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The Development of Mathematical Knowledge for Teaching for Quantitative 
Reasoning Using Video-Based Instruction 

by 
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San Diego State University, 2017 

Professor Joanne Lobato, Chair 

Quantitative reasoning (P. W. Thompson, 1990, 1994) is a powerful 

mathematical tool that enables students to engage in rich problem solving across the 

curriculum. One way to support students’ quantitative reasoning is to develop 

prospective secondary teachers’ (PSTs) mathematical knowledge for teaching (MKT; 

Ball, Thames, & Phelps, 2008) related to quantitative reasoning. However, this may 
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prove challenging, as prior to entering the classroom, PSTs often have few 

opportunities to develop MKT by examining and reflecting on students’ thinking. 

Videos offer one avenue through which such opportunities are possible. 

In this study, I report on the design of a mini-course for PSTs that featured a 

series of videos created as part of a proof-of-concept NSF-funded project. These 

MathTalk videos highlight the ways in which the quantitative reasoning of two high 

school students developed over time. 

Using a mixed approach to grounded theory, I analyzed pre- and post-

interviews using an extant coding scheme based on the Silverman and Thompson 

(2008) framework for the development of MKT. This analysis revealed a shift in 

participants’ affect as well as three distinct shifts in their MKT around quantitative 

reasoning with distances, including shifts in: (a) quantitative reasoning; (b) point of 

view (decentering); and (c) orientation toward problem solving.  

Using the four-part focusing framework (Lobato, Hohensee, & Rhodehamel, 

2013), I analyzed classroom data to account for how participants’ noticing was linked 

with the shifts in MKT. Notably, their increased noticing of aspects of MKT around 

quantitative reasoning with distances, which features prominently in the MathTalk 

videos, seemed to contribute to the emergence of the shifts in MKT. 

Results from this study link elements of the learning environment to the 

development of specific facets of MKT around quantitative reasoning with distances. 

These connections suggest that vicarious experiences with two students’ quantitative 

reasoning over time was critical for participants’ development of MKT. 
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Chapter 1: Introduction 

In the spring of 2017, I attended a workshop at the National Council of 

Teachers of Mathematics (NCTM) Annual Meeting and Exposition. Attendees were 

asked to solve the following task before discussing it in small groups: 

Long-distance Company A charges a base rate of $5 per month, plus 4 
cents per minute that you are on the phone. Long-distance Company B 
charges a base rate of only $2 per month, but they charge 10 cents per 
minute used. How much time per month would you have to talk on the 
phone before it would save you money to subscribe to Company A? 
(Achieve Inc., 2002, p. 149) 

The six people at my table were all middle and high school teachers. Four of them 

produced a system of equations: 5 + .04𝑚 = 𝑐 and 2 + .1𝑚 = 𝑐. Two others 

produced graphs with intersecting lines. I had a different approach: Before a person 

talks one minute, Company A is going to cost 5 − 2 = 3 dollars more. In other words, 

Company A has a “head-start” of 300 cents over Company B. Additionally, this lead 

shrinks by 10 − 4 = 6 cents every minute that the person spends on the phone. 

Consequently, it would take 300 ÷ 6 = 50 minutes for Company B to catch up to 

Company A, so if one talks on the phone for more than 50 minutes a month, he or she 

should choose Company A. 

The six teachers sitting at my table seemed astounded by my solution. Two of 

them told me that they would never think to approach the task in that way, while a 

third interjected that she wished she had thought of it like that. All of them agreed that 

it would be powerful for their students to think like this. 

P. W. Thompson (1990, 1994, 2011) called this way of thinking quantitative 

reasoning. It involves conceiving of measurable attributes within a mathematical 
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situation, assigning measures to those attributes, and using relationships between those 

measures to analyze the situation. Quantitative reasoning is powerful, and students 

who are fluent with quantitative reasoning are well-equipped to tackle many 

challenges across mathematical disciplines, including algebra (Ellis, 2007; Smith & 

Thompson, 2007), trigonometry and precalculus (Moore, 2013; Moore, Carlson, & 

Oehrtman, 2009; Oehrtman, Carlson, & Thompson, 2008), calculus (P. W. Thompson, 

2011), and differential equations (Rasmussen, 2001).  

In this chapter, I argue that despite the significant work the field has done to 

research and conceptualize quantitative reasoning, what seems to be missing is theory 

about specific ways to foster teachers’ abilities to support their students’ quantitative 

reasoning. I begin by providing an overview of the field’s understanding of 

quantitative reasoning and mathematical knowledge for teaching (MKT). I then briefly 

discuss the use of videos in teacher education, before concluding with the statement of 

my research questions and an overview of the study. 

The Quantitative Reasoning of Students and Their Teachers 

The power of quantitative reasoning has not gone unnoticed. Elements of 

quantitative reasoning have begun to be included in standards and policy documents 

across all levels of education, including the Common Core State Standards, (CCSS; 

National Governors Association Center for Best Practices, Council of Chief State 

School Officers, 2012); the Mathematical Association of America’s (MAA) 

Guidelines for Programs and Departments in Undergraduate Mathematical Sciences 
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(Fulton, 2003); and NCTM’s Principles and Standards for School Mathematics 

(National Council of Teachers of Mathematics, 2000). 

Meeting these standards may prove challenging, as A. G. Thompson and 

Thompson (1995) argued that the notion of “students’ quantitative reasoning is almost 

an oxymoron. For the most part, students do not reason quantitatively in school 

mathematics” (p. 101). The research literature seems to confirm this assertion. Several 

studies have examined the quantitative reasoning of both K–12 and college students 

(e.g., Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Ellis, 2007, 2011; Moore et al., 

2009; P. W. Thompson, 1988, 1993). Overwhelmingly, this research suggests that 

quantitative reasoning is difficult for students. Indeed, even when immersed in 

quantitatively-rich situations, students may find such reasoning challenging (e.g., 

Ellis, 2007; Noble, Nemirovsky, Wright, & Tierney, 2001; P. W. Thompson, 1993). 

For example, in a teaching experiment with fifth-grade students, P.W. Thompson 

(1993) found that even with targeted quantitative instruction, students experienced 

difficulties with comparing and combining quantities without directly connecting 

those quantities to numerical values and operations. 

While such literature suggests that quantitative reasoning is difficult, there is a 

growing body of research that demonstrates students can reason quantitatively given 

appropriate support (Carlson et al., 2002; Carraher, Schliemann, Brizuela, & Earnest, 

2006; Lobato & Siebert, 2002; Moore, 2013). In one study, elementary students 

identified and operated on unknown quantities during a longitudinal classroom study 

(Carraher et al., 2006). In another study, Lobato and Siebert (2002) demonstrated that 
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with quantitative instruction, students can develop sophisticated quantitative reasoning 

about linear functions and slope. 

The implication is clear: with targeted quantitative instruction by 

knowledgeable teachers who themselves reason quantitatively, students can develop 

sophisticated quantitative reasoning. However, A. G. Thompson and Thompson 

(1995) noted that “it would be surprising to find many teachers teaching for 

quantitative reasoning since a large portion do not reason quantitatively themselves” 

(p. 101). Historically, quantitative reasoning has not been a point of emphasis in 

traditional mathematics curricula. Given that this is the context in which current math 

teachers were prepared, A. G. Thompson and Thompson’s premise seems reasonable. 

As Usiskin (2001a) asserted:  

This historical argument suggests that quantitative literacy will not 
become mainstream in our schools until a generation of teachers has 
learned its mathematics with attention to quantitative literacy—a 
chicken-and-egg dilemma similar to that regarding the public apathy 
about quantitative literacy described in the case statement. (p. 85) 

To remedy this dilemma, Usiskin urged the field to “engage in massive teacher 

training in quantitative literacy” (p. 85).  

Unfortunately, the literature is sparse regarding K–12 teachers’ preparation for 

teaching for quantitative reasoning. For example, I found only two studies that 

examine prospective elementary school teachers’ burgeoning quantitative reasoning. 

Simon and Blume (1994) described their successful efforts to foster the understanding 

of area as a multiplicative relationship using a quantitative reasoning approach. 

Hohensee (2017) explored variations between the quantitative reasoning of elementary 
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students and prospective elementary teachers. At the middle school level, Sowder et 

al. (1998) made four recommendations for the preparation of middle school teachers, 

including providing opportunities for exploring and reasoning with quantities. Finally, 

Moore, Paoletti, and Musgrave (2013) reported that embedding problems in a polar 

coordinate system seemed to hold potential for fostering prospective secondary 

teachers’ quantitative reasoning.  

Despite the dearth of literature examining teachers’ preparation with 

quantitative reasoning, there is a clear message coming from both the research 

literature and standards documents: Teachers need to be well-prepared to teach for 

quantitative reasoning (National Council of Teachers of Mathematics, 2000; Sztajn, 

Marrongelle, Smith, & Melton, 2012; A. G. Thompson & Thompson, 1995; Usiskin, 

2001a). In recent years, there has been an increasing emphasis on teachers’ MKT in 

teacher preparation and training (Hill, Sleep, Lewis, & Ball, 2007). While there has 

been very little research on MKT around quantitative reasoning, it is useful to examine 

what the field has learned about MKT. Doing so will help illuminate a pathway 

forward for synthesizing MKT with quantitative reasoning. 

Mathematical Knowledge for Teaching 

In 1985, Shulman introduced the construct of pedagogical content knowledge 

(PCK; 1986), which fuses pedagogical knowledge with specific content knowledge. 

This introduction illuminated new avenues for research as researchers began to 

analyze the mathematical work involved in teaching mathematics in classrooms (e.g., 

Ball & Bass, 2003; Carrillo, Climent, Contreras, & Muñoz-Catalán, 2013; McCrory, 
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Floden, Ferrini-Mundy, Reckase, & Senk, 2012). This research refined the fields’ 

notion of teacher knowledge to better reflect the specific demands of fostering and 

supporting the emergent and often messy mathematics of children. Consequently, 

conceptualizations of teachers’ mathematical knowledge expanded to include PCK in 

addition to subject matter knowledge (SMK). This amalgam of knowledge is often 

referred to as MKT. 

In recent years, several models of MKT have emerged in the research literature 

(e.g., Ball et al., 2008; Carrillo et al., 2013; McCrory et al., 2012; Silverman & 

Thompson, 2008; van Bommel, 2012). The vast majority of such models have two 

features. First, they refine MKT into subcategories. For example, perhaps the most 

well-known model of MKT is the Domains of MKT model (Ball et al., 2008), which 

refined MKT into six distinct domains. Additionally, Ball and her colleagues argued 

that teachers need to be able to flexibly deploy MKT in ways that support student 

learning (Ball, 1990; Ball & Bass, 2000, 2003; Ball et al., 2008). Their argument 

exemplifies the second feature many models of MKT have: these models often 

describe ways in which knowledge should be known or deployed so that it useful. 

By carefully describing MKT, including the types of knowledge that teachers 

need, as well as how they need to be able to use it, the field has extended its 

understanding of how teacher knowledge is related to student learning (e.g., Hill, Ball, 

Blunk, Goffney, & Rowan, 2007; Hill, Rowan, & Ball, 2005; A. G. Thompson, 1984, 

1992). Accordingly, it is widely accepted that the knowledge teachers bring to bear in 
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their day-to-day and moment-to-moment instruction has a significant impact on the 

quality of their teaching practice (An, Kulm, & Wu, 2004; Cai, 2005; Ma, 1999). 

Much of the research on MKT describes or refines categories of MKT (Ball et 

al., 2008; e.g., Carrillo et al., 2013; Even, 1993; McCrory et al., 2012). Research of 

this nature can be summarized as establishing that MKT exists. Other research has 

elaborated accounts of teacher training programs designed to support and foster MKT 

(e.g., Manouchehri, 2009; Santagata & Guarino, 2010; Somayajulu, 2012; Walkoe, 

2015; Wilson, Lee, & Hollebrands, 2011; Wilson, Sztajn, Edgington, & Confrey, 

2014). However, this research on MKT has mostly avoided MKT around quantitative 

research. One exception is a series of studies by A. G. and P.W. Thompson that 

examined quantitative reasoning by students and linked it with teachers’ knowledge 

and practice (e.g., A. G. Thompson & Thompson, 1995, 1996; P. W. Thompson, 

1993). 

 The conceptual roots for the Silverman and Thompson (2008) framework 

emerged out of that series of studies. In 2008 Silverman and Thompson presented their 

framework for the development of MKT to spark conversations and future research 

about MKT development. This framework conceptualizes MKT broadly as 

pedagogically powerful knowledge that enables teachers to provide the kind of 

instruction that supports students’ conceptual development, including quantitative 

reasoning. The details of this framework are elaborated in Chapter 2. For now, I 

provide a brief overview using quantitative reasoning as an example, so that I can 

adequately describe the proposed study. 
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 Using the Silverman and Thompson (2008) framework, MKT around 

quantitative reasoning can be described as follows. Teachers have MKT for 

quantitative reasoning if they themselves can reason quantitatively in multiple 

situations, with a high level of sophistication. However, their quantitative reasoning is 

not sufficient by itself to be MKT. Instead, a teacher has MKT for quantitative 

reasoning when he or she has developed quantitative reasoning and additionally: (a) 

has images of the different ways that students might reason quantitatively; (b) has 

images of milestones for a learning trajectory for developing quantitative reasoning; 

(c) has images of quantitative instruction that supports students’ quantitative 

reasoning; and (d) has images of how quantitative reasoning empowers students to 

engage with other mathematical ideas. 

Videos of Students’ Quantitative Reasoning 

Silverman and Thompson (2008) suggested that MKT develops when a teacher 

asks herself questions such as “How might a student understand this idea?”; “What 

challenges might a student face in understanding this idea?”; or “What tasks or 

questions might I pose to help a student come to understand this idea?” Answering 

these questions undoubtedly requires that one has experience with the ways in which 

students think. However, the framework makes no mention of the role that such 

experience plays in the development of MKT. This seems to be a shortcoming of the 

framework, and any robust discussion of the processes through which MKT develops 

must take experience into account. For example, consider that in-service teachers have 

a wealth of classroom experiences they can bring to bear to help develop images of 
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quantitative instruction or how students develop more sophisticated quantitative 

reasoning over time. By contrast, prospective teachers may have little or no experience 

working with children and their ways of reasoning quantitatively, and thus may 

struggle to develop such images. 

The use of videos might be one way of addressing this limitation of the 

Silverman and Thompson (2008) framework for MKT. For example, videos that were 

created by the NSF-funded Project MathTalk (www.mathtalk.org; Lobato, 2014) 

highlight two students’ development of quantitative reasoning by presenting their 

authentic, unscripted efforts to make sense of the tasks they were given. The videos 

form a unit with a goal of establishing relationships between algebraic and geometric 

conceptions of parabolas. This goal is accomplished through the students’ 

development of quantitative reasoning with distances in the plane (a detailed 

description of the video unit is given in Chapter 2). 

These videos address four components of the framework. First, they 

demonstrate the development of quantitative reasoning from the perspective of the 

learner. Prospective teachers who view the videos might develop similar knowledge. 

Second, because the videos prominently highlight the reasoning of two high school 

students, prospective teachers can develop images of ways students reason 

quantitatively. Third, the videos are longitudinal in nature, meaning that they show the 

same two students over several lessons. The longitudinal nature of the videos may 

support prospective teachers’ efforts to develop images of how students come to 

understand mathematical ideas over time. Finally, the videos feature the skillful 
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teaching of an experienced math educator. Consequently, prospective teachers can 

form images of effective instructional moves that foster quantitative reasoning with 

distances. 

Research Questions and Overview of Study 

This study examines both the nature of MKT related to quantitative reasoning 

and how it develops. Specifically, this study answers the following two research 

questions: 

Research Question 1: What is the nature of the mathematical 
knowledge for teaching (MKT; Silverman & Thompson, 2008) that 
develops for prospective secondary teachers during a video-based mini-
course? 
Research Question 2: How do particular elements of the designed 
learning ecology (Cobb, Confrey, Disessa, Lehrer, & Schauble, 2003) 
contribute to the development of MKT (Silverman & Thompson, 2008) 
by prospective secondary teachers during a video-based mini-course? 

 To answer these research questions, I conducted a design experiment for 

prospective secondary teachers (PSTs). The experiment included a mini-course 

featuring a video unit on parabolas. Seven participants engaged in problem solving 

activities and watched videos of two high school students working on similar tasks. 

Taking as a starting point the Silverman and Thompson (2008) framework for 

MKT, the mini-course was designed to promote participants’ development of MKT 

around quantitative reasoning with distances. However, given that participants were 

prospective teachers, the mini-course included the extensive use of videos as a way of 

addressing a limitation of the framework, namely that it does not account for the role 

experience with students’ thinking plays in the development of MKT. 



 

 

11 

To answer Research Question 1, I conducted clinical interviews (Ginsburg, 

1997). This led to the identification of three shifts in MKT around quantitative 

reasoning as well as a shift in affect. To answer Research Question 2, I linked the 

shifts in MKT around quantitative reasoning to a shift in what participants noticed 

during the mini-course. To do so, I leveraged the focusing framework, developed by 

Lobato, Hohensee, and Rhodehamel (2013). This framework accounts for the socially 

distributed nature of mathematical noticing, and it provided me with a tool for 

analyzing how what participants learned was linked to what they noticed. 

Significance 

The significance of this study lies along several dimensions. There are few 

studies that that examine prospective teachers’ MKT around quantitative reasoning. 

The potential for teacher training programs to influence prospective teachers is great, 

and more research that examines MKT for specific mathematical ideas and content is 

needed. This study contributes to that need by illuminating MKT around quantitative 

reasoning with distances. Specifically, in Chapter 4, I explicate four shifts in MKT 

participants seemed to experience, three of which relate to quantitative reasoning with 

distances. 

In Chapter 4, I demonstrate ways that PSTs themselves reasoned quantitatively 

with distances in the coordinate plane. I show that quantitative reasoning is a powerful 

tool that enabled participants to examine relationships between algebraic and 

geometric conceptions of parabolas. In this way, I contribute to the body of knowledge 
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about quantitative reasoning by describing specific ways prospective teachers learned 

to reason quantitatively. 

Additionally, I illuminate specific aspects of prospective teachers’ MKT 

around quantitative reasoning. For example, participants developed capacity for taking 

the perspective of high school students when solving tasks. This result is nontrivial. 

Recall that according to the Silverman and Thompson framework for MKT, teachers 

develop MKT by thinking about how students might solve problems. For participants 

in this study, they were not able to do this until (a) they engaged with tasks that 

students would solve, and more importantly (b) viewed videos of high school students 

solving those tasks. As a result, participants could accurately predict how high school 

students would solve a task, despite never having seen videos of that task being 

solved.  

Answering Research Question 2 holds both methodological and theoretical 

significance. I extend the focusing framework to examine not only the mathematical 

features of the learning environment that participants noticed, but also its pedagogical 

features. This methodological extension of the focusing framework demonstrates the 

flexibility of the framework, and provides a blueprint for future use of this method for 

teacher education studies. 

Finally, I contribute to the field’s understanding of the development of MKT. 

In Chapter 5, I present evidence that suggests participants’ noticing of mathematics in 

the MathTalk videos contributed to their development of MKT around quantitative 

reasoning. The longitudinal nature of the videos appeared to be critically important to 
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the development of MKT. The videos provided participants with a near-continuous 

image of both how the two high school students developed quantitative reasoning, as 

well as how the instructor in the video fostered and supported such reasoning. 

Results from Chapter 5 indicate that while the Silverman and Thompson 

(2008) framework for MKT holds promise, it does not completely account for MKT 

development by prospective teachers. Instead, experience with students’ thinking and 

how it develops over time, seems to be a necessary component for MKT development 

with prospective teachers. While some training programs address this, I found no 

research that examined the affordances of providing opportunities for prospective 

teachers to have multiple exposures to the same students’ thinking over time.  

I end this chapter as I began it, by discussing my experiences at the NCTM 

workshop. As I was explaining my solution to the teachers at my table, the facilitator 

of the workshop overheard me. She asked me to explain again my reasoning, which I 

did. Her eyes lit up, and she said “You know, there are over 100 people in this 

workshop, and I’ve been doing workshops like this for years. And in all that time, you 

are only one of three people to approach a task that way!” Because quantitative 

reasoning is so powerful, the facilitator’s statement should be alarming. If the field is 

serious about equipping students with this versatile mathematical tool, efforts must be 

undertaken to provide teachers with opportunities to develop the kind of knowledge 

necessary to teach for quantitative reasoning. By undertaking this study, I contribute to 

such efforts. 
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Chapter 2: Literature Review 

This study lies in the intersection of three major themes: mathematical 

knowledge for teaching, quantitative reasoning, and video-based teacher education. 

This chapter is organized around these themes, with the first three sections devoted to 

reviewing literature related to each of the major themes of the study. In the fourth and 

final section, I elaborate my research questions using ideas developed in this chapter. 

Mathematical Knowledge for Teaching 

Research on the mathematical knowledge that teachers bring to bear in their 

day-to-day and moment-to-moment practice of teaching has resulted in the 

development of many different frameworks to characterize such knowledge (e.g. Ball 

et al., 2008; Carrillo et al., 2013; McCrory et al., 2012; Silverman & Thompson, 2008; 

Speer, King, & Howell, 2014; van Bommel, 2012). One prominent framework for 

studying teachers’ mathematical knowledge is the Domains of MKT model developed 

by Ball and her colleagues (Ball et al., 2008). 

In the next two subsections, I provide a detailed description of the Domains of 

MKT. I focus on this model because it is widely cited and has influenced the 

development of other models. Moreover, it exemplifies two features that most models 

of MKT have: describing MKT and what makes it useful for teachers. After discussing 

this model, I briefly describe other models of MKT. 

