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Abstract

Chronic inflammation fosters cancer development and pro-
gression and also modulates tumor responses to anticancer ther-
apies. Neutrophils are key effector cells in innate immunity and
are known to play a critical role in various inflammatory dis-
orders. However, the functions of neutrophils in cancer patho-
genesis have been largely neglected until recently and still remain
poorly characterized compared with other immune cells in the

tumor microenvironment. We highlight recent findings on the
mechanisms by which tumor cells, in cooperation with tumor-
associated stromal cells, induce expansion, recruitment, and
polarization of neutrophils. We also review themultifaceted roles
that neutrophils play in different aspects of cancer development
and progression, with an emphasis on tumor angiogenesis and
metastasis. Cancer Immunol Res; 4(2); 83–91. �2016 AACR.

Introduction
Neutrophils are the most abundant white blood cells (WBC)

in the human circulatory system and constitute an important
part of the first-line defense against infection (1). Neutrophils
are constantly generated through granulopoiesis in the bone
marrow and are mobilized in the peripheral circulation to
patrol for invading pathogens (1). Chemokines produced at the
infection/inflammatory sites attract neutrophils, where they exert
anti-infection/proinflammatory functions, such as phagocytosis
of pathogens; release of antimicrobial products, including reactive
oxygen species (ROS), antibacterial peptides, enzymes, and neu-
trophil extracellular traps (NET); and production of cytokines
and chemokines to recruit other immune cells (1, 2).

Inflammation has been long recognized as a key aspect of
cancer development, which can fuel both primary tumor growth
andmetastasis (3). Therefore, it is not surprising that neutrophils,
a key inflammatory cell type, can be mobilized and recruited to
tumors. In fact, aberrant accumulation of neutrophils has been
documented in a wide variety of tumors and is often associated
with poor clinical outcomes (4–11). Emerging evidence also
suggests that neutrophils, in response to signals derived from
cancer cells or stromal cells, can alter their phenotypes and
migration routes and also release factors that act on tumor cells
and other cell types (e.g., endothelial cells and immune cells),
which we review in the following sections.

Deregulation of Neutrophils by the Tumor
Microenvironment

The induction of granulopoiesis, a cascade of cellular events
that lead to neutrophil production, is mainly regulated by

granulocyte colony-stimulating factor (G-CSF) and its receptor,
G-CSFR (12). G-CSF is a �25 kDa secreted glycoprotein
encoded by the csf3 gene (13). It is produced by endothelial
cells, fibroblasts, monocytes, and macrophages in response to
Toll-like receptor ligands and various proinflammatory cyto-
kines (13, 14). G-CSF binds to its receptor, expressed in
neutrophils and in neutrophil progenitor cells, and activates
the downstream Janus kinase (JAK)/signal transducer and acti-
vator of the transcription 3 (Stat3) pathway (15), an essential
signaling pathway for cancer inflammation (16). Activation of
the JAK/Stat3 signaling pathway leads to expression of genes
that are required for granulopoiesis (e.g.,MYC, CEBPB; ref. 17).
As a result, G-CSF promotes commitment to granulocyte devel-
opment, neutrophil progenitor cell proliferation, and survival
of mature neutrophils (13, 14). In addition, G-CSF facilitates
release of neutrophils and hematopoietic progenitor cells
from the bone marrow through downregulation of the CXC-
chemokine ligand 12 (CXCL12)/CXC-chemokine receptor 4
(CXCR4) axis that mediates retention/homing of neutrophils
to the bone marrow (18). G-CSFR is a member of the type-1
cytokine receptor family encoded by the CSF3R gene (13). It
contains a conserved cytokine receptor homologous (CRH)
domain, an Ig-like domain, and three fibronectin type III–like
domains in the extracellular region; a single transmembrane
region; and an intracellular region without intrinsic catalytic
activity (19, 20). Upon G-CSF binding, G-CSFR forms a "cross-
over," 2:2 ligand:receptor complex, in which each G-CSF mol-
ecule binds to both receptors (19, 21). Expression of G-CSFR
has been detected in both hematopoietic and nonhematopoie-
tic cell types, including the placenta, neurons, endothelial cells,
cardiomyocytes, and cancer cells (22). In the hematopoietic
system, G-CSFR is predominantly expressed in myeloid lineage
cells such as myeloid progenitor cells, granulocytes, and mono-
cytes (22).

