling of the penultimate

layer output. The scaling factor describes the predictive uncertainty and is upper bounded

by 1. Therefore, the gradients are informative surrogates of the penultimate layer output of

the network, as shown by the inequality

||∇Wk
lCE(x, ŷ)||2 ≤ ||∇Wk

lCE(x, y)||2 ≤ ||ϕ(x)||2. (C.4)
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However, these properties are associated with the softmax activation function usage. In

anomaly detection, models and losses are diverse and are beyond the usage of softmax

activation outputs. Hence the gradients are no longer good ways to construct active queries.

For example, the supervised deep SVDD [Ruff et al., 2019] uses the contrasting loss l(x, y) =

y/(Wϕ(x)−c)2+(1−y)(Wϕ(x)−c)2 to compact the normal sample representations around

center c. However, the gradient ∇W l(x, y) =
(
2(1− y)(Wϕ(x)− c)− 2y(Wϕ(x)− c)−3

)
ϕ(x)

is not a bounded scaling of ϕ(x) any more, thus not an informative surrogate of point x.

C.5.14 NTL as a Unified Backbone Model

In Section 4 of the main paper, we have empirically compared SOEL to active-learning strate-

gies known from various existing papers, where these strategies originally were proposed using

different backbone architectures (either shallow methods or simple neural architectures, such

as autoencoders). However, several recent benchmarks have revealed that these backbones

are no longer competitive with modern self-supervised ones [Alvarez et al., 2022]. For a

fair empirical comparison of SOEL to modern baselines, we upgraded the previously pro-

posed active-learning methods by replacing their simple respective backbones with a modern

self-supervised backbone: NTL [Qiu et al., 2021]—the same backbone that is also used in

SOEL.

We motivate our choice of NTL as unified backbone in our experiments as follows. Fig-

ure C.12 shows the results of ten shallow and deep anomaly detection methods [Tax and

Duin, 2004a, Liu et al., 2008, Diederik P. Kingma, 2014, Makhzani and Frey, 2015, Deecke

et al., 2018, Ruff et al., 2018, Golan and El-Yaniv, 2018, Hendrycks et al., 2019, Sohn et al.,

2020b, Qiu et al., 2022b] on the CIFAR10 one-vs.-rest anomaly detection task. NTL performs

best (by a large margin) among the compared methods, including many classic backbone

models known from the active anomaly detection literature [Görnitz et al., 2013, Barnabé-
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Lortie et al., 2015, Das et al., 2019, Ruff et al., 2019, Pimentel et al., 2020, Trittenbach et al.,

2021, Ning et al., 2022].

Figure C.12: Error (in % of 1-AUCROC) of ten methods on CIFAR10: two shallow methods
(SVDD [Tax and Duin, 2004a] and IF [Liu et al., 2008]) and eight deep methods (VAE
[Diederik P. Kingma, 2014], DCAE [Makhzani and Frey, 2015], ADGAN [Deecke et al.,
2018], DSVDD [Ruff et al., 2018], GT [Golan and El-Yaniv, 2018], MHRot [Hendrycks et al.,
2019], Contrastive [Sohn et al., 2020b], and NTL [Qiu et al., 2022b]). NTL achieves the best
anomaly detection performance on CIFAR10.

An independent benchmark comparison of 13 methods (including nine deep methods pro-

posed in 2018–2022) [Alvarez et al., 2022] recently identified NTL as the leading anomaly-

detection method on tabular data. In their summary, the authors write: ’NeuTraLAD,

the transformation-based approach, offers consistently above-average performance across all

datasets. The data-augmentation strategy is particularly efficient on small-scale datasets

where samples are scarce.’. Note that the latter is also the scenario where active learning

is thought to be the most promising. We show the results from Alvarez et al. [2022] in

Table C.8.
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Table C.8: F1-scores (in %) and their standard deviations of 13 anomaly detection methods
on tabular data. Results are taken from Alvarez et al. [2022]. The results indicate that NTL
is the state-of-the-art for tabular anomaly detection.

KDDCUP10 NSL-KDD IDS2018 Arrhythmia Thyroid Avg.

ALAD 95.9±0.7 92.1±1.5 59.0±0.0 57.4±0.4 68.6±0.5 74.6
DAE 93.2±2.0 96.1±0.1 71.5±0.5 61.5±2.5 59.0±1.5 76.3
DAGMM 95.9±1.4 85.3±7.4 55.8±5.3 50.6±4.7 48.6±8.0 67.2
DeepSVDD 89.1±2.0 89.3±2.0 20.8±11 55.5±3.0 13.1±13 53.6
DROCC 91.1±0.0 90.4±0.0 45.6±0.0 35.8±2.6 62.1±10 65.0
DSEBM-e 96.6±0.1 94.6±0.1 43.9±0.8 59.9±1.0 23.8±0.7 63.8
DSEBM-r 98.0±0.1 95.5±0.1 40.7±0.1 60.1±1.0 23.6±0.4 63.6
DUAD 96.5±1.0 94.5±0.2 71.8±2.7 60.8±0.4 14.9±5.5 67.7
MemAE 95.0±1.7 95.6±0.0 59.9±0.1 62.6±1.6 56.1±0.9 73.8
SOM-DAGMM 97.7±0.3 95.6±0.3 44.1±1.1 51.9±5.9 52.7±12 68.4
LOF 95.1±0.0 91.1±0.0 63.8±0.0 61.5±0.0 68.6±0.0 76.0
OC-SVM 96.7±0.0 93.0±0.0 45.4±0.0 63.5±0.0 68.1±0.0 73.3
NTL 96.4±0.2 96.0±0.1 59.5±8.9 60.7±3.7 73.4±0.6 77.2
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Appendix D

Chapter 5

D.1 Justifications of Assumptions A1-A3

As follows, we provide justifications for assumptions A1-A3. Following the justification, we

also discuss possibilities to remove or mitigate the assumptions.

A1 Assuming an available meta-training set is widely adopted in few-shot learning or meta-

learning [Finn et al., 2017, Nichol et al., 2018, Frikha et al., 2021, Huang et al., 2022] and

domain generalization [Li et al., 2018a, Xiao et al., 2023]. In practice, the meta-training set

can be generated using available covariates. For example, for our tabular data experiment, we

used the timestamps; in medical data, one could use data collected from different hospitals or

different patients to obtain separate sets for meta-training; and in MVTec-AD, we used the

other training classes except for the target class to form the training set. We also provided

an ablation study on the number of classes in the meta-training set (Table D.4). We found

even in the extreme case where we only have one data class in the training set, the trained

model still provides meaningful results.
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There are multiple ways to mitigate this assumption. If one does not have a meta-training set

at hand, one can train their model on a different but related dataset, e.g., train on Omniglot

but test on MNIST (see results below under this setting. We still get decent AUC results on

MNIST).

Anomaly ratio 1% 5% 10% 20%

AUROC 84.4±2.4 85.2±2.5 84.3±2.5 82.2±2.4

A2 Batch-level prediction is a common assumption used in robustness literature [Schneider

et al., 2020, Nado et al., 2020, Lim et al., 2023, Wang et al., 2021, Choi et al., 2022]. In

addition, batch-level predictions are widely used in real life. For example, people examine

Covid19 test samples at a batch level out of economic and time-efficiency considerations1.

To relax this assumption, our method can easily be extended to score individual data by pre-

setting the sample mean and variance in BatchNorm layers with a collection of data. These

moments are then fixed when predicting new individual data. Empirically, to understand

the impacts of the batch size on the prediction performance, we conducted an ablation study

with as small a batch size as three in the experiments.

A3 Besides being supported by the intuition that anomalies are rare, this is consistent

with most of the data used in the literature. ADBench2 has 57 anomaly detection datasets

(with an average anomaly ratio of 5%), all matching our assumption that the normal data

take the majority in each dataset.

We provide a simple mathematical argument for the validity of A3, showing that a mini-

batch with a majority of anomalies is very unlikely to be drawn for a sufficiently large

mini-batch size B. Let p < 1/2 denote the fraction of anomalies among the data and define

1https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/

pooled-sample-testing-and-screening-testing-covid-19
2https://github.com/Minqi824/ADBench
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∆ = 1/2 − p > 0. For every data point xi in the batch, let yi ∼ Bernoulli(p) encode

whether xi is normal (yi = 0) or abnormal (yi = 1). The variable SB := y1 + · · · + yB

thus counts the number of anomalies in the batch, so that SB < B/2 means that the

majority of the data is normal. We want to show that the violation of A3 is unlikely, that

is, P (SB ≥ B/2) is small. By Hoeffding’s inequality, since 0 ≤ yi ≤ 1 for all i, it follows that

P (SB≥B/2) = P (SB−E[SB]≥B/2−Bp) ≤ exp
(
− 2B(0.5− p)2

)
≤ exp

(
− 2B∆2

)
, which

converges to zero exponentially fast when B →∞.

D.2 Generalization to an Unseen Distribution P∗

This section aims to provide a proof for Theorem 5.1. Inspired by Fallah et al. [2021], we

derive an upper bound of the generalization error of our meta-training approach on unseen

distributions. The error is described in terms of the data distributions transformed by batch-

norm-involved feature extractors.

Definition D.1. Given a sample space Ω and its σ-field F , the total variation distance

between two probability measure Pi and Pj defined on F is

∥Pi − Pj∥TV = sup
A∈F
|Pi(A)− Pj(A)| = sup

f :0≤f≤1

∣∣Ex∼Pi
[f(x)]− Ex∼Pj

[f(x)]
∣∣ (D.1)

Now we split the loss function into two parts: the first part is the layers before (including)

the last batch normalization layer, referred to as feature extractor z = fθ(x), and the second

part is the layers after the last batch normalization layer, namely the loss function map

L(z) = L(fθ(x)) = Lθ(x). L(z) may involve learnable parameters, but we omit the notations

for conciseness. When the input is only an individual data point, and there are no batch

effects, we write L(z) to differentiate the vector-valued loss. The split allows us to separate

the effects of batch normalization layers on the generalization error of unseen distributions.
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Under the transformation of fθ consisting of batch normalization layers, we have the data

distribution transformed into the distribution of adaptatively centered representations

Pj(x)
z=fθ(x)
=⇒ P z

j (z), j = 1, · · · , K, ∗ (D.2)

resulting in P z
j with EP z

j
[z] = 0 and VarP z

j
[z] = 1.

Assume the mini-batch is large enough so that the mini-batch means and variances are

approximately constant across batches, i.e., the batch statistics in batch normalization layers

are equal to the population-truth values. Consequently, when x1, . . . ,xB
i.i.d.∼ Pj which

constitutes xB, their latent representations zi := f iθ(xB)
i.i.d.∼ P z

j . for i = 1, · · · , B. Then the

expectation of the batch-level losses are

ExB∼Pj

[
1

B

B∑
i=1

Lθ
i (xB)

]
= E{zi∼P z

j }Bi=1

[
1

B

B∑
i=1

L(zi)
]

=
1

B

B∑
i=1

E{zi∼P z
j }Bi=1

[L(zi)]

= Ez∼P z
j
[L(z)] (D.3)

Assumption D.1. For any parameters (if any), the loss function L is bounded by C.

We now quantify the generalization error to an unseen distribution P∗ by the difference
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between the expected loss of data batches of P∗ and the one of meta-training distribution.

∣∣∣∣∣ExB∼P∗

[
1

B

B∑
i=1

Lθ
i (xB)

]
− 1

K

K∑
j=1

ExB∼Pj

[
1

B

B∑
i=1

Lθ
i (xB)

]∣∣∣∣∣ (D.4)

=

∣∣∣∣∣Ez∼P z
∗ [L(z)]−

1

K

K∑
j=1

Ez∼P z
j
[L(z)]

∣∣∣∣∣ (by Equation (D.3)) (D.5)

= C

∣∣∣∣∣Ez∼P z
∗

[L(z)
C

]
− 1

K

K∑
j=1

Ez∼P z
j

[L(z)
C

]∣∣∣∣∣ (by Assumption D.1) (D.6)

≤ C sup
0≤L/C≤1

∣∣∣∣∣Ez∼P z
∗

[L(z)
C

]
− 1

K

K∑
j=1

Ez∼P z
j

[L(z)
C

]∣∣∣∣∣ (D.7)

= C

∥∥∥∥∥P z
∗ −

1

K

K∑
j=1

P z
j

∥∥∥∥∥
TV

(by Definition D.1) (D.8)

This result suggests the generalization error of the loss function is bounded by the total

variation distance between P z
∗ and 1

K

∑K
j=1 P

z
j . The batch normalization re-calibrates all Pj

such that P z
j centers at the origin and has unit variance, making the distributions similar.

Thus the total variation gets smaller after batch normalization, lowering the generalization

error upper bound.

The limitation of this analysis is we assume the batch statistics are population-truth moments

(mean and variance) in zi
i.i.d.∼ P z

j . So we cannot analyze the effects of the batch size B during

training and testing. That said, we provide empirical evaluations on different batch sizes B

at test time in Appendix C.5.

D.3 Algorithm

The training procedure of our approach is simple and similar to any stochastic gradient-based

optimization. The only modification is to take into account the existence of a meta-training

set. See Algorithm 3.
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Algorithm 3: Training procedure of ACR

Input : K interrelated training distributions P1, · · · , PK
i.i.d.∼ Q

Mixting rate π
Deep anomaly detector model parameters θ
Sub-sample size M
Mini-batch size |B|
learning rate α
Number of training iterations T

Output: Optimized anomaly detector with parameter θT
Randomly initialize θ
Construct P π

1 , · · · , P π
K (Equation (5.6))

for iteration t in [1, · · · , T ] do
Sample M tasks {xBm}Mm=1 from all K task distributions {P π

1 , · · · , P π
K}

θt ← θt−1 − α∇θ
1
M

∑M
m=1 L

θt−1(xBm)) (Equation (5.7))

end

Figure D.1: Illustration of batch normalization for AD with two tasks P π
1 and P π

2 . The
method (batch-)normalizes the data in P π

j separately. If each P π
j consists mainly of normal

samples, most samples will be shifted close to the origin (by subtracting the respective
task’s mean). As a result, the samples from all tasks concentrate around the origin in a joint
feature space (gray area) and thus can be tightly enclosed using, e.g., one-class classification.
Samples from the test task are batch normalized in the same way.