Describing MKT 

Ball and her colleagues performed an extensive and thorough “job analysis” of 

the profession of teaching mathematics (Ball & Bass, 2000, 2003; Bass, 2005). Rather 
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than make claims about the mathematical knowledge teachers need based on an 

analysis of curriculum or standards, as had been the case in the past (Hill, Sleep, et al., 

2007), Ball and her colleagues examined the practice of teaching itself, including 

videos of teachers, transcripts of such videos, lesson plans, interviews, and student 

work (Ball & Bass, 2003). Their analysis revealed knowledge for teaching that was 

not included in prior analyses of teacher knowledge that focused only on the product 

of teaching, namely the mathematics that students learn (Hill, Sleep, et al., 2007). 

Ball and her colleagues identified a significant area of mathematical 

knowledge that teachers needed beyond the mathematics embedded in school 

curriculum. This mathematics for teaching includes: 

• interpreting, analyzing, and evaluating students’ solutions and 

errors (Ball, Hill, & Bass, 2005); 

• recognizing and fostering productive mathematical discussions 

(Bass, 2005); 

• choosing appropriate definitions, models, and tasks, or 

modifying existing ones to fit the aims of the lesson and the 

ability of one’s students (Ball & Bass, 2003); 

• facility with bringing about the development of mathematical 

practices such as knowing what counts as a mathematical 

explanation (Ball & Bass, 2003; Ball et al., 2008). 
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Moreover, Ball and her colleagues argued that this mathematical knowledge was not 

represented in math curricula, nor was it present in most university math courses or 

teacher training programs (Ball et al., 2008). 

Their model, the Domains of MKT, captured this mathematical knowledge, 

and it featured six domains of mathematical knowledge for teaching, across two 

categories (Ball et al., 2008). The first category, subject matter knowledge (SMK) is 

broadly defined as knowledge that is purely mathematical in nature, and it is 

subdivided into three domains: common content knowledge (CCK), specialized 

content knowledge (SCK), and horizon content knowledge (HCK). The second 

category, pedagogical content knowledge (PCK), is defined as “a kind of amalgam of 

knowledge of content and pedagogy that is central to the knowledge needed for 

teaching” (Ball et al., 2008, p. 392). This second category is also subdivided into three 

domains: knowledge of content and students (KCS), knowledge of content and 

teaching (KCT), and knowledge of content and curriculum (KCC). 

These domains of knowledge represent areas of knowledge that Ball and her 

colleagues argued are necessary for the work of teaching, which includes lesson 

planning, evaluating students’ work, creating and grading assignments, speaking with 

parents about classwork, navigating standards, and dealing with administrative issues 

related to math curriculum (Ball et al., 2008; Bass, 2005). For example, CCK 

represents mathematical knowledge that is used in a variety of settings, not just in 

teaching. Included in CCK is the mathematics that students are expected to learn. Yet 

teachers must know more than just the mathematics their students are expected to 
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learn. The model accounts for this knowledge in the domain SCK, which enables 

teachers to decompress their knowledge in order to make the mathematics that is to be 

taught “visible to and learnable by students” (Ball et al., 2008, p. 400).  

Domains of knowledge within the PCK category allow teachers to leverage 

their knowledge of content in ways that are appropriate for their students, given 

particular contexts and curricula. For example, KCS allows teachers to anticipate 

potential and probable conceptual challenges for students, while KCT enables teachers 

to design or modify tasks that could help students navigate such challenges (Ball et al., 

2008). By refining teacher knowledge in this way, new studies have been able to link 

specific domains of MKT with gains in student achievement in early elementary 

grades (Hill et al., 2005), contradicting earlier studies (e.g., Begle, 1979) that assumed 

a simplistic, curriculum-focused view of teacher knowledge. 

In summary, the Domains of MKT model described the mathematical 

knowledge that Ball and her colleagues believed equips teachers to productively 

engage with the raw, complex, and often messy mathematics of their students (Ball & 

Bass, 2000; Ball et al., 2008). By refining teacher knowledge into six distinct domains, 

this model offered new ways of understanding what knowledge mathematics teachers 

need. 

What Makes MKT Usable? 

The Domains of MKT model emerged out of answers to questions about what 

actual mathematical work, specifically the kinds of “mathematical reasoning, insight, 

understanding, and skill” (Ball et al., 2008, p. 395), was involved in teaching. Such 
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answers not only provided insight into what teachers need to know, but also the ways 

in which that knowledge could be usable in teaching (Ball & Bass, 2000).  

Ball and her colleagues argued that how mathematical knowledge is held and 

used may determine how useful that knowledge is for teaching (Ball et al., 2008; Hill 

& Ball, 2004). Teachers work with the emergent and often messy mathematics of 

novices, thus the mathematical knowledge that teachers leverage in their work needs 

to be flexible and accessible (Ball et al., 2005). Ball and Bass (2003) pointed out that 

the compression of knowledge, which is typically a desired hallmark of elegant and 

refined mathematics, may interfere with one’s ability to analyze and understand the 

burgeoning mathematics of learners. They argued that teachers need to “be able to do 

something perverse: work backward from mature and compressed understanding of 

the content to unpack its constituent elements” (Ball & Bass, 2000, p. 98). Teachers 

need mathematical knowledge for teaching, but they also need to be able to unpack 

that knowledge in order to facilitate the learning of content (e.g., A. G. Thompson & 

Thompson, 1996). 

Teachers must also be able to contextualize their knowledge. Ball et al. (2005) 

argued that teacher knowledge must be appropriately adapted for the setting in which 

it is deployed. For example, consider a question about dividing by zero. A teacher’s 

response to this question will necessarily depend on the grade level of the student, yet 

it still must be mathematically accurate. A response to this question asked by a third 

grader may appeal to a division-as-sharing model, while a response to this question 

asked by an AP calculus student might redirect the student to consider limits. 
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Other Models of MKT  

The job analysis undertaken by Ball and her colleagues focused primarily on 

elementary mathematics teachers. McCrory et al. (2012) performed a similar job 

analysis on algebra teaching. Their analysis produced a two-dimensional model of 

MKT for Algebra. Their model of MKT for Algebra (McCrory et al., 2012) built on 

the Domains of MKT model, which describes MKT broadly, by offering a framework 

for describing MKT for a specific mathematics discipline.  

The first dimension described different categories of knowledge needed to 

teach algebra: (a) knowledge of school algebra, (b) knowledge of advanced 

mathematics, and (c) mathematics-for-teaching knowledge. The authors 

conceptualized knowledge of school algebra as common to the discipline of algebra, 

and in this regard, it is like the domain of CCK from the Domains of MKT model. 

Knowledge of advanced mathematics is knowledge that allows teachers to have a 

broad view of the mathematics for which algebra is a foundation. This is analogous to 

horizon content knowledge from the Domains of MKT model. Finally, mathematics-

for-teaching knowledge is “mathematics that is useful in teaching, but is not typically 

taught in conventional mathematics classes” (McCrory et al., 2012, p. 598). The 

authors claimed this knowledge is not purely pedagogical, although its application 

would appeal exclusively to teachers. This category of knowledge is similar to the 

category of SCK in the Domains of MKT model. 

The second dimension of the model of MKT for Algebra identifies the ways in 

which knowledge is used (McCrory et al., 2012). First, teachers need to decompress 
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their knowledge, a process similar to Ball and Bass’s (2000) notion of unpacking 

knowledge. Teachers also must be able to “trim,” which involves choosing tasks, 

definitions, activities, etc. that are appropriate for students in their class. This might 

mean providing students with a less sophisticated definition for a concept, but one that 

maintains the mathematical integrity of concept. It might also mean recognizing when 

students are capable of more advanced or challenging mathematics and finding ways 

to trim up the content to match students’ abilities. Finally, teachers must be able “to 

connect and link mathematics across topics, courses, concepts, and goals” (McCrory et 

al., 2012, p. 606), which the authors refer to as bridging. 

Carrillo et al. (2013) also developed a model that describes MKT. They argued 

that the different domains of MKT identified by Ball et al. (2008) were not well-

defined. Consequently, their model emerged from the perspective that all knowledge 

for teaching is specialized, and correspondingly is called Mathematics Teachers’ 

Specialized Knowledge (MTSK). Like the Domains of MKT and MKT for Algebra 

models, MTSK refined teacher knowledge into subcategories or domains, in this case 

six: (a) knowledge of topics, (b) knowledge of the structure of mathematics, (c) 

knowledge about mathematics, (d) knowledge of features of learning mathematics, (e) 

knowledge of mathematics teaching, and (f) knowledge of mathematics learning 

standards. Like the other models, the MTSK model described the kinds of knowledge 

the researchers claimed is useful for teaching mathematics. 

MKT Related to Quantitative Reasoning 
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Models of MKT like the Domains of MKT and MKT for Algebra take a large 

grain-sized approach to illuminating MKT. For example, the Domains of MKT 

broadly characterizes MKT in a way that is applicable to almost any mathematical 

discipline. The MKT for Algebra model, while narrowing its focus on algebra, still 

only provides general categories of MKT (e.g., knowledge of advanced mathematics).  

The power of models such as these is their generality; however, that power 

comes at the cost of specificity. For example, what does MKT for quantitative 

reasoning look like? One could argue that teachers’ quantitative reasoning is 

subsumed under SCK, while identifying students’ nascent quantitative reasoning and 

supporting its development could be conceived of as KCS. However, such an 

argument only serves to categorize MKT around quantitative reasoning. It does not 

illuminate what supporting the development of quantitative reasoning looks like, nor 

does it illuminate how to foster such knowledge in prospective and in-service teachers. 

Silverman and Thompson (2008) proposed an alternative model of MKT, one 

with roots deeply entrenched in quantitative reasoning. This model shows great 

promise for developing theory about MKT around quantitative reasoning. In the next 

session, I review research on quantitative reasoning and then elaborate Silverman and 

Thompson’s model in light of that literature. 

Quantitative Reasoning 

Quantitative reasoning is a powerful mathematical tool, and the field has 

developed a large body of research that examines it. In this section, I provide an 

overview of some of the ways the field has conceptualized quantitative reasoning. I 
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then discuss some of themes around which research on quantitative reasoning has 

focused. I conclude by elaborating a framework for MKT that is well-suited for 

investigating MKT around quantitative reasoning. 

Conceptions of Quantitative Reasoning 

Given the power of quantitative reasoning, it is not surprising that there are 

several conceptions of quantitative reasoning (Mayes, Peterson, & Bonilla, 2012; 

Quantitative Literacy Design Team, 2001). In a meta-analysis of the construct, Mayes 

et al. found at least nine different ways that quantitative reasoning has been defined. 

These conceptualizations are often broad, and capture general ways of reasoning. For 

example, the CCSS (National Governors Association Center for Best Practices, 

Council of Chief State School Officers, 2012) stated: 

Quantitative reasoning entails habits of creating a coherent 
representation of the problem at hand; considering the units involved; 
attending to the meaning of quantities, not just how to compute them; 
and knowing and flexibly using different properties of operations and 
objects. (p. 6) 

The National Numeracy Network (2016) referred to quantitative reasoning as a “habit 

of mind,” and argued that it emphasizes “higher-order reasoning and critical thinking 

skills needed to understand and to create sophisticated arguments supported by 

quantitative data.” 

Such broad conceptualizations point to the importance of quantitative 

reasoning, but have limited practical use for research. Several math educators have 

elaborated conceptualizations of quantitative reasoning that focus in on specific 

aspects of the construct. For example, Carraher, Martinez, and Schliemann (2008) 
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described two types of quantities: counts (e.g., 3 books) and measures (e.g., 4.3 

inches). Schwartz (1976) described numbers as both nouns (e.g., four plus three is 

seven) and adjectives (e.g., four children eat three cookies in seven minutes). 

According to Schwartz, adjectival numbers are the basis of quantities, which can be 

thought of as an ordered pair of the form (number, unit), where the number is an 

adjective describing the amount or measure of the unit (Schwartz, 1988). 

According to P. W. Thompson (e.g., 1990, 1993, 1994) a quantity is one’s 

conception of a quality of something that can be measured. Notably, in this 

conceptualization, quantities do not need to have associated numerical values. 

Accordingly, quantitative operations are similar to numeric or arithmetic operations, 

but they do not necessarily result in value. Instead, the result of a quantitative 

operation is a quantitative relationship.  

Research on Students’ Quantitative Reasoning 

Based on a review of the literature, P. W. Thompson’s conceptualization of 

quantitative reasoning is one that has been readily taken up by the field. Indeed, 

numerous studies have drawn from his work (e.g., Ellis, Ozgur, Kulow, Williams, & 

Amidon, 2012; Hackenberg & Lee, 2015; Johnson, 2012; Lobato & Siebert, 2002; 

Mayes et al., 2012; Moore, 2012; Steffe, 1991; Ulrich, 2012). 

At the elementary and middle school levels, scholars have argued for 

leveraging quantitative reasoning as a way of exposing students to algebra earlier in 

the curriculum (e.g., Ellis, 2011; Philipp & Schappelle, 1999; Smith & Thompson, 

2007; P. W. Thompson, 1988). For example, Ellis demonstrated how leveraging 
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students’ abilities to reason with quantities supported their ability to reason with 

functions. Other research has investigated links between students’ quantitative 

reasoning and their abilities to generalize (e.g., Ellis, 2007; Ellis et al., 2012; Lobato, 

Ellis, & Munoz, 2003; Lobato & Siebert, 2002). 

At the high school and college level, researchers have examined relationships 

between quantitative reasoning and covariational reasoning (e.g., Castillo-Garsow, 

2012; Johnson, 2012; Moore, 2013). For example, Moore et al. (2013) found that by 

investigating covarying quantities, third year PSTs developed substantial connections 

between polar and Cartesian coordinate systems. Other researchers have examined 

links between quantitative reasoning and precalculus (e.g., Moore et al., 2009); 

calculus (e.g., P. W. Thompson & Silverman, 2008); and differential equations (e.g., 

Rasmussen, 2001). 

With the abundant research on quantitative reasoning, it is surprising that there 

has been very little research examining MKT around quantitative reasoning. Even 

more surprising is that there has been little progress in developing theory about MKT 

around quantitative reasoning despite the emergence of a framework for MKT 

(Silverman & Thompson, 2008) with deep roots in the research on quantitative 

reasoning. I now describe this framework, as it points a way forward for investigating 

MKT around quantitative reasoning. 

A Framework for the Development of MKT 

Emerging out of research on quantitative reasoning (e.g., A. G. Thompson, 

Philipp, Thompson, & Boyd, 1994; A. G. Thompson & Thompson, 1995, 1996; P. W. 
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Thompson, 1993) Silverman and Thompson (2008) proposed a framework for the 

development of MKT. They argued that MKT develops through a process of a second-

order reflective abstraction of a key developmental understanding (KDU; Simon, 

2006). In the following subsections, I elaborate each element of their framework—a 

KDU, reflective abstraction, second-order reflective abstraction, and the components 

of MKT. 

Key developmental understandings. Simon (2006) introduced the notion of a 

KDU as a conceptual advance or a “change in students’ ability to think about and/or 

perceive particular mathematical relationships” (p. 362). KDUs can be thought of as 

researcher-inferred understandings that seem to be central to the mathematical 

development of students.  

Simon (2006) described two characteristics of KDUs. The first characteristic is 

that a KDU is the result of a conceptual advance by the student. Silverman and 

Thompson (2008) argued that KDUs are the result of reflective abstraction, “a process 

by which new, more advanced conceptions develop out of existing conceptions and 

involves abstracting properties of action coordinations to develop new cognitive 

structures” (p. 506). This means KDUs are not the result of empirical abstractions in 

which students deduce something is true based on only on observed patterns. The 

second characteristic is that students without a KDU do not acquire it through telling 

or demonstration only. Instead, the development of a KDU requires “building up of 

the understanding through students’ activity and reflection and usually comes about 

over multiple experiences” (Simon, 2006, p. 362). Consequently, it takes time for a 
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KDU to develop, and a KDU does not necessarily develop as the result of a particular 

method of teaching or instruction. Instead, KDUs develop as the result of mental 

actions the student takes. 

These understandings are said to be developmental because they represent a 

leap in conceptual understanding on the part of the student. Accordingly, KDUs do 

serious work for students; they enable students to solve problems as a consequence of 

having the KDU, rather than as a result of being explicitly taught how to solve such 

problems (Silverman & Thompson, 2008). In this sense, KDUs are said to be key 

understandings. Once a student has a KDU, he or she is empowered to use the KDU as 

a tool to solve mathematical problems. 

An example will help illustrate this construct. The videos I used in the study 

feature two high school students, Sasha and Keoni, making connections between 

geometric and algebraic conceptions of parabolas. In preparation for this study I 

reviewed these videos multiple times, and I identified a KDU around quantitative 

reasoning that the students developed over time. I now elaborate this KDU to illustrate 

the KDU construct. 

This KDU involves reasoning with distances in the coordinate plane as 

quantities. Consider the point (6,9). A way to think of this point is as a particular 

location in the coordinate plane, whose coordinates provide instructions for how to 

find the point in the plane. In this case, thinking of a point in this way, one might 

reason “I count six tick marks along the 𝑥-axis and then from there I count nine tick 
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marks up.” The 6 and the 9 act as instructions for how many tick marks one must 

count.  

Another way to think about the point is as a description of two quantities: the 

x-coordinate represents the distance that a particular point is from the 𝑦-axis, while the 

𝑦-coordinate represents the distance that same point is from the 𝑥-axis. In this case, 

the point (6,9) is six units from the 𝑦-axis and nine units from the 𝑥-axis.  

While this second way of thinking about a coordinate pair may seem obvious, 

it also holds great potential for powerful reasoning with quantities in the coordinate 

grid. For example, consider Figure 2.1, which shows a parabola that is located in a 

coordinate grid with its grid lines and tick marks removed. 

 
Figure 2.1. A parabola in a coordinate grid with no grid lines or tick marks. 

Students with the KDU I am describing would be able to reason as follows. First, they 

would understand that (ℎ, 𝑘) represents the point in the coordinate plane that is the 
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vertex of the parabola. It also represents that the vertex is a distance of ℎ units to the 

right of the 𝑦-axis and a distance of 𝑘 units above the 𝑥-axis. Students with the KDU 

would be able to explain that given any point on the parabola, (𝑥, 𝑦), the distance from 

that point to the directrix is given by the expression 𝑦 − 𝑘 + 𝑝, where 𝑝 is the distance 

between the focus and the vertex (as illustrated in Figure 2.2).  

For example, students could reason that the distance from the point (𝑥, 𝑦) to 

the 𝑥-axis is 𝑦 units. Subtracting 𝑘 units represents taking away the distance from the 

𝑥-axis to the vertex, which leaves the distance from the point (𝑥, 𝑦) to the line 𝑦 = 𝑘. 

Adding 𝑝 represents that distance plus the distance from the vertex to the directrix. 

Thus, the distance from the point (𝑥, 𝑦) to the directrix is 𝑦 − 𝑘 + 𝑝. Another way that 

students might reason is to say that the distance from the point (𝑥, 𝑦) to the 𝑥-axis is 𝑦 

units, and to get to the directrix one needs only to subtract the distance the directrix is 

from the 𝑥-axis, which is 𝑘 − 𝑝 units. Therefore, the distance is 𝑦 − (𝑘 − 𝑝). 

Knowing this distance (and other distances, through similar reasoning) allows one to 

leverage the Pythagorean theorem to derive the general equation of any parabola in the 

coordinate grid. I provide a conceptual analysis of this task in Chapter 3. 

This KDU represents a conceptual advance since research suggests that 

students do not easily reason quantitatively (P. W. Thompson, 1988, 1993). 

Furthermore, studies have shown that such reasoning is difficult or absent for 

undergraduate students (Moore, 2013; Moore et al., 2009), PSTs (A. G. Thompson & 

Thompson, 1995), and even practicing teachers (P. W. Thompson, Carlson, & 

Silverman, 2007). Indeed, the type of understanding I have described above would not 
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develop as the result of telling or demonstration. Instead, such understanding must be 

built up over time, as a result of students continually engaging with points and their 

coordinates as both locations and distances, first as particular points and distances 

(e.g., 6,9 , or 𝑝 = 2), then later in more general terms (e.g., the point (𝑥, 𝑦), or it is 

given that (ℎ, 𝑘) is the vertex). It is through such a build-up that students can reason 

quantitatively with points in the plane as both locations and as distances-as-quantities. 

 
Figure 2.2. An illustration of reasoning with the KDU 

Reflective abstraction. Piaget’s notion of reflective abstraction is complex 

and subject to multiple interpretations (e.g., Dubinsky, 2002; Simon, Tzur, Heinz, & 

Kinzel, 2004; Tall, 2004). For this study, I leveraged the Silverman and Thompson 

(2008) framework for MKT; consequently, I have chosen to operate from their 

conception of reflective abstraction. They described reflective abstraction as “a 



 

 

30 

process by which new, more advanced conceptions develop out of existing 

conceptions and involves abstracting properties of action coordinations to develop 

new cognitive structures” (Silverman & Thompson, 2008, p. 506).  

There are two parts of reflective abstraction—reflection and abstraction. It will 

be useful to elaborate each of these constituent parts, as well as provide an example of 

reflective abstraction using the KDU around quantitative reasoning. Specifically, I 

show how two understandings that are necessary for the development of the KDU may 

develop through reflective abstraction. These two understandings are (a) how to 

measure distances from a point to a line; and (b) how to describe distances, both in 

terms of real numbers and unknown quantities. 

Reflection. Reflection is characterized as a conscious mental process in which 

mental actions or experiences are re-presented in the mind so that they may be more 

closely analyzed (Battista, 1999). Reflection can be thought of as the act of excising a 

specific episode from one’s experiential flow so that it can be an object of mental 

examination. To better illuminate what I mean by reflection, imagine that Sasha and 

Keoni are engaged in mathematical activity designed to foster the development of the 

KDU, which involves reasoning with distances as quantities. Sasha may reflect on her 

experience of constructing a parabola using the geometric definition. She may re-

present many aspects of that experience: images of the paper and tools that were used 

or the lines that were made; questions that the teacher asked; discussions she had with 

Keoni; initial struggles or confusion regarding measuring the distance between a point 

a line. The act of reflecting on this experience involves re-presenting the experience, 
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selecting an episode for further examination, and analyzing the result of that episode 

(Battista, 1999).  