Mice deficient in G-CSF (23) or G-CSFR (24) manifest severe
neutropenia under basal and stressed conditions (e.g., bacterial
infection; ref. 25). Administration of exogenous G-CSF remains
the most efficient method to induce granulopoiesis and mobi-
lization of hematopoietic progenitor cells in humans and
animals (14). Other factors, including GM-CSF, IL6, and
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thrombopoietin, can also contribute to granulopoiesis,
although to a lesser extent than G-CSF. Knockout mice for
GM-CSF (26), IL6 (27), or thrombopoietin (28) have been
examined and, in contrast to G-CSF�/� (23) or G-CSFR�/� (24)
mice, appear to have normal neutrophil numbers in the blood.
However, mice lacking both G-CSF (or its receptor) and
GM-CSF (26), IL6 (29), or thrombopoietin (ref. 28; double
knockout) display more severe neutropenia than mice lacking
only G-CSF (or its receptor). It is noteworthy that mice lacking
all three myeloid colony-stimulating factors (G-CSF, GM-CSF,
and M-CSF) can still generate macrophages and granulocytes,
albeit at substantially reduced levels (30).

Elevated G-CSF, as well as GM-CSF or IL6, have been docu-
mented in human and mouse cancers and are often associated
with paraneoplastic "leukemoid reactions" (PLR), characterized
by high WBC counts of more than 50,000/mL (in humans), with
neutrophils being the predominant cell type (16, 31–36). PLR
can occur in 10% to 15% of cancer patients and are strongly
predictive of poor clinical outcomes (33, 34). We have previ-
ously reported that activation of the oncogenic RAS/MEK/ERK
pathway induces expression of G-CSF from tumor cells through
the Ets transcription factor (37). Blockade of G-CSF release
through MEK inhibition, antibody-mediated G-CSF neutraliza-
tion, or targeted inactivation of the G-CSF receptor in mice, re-
sulted in suppression of aberrant neutrophil accumulation and
inhibition of tumor angiogenesis and metastasis (35, 37–39).
The significance of tumor-derived GM-CSF or IL6 on neutrophil
homeostasis in malignancies has been less extensively charac-
terized. However, it has been shown that augmented expression
levels of GM-CSF and IL6 in tumor-bearing mice are associated
with increased myeloid-derived suppressor cells (MDSC), a
heterogeneous population of monocytic and granulocytic mye-
loid cells that promotes cancer progression through various
mechanisms (40, 41).

Mechanisms of neutrophil recruitment to the inflamed tissues
have been reviewed in detail elsewhere (1, 2) and are not
discussed here. Of interest, tumors do share some basic chemo-
taxis mechanisms that regulate recruitment of neutrophil to
inflammatory sites. For example, tumor cells and stromal cells
in the tumor microenvironment secrete chemokines such as
CXCL1, CXCL2, CXCL5, and CXCL8 to attract neutrophils
(reviewed in refs. 42, 43). G-CSF induces expression of Bv8/
prokineticin-2, a protein that induces angiogenesis, and also
facilitates recruitment of CD11bþLy6Ghi neutrophils in both
primary tumors and the metastatic sites (35, 38, 39). Once
neutrophils arrive at tumor sites, they can be instructed by
tumor-derived factors to "tune up" their tumor-supporting
functions. One characteristic feature of advanced solid tumors
is hypoxia. In fact, hypoxia promotes HIF-1a–dependent neu-
trophil survival (44, 45) but impairs the respiratory burst activity
in human neutrophils (46). In addition, it has been reported
that blockade of TGFb in the tumor microenvironment drives
neutrophil polarization from a protumoral "N2" phenotype to
an antitumoral "N1" phenotype characterized by enhanced
cytotoxic and immunostimulatory activities (47).

Tumor-Supporting Functions of
Neutrophils

Growing evidence supports a protumoral role of neutrophils.
In this section, we review the protumoral functions of neutrophils

on tumor cells and tumor-associated stromal cells at primary
tumors and metastatic sites.