D.4 Toy Example with Batch Normalization

An important component of our method is batch normalization, which shifts and re-scales

any data batch xB to have sample mean zero and variance one. Batch normalization also

provides a basic parameter-free zero-shot batch-level anomaly detector (Equation (5.4)). In

Figure D.1, we show a 1D case of detecting anomalies in a mixture distribution. The mixture

distribution composes of a normal data distribution (the major component) and an abnormal
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data distribution (the minor component). Equation (5.4) adaptively detects anomalies at a

batch level by shifting the normal data distribution toward the origin and pushing anomalies

away. Setting a user-specified threshold allows making predictions.

D.5 Baselines

CLIP-AD [Liznerski et al., 2022]. CLIP (Contrastive Language–Image Pre-training [Rad-

ford et al., 2021]) is a pre-trained visual representation learning model that builds on

open-source images and their natural language supervision signal. The resulting network

projects visual images and language descriptions into the same feature space. The pre-

trained model can provide meaningful representations for downstream tasks such as image

classification and anomaly detection. When applying CLIP on zero-shot anomaly detec-

tion, CLIP prepares a pair of natural language descriptions for normal and abnormal data:

{ln = “A photo of {NORMAL CLASS}”, la = “A photo of something”}. The anomaly

score of a test image x is the relative distance between x to ln and x to la in the feature

space,

s(x) =
exp(⟨fx(x), fl(la)⟩)∑

c∈{ln,la} exp(⟨fx(x), fl(c)⟩)
,

where fx and fl are the CLIP image and description feature extractors and ⟨·, ·⟩ is the inner

product. We name this baseline CLIP-AD.

Compared to our proposed method, CLIP-AD requires a meaningful language description

for the image. However, this is not always feasible for all image datasets like Omniglot [Lake

et al., 2015], where people can’t name the written characters easily. In addition, CLIP-AD

doesn’t apply to other data types like tabular data or time-series data. Finally, CLIP-AD

has limited ability to adapt to a different data distribution other than its training one. These
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limitations are demonstrated in our experiments.

OC-MAML [Frikha et al., 2021]. One-Class Model Agnostic Meta Learning (OC-

MAML) is a meta-learning algorithm that taylors MAML [Finn et al., 2017] toward few-

shot anomaly detection setup. OC-MAML learns a global model parameterization θ that

can quickly adapt to unseen tasks with a few new task data points S, called a support set.

The new-task adaptation takes the global model parameters to a task-specific parameteri-

zation ϕ(θ, St) that has a low loss L(Qt;ϕ(θ, St)) on the new task t, represented by another

dataset Qt, called a query set. OC-MAML uses a one-class support set to update the model

parameters θ with a few gradient steps to get ϕ. To learn an easy-to-adapt global parame-

terization θ, OC-MAML directly minimizes the target loss on lots of training tasks. Suppose

there are T tasks for training. The following loss function is minimized

l(θ) =
1

T

T∑
t=1

ESt∼ptS ,Qt∼ptQ
[L(Qt;ϕ(θ, St))], (D.9)

where ptS is task t’s support set distribution and ptQ is the query set distribution. During

training, the support set contains K normal data points where K is usually small, termed

K-shot OC-MAML. The query set contains an equal number of normal and abnormal data

and provides optimization gradients for θ. During test time, OC-MAML adapts the global

parameter θ on the unseen task’s support set S∗, resulting in a task-specific parameter

ϕ(θ, S∗). The newly adapted parameters are then used for downstream tasks.

OC-MAML is not a zero-shot anomaly detector and requires K support data points to

adapt compared to our method. Our method is simpler in training as it doesn’t need to

adapt to the support set with additional gradient updates, characterized in the function

ϕ(θ, S). OC-MAML is also different in batch normalization. Rather than the original batch

normalization, OC-MAML first computes the batch moments using the support set and then

normalizes both the support and query set with the same moments. However, the computed
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moments can be noisy when the support set size is small. In our experiments, we adopt a

1-shot OC-MAML for all image data.

ResNet152 [He et al., 2016]. Because batch normalization is an effective tool for zero-

shot anomaly detection (see Figure 5.1b), we directly apply batch normalization on extracted

features from a pre-trained model. We then compute the anomaly score as the Euclidean

distance between a feature vector and the origin in the feature space. Our experiments

use a ResNet152 model pre-trained on ImageNet as a feature extractor and extract its 2048-

dimension penultimate layer output as the final feature vector. Upon computing the features

of an input batch through batch normalization layers in ResNet, two variants are avail-

able: using the batch statistics from training or re-computing the statistics of the test input

batch itself. We name the former variant ResNet152-I and the latter ResNet152-II. Baseline

ResNet152 doesn’t optimize the feature extractor jointly with the zero-shot detection prop-

erty of batch normalization. Hence the extracted pre-trained features are not optimal for

the zero-shot anomaly detection.

ADIB [Deecke et al., 2021]. In addition to zero-shot and few-shot anomaly detectors,

we also compare with the state-of-the-art deep anomaly detector ADIB [Deecke et al., 2021]

which use pre-trained image features and additional data for outlier exposure in training.

We use a “debiased” subset of TinyImageNet as the outlier exposure data for CIFAR100 as

suggested in Hendrycks et al. [2018], use EMNIST [Cohen et al., 2017] as the outlier exposure

data for MNIST as suggested in Liznerski et al. [2022], use OrganC and OrganS datasets

[Yang et al., 2021a] as outlier exposure data for OrganA, and use half of the training data

as normal data and half of the training data as auxiliary outliers for Omniglot.
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D.6 Implementation Details

Practical Training and Testing. On visual anomaly classification and tabular anomaly

detection, we construct training and test distributions using labeled datasets3, where all x

from the same class j (e.g., all 0’s in MNIST) are considered samples from the same Pj. The

dataset Q (e.g., MNIST as a whole) is the meta-set of all these distributions.

For training and testing, we split the meta-dataset into disjoint subsets. In the MNIST

example, we define P0, ..., P4 as the distributions of images with digits 0−4 and use them for

training. For testing, we select a single distribution of digits not seen during training (e.g.,

digit 5) as the ”new normal” distribution P∗ to which we adapt the model. The remaining

digits (6− 9 in this example) are used as test-time anomalies. To reduce variance, we rotate

the roles among digits 5− 9, using each digit as a test distribution once.4

D.6.1 Implementation Details on Image Data for Anomaly Detec-

tion

Hyperparameter Search. We search the hyperparameters on a validation set split from

the training set, after which we integrate the validation set into the training set and train

the model on that. Then we test the model on the test set.

On CIFAR100-C, we construct the validation set on the training set of the primitive CI-

FAR100. We randomly select 20 classes as the validation set and set the remaining classes

to be the training dataset at validation time. We search the neural network architecture

(layers (3,4,5,6), number of convolutional kernels (32, 64, 128), and the output dimensions

(8, 16, 32, 64, 128) while fixing the kernel size by 3x3. For the learning rate, we search values

3these are either classification datasets or datasets where one of the covariates is binned to provide classes.
4This is the popular “one-vs-rest” testing set-up, which is standard in anomaly detection benchmarking.

(e.g., [Ruff et al., 2021])
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0.1, 0.01, 0.001, 0.0001, and 0.00001, after which we search finer values in a binary search

fashion. We also search the mini-batch size B (30, 60) and the number of sub-sampled tasks

M (16, 32, 64) at each iteration. We select the combination that trade-off the convergence

speed and optimization stability. When selecting the anomaly ratio π (Equation (5.6)), we

test 0.99, 0.95, 0.9, 0.8, 0.6 and find the results are quite robust to these values. So we fix

π = 0.8 across the experiments.

On non-natural image datasets (OrganA, Omniglot, and MNIST), we search hyperparame-

ters on the validation set of Omniglot and use the searched hyperparameters on all datasets.

Specifically, at validation time, we randomly split the Omniglot into 1200 classes for train-

ing and 423 classes for validation. After optimizing the hyperparameters, we constantly use

the first 1200 classes for training and the remaining 423 classes for testing. The searched

hyperparameters are the same as the ones in CIFAR100-C described above.

Training Protocols. We train the model 6,000 iterations on CIFAR100 data, 10,000

iterations on Omiglot, and 2,000 iterations on MNIST and OrganA. Each iteration contains

32 training tasks; each task mini-batch has 30 (for datasets other than CIFAR100) or 60

(for CIFAR100) points sampled from P 0.8
j . All 32 training tasks’ gradients are averaged and

incur one gradient update per iteration.

ACR-DeepSVDD. We use the standard convolutional neural network architecture used

in meta-learning. Specifically, the network contains four convolution layers. Each convo-

lution layer is followed by a batch normalization layer and a ReLU activation layer. The

final layer is a fully-connectly layer followed by a batch normalization layer. The center of

DSVDD has the same dimension as the output of the fully-connected layer, which is 32. For

CIFAR100/CIFAR100-C, each convolution layer has 128 kernels. For MNIST, Omniglot,

and OrganA, each convolution layer has 64 kernels. Each kernel’s size is 3x3. We use Adam
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with a learning rate of 0.003 on CIFAR100 dataset and 1e− 4 on all the other datasets.

ACR-BCE. We use the same network structure as ACR-DeepSVDD without the final

batch normalization layer and the center. The final fully-connected layer has output dimen-

sion of 1. We train the model with binary cross entropy loss. We use Adam with a learning

rate of 0.003 on CIFAR100 dataset and 1e− 4 on all the other datasets.

D.6.2 Implementation Details on MVTec AD for Anomaly Seg-

mentation

Training Protocols. Since the images are roughly aligned, we can use a sliding window

over the image to detect local defects in each window. However, this requires pixel-level

alignment and is unrealistic for the MVTec AD dataset. We instead first extract informative

texture features using a sliding window, which corresponds to the 2D convolutions. The

convolution kernel is instantiated with the ones in a pre-trained ResNet. We follow the

same data pre-processing steps of Cohen and Hoshen [2020], Rippel et al. [2021], Defard

et al. [2021] to extract the texture representations (the third layer’s output in our case) of

WideResNet-50-2 pre-trained on ImageNet. Second, we detect anomalies in the extracted

features in each sliding window position with our ACR method. Specifically, each window

position corresponds to one image patch. We stack into a batch the patches taken from a set

of images that all share the same spatial position in the image. For example, we may stack

the top-left patch of all testing wood images into a batch and use ACR to detect anomalies

in that batch. Finally, the window-wise anomaly scores are bilinearly interpolated to the

size of the original image, i.e., the pixel-level anomaly scores.

Following the same data pre-processing steps of Cohen and Hoshen [2020], Rippel et al.

[2021], Defard et al. [2021], we extract the texture representations (the third layer’s output
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in our case) of WideResNet-50-2 pre-trained on ImageNet. After feature extraction, a batch

of B images leads to a representation of size (B,C,H,W ) := (B, 1024, 14, 14). These repre-

sentations contain both textual and spatial information. During meta-training, we treat each

spatial position as one new class so that there are 14×14 = 196 new classes for each original

class (e.g., wood), and each new class contains B data points, each a 1024 long vector. As a

result, the model (DSVDD in our usage) takes a batch of vectors of size (B, 1024) as input

and assigns anomaly scores to each vector within the batch. When adding synthetic abnor-

mal data (Equation (5.6)), we use Gaussian noise corrupted input vectors rather than new

class data, incorporating the fact that local defects result in similar feature vectors instead

of globally different textures. Specifically, we add Gaussian noise sampled from N (0, 0.01I)

and set π = 0.5 in Equation (5.6). Since there is no During testing, we batch each position

(h,w) of all images and detect anomalies at position (h,w). Because the defects are local,

and there is a possibility that there is no defect at some position (h0, w0), we manually add

synthetic noisy vectors into the tested batch as the training procedure to ensure the images

have a low anomaly score at (h0, w0). After getting anomaly scores, we remove the synthetic

vector results, leading to scores of size (B, 14, 14), and then upscale the scores into the orig-

inal image size by bilinear interpolation. We acknowledge that using CutPaste [Li et al.,

2021b] to generate more realistic synthetic abnormal samples is another option. We leave

the investigation to future work.

ACR-DeepSVDD and Hyperparameter Search. Our model is a five-layer MLP with

intermediate batch normalization layers and ReLU activations. The hidden sizes of the

perceptrons are [512, 256, 128, 64, 32]. The center is size 32. The statistics of all batch

normalization layers are computed on fly on the training/test batches. We average the

gradients of 32 randomly sampled tasks for each parameter update. Each task contains 30

normal feature vectors and 30 noise-corrupted feature vectors. We train the model with

Meta Outlier Exposure loss. We set the learning rate 0.0003 and iterate 50 updates for each

195



class. We search the hyperparameters on a test subset of bottle class (half of the original

test set) and apply the same hyperparameters to all classes afterward.

D.6.3 Implementation Details on Tabular Data

ACR-NTL has the same model architecture as the baseline NTL, and ACR-DeepSVDD adds

one additional batch normalization layer on top of the DeepSVDD baseline. Our algorithm

is applicable to the existing backbone models without complex modifications.

ACR-DeepSVDD. ACR is applied to the backbone model DeepSVDD [Ruff et al., 2018].

The neural network of DeepSVDD is a four-layer MLP with intermediate batch normalization

layers and ReLU activations. The hidden sizes on Anoshift dataset are [128, 128, 128, 32].

The hidden sizes on Malware dataset are [64, 64, 64, 32]. One batch normalization layer

is added on the top of the network on Anoshift experiment. The statistics of all batch

normalization layers are computed on fly on the training/test batches. We use Adam with

a learning rate of 4e− 4 on Anoshift dataset and 1e− 4 on Malware dataset.