Abstraction. The mental process of abstraction was described by Battista 

(1999) as “the process by which the mind selects, coordinates, combines, and registers 

in memory a collection of mental items or acts that appear in the attentional field” (p. 

429). In other words, abstraction is the process of identifying regularities in ones’ 

activities, selecting certain attributes from experiences related to those activities, and 

simultaneously suppressing other attributes (Lobato et al., 2003).  

For example, when Sasha and Keoni began working on the task of constructing 

a parabola, they initially struggled to measure the distance between a point and a line. 

Not knowing that such a distance is defined along a segment from the point 

perpendicular to the line, Sasha tried measuring along several different segments, for 

example segments b and c in Figure 2.3. During this process, she may have isolated 

the attribute of segment length. In terms of abstraction, Sasha may have abstracted a 

property of segment length by identifying a regularity in her experiences.  

 
Figure 2.3. Several segments from point 𝐴 to a line. 

Reflective abstraction. Combining the acts of reflection and abstraction 

together, the process of reflective abstraction can be described as coordinating 
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multiple re-presentations of mental activity in order to draw from those a regularity 

that can now itself be mentally acted on. Let’s again consider Sasha and her work with 

parabolas. First, in her attempts to measure the distance between a particular point a 

line, she measured along several segments. She may identify the regularity that the 

distance along each segment is different. Given that her goal was to find the distance 

between the point and the line, she may wonder which distance is the distance between 

the point and the line. 

At this point, perhaps the instructor or a classmate tells her of the convention 

that distances between points and lines are measured along segments that are 

perpendicular to the line. In this case, her re-presentations of her actions (measuring 

multiple segments) and subsequent isolation of particular attributes from those 

experiences (the differing measurements) results in reflective abstraction. She no 

longer needs to measure along those segments—she can use the result of that activity 

as a launching point for new activity, namely understanding why the distance between 

a point and a line is measured along a segment that is perpendicular to the line. 

Because this construct has many interpretations and can be confusing, I want to 

restate Silverman and Thompson’s (2008) description and then unpack it using another 

example. They state that reflective abstraction is “a process by which new, more 

advanced conceptions develop out of existing conceptions and involves abstracting 

properties of action coordinations to develop new cognitive structures” (p. 506). 

Consider now Keoni and his work on a task in which he must prove that the point 

(4,4) is on a parabola (see Figure 2.4). To do so, he must identify that the two 
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segments a and b are equivalent and find the length of segment 𝑏, among many other 

things. His initial attempts involve counting along segment 𝑏 to determine that it has a 

length of five units. In later tasks, he and Sasha repeat this activity with various points 

and parabolas, and they realize that the length of any segment from a point on the 

parabola to the directrix is a combination of the 𝑦-coordinate of the point on the 

parabola and the distance from the directrix to the 𝑥-axis. 

 
Figure 2.4. A parabola with the point (4,4) labeled. 

His action coordinations can be thought of as his various attempts to measure 

distances between a point on the parabola and the directrix. From these action 

coordinations, Keoni can abstract a property of his mental activity, that of combining 
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two quantities to find the distance of the segment from the point to the directrix. These 

two quantities are the distance from the point to the 𝑥-axis (which is also the 𝑦-

coordinate of the point), and the distance between the 𝑥-axis and the directrix. Other 

attributes from these experiences (e.g., specific coordinates or parabolas, placement of 

the directrix, or the location of the focus) can be ignored, and the result is a new 

cognitive structure: Describing distances from a point to the directrix involves 

coordinating two quantities. 

The result of this reflective abstraction is different than just being aware of the 

definition of a parabola. Reading a definition does not result in “new cognitive 

structures.” For example, suppose Keoni is trying to find the equation for any parabola 

in the coordinate plane (see Figure 2.5). Among other things, this task requires Keoni 

to find the length of segment 𝑎, which itself requires him to find the length of segment 

𝑏. Previously, he had to do quite a bit of mental work to determine the length of 

segment	𝑏. With his new cognitive structure, Keoni can begin from the perspective 

that he will need to find the distance from the point to the 𝑥-axis, then find the 

distance between the directrix and the 𝑥-axis, and finally combine these two quantities 

in a way that yields the desired quantity, the length of segment 𝑏. The result of the 

reflective abstraction now acts as the starting point for new mathematical activity. 

Simply reading the definition would not provide Keoni with the knowledge needed to 

construct and measure segment 𝑏, but the reflective abstraction could. In this sense, 

reflective abstraction results in new knowledge that can be productively deployed for 

future mathematical activity. 
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Figure 2.5. A general parabola, with segments 𝑎 and 𝑏 labeled. 

The five components of MKT. Silverman and Thompson (2008) described 

MKT “as being grounded in a personally powerful understanding of particular 

mathematical concepts and as being created through the transformation of those 

concepts from an understanding having pedagogical potential to an understanding that 

does have pedagogical power” (p. 502). KDUs represent personally powerful 

understandings, and as such serve as the foundation for MKT. They are the first 

component of the framework for MKT. KDUs hold “pedagogical potential” in the 

sense that a teacher with a KDU is empowered to engage in challenging mathematical 

activity. However, conceptual understanding of a topic is not sufficient for effective 
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conceptual teaching (e.g., P. W. Thompson & Thompson, 1994). Silverman and 

Thompson argued that KDUs can be transformed into knowledge that has 

“pedagogical power” through the process of reflective abstraction. 

According to Silverman and Thompson (2008), 

A teacher has developed knowledge that supports conceptual teaching 
of a particular mathematical topic when he or she  

1. Has developed a KDU within which that topic exists,  
2. Has constructed models of the variety of ways students may 

understand the content (decentering); 
3. Has an image of how someone else might come to think of 

the mathematical idea in a similar way; 
4. Has an image of the kinds of activities and conversations 

about those activities that might support another person’s 
development of a similar understanding of the mathematical 
idea;  

5. Has an image of how students who have come to think 
about the mathematical idea in the specified way are 
empowered to learn other, related mathematical ideas. (p. 
508) 

These are the five components of MKT according to Silverman and Thompson. The 

first component of this framework, KDUs, was elaborated in a previous section. I now 

elaborate each of the remaining four components of MKT. 

Images of students’ thinking and understanding. To support students’ 

development of conceptual understanding of a mathematical idea, a teacher must first 

understand the variety of ways that students might understand that idea. This might 

involve asking questions such as “What does it mean to understand this idea?”; “How 

do I understand this idea?”; and “Are there other ways that someone might understand 

this idea?” These models should also include the different ways students may not 

understand the idea, including naïve conceptions and misconceptions. 
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Images of milestones for a learning trajectory. Having MKT that supports 

conceptual teaching of a mathematical idea means having a roadmap for how that idea 

develops over time. This involves understanding how the mathematical idea becomes 

more sophisticated over time and with appropriate support. A teacher may ask “What 

must a student understand in order to develop this mathematical idea?” Having an 

image of how someone might develop the mathematical idea also means having an 

image of the various obstacles or stumbling blocks likely to be encountered as the idea 

develops.  

Images of instruction. Teachers must have not only an image of a learning 

trajectory for the mathematical idea, but they must also have images of the types of 

mathematical tasks and activities that promote that idea. They must be able to assess 

students’ progress along the trajectory and know how to pose problems and 

orchestrate conversations to support the generation of more sophisticated ideas. 

Images of mathematical connections. Finally, teachers must have an image of 

how the mathematical idea fits within the larger landscape of mathematics. How does 

the idea develop out of other mathematics? What new mathematical ideas are students 

empowered to learn as a result of understanding this mathematical idea? 

The last four components of this framework describe what makes a KDU 

pedagogically powerful. In other words, when a teacher can imagine ways in which 

students can come to understand content, as well as actions and activities that will 

foster that understanding, then that teacher has transformed a KDU into knowledge 

that is pedagogically powerful.  
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Second-order reflective abstraction. This framework shares characteristics 

with the Domains of MKT model (Ball et al., 2008). For example, the images of 

milestones for a learning trajectory component can be mapped into the SCK domain, 

while the images of instruction component could be mapped into both the KCT and 

KCS domains. The images of students’ thinking and understanding component seems 

to require an “unpacking” of expert knowledge, which is one of the uses of MKT in 

the Domains of MKT model.  

Despite these similarities, the Silverman and Thompson framework represents 

a departure from the Domains of MKT model (and most other models of MKT as 

well) in that it explicitly defines how MKT develops. Silverman and Thompson (2008) 

argued that KDUs are formed as the result of first-order reflective abstractions, but 

that MKT is the result of a second-order reflective abstraction. This process is initiated 

when teachers, who already have a KDU, put themselves in the position of a student 

who does not have that KDU. They ask themselves questions such as  

“What must a student understand to create the understanding that I 
envision?” and “what kinds of conversations might position one to 
develop such understandings?” The prospective teacher must put 
herself in the place of a student and attempt to examine the operations 
that a student would need and the constraints the student would have to 
operate under to (logically) behave as the prospective teacher wishes a 
student to do. This is reflective abstraction. (Silverman & Thompson, 
2008, p. 508).  

Silverman and Thompson’s description of a second-order reflective abstraction has as 

its foundation a first-order reflective abstraction that itself resulted in a KDU.  

I have developed MKT around quantitative reasoning, in part as a result of my 

observations of two students, Sasha and Keoni, and their mathematical activity as they 
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solved problems about parabolas. The videos that were used in this study were filmed 

as part of a grant (Lobato, 2014) that has funded my research assistantship, and they 

feature Sasha and Keoni solving math problems. My roles in the creation of the videos 

were as a collaborator during the planning for each lesson that was filmed, director for 

the filming of the videos, and editor during post-production. As part of my preparation 

for filming the videos, I solved mathematical tasks that were similar to the ones we 

planned to use in the videos, and I had conversations about these tasks with my 

advisor. This led to the refining of my own KDU around quantitative reasoning, over 

which MKT could be developed.  

Over the course of the planning, filming, and editing of the videos, I had the 

opportunity to watch numerous times the high school students’ development of the 

KDU around quantitative reasoning. Accordingly, I have been able to reflect not only 

on how my own understanding developed, but also on how the students’ 

understanding developed. Consequently, this has led to my developing of MKT 

around quantitative reasoning. I will now elaborate my personal understanding of parts 

of the MKT that I developed, and in doing so illuminate how this understanding could 

have formed via a second-order reflective abstraction.  

In filming, editing, and reviewing these videos, I noticed that the teacher asked 

the same kinds of questions across the ten lessons. I recorded these questions and 

began wondering how these questions helped the students. In doing so, I re-presented 

my experiences observing the instructor asking these questions, as well as the brief 

period of time during which the students responded to these questions. This re-
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presentation of several episodes from the filming, editing, and viewing of the lessons 

ended with my evaluation of each episode. This is the process of reflection as I have 

described it above. 

From these episodes, I identified regularities in the kinds of questions the 

teacher asked, as well as the nature of the responses given by the students. Initially the 

students’ responses were unfocused, but over time, even though the teacher continued 

to ask the same kinds of questions, the students’ responses evolved to the point where 

they were focusing on the attributes of the definition and the quantities on which the 

teacher wanted them to focus. My selection of these regularities in the questions asked 

by the teacher and the students’ responses is an example of the process of abstraction, 

as I have described it above. 

Taken together, I re-presented multiple episodes from my experiences with the 

teacher and her students as they talked about parabolas. From these re-presentations I 

selected certain attributes of those episodes, namely the questions the teacher posed as 

well as the students’ responses to those questions. In coordinating these multiple 

episodes, I developed the idea that in order to get students to reason productively with 

distances as quantities, they must understand the following: (a) how to measure 

distances from a point to a line; and (b) how to describe distances, both in terms of 

real numbers and unknown quantities. 

The first understanding may come about through conversations about distances 

between a point and a line. One can ask students questions such as “How many ways 

are there to measure this distance?”; “Do each of those ways produce the same 
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measurement?”; “Which way do you think makes the most sense?”. A teacher may 

also decide to tell students that measuring along a segment from the point that is 

perpendicular to the line is the way the math community has agreed to make such a 

measurement. These supports may help students overcome the potential obstacle of 

measuring the distance from a point to a line along a segment that is not perpendicular. 

The second understanding may come about by continually focusing students’ 

attention on the quantities on which they are operating. During a task in which they 

must prove points are on a parabola, the teacher can ask questions such as “Can you 

use the definition of a parabola to justify that?” or “What do you think that distance 

(segment 𝑏 in Figure 2.4) would be?” During a task in which the point (4,4) is 

replaced with a general point (𝑥, 𝑦), segment 𝑏 has a distance of 𝑦 + 1 (see Figure 

2.6). Asking students “Where do you see 𝑦?” and “where do you see the 1” can help 

focus their attention on the quantities involved in finding that distance.  

This discussion has illustrated some of the MKT that I have developed, partly 

as a result of my observations of Sasha and Keoni as they solved math problems. I 

have not explicated all of my MKT for this topic, primarily because to do so would be 

beyond the scope of this section. However, as can be seen, experiences in which a 

teacher observes or works with students can serve as the grist from which second-

order reflective abstractions form, resulting in MKT. 
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Figure 2.6. The point (4,4) is replaced with a general point (𝑥, 𝑦). 

It is important to note that Silverman and Thompson (2008) did not fully 

elaborate their meaning for a second-order reflective abstraction. They claimed that 

MKT can develop as a result of unpacking one’s knowledge, considering the KDU 

from the perspective of a student, and engaging in some thought experiments. In other 

words, Silverman and Thompson seemed to suggest that the second-order reflective 

abstraction can come about simply through a willful act of thinking. Their framework 

was offered as a way of beginning to address the problem of understanding how MKT 

develops. Silverman and Thompson acknowledged the nascent nature of their 

framework, and they invited the field to contest or extend their framework. 
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Part of the motivation for this study was my belief that their framework could 

be extended in at least two ways. First, I conjectured that it would be possible that 

second-order reflective abstraction can form out of experiences observing or working 

with students who are learning the content, rather than just through an intentional 

thought experiment. My own experiences in developing MKT around quantitative 

reasoning with distances (which I just described) offer an example of how this may be 

possible. 

Second, I conjectured that reflective abstraction does not account for all 

possible processes of learning that lead to the development of MKT. For example, 

certain discourse practices, types of mathematical tasks, and the nature of 

mathematical activity that PSTs engage in may also account for the development of 

MKT in PSTs. I go into more detail about this aspect of the study in a later section. 

The Education of Mathematics Teachers 

Sowder (2007) argued that preparing prospective teachers for all of the 

challenges they will face in the classroom in only four years is impossible. She argued 

that in light of this impossible task, teacher training should focus on providing 

opportunities for prospective teachers to learn how to be reflective learners of practice. 

A potential source for creating such opportunities is the use of records of practice 

(Borko, Koellner, Jacobs, & Seago, 2011), which include case studies, vignettes, 

narratives, student work, manipulatives, lesson study, and mathematical problems 

(Tirosh & Wood, 2008).  
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Borko (2004), in her review of research on teacher education, found that “a 

number of programs have successfully used artifacts such as instructional plans and 

assignments, videotapes of lessons, and samples of student work to bring teachers’ 

classrooms into the professional development setting” (p. 7). These kinds of records of 

practice provide several advantages for teacher education.  

First, records of practice provide an authentic window for prospective teachers 

into the day-to-day activities of teaching (Borko et al., 2011). Making explicit the 

kinds of effective practices that teachers use can serve an important role in teacher 

training. Morris (2006) conducted a study with two groups of prospective teachers. 

Both groups were asked to analyze lessons for evidence of student thinking, link that 

thinking to instruction, and suggest revisions to the lesson. Prior to viewing the lesson, 

only one group was given guidance to attend to student thinking. The prospective 

teachers who were given explicit guidance were more likely to critically analyze the 

lesson, more likely to gather specific evidence linking student learning to instruction, 

and more likely to suggest revisions to the instruction (Morris, 2006). In another 

study, Switzer, Teuscher, and Siebert (2015) investigated prospective teachers 

participating in lesson study. The goal of the lesson study, which was made explicit to 

the prospective teachers, was to investigate productive discourse practices that elicited 

student thinking during class discussions. Results indicated that observing others 

enabled participants to reflect on, and eventually revise, their own practice. In short, 

research suggests that with proper support, prospective teachers benefit from teacher 

training that uses records of practice to bring authentic practice to life. 
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Second, the use of records of practice brings practice into professional 

development (PD) for in-service teachers, making practice an object of inquiry 

(Borko, Jacobs, Seago, & Mangram, 2014). One well documented example is the 

Cognitively Guided Instruction (CGI; Carpenter, Fennema, Franke, Levi, & Empson, 

1999) professional development program. The CGI PD program trains teachers to 

focus on the development of student thinking in order to make effective instructional 

choices to foster student learning. The program provides teachers with a variety of 

resources (e.g., taxonomies of problems types, videos of children solving problems, 

and research on student thinking) designed to help teachers learn to analyze student 

thinking. By bringing practice (in this case analysis of student thinking) into PD, 

teachers were able to develop new models for instruction (Carpenter, Fennema, 

Peterson, Chiang, & Loef, 1989; Franke, Carpenter, Levi, & Fennema, 2001). 

Interestingly, the principles of the CGI PD program do not include explicit guidelines 

for instruction. Even so, participants in CGI PDs tend to change their instructional 

practices in productive, student-centered ways (Franke et al., 2001).  

Finally, in using records of practice during PD, teachers engage in learning 

about practice in the absence of the pressures of the classroom. Teaching places many 

demands on a teacher, and every moment of teaching involves a flood of information 

that teachers must process. Examining records of practice outside of the classroom 

provides for authentic learning experiences in which teachers can give their full focus 

to the development of their practice. For example, Zhang, Lundeberg, Koehler, and 

Eberhardt (2011) researched how viewing video vignettes afforded opportunities for 
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in-service teachers to examine other teachers’ practices. Some teachers reported that 

due to the demands of teaching, observing other teachers may not be possible without 

bringing records of practice into PD (Zhang et al., 2011). The researchers found that 

by viewing the practices of others, in-service teachers could compare their own 

practice to that of their colleagues, which generated new ideas for assessment, leading 

class discussions, and learning activities they could use in their own classrooms. 

In this study, I used two types of records of practice: case studies, in the form 

of videos of high school students engaged in mathematical activity, and mathematical 

tasks. In the next two sections I review relevant literature that explores the use of these 

two types of records of practice, as well as elaborate the ways in which I used these 

artifacts. 

Video Case Studies 

Case studies, which include self-authored and third-person accounts of 

teaching practices, hold particular appeal as records of practice (Sowder, 2007). Case 

studies can be used to illustrate: (a) exemplary practices to show what is possible 

(Shulman, 1992); (b) examples of practice that are to be used “as springboards for 

analysis and discussion about mathematics teaching and learning, not evaluations of 

the videotaped teacher” (Borko et al., 2011, p. 184); and (c) unexpected or problematic 

classroom occurrences (Chazan & Herbst, 2012; Markovits & Even, 1999; Moore-

Russo & Viglietti, 2010). Cases are adaptable tools that bring together theory and 

practice, providing both prospective and in-service teachers with “sites for analysis 

[that] are situated in practice” (Doerr & Thompson, 2004, p. 180).  
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Research has shown that using video cases for teacher education can yield 

positive effects. The CGI program utilizes videos of lessons as well as videos of 

interviews of children to productively influence teachers’ beliefs about student 

thinking, as well as their knowledge of student thinking and how to make instructional 

decisions based on student thinking (Carpenter et al., 1989; Franke et al., 2001). 

Moore-Russo and Viglietti (2010) demonstrated that animated video cases can be used 

to help novice teachers develop more sophisticated notions of how instructional 

decisions can impact student learning and motivation. Wilson et al. (2011) 

investigated PSTs learning from video cases of students using technology to solve 

statistics problems. They found that the video cases afforded opportunities for PSTs to 

analyze, reflect on, and construct models of students’ thinking. 

Video case studies have become increasingly popular in mathematics 

education (Borko, Jacobs, Eiteljorg, & Pittman, 2008; Sherin, 2004; Sowder, 2007), 

and with good reason. The use of video in teacher education offers three affordances 

(Sherin, 2004). First, video provides viewers with a lasting record, which affords the 

ability to attend to different aspects or features of the clip during different viewings of 

the clip. Second, videos can be collected, edited, and annotated. In other words, videos 

are malleable in the sense that creators of video can highlight certain aspects of the 

recorded event while ignoring or suppressing other aspects. Third, videos provide new 

pathways for teachers to develop practice. Viewers of video can attend to problematic 

or interesting events in the video without the multitude of demands that comes with 

overseeing a classroom. 
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The widespread use of videos in teacher education is well-documented (Borko 

et al., 2008; Koc, Peker, & Osmanoglu, 2009; Santagata, 2009; Star & Strickland, 

2008; Zhang et al., 2011). While there has been much research on the use of videos for 

teacher education, I have identified two ways in which my study contributes to the 

field’s knowledge of use of video in teacher education. I elaborate each of these in 

arguments below. 

Minimally-edited video. Much of the use of video in teacher education 

involves minimally-edited video clips (Borko et al., 2014, 2011). Minimally-edited 

clips typically feature one take, involve little or no panning or zooming, and include 

details (e.g., decorations in a classroom or off-task behavior) that may not be germane 

to the phenomena (e.g., techniques the teacher uses to elicit students’ thinking) the 

presenter wishes to highlight (Erickson, 2007). Minimally-edited clips are typically 

used in teacher education because they are much easier to obtain and require far less 

time and fewer resources to prepare for educational use than do edited clips (Jaworski, 

1990). Additionally, they present a record of practice that is truer to the recorded event 

than do edited clips. 

One example of how minimally-edited video clips can be used in teacher 

education is video clubs (e.g., Sherin & van Es, 2005; van Es & Sherin, 2010). A 

video club is a type of PD in which a group of teachers meet regularly to watch and 

analyze videos of practice (Sztajn, Borko, & Smith, in press). In some video clubs, 

teachers watch videos of their own practice (e.g., Sherin & van Es, 2009), while in 

others the clips are pre-selected by the teacher educator (e.g., Walkoe, 2015). Research 
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on video clubs has shown that they support teachers’ development of noticing student 

thinking (Sherin & van Es, 2005; Star & Strickland, 2008). 