Tumorigenesis, tumor cell proliferation, and survival
Neutrophils can directly act on premalignant epithelial cells to

accelerate tumorigenesis. Work by Coussens and colleagues has
shown that matrix metalloproteinase 9 (MMP9), supplied by
bone marrow–derived cells, contributes to skin carcinogenesis
(48). Among various cell types in the tumor microenvironment,
neutrophils are a rich source of MMP9, yet lack expression of
tissue inhibitor of metalloproteinases (TIMP), the endogenous
inhibitors ofMMP9. This renders neutrophil-derivedMMP9more
prone to activation and participation in protumoral functions
(49). Neutrophils produce ROS (through the action of myeloper-
oxidase and NADPH oxidase), which is known to cause DNA
damage, genome instability, and gene mutation in premalignant
epithelial cells and drives oncogenic transformation (50, 51).
Together, these observations suggest that neutrophils recruited to
chronic inflammation sites may foster tumorigenesis through
multiple mechanisms.

During tumor progression, neutrophils release factors that
stimulate tumor cell proliferation (Fig. 1). Neutrophil elastase
(ELA2) can enter tumor cells, activate phosphoinositide 3-kinase
(PI3K) through degradation of its negative regulator insulin
receptor substrate-1 (IRS-1), andpromote tumor cell proliferation
(52). Moreover, breast cancer cells can induce neutrophils to
produce oncostatin M (53), a factor known to stimulate tumor
cell proliferation through activation of Stat3 (16). A recent study
also shows that carcinoma-derived CXCL1/2 facilitates recruit-
ment of S100A8/9-positive granulocytes, which induced tumor
cell survival, metastasis, and resistance to chemotherapy (54).

Angiogenic properties of tumor-associated neutrophils
Angiogenesis is the formation of new blood vessels and

involves proliferation, migration, and differentiation of endo-
thelial cells (55). Angiogenesis is a critical step during cancer
development, and it has become clear that not only tumor
cells but also stromal cells in the tumor microenvironment
can supply proangiogenic factors. Tumor-infiltrating neutro-
phils can mediate the angiogenic switch in a transgenic mouse
tumor model (56). Also, tumors grow faster, become highly
vascularized, and are more infiltrated by neutrophils in IFNb-
deficient mice compared with the wild-type mice; depletion
of neutrophils eliminates the enhanced tumor growth and
angiogenesis in IFNb-deficient mice (57). In myxofibrosar-
coma patients, elevated numbers of neutrophils positively
correlated with tumor microvessel density (58). Moreover,
intratumoral infiltration of neutrophils is significantly corre-
lated with tumor grade in glioma patients (11, 59) and with
acquired resistance to anti-VEGF therapy in tumor-bearing
mice (59).

Vascular endothelial growth factor (VEGF)-A is a potent
angiogenic factor and a validated therapeutic target for blocking
tumor as well as intraocular angiogenesis (60). Tumor-associ-
ated neutrophils contain a large intracellular pool of VEGF
that can be rapidly released upon stimulation (61). Moreover,
de novo synthesis of VEGF mRNA has been reported in tumor-
associated neutrophils, in spite of the low gene transcription
in mature neutrophils (62). Accordingly, elevated amounts
of VEGF are found in neutrophils isolated from the oral cavity
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of cancer patients compared with control subjects, and VEGF
amounts in neutrophils are positively associated with disease
stages (63).

MMP9 is a proteolytic enzyme that cleaves substrates within,
and remodels, the extracellular matrix (ECM), facilitating endo-
thelial cell movement. Moreover, the proteolytic activity of
MMP9 releases VEGF and other growth factors that had
been sequestered in an inactive form in the ECM (reviewed in
refs. 64, 65). When neutrophils secrete TIMP-free MMP9, it
liberates bioactive fibroblast growth factor-2 and VEGF from
the ECM and induces tumor angiogenesis. Involvement of
neutrophils in angiogenic switches has been illustrated in the
RIP1-Tag2 transgenic pancreatic neuroendocrine mouse model
by counting the number of islets undergoing angiogenesis
under different conditions. When neutrophils are depleted by
administration of antibodies to Gr1 (a marker on the neutro-
phil cell surface), the association of VEGF with its receptor is
reduced, as is the number of islets undergoing angiogenesis
(56). Interestingly, a recent study shows that MMP9-positive
neutrophils can compensate for the loss of macrophages in

tumor-bearing CCR2-null mice by supporting tumor angiogen-
esis and progression (66).