ACR-NTL. ACR is applied to the backbone model NTL [Qiu et al., 2021]. The shared

encoder of NTL is a four-layer MLP with intermediate batch normalization layers and ReLU

activations. The hidden sizes of the encoder are [128, 128, 128, 32]. The statistics of all batch

normalization layers are computed on fly on the training/test batches. We set the number of

neural transformations as 19. Each neural transformation is parametrized by a three-layer

MLP of hidden size of 128 with ReLU activations. All networks are optimized jointly with

Adam with a learning rate of 4e− 4.
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D.7 Meta Outlier Exposure Avoids Trivial Solutions.

The benefit of the outlier exposure loss in meta-training is that the learning algorithm

cannot simply learn a model on the average data distribution, i.e., without learning to

adapt. This failure to adapt is a common problem in meta-learning. Our solution relies on

using each training sample xi in different contexts: depending on the sign of yi,j, data point

xi is considered normal (when drawn from Pj) or anomalous (when drawn from P̄j). This

ambiguity prevents the model from learning an average model over the meta data set and

forces it to adapt to individual distributions instead.

For example, DeepSVDD with its original loss function may suffer from a trivial solution

that maps any input data to the origin in the feature space and achieves the optimal zero

loss [Ruff et al., 2018]. This trivial solution is also possible in our proposed meta-training

procedure. But Meta Outlier Exposure gets rid of this trivial solution because mapping

everything to the origin incurs an infinite loss on Aθ. Similar reasoning also applies to

binary cross entropy loss.

D.8 Connections to Other Areas

Our problem setup and assumptions share similarities with other research areas but differ-

ences are also pronounced.

Connection to Batch Normalization-Based Test-time Adaptation (TTA). Many

works for TTA feature batch-level predictions [Schneider et al., 2020, Nado et al., 2020, Lim

et al., 2023, Wang et al., 2021, Choi et al., 2022] assumes its test-time data are corrupted

but from the same semantic classes as the training data, but the zero-shot AD’s test data

can be drawn from a completely new class.
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Connection to Unsupervised Domain Adaptation (UDA). Although our approach

uses unlabeled data like the UDA setting [Kouw and Loog, 2019], UDA assumes the unlabeled

data from the shifted domain is available during training and can be used to update the model

parameters. But our method doesn’t rely on the availability of novel data during training

time and doesn’t require updating the model parameters during test time.

Connection to Zero-shot Classification. Xian et al. [2018] explains the nature of zero-

shot classification and writes that “the crux of the matter for all zero-shot learning methods

is to associate observed and non-observed classes through some form of auxiliary informa-

tion which encodes visually distinguishing properties of objects.” The auxiliary information

demands extra human annotations like picture attributes. In contrast, our method assumes

a batch of test data without human annotations. The test distribution information is auto-

matically contained in the batch statistics.

Connection to Meta-learning. Although we assume that there is a meta-training dataset

available like meta-learning, we don’t require a support set for updating the model during

both training time and test time. The presence of a support set differentiates our method

from meta-learning in many aspects. First, for the most well-known technique (MAML)

in meta-learning, training requires second-order derivative information of the support set

loss function, which is computationally expensive and slows the optimization. Second, it

is unclear how to select the support set size for adaptation. Sometimes, it may require a

large support set to achieve good adaptations. For example, OC-MAML needs at least a

10-shot support set to perform on par with our method on CIFAR100-C; Third, the support

set requires labeled data. This already adds burdens to practitioners. Fourth, the model

parameter updates require additional maintenance and extra cost during testing.

Connection to Contextual anomaly detection. Contextual AD considers a changing

notion of normality based on context [Gupta et al., 2013, Shulman, 2019]. In contextual

AD, the training and testing data are from the same data generating process, which involves
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Table D.1: AUC (%) with standard deviation for anomaly detection on CIFAR100-C and
Omniglot. As an ablation, rather than utilizing outlier exposure, we trained Zero-shot BN
only on normal data of each task.

CIFAR100-C (Gaussian Noise) Omniglot

1% 5% 10% 20% 5% 10% 20%

One-class loss 72.2±2.2 73.9±1.4 74.2±0.9 73.8±0.3 96.2±1.0 96.4±0.8 96.2±0.8
(data-adapted) ResNet152 70.9±2.2 67.6±0.2 67.0±0.7 64.9±0.5 99.2±0.2 99.1±0.1 99.0±0.1

(hidden or observed) contextual variables controlling the generation. This is different from

our setup. We tackle the problem when the training and testing data are from different data

generating processes.

D.9 Additional Results

D.9.1 Ablation Study

Training with Different Losses. We study the benefits of using meta outlier expo-

sure in Equation (5.5) and compare to a) using one-class classification loss L[Sθ(xB)] =

1
B

∑
i∈B S

i
θ(xB) with Si

θ(xB) = ||ϕi
θ(xB)−c||2 where ϕθ is the feature map, b) (data-adapted)

ResNet152. The data-adapted ResNet152 first learns the features by performing a multi-class

classification task with the meta-training set. Then a batch normalization layer is applied

on the top of penultimate layer representations for zero-shot anomaly detection. We train

a 100-class classifier for CIFAR100C and Omniglot separately. Note that for Omniglot, we

randomly sub-sample 100 classes from its 1400 training classes and train the classifier. From

the results in Table D.1 we can see that both ablations perform competitive with ACR on

the simple Omniglot dataset, but perform much worse compared to ACR on the complex

CIFAR100-C dataset. In conclusion, using meta outlier exposure in training is favorable.
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Table D.2: The effects of batch normalization for zero-shot anomaly detection. The first
two columns show different combinations of batch normalization usage during training and
testing. The third column answers the question whether the type of batchnorm usage works
for zero-shot anomaly detection.

BatchNorm (train) BatchNorm (test) Work?

✓ ✓ Yes
✓ ✗ No
✗ ✓ No
✗ ✗ No

Table D.3: The effects of test time batch size on the results of zero-shot anomaly detection.
We report the test results in AUC when the contamination ratio is set to 5% and 10%. The
studies are conducted on the Gaussian noise version of CIFAR-100C. On the extreme batch
sizes, each batch contains one anomaly.

Batch size 3 6 11 16

One anomaly 66.4±2.3 77.9±2.8 82.3±2.7 84.8±2.0

Batch size 20 40 60 80 100

5% 83.7±1.9 85.3±1.1 85.6±1.2 85.9±0.8 85.6±0.7
10% 84.5±1.5 86.1±0.8 85.7±0.7 85.8±0.5 85.8±0.6

Table D.4: The effects of the number of classes used in training on zero-shot anomaly
detection. We report the test results in AUC when the contamination ratio is fixed to 10%.
The studies are conducted on the Omniglot dataset.

#Training classes 1 2 5 10 15

AUROC 59.0±0.6 71.8±0.6 72.5±0.3 72.2±1.0 75.3±0.4

#Training classes 20 40 80 160 320 640 1200

AUROC 79.0±1.0 90.5±0.5 95.3±0.2 97.6±0.2 98.1±0.2 98.4±0.1 99.1±0.2

Training or Testing Without BatchNorm. We investigate whether training or testing

without batch normalization works for zero-shot anomaly detection or not. To this end,

we employ four different combinations of batch normalization usage during training and

testing and check which combination works and which doesn’t. We trained the models

with the same meta-training procedure as what we used in Section 5.4.1 and tested on

CIFAR100-C and Omniglot. We present the results in Table D.2. In the third column,

“Yes” indicates the AUROC metric is significantly larger than 0.5, and therefore learns a
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meaningful zero-shot anomaly detection model; “No” indicates the AUROC performance is

around 0.5, which means the predicted anomaly scores are just random guesses and the model

cannot be used for zero-shot anomaly detection. Table D.2 shows that only when the batch

normalization is used both in training and testing, the zero-shot anomaly detection works.

Otherwise, the meta-training procedure couldn’t result in meaningful zero-shot anomaly

detection representations.

Moreover, for the DeepSVDD model, we can theoretically show that training without batch

normalization will not work with meta outlier exposure: the optimal loss function has nothing

to do with zero-shot anomaly detection. Rather, the optimal loss is only related to the

mixture weight π during training. Without loss of generality, suppose we have two training

distributions P1, P2. We learn a Deep SVDD model parameterized by θ and c by the meta

outlier exposure method,

l(θ, c)

= Ex∼Pπ
1

[
(1− y1)(fθ(x)− c)2 +

y1
(fθ(x)− c)2

]
+ Ex∼Pπ

2

[
(1− y2)(fθ(x)− c)2 +

y2
(fθ(x)− c)2

]
= Ex1∼P1,x2∼P2

[
π(fθ(x1)− c)2 +

1− π

(fθ(x2)− c)2
+ π(fθ(x2)− c)2 +

1− π

(fθ(x1)− c)2

]
(D.10)

=
2∑

i=1

Exi∼Pi

[
π(fθ(xi)− c)2 +

1− π

(fθ(xi)− c)2

]
≥ 4

√
π(1− π)

where 0.5 < π < 1 implies the majority assumption and the equality holds when the model

parameters (θ and c) are tuned such that (fθ(xi) − c)2 =
√
(1− π)/π for any xi. All data

points will be put at the hypersphere’s surface centered around c with a radius
√

(1− π)/π

in the feature space when the model is trivially optimized. However, the optimal loss has

nothing to do with distinguishing different distribution’s input data x in the feature space,
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which is unlikely to produce useful representations for zero-shot anomaly detection.

On the other hand, if we apply batch normalization in the model fθ, we will not have the

optimal loss function irrelevant to distributions. To see this, note that batch normalization

will shift the input toward the origin. Thus x1 in training task P π
1 and x2 in training task P π

2

should have similar representations as they both take the majority in each task. Similarly,

x2 in task P π
1 and x1 in task P π

2 are minorities, thus mapped far away from the origin in the

feature space. Therefore, the symmetry breaks in Equation (D.10), and the above trivial

optimal loss disappears.

Ablation Study on Batch Sizes. To test the batch size effects, we add an ablation study

on the Gaussian noise version of CIFAR-100C where we fix the anomaly ratio as 5% or 10%

and try different batch sizes. The results are summarized in Table D.3. It shows that larger

batch sizes lead to more stable results. The performance is similar when the batch size is

larger than or equal to 40. Even with a batch size being 20, our results are still better than

the best-performing baseline.

We also test extreme batch sizes being 3, 6, 11, and 16 where each batch contains one

anomaly.

Ablation Study on Number of Training Classes. To analyze the effect of the number

of training distributions on the zero-shot AD performance, we conducted experiments on

Omniglot where we varied the number of available meta-training classes from 1, 2, 5, 10, 15,

20, 40, 80 to 640, 1200. We separately trained ACR-DSVDD on each setup and tested the

resulting models on the test set that has a 10% ground-truth anomaly ratio. We repeated

5 runs of the experiment with random initialization and reported the AUROC results in

Table D.4. It shows that using 320 available classes for this dataset is sufficient to achieve a

decent zero-shot AD performance. The results also demonstrate that even though we have
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only one class in the meta-training set, thanks to the batch norm adaptation, we can still

get better-than-random zero-shot AD performance.

Ablation Study on Other Normalization Techniques. As follows, we report new

experiments involving LayerNorm, InstanceNorm, and GroupNorm for zero-shot AD.

We stress that, while these methods may have overall benefits in terms of enhancing per-

formance, they do not work in isolation in our zero-shot AD setup. A crucial difference

between these methods and batch normalization is that they treat each observation individu-

ally, rather than computing normalization statistics across a batch of observations. However,

sharing information across the batch (and this way implicitly learning about distribution-

level information) was crucial for our method to work.

Our experiments (AUROC results in the table below) with DSVDD on the Omniglot dataset

support this reasoning. Using these normalization layers in isolations yields to random

outcomes (AUROC=50):

LayerNorm InstanceNorm GroupNorm

50.0±0.9 50.6±0.7 50.2±0.5

We also added a version of the experiment where we combined these methods with batch

normalization in the final layer. The results dramatically improve in this case:

BatchNorm (BN) LayerNorm + BN InstanceNorm + BN GroupNorm + BN

99.1±0.2 98.8±0.1 98.8±0.2 98.2±0.2

Experimental details: We use DSVDD as the anomaly detector and experiment on the

Omniglot dataset. Each nonlinear layer of the feature extractor for DSVDD is followed by

the respective normalization layer. We apply the same training protocol as Table D.6 in the
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paper. For GroupNorm, we separate the channels into two groups wherever we apply group

normalization.

Effects of BatchNorm (BN) Layer Position. We conducted additional experiments

on two visual anomaly detection tasks – anomaly segmentation on the MVTec-AD dataset

and object-level AD on CIFAR100C. We used the same DSVDD model architectures as used

in Tables 1 and 2 as the backbone model, except that we switched off BN in all but one

layer. For anomaly segmentation, there are five possible BN layer positions; and there are

four positions for the object-level AD model. We switched off the BN layers in all but one

position and then re-trained and tested the model with the same protocol used in our main

paper (For CIFAR100C, we tested the model with the test data anomaly ratio of 10%). We

iterate this procedure across all available BN layer positions. We repeat every experiment

with different random seeds five times and report the mean AUROC and standard deviation.

The results are summarized in the tables below, where a smaller value of the BN position

corresponds to earlier layers (close to the input), and a larger value corresponds to later

layers close to the output. The final column is copied from our results in Tables 1 and 2

where BN layers are on all available positions. For both MVTec-AD and CIFAR100C, we

average the performance across all test classes.

Results on the two tasks have opposite trends regarding the effects of BN layer positions.

Specifically, for anomaly segmentation on MVTec-AD, earlier BN layers are more effective,

while for AD on CIFAR100C, later BN layers are more effective. This observation can be

explained by the fact that anomaly segmentation is more sensitive to low-level features, while

object-level AD is more sensitive to global feature representations. In addition, compared

to the results in Tables 1 and 2 (copied to the last column in the table below), our results

suggest that using BN layers at multiple positions does help re-calibrate the data batches of

different distributions from low-level features (early layers) to high-level features (late layers)
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and shows performance improvement over a single BN layer.