There are other examples of how researchers have used minimally-edited video 

clips. Santaga et al. (2007) used minimally-edited videos of lessons submitted for the 

TIMSS video studies to foster PSTs abilities to analyze lessons. Kersting, Givvin, 

Sotelo, and Stigler (2010) used minimally-edited videos of fifth and sixth grade 

classrooms to explore possible links between MKT and teachers’ ability to analyze 

lessons. In another study, teachers watched minimally-edited videos of their own and 

their colleagues’ classrooms (Kleinknecht & Schneider, 2013). The results suggested 

that teachers became more emotionally and intellectually engaged when watching 

videos of other teachers’ classrooms. 

The use of minimally-edited videos is not without limitations. Several 

researchers (e.g., Erickson, 2007; Moore-Russo & Viglietti, 2010) have noted that 

minimally-edited clips contain a flood of information, some of which is often 

irrelevant to the phenomena captured by the clip and may detract from the viewers’ 

experience with the clip. While experts may view minimally-edited clips with sharp 

focus, honing in on the phenomena to be studied, novices may be lost “in a stream of 

continuous detail they don’t know how to parse during the course of their real-time 

viewing in order to make sense of it” (Erickson, 2007, p. 146). Without careful 

guidance, viewers, especially novices, may miss the very phenomena the clip was 

meant to show. Indeed, research has shown that prospective, novice, and veteran 



 

 

50 

teachers struggle to attend to aspects of video that impact learning outcomes (e.g., 

Miller & Zhou, 2007; Star & Strickland, 2008; van Es & Sherin, 2010). 

To mitigate these challenges, I used clips that have been extensively edited. 

These videos prominently feature only the students and their work. The background of 

the clips has been edited so that it is a neutral linen texture with no other visible 

images one might expect to see in a minimally edited clip (e.g., bookcases, a clock, 

other students, etc.; see Figure 2.7). While the clips do feature the voice of a teacher, 

she is not visible. I conjectured this feature of the videos would increase the likelihood 

that participants would attend to what she says, rather than how she looks, what she is 

wearing, or other information that could distract prospective teachers. The students’ 

off-task behavior has been edited out of the clips, which removes another source of 

distractions for viewers. More details about these clips will be provided in Chapter 3. 

 
Figure 2.7. (a) A screen shot of minimally-edited video of a classroom, and (b) a 

screen shot of one of the extensively-edited videos I used. 

In short, the video clips I used focus on the development of mathematical 

concepts, and the clips have been edited in service of that. I conjectured this may 

prove to be fruitful for the development of MKT. In particular, by foregrounding 
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Sasha’s and Keoni’s development of mathematical concepts, I conjectured these clips 

could be particularly effective at supporting four components of the Silverman and 

Thompson (2008) framework for MKT: development of a KDU; images of students’ 

thinking and understanding; images of milestones for a learning trajectory; and 

images of instruction.  

Because the development of mathematical concepts is highlighted in the 

videos, the videos served as a second source for exploring the content (the first being 

mathematical tasks, which I elaborate in Chapter 3). Participants watched Sasha and 

Keoni work on tasks. They also saw some of the voiceovers that were created for the 

videos, which revoice ideas stated by Sasha and Keoni, and often use animations or 

highlighting to draw attention to important aspects of the work that Sasha and Keoni 

were doing. 

The teacher, while not visible on camera, is a vital part of the videos. Because 

she is not on camera, participants could focus on the instructional moves she makes, 

which include questions to elicit the students’ thinking, reminders to attend to certain 

details of the task, and responses to Sasha and Keoni’s questions. Because the videos 

are edited to focus on the development of concepts (including quantitative reasoning), 

and they include the moves the teacher made to facilitate that development, I 

conjectured that these videos could support the construction of images of instruction.  

Brief vignettes. Shulman (1992) made a strong argument to leverage the 

power of cases in teacher education. The field has responded, and now “the use of 

video cases in teacher education is quite common” (Masats & Dooly, 2011, p. 1152). 
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In conducting this literature review I found that video cases tended to fall into two 

categories. In the first category, teacher educators use multiple brief clips that show 

instances of the same phenomena. For example, Philipp (2008) reported on the use of 

multiple brief clips that showed students solving problems in a content course for 

prospective elementary teachers. These clips helped those teachers develop more 

sophisticated beliefs about mathematics and students’ mathematical understanding 

(Philipp et al., 2007).  

Other examples include the CGI program (Carpenter et al., 1989), which 

showcases students’ thinking using brief video clips, and the Problem-Solving Cycle 

(PSC; Borko et al., 2008). The PSC features three phases. During the first phase 

participating teachers solve mathematical tasks. Participants then film their own 

implementation of those tasks in their classrooms. Finally, participants come together 

to collaboratively review short video clips from each other’s lessons. 

In each of these examples of brief vignettes, the term “brief” refers to the 

length of the clip, which is typically under ten minutes. Other researchers have used 

longer clips that show entire lessons (e.g., Koc et al., 2009; Morris, 2006; Santagata, 

2009). Yet even clips showing entire lessons can be considered “brief” in terms of the 

development of students’ conceptual understanding. In my review of the literature I 

found no examples in which in-service teachers or PSTs used multiple clips of video 

featuring the development of students’ thinking over a longer time horizon. The videos 

I used do just that. The two students were filmed for over 14 hours spread across nine 

filming sessions over the course of several months. The videos show their 
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development of understanding of geometric and algebraic conceptions of parabolas. 

Consequently, I could show participants clips of the students at various points along 

their learning trajectory.  

The longitudinal nature of these videos provided an opportunity to conduct 

research on the use of videos to help PSTs develop an understanding of particular 

students’ realized learning trajectory. The 10 lessons show how Sasha and Keoni 

developed and learned to deploy quantitative reasoning. This feature afforded 

participants with opportunities to develop an image of one possible realized learning 

trajectory, which is one of the components of the Silverman and Thompson (2008) 

framework. 

Use of Tasks in Teacher Education 

Tasks are versatile tools for teacher education (Hiebert & Wearne, 1993; 

Sowder, 2007; Sztajn et al., in press; Watson & Mason, 2007). On the one hand, both 

prospective and in-service teachers can analyze student work on tasks, which acts as 

authentic practice of some of the work that teachers do. On the other hand, prospective 

and in-service teachers can engage with tasks as learners, which can promote their 

own content knowledge development. I briefly describe each of these ways of using 

tasks below. 

Analyzing students’ work on tasks brings authentic practice into teacher 

education. This type of research has been used to study the effects of such analysis on 

teachers’ beliefs and affect (Philipp et al., 2007); their ability to develop tasks to 

support particular learning goals (Norton & Kastberg, 2012); and their ability to 
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respond to student thinking and make appropriate instructional decisions (Carpenter et 

al., 1989; Kazemi & Franke, 2004).  

Philipp et al. (2007) found that analyzing students’ work on tasks tended to 

change prospective teachers’ beliefs about students and mathematics. For example, 

among prospective teachers that interviewed children as they solved tasks, the authors 

reported a 78% increase in those teachers who believed that children can solve tasks in 

novel ways prior to explicit instruction on how to solve those tasks. Norton and 

Kastberg (2012) reported on PSTs who wrote letters containing mathematical tasks. 

Students who received the letters solved the tasks and wrote about their solutions to 

the PSTs. The PSTs analyzed the solutions and posed new tasks in response. Through 

these cycles of posing problems and analyzing students’ work on the problems, PSTs 

developed their abilities to pose more sophisticated and cognitively-demanding tasks. 

Researchers have also studied prospective teachers working on tasks as 

learners (e.g., Guberman & Leikin, 2013; Morris, Hiebert, & Spitzer, 2009; Seago, 

Jacobs, Heck, Nelson, & Malzahn, 2014; Stylianides & Stylianides, 2009, 2010). 

Some of these research efforts have produced results that demonstrate prospective 

teachers often lack the kind of deep conceptual knowledge that supports MKT 

development (Guberman & Leikin, 2013; Morris, 2006). Guberman and Leikin (2013) 

reported that the use of open-ended tasks with multiple solutions seemed to support 

prospective teachers in developing more robust conceptions and led to spontaneous 

use of multiple representations on post-test items. Stylianides and Stylianides (2009) 

demonstrated how carefully sequenced tasks helped prospective elementary teachers 
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become more aware of the limitations of empirical arguments in proof and develop 

more sophisticated conceptions of proof. 

One study has informed the design of my study (see Chapter 3 for details). 

Stylianides and Stylianides (2010) blended both approaches to task use in teacher 

education and created sequences of tasks designed to foster the learning of both 

content knowledge and pedagogical content knowledge. A crucial component of these 

sequences was the design and use of Pedagogy-Related mathematics tasks (P-R 

mathematics tasks). They outlined specific features of these tasks that afford the 

development of MKT, which I elaborate below. 

P-R mathematics tasks. Doyle (1988) argued that “the work students do, 

which is defined in large measure by the tasks teachers assign, determines how they 

think about a curriculum domain and come to understand its meaning” (p. 167). 

Watson and Mason (2007) proposed that Doyle’s line of reasoning extends to both 

prospective and in-service teachers, namely that the tasks teachers engage with during 

teacher education influence what they learn. Accordingly, tasks form a crucial 

component of teacher education (Nipper & Sztajn, 2008). By conceptualizing MKT as 

applied mathematics (Bass, 2005; Usiskin, 2001b), Stylianides and Stylianides (2010) 

developed P-R mathematics tasks as one way to support the development of MKT. 

There are three features of P-R mathematics tasks. First, P-R mathematics 

tasks feature a primary mathematical object that is the focus of the activity. Stylianides 

and Stylianides (2010) argued that the main purpose of a P-R mathematics task is to 

engage prospective teachers in predominantly mathematical activity. The 
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mathematical object may take many forms, such as the generation of a proof or 

generalization, defining or exploring a mathematical relationship, or constructing a 

mathematical object. Because P-R mathematics tasks focus primarily on a 

mathematical object they are inherently mathematical in nature. Consequently, P-R 

mathematics tasks are designed to foster the development of knowledge that is 

mathematical in nature. 

The second feature is that P-R mathematics tasks focus on ideas that are 

fundamental (in the sense of Ma, 1999), serve as the building blocks for more 

advanced mathematics, and are crucial for students’ advancement in mathematics. 

Examples of such ideas are generalization, functions, and fractions. These ideas are 

also hard to learn, as evidenced through research and practice that has shown that 

students struggle to understand these ideas.  

The third (and defining) feature of P-R mathematics tasks is that they feature a 

secondary pedagogical object. By including a pedagogical component to the task, P-R 

mathematics tasks situate the mathematical activity in a particular pedagogical space. 

In doing so, P-R mathematics tasks provide PSTs with opportunities to engage in 

mathematical activity that approximates the mathematical activity they’ll engage in as 

teachers. Including a pedagogical component also serves the purpose of fostering the 

development of MKT “from the perspective of an adult who is preparing to become a 

teacher of mathematics” (Stylianides & Stylianides, 2010, p. 163). 

An example might help to more fully illustrate what is meant by a secondary 

pedagogical object. Consider a task in which PSTs are asked to respond to the 
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following prompt: “Prove or disprove that the area of a rectangle increases as its 

perimeter increases.” This is an example of a task with a primary mathematical object, 

namely determining the validity of the statement and justifying your conclusion. The 

task also features ideas, specifically proof and generalizing, that are important for 

teachers to know. However, this task is not a P-R mathematics task because it lacks a 

secondary pedagogical object.  

Contrast that task with the following:  

One of your 7th grade students approaches you after class and says, “So 
I was experimenting with some rectangles and I think I have a theorem 
that whenever you increase the perimeter of a rectangle, the area also 
increases!” How would you respond to your student? 

This task features the same mathematical object and focuses on similar mathematical 

ideas, but it also situates the mathematical activity in the context of a teacher-student 

interaction. In this case, the pedagogical object is the requirement that the PSTs 

respond to a fictional student, which necessitates a different approach to the problem. 

PSTs must first decide for themselves the validity of the conjecture. But the 

pedagogical object of the task requires them to move beyond determining the validity 

of the conjecture and into a space in which they must imagine themselves as a teacher 

of mathematics. PSTs must decide what is a mathematically appropriate way of 

responding to a 7th grader: Should the response only include a confirmation or 

refutation of the conjecture, or should it also consider what next steps the fictional 

student should take? The difference is vast between simply telling a student whether 

their conjecture is valid and encouraging the student to write their own proof to share 

with others as fodder for discussion. The second task embeds the mathematical 
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activity in a plausible pedagogical setting, which grounds the mathematics in the 

domain of its application. 

Stylianides and Stylianides (2010) reported on their use of P-R mathematics 

tasks in a college course designed for prospective elementary teachers. Participants 

were first given typical mathematics tasks so they could solve problems without 

focusing on pedagogical implications. These tasks were followed by P-R mathematics 

tasks, and this sequencing allowed prospective elementary teachers to reflect on their 

own mathematical activity from the typical mathematics tasks as they considered the 

various pedagogical factors embedded in the P-R mathematics tasks. 

Stylianides and Stylianides (2010) argued that P-R mathematics tasks have the 

potential to aid the development of MKT. Like van Bommel (2012), they claimed that 

such tasks require a shift in perspective by prospective teachers from that of an adult 

engaging in mathematical activity to that of a future teacher of mathematics. 

Furthermore, P-R mathematics tasks serve as opportunities that promote the 

integration of mathematics and pedagogy, thereby situating MKT (as applied 

mathematics) in the domain of its application. Finally, these tasks may have 

contributed not only to the development of MKT, but also potential shifts in 

participants’ beliefs about mathematics (Shilling-Traina & Stylianides, 2012). 

Stylianides and Stylianides demonstrated how P-R mathematics tasks can be 

used in courses for prospective teachers (2010). These tasks may have potential for 

changing the way prospective teachers engage in content courses offered through 

teacher education programs. Consequently, the use of these tasks in content courses 
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for prospective teachers may serve as part of the solution to the problem identified by 

both Bass (2005) and Usiskin (2001b), namely that traditional teacher education 

programs do not provide prospective teachers with ample opportunities to engage in 

mathematical activity situated in the domain of their future profession. 

Elaboration of Research Questions 

I now restate my research questions and elaborate each question using ideas 

from the preceding literature review. 

Research Question 1 

My first research question follows: 

What is the nature of the mathematical knowledge for teaching that 
develops for prospective secondary teachers during a video-based mini-
course? 

In answering this first research question, I explore the knowledge that seemed to 

develop for participants as they learned about parabolas and watched videos of 

students learning about parabolas. To be clear, the answer to this research question, 

which I present in Chapter 4, consists of accounts of what individual participants 

learned through their participation in this study. 

For this research question I operated from the framework for the development 

of MKT presented by Silverman and Thompson (2008). In particular, I focused on 

four components from this framework: (a) the development of KDUs, (b) images of 

students’ thinking and understanding, (c) images of milestones for a learning 

trajectory, and (d) images of instruction. I identified a KDU around quantitative 

reasoning that developed for the two students in the videos. However, because my 
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participants were prospective secondary teachers, they could draw upon a richer and 

wider mathematical background than is available to typical high school students. 

Nevertheless, the mathematical focus for the study was the KDU around quantitative 

reasoning that I identified in my review of the videos. My rationale for this is that 

Silverman and Thompson’s (2008) framework for MKT accounts for how teachers 

with a particular KDU can transform that personally powerful knowledge into 

pedagogically powerful knowledge. 

Research Question 2 

My second research question follows: 

How do particular elements of the designed learning ecology contribute 
to the development of MKT by prospective secondary teachers during a 
video-based mini-course? 

Whereas Research Question 1 addresses the nature of the knowledge that participants 

developed through their involvement in the design experiment, Research Question 2 

investigates the processes of learning that led to the development of that knowledge.  

One possible process of learning that may lead to the development of MKT is 

that of reflective abstraction (Silverman & Thompson, 2008). Previously in this 

chapter I elaborated this construct and illustrated how my own MKT around KDU 2 

may have developed as a result of a second-order reflective abstraction. However, the 

conditions under which this MKT developed were ideal. It is plausible to conclude 

that each of the following factors may have contributed in a meaningful way to the 

development of my own MKT: 
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• I have over five years of experience teaching mathematics, as well as a 

year of experience teaching prospective teachers. 

• I have viewed each lesson at least five times, including the entirety of 

the filming session, and several viewings of the edited lessons.  

• I helped the teacher develop several lessons for the videos, and during 

our time developing the lessons we had several conversations about 

how the students’ understanding was evolving.  

• It is my stated goal to investigate how MKT develops. As such, I 

explicitly looked for ways that knowledge was developing in the 

students in the videos in order to explicate the MKT I want to 

investigate. 

It is reasonable to conclude that reflective abstraction is a viable process 

through which my own MKT developed. However, I expect that for prospective 

teachers, none of these factors play a role in the development of their MKT. 

Consequently, I questioned if that process would account for participants’ 

development of MKT. 

The framework offered by Silverman and Thompson (2008) posited reflective 

abstraction as the sole learning process responsible for the development of MKT. 

However, I argue this view fails to account for several factors that appeared to foster 

participants’ development of MKT. In this study, I found that what prospective 

teachers noticed in the mini-course, how their attention shifted, and why their attention 

seemed to shift were critical factors in the development of their MKT.  
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There are links between noticing and reflective abstraction, in particular in the 

re-presenting of episodes, isolating particular attributes from those episodes, and 

evaluating these vis-à-vis the learner’s goals (Lobato et al., 2013). However, noticing 

is also a social phenomenon (Goodwin, 1994), and aspects of noticing may not be 

captured or accounted for by reflective abstraction. Moreover, Silverman and 

Thompson (2008) appeared to be agnostic on the role social factors play in the 

development of MKT; consequently, their framework did not explicitly account for 

such factors. 

Lobato et al. (2013) developed the focusing framework, which provides a tool 

for analyzing multiple aspects of students’ noticing, including what students notice, 

discourse practices that focused students’ attention, the tasks used, and the nature of 

mathematical activity. Briefly, there are four components of the focusing framework. 

Centers of focus (CoFs) are features or properties (physical or conceptual) that 

participants noticed. Their noticing was influenced by focusing interactions, which are 

discourse practices by either the teacher or other participants that had the effect of 

drawing attention to CoFs. Mathematical tasks provided opportunities for participants 

and me to engage in mathematical activity and discuss that activity, and it is during 

that activity that CoFs emerged. Finally, the nature of that mathematical activity may 

constrain or afford the emergence of CoFs. 

The focusing framework provided a means to account for how certain aspects 

of the learning environment supported and fostered participants’ learning. Utilizing the 

focusing framework “can raise awareness of whether or not students have selected the 
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features of mathematical situations that are most crucial as a foundation for particular 

mathematical ideas” (Lobato et al., 2013, p. 811). This quote provides insight into the 

explanatory power the focusing framework provided for this study, particularly as I 

conceptualized MKT as a form of applied mathematics, and my participants as 

students who were transitioning to teachers. More details about the focusing 

framework and its role in answering Research Question 2 is provided in Chapter 3. 

A careful reader may propose another possible avenue for investigating how 

MKT develops. Noting that my participants were prospective teachers, and part of my 

study involved directing their attention to various aspects of the videos, it is 

reasonable to ask why I did not leverage research literature on teacher noticing. My 

rationale for not leveraging this research in answering Research Question 2 rests on 

three arguments. 

First, much of the literature on teacher noticing features participants who 

watch instructional clips of students engaged in mathematical problem solving activity 

(Jacobs, Lamb, & Philipp, 2010). However, in these studies, teachers are watching 

clips of videos from a typical classroom in which the teacher, other students (who may 

be on or off task), decorations, writing on the board, and other stimuli from the 

classroom are captured by the video. A key element of this research is investigating 

what teachers notice from such a rich stream of visual and aural stimuli. The videos I 

used in this study stand in stark contrast to those used in other studies. The videos 

used in this study show only two students engaged in dialogue about math problems, 

their written work, and the audible voice of the teacher who is off camera. No other 
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features of the learning environment are present in the videos. These videos are 

designed to explicitly feature the development of the students’ mathematical thinking. 

Consequently, the range of what participants could notice from these videos is far 

narrower than the range of what they would notice in video clips from typical 

classroom environments. 

Second, Jacobs et al. (2010) found that when watching clips featuring students’ 

mathematical thinking embedded in typical classrooms, teachers have difficulty 

attending to students’ mathematical thinking. Other studies have shown that teachers 

tend to notice other aspects of the clips, including features of the instructor’s 

personality, classroom management style, or instructional moves made by the teacher 

(Miller & Zhou, 2007; van Es & Sherin, 2010). While I hoped that participants in this 

study would notice specific moves made by the teacher in the videos, I aimed to bring 

about that noticing by explicitly drawing attention to those moves in an effort to 

promote the development of MKT. Unlike studies in which the question is what do 

teachers notice, for this study I hypothesized that noticing certain features would foster 

the development of MKT. Consequently, I engineered specific elements of the 

learning environment so that those features were more likely to be noticed. In short, 

this study was concerned not so much with what participants noticed as much as it is 

in interested in how what participants did notice contributed to the development of 

their MKT. 

Finally, studies on teacher noticing have shown that noticing and attending to 

students’ mathematical thinking is challenging for teachers (Empson & Jacobs, 2008; 
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Jacobs et al., 2010; van Es & Sherin, 2010). In fact, Jacobs et al. found that 

experienced teachers who had not received explicit training on noticing student 

thinking tended to not notice student thinking. Moreover, it has been suggested that 

teachers’ ability to notice students’ mathematical thinking depends in part on their 

own MKT on the topic (Schoenfeld, 2011). Tyminski, Land, Drake, Zamback, and 

Simpson (2014) found that PSTs were able to successfully leverage their noticing of 

students’ mathematical thinking, but only with sustained training in doing so. Taken 

together this research suggests that my participants (who were not in-service teachers, 

let alone experienced in-service teachers) were not yet ready or able to productively 

notice student thinking in the videos without assistance. In particular, participants in 

this study tended not to have rich MKT around quantitative reasoning (see Chapter 4 

for evidence of this claim), which likely would have hindered their ability to notice 

students’ mathematical thinking around these topics without adequate support for 

doing so. 