In an effort to identify molecular and cellular mechanisms
mediating tumor refractoriness to anti-VEGF therapy, we discov-
ered that tumor infiltration by CD11bþGr1þmyeloid cells results
in reduced responsiveness to anti-VEGF antibodies, as compared
with tumormodels with little or no CD11bþGr1þ cell infiltration
(67). Interestingly, a similar tumor responsiveness to anti-VEGF
treatment was observed in both immunocompetent and XID
mice, indicating that these effects of CD11bþGr1þ cells do not
require B-cell or T-cell function (67). Further studies identified
G-CSF produced by tumor or stromal cells as a criticalmediator of
accumulationofCD11bþGr1þ cells and consequent tumor refrac-
toriness to anti-VEGF therapy (38, 39).

G-CSF is also induced when tumor-infiltrating T helper type
17 (Th17) cells secrete IL17, which in turn leads to expansion,
mobilization, and tumor recruitment of myeloid cells (mostly
neutrophils; ref. 68). Upon stimulation with G-CSF, neutrophils
upregulate expression of Bv8/prokineticin-2 through activation
of the Stat3 pathway (69–71). As noted, Bv8 stimulates

Figure 1.
Schematic overview of the tumor-supporting functions of neutrophils. Tumor- or stroma-derived G-CSF stimulates neutrophil production in the bone marrow
and subsequent release in the circulation. Circulating neutrophils, recruited into the tumor by various chemokines, locally produce factors (e.g., ELA2, OSM,
and S100A8/9) that promote tumor cell proliferation, survival, and resistance to chemotherapy. Neutrophil-derived ROS can induce DNA damage in
premalignant cells that facilitates oncogenic transformation. Neutrophils then support tumors through stimulation of tumor angiogenesis by releasing
proangiogenic factors such as VEGF and Bv8. Neutrophils are a rich source of proteolytic enzymes, including MMPs and serine proteases, which can
break down the extracellular matrix (ECM) and release the bioactive forms of growth factors and proangiogenic molecules. Additionally, neutrophils can
secrete factors that induce local immunosuppression by impairing T-cell responses, inducing T-cell death, and recruiting regulatory T cells, which permits
tumor development and progression. Other immune cells in turn produce factors such as IL17 derived from Th17 and gd T cells that augment G-CSF levels and
tumor-induced neutrophilia. ELA2, neutrophil elastase; OSM, oncostatin M.

Neutrophils in Tumor Angiogenesis and Metastasis

www.aacrjournals.org Cancer Immunol Res; 4(2) February 2016 85

on February 1, 2016. © 2016 American Association for Cancer Research. cancerimmunolres.aacrjournals.org Downloaded from 

http://cancerimmunolres.aacrjournals.org/


endothelial cell proliferation, survival, and migration (39) and
also functions as a chemoattractant for neutrophils and, in some
cases, for metastatic tumor cells (35). Blockade of IL17/IL17
receptor, G-CSF/G-CSF receptor, or Bv8—through genetic and
pharmacologic approaches—inhibits intratumoral infiltration
of neutrophils, tumor angiogenesis, and tumor growth (38,
39, 68). Importantly, Bv8 upregulation in response to G-CSF
(and GM-CSF) has been reported in human neutrophils (71).
The immunohistochemical localization of Bv8 protein in
human tumor-infiltrating neutrophils has also been reported
(71). In a complementary fashion, neutrophils can also recruit
Th17 cells to the inflammatory sites through secretion of CCL2
and CCL20 (72). Collectively, these results suggest that neu-
trophils and Th17 cells can cross-talk and work in concert to
induce, among other effects, tumor resistance to antiangiogenic
therapy.