MVTec-AD

BN Position 1 2 3 4 5 (1,2,3,4,5)

Pixel-level 80.8±1.9 69.6±1.4 73.9±0.9 63.6±1.6 60.9±0.8 92.5±0.2

Image-level 74.7±0.9 59.2±1.6 63.6±1.3 65.5±1.2 65.4±1.3 85.8±0.6

CIFAR100C

BN Position 1 2 3 4 (1,2,3,4)

AUROC 61.4±0.5 61.0±0.9 68.2±0.9 68.9±1.1 85.9±0.4

Robustness of the mixing hyperparameter π in Equation (5.6). We conduct the

following experiments with varying π. The experiment has the same setup as Table 1 on

CIFAR100C with a testing anomaly ratio of 0.1. The results show that all tested π’s results

are over 84% AUC.

CIFAR100C

π 0.99 0.95 0.9 0.8 0.6

AUROC 85.8±0.5 85.4±0.5 84.1±0.4 85.9±0.4 84.4±0.6

D.9.2 Visualization of ACR.

We provide a visualization of the learned representations from DeepSVDD on the Omniglot

dataset as qualitative evidence in Figure D.2. We observe that even though the normal

and abnormal data classes flip in two plots, the model learns to center the samples from

the majority class and map the samples from the minority class away to the center in the

embedding space. In conclusion, ACR is an easy-to-use zero-shot anomaly detection method
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Figure D.2: 2D visualization (after PCA) of the adaptively centered representations for two
test tasks in the Omniglot dataset. The same learned DeepSVDD model adapts with our
proposed method and maps samples from the majority class (class 1 (left) and class 2 (right))
to the same center in the embedding space in both tasks.

and achieves superior zero-shot anomaly detection results on different types of images. The

performance of ACR is also robust against the test anomaly ratios.

D.9.3 Additional Results on CIFAR100-C

We test all methods on all corruption types of CIFAR100-C. The results are presented in

Table D.5.

D.9.4 Additional Results on Non-natural Images

Datasets. We further evaluate the methods on two other non-natural datasets–MNIST and

Omniglot of hand-written characters. MNIST uses the same split and evaluation protocol

as OrganA. On Omniglot, we take the first 1200 classes to form the meta-training set and

use the remaining unseen 423 classes for testing.

Results. We present the results in Table D.6. It shows that our approach significantly

outperforms all the other baselines by a large margin on both datasets.
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D.9.5 Class-wise Results on MVTec-AD

We present the class-wise results in Table D.7 for finer comparisons with other methods on

MVTec AD benchmark.

Besides, we also implement the synthetic anomalies using images from different distributions

during training. The result is worse than the model using Gaussian corrupt noise as example

anomalies but still better than existing works in anomaly segmentation. We summarize the

results in Table D.8, which suggests that using images from different distributions as example

anomalies during training is helpful for anomaly segmentation on MVTec-AD.

D.9.6 Additional Results on Malware

Dataset. Malware [Huynh et al., 2017] is a dataset of malicious and benign computer

programs, collected from 11/2010 to 07/2014. Malware attacks are designed adversarially,

thus leading to shifts in both normal and abnormal data. We adopt the data reader from

Li et al. [2021a]. We follow the preprocessing of [Huynh et al., 2017] and convert the real-

valued probabilities p of being malware to binary labels (labeled one if p > 0.6 and zero if

p < 0.4). The samples with probabilities between 0.4 and 0.6 are discarded. The model

is trained on normal samples collected from 01/2011 to 12/2013, validated on normal and

abnormal samples from 11/2010 to 12/2010, and tested on normal and abnormal samples

from 01/2014 to 07/2014 (the anomaly ratios vary between 1% and 20%).

Results. We report the results on Malware in Table D.9. ACR-NTL achieves the best

results under all anomaly ratios. All baselines except ICL perform worse than random

guessing, meaning that the malware successfully fools most baselines, which testifies to the

adversarial-upgrade explanation in the main paper.
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Table D.5: AUC (%) with standard deviation for anomaly detection on CIFAR100-
C [Hendrycks and Dietterich, 2019].

Noise Type Method 1% 5% 10% 20%

gaussian noise

ACR-DSVDD 87.7±1.4 86.3±0.9 85.9±0.4 85.6±0.4
ACR-BCE 84.3±2.2 86.0±0.3 86.0±0.2 85.7±0.4
ResNet152-I 75.6±2.3 73.2±1.3 73.2±0.8 69.9±0.6
ResNet152-II 62.5±3.1 61.8±1.7 61.2±0.6 60.2±0.4

OC-MAML (1-shot) 53.0±3.6 54.1±1.9 55.8±0.6 57.1±1.0
CLIP-AD 82.3±1.1 82.6±0.9 82.3±0.9 82.6±0.1

shot noise

ACR-DSVDD 85.5±1.6 86.5±0.2 87.3±0.6 86.4±0.4
ACR-BCE 87.1±2.4 86.3±0.6 86.8±0.5 86.4±0.1
ResNet152-I 76.9±2.3 75.7±0.7 74.3±0.6 71.9±0.6
ResNet152-II 59.7±2.0 60.9±1.4 61.0±0.6 60.1±0.6

OC-MAML (1-shot) 53.8±4.7 52.8±1.1 53.6±1.0 53.8±1.3
CLIP-AD 83.0±1.6 84.1±0.3 83.9±0.5 83.3±0.3

impulse noise

ACR-DSVDD 80.5±3.7 81.5±0.5 80.7±0.7 79.8±0.2
ACR-BCE 81.7±1.0 81.0±0.5 80.8±0.7 79.5±0.3
ResNet152-I 74.3±1.4 73.1±1.0 72.2±0.4 69.4±0.3
ResNet152-II 64.3±2.7 63.0±1.2 62.2±0.8 61.2±0.6

OC-MAML (1-shot) 53.6±2.5 54.8±1.6 53.6±1.1 53.8±0.9
CLIP-AD 81.5±2.0 82.7±0.4 82.3±0.5 82.2±0.2

speckle noise

ACR-DSVDD 86.5±2.0 85.8±0.8 86.0±0.4 85.1±0.2
ACR-BCE 85.9±1.7 86.4±0.4 85.7±0.6 85.4±0.4
ResNet152-I 75.8±2.8 75.8±0.4 75.1±0.4 72.9±0.5
ResNet152-II 61.8±2.8 61.0±1.0 61.0±0.9 59.8±0.3

OC-MAML (1-shot) 52.2±2.7 52.8±1.2 53.5±1.2 53.7±0.4
CLIP-AD 84.6±1.6 83.7±0.4 84.1±0.4 84.2±0.3

gaussian blur

ACR-DSVDD 88.5±1.1 88.5±0.7 88.7±0.4 88.6±0.3
ACR-BCE 85.6±1.3 85.0±0.6 85.0±0.9 84.7±0.5
ResNet152-I 85.2±1.5 83.7±1.0 82.9±0.7 80.9±0.3
ResNet152-II 64.9±1.5 65.3±1.2 64.0±0.9 62.7±0.4

OC-MAML (1-shot) 55.6±3.6 56.6±0.6 56.8±1.1 57.6±0.6
CLIP-AD 91.9±0.8 92.7±0.5 92.1±0.5 92.3±0.2

defocus blur

ACR-DSVDD 89.7±1.8 89.5±0.8 89.1±0.3 89.2±0.3
ACR-BCE 86.5±1.3 86.5±0.6 86.3±0.3 85.9±0.4
ResNet152-I 85.9±2.3 85.5±0.8 83.8±0.6 82.4±0.3
ResNet152-II 66.0±1.8 65.4±1.1 63.7±0.6 63.2±0.3

OC-MAML (1-shot) 53.5±2.5 51.7±1.7 54.0±1.8 54.7±0.7
CLIP-AD 93.1±1.4 92.9±0.3 92.8±0.3 92.8±0.2

glass blur

ACR-DSVDD 87.0±2.1 87.9±0.4 87.7±0.4 87.6±0.2
ACR-BCE 85.4±1.0 86.1±0.4 86.4±0.4 86.1±0.3
ResNet152-I 80.3±2.5 78.7±0.8 78.0±0.6 75.6±0.4
ResNet152-II 63.9±2.2 63.0±1.7 63.6±0.5 62.2±0.4

OC-MAML (1-shot) 52.8±1.9 53.1±1.7 53.9±0.9 53.7±1.4
CLIP-AD 85.4±0.5 85.0±1.1 84.2±0.7 84.4±0.3

motion blur

ACR-DSVDD 89.2±0.4 89.6±0.8 89.1±0.5 88.6±0.5
ACR-BCE 86.3±1.9 85.3±1.0 85.7±0.2 84.9±0.2
ResNet152-I 84.3±1.3 83.4±1.3 82.0±0.5 80.4±0.3
ResNet152-II 66.6±3.1 64.8±1.2 63.4±0.6 62.4±0.3

OC-MAML (1-shot) 50.5±3.1 52.3±1.6 53.1±0.9 53.6±0.7
CLIP-AD 91.8±1.4 92.9±0.4 92.7±0.3 92.8±0.3

zoom blur

ACR-DSVDD 90.3±1.7 89.6±0.7 89.8±0.4 89.4±0.3
ACR-BCE 87.5±1.8 86.5±1.0 86.4±0.2 86.4±0.3
ResNet152-I 86.9±1.3 87.2±0.3 86.3±0.3 84.6±0.2
ResNet152-II 65.2±1.1 65.7±0.7 66.1±0.3 64.2±0.4

OC-MAML (1-shot) 50.6±3.2 53.8±0.8 53.7±1.4 54.2±0.4
CLIP-AD 94.2±1.4 94.4±0.3 94.3±0.3 93.9±0.3

snow

ACR-DSVDD 87.7±1.2 87.7±1.0 87.6±0.4 87.4±0.3
ACR-BCE 84.4±2.6 85.5±0.8 85.5±0.6 84.4±0.0
ResNet152-I 85.8±1.4 84.8±0.6 83.7±0.8 81.9±0.3
ResNet152-II 67.1±1.9 65.6±0.9 64.5±0.4 63.3±0.8

OC-MAML (1-shot) 56.7±4.5 54.5±1.8 56.8±0.6 57.3±0.2
CLIP-AD 91.7±0.8 92.9±0.4 93.3±0.2 93.2±0.2

fog

ACR-DSVDD 86.2±1.8 85.2±0.6 85.4±0.9 85.0±0.2
ACR-BCE 78.8±2.7 77.7±0.5 77.3±0.7 77.2±0.6
ResNet152-I 76.4±1.8 76.9±0.6 74.8±1.0 73.0±0.9
ResNet152-II 64.5±2.1 62.9±0.8 62.5±0.4 61.0±0.5

OC-MAML (1-shot) 51.9±3.6 52.9±0.9 53.4±0.6 53.7±0.2
CLIP-AD 91.9±0.8 92.3±0.5 92.2±0.4 92.3±0.3

frost

ACR-DSVDD 88.2±1.5 88.0±0.9 87.4±0.6 87.2±0.3
ACR-BCE 83.2±1.4 84.1±1.2 84.6±0.6 83.7±0.4
ResNet152-I 85.9±1.6 85.5±0.5 83.8±0.8 81.4±0.5
ResNet152-II 63.0±1.0 63.2±0.5 62.7±1.3 61.7±0.3

OC-MAML (1-shot) 52.8±1.3 52.4±2.0 53.6±0.7 53.2±1.1
CLIP-AD 92.9±0.6 93.1±0.2 93.6±0.3 93.2±0.2

brightness

ACR-DSVDD 90.0±1.5 89.5±0.9 89.6±0.4 89.9±0.2
ACR-BCE 86.7±1.3 87.8±0.7 87.1±0.8 87.2±0.4
ResNet152-I 90.7±0.9 90.8±0.5 89.7±0.3 88.1±0.3
ResNet152-II 67.6±2.1 69.8±0.4 68.2±1.0 67.0±0.5

OC-MAML (1-shot) 53.6±1.1 56.8±1.5 56.2±0.7 56.8±0.5
CLIP-AD 94.6±0.4 95.6±0.3 95.4±0.3 95.3±0.2

spatter

ACR-DSVDD 88.1±1.5 89.2±0.6 89.0±0.6 88.7±0.1
ACR-BCE 86.2±2.3 87.7±0.3 87.2±0.6 87.3±0.3
ResNet152-I 90.6±1.2 90.2±0.5 89.8±0.3 87.9±0.3
ResNet152-II 68.7±1.7 67.6±0.9 66.0±0.9 65.2±0.4

OC-MAML (1-shot) 53.6±2.7 55.6±1.1 56.1±0.7 53.6±1.5
CLIP-AD 94.7±0.6 95.2±0.4 95.1±0.2 95.0±0.3

saturate

ACR-DSVDD 88.1±2.1 87.1±0.7 87.1±0.5 85.8±0.4
ACR-BCE 86.8±2.0 86.1±0.8 86.0±0.6 85.3±0.3
ResNet152-I 90.4±0.9 89.7±0.7 89.2±0.5 87.4±0.2
ResNet152-II 67.7±1.8 67.7±1.4 67.4±0.8 65.9±0.3

OC-MAML (1-shot) 55.6±2.4 53.5±0.9 55.1±0.8 54.1±1.2
CLIP-AD 94.7±0.8 94.7±0.2 95.0±0.1 95.1±0.2

contrast

ACR-DSVDD 76.4±1.8 75.1±1.8 74.9±0.5 74.5±0.4
ACR-BCE 67.6±2.0 66.7±0.8 67.8±0.7 66.9±0.3
ResNet152-I 76.1±1.6 77.0±0.8 75.2±0.3 73.5±0.2
ResNet152-II 61.3±0.9 61.3±1.2 60.2±0.5 59.3±0.5