In summary, the research literature suggests that prospective teachers may 

struggle to notice phenomena in videos that support MKT development. Moreover, 

this study does not investigate the range of what participants noticed during the mini-

course. Instead, it investigates how what participants noticed seemed to support the 

development of their MKT. I now turn to elaborating the research methods used to 

conduct this study.  
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Chapter 3: Methods 

The goal of this study is to build theory about how prospective math teachers 

(PSTs) develop mathematical knowledge for teaching (MKT; Silverman & Thompson, 

2008) around quantitative reasoning with distances. In service of this goal, I answer 

the following research questions: 

Research Question 1: What is the nature of the mathematical 
knowledge for teaching that develops for prospective secondary 
teachers during a video-based mini-course? 
Research Question 2: How do particular elements of the designed 
learning ecology contribute to the development of MKT by prospective 
secondary teachers during a video-based mini-course? 

To answer these research questions I conducted a design experiment (Cobb, 

Confrey, et al., 2003), which are used to engineer forms of learning that may not be 

found in traditional forms of education. In Chapter 2, I reviewed literature that argues 

that PSTs do not tend to develop sophisticated quantitative reasoning. Accordingly, 

the mathematical focus of the design experiment was MKT around quantitative 

reasoning. 

Cobb, Confrey, et al. (2003) described a learning ecology as a “complex, 

interacting system involving multiple elements of different types and levels” (p. 9). 

Conducting a design experiment afforded me the ability to intentionally engineer 

particular elements of the learning ecology in an effort to bring about, study, and 

develop theory about desired forms of learning (Prediger, Gravemeijer, & Confrey, 

2015), in this case the development of MKT around quantitative reasoning. Data 

collected during the experiment was analyzed to study PSTs’ learning as well as the 

activities, processes, environments, and relationships that supported their learning.  
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The result of this design experiment is local theory (Prediger et al., 2015) about 

the development of MKT around quantitative reasoning. In answering the first 

research question, I provide accounts for what individual PSTs seemed to learn during 

the experiment. In answering the second research question, I link participants’ MKT to 

what was noticed during the mini-course, and then illuminate how elements of the 

learning environment (Cobb, Confrey, et al., 2003) contributed to participants’ 

noticing. 

In this chapter, I describe the methods I used to investigate the development of 

MKT around quantitative reasoning by PSTs. In broad terms, I recruited seven 

prospective secondary teachers and conducted pre- and post-interviews that 

bookended the mini-course. The data from the interviews formed the corpus of data 

for Research Question 1, while data from the mini-course formed the corpus of data 

for Research Question 2. The remainder of this chapter is organized into four sections 

that elaborate in detail the following: (a) participants; (b) instruction in the design 

experiment; (c) data collection and analysis methods for Research Question 1; and (d) 

data collection and analysis methods for Research Question 2. 

Participants 

The purpose of this study is to investigate the development of MKT in PSTs. 

To increase the likelihood that I could study the phenomena in question, there were 

two qualities I looked for in potential participants. I now briefly describe these 

qualities. 
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First, research suggests that a necessary condition for the development of MKT 

in PSTs is that they experience a shift in perspective from a learner of mathematics to 

a teacher of mathematics (van Bommel, 2012). In light of both this research and the 

notion of the situativity of MKT (Stylianides & Stylianides, 2010), I looked for 

participants who were committed to being a teacher. 

Second, because I aimed to study prospective secondary teachers, I looked for 

participants who had completed most of their coursework in a mathematics degree. 

Certain courses, such as advanced calculus, real analysis, and algebra, tend to act as a 

filter for mathematics majors. These courses form the core of undergraduate degrees in 

mathematics, and students who initially declare an interest in pursuing a career in 

secondary mathematics education may change their mind as they progress through the 

major, in part because of the difficulty of these courses. By requiring that participants 

had completed most of their coursework towards a degree in mathematics, (as opposed 

to students who have declared an interest in secondary mathematics education but 

have not progressed through those core courses), I selected participants who were 

most likely to complete a degree leading to certification as a secondary math teacher.  

Recruitment 

To satisfy these requirements, I recruited seven participants who had 

successfully completed a capstone course for PSTs at either of two large southwestern 

universities. Each capstone course is a requirement for students pursuing a 

mathematics degree that prepares them to enter a teaching credential program at their 

respective university. The courses, which are designed specifically for prospective 
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secondary teachers, are typically taken at the end of the course study, and require 

advanced preparation in undergraduate mathematics.  

I recruited seven participants to increase the likelihood that multiple points of 

view would emerge in the instructional sessions which could lead to rich idea 

generation. I could also divide seven participants into two smaller groups while still 

being able to track what individuals were saying during group discussions. Finally, 

seven is a small enough number that I would be able to track individual ideas, 

conceptions, and contributions to the entire class. 

I recruited participants from lists of students who successfully completed the 

capstone courses in the fall semester/quarter of the 2015–2016 school year. All seven 

participants had finished an undergraduate degree in mathematics, and all planned to 

enroll in a credential program leading to certification as a secondary mathematics 

teacher. As an incentive for completing the study, participants were given a $100 Visa 

gift card after the final interview. 

Instruction in the Design Experiment 

Broadly speaking, participants investigated geometric and algebraic 

conceptions of parabolas during the six instructional sessions. The six instructional 

sessions (see Appendix A) roughly followed lessons 1–8 from a unit of online video 

lessons hosted by Project MathTalk (www.mathtalk.org). 

The use of a design experiment allowed me to engineer frequent and 

systematic opportunities for participants to (a) engage in mathematical activity that 

supported their development of MKT around quantitative reasoning and (b) 
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experience and reflect on high school students’ mathematical thinking. To provide 

such opportunities, I designed three elements of the learning ecology. In the following 

sections I elaborate each of these elements: (a) the use of a series of videos showing 

high school students engaged in mathematical problem solving activities; (b) 

sequences of tasks designed specifically to foster participants’ development of 

quantitative reasoning; and (c) the use of reflective activities designed specifically to 

foster participants’ development of MKT. The typical order for each session was that 

participants first engaged in the tasks, then watched videos, and finally engaged in 

reflective activity. I present these elements out of order because the sequences of tasks 

draw heavily from the videos. 

Videos 

I used videos of two high school students engaged in mathematical problem 

solving. These videos are the products of the NSF-funded Project MathTalk 

(www.mathtalk.org; Lobato, 2014), which studies the development and use of 

conceptually oriented and dialogue-based videos of mathematics instruction. The 

purpose of the project was to create videos for online learners that present a different 

model of learning than the dominant talking-head or talking-hand model (Bowers, 

Passentino, & Connors, 2012). The videos show the development of the filmed 

students’ quantitative reasoning as the explored relationships between algebraic and 

geometric conceptions of parabolas. I now describe these videos and elaborate several 

features of the videos that I conjectured would support the development of MKT for 

participants. 
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Two high school students, Sasha and Keoni, were filmed as they worked on 

various mathematics tasks that focused on relationships between geometric and 

algebraic conceptions of parabola. Sasha and Keoni were filmed over 14 hours, which 

resulted in 10 online lessons. The videos were not scripted, but they were edited in 

post-production to make clearer Sasha and Keoni’s conceptual challenges and how 

their understanding developed over time. Other elements were added to the videos in 

post-production to aid those who view the videos online, including highlighting parts 

of Sasha and Keoni’s work, animating ideas expressed by Sasha and Keoni, and 

revoicing Sasha and Keoni’s stated ideas (see Figure 3.1 for a screenshot from a 

MathTalk video). 

 
Figure 3.1. A screenshot from Project MathTalk (www.mathtalk.org). 

The mathematical goals for this study differed somewhat from those of the 

MathTalk unit. Whereas the mathematical goals for this study were driven by the 
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development of MKT around quantitative reasoning, the researcher who crafted the 

video unit conceived of the development of student understanding in terms of 

conceptual learning goals (Lobato, Hohensee, Rhodehamel, & Diamond, 2012). An 

example of one such goal from the video unit is that students can “Conceive of a point 

on a Cartesian coordinate grid, not only as a location, but also as representing 

distances in 2-dimensional space” (see 

http://www.sci.sdsu.edu/crmse/mathtalk/website/te-parab-l2e2.html). Conceptual 

learning goals share similarities with KDUs, but conceptual learning goals are finer 

grained targets of instruction. For example, the conceptual learning goal given above 

certainly could contribute to the KDU around quantitative reasoning with distances 

that was elaborated in Chapter 2. 

Not all the Project MathTalk videos were used in the design experiment. 

Because the purpose of the study was to investigate participants’ development of 

MKT, I selected clips from the online video lessons that I believed would stimulate 

fruitful conversations and provoke thoughtful reflections. To facilitate these selections, 

I created a document that provides an overview for each episode of every lesson from 

the MathTalk parabola unit (see Appendix B for an example). I created this document 

as I reviewed the videos in preparation for this study, and I updated it after each 

instructional session based upon what had happened in that session. The document 

contains a table with timecodes of clips from the videos, as well as a brief description 

of the clip. For example, in the first lesson Sasha and Keoni created a parabola using 

only the geometric definition. I identified moments when Sasha and Keoni struggled 



 

 

73 

to measure the distance between a point and a line, as well as the questions that the 

teacher asked to help Sasha and Keoni resolve that struggle.  

There were several factors that influenced which clips I showed during the 

instructional sessions. First, I selected clips based on the ideas that emerged during the 

instructional sessions, particularly during times when groups of participants were 

solving math tasks. By observing what participants said and did during a math task, I 

could make informed decisions about which clips to show participants. For example, 

during the first instructional session participants created a parabola from the geometric 

definition. I observed some participants suggesting that high school students might 

struggle to measure the distance from a point to a line. Accordingly, I chose to show 

participants a clip that showed Sasha and Keoni struggling to measure the distance 

between a point and a line. 

I also selected clips based on my belief about how likely they were to support 

the development of MKT for participants. For example, I highlighted certain 

regularities in the videos that I conjectured would help support aspects of MKT, 

including the types of questions the instructor in the videos posed to Sasha and Keoni. 

To do so, I selected clips that featured questions from the teacher I wanted participants 

to notice.  

In the following subsections, I describe my conjectures from before the study 

about how the videos might support the development of four components of MKT (as 

articulated in Chapter 2). I also further elaborate the factors that influenced my 

selection of particular clips. 
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Development of KDUs and images of students’ thinking and 

understanding. According to Silverman and Thompson (2008), the foundation of 

MKT is a KDU that supports the content to be taught. As discussed in Chapter 2, 

KDUs are characterized, in part, by the fact that the development of KDUs requires 

sustained mathematical activity. Much like typical instruction, the design of this 

experiment offered participants opportunities to engage in the kind of sustained 

mathematical activity that fosters the development of KDUs. These opportunities 

(discussed in more detail later in this chapter) came in the form of tasks designed to 

promote quantitative reasoning with distances. 

Where this design experiment differed from typical instruction is that in 

addition to working on mathematics tasks, participants viewed video clips of high 

school students working through similar tasks. These videos provided opportunities 

for participants to see a near continuous image of how Sasha and Keoni came to 

understand powerful ideas about parabolas through the development of their own 

quantitative reasoning.  

The first two components I targeted is the development of a KDU around 

quantitative reasoning with distances (which I will now simply refer to as quantitative 

reasoning with distances) and images of students reasoning quantitatively with 

distances. I selected clips that contained mathematical ideas that I conjectured were 

important to the development of the KDU around quantitative reasoning. These clips 

also provided participants with images of how Sasha and Keoni reasoned 



 

 

75 

quantitatively with distances. For example, I selected clips that showed Sasha and 

Keoni making sense of coordinates as distances in the coordinate plane. 

Images of milestones for a learning trajectory. The third component of 

MKT that I targeted is images of how students may develop quantitative reasoning 

with distances (Silverman & Thompson, 2008). The MathTalk videos provide a 

coherent and cohesive authentic image of Sasha and Keoni’s development of 

quantitative reasoning with distances. The videos are edited in ways that highlight the 

conceptual challenges that Sasha and Keoni faced as they learned about parabolas, as 

well as the ways in which they overcame those challenges.  

Consequently, these videos not only provided participants with a second source 

of opportunities for developing their own quantitative reasoning with distances (the 

first being their own mathematical activity as they solved math tasks), they also embed 

the development of quantitative reasoning in a continuum of learning by two high 

school students. I selected clips that highlight key moments in Sasha and Keoni’s 

development of quantitative reasoning, including challenges Sasha and Keoni faced, 

how they overcame those challenges, and advances in their understanding. This 

provided opportunities for participants to reflect on their own emerging understanding 

of the mathematics vis-à-vis their observations of what Sasha and Keoni were coming 

to understand. 

Images of instruction. The fourth component of MKT that I targeted is 

images of the types of activities and conversations that support the development 

quantitative reasoning with distances. The mathematics tasks I used in the 
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instructional sessions were based on the mathematics tasks used in the videos (see 

below for more details on these tasks). Accordingly, I conjectured the videos would 

support participants coming to understand the mathematics tasks as well as how the 

tasks can be used to foster the development of quantitative reasoning with distances. 

Moreover, the videos include the voice of the instructor, who successfully uses 

powerful quantitative questioning to encourage Sasha and Keoni as they develop their 

own mathematical understandings. I selected clips based on my belief that the clips 

demonstrate a powerful question, comment, or interaction between the teacher and the 

students. In other words, I selected clips that I thought provided participants with 

images of the kinds of instructional moves that can support the development of 

quantitative reasoning with distances. 

Sequences of Tasks 

Drawing from the work of Stylianides and Stylianides (2010), I used task 

sequences to promote the development of MKT. In each instructional session, 

participants worked in small groups (three or four participants in each group) on a task 

taken from the videos (I call these math tasks, whereas Stylianides and Stylianides 

would call them typical mathematics tasks). After completing the math tasks, 

participants were given time to reflect on their own developing understandings (see 

the section on reflection below). Following that, participants watched selected clips of 

video in which Sasha and Keoni complete a similar task. Finally, I led whole-class 

discussions to allow participants to talk about what they had noticed in the videos. I 

refer to the combined activity of watching and discussing the videos as video tasks. 
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Math tasks. The math tasks used during the instructional sessions were drawn 

from the MathTalk videos. Participants solved the math task before watching Sasha 

and Keoni do so in the videos; however, I did not use every task in the videos. For 

example, one lesson shows Sasha and Keoni finding coordinate values for specific 

points on a parabola in the coordinate grid. Sasha and Keoni needed multiple 

examples of finding the coordinate values before they were ready to move on to the 

next task which was to find a general equation for any point on the given parabola. 

Because participants had advanced mathematical preparation, I skipped the 

preliminary “find the coordinates” tasks, and gave them the task to find the general 

equation for a specific parabola. 

As noted in Chapter 2, math tasks feature a primary mathematical object that 

research literature suggests is difficult for students to learn (Stylianides & Stylianides, 

2010). An example of the type of task I used in the mini-course is shown in Figure 3.2 

below. The solver is asked to use the geometric definition of a parabola to write an 

equation for the given parabola. This task features a primary mathematical object, 

namely writing an equation for a given graph. Moreover, this primary mathematical 

object is linked to research that has shown that students have difficulty recognizing 

relationships between graphs and equations (Knuth, 2000a, 2000b). 
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Figure 3.2: An example of what Stylianides and Stylianides (2010) would call a 

typical mathematics task. 

Video tasks. Stylianides and Stylianides (2010) identified three features of 

PR-mathematics tasks: (a) a primary mathematical object; (b) a focus on important 

elements of MKT; and (c) a secondary, yet substantial, pedagogical object. Stylianides 

and Stylianides (2010) used PR-mathematics tasks with prospective elementary 

teachers. Of particular note is the fact that the prospective elementary teachers in that 

study “tended to have weak mathematical backgrounds” (Stylianides & Stylianides, 

2010, p. 166). Consequently, the authors placed emphasis on the mathematical 

features of the PR-mathematics tasks. 

I extended the notion of PR-mathematics tasks for this study, and called my 

version video tasks. First, I placed more emphasis on the pedagogical features of PR-

mathematics tasks. My rationale for this modification is that participants presumably 

did not have weak mathematical backgrounds given they all had completed 

undergraduate degrees in mathematics. Consequently, the math tasks I used provided 

sufficient opportunities for participants to develop mathematical knowledge. 
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Accordingly, I used video tasks to focus on pedagogical aspects of MKT (rather than 

the mathematical aspects as in Stylianides and Stylianides [2010]). 

Second, video tasks in the study included classroom discussions around 

selected clips from the videos. These discussions provided opportunities for 

participants to reflect on what they had seen in the videos and to begin thinking 

explicitly about teaching the content. During these discussions, I asked participants to 

talk about aspects from their work on the math tasks as well as the video clips. I 

conjectured that these discussions would support the development of MKT because 

they would provide opportunities for participants to focus on pedagogical aspects of 

the task, both from the perspective of a student learning the content as well as from the 

perspective of a teacher of that content. 

Opportunities for Reflection 

Before each math task, participants were given a Task Reflection Document 

(see Appendix C). The Task Reflection Document guided participants to think about 

potential pedagogical issues with the task. For example, one section of the document 

asked participants to list possible challenges high school students may face in 

completing the task and what the participant might do to help students overcome those 

challenges. By posing pedagogically-oriented questions, I hoped to prime participants 

to approach both the math task and subsequent video task from “the perspective of an 

adult who is preparing to become a teacher of mathematics” (Stylianides & 

Stylianides, 2010, p. 163), rather than the perspective of a student. 
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After completing the math task, participants revised their Task Reflection 

Document to record any changes in their thinking about the task. Finally, participants 

revised their Task Reflection Document after viewing and discussing the videos. 

In summary, there were two different opportunities for reflection. The first was 

the Task Reflection Document, which captured participants’ ideas and thoughts about 

the task and how to teach it. The second was the discussion participants engaged in 

after completing tasks and watching the videos. These two opportunities co-informed 

one another in that ideas participants wrote down on the Task Reflection Document 

were shared and discussed during the class discussions; likewise, ideas that emerged 

during class discussions influenced participants’ thinking about the task, which 

elicited revisions to their Task Reflection Documents. 

Data Collection and Analysis Methods for Research Question 1 

This section provides details about the methods used for the collection and 

analysis of data for Research Question 1, which is restated below: 

Research Question 1: What is the nature of the mathematical 
knowledge for teaching that develops for prospective secondary 
teachers during a video-based mini-course? 

To answer this question, I conducted pre- and post-interviews with each of the seven 

participants. I now describe protocols and instruments I used in the interviews. I finish 

this section by elaborating the methods I used to analyze data from the interviews. 

Interviews and Instruments 

To better understand the nature of the MKT that develops for participants, I 

conducted two semi-structured clinical interviews (Ginsburg, 1997) with each 
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participant, one prior to the first instructional session and one after the last 

instructional session. Clinical interviews are an appropriate tool for this study as they 

promote researchers’ understanding of the subjects’ ways of reasoning and knowing 

(e.g., Bishop et al., 2014).  

Semi-structured interviews are driven by the use of open-ended tasks that 

provide multiple points of entry for participants (Zazkis & Hazzan, 1999). This 

affordance allows for the fact that knowledge is an individual construction (Piaget, 

1947; von Glasersfeld, 1995), and it provided me with the opportunity to study and 

analyze each participant’s unique conceptions. 

Additionally, semi-structured clinical interviews provide the researcher with 

flexibility to pose tailored follow-up questions to conduct hypothesis-testing 

(Ginsburg, 1997). While all participants saw the same set of tasks in each interview, I 

generated follow-up probes for individual participants based on my own emerging 

model of each participant’s conceptions. In other words, as each interview progressed, 

I built hypothetical models of participants’ ways of understanding, and then posed 

tailored questions to generate evidence that could confirm or disconfirm those models. 

Data collection. Both interviews were videotaped, and participant work was 

captured using a Cintiq 13HD graphic pen tablet and Camtasia screen recording 

software. Using the Cintiq required little training for participants as it is essentially a 

large pad on which you write with a digital pen. The tablet consists of a screen 

showing exactly what is being written. The high school students in the MathTalk 

videos used the Cintiq capture method and had very little trouble adjusting to writing 
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on the tablet. Capturing participants work in this way provided several advantages 

over collecting pencil-and-paper work and trying to videotape the work as it develops. 

First, I fixed the video camera on the participant without worrying about getting a 

clear view of their paper. Second, I synced the recording of their work on the Cintiq 

with the video of the participant, providing a rich stream of data for analysis that 

allowed me to coordinate participants’ written work with their gestures. Third, as 

participants responded to follow-up probes, they invariably annotated their previous 

work. With typical pencil-and-paper it is sometimes difficult to tell when those 

inscriptions appeared, but in capturing with a Cintiq I could find the exact moment 

those inscriptions were created to analyze those in conjunction with what the 

participant was saying and doing as the inscription was made. 

Immediately after each interview I created a contact summary form (Miles & 

Huberman, 1994). These forms (see Appendix D for the form I used) served two 

purposes. First, a key component of the clinical interview is hypothesis testing, which 

requires the interviewer to be actively engaged in processing the data he or she 

observes as the subject completes tasks and discusses them. Consequently, taking 

notes during the interview is usually not a good idea, since doing so may interfere with 

the interviewer’s ability to focus on what the subject is saying and doing. The contact 

summary form serves to mediate this limitation by providing a place for recording 

thoughts about the interview, immediately after the interview.  

Second, a contact summary form is a useful tool for data analysis. I used 

contact summary forms to capture my immediate thoughts about participants’ MKT 
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around quantitative reasoning that emerged during the interviews. Reviewing all 

contact summary forms allows the researcher to identify themes that may have 

emerged across several interviews, which further focuses the researcher’s attention 

during data analysis. In this way, the forms aided in both the retrieval of data and as a 

tool to manage data overload (Miles & Huberman, 1994). 