Besides VEGF, MMP9, and Bv8, recent work in the field has
extended the list of neutrophil-derived factors that are known
to sustain tumor angiogenesis. These factors include but are
not limited to chemokines and cytokines (e.g., CXCL1, CXCL8,
IL1b, and IL6), oncostatin M, and urokinase-type plasminogen
activator (uPA; reviewed in refs. 73, 74). Nevertheless, whether
and how these factors contribute to neutrophil-mediated tumor
angiogenesis remains to be determined.

The results generated in various preclinical models strongly
suggest a role for neutrophils in mediating tumor angiogenesis
and refractoriness to anti-VEGF therapy. The clinical evidence
supporting this notion, although still relatively limited, is
growing (58, 63, 71). For example, in a study that investigated
the role of inflammatory cells in predicting the clinical out-
come in advanced nonsquamous non–small cell lung cancer
patients treated with chemotherapy with or without bevaci-
zumab, the authors found that a high number of circulating
neutrophils and monocytes and a high neutrophil-to-lympho-
cyte ratio (NLR) are associated with poor clinical outcome only
in patients treated with chemotherapy plus bevacizumab, but
not in those treated with chemotherapy alone (75). The same
group also reported that a low baseline NLR was associated
with the longest progression-free survival (PFS) in colorectal
cancer patients receiving bevacizumab as a first-line therapy
(76). Also, in patients with metastatic renal cell carcinoma
treated with the VEGFR tyrosine kinase inhibitor sunitinib, a
low NLR (NLR � 3) before treatment was associated with
better response rate, longer PFS, and overall survival
(OS; ref. 77). Although these findings are consistent with the
important roles of neutrophils in mediating tumor angiogen-
esis and resistance to anti-VEGF therapy (Fig. 1), more studies
are clearly needed to address the following concerns: (i) the
direct involvement of neutrophils in triggering angiogenesis in
human tumors; (ii) the role of neutrophils in predicting the
clinical outcomes in patients receiving anti-VEGF therapies;
and (iii) whether blockade of the proangiogenic function of
neutrophils in cancer patients can reverse resistance to anti-
VEGF therapy.

Neutrophils as negative regulators of anticancer immunity
Although a comprehensive review of neutrophil immunology

is beyond the scope of this article, we want to emphasize that
neutrophils can initiate and engage in complex cross-talk with
other immune cells throughout their development andactivation.
Such cross-talk can reciprocally modulate the phenotypes of

neutrophils and other immune cells and thus control inflamma-
tion and immune responses under physiologic and pathologic
conditions.

It is well established that tumor cells often induce an immu-
nosuppressive microenvironment through impaired antigen
presentation, release of immunosuppressive factors, induction
of immunologic tolerance and recruitment of immune cells
equipped with tumor-supporting machineries (78). In this
context, multiple mechanisms have been proposed for the
immunosuppressive features of neutrophils and granulocytic
MDSCs, a heterogeneous cell population that shares remarkable
features including surface markers, cell morphology, and func-
tion with tumor-associated neutrophils (79). For instance,
tumor-infiltrating neutrophils produce TGFb (80), an immu-
nosuppressive cytokine with diverse effects on multiple lineages
of immune cells.

Peripheral blood polymorphonuclear leukocytes isolated
from patients with hepatocellular carcinoma release signifi-
cantly more CCL2 compared with healthy subjects. This CCL2
inhibits peripheral blood mononuclear cell (PBMC) produc-
tion of IFNg , an inhibition that is abolished by antibodies that
block CCL2 (81). Neutrophils also exert their immunosup-
pressive function through production of arginase (ARG1;
ref. 82) and ROS. Arginase depletes arginine from the sur-
rounding environment, leading to inhibition of T-cell prolif-
eration and function (83). ROS can suppress T-cell activation
and, at high concentrations, induce apoptosis in T cells (84).
In addition, tumor-associated neutrophils recruit immuno-
suppressive regulatory T cells (Treg) into tumors through secre-
tion of CCL17 (85). In summary, the immunosuppressive
environment fostered by neutrophils facilitates tumor growth
and metastasis (Fig. 1).