OC-MAML (1-shot) 54.6±3.7 54.0±0.3 53.1±1.2 54.1±1.0
CLIP-AD 89.3±1.8 88.9±0.5 88.3±0.4 88.8±0.2

elastic transform

ACR-DSVDD 90.8±1.9 89.3±0.7 90.0±0.4 89.3±0.3
ACR-BCE 87.6±1.0 86.7±0.8 87.4±0.6 87.2±0.4
ResNet152-I 82.4±2.4 80.9±0.4 80.0±0.9 78.4±0.2
ResNet152-II 65.6±2.3 65.2±0.6 63.9±0.7 62.0±0.3

OC-MAML (1-shot) 52.5±3.9 54.3±1.2 54.4±1.2 54.7±0.8
CLIP-AD 89.1±1.1 90.0±0.3 89.4±0.5 89.4±0.3

pixelate

ACR-DSVDD 91.7±0.5 91.1±0.6 90.8±0.6 90.7±0.2
ACR-BCE 89.6±1.9 89.9±0.6 89.7±0.1 89.8±0.3
ResNet152-I 82.5±1.6 83.2±1.3 82.5±0.7 80.1±0.3
ResNet152-II 66.4±1.5 65.6±0.6 64.9±0.6 63.8±0.3

OC-MAML (1-shot) 56.4±3.8 55.8±0.9 56.4±0.7 57.0±0.9
CLIP-AD 86.7±0.3 86.7±0.7 86.9±0.3 86.7±0.3

jpeg compression

ACR-DSVDD 89.8±1.4 91.0±0.5 90.5±0.7 90.4±0.3
ACR-BCE 89.1±1.2 88.8±0.8 89.1±0.5 88.6±0.3
ResNet152-I 84.7±2.1 85.8±1.1 84.4±0.8 82.7±0.2
ResNet152-II 62.9±2.4 63.9±0.8 63.0±0.8 61.3±0.8

OC-MAML (1-shot) 52.0±2.7 55.6±0.9 56.4±1.1 57.2±1.8
CLIP-AD 89.8±1.9 87.7±0.1 88.3±0.3 88.5±0.3
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Table D.6: AUC (%) with standard deviation for anomaly detection on non-natural images:
Omniglot, MNIST, and OrganA. ACR with both backbone models outperforms all baselines
on all datasets. In comparison, CLIP-AD performs much worse on non-natural images.

MNIST Omniglot

1% 5% 10% 5% 10% 20%

ADIB [Deecke et al., 2021] 50.4±2.0 49.4±1.7 49.4±2.0 50.8±1.7 49.5±0.6 49.7±0.4
ResNet152-I [He et al., 2016] 87.2±1.3 84.2±0.2 80.9±0.2 96.4±0.4 95.5±0.3 94.3±0.2
ResNet152-II [He et al., 2016] 80.0±1.9 78.4±1.5 74.9±0.3 88.1±0.8 86.7±0.5 84.4±0.6
OC-MAML [Frikha et al., 2021] 83.7±3.5 86.0±2.3 86.4±2.8 98.6±0.3 98.4±0.2 98.5±0.1
CLIP-AD [Liznerski et al., 2022] 53.9±1.4 53.7±0.9 53.9±0.8 N/A N/A N/A

ACR-DSVDD 91.9±0.8 90.4±0.2 88.8±0.2 99.1±0.2 99.1±0.2 99.2±0.0
ACR-BCE 88.7±0.6 87.8±0.4 86.5±0.3 98.5±0.2 98.9±0.1 99.1±0.1

Table D.7: ACR-DSVDD’s pixel-level (segmentation) and image-level (classification) AU-
CROCs (%) on MVTec-AD.

Pixel-level Image-level

Bottle 95.8±0.5 99.5±0.2
Cable 87.1±1.1 72.2±1.9
Capsule 95.2±0.9 78.1±1.2
Carpet 97.8±0.4 99.8±0.2
Grid 90.4±1.4 83.8±3.0
Hazelnut 92.3±0.7 79.2±0.9
Leather 98.6±0.1 100.0±0.0
Metal-nut 79.5±2.5 75.6±5.4
Pill 93.0±1.3 72.2±3.2
Screw 86.7±0.9 48.5±3.1
Tile 90.3±0.9 98.4±0.3
Toothbrush 98.2±0.1 97.0±0.9
Transistor 97.2±0.1 93.1±1.1
Wood 89.2±1.1 98.2±0.8
Zipper 95.8±0.9 90.7±0.9
Average 92.5±0.2 85.8±0.6

209



Table D.8: ACR-DSVDD’s pixel-level (segmentation) and image-level (classification) AU-
CROCs (%) on MVTec-AD. The model uses images from other classes as synthetic anomalies
during training.

Pixel-level Image-level

Bottle 94.5 98.6
Cable 88.1 64.5
Capsule 90.1 70.8
Carpet 97.5 99.5
Grid 74.8 97.9
Hazelnut 84.3 61.9
Leather 97.5 99.1
Metal-nut 67.5 54.2
Pill 89.0 66.8
Screw 76.6 53.2
Tile 90.0 97.6
Toothbrush 93.5 80.8
Transistor 95.2 91.4
Wood 88.1 97.2
Zipper 78.6 79.7

Average 87.0 78.8

Table D.9: AUC (%) with standard deviation for anomaly detection on Malware [Huynh
et al., 2017]. ACR-NTL achieves the best results on various anomaly ratios.

1% 5% 10% 20%

OC-SVM 19.5±5.6 20.5±1.4 20.3±0.9 20.3±0.8
IForest 22.8±2.9 22.9±1.2 23.3±0.6 23.4±0.8
LOF 22.3±4.9 23.2±1.8 23.3±1.3 23.2±0.4
KNN 21.6±6.3 22.5±1.6 22.7±0.9 22.6±0.9

DSVDD 25.4±3.3 27.4±1.7 28.9±0.9 28.3±0.8
AE 48.8±2.4 49.1±1.2 49.4±0.6 49.3±0.5

LUNAR 23.1±4.5 23.8±1.2 24.1±0.7 24.2±0.6
ICL 83.5±1.9 81.0±1.0 82.9±0.8 83.1±0.9
NTL 25.9±4.8 25.4±1.3 24.5±1.3 25.0±0.8

ACR-DSVDD 73.1±2.8 69.5±3.3 69.4±3.3 66.4±4.0
ACR-NTL 85.0±1.3 84.5±0.8 85.1±1.2 84.0±0.8
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Appendix E

Chapter 6

E.1 Structured Variational Inference

According to the main paper, we consider the generative model p(xt, zt, st|x1:t−1, s1:t−1) =

p(st)p(zt|st; τt)p(xt|zt) at time step t, where the dependence on x1:t−1, s1:t−1 is contained

in τt. Upon observing the data xt, both zt and st are inferred. However, exact inference

is not available due to the intractability of the marginal likelihood p(xt|s1:t,x1:t−1). To

tackle this, we utilize structured variational inference for both the latent variables zt and

the Bernoulli change variable st. To this end, we define the joint variational distribution

q(zt, st) = q(st|s1:t−1)q(zt|s1:t) as in the main paper. For notational simplicity, we omit the

dependence on s1:t−1. Then the updating procedure for q(st) and q(zt|st) is obtained by

maximizing the ELBO L(q):

q∗(zt, st) = argmax
q(zt,st)∈Q

L(q),

L(q) := Eq[log p(xt, zt, st; τt)− log q(zt, st)].
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Given the generative models, we can further expand L(q) to simplify the optimization:

L(q) = Eq(st)q(zt|st)[log p(st) + log p(zt|st; τt) + log p(xt|zt)− log q(st)− log q(zt|st)]

= Eq(st)[log p(st)− log q(st) + Eq(zt|st)[log p(zt|st; τt) + log p(xt|zt)− log q(zt|st)]]

= Eq(st)[log p(st)− log q(st) + Eq(zt|st)[log p(xt|zt)]−KL(q(zt|st)||p(zt|st; τt))]

= Eq(st)[log p(st)− log q(st) + L(q|st)] (E.1)

where the second step pushes inside the expectation with respect to q(zt|st), the third step

re-orders the terms, and the final step utilizes the definition of CELBO (Eq. 6.7 in the main

paper).

Maximizing Eq. E.1 therefore implies a two-step optimization: first maximize the CELBO

L(q|st) to find the optimal q∗(zt|st = 1) and q∗(zt|st = 0), then compute the Bernoulli

distribution q∗(st) by maximizing L(q) while the CELBOs L(q∗|st) are fixed.

While q∗(zt|st) typically needs to be inferred by black box variational inference [Ranganath

et al., 2014, Kingma and Welling, 2014, Zhang et al., 2018], the optimal q∗(st) has a closed-

form solution and bears resemblance to the exact inference counterpart (Eq. 6.4 in the main

paper). To see this, we assume L(q∗|st) are given and q(st) is parameterized by m ∈ R (for

the Bernoulli distribution). Rewriting Eq. E.1 gives

L(q) = m(log p(st = 1)− logm+ L(q∗|st = 1))

+ (1−m)(log p(st = 0)− log(1−m) + L(q∗|st = 0))

which is concave since the second derivative is negative. Thus taking the derivative and
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setting it to zero leads to the optimal solution of

log
m

1−m
= log p(st = 1)− log p(st = 0) + L(q∗|st = 1))− L(q∗|st = 0)),

m = σ(L(q∗|st = 1))− L(q∗|st = 0)) + ξ0),

which attains the closed-form solution as stated in Eq. 6.6 in the main paper without tem-

perature T .

E.2 Additive vs. Multiplicative Broadening

There are several possible choices for defining an informative prior corresponding to st = 1.

In latent time series models, such as Kalman filters [Kalman, 1960, Bamler and Mandt,

2017], it is common to define a linear transition model zt = Azt−1 + ϵt where zt−1 ∼

N (zt−1;µt−1,Σt−1) and ϵt ∼ N (ϵ;0,Σn). Propagating the posterior at time t − 1 to the

prior at time t results in zt ∼ N (zt;Aµt−1, AΣt−1A
⊤ + Σn). To simplify the discussion,

we set A = I and Σn = σ2
nI; the same argument also applies for the more general case.

Adding a constant noise ϵt results in adding the variance of all variables with a constant

σ2
n. We thus call this convolution scheme additive broadening. The problem with such a

choice, however, is that the associated information loss is not homogeneously distributed:

σ2
n ignores the uncertainty in zt, and dimensions of zt with low posterior uncertainty lose

more information relative to dimensions of zt that are already uncertain. We found that this

scheme deteriorates the learning signal.

We therefore consider multiplicative broadening (or relative broadening since the associated

information loss depends on the original variance) as tempering described in the main paper,

resulting in p(zt|st, τt) ∝ p(zt−1|x1:t−1, s1:t−1)
β for β > 0. For a Gaussian distribution,

the resulting variance scales the original variance with 1
β
. In practice, we found relative
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Figure E.1: Conditional probability table of variational beam search

or multiplicative broadening to perform much better and robustly than additive posterior

broadening. Since tempering broadens the posterior non-locally, this scheme does not possess

a continuous latent time series interpretation 1.

E.3 Details on “Shy” Variational Greedy Search and

Variational Beam Search

“Shy” Variational Greedy Search. As illustrated in Fig. 6.1 in the main text, one

obtains better interpretation if one outputs the variational parameters µt and σt at the end

of a segment of constant zt. More precisely, when the algorithm detects a change point

st = 1, it outputs the variational parameters µt−1 and σt−1 from just before the detected

change point t. These parameters define a variational distribution that has been fitted, in an

iterative way, to all data points since the preceding detected change point. We call this the

“shy” variant of the variational greedy search algorithm, because this variant quietly iterates

over the data and only outputs a new fit when it is as certain about it as it will ever be.

The red lines and regions in Fig. 6.1 (a) in the main paper illustrate means and standard

deviations outputted by the “shy” variant of variational greedy search.

1This means that it is impossible to specify a conditional distribution p(zt|zt−1) that corresponds to
relative broadening.
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Algorithm 4: Variational Beam Search

Require: task set {xt}T1 ; beam size K; prior log-odds ξ0; conditional ELBO temperature T
Ensure: approximate posterior distributions {q∗(s1:t), q∗(zt|s1:t)}T1
1: q∗(z1) = argmaxEq[log p(x1|z1)]−KL(q(z1)||p(z1));
2: q∗(s1 = 0) := 1; q∗(z1|s1) := q∗(z1); B = {s1 = 0};
3: for t = 1, · · · , T do
4: B′ = {}
5: for each hypothesis s<t ∈ B do
6: p(st = 1) := σ(ξ0) for random variable st ∈ {0, 1}
7: B′ := B′ ∪ {(s<t, st = 0), (s<t, st = 1)};
8: compute the task t’s prior p(zt|st, τt) (Eq. 6.3);
9: perform structured variational inference (Eq. 6.7 and Eq. 6.6) given observation xt,

resulting in q∗(st, zt|s<t) = q∗(st|s<t)q
∗(zt|s<t+1) where q∗(zt|s<t+1 is stored as

output q∗(zt|s1:t);
10: approximate new hypotheses’ posterior probability

p(s1:t|x1:t) ≈ q∗(s<t, st) = q∗(s<t)q
∗(st|s<t);

11: end for
12: B := diverse_truncation(B′, q∗(s<t, st));
13: normalize q∗(s<t, st) where (s<t, st) ∈ B;
14: end for

We applied this “Shy” variant to our illustrative example (Section 6.4.1) and unsupervised

learning experiments (Section 6.4.5).

Variational Beam Search. As follows, we present a more detailed explanation of the

variational beam search procedure mentioned in Section 6.3.3 of the main paper. Our beam

search procedure defines an effective way to search for potential hypotheses with regards

to sequences of inferred change points. The procedure is completely defined by detailing

three sequential steps, that when executed, take a set of hypotheses found at time step t− 1

and transform them into the resulting set of likely hypotheses for time step t that have

appropriately accounted for the new data seen at t. The red arrows in Figure E.1 illustrate

these three steps for beam search with a beam size of K = 4.