Pre-interview instrument. The pre-interviews lasted approximately 45–90 

minutes, and provided opportunities for me to infer knowledge about parabolas 

participants may have already had. All participants were asked to complete three tasks, 

which I now elaborate (see Appendix E for the pre-interview protocol). 

The Parabola? Task. The first task features a catenary curve and asks 

participants to state if the curve is a parabola. This task was designed to explore 

participants’ conceptions of parabolas. Do they identify any 𝑈-shaped curve as a 

parabola? What might they use to justify their answers? Follow-up probes for this task 

were designed to elicit participants’ existing knowledge about the geometric definition 

of a parabola, as well as algebraic characteristics of parabolas. 

The Equation Task. For the second task, which was designed to probe 

participants’ MKT for parabolas, I gave participants the vertex form of the equation 

for a parabola. I asked participants to tell me everything they know about vertex form, 

which provided me with initial ideas about their conceptions for this equation. Follow-

up questions were designed to probe participants’ images of how students may come 

to understand vertex form (including what prior knowledge may be necessary and 



 

 

84 

potential challenges or obstacles students may encounter) and images of instruction 

that may foster students’ understanding of vertex form.  

The final follow-up for the Equation Task was to ask participants about the 

various parameters in the equation. I put this probe at the end of the task because I 

wanted to see if participants explicitly attended to the parameters as they discussed 

their own conceptions of vertex form, and more importantly as they discussed what 

they thought is crucial for students to develop an understanding of vertex form. 

The Ellipse Task. The third task featured an ellipse in a coordinate-free plane 

with only an 𝑥-axis and a 𝑦-axis. I designed this task because it can be solved using 

quantitative reasoning that is like the reasoning I described in Chapter 2 in the 

elaboration of the KDU around quantitative reasoning. By using an ellipse, I avoided 

overexposure to tasks I planned to use in the instructional sessions, while still 

targeting participants’ existing quantitative reasoning with distances in the coordinate 

plane. I provide a conceptual analysis for this task later in this section. 

Post-interview. The tasks used in this interview were designed to generate 

data that allowed me to infer shifts in participants MKT around quantitative reasoning 

(see Appendix F for the post-interview protocol). I used all three tasks from the first 

interview, with the following modification. 

The Parabola Task. For the third task, instead of using an ellipse, I gave 

participants a parabola in coordinate-free plane with only an 𝑥-axis and a 𝑦-axis. I 

asked participants to develop the equation of the parabola using the geometric 

definition of a parabola. The task was chosen based on my belief that it could help 
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reveal the extent to which participants had developed quantitative reasoning around 

distances. I provide a conceptual analysis of this task below. 

I also asked follow-up questions that were designed to probe participants’ ideas 

of how students may approach this task, what understanding students would need for 

this task, potential challenges they may face, and instructional moves the participant 

could take to help students successfully complete the task to develop conceptual 

understanding of the vertex form of the equation for a parabola. In short, the follow-up 

probes were designed to target the remaining two components of MKT, namely having 

an images of milestones for a learning trajectory for a mathematical idea, and having 

images of instruction that help students come to understand the idea. 

Conceptual Analyses 

I now present conceptual analyses for the Parabola Task and the Ellipse Task. 

These two tasks generated rich data in the interviews, which allowed me to reduce the 

interview data to focus on participants’ work on these tasks. 

Conceptual analysis of the Parabola Task. The purpose of this conceptual 

analysis is twofold. First, I want to ensure readers understand the complexity of this 

problem and the challenges it presented to participants. Second, I introduce and 

elaborate some constructs defined by P. W. Thompson (1990). To accomplish these 

two purposes, I will define each construct and then explain its role in solving the 

Parabola Task, which is reproduced below.  

Before embarking on this conceptual analysis, a disclaimer is necessary. The 

analysis presented below is only one of many appropriate and mathematically valid 



 

 

86 

ways of solving the task. It represents the way that Sasha and Keoni solved the task in 

the MathTalk videos. Moreover, it represents how I envision one might solve the task 

if they were to watch Lessons 1–8 of the MathTalk Parabola unit and use the tools that 

are developed during those lessons. Nevertheless, it is only one possible way to 

approach the parabola task. 

 
Figure 3.3. The Parabola Task from the post-interview. 

Quantity and quantification. According to P. W. Thompson, a quantity is 

one’s conception of a quality of something that can be measured (1994). To isolate a 

measurable quality and assign a measure to it is to quantify that quality. In the 
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Parabola Task, there are five qualities (see Figure 3.4 below) that when quantified are 

useful for solving the task: 

• 𝑥, the distance from a general point on the parabola to the 𝑦-axis 

• ℎ, the distance from the vertex to the 𝑦-axis 

• 𝑦, the distance from a general point on the parabola to the 𝑥-axis 

• 𝑘, the distance from the vertex to the 𝑥-axis 

• 𝑝, the distance from the vertex to the focus (or the vertex to the 

directrix) 

 
Figure 3.4. Five qualities that can be quantified in the Parabola Task. 
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Quantitative operation. P. W. Thompson (1990) defines a quantitative 

operation as “a conception of two quantities being taken to produce a new quantity” 

(p. 11). P. W. Thompson lists several quantitative operations, but for the purposes of 

this conceptual analysis two such operations will be elaborated. One operation is 

combine additively. This operation is analogous to the union of two sets. For example, 

one can additively combine the two quantities 𝑘 and 𝑝 to produce the new quantity 

𝑘 + 𝑝, which is the distance from the focus to the 𝑥-axis. Another operation is 

compare additively. This operation can be summarized as thinking about how much 

more or less one quantity is than another. For example, one can additively compare the 

two quantities 𝑥 and ℎ to get the quantity 𝑥 − ℎ, which is the quantity that describes 

how much longer the quantity 𝑥 is compared to the quantity ℎ. Figure 3.5 below 

illustrates these two examples. 

Quantitative relationship. When a third quantity is realized as the result of a 

quantitative operation on two other quantities, a quantitative relationship has been 

formed. For example, the quantities 𝑘, 𝑝, and 𝑘 + 𝑝 form a quantitative relationship, 

as do the quantities 𝑥, ℎ, and 𝑥 − ℎ. Quantitative reasoning involves the building of 

multiple quantitative relationships in a given situation and leveraging those 

relationships to make sense of and analyze the situation. 

Second-order quantitative relationship. A quantitative relationship results in 

the formation of new quantity, one that can itself be operated on. Consequently, when 

a quantity is formed as the result of a quantitative operation on two quantities, at least 

one of which is itself the result of a different quantitative operation, a second-order 
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quantitative relationship has been formed. As an example, consider the distance from 

the focus to the line segment that is labeled 𝑥 in Figure 3.4 above. One could conceive 

of this distance as an additive comparison between the distance from that line segment 

to the 𝑥-axis, which is 𝑦, and the distance from the focus to the 𝑥-axis, which 𝑘 + 𝑝 

(which is itself the result of a quantitative operation on the quantities 𝑘 and 𝑝; see 

Figure 3.8 below, as well as accompanying discussion). Thus, the distance from the 

line labeled 𝑥 to the focus is 𝑦 − (𝑘 + 𝑝). 

 
Figure 3.5. The quantities 𝑘 + 𝑝 and 𝑥 − ℎ formed via quantitative operations. 

One of my goals for using the Parabola Task was to investigate participants’ 

development of quantitative reasoning with distances, which involves quantifying 
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points in the plane as two separate quantities: the length in grid units of a horizontal 

segment from the point to the 𝑦-axis and the length in grid units of a vertical segment 

from the point to the 𝑥-axis. Once quantified, these quantities can be operated on to 

form quantitative relationships, which can then be used to find the equation of the 

parabola. Specifically for the Parabola Task, an individual first conceives of a point on 

the parabola in general terms [e.g., 𝑥, 𝑦 ]. By conceiving of a general point on the 

parabola, the individual can then leverage the definition of a parabola to conceive of 

two equivalent distances, one from 𝑥, 𝑦  to the directrix (labeled 𝑙	in Figure 3.6 

below) and the other from 𝑥, 𝑦  to the focus (labeled 𝑐 in Figure 3.6 below). 

 
Figure 3.6. The distances 𝑐 and 𝑙	are equivalent by the definition of a parabola. 
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Once these distances have been conceived, the individual must conceive of a 

way to relate these distances to the five quantities discussed previously. One potential 

way to solve the task is to use the Pythagorean Theorem by identifying a right triangle 

(as shown below in Figure 3.7). 

 
Figure 3.7. A right triangle can be used to find the equation of the parabola. 

The distance 𝑏 is found by forming a quantitative relationship with the 

quantities 𝑥 and ℎ as described above. The distance 𝑏 is the amount by which 𝑥 is 

greater than ℎ, and thus 𝑏	 = 	𝑥 − ℎ (see Figure 3.10 below). The distance 𝑎 is found 

by forming a second-order quantitative relationship. First, an additive combination of 



 

 

92 

𝑘 and 𝑝 as described above yields the quantity 𝑘 + 𝑝. The distance 𝑎 is then formed 

by creating a second-order quantitative relationship with the quantities 𝑦 and 𝑘 + 𝑝 

and the quantitative operation additive comparison (or takeaway). The distance 𝑎 is 

the amount by which the quantity 𝑦 exceeds the quantity 𝑘 + 𝑝, and is given by 𝑦 −

(𝑘 + 𝑝), as illustrated below in Figure 3.10. 

 
Figure 3.8. The quantity 𝑎 = 𝑦 − (𝑘 + 𝑝) is a quantitative relationship between the 

quantities 𝑦 and 𝑘 + 𝑝. 

Finding the quantity 𝑐 can be accomplished by finding the quantity 𝑙 in Figure 

3.6 above, which, in turn, can be found by establishing a second-order quantitative 
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relationship. First the quantity 𝑘 − 𝑝 is formed, which is the amount by which the 

quantity 𝑘 exceeds the quantity 𝑝. This is also the distance from the directrix to the 𝑥-

axis. The second-order relationship is the difference between 𝑦 and 𝑘 − 𝑝, which is 

𝑦 − (𝑘 − 𝑝); this is the distance from the general point on the parabola to the directrix. 

These quantities are illustrated below in Figure 3.9.  

 
Figure 3.9. The quantities 𝑦, 𝑘, and 𝑝 can be used to find the quantity 𝑦 − (𝑘 − 𝑝). 
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Figure 3.10. The quantities 𝑥 − ℎ, 𝑦 − (𝑘 + 𝑝), and 𝑦 − (𝑘 − 𝑝). 

Once these distances have been quantified, the individual can set up the following 

equations: 

𝑎6	+	𝑏6 = 𝑐6 

(𝑦 − [𝑘 + 𝑝])6 + (𝑥 − ℎ)6 = (𝑦 − [𝑘 − 𝑝])6 

The second equation can be solved for 𝑦 to yield the equation for the general parabola, 

which is 𝑦 = (JKL)M

NO
+ 𝑘. 

Conceptual analysis of the Ellipse Task from the pre-interview. In the pre-

interview, I gave participants the Ellipse Task, which is provided in Figure 3.11.  



 

 

95 

 
Figure 3.11. The Ellipse Task from the pre-interview. 

I chose this task for two reasons. First, I wanted a task that would not spoil much of 

what was to come in the mini-course. I believed that giving participants the Parabola 

Task in the pre-interview might be problematic because a major emphasis of the mini-

course is to create machinery that would be helpful in solving a task like the Parabola 
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Task. However, I also wanted a task that could be successfully solved using 

quantitative reasoning that is similar to the reasoning used in the Parabola Task in the 

post-interview so I could make pre-post comparisons. Moreover, solving both the 

Parabola Task and The Ellipse Task can be accomplished by leveraging well-known 

triangle formulae: the area formula in the Ellipse Task and the Pythagorean Theorem 

in the Parabola Task. To illustrate how similar quantitative reasoning can be used to 

solve this task, I now will present a brief conceptual analysis. 

 
Figure 3.12. The quantities 𝑥, 𝑦, and 𝑘. 
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To find the area of the two right triangles in the diagram an individual may 

first quantify the coordinates of 𝑥, 𝑦  as two separate distances: the distance 𝑦 from 

the point to the 𝑥-axis and the distance 𝑥 from the point to the 𝑦-axis. The vertex of 

the right angle of the right triangles is the point 𝑥, 𝑘 , and similarly its coordinates 

can be quantified as the distance 𝑘 from the point to the 𝑥-axis and the distance 𝑥 from 

the point to the 𝑦-axis. The vertical leg of the right triangles can then be found by 

forming the quantitative relationship 𝑦 − 𝑘 (labeled in Figure 3.14 below) with the 

quantities 𝑦 and 𝑘 and the additive comparison quantitative operation. The quantities 

𝑥, 𝑦, and 𝑘 are shown above in Figure 3.12. 

The horizontal legs of each of the right triangles can be found using the 

quantities 𝑥, ℎ, and the given distance 𝑐, which is the distance from ℎ, 𝑘  to either of 

the points 𝐹5 or 𝐹6. To find the distance from 𝐹6 to the point 𝑥, 𝑘 , one may quantify 

the 𝑥-coordinate of the point ℎ, 𝑘  as the distance ℎ from the point to the 𝑦-axis. 

Forming the quantitative relationship ℎ + 𝑐 with the quantities ℎ and 𝑐 and the 

additive combination quantitative operation yields the distance from 𝐹6 to the 𝑦-axis. 

The individual can now form the second order quantitative relationship 𝑥 − (ℎ + 𝑐), 

which is the distance from 𝐹6 to the point 𝑥, 𝑘 , and is also the length of the 

horizontal leg of the smaller right triangle. Finding this distance is illustrated below in 

Figure 3.13, and the quantity is labeled in Figure 3.14 below. 
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Figure 3.13. The quantities 𝑥, ℎ, and 𝑐, which are needed to find the distance of the 

horizontal leg of the smaller right triangle. 

Finally, to find the length of the horizontal leg of the larger right triangle, one 

may recognize that the distance from 𝐹5 to the point 𝑥, 𝑘  differs from the distance 

from 𝐹6 to the point 𝑥, 𝑘  by a distance of 2𝑐. One can then form the second-order 

quantitative relationship 𝑥 − (ℎ − 𝑐) with the quantities 𝑥 − (ℎ + 𝑐) and 2𝑐 and the 

additive comparison quantitative operation. 
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Figure 3.14. The quantities 𝑦 − 𝑘, 𝑥 − (ℎ − 𝑐), and 𝑥 − (ℎ + 𝑐). 

This quantitative reasoning results in the lengths of the legs of two right 

triangles (shown in Figure 3.14 below): 𝑦 − 𝑘 is the length of the vertical leg of both 

triangles, 𝑥 − (ℎ + 𝑐) is the length of the horizontal leg of the smaller right triangle, 

and 𝑥 − (ℎ − 𝑐) is the length of the horizontal leg of the larger right triangle. The 

areas of these triangles are then easily found using the formula for the area of a right 

triangle, and are shown below. 

Area of smaller triangle: 5
6
(𝑦 − 𝑘)(𝑥 − ℎ + 𝑐 ) 

Area of larger triangle: 5
6
(𝑦 − 𝑘)(𝑥 − ℎ − 𝑐 ) 
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As can be seen from this conceptual analysis, the reasoning used to find the 

distances in the Parabola Task from the post-interview is like the reasoning used to 

find the distances in the Ellipse Task in the pre-interview. Finding the distance 𝑥 − ℎ 

in the Parabola Task is like finding 𝑦 − 𝑘 in the Ellipse Task, and finding the second-

order quantitative relationships 𝑦 − (𝑘 + 𝑝) and 𝑦 − (𝑘 − 𝑝) in the Parabola Task is 

similar to finding the second-order quantitative relationships 𝑥 − (ℎ + 𝑐) and 𝑥 −

(ℎ − 𝑐) in the Ellipse Task. 

Data Analysis 

Analysis of the interview data proceeded in two phases. In the first phase I 

analyzed data from the post-interviews to identify the nature of participants’ MKT. 

This resulted in several categories that described the nature of MKT around 

quantitative reasoning that participants potentially developed. The second phase 

consisted of analyzing data from the pre-interview in search of evidence consistent 

with these categories in an effort to determine whether or not participants who showed 

evidence of MKT around quantitative reasoning in the post-interview had also showed 

evidence of such in the pre-interview. This allowed me to make claims about the 

nature of MKT that developed during the instructional sessions. These categories are 

briefly discussed in the following subsection, and then again in greater detail in 

Chapter 4. 

Analysis of post-interview data. To facilitate the reduction of data, I created 

descriptive accounts (following Miles & Huberman, 1994) after I watched the video 

recording for each post-interview. Descriptive accounts provide a factual account of 
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the interview with little or no inferences made on the part of the researcher. By 

making such accounts, the researcher focuses on what actually happened in the 

interview before trying to make sense of what happened. I used the descriptive 

accounts to identify or refine themes from the data.  

In particular, creating the descriptive accounts revealed that participants’ 

engagement with the Parabola Task generated rich data around quantitative reasoning. 

While other tasks from the post-interview contained evidence of participants’ 

conceptions of parabolas and some evidence of their quantitative reasoning, episodes 

from the interviews in which participants solved the Parabola Task seemed like a 

productive place to start my analysis of the post-interview data. Those episodes 

formed the reduced data set for the post-interview. 

I transcribed and annotated the reduced data set to facilitate analysis. This data 

was analyzed using open coding (Strauss, 1987) from grounded theory. During open 

coding, data are given labels and grouped into conceptually similar categories. 

Keeping in mind that the answer to Research Question 1 is a description of the nature 

of MKT that developed for participants, I began coding data as it pertained to MKT 

around quantitative reasoning. 

As categories emerged they were evaluated against the corpus of data 

(including data from other tasks) as well as against other categories using the constant 

comparative method (Glaser & Strauss, 1967). This method requires that segments of 

data continually be revisited throughout the analysis of data. In doing so, I reexamined 

meanings initially assigned to data and revised or updated these meanings as new 
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insights emerged during my analysis. This method increases the precision and 

accuracy of the development of categories, and it guards against bias (Corbin & 

Strauss, 1990). 

Analysis of the reduced data set revealed four categories. Three of these 

categories described different aspects of MKT around quantitative reasoning that 

participants seemed to develop: (a) sophisticated quantitative reasoning with distances; 

(b) conceptual orientations toward problem solving; and (c) taking the perspective of 

high school students. The fourth category described productive or positive dispositions 

toward high school students that was not necessarily associated with quantitative 

reasoning. These four categories are described in greater detail in Chapter 4. 

Analysis of pre-interview data. Each category that emerged in the analysis of 

the post-interview data described different aspects of MKT that some participants 

seemed to demonstrate. However, data from the post-interview alone was not 

sufficient to make claims that participants developed that MKT from engaging in the 

instructional sessions. Instead, I searched for evidence from the pre-interview to 

determine if participants had demonstrated similar MKT prior to their engagement in 

the mini-course.  

The emergence of the four categories of MKT from the post-interview 

provided direction in how to reduce the data from the pre-interviews. Specifically, I 

focused my analysis on data from participants’ work on the Ellipse Task, as that task 

was most similar to the Parabola Task. I created descriptive accounts for the segments 
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of data featuring the Ellipse Task and transcribed relevant sections of the data that 

directly related to the four categories of MKT from the post-interview. 

Analysis of these data revealed three additional categories (a) unsophisticated 

or unproductive quantitative reasoning; (b) numerical or calculational orientations 

toward problem solving; and (c) unproductive or negative dispositions toward high 

school students. I made comparisons between these categories and the four that 

emerged in the post-interview to identify potential development of MKT. These 

comparisons resulted in descriptions of four shifts in MKT that participants seemed to 

experience as a result of their engagement in the instructional sessions: (a) a shift in 

quantitative reasoning; (b) a shift in orientation toward problem solving; (c) a shift in 

point of view; and (d) a shift in affect toward high school students. Elaboration of and 

evidence for these shifts are provided in Chapter 4. 

Data Collection and Analysis Methods for Research Question 2 

This section provides details about methods to collect and analyze data for 

Research Question 2, which is restated below: 

Research Question 2: How do particular elements of the designed 
learning ecology contribute to the development of MKT by prospective 
secondary teachers during a video-based mini-course? 

As I noted in my elaboration of this research question in Chapter 2, I extended the 

focusing framework developed by Lobato et al. (2013) to use as a tool for answering 

this question. As this framework will be featured prominently in Chapter 5, I elaborate 

each of the four components of the framework in this section. I will then describe how 
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I collected and reduced data for this question. I will end this chapter by outlining the 

methods of analysis used to answer this question. 

The Focusing Framework 

While Silverman and Thompson (2008) posited that MKT is the result of a 

second-order reflective abstraction, I argued in Chapter 2 that this process of learning 

will not adequately account for the development of MKT by PSTs. Lobato et al. 

(2013) explained how certain mathematical features of a learning environment may 

serve as the foundation for more productive mathematical ideas than do other features. 

I extend this perspective by arguing that certain features of a learning environment 

may serve as the foundation for more productive MKT than do other features.  

This is not to say that the construct of reflective abstraction does not provide 

explanatory power. Instead, Lobato et al. (2013) observed that there is a relationship 

between noticing and reflective abstraction that has implications for how and what one 

learns. As Lobato et al. argued, 

By connecting noticing to reflective abstraction, we posit that what one 
notices mathematically can serve as the rootstock upon which one 
constructs ways to reason in new situations. Several different shoots 
(specific ways of reasoning) may be supported, but each is constrained 
by the rootstock (what one notices). (p. 812) 

Lobato et al. (2013) defined noticing “as selecting, interpreting, and working 

with particular mathematical features or regularities when multiple sources of 

information compete for one’s attention” (p. 809). To account for the impact noticing 

has on learning, Lobato et al. developed the focusing framework, which is comprised 

of four interrelated components: (a) centers of focus; (b) focusing interactions; (c) 
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mathematical tasks; and (d) the nature of mathematical activity. I discuss each of these 

briefly below, and provide more elaboration in Chapter 5. 

Centers of focus. Centers of focus (CoFs) are “properties, features, 

regularities, or conceptual objects that students notice” (Lobato et al., 2013, p. 814) in 

information-dense situations. Lobato et al. conceived of CoFs as a way to identify 

mathematical features in the learning environment that attracted students’ attention. 