Neutrophils in premetastatic and metastatic
microenvironments

Metastasis remains the leading cause of death for patients
with cancer. The multistep process of metastasis involves tumor
cell migration, invasion, and escape from primary tumor sites,
survival in circulation, extravasation and seeding at secondary
sites, overcoming dormancy, and initiation of metastatic out-
growth. Meanwhile, tumor cells need to be protected from
attack by the host's immune system throughout the process.
Emerging evidence suggests that neutrophils, in response to
tumor-derived stimuli, contribute to most if not all of these
steps during cancer metastasis. In this section, we highlight
recent findings on the input of neutrophils to different phases
of cancer metastasis.

Neutrophils produce a variety of proteins that can stimulate
tumor cell migration and invasion. For example, neutrophils
maintain a large intracellular pool of serine proteases and
MMPs (reviewed in refs. 73, 74) that can be released upon
activation, which can facilitate tumor cell migration and inva-
sion through remodeling ECM and increasing the bioavailabil-
ity of (pro-migration and pro-invasion) signaling molecules.
Alveolar neutrophils secrete hepatocyte growth factor (HGF),
which induces human lung cancer cell migration (86). More-
over, some neutrophil-derived proteins are known to trigger
epithelial–mesenchymal transition (EMT) of tumor cells. EMT
is a developmental program that allows stationary epithelial
cells to lose tight cell–cell junction and obtain the ability to
migrate and invade during development (87). Tumor cells are
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known to use this strategy to increase cell motility, invasive-
ness, and their ability to break/remodel basement membrane
and ECM (87). EMT can also prevent circulating tumor cells
from dying and facilitate extravasation and seeding at the
secondary sites (87). Tumor-infiltrating neutrophils produce
among other factors TGFb (80), a primary inducer of EMT
through upregulation of Snail1/2, Zeb1/2, and Twist1 (87).
Neutrophil-derived TGFb has been shown to induce EMT in
lung adenocarcinoma cells (88), and a recent study suggests
that neutrophil elastase can contribute to EMT by degradation
of E-cadherin in tumor cells (89). Neutrophils isolated from
inflammatory disorders express TNFa upon stimulation (90),
which has also been shown to promote EMT (91).

Neutrophils in the peripheral circulation can also facilitate
cancer metastasis by inducing cancer cells to adhere to endo-
thelial cells at the extravasation sites. Circulating human mel-
anoma cells secrete IL8, a neutrophil chemoattractant that also
induces expression of b2 integrin (Mac-1) on neutrophils, which
increases the binding of melanoma cells to neutrophils and
endothelial cells, leading to increased metastasis (92). Another

study suggests that neutrophils promote adhesion of lung
cancer cells to liver sinusoids and liver metastasis and this effect
is partially reversed by Mac-1 or ICAM-1 blockade (93). In
addition, Cools-Lartigue and colleagues reported that neutro-
phil-released neutrophil extracellular traps (NET) can contribute
to cancer metastasis (94). NETs are neutrophil-derived struc-
tures composed of DNA, chromatin, and granule proteins and
represent a host defense mechanism by trapping and killing
microorganisms (95). Circulating tumor cells become trapped
within NETs, and NET trapping increases formation of liver
metastasis (94). Inhibition of NET with DNase or a neutrophil
elastase inhibitor impedes metastasis development (94).

A recent revisitation of Paget's classic "seed and soil" hypothesis
(96) is the "premetastatic niche" (97). Lyden and colleagues
reported that VEGFR1þ hematopoietic progenitor cells are
recruited to the premetastatic sites and form cellular clusters
before the arrival of tumor cells (97). These VEGFR1þ cells can
then promote adherence and growth of metastatic tumor cells,
possibly through production of MMP9 and CXCL12 (97). Our
work has suggested that neutrophils, rather than VEGFR1þ cells,