In Figure E.1, each of the three steps maps a table of considered histories to a new table. Each

table defines a mixture of Gaussian distributions where each mixture component corresponds
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to a different history and is represented by a different row in the table. We start on the left

with the (truncated) variational distribution q∗(zt−1) from the previous time step, which is

a mixture over K = 4 Gaussian distributions. Each mixture component (row in the table) is

labeled by a 0-1 vector s<t ≡ (s1, · · · , st−1) of the change variable values according to that

history. Each mixture component s<t further has a mixture weight q∗(s<t) ∈ [0, 1], a mean,

and a standard deviation.

We then obtain a prior for time step t by transporting each mixture component of q∗(zt−1)

forward in time via the broadening functional (“Step 1” in the above figure). The prior p(zt)

(second table in the figure) is a mixture of 2K Gaussian distributions because each previous

history splits into two new ones for the two potential cases st ∈ {0, 1}. The label for each

mixture component (table row) is a new vector (s<t, st) or s<t+1, appending st to the tail of

s<t.

“Step 2” in the above figure takes the data xt and fits a variational distribution q∗(zt) that

is also a mixture of 2K Gaussian distributions. To learn the variational distribution, we (i)

numerically fit each mixture component q(zt|s<t, st) individually, using the corresponding

mixture component of p(zt) as the prior; (ii) evaluate (or estimate) the CELBO of each

fitted mixture component, conditioned on (s<t, st); (iii) compute the approximate posterior

probability q∗(st|s<t) of each mixture component, in the presence of the CELBOs; and (iv)

obtain the mixture weight equal to the posterior probability over (s<t, st), i.e., p(s1:t|x1:t),

best approximated by q∗(s<t)q
∗(st|s<t).

“Step 3” in the above figure truncates the variational distribution by discarding K of the

2K mixture components. The truncation scheme can be either the “vanilla” beam search or

diversified beam search outlined in the main paper. The truncated variational distribution

qt(zt) is again a mixture of only K Gaussian distributions, and it can thus be used for

subsequent update steps, i.e., from t to t+ 1.
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The pseudocode is listed in Algo 4.

E.4 Online Bayesian Linear Regression with Variational

Beam Search

This section will derive the analytical solution of online updates for both Bayesian linear

regression and the probability of change points. We consider Gaussian prior distributions

for weights. The online update of the posterior distribution is straightforward in the natural

parameter space, where the update is analytic given the sufficient statistics of the observa-

tions. If we further allow to temper the weights’ distributions with a fixed temperature β,

then this corresponds to multiplying each element in the precision matrix by β. We applied

this algorithm to the linear regression experiments in Section 6.4.3. For unified names, we

still use the word “variational” even though the solutions are analytical.

E.4.1 Variational Continual Learning for Online Linear Regres-

sion

Let’s start with assuming a generative model at time t:

θ ∼ N (µ,Σ),

yt = θ⊤xt + ϵ, ϵ ∼ N (0, σ2
n), (E.2)

and the noise ϵ is constant over time.

The posterior distribution of θ is of interest, which is Gaussian distributed since both the

likelihood and prior are Gaussian. To get an online recursion for θ’s posterior distribution
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over time, we consider the natural parameterization. The prior distribution under this

parameterization is

p(θ) =
1

Z
exp

(
−(θ − µ)⊤Σ−1(θ − µ)

2

)
=

1

Z
exp

(
−1

2
θ⊤Σ−1θ + θ⊤Σ−1µ

)
=

1

Z
exp

(
−1

2
θ⊤Λθ + θ⊤η

)

where Λ = Σ−1,η = Σ−1µ are the natural parameters and the terms unrelated to θ are

absorbed into the normalizer Z.

Following the same parameterization, the posterior distribution can be written

p(θ|xt, yt) ∝ p(θ)p(yt|xt,θ)

=
1

Z
exp

(
−1

2
θ⊤Λθ + θ⊤η − 1

2
σ−2
n θ⊤(xtx

⊤
t )θ + σ−2

n ytθ
⊤xt

)
=

1

Z
exp

(
−1

2
θ⊤(Λ + σ−2

n xtx
⊤
t )θ + θ⊤(η + σ−2

n ytxt)

)
.

Thus we get the recursion over the natural parameters

Λ′ = Λ+ σ−2
n xtx

⊤
t ,

η′ = η + σ−2
n ytxt,

from which the posterior mean and covariance can be solved.

E.4.2 Prediction and Marginal Likelihood

We can get the posterior predictive distribution for a new input x∗ through inspecting Eq. E.2

and utilizing the linear properties of Gaussian. Assuming the generative model as specified
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above, we replace xt with x∗ in Eq. E.2. Since θ is Gaussian distributed, by its linear

property, x⊤
∗ θ conforms to N (x⊤

∗ θ;x
⊤
∗ µ,x

⊤
∗ Σx∗). Then the addition of two independent

Gaussian results in y∗ ∼ N (y∗;x
⊤
∗ µ, σ

2
n + x⊤

∗ Σx∗).

The marginal likelihood shares this same form with the posterior predictive distribution,

with a potentially different pair of sample (x, y). To see this, given a prior distribution

θ ∼ N (θ;µ,Σ), then the marginal likelihood of y|x is

p(y|x;µ,Σ, σn) =

∫
p(y|x,θ)p(θ;µ,Σ)dθ

= N (y;x⊤µ, σ2
n + x⊤Σx) (E.3)

with σ2
n being the noise variance. Note that in variational inference with an intractable

marginal likelihood (not like the linear regression here), this is the approximated objective

(Evidence Lower Bound (ELBO), indeed) we aim to maximize.

Computation of the Covariance Matrix Since we parameterize the precision matrix

instead of the covariance matrix, the variance of the new test sample requires to take the

inverse of the precision matrix. In order to do this, we employ the eigendecomposition of the

precision matrix and re-assemble to the covariance matrix through inverting the eigenvalues.

A better approach is to apply the Sherman-Morrison formula for the rank one update2, which

can reduce the computation from O(n3) to O(n2).

Logistic Normal Model If we are modeling the log-odds by a Bayesian linear regression,

then we need to map the log-odds to the interval [0, 1] by the sigmoid function, to make it

a valid probability. Specifically, suppose a = N (a;µa, σ
2
a) and y = σ(a) (note we abuse σ

by variances and functions, but it is clear from the context and the subscripts) where σ(·)
2https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
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is a logistic sigmoid function. Then y has a logistic normal distribution. Given p(y), we can

make decisions for the value of y. There are three details that worth noting. First is from

the non-linear mapping of σ(·). One special property of p(y) is that p(y) can be bimodal if

the base variance or σa is large. A consequence is that the mode of p(a) does not necessarily

correspond to p(y)’s mode and E[y] ̸= σ(E[a]). Second is for the binary classification: the

decision boundary of y, i.e., 0.5, is consistent with the one of x, i.e., 0, for decisions either by

E[y] or by E[a]. See Rusmassen and Williams [2005] (Section 3.4) and Bishop et al. [1995]

(Section 10.3). Third, if our loss function for decision making is the absolute error, then the

best prediction is the median of y = σ(â) [Friedman et al., 2001] where â is the median of a.

This follows from the monotonicity of σ(·) that does not change the order statistics.

E.4.3 Inference over the Change Variable

To infer the posterior distribution of st given observations (x1:t, y1:t), we apply Bayes’ theorem

to infer the posterior log-odds as in the main paper

log

(
p(st = 1|x1:t, y1:t, s1:t−1)

p(st = 0|x1:t, y1:t, s1:t−1)

)
=

log(p(xt|x1:t−1, y1:t, st = 1, s1:t−1))

log(p(xt|x1:t−1, y1:t, st = 0), s1:t−1)
+ ξ0

where p(xt|x1:t−1, y1:t, st) is exactly Eq. E.3 but has different parameter values dictated by

st and β.

In the next part, we show the resulting distribution of the broadening operation.

Tempering a Multivariate Gaussian

We will show the tempering operation of a multivariate Gaussian corresponds to multiplying

each element in the precision matrix by the fixed temperature, a simple form in the natural

space.
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Suppose we allow to temper / broaden the θ’s multivariate Gaussian distribution before the

next time step, accommodating more evidence. Let the broadening constant or temperature

be β ∈ (0, 1]. We derive how β affects the multivariate Gaussian precision.

Write the tempering explicitly,

p(θ)β =
1

Z
exp

(
−1

2
β(θ − µ)⊤Λ(θ − µ)

)
=

1

Z
exp

(
−1

2
(θ − µ)⊤Λβ(θ − µ)

)

among which we are interested in the relationship between Λβ and Λ and β. To this end,

re-write the quadratic form in the summation

β(θ − µ)⊤Λ(θ − µ)

=
∑
i,j

βΛij(θi − µi)(θj − µj)

=
∑
i,j

Λβ,ij(θi − µi)(θj − µj)

where we can identify an element-wise relation: for all possible i, j

Λβ,ij = βΛij.

Prediction

As above, we are interested in the posterior predictive distribution for a new test sample

(x∗, y∗) after absorbing evidence. Let’s denote the parameters of θ’s posterior distributions

by µs1:t and Σs1:t , where the dependence over s1:t is made explicit. We then make posterior
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Figure E.2: 1D online Bayesian linear regression with distribution shift. More recent sam-
ples are colored darker. Due to the catastrophic remembering, VCL fails to adapt to new
observations.

predictions with each component

p(y∗|x∗,x, y, s1:t) = N (y∗;x
⊤
∗ µs1:t , σ

2
n + x⊤

∗ Σs1:tx∗).

E.5 Visualization of Catastrophic Remembering Effects

In order to demonstrate the effect of catastrophic remembering, we consider a simple linear

regression model. We will see that, when the data distribution changes, a Bayesian online

learning framework becomes quickly overconfident and unable to adjust to the changing

data distribution. On the other hand, with tempering, variational greedy search (VGS) can

partially forget the previous knowledge and then adapt to the shifted distribution.
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Data Generating Process We generated the samples by the following generative model:

x ∼ Unif(−1, 1),

y ∼ N (f(x), 0.12)

where f(x) equals f1(x) = 0.7x−0.5 or f2(x) = −0.7x+0.5. In this experiments, we sampled

the first 20 points from f1 and the remaining 20 points from f2.

Model Parameters We applied the Bayes updates mentioned in Section E.4 to do infer-

ence over the slope and intercept. We set the initial priors of the weights to be standard

Gaussian and the observation noise σ2
n to be the true scale, 0.1. This setting is enough for

VCL.

For VGS, we set the same noise variance σ2
n = 0.1. For the method-specific parameters, we

set ξ0 = log(0.35/(1− 0.35)) and β = 1/3.5.

We plotted the noise-free posterior predictive distribution for both VCL and VGS. That is, let

f∗(x) be the fitted function, we plotted p(f∗(xt)|xt,D1:t−1) =
∫
p(f∗(xt)|xt,w,D1:t−1)p(w|D1:t−1)dw

where D1:t−1 is the observed samples so far.

Results We first visualized the catastrophic remembering effect through a 1D online

Bayesian linear regression task where a distribution shift occurred unknown to the regres-

sor (Fig. E.2). In this setup, noisy data were sampled from two ground truth functions

f1(x) = 0.7x − 0.5 and f2(x) = −0.7x + 0.5, where, with constant additive noise, the first

20 samples came from f1 and the remaining 20 samples were from f2. The observed sample

is presented one by one to the regressor. Before the regression starts, the weights (slope

and intercept) were initialized to be standard Gaussian distributions. We experimented two

different online regression methods, original online Bayesian linear regression (VCL [Nguyen
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Figure E.3: Changepoints in Basketball player movement tracking. (Left plot) Comparisons
between VBS and BOCD [Adams and MacKay, 2007]. While BOCD detect change points at
sparse, abrupt changes, VBS detects the changes at smooth, gradual changes. (Right plot)
Ablation study over beam size K for VBS while fixing other parameters. As we increase the
beam size, qualitatively different change points are detected and the predictive likelihood
improves.

et al., 2018a]) and the proposed variational greedy search (VGS). In Fig. E.2, to show a prac-

tical surrogate for the ground truth, we plotted the maximum likelihood estimation (MLE)

for each function given the observations. The blue line and the shaded area correspond to

the mean and standard deviation of the posterior predictive distribution after observing N

samples. As shown in Fig. E.2, both VCL (top) and VGS (bottom) faithfully fit to f1 after

observing the first 20 samples. However, when another 20 new observations are sampled

from f2, VCL shows catastrophic remembering of f1 and cannot adapt to f2. VGS, on the

other hand, tempers the prior distribution automatically and succeeds in adaptation.

E.6 NBAPlayer: Change Point Detection Comparisons

VBS vs. BOCD We investigated the changepoint detection characteristics of our pro-

posed methods and compared against the BOCD baseline in Fig. E.3 (left). On the shown

example trajectory, BOCD detects abrupt change points, corresponding to different plays,

a similar phenomenon observed by [Harrison et al., 2020]. However, we argue that it is

insufficient and late to identify a player’s strategy purpose – it only triggers an alarm after a

new play starts. VBS, on the other hand, characterizes the transition phases between plays,

triggers an early alarm before the next play starts. It also shows the difference between
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BOCD and VBS in changepoint detection: while BOCD only detects abrupt changes, VBS

detects gradual changes as well.

Practical Considerations of VBS and BOCD Using our variational inference exten-

sions of BOCD, we can overcome the inference difficulty of non-conjugate models. But,

considering practical issues, VBS is better in that the detected change points are easy to

read from the binary change variable values s1:t and free from post-processing – a procedure

that BOCD has to exercise. BOCD often outputs a sequence of run lengths either online

or offline, among which the change points do not always correspond to the time when the

most probable run length becomes one. Instead, the run length oftentimes is larger than one

when change point happens. Then people have to inspect the run lengths and set a subjec-

tive threshold to determine when a change point occurs, which is not data-driven and may

incur undesirable detection. For example, in our basketball player tracking experiments, we

set the threshold of change points to be 50; VBS, on the other hand, is free from this post-

process thresholding and provides multiple plausible, completely data-driven hypotheses of

change points.