For this study, I adapted this construct to capture a wider range of other information, 

notably pedagogical features of the learning ecology that appeared to attract PSTs’ 

attention as they developed MKT. 

Focusing interactions. Focusing interactions can be described as the discourse 

practices (gesture, talk, use of diagrams or drawings, etc.) of teachers or participants 

that direct others’ attention to mathematical or pedagogical features of the mini-course 

(Lobato et al., 2013). As teachers or participants direct the attention of others to 

mathematical and pedagogical features of the class, those features are more likely to 

be noticed by others, giving rise to CoFs.  

Features of tasks. In this study, tasks (including both math and video tasks) 

formed what Lobato et al. (2013) described as “the backdrop for discourse practices 

because these are the situations that students and teachers discuss” (p. 814). The 

rationale for including tasks in the focusing framework is that tasks influence what 

students notice and learn. Lobato et al. described how the affordances and constraints 

of various mathematical tasks can impact what students notice and learn.  
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The nature of mathematical activity. The final component of the focusing 

framework is the ways in which participation in the classroom is organized and 

regulated by class-established norms that seem to influence what participants notice. 

Lobato et al. (2013) posited that these norms “regulate who is allowed to talk and what 

types of contributions they can make” (p. 814), and consequently can shape or limit 

what participants notice in the learning environment. 

Data Collection 

Collection of data for Research Question 2 occurred over six instructional 

sessions, each lasting approximately two hours. Two cameras were used to capture 

participants’ and my own activity. When participants worked in small groups, the 

video cameras captured the conversations and activity that occurred in each of the 

small groups. During discussions with the entire class, one of those cameras captured 

the discussion as well as inscriptions that were made during the presentations of 

participants’ work. Finally, written work produced by participants was collected, 

including their work on mathematics tasks and Task Reflection Documents.  

Another doctoral student, Carren Walker, attended each session as an observer 

(Steffe & Thompson, 2000), and she operated a video camera. She recorded whole 

class interactions as well as group work, and she took detailed field notes. After each 

session, Carren shared what she noticed about participants’ thinking and their 

experiences during the session. These debriefing sessions provided opportunities for 

me to reflect on insights, challenges, and issues that emerged during the session, and 



 

 

107 

informed the revising of plans for subsequent sessions (Cobb, McClain, & 

Gravemeijer, 2003; Steffe & Thompson, 2000). 

Data Reduction 

Reduction of the classroom data was informed by the analysis of the pre- and 

post-interviews, which resulted in the generation of four pre-post shifts in MKT. To 

reduce this data, I reviewed the classroom videos and created descriptive accounts 

(following Miles & Huberman, 1994) of each of the instructional sessions. I then 

located segments of data that seemed of particular importance for each shift in MKT 

around quantitative reasoning with distances. 

Data Analysis 

Segments of data that were related to a shift in MKT around quantitative 

reasoning with distances were analyzed in an effort to understand how that MKT 

developed. Specifically I leveraged the four components from the focusing framework 

to account for the impact that participants’ noticing had on their learning. 

Consequently, I sought evidence of what participants noticed, which discourse 

practices appeared to influence their noticing, and how the types of tasks used and the 

nature of mathematical activity influenced their noticing (Lobato et al., 2013). 

Following Lobato et al. (2013), I conducted a total of four analytic passes of 

the data. I briefly describe each of these below, and then elaborate each pass in 

Chapter 5. 

Identifying CoFs. In the first analytic pass, I identified two centers of focus: 

MKT around mathematics not in the MathTalk videos and MKT around quantitative 
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reasoning with distances. This involved fracturing the data (Strauss & Corbin, 1990) 

into manageable chunks and analyzing these to identify what participants seemed to be 

noticing. I analyzed participants’ verbal utterances and coordinated these with both the 

written inscriptions and the gestures participants made during the mini-course. In the 

focusing framework, CoFs are essentially sites for analysis for potential shifts in 

students’ learning (Lobato et al., 2013), and they served a similar purpose for this 

study. 

Identifying focusing interactions. Once the CoFs were identified, it became 

clear that there was a significant shift in what participants were noticing. This shift 

occurred around Session 3, so I looked at data from Sessions 1–4 for evidence of 

focusing interactions that seemed to play a role in precipitating the shift in CoFs. 

Lobato et al. (2013) provided an extant coding scheme from which I began my 

analysis. They identified and defined three focusing interactions: (a) highlighting 

(Goodwin, 1994); (b) quantitative dialogue; and (c) renaming (Goodwin, 1994). Two 

of these, highlighting and quantitative dialogue, contributed to the shift in CoFs. 

Identifying features of tasks that contributed to the shift in CoFs. Lobato 

et al. (2013) analyzed specific moments in the data when there seemed to be shifts in 

CoFs. I extended the focusing framework by examining the role that both math and 

video tasks played in the shift in CoFs. In this study, the video tasks and the Task 

Reflection Document seemed to foster participants noticing of MKT around 

quantitative reasoning with distances. 
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Identifying the nature of mathematical activity. The main goal of analysis 

for this component was to describe “the rules for engagement in mathematical activity 

that appeared to govern students’ and teachers’ roles and that seemed to influence the 

number and nature of the candidates for centers of focus” (Lobato et al., 2013, p. 823). 

I looked at differences in the participatory roles participants seemed to take on in 

Session 1 and Session 2 versus in Session 3 and later. These differences helped 

account for the shift in CoFs.
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Chapter 4: Shifts in Mathematical Knowledge for Teaching 

In this chapter I answer Research Question 1, which is restated below: 

Research Question 1: What is the nature of the mathematical 
knowledge for teaching that develops for prospective secondary 
teachers during a video-based mini-course? 

The goal for this study was to examine the development of MKT around quantitative 

reasoning, which requires first the identification of MKT that participants appeared to 

develop through their engagement with the mini-course. As discussed in Chapter 3, I 

conducted pre- and post-interviews with each participant. Analysis of the interview 

data revealed four distinct shifts in MKT that participants seemed to experience. 

Initially, one of my hypotheses was that participants would develop more 

sophisticated quantitative reasoning with distances in the coordinate plane. However, 

participants entered the study with a wide range of background knowledge. Thus, 

several participants demonstrated more sophisticated quantitative reasoning in the pre-

interview than I had anticipated. Consequently, while some participants experienced 

major shifts in the nature of their quantitative reasoning from pre- to post-interviews, 

others demonstrated more minor development because of their differentially better 

starting point with respect to quantitative reasoning. 

Even though some participants seemed to not develop more sophisticated 

quantitative reasoning, it did appear that they developed MKT around quantitative 

reasoning. For example, some participants developed the ability to think about 

quantitative situations from the perspective of high school students, while others 

developed a more productive conceptual orientation toward solving problems 
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involving quantities. Additionally, many participants appeared to experience a shift in 

MKT that was not specifically related to quantitative reasoning. Given the wide range 

of the nature of MKT that seemed to develop, my goal in answering Research 

Question 1 was to capture major shifts in MKT from pre- to post-interviews, as well as 

capture at least one shift per participant.  

In this chapter, I provide evidence to support the claim that there were four 

shifts in MKT. First, some of the prospective teachers shifted from numerical to 

quantitative reasoning or from less to more sophisticated quantitative reasoning with 

distances in the coordinate plane (as described in the KDU presented in Chapter 2). 

Second, several participants shifted from attending only to their own ways of 

understanding mathematical situations to being able to decenter (Teuscher, Moore, & 

Carlson, 2016) and make sense of how others (specifically students) understand the 

situations. Third, most of the participants seemed to shift from a more calculational 

orientation toward teaching and learning to a more conceptual orientation (A. G. 

Thompson et al., 1994). Finally, all but one of the preservice teachers experienced a 

shift in affect, from demonstrating a deficit and teacher-oriented perspective regarding 

student understanding to exhibiting a growth-oriented and student-centered 

perspective regarding student understanding. Table 4.1 below provides an overview of 

which shifts each participant experienced (the names of all participants have been 

changed to gender-preserving pseudonyms). 
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Table 4.1. Overview of shifts in MKT that each participant seemed to experience. The 
checks denote participants who experienced each shift, while the circles represent that 

a participant likely decentered prior to the post-interview. 

Participant 
Shift in 

Quantitative 
Reasoning 

Shift in Point of 
View 

(Decentering) 

Shift in 
Orientation 

Shift in 
Affect 

Willow ü O ü ü 
Desmond ü  ü ü 
Sierra ü O ü ü 
Marshall  ü  ü 
April   ü ü  
Jasper  ü ü ü 
Lily   O  ü 

 
The remainder of this chapter is divided into five sections. In the first section I 

present evidence to support my claim that three participants experienced a shift in their 

quantitative reasoning. In the second section, I provide a brief overview of the 

construct of decentering, and then I provide evidence that suggests three participants 

seemed to be able to decenter in the course of their problem-solving activities during 

the post interview; in other words, they shifted their point of view. The third section 

begins with a review of literature related to calculational and conceptual orientations, 

which is followed by evidence that suggests that five participants experienced a shift 

in their own orientation toward problem solving. I then describe how six of the seven 

participants seemed to shift their affect toward one that was more student-centered and 

growth-oriented. I conclude the chapter with a summary and brief discussion. I have 

reproduced both the Ellipse and Parabola Tasks below for the convenience of the 

reader. 



 

 

113 

 
Figure 4.1. (a) The Ellipse Task from the pre-interview and (b) The Parabola Task 

from the post-interview. 
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A Shift in Quantitative Reasoning 

In Chapter 3, I elaborated several elements of quantitative reasoning (P. W. 

Thompson, 1994). Briefly, these elements include isolating a measurable quality 

(quantifying); one’s conception of that that quality that can be measured along with its 

measure (quantity); combining or comparing two quantities to create a third 

(quantitative operation); and realizing a third quantity through a quantitative operation 

(quantitative relationship). Elements of quantitative reasoning that build upon other 

elements (e.g., quantitative relationships) can be thought of as more sophisticated than 

the elements they are built upon (e.g., quantities). For example, suppose in the pre-

interview a participant did not quantify the 𝑥-coordinate of the point (ℎ, 𝑘), but was 

able to say that the point (4,3) was four units from the 𝑦-axis. If in the post-interview 

he or she quantified the 𝑥-coordinate of the point (ℎ, 𝑘) as a distance of ℎ units from 

the 𝑦-axis and then formed quantitative relationships with that quantity, I considered 

this reasoning to be more sophisticated than the reasoning exhibited in the pre-

interview. 

Accordingly, one way to think of a shift in quantitative reasoning is to consider 

which quantities a participant quantified and how those quantities were used to solve a 

problem. I considered a participant to have experienced a shift in quantitative 

reasoning if the participant seemed to demonstrate more sophisticated quantitative 

reasoning in the post-interview than he or she did in the pre-interview. Another way 

that this shift manifested was when an individual appeared to reason numerically (or 

pre-quantitatively) in the pre-interview and then reasoned quantitatively in the post-
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interview (see Figure 4.2 below for examples of these two types of reasoning). Finally, 

it should be noted that my claims are based on the nature and type of reasoning 

participants demonstrated; in other words, my claims are not about what participants 

were capable of, rather my claims are about what they demonstrated in the interviews. 

 
Figure 4.2. (a) A participant reasoning pre-quantitatively may claim that the segment 
labeled Q has a length of 𝑥 − 𝐹5. (b) A participant reasoning quantitatively may form 

the quantitative relationship 𝑥 − ℎ by first quantifying and later operating on the 
quantities 𝑥 and ℎ.  

The remainder of this section is devoted to providing evidence that suggests 

three participants, Willow, Desmond, and Sierra, experienced shifts in their 

quantitative reasoning. Three other participants, Marshall, April, and Jasper 

experienced less dramatic shifts in quantitative reasoning because they came into the 

study with more sophisticated prior knowledge related to quantitative reasoning. 

Moreover, these participants demonstrated much stronger quantitative reasoning in the 

pre-interview than Willow, Desmond, or Sierra. Additionally, while the shifts in 

quantitative reasoning by Marshall, April, and Jasper were not as dramatic, all three of 

these participants demonstrated an ability to shift their point of view, which is related 
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to quantitative reasoning and which I discuss in the next section. Lily demonstrated 

sophisticated quantitative reasoning with distances in both the pre- and post-

interviews. 

Finally, the structure of this section varies slightly from the presentation of the 

other three shifts in MKT in the remaining sections in this chapter. While each 

participant seemed to develop capacity for quantitative reasoning, their starting and 

ending conceptions are different. Consequently, I develop an argument for each 

participant by analyzing data and providing evidence from the pre- and post-

interviews. In subsequent sections I discuss a prototypical participant in detail and 

then briefly summarize how other participants also experienced the shift. 

Willow 

In this section I present evidence to support the claim that Willow experienced 

a shift in her quantitative reasoning, from reasoning about points only as a locations or 

values to quantifying coordinates of points as distances and forming quantitative 

relationships with those quantities. In the pre-interview, Willow did not demonstrate 

quantitative reasoning with distances in the plane. Instead, she appeared to struggle to 

quantify coordinates, and she only demonstrated conceptions of points as locations in 

the plane or as values on which she could operate. These two conceptions—points as 

locations and points as values—represent the totality of Willow’s demonstrated 

reasoning with points in the plane during the pre-interview. While the points-as-

locations conception is productive, it alone is not sufficient for forming quantitative 

relationships with coordinates (as distances). By contrast, in the post-interview Willow 
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seemed to demonstrate sophisticated quantitative reasoning. Not only did she quantify 

coordinates as distances, she also formed quantitative relationships with those 

quantities as she solved the Parabola Task. I now present four claims about Willow’s 

reasoning, two of which are supported by evidence from the pre-interview and two of 

which are supported by evidence from the post-interview. 

Points as locations. Willow began the Ellipse Task (see Figure 4.1 above) in 

the pre-interview by writing down the formula for the area of triangle (𝐴 = 5
6
𝑏 ∗ ℎ), 

which she later erased. She also labeled two segments on the diagram as 2𝑐. She then 

said that the “whole thing” (meaning the segment from the point 𝐹5 to the point 𝐹6) 

would be 4𝑐, and she labeled the segment as such. This early work can be seen below 

in Figure 4.3.  

Willow then seemed to conceive of points as locations in the plane. She 

pointed to specific places in the coordinate plane to identify points and provided 

coordinates for points in the plane that she had located. For example, in the following 

exchange, Willow pointed to two different points in the plane and named one of them.  

Willow: [Draws a vertical line segment from the 𝑥-axis to the 
vertex of the right angle, which can be seen in Figure 
4.3 below] This is also an 𝑥, 𝑦 [points to the vertex 
of the right angle], right, technically? 

Interviewer: Um, can you say more? 
Willow: Because this [points to the vertex of the right angle] 

is a point on the graph. This is an 𝑥, 𝑦 [underlines 
the printed 𝑥, 𝑦 ], this could be 𝑥-one, er, 𝑥-two, 𝑦-
two [labels the vertex of the right triangle 𝑥6, 𝑦6 ]. 
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Figure 4.3. Willow’s initial work on the Ellipse Task, including her labeling of the 

right angle as (𝑥6, 𝑦6). 

Willow pointed to the vertex of the right angle and said it was a “point on the 

graph.” Moreover, she labeled it by giving it a name with specific coordinates, 

𝑥6, 𝑦6 . This can be taken as evidence that Willow conceived of that point as a 

location in the plane. Right after she said the vertex of the right angle was “a point on 

the graph,” she underlined the point that was labeled 𝑥, 𝑦  and said it was “an 𝑥, 𝑦,” 

which could also indicate she was locating that point and conceiving of it as a location 

in the plane. In total, there were five additional instances in which Willow pointed to 
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and named or labeled points in the plane. These instances suggest that Willow 

conceived of points as locations in the plane. 

A careful reader may be thinking “Is it not legitimate to think of a point as a 

location on a graph?” Indeed, such a conception is valid and productive. However, 

Willow’s conceptions of points appeared limited in the pre-interview, which 

potentially constrained her ability to reason quantitatively with distances in the 

coordinate plane.  

In fact, it appeared that in the pre-interview Willow did not quantify the 

coordinates as also representing distances. Consider that at the beginning of the 

previous exchange, she drew a vertical line segment from the 𝑥-axis to the vertex of 

the right angle. This action is consistent with the types of actions taken by individuals 

when they conceive of the 𝑦-coordinate of a point as representing some distance above 

the 𝑥-axis. However, she did not label, or name, or use that segment in any way for the 

rest of the interview. Moreover, Willow labeled the vertex of the right angle (𝑥6, 𝑦6), 

even though it was vertically aligned with the point (𝑥, 𝑦). This would make 𝑥6 = 𝑥. 

If Willow had conceived of the x-coordinates as distances from the y-axis, she might 

have more readily recognized that the two 𝑥-coordinates should be the same. Willow 

did not seem to attend to this quality of the vertex of the right angle, which suggests 

she did not see the two 𝑥-coordinates for those points as being equivalent. Taken 

together, this serves as evidence that Willow did not quantify these coordinates as 

distances. 
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Points as values. In the pre-interview, Willow also demonstrated a conception 

of points as values. In her attempt to find the height of the right triangle, Willow 

appeared to want to find the difference between two points, as opposed to the 

difference between the 𝑦-values of two points: 

Willow: My height would be this	𝑥-one 𝑦-one [circles 
𝑥, 𝑦 ]—this point, and this is the difference 

[gestures with her pen from 𝑥6, 𝑦6  to 𝑥, 𝑦 ] 
between these two points, so it would be, this height 
would actually be—is it okay if I do that? Because I 
don’t know how else to label this side, actually. 

Interviewer: Yeah, continue along that path. 
Willow: So going off the regular, it’s one-half times, then I’m 

going to say, I’m not sure, but this would be the 
difference 𝑥-one 𝑦-one minus 𝑥-two 𝑦-two [writes 
𝐴 = 5

6
(			)( 𝑥5, 𝑦5 − (𝑥6, 𝑦6), as seen in Figure 4.4 

below]. 

 
Figure 4.4. Willow’s equation using the two points instead of the 𝑦-coordinates of the 

two points. 

Willow’s statement that the height would be the difference between the two points 

suggests that she thought she could operate on the two points to find the height. Her 

written inscription served as more evidence that she conceived as points as values that 

she could operate on. 

That Willow appeared to conceive of points as values on which she could 

operate could be problematic, as the notation that she used is not mathematically 

acceptable, and points are typically not operated on using arithmetic in the way that 
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she was attempting. For high school students, such a conception might not be as 

unexpected, but Willow is a prospective secondary teacher, and it would be expected 

that she would be more careful in her algebraic notation.  

In summary, in the pre-interview, Willow did not seem to demonstrate 

quantitative reasoning that empowered her to solve the Ellipse Task. Willow’s points-

as-locations conception was productive but not sufficient for solving the task. 

Willow’s points-as-values conception helped her isolate the length of the vertical side 

of the right triangle, yet her notation was problematic. Neither conception involved 

quantifying coordinates of points as distances. Throughout the entire pre-interview 

Willow did not seem to form any quantitative relationships. 

Quantifying coordinates as distances. From the pre- to the post-interview, 

Willow seemed to experience a shift in her ability to reason quantitatively. In the post-

interview, she was able to quantify coordinates of points as distances—something she 

did not demonstrate in the pre-interview. In particular, she quantified the coordinates 

ℎ, 𝑥, 𝑘, and 𝑦 as distances, where (𝑥, 𝑦) was a point chosen by Willow to represent any 

point on the parabola and (ℎ, 𝑘) is the vertex of the parabola.  

Willow began the Parabola Task (see Figure 4.1b above) by drawing a 

horizontal line segment starting from the right of the parabola, through the focus to the 

𝑦-axis (see Figure 4.5). She drew a vertical line segment from the parabola to the 

directrix. Next, she drew a vertical segment from the focus to the vertex, and then she 

drew a diagonal line from the vertex to the parabola. Finally, Willow drew two dotted 

lines emanating from the vertex, and labeled these as ℎ	and 𝑘.  
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Figure 4.5. Willow’s preliminary work on the Parabola Task. 

Willow then drew another dotted line from the directrix to the 𝑥-axis and 

labeled it 𝑥. She labeled as 𝑦 the intersection of her first horizontal line segment and 

the 𝑦-axis. Finally, she colored in light blue a horizontal segment from the focus to the 

right side of the parabola and labeled it 𝑥 − ℎ (as shown in Figure 4.6). Similarly, she 

colored in light blue the segment from the focus to the vertex and labeled it 𝑦 − 𝑘. 
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Figure 4.6. The author’s arrows indicate Willow’s segments that she labeled 𝑥 − ℎ and 

𝑦 − 𝑘. 

I hypothesized that Willow had formed the quantitative relationships 𝑥 − ℎ and 

𝑦 − 𝑘; however, I had no evidence that she had quantified the associated coordinates 

𝑥, 𝑦, ℎ, and 𝑘 as quantities. To help determine if she had quantified those coordinates I 

posed the following question: 
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Interviewer:  If you were to color in 𝑥, like here you colored in 𝑥 
minus ℎ [points to the horizontal segment Willow 
colored before], what would you color 𝑥 in as? 

Willow:  𝑋—[draws a light blue vertical segment from (𝑥, 𝑦) 
to the 𝑥-axis, see Figure 4.7 below]—and then I 
guess this would be ℎ [draws a green vertical 
segment from the vertex to the 𝑥-axis, see Figure 4.7 
below].  

 
Figure 4.7. The author’s arrows indicate the two vertical segments Willow drew, one 

to represent 𝑥 and the other to represent ℎ. 
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Willow seemed to conceive of both 𝑥 and ℎ as vertical segments. However, 

before I could respond, she changed her mind and drew in new segments for both 𝑥 

and ℎ. 

Willow: No, no, that’s just the line [erases the two segments 
she just drew]. This is the distance to ℎ [draws a 
green horizontal segment along the 𝑥-axis from 
roughly the 𝑦-axis to a point roughly below (𝑥, 𝑦), 
see Figure 4.8 below] and this would be the distance 
to 𝑥 [draws a light blue horizontal segment along the 
𝑥-axis, see Figure 4.8 below], and this is 𝑥 minus 
ℎ	[gestures a circle around the part of the light blue 
segment that extends past the green line]. 