©2016 American Association for Cancer Research

Figure 2.
Neutrophils promote tumor metastasis. At primary tumor sites, neutrophils secrete factors that can induce EMT of tumor cells and support their migration
machinery. MMPs produced by neutrophils can break down and remodel the ECM, which in turn facilitates tumor cell migration, invasion, and
intravasation. In the peripheral circulation, neutrophils may support adhesion and retention of circulating tumor cells (to the endothelium at the
metastatic target sites) through multiple mechanisms. For example, NETs produced by neutrophils can entrap circulating tumor cells and induce
extravasation. In addition, neutrophils can facilitate cancer metastasis by suppressing the cytotoxic T-cell–mediated immune surveillance against
metastatic tumor cells. At the distant metastatic sites (e.g., lung), neutrophils, along with other bone marrow–derived cells, arrive before tumor cells
and constitute the "premetastatic niche" by releasing factors such as MMP9, S100A8/9, Bv8, and leukotrienes that promote colonization, migration,
and outgrowth of metastatic tumor cells.
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are themajor cell typemobilized by signals derived from primary
tumors (e.g., G-CSF) and recruited to metastatic sites such as lung
and liver, to promote a permissive environment (35). We found
that, at the metastatic sites, neutrophils express a spectrum of
genes, Bv8 and S100A8 being among the most upregulated. As
noted, Bv8 facilitates further recruitment of neutrophils and
seeding of metastatic tumor cells (35). Accordingly, treatment
with antibodies toG-CSFor Bv8 reduces aberrant accumulationof
neutrophils at premetastatic organs and significantly inhibits
lung metastasis (35).

It is noteworthy that several studies have confirmed and
further explored the role of neutrophils in fostering metastatic
niches and establishing cancer metastasis. The study by Casbon
and others confirmed the presence of neutrophils in premeta-
static lung tissue and found that prolonged exposure of G-CSF
expanded T-cell–suppressive neutrophils, resulting in increased
cancer metastasis (98). A recent study by Coffelt and colleagues
found that expression of IL17 from gd T cells induced
expansion and polarization of neutrophils in mice bearing
metastatic tumors (99). Tumor-induced neutrophils facilitated
cancer metastasis by suppressing CD8þ cytotoxic T-cell prolif-
eration and activation (99). This effect was dependent on the
IL17/G-CSF axis as neutralization of IL17 or G-CSF prevented
neutrophil accumulation, relieved cytotoxic T cells from neu-
trophil-mediated immunosuppression, and inhibited cancer
metastasis (99).

On the other hand, mice deficient in type I IFN signaling
(IFNaR1�/�) have a higher rate of metastasis after tumor
implantation compared with wild-type mice (100). This effect
is associated with increased G-CSF, neutrophil accumulation,
and expression of prometastatic proteins like Bv8, MMP9,
S100A8, and S100A9 at the metastatic sites (100). Type I IFN
signaling is negatively correlated with IL17 signaling in T cells
(101). It is conceivable that in IFNaR1�/� mice, IL17 signaling
becomes hyperactivated, leading to G-CSF–mediated expan-
sion and mobilization of neutrophils, as observed in this study.
As mentioned previously, granulocytic myeloid cells can be
recruited to the metastatic sites by tumor-derived CXCL1/2 and
secrete S100A8/9, supporting metastatic tumor cell survival and
chemoresistance (54). Furthermore, blockade of colony-stim-
ulating factor-1 (CSF-1) or its receptor (CSFR1) can lead to
increased lung metastasis associated with enhanced serum
G-CSF, increased frequency of neutrophils at primary tumors,
and metastasis to the (102). Administration of neutralizing
antibodies against G-CSF receptor prevents neutrophil accu-
mulation and metastasis promoted by blockade of CSF-1/CSF-
1R (102). Additionally, a recent study confirmed the involve-
ment of neutrophils in establishing the premetastatic lung
microenvironment and indicated that neutrophil-derived leu-
kotrienes can support colonization of metastatic tumor cells
by selectively expanding a sub-pool of cancer cells with high
tumorigenic potential (103). These findings are consistent with
previous observations that antagonists of the leukotriene gen-
erating enzyme (104), or inhibition of leukotriene receptor
(105), can suppress tumor metastasis. In summary, these find-
ings are consistent with the hypothesis that tumor-associated
neutrophils can promote cancer metastasis through multiple
mechanisms that include induction of EMT and tumor cell
migration and invasion, assisting extravasation, and creating
the metastatic niche and the immunosuppressive microenvi-
ronment (Fig. 2).