Ablation Study of Beam Size The right plot and the table in Fig E.3 shows, on the

example trajectory, the detected change points and the average log-likelihood as the beam

size K changes. When K = 1, VBS characterizes the trajectory where the velocity direction

changes; when K = 3 or 6, it seems that some parts where the velocity value changes

are detected. We also observed that the average predictive log-likelihood improves as K

increases.
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E.7 Experiment Details and Results

In this section, we provide the unstated details of the experiments mentioned in the main pa-

per. These details include but are not limited to hardware infrastructure used to experiment,

physical running time, hyperparameter searching, data generating process, evaluation met-

ric, additional results, empirical limitations, and so on. The subsection order corresponds to

the experiments order in the main paper. We first provide some limitations of our methods

during experiments.

Limitations Our algorithm is theoretically sound. The generality and flexibility renders

a great performance in experiments, however, at the expense of taking more time to search

the hyperparameters in a relatively large space. Specifically, there are two hyperparameters

to tune: ξ0 and β. The grid search over these two hyperparameters could be slow. When we

further take into account the beam size K, it adds more burden in parameter searching. But

we give a reference scope to the tuning region where the search should perform. Oftentimes,

we use the same parameters across beam sizes.

E.7.1 An Illustrative Example

Data Generating Process To generate Figure 6.2 in the main paper, we used a step-wise

function as ground truth, where the step size was 1 and two step positions were chosen ran-

domly. We sampled 30 equally-spaced points with time spacing 1. To get noisy observations,

Gaussian noise with standard deviation 0.5 was added to the points.

Model Parameters In this simple one-dimensional model, we used absolute broadening

with a Gaussian transition kernel K(zt, z
′
t) = N (zt − z′t, D∆t) where D = 1.0 and ∆t = 1.

The inference is thus tractable because p(zt|st) is conditional conjugate to p(xt|zt, st) (and
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Figure E.4: One-step ahead performance of the online learning experiments. Proposed
methods outperform the baseline.

both are Gaussian distributed). We set the prior log-odds ϵ0 to log p(st=1)
p(st=0)

, where p(st = 1) =

0.1. We used beam size 2 to do the inference.

E.7.2 Bayesian Linear Regression Experiments

We performed all linear regression experiments on a laptop with 2.6 GHz Intel Core i5 CPU.

All models on SensorDrift, Elec2, and NBAPlayer dataset finished running within 5 minutes.

Running time on Malware dataset varied: VCL, BF, and Independent task are within 10

minutes; VGS takes about two and half hours; VBS (K=3) takes about six hours; VBS (K=6)

takes about 12 hours. BOCD takes similar time with VBS. The main difference between

VCL’s computation cost and VBS’s computation cost lies in the necessarity of inverting

the precision matrix into covariance matrix. However, the matrix inverse computation in

VBS and BOCD can be substantially reduced from O(n3) to O(n2) by the recursion of

Sherman–Morrison formula; we will implement this in the future.

Problem Definitions We considered both classification experiments (Malware, Elec2)

and regression experiments (SensorDrift, NBAPlayer). The classification datasets have real-

value probabilities as targets, permitting to perform regression in log-odds space.
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Setup and Evaluation We defined each task to consist of a single observation. Models

made predictions on the next observation immediately after finishing learning current task.

Models were then evaluated with one-step-ahead absolute error3, which is then used to

compute the mean cumulative absolute error (MCAE) at time t: 1
t

∑t
i=1 |y∗i − yi| where y∗

is the predicted value and yi is the ground truth. We further approximated the Gaussian

posterior distribution by a point mass centered around the mode. It should be noticed that

for linear regression, the Laplace Propagation has the same mode as Variational Continual

Learning, and the independent task has the same mode as its Bayesian counterpart.

Results We reported the result of the dominant hypothesis of VBS with large beam size.

Fig. E.4 shows MCAE over time for the first three datasets. Our methods remain lower

prediction error of all time while baselines are subject to strong fluctuations or inability

to adapt to distribution shifts. Another observation is that VBS with different beam sizes

performed similarly in this case.

Baseline Hyperparameters

BOCD We only keep the top three or six most probable run length after each time step.

We tuned the hyperparameter λ in the hazard function, or the transition probability. λ−1 is

searched in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}.

Malware selects λ−1 = 0.3; Elec2 selects λ−1 = 0.9; SensorDrift selects λ−1 = 0.6; NBAPlayer

selects λ−1 = 0.99.

BF We implemented Bayesian Forgetting according to [Kurle et al., 2020].

3in probability space for classification tasks; in data space for regression tasks. With the exception of
NBAPlayer dataset, we evaluated models with predictive log probability 1

t

∑t
i=2 log p(yi|y1:i−1, x1:i).
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We tuned the hyperparameter β as the forgetting rate such that p(zt|Dt−1) ∝ p0(zt)
1−βqt−1(zt|Dt−1)

β

where 0 < β < 1. β is searched in {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95,

0.97, 0.98, 0.99, 0.995, 0.999}.

Malware selects β = 0.999; Elec2 selects β = 0.98; SensorDrift selects β = 0.9; NBAPlayer

selects β = 0.9.

Malware4

Dataset There are 107856 programs collected from 2010.11 to 2014.7 in the monthly order.

Each program has 482 counting features and a real-valued probability p ∈ [0, 1] of being

malware. This ground truth probability is the proportion of 52 antivirus solutions that label

malware. We used the first-month data (2010.11) as the validation dataset and the remaining

data as the test dataset. To enable analytic online update, we cast the binary classification

problem in the log-odds space and performed Bayesian linear regression. We filled log-odds

boundary values to be −5 and 4, corresponding to probability 0 and 1, respectively. Our

methods achieved comparable results reported in [Huynh et al., 2017] on this dataset.

Hyperparameters We searched the hyperparameters σ2
n, ξ0 = log p0

1−p0
, and β using the

validation set. Specifically, we extensively searched σ2
n ∈ {0.1, 0.2, · · · , 0.9, 1, 2, · · · , 10, 20, · · · , 100},

p0 ∈ {0.5}, β−1 ∈ {1.01, 1.05, 1.1, 1.2, 1.5, 2, 5}. On most values the optimization landscape

is monotonic and thus the search quickly converges around a local optimizer. Within the

local optimizer, we performed the grid search, which focused on β ∈ [1.05, 1.2].

We found all methods favored σ2
n = 40. And for VGS and VBS, the uninformative prior

of the change variable p0 = 0.5 was already a suitable one. VGS selected β−1 = 1.2, VBS

(K=3) selected β−1 = 1.07, and VBS (K=6) selected β−1 = 1.05. Although searched β−1

4https://archive.ics.uci.edu/ml/datasets/Dynamic+Features+of+VirusShare+Executables
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varies for different beam size, the performance of different beam size in this case, based on

our experience, is insensitive to the varying β.

SensorDrift5

Dataset We focused on one kind of gas, Acetaldehyde, retrieved from the original gas sensor

drift dataset [Vergara et al., 2012], which spans 36 months. We formulated an regression

problem of predicting the gas concentration level given all the other features. The dataset

contains 128 features and 2926 samples in total. We used the first batch data (in the original

dataset) as the validation set and the others as the test set. Since the scales of the features

vary greatly, we scaled each feature with the sample statistics computed from the validation

set, leading to zero mean and unit standard deviation for each feature.

Hyperparameters We found that using a Bayesian forgetting module (instead of tem-

pered posterior module mentioned in the main paper), which corresponds to st = 1, works

better for this dataset. Since we scaled the dataset, we therefore set the hyperparam-

eter σ2
n = 1 for all methods. We searched ξ0 = log p0

1−p0
and β using the validation

set. Specifically, we did the grid search for the prior probability of change point p ∈

{0.501, 0.503, 0.505, 0.507, 0.509, 0.511, 521, 0.55, 0.6, 0.7, 0.8, 0.9} and the temperature β ∈

{0.5, 0.6, 0.7, 0.8, 0.9}. The search procedure selects p = 0.507 and β = 0.7 for all beam size

K.

5http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+

Concentrations
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Elec26

Dataset The dataset contains the electricity price over three years of two Australian states,

New South Wales and Victoria [Harries and Wales, 1999]. While the original problem was

0-1 binary classification, we re-produced the targets with real-value probabilities since all

necessary information forming the original target is contained in the dataset. Specifically,

we re-defined the target to be the probability of the price in New South Wales increasing

relative to the price of the last 24 hours. Then we performed linear regression in the log-odds

space. We filled log-odds boundary values to be −4 and 4, corresponding to probability 0

and 1, respectively. After removing the first 48 samples (for which we cannot re-produce

the targets), we had 45263 samples, and each sample comprised 14 features. The first 4000

samples were used for validation while the others were used for test.

Hyperparameters We searched the hyperparameters σ2
n, ξ0 = log p0

1−p0
, and β using the

validation set. Specifically, we extensively searched σ2
n ∈ {0.01, 0.02, · · · , 0.1, 0.2, · · · , 1, 2, · · · , 10, 20, · · · , 100},

p0 ∈ {0.5}, β−1 ∈ {1.05, 1.1, 1.2, 1.5, 2, 5}.

VCL favored σ2
n = 0.01, and we set this value for all other methods. VGS selected β−1 = 1.2.

VBS (K=3) and VBS (K=6) inherited the same β value from VGS.

NBAPlayer7

Dataset The original dataset contains part of the game logs of 2015-2016 NBA season in

json files. The log records each on-court player’s position (in a 2D space) at a rate of 25 Hz.

We pre-processed the logs and randomly extracted ten movement trajectories for training

set and another ten trajectories for test set. For an instance of the trajectory, we selected

6https://www.openml.org/d/151
7https://github.com/linouk23/NBA-Player-Movements
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Wesley Matthews’s trajectory at the 292th event in the game of Los Angeles Clippers vs.

Dallas Mavericks on Nov 11, 2015. The trajectories vary in length and correspond to players’

strategic movement. After extracting the trajectories, we fix the data set and then evaluate

all methods with it. Specifically, we regress the current position on the immediately previous

position–modeling the player’s velocity.

Hyperparameters We searched the hyperparameters σ2
n, ξ0 = log p0

1−p0
, and β using the

training set. Specifically, we searched σ2
n ∈ {0.001, 0.01, 0.1, 0.5, 1.0, 10., 100.} and p ∈

{0.501, 0.503, 0.505, 0.507, 0.509, 0.511, 521, 0.55, 0.6, 0.7, 0.8, 0.9} and β ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

VCL favored σ2
n = 0.1, and we set this value for all other methods. VBS (K=1, VGS)

selected β = 0.5 and p = 0.513. VBS (K=3) selected p = 0.507 and β = 0.6. VBS (K=6)

selected p = 0.505 and β = 0.7. In generating the plots on the example trajectory, we used

p = 0.507 with varying β and varying beam size K.

E.7.3 Bayesian Deep Learning Experiments

We performed the Bayesian Deep Learning experiments on a server with Intel(R) Xeon(R)

Gold 5218 CPU @ 2.30GHz and Nvidia TITAN RTX GPUs. Regarding the running time,

VCL, and Independent task (Bayes) takes five hours to finish training; Independent task

takes three hours; VGS takes two GPUs and five hours; VBS (K=3) takes six GPUs and

five hours; VBS (K=6) takes six GPUs and 10 hours. When utilizing multiple GPUs, we

implemented task multiprocessing with process-based parallelism.

Datasets with Covariate shifts We used two standard datasets for image classification:

CIFAR-10 [Krizhevsky et al., 2009] and SVHN [Netzer et al., 2011]. We adopted the original

training set and used the first 5000 images in the original test set as the validation set and

232



0 20 40 60 80 100
Number of Tasks Completed

-40%

-20%

0%

20%

R
el

at
iv

e
E

rr
or

R
ed

uc
ti

on
to

V
C

L

0 20 40 60 80 100
Number of Tasks Completed

VGS
(proposed)

VBS-ensemble (K=3)
(proposed)

VBS-ensemble (K=6)
(proposed)

LP
[Smola et al., 2003] Independent Task

Figure E.5: (Bottom) Running test performance of our proposed VBS and VGS algorithms
compared to various baselines on transformed CIFAR-10 (left) and SVHN (right). (Top)
Examples of transformations that we used for introducing covariate shifts.

Table E.1: Convolution Neural Network Architecture

layer filter size filters stride activation dropout

Convolutional 3× 3 32 1 ReLU
Convolutional 3× 3 32 1 ReLU
MaxPooling 2× 2 2 0.2
Convolutional 3× 3 64 1 ReLU
Convolutional 3× 3 64 1 ReLU
MaxPooling 2× 2 2 0.2
FullyConnected 10 Softmax

Table E.2: Hyerparameters of Bayesian Deep Learning Models for CIFAR-10

model learning rate batch size number of epochs β ξ0 or λ−1 T

LP 0.001 64 150 N/A N/A N/A
BOCD 0.0005 64 150 N/A 0.3 20000
BF 0.0005 64 150 0.9 N/A 20000
VCL 0.0005 64 150 N/A N/A N/A
VBS 0.0005 64 150 2/3 0 20000
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Table E.3: Hyperparameters of Bayesian Deep Learning Models for SVHN.

model learning rate batch size number of epochs β ξ0 or λ−1 T

LP 0.001 64 150 N/A N/A N/A
BOCD 0.00025 64 150 N/A 0.3 20000
BF 0.00025 64 150 0.9 N/A 20000
VCL 0.00025 64 150 N/A N/A N/A
VBS 0.00025 64 150 2/3 0 20000

the others as the test set. We further split the training set into batches (or tasks in the

continual learning literature) for online learning, each batch consisting of a third of the full

data. Each transformation (either rotation, translation, or scaling) is generated from a fixed,

predefined distribution (see below for Transformations) as covariate shifts. Changes are

introduced every three tasks, where the total number of tasks was 100.