Antitumor Effects of Neutrophils
While tumor promotion seems to be the predominant out-

come of the interaction between neutrophils and tumor/stro-
mal cells, several studies have reported antitumor functions of
neutrophils. For instance, it was suggested that neutrophils can
directly inhibit tumor cell proliferation and survival through
production of TRAIL, a TNF superfamily member that binds to
its receptor in tumor cells and induces apoptosis (106). Also,
"tumor-entrained" neutrophils have been reported to have
antitumor and antimetastatic effects, based on the observation
that antibody-mediated depletion of neutrophils in 4T1 and
MMTV-PyMT mouse tumor models results in enhancement of
metastasis (107). These findings, while intriguing, are contra-
dicted by several reports (see above; refs. 35, 98, 103), showing
that, in similar tumor models, tumor-associated neutrophils
have clear prometastasis functions. In a different setting, the
cMet proto-oncogene is expressed in neutrophils and required
for chemoattraction and nitric oxide–dependent cytotoxicity
of antitumoral neutrophils (108). As a result, cMet deletion
in neutrophils stimulates tumor growth and metastasis (108).

Neutrophils are essential for development, survival, and acti-
vation of other immune cells under basal condition and during
induction of immune responses against invading pathogens
(reviewed in refs. 1, 2). It has been shown that blockade of TGFb
polarized the protumoral, immunosuppressive "N2" neutrophils
to the antitumor, immunostimulatory "N1" neutrophils (47). It
remains unclear, however, whether tumor-associated neutrophils
are involved in the development of anticancer immunity without
any therapeutic intervention. Previous published results (47, 98,
99) suggest that it is a strong possibility that tumor-associated
neutrophils are primarily immunosuppressive, due to chronic
exposure to tumor-derived signals, and can be polarized to be
immunostimulatory through inhibition of the immunosuppres-
sive signals (e.g., TGFb).

Potential Strategies to Inhibit Neutrophils
The tumor-promoting actions of neutrophils provide a ratio-

nale for the development of therapies that target such cells.
However, approaches that eliminate the whole neutrophil
population are expected to have major adverse effects because
neutrophils constitute a vital defense mechanism against for-
eign pathogens and depletion of neutrophils may render
patients vulnerable to infections. Such approaches might also
remove the host–beneficial antitumoral neutrophils. Alterna-
tively, other strategies may be considered: (i) blocking neu-
trophil mobilization and recruitment to primary tumors and
metastatic sites; (ii) polarizing neutrophils from the protu-
moral phenotype to the antitumoral phenotype; and (iii)
specifically targeting neutrophil-derived molecules with
tumor-supporting functions. For instance, therapeutics that
reduce the expression levels of G-CSF by tumor or stromal
cells (e.g., MEK/ERK inhibitor or anti-IL17) or the downstream
targets of the G-CSF/G-CSFR axis (inhibitor of the JAK/Stat3
pathway or anti-Bv8) can be used to test the first strategy.
Antagonists of GM-CSF or other chemokines may also be
valuable. Anti-TGFb therapy can be used to test the second
strategy. To test the third strategy, one might consider antago-
nists of neutrophil elastase, S100A8/9, VEGF, MMP9, oncos-
tatin M, neutrophil-derived serine proteases, and scavengers
of ROS.
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Additionally, blockade of the tumor-supporting functions
of neutrophils may be valuable when combined with con-
ventional chemotherapies and other targeted therapies. This
is exemplified by the combinational treatment of tumor-
bearing mice using antibodies to VEGF and to G-CSF, Bv8,
or IL17. Our previous studies indicated that such combi-
nation therapies reduce tumor growth in mouse tumor
models that are otherwise refractory to anti-VEGF treatment
(38, 39, 68).

Concluding Remarks and Perspectives
Emerging evidence supports an important yet complex role of

neutrophils during tumor initiation, growth, angiogenesis, eva-
sion from immunosurveillance and metastasis. Still, much
remains unknown, and further characterization of neutrophil
functions in the context of cancer and cancer-related inflamma-
tion is needed (see Box 1). The knowledge gained by addressing
such questions is expected to advance our understanding of
neutrophil recruitment, heterogeneity, programming, and func-
tional plasticity, in response to signals derived from tumors and
possibly other pathologic conditions. It should also facilitate
identification of the most efficient strategies to block the
tumor-supporting functions of neutrophils while preserving or
even boosting the antitumoral functions.
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