Transformations We used Albumentations [Buslaev et al., 2020] to implement the trans-

formations as covariate shifts. As stated in the main paper, the transformation involved

rotation, scaling, and translation. Each transformation factor followed a fixed distribution:

rotation degree conformed to N (0, 102); scaling limit conformed to N (0, 0.32); and the mag-

nitude of vertical and horizontal translation limit conformed to Beta(1, 10), and the sampled

magnitude is then rendered positive or negative with equal probability. The final scaling

and translation factor should be the corresponding sampled limit plus 1, respectively.

Architectures and Protocol All Bayesian and non-Bayesian methods use the same neu-

ral network architecture. We used a truncated version of the VGG convolutional neural

network (in Table E.1) on both datasets. We confirmed that our architecture achieved sim-

ilar performance on CIFAR10 compared to the results reported by Zenke et al. [2017] and

Lopez-Paz and Ranzato [2017] in a similar setting. We implemented the Bayesian models us-

ing TensorFlow Probability and the non-Bayesian counterpart (namely Laplace Propagation)
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using TensorFlow Keras. Every bias term in all the models were treated deterministically

and were not affected by any regularization.

We initialize each algorithm by training the model on the full, untransformed dataset. During

every new task, all algorithms are trained until convergence.

Tempered Conditional ELBO In the presence of massive observations and a large neural

network, posterior distributions of change variables usually have very low entropy because

of the very large magnitude of the difference between conditional ELBOs as in Eq. 6.6.

Therefore change variables become over confident about the switch-state decisions. The

situation gets even more severe in beam search settings where almost all probability mass is

centered around the most likely hypothesis while the other hypotheses get little probability

and thereby will not take effect in predictions. A possible solution is to temper the conditional

ELBO (or the marginal likelihood) and introduce more uncertainty into the change variables.

To this end, we divide the conditional ELBO by the number of observations. It is equivalent

to set T = 20000 in Eq. 6.6. This practice renders every hypothesis effective in beam search

setting.

Hyperparameters, Initialization, and Model Training The hyperparameters used

across all of the models for the different datasets are listed in Tables E.2 and E.3. Regarding

the model-specific parameters, we set ξ0 to 0 for both datasets and searched β in the values

{5/6, 2/3, 1/2, 1/4} on a validation set. We used the first 5000 images in the original test set

as the validation set, and the others as the test set. We found that β = 2/3 performs relatively

well for both data sets. Optimization parameters, including learning rate, batch size, and

number of epochs, were selected to have the best validation performance of the classifier

on one independent task. To estimate the change variable st’s variational parameter, we

approximated the conditional ELBOs 6.7 by averaging 10000 Monte Carlo samples.
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As outlined in the main paper, we initialized each algorithm by training the model on the

full, untransformed dataset. The model weights used a standard Gaussian distribution as

the prior for this meta-initialization step.

When optimizing with variational inference, we initialized q(zt) to be a point mass around

zero for stability. When performing non-Bayesian optimization, we initialized the weights

using Glorot Uniform initializer [Glorot and Bengio, 2010]. All bias terms were initialized

to be zero.

We performed both the Bayesian and non-Bayesian optimization using ADAM [Kingma and

Ba, 2015]. For additional parameters of the ADAM optimizer, we set β1 = 0.9 and β2 = 0.999

for both data sets. For the deep Bayesian models specifically, which include VCL and VBS,

we used stochastic black box variational inference [Ranganath et al., 2014, Kingma and

Welling, 2014, Zhang et al., 2018]. We also used the Flipout estimator [Wen et al., 2018] to

reduce variance in the gradient estimator.

Predictive Distributions We evaluated the most likely hypothesis’ predictive posterior

distribution of the test set by the following approximation:

p(y∗|x∗,D1:t, s1:t) ≈
1

N

N∑
n=1

p(y∗|x∗, z(n)s1:t
)

where N is the number of Monte Carlo samples from the variational posterior distribution

q∗(zt|s1:t). In our experiments we found S = 10 to be sufficient. We take argmaxyt
p(y∗|x∗, ,D1:t)

to be the predicted class.

LP only used the MAP estimation z∗t to predict the test set: p(y∗|x∗,D1:t) ≈ p(y∗|x∗, , z∗t ).

Standard Deviation in the Main Text Table 6.1 The results in this table were sum-

marized and reported by taking the average over tasks. Each algorithm’s confidence, which
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is usually evaluated by computing the standard deviation across tasks in stationary envi-

ronments, now is hard to evaluate due to the non-stationary setup. These temporal image

transformations will largely affect the performance, leaving the blindly computed standard

deviation meaningless since the standard deviation across all tasks represents both the data

transformation variation and the modeling variation. To evaluate the algorithm’s confidence,

we proposed a three-stage computation. We first segment the obtained performance based

on the image transformations (in our case, we separate the performance sequence every three

tasks). Then we compute the standard deviation for every performance segment. Finally,

we average these standard deviations across segments as the final one to be reported. In this

way, we can better account for the data variation in order to isolate the modeling variation.

Running Performance. We also reported the running performance for both our methods

and some baselines for each task over time (100 tasks in total) in Fig. E.5. In the bottom

panel, to account for varying task difficulties, we show the percentage of the error reduction

relative to VCL, a Bayesian online learning baseline. Our proposed approach can achieve

10% error reduction most of the time on both datasets, showing the adaptation advantage of

our approach. The effect of beam search is also evident, with larger beam sizes consistently

performing better. The top panel shows some examples of the transformations that we used

for introducing covariate shifts manually.

E.7.4 Dynamic Word Embeddings Experiments

We performed the DynamicWord Embeddings experiments on a server with Intel(R) Xeon(R)

Gold 5218 CPU @ 2.30GHz and Nvidia TITAN RTX GPUs. Regarding the running time,

for qualitative experiments, Google Books and Congressional Records take eight GPUs and

about 24 hours to finish; UN Debates take eight GPUs and about 13 hours to finish. For

quantitative experiments, since the vocabulary size and latent dimensions are smaller, each
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Figure E.6: Dynamic Word Embeddings on Google books, Congressional records, and UN
debates, trained with VBS (proposed, colorful) vs. VCL (grey). In contrast to VCL, VBS
reveals sparse, time-localized semantic changes (see main text).

Figure E.7: Additional results of Dynamic Word Embeddings on Google books, Congres-
sional records, and UN debates.

model corresponding to a specific ξ0 takes eight GPUs and about one hour to finish. When

utilizing multiple GPUs, we implemented task multiprocessing with process-based paral-

lelism.

Data and Preprocessing We analyzed three large time-stamped text corpora, all of

which are available online. Our first dataset is the Google Books corpus [Michel et al., 2011]

consisting of n-grams, which is sufficient for learning word embeddings. We focused on the

Table E.4: Hyperparameters of Dynamic Word Embedding Models

corpus vocab dims β learning rate epoches ξ0 beam size (K) T

Google books 30000 100 0.5 0.01 5000 -10 8 1
Congressional records 30000 100 0.5 0.01 5000 -10 8 1
UN debates 30000 20 0.25 0.01 5000 -1 8 1
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Table E.5: ξ0 of Document Dating Tasks

corpus ξ0

Google books -1000000, -100000, -5120, -1280, -40
Congressional records -100000, -1280, -320, -40
UN debates -128, -64, -32, -4

period from 1900 to 2000. To have an approximately even amount of data per year, we sub-

sampled 250M to 300M tokens per year. Second, we used the Congressional Records data

set [Gentzkow et al., 2018], which has 13M to 52M tokens per two-year period from 1875

to 2011. Third, we used the UN General Debates corpus [Jankin Mikhaylov et al., 2017],

which has about 250k to 450k tokens per year from 1970 to 2018. For all three corpora, the

vocabulary size used was 30000 for qualitative results and 10000 for quantitative results. We

further randomly split the corpus of every time step into training set (90%) and heldout test

set (10%). All datasets, Congressional Records8, UN General Debates9, and Google Books10

can be downloaded online.

We tokenized Congressional Records and UN General Debates with pre-trained Punkt tok-

enizer in NLTK11. We constructed the co-occurence matrices with a moving window of size

10 centered around each word. Google books are already in Ngram format.

Model Assumptions As outlined in the main paper, we analyzed the semantic changes

of individual words over time. We augmented the probabilistic models proposed by Bamler

and Mandt [2017] with our change point driven informative prior (Eq. 6.3 in the main paper)

to encourage temporal sparsity. We pre-trained the context word embeddings12 using the

8https://data.stanford.edu/congress_text
9https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/0TJX8Y

10http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
11https://www.nltk.org/
12We refer readers to [Mikolov et al., 2013, Bamler and Mandt, 2017] for the difference between target and

context word embeddings.
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whole corpus, and kept them constant when updating the target word embeddings. This

practice denied possible interference on one target word embedding from the updates of

the others. If we did not employ this practice, the spike and slab prior on word i would

lead to two branches of the “remaining vocabulary” (embeddings of the remaining words

in the vocabulary), conditioned either on the spike prior of word i or on the slab prior.

This hypothetical situation gets severe when every word in the vocabulary can take two

different priors, thus leading to exponential branching of the sequences of inferred change

points. When this interference is allowed, the exponential scaling of hypotheses translates

into exponential scaling of possible word embeddings for a single target word, which is not

feasible to compute for any meaningful vocabulary sizes and number of time steps. To

this end, while using a fixed, pre-trained context word embeddings induces a slight drop of

predictive performance, the computational efficiency improves tremendously and the model

can actually be learned.

Hyperparameters and Optimization Qualitative results in Figure E.6 in the main pa-

per were generated using the hyperparameters in Table E.4. The initial prior distribution

used for all latent embedding dimensions was a standard Gaussian distribution. We also

initialized all variational distributions with standard Gaussian distributions. For model-

specific hyperparameters β and ξ0, we first searched the broadening constant β to have

the desired jump magnitude observed from the semantic trajectories mainly for medium-

frequency words. We then tuned the bias term ξ0 to have the desired change frequencies in

general. We did the searching for the first several time steps. We performed the optimiza-

tion using black box variational inference and ADAM. For additional parameters of ADAM

optimizer, we set β1 = 0.9 and β2 = 0.999 for all three corpora. In this case, we did not

temper the conditional ELBO by the number of observations (correspondingly, we set T = 1

in Eq. 6.6 in the main paper).
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Quantitative results of VGS in Figure 6.2 (c) in the main paper were generated by setting a

smaller vocabulary size and embedding dimension, 10,000 and 20, respectively for all three

corpora. We used an eight-hypothesis (K=8) VBS to perform the experiments. Other hy-

perparameters were inherited from the qualitative experiments except ξ0, whose values used

to form the rate-distortion curve can be found in Table E.5. We enhanced beam diver-

sification by dropping the bottom two hypotheses instead of the bottom third hypotheses

before ranking. On the other hand, the baseline, “binning”, and had closed-form perfor-

mance if we assume (i) a uniformly distributed year in which a document query is generated,

(ii) “binning” perfectly locates the ground truth episode, and (iii) the dating result is uni-

formed distributed within the ground truth episode. The L1 error associated with “binning”

with episode length L is Et∼U(1,L),t′∼U(1,L)[|t − t′|] = L−1
2
. By varying L, we get binning’s

rate-distortion curve in Figure 6.2 (c) in the main paper.

Predictive Distributions In the demonstration of the quantitative results, i.e., the doc-

ument dating experiments, we predicted the year in which each held-out document’s word-

word co-occurrence statistics x have the highest likelihood and measured L1 error. To be

specific, for a given document in year t, we approximated its likelihood under year t′ by eval-

uating 1
|V | log p(xt|z∗t′), where z∗t′ is the mode embedding in year t′ and |V | is the vocabulary

size. We predicted the year t∗ = argmaxt′
1
|V | log p(xt|z∗t′). We then measured the L1 error

by 1
T

∑T
i |ti − t∗i | given T truth-prediction pairs.

Additional Results

Qualitative Results As outlined in the main paper, our qualitative result shows that the

information priors encoded with change point detection is more interpretable and results in

more meaningful word semantics than the diffusion prior of [Bamler and Mandt, 2017]. Here

we provide a more detailed description of the results with more examples. Figure E.6 shows
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three selected words (“simulation”, “atom”, and “race”–one taken from each corpus) and

their nearest neighbors in latent space. As time progresses the nearest neighboring words

change, reflecting a semantic change of the words. While the horizontal axis shows the year,

the vertical axis shows the cosine distance of the word’s embedding vector at the given year

to its embedding vector in the last available year.

The plot reveals several interpretable semantic changes of each word captured by VBS. For

example, as shown by the most likely hypothesis in blue for the Congressional Records

data, the term “atom” changes its meaning from “element” to “nuclear” in 1945–the year

when two nuclear bombs were detonated. The word “race” changes from the cold-war era

“arms”(-race) to its more prevalent meaning after 1991 when the cold war ended. The word

“simulation” changes its dominant context from “deception” to “programming” with the

advent of computers. The plot also showcases various possible semantic changes of all eight

hypotheses, where each hypothesis states various aspects.

Additional qualitative results can be found in Figure E.7. it, again, reveals interpretable

semantic changes of each word: the first change of “computer” happens in 1940s–when

modern computers appeared; “broadcast” adopts its major change shortly after the first

commercial radio stations were established in 1920; “climate” changes its meaning at the

time when Intergovernmental Panel on Climate Change (IPCC) was set up, and when it

released the assessment reports to address the implications and potential risks of climate

changes.

Quantitative Results and Baseline Figure 6.2 (c) in the main paper shows the results

on the three corpora data, where we plot the document dating error as a function of allowed

changes per year. For fewer allowed semantic changes per year, the dating error goes up.

Lower curves are better.
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Now we describe how the baseline “Binning” was constructed. We assumed that we had

separate word embeddings associated with episodes of L consecutive years. For T years in

total, the associated memory requirements would be proportional to V ∗T/L, where V is the

vocabulary size. Assuming we could perfectly date the document up to L years results in an

average dating error of L
2
. We then adjusted L to different values and obtained successive

points along the ”Binning” curve.
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