 
Figure 4.8. The author’s arrows indicate Willow’s new segments representing 𝑥 and ℎ. 
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Interviewer:  So, 𝑥 is from where to where? 
Willow:  Um, it’s from the origin to 𝑥 [traces over the light 

blue segment she had drawn to indicate 𝑥]. And then 
this distance is x minus ℎ [draws a light blue 
horizontal segment and labels it	𝑥 − ℎ, see Figure 
4.9 below]. 

Interviewer:  And then where is the distance ℎ? Just to make sure 
I’m absolutely clear. 

Willow:  Right here, the darker line [gestures back and forth 
with her pen along the shorter green segment that is 
drawn on the 𝑥-axis]. 

 
Figure 4.9. The author’s arrow indicates where Willow drew a segment and labeled it 

𝑥 − ℎ. 
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Even though Willow initially marked out vertical segments, she corrected 

herself by erasing those segments and replaced them with horizontal segments along 

the 𝑥-axis. As she drew those segments, she said “This is the distance to 𝒉 and this 

would be the distance to 𝒙” (emphasis added). She was careful to make her segments 

so that the endpoints were close to the origin and the places on the 𝑥-axis she had 

marked ℎ and 𝑥, respectively, which suggests she drew the segments with an intent to 

mark off specific distances. Moreover, she referred to these segments as “distances.” 

Taken together, her drawings and her use of the phrase “distance to” suggest that 

Willow had quantified the 𝑥-coordinates of the points (𝑥, 𝑦) and (ℎ, 𝑘) as distances 

from the 𝑦-axis. Shortly after this, Willow seemed to quantify 𝑦 and 𝑘 as distances. 

Willow: And then similarly, with 𝑦. If I make 𝑘 this dark 
color, this would be the distance 𝑘 [draws a dark 
green vertical segment from the 𝑥-axis to the point 
labeled 𝑘 on the 𝑦-axis, see Figure 4.10 below], and 
this would be the distance 𝑦	[draws a green vertical 
segment next to the one she just drew, see Figure 
4.10 below], and then this distance here [draws in a 
vertical segment in light blue, see Figure 4.10 
below] is 𝑦 minus 𝑘. 

Willow quantified the 𝑦-coordinates of the points 𝑥, 𝑦  and (ℎ, 𝑘) 

appropriately as distances. She drew vertical segments near the 𝑦-axis emanating from 

the x-axis and said, “If I make 𝑘 this dark color, this would be the distance 𝒌, and this 

would be the distance 𝒚” (emphasis added). Again, Willow seemed to carefully draw 

the segments so that the endpoints were at the 𝑥-axis and then at points roughly 

aligned with where 𝑦 and 𝑘 were marked along the 𝑦-axis. Her continued use of the 

phrase “the distance” suggests she had conceived of the segments she drew as 
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distances in the plane. Additionally, Willow linked those segments with coordinates 

(e.g., the dark green segments in Figure 4.10 below were drawn as Willow said they 

represented the distances ℎ	and 𝑘). Taken together, this evidence suggests that Willow 

shifted from interpreting points in the plane only as locations, to quantifying the 

coordinates of points as distances. 

 
Figure 4.10. The author’s arrows indicate where Willow drew line segments to 

indicate the distances 𝑦, 𝑘, and 𝑦 − 𝑘. 

Forming quantitative relationships. Not only did Willow quantify 

coordinates as distances, she also formed quantitative relationships. For example, 

Willow seemed to form the quantitative relationship 𝑥 − ℎ with the quantities 𝑥 and ℎ. 

First, Willow appeared to quantify 𝑥	and ℎ as distances, as just discussed. She also 
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drew a segment (see Figure 4.9 above) and stated, “this distance is 𝑥 minus ℎ.” Her 

use of this phrase suggests that she had quantified the segment as a distance having a 

measure of	𝑥 − ℎ. While I do not have evidence to make claims about which 

quantitative operation she may have used, she did use the word “minus,” which is 

consistent with the quantitative operation of either take-away or additive comparison. 

She segmented the 𝑥-axis into two distinct segments, one with distance ℎ and the other 

with distance	𝑥 − ℎ. Underneath these, she drew a third segment having a distance of 

𝑥. Willow organized the two quantities 𝑥	and ℎ in a way that helped her justify her 

earlier claim that one segment had a distance of 𝑥 − ℎ. Because Willow quantified 𝑥, 

ℎ, and 𝑥 − ℎ as distances, and she seemed to operate on 𝑥 and ℎ to form the quantity 

𝑥 − ℎ, it is reasonable to conclude that she formed a quantitative relationship with 

those quantities. 

Willow similarly formed the quantitative relationship 𝑦 − 𝑘 with the quantities 

𝑦 and 𝑘. In Figure 4.10 above, Willow colored two segments, labeling one 𝑦 and one 

𝑘. She stated, “This would be the distance 𝒌 and this would be the distance 𝒚, and 

then this distance here is 𝒚 minus 𝒌” (emphasis added). As before, her segmenting of 

the 𝑦-axis into two segments 𝑘 and 𝑦 − 𝑘 alongside a single segment 𝑦	indicates 

Willow may have conceived of the segment 𝑦 as comprised of the two segments 𝑦 − 𝑘 

and 𝑘. As before, I have no evidence of which quantitative operation Willow may 

have used, but this segmentation suggests she did perform a quantitative operation on 

two quantities. Taken together, this evidence supports my claim that Willow formed 

the quantitative relationship 𝑦 − 𝑘 with the quantities 𝑦, and 𝑘. 
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In summary, Willow seemed to experience a shift in her quantitative reasoning 

from the pre-interview to the post-interview. In the pre-interview, she did not quantify 

coordinates as distances; instead her conceptions about points were limited to points-

as-locations and points-as-values. Indeed, even when she did potentially link a 

coordinate to a distance from either the 𝑥-axis or the 𝑦-axis (when she drew a vertical 

segment from the 𝑥-axis to the vertex of the right angle, as shown in Figure 4.3 

above), she never made use of the distance, nor did she explicitly state that it was a 

distance. By contrast, Willow demonstrated quantitative reasoning in the post-

interview that was productive for her. She could quantify coordinates as distances and 

use those quantities to form new quantities. Indeed, Willow’s reasoning in the post-

interview closely matched the kinds of reasoning that Sasha and Keoni employed, and 

her solution for the Parabola Task was similar to Sasha and Keoni’s, despite having 

never seen the videos in which Sasha and Keoni solve that task. 

Desmond 

 Like Willow, Desmond did not seem to quantify coordinates as distances in 

the pre-interview; instead he demonstrated a conception of coordinates as numerical 

values with which he could operate arithmetically. Unlike Willow, Desmond also 

seemed to conflate labels of points with coordinates. In short, Desmond’s reasoning 

with coordinates and points was limited in the pre-interview, and to the extent that his 

reasoning was productive, it would best be characterized as numerical reasoning rather 

than quantitative reasoning.  



 

 

131 

In the post-interview, Desmond seemed to exhibit more sophisticated 

quantitative reasoning by quantifying unknown coordinates as distances in the plane 

and forming quantitative relationships with those quantities, which suggests he 

experienced a shift in his quantitative reasoning. I present a careful analysis of 

Desmond here because (a) his initial conceptions about coordinates and points differed 

from Willow’s points-as-location conception and (b) the quantitative reasoning he 

demonstrated in the post-interview varied from that which Willow demonstrated. 

Coordinates as values. In the pre-interview, Desmond seemed to struggle to 

quantify coordinates of points as distances. These struggles manifested in two distinct 

ways. First, Desmond appeared to think of coordinates as values rather than distances. 

For example, consider the following exchange from the pre-interview in which 

Desmond explained how he viewed coordinates. Desmond had done some preliminary 

work on the Ellipse Task, including labeling the vertical leg of the right triangle as 

𝑥 − ℎ, replicating the triangle in a blank area of the paper, and labeling the vertical leg 

of that triangle 𝑥 − ℎ and the horizontal leg of that triangle	𝑦 − 𝐹5. This initial work 

by Desmond is shown below in Figure 4.11. In the following transcript, notice how 

Desmond points to the coordinates 𝑥 and ℎ, changes those coordinates to numerical 

values, and then calculates the arithmetic difference of those values. 

Interviewer: So, can you talk me through this 𝑥 minus ℎ part 
[points to the 𝑥 − ℎ Desmond had written, annotated 
with a circle in Figure 4.11 below]? 

Desmond: Well, um, at least I’m assuming this 𝑥 [points to the 
𝑥 in (𝑥, 𝑦)	printed on the paper, annotated with a 
circle in Figure 4.11 below] is at a higher value than 
this ℎ [points to the center (ℎ, 𝑘) printed on the 
paper, annotated with a circle in Figure 4.11 below]. 
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You can probably plug it in with—I’ll just make it 
really different [writes a 10 above the 𝑥 and a 5 
above the ℎ	in the expression 𝑥 − ℎ circled in Figure 
4.11 below; these inscriptions are visible in Figure 
4.12 below]. You know you have ten minus five, the 
remaining distance [points to the bracket he drew 
near the vertical leg of the right triangle, indicated 
by an annotated arrow in Figure 4.11 below] should 
be five essentially, like I could call this. 

 
Figure 4.11. Desmond’s work and inscriptions to begin the Ellipse Task, as well as 

author’s annotations to facilitate analysis. 
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Desmond responded to my question about 𝑥 − ℎ by talking about the values of 

𝑥 and ℎ. When he said the x was a higher value than the ℎ, he did not point out 

distances or make gestures to indicate lengths; instead he pointed to the written labels 

on the paper. He also spontaneously changed the coordinates 𝑥 and ℎ to specific 

numerical values—10 and 5 respectively. His action is consistent with my 

interpretation that Desmond conceived of the coordinates as values rather than 

distances. Indeed, when I asked him where the 10 would be, he marked where he 

thought 10 would be on the 𝑥-axis, as shown in Figure 4.12 below. Even with a more 

pointed question about “tracing” the 10 with his finger, Desmond did not indicate that 

he conceived of the 10 as a distance:  

Interviewer: So in this graph, where would the ten be? Can you 
trace it with your finger? 

Desmond: Yeah, the ten would be— [labels the 𝑥-axis with a 
10, annotated with a square in Figure 4.12 below] 

Interviewer: Ok, and then the five? 
Desmond: [Labels the 𝑥-axis with a 5, annotated with a square 

in Figure 4.12 below] 

Eventually, Desmond realized that he was using the 𝑥-coordinates to determine 

the length of the vertical leg of the right triangle and said he “flip-flopped” the 𝑥 and 

𝑦	coordinates. He replaced the 𝑥 − ℎ with 𝑦 − 𝑘, and made marks along the 𝑦-axis 

with labels of 10 and 5 (these inscriptions are visible in Figure 4.12 below). Shortly 

after that, the following exchange took place:  
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Figure 4.12. Desmond’s corrected labels, along with author’s arrow annotations of 

gestures and prior labels. 

Interviewer: So, this distance [gestures back and forth along the 
vertical leg of the right triangle, annotated with 
arrows in Figure 4.12 above] you said is 𝑦 minus 𝑘. 
And can you just show me the 𝑦? Where do you see 
the 𝑦? The distance of 𝑦? 

Desmond: Uh, it’s more of a value [emphasis added; points to 
the printed 𝑦-coordinate of (𝑥, 𝑦), annotated with a 
circle in Figure 4.13 below], since it matches up 
with here [gestures with his pen horizontally from 
(𝑥, 𝑦) to the 𝑦-axis, annotated with an arrow in 
Figure 4.13 below; then he marks the 𝑦-axis, labels 
it 10, then scratches out the previous mark he made]. 
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And, you know, you basically have the top [makes a 
mark above the 𝑦-coordinate in (𝑥, 𝑦), annotated 
with a rectangle in Figure 4.13 below] and the 
bottom [makes a mark below the y in the expression 
𝑦 − 𝑘 annotated with a rectangle in Figure 4.13 
below] and what’s left over is the middle [draws a 
bracket between the two marks he made]. 

Interviewer: And so the 𝑘 is? 
Desmond: Right there [emphasis added; points to the 𝑘	in the 

printed (ℎ, 𝑘) on the paper, annotated with a circle in 
Figure 4.13 below]. 

Interviewer: Right there. 
Desmond: Which is perpendicular to that line [gestures along 

the horizontal base of the triangle]. 
Interviewer: Ok, so when you subtract them you get? 
Desmond: This value [emphasis added; draws a 5 next to the 

vertical leg]. 
Interviewer: That value there. Great, I think I understand what 

you’re saying. 

 
Figure 4.13. Author’s annotations of Desmond’s work in the Ellipse Task. 
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In this exchange, there are three pieces of evidence that suggest Desmond 

conceived of coordinates as values. First, I asked him to show me where the y was on 

the graph, and even used the phrase “the distance of 𝑦.” Desmond’s response, “Uh, it’s 

more of a value,” seemed to indirectly refute the notion that 𝑦 indicates a distance, and 

is instead a value. Later I asked Desmond where the 𝑘 was, and he pointed to the 

printed 𝑘	in the label for the center (ℎ, 𝑘). This suggests that Desmond did not see 𝑘 as 

a distance, but rather only as a value, namely the one printed on the paper. On the 

other hand, Desmond could have taken my question literally and showed me where the 

label 𝑘 was printed on the paper. Finally, despite my many uses of the word 

“distance,” Desmond did not refer to quantities in the plane as distances. Instead he 

referred to the vertical leg as “what’s left over,” “the middle,” and “this value.” 

Even though there is a plausible alternative interpretation that Desmond took 

my question of “Where is 𝑘” literally, the totality of Desmond’s actions in this event 

are consistent with my claim that he conceived of coordinates as values. The strongest 

evidence of this claim is that in response to my direct query to locate 𝑦 as a distance, 

Desmond dismissed the notion of 𝑦 as a distance and instead said, “It’s more of a 

value.” 

Conflating labels of points with coordinates. Desmond also seemed to 

conflate the labels of points with coordinates when he attempted to find lengths for the 

horizontal legs of the right triangles. Just prior to the two exchanges detailed above, 

Desmond attempted to find the length of the horizontal leg of the large right triangle. 
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In his statement below, Desmond treated the label for a point in the plane (F1) as a 

value. 

Desmond: This thing would be [draws a bracket from F1 to the 
vertex of the right angle; this can be seen in Figure 
4.13 above] y minus 𝐹-one [writes 𝑦 − 𝐹5 under the 
triangle he drew, this can be seen in Figure 4.13 
above], er, yeah. It would be this whole thing [draws 
a bracket under the 𝑦 − 𝐹5 he just wrote, this can be 
seen in Figure 4.13 above]. 

As mentioned before, Desmond later realized he had used 𝑥 coordinates for 

vertical lengths and 𝑦 coordinates for horizontal lengths, and so he corrected some of 

his earlier work. Eventually he corrected the expression	𝑦 − 𝐹5 he had written by 

changing the 𝑦 to an 𝑥 so that the expression was 𝑥 − 𝐹5. However, when he did this, 

he did not change the 𝐹5 in the expression. This stands in contrast with his earlier work 

in which he “flip-flopped” the coordinates; once he recognized his error, he changed 

the 𝑥 − ℎ to a 𝑦 − 𝑘. The fact that he did not change the 𝐹5 could indicate that he took 

the label to be a value he could operate with, instead of conceiving of it as a point for 

which the coordinates indicate distances in the plane. 

Later, Desmond wrote the expression 𝑥 − 𝐹6 to describe the horizontal leg of 

the smaller right triangle, while saying “I guess we could also say our 𝑥-value minus 

𝐹6.” Desmond’s use of the labels of points in the plane as values can be taken as 

evidence that he conceived of 𝐹5 and 𝐹6 as values that can be operated on, much like 

the 𝑥 and 𝑦 coordinates. In other words, Desmond seemed to treat the point 𝐹5 and 𝐹6 

like how he treated the coordinates 𝑦, 𝑥, 𝑘, and ℎ, namely as values. 
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Quantifying coordinates as distances in the plane is a prerequisite for forming 

quantitative relationships with those quantities. Even though Desmond used terms 

such as 𝑦 − 𝑘 and 𝑥 − 𝐹6, I found no evidence that he quantified those coordinates as 

distances. Instead, his reasoning seemed driven by his numerical conceptions of 

coordinates and labels of points. Because Desmond did not quantify coordinates as 

distances in the pre-interview, it is reasonable to conclude that Desmond did not form 

quantitative relationships with distances in the plane. In contrast to this, Desmond did 

form quantitative relationships with distances in the post-interview, which represents a 

shift in Desmond’s quantitative reasoning from the pre-interview to the post-interview.  

Before proceeding with analysis from Desmond’s work in the post-interview, it 

must be noted that as I observed Desmond as he worked on the Parabola Task in the 

post-interview it became obvious to me that he was rushing through the task. 

Consequently, I did not think that his work provided enough evidence for me to make 

claims about his quantitative reasoning, so I asked him to also complete the Ellipse 

Task from the pre-interview. His work in the post-interview on both the Parabola Task 

and the Ellipse Task did provide enough evidence for me to make claims about his 

quantitative reasoning. In the following paragraphs, when I use evidence from his 

work on the Ellipse Task, it is taken from his work on this task in the post-interview, 

not the pre-interview. 

Forming quantitative relationships. To begin the Parabola Task, Desmond 

drew in several lines and segments and labeled them (e.g., 𝑦 − 𝑘 and 𝑥 − ℎ, as shown 

below in Figure 4.14). He did much of this work in silence. Eventually, I asked 
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Desmond where he saw 𝑥 − ℎ, and his response, combined with his gesturing, 

suggested that he seemed to quantify the coordinates as distances. 

Interviewer: So, can you show me where you see the 𝑥	minus ℎ? 
How did you get that? 

Desmond: Um, because it’s the, you don’t need the whole—if it 
was 𝑥 plus ℎ it would go out to here [places left 
forefinger on the intersection of the 𝑦-axis and the 
directrix and the right forefinger near the end of the 
printed directrix; annotated with downward pointing 
fingers in Figure 4.14 below]. And 𝑥 minus ℎ goes 
to here [moves his fingers closer together; annotated 
with upward pointing fingers in Figure 4.14 below], 
because this is the 𝑥 value. 

 
Figure 4.14. Author’s recreation of Desmond’s gestures indicating 𝑥 + ℎ (fingers 

pointing down) and 𝑥 − ℎ (fingers pointing up). 
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Interviewer: What is 𝑥? 
Desmond: The whole thing [puts his left forefinger on the 

intersection of the 𝑦-axis and the directrix, and his 
right forefinger further out on the directrix; 
annotated with upward pointing fingers in Figure 
4.15 below]. 

Interviewer: That’s 𝑥. And where is ℎ? 
Desmond: ℎ is [keeps his forefingers spread and moves them 

slightly above the paper] the point there [points to a 
point on the directrix; annotated with a square in 
Figure 4.15 below]. 

Interviewer: And then the 𝑥 minus ℎ is? 
Desmond: Like if this was eight [points to the directrix, 

annotated with a circle in Figure 4.15 below] and 
this was five [points to a different point on the 
directrix, annotated with a square in Figure 4.15 
below] it would be [using his left forefinger and the 
pen, he makes a span gesture from the two points he 
just pointed to on the directrix] the distance of three. 

 
Figure 4.15. Author’s annotations showing Desmond’s gestures and the points he 

indicated. 
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In this exchange, Desmond formed the quantitative relationship 𝑥 − ℎ with the 

quantities 𝑥 and ℎ. First, Desmond seemed to quantify the coordinate 𝑥 as a distance. 

When I asked him “What is 𝑥?” he responded by saying “The whole thing” and 

making a gesture with his two forefingers to indicate a span or a length along the 𝑥-

axis. This behavior is consistent with quantifying a coordinate as a distance in the 

plane in that Desmond was using two fingers to simultaneously point out two points in 

the plane, thereby indicating a measurable segment in the plane (the span). 

Desmond also quantified the coordinate ℎ as a distance in the plane. In 

response to my question “Where is ℎ,” Desmond initially kept a spanning gesture and 

hovered over his paper, but he eventually pointed to a point on the 𝑥-axis vertically 

aligned with the vertex (annotated with a box in Figure 4.15 above). This could be 

taken as evidence that he did not quantify the coordinate ℎ, and instead merely 

conceived of it as a value or a location. However, I think there is an alternate 

interpretation. Unlike in the pre-interview, Desmond did not point to the printed letter 

on the paper. Instead, he gestured to a point on the directrix that was vertically aligned 

with the vertex. In other words, he gestured to a point that had a distance of ℎ from the 

𝑦-axis. Moreover, I think that Desmond was answering my question literally. I asked 

him where ℎ was, and he showed me where it was, rather than showing me what it 

was, as he did when he showed a distance of 𝑥, which was in response to my question 

of what 𝑥 was. My questions were not consistent. Moreover, given Desmond’s 

previous propensity in the pre-interview for pointing to printed labels, the fact that he 

did not point to a printed label and had just quantified the coordinate 𝑥, supports an 
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alternative interpretation that he could have quantified ℎ as a distance, but my 

questioning was not sufficient to elicit that quantification. 

When I asked Desmond about 𝑥 − ℎ, he changed the coordinates to numbers, 

as he did in the pre-interview. However, this time he used the change to illustrate a 

“distance,” a word he did not seem to want to use in the pre-interview, despite my 

repeated use of it. Desmond’s description of 𝑥 − ℎ as a “distance” can be taken as 

evidence that he had quantified that expression as a distance, which is also evidence 

that he potentially quantified the coordinate ℎ as a distance. In summary, Desmond 

quantified the coordinate 𝑥, potentially quantified the coordinate ℎ, and quantified the 

expression 𝑥 − ℎ as a distance.  

Finally, Desmond seemed to perform a quantitative operation on the quantities 

𝑥 and ℎ. His first response to my question “Where do you see 𝑥 minus ℎ,” was to talk 

about “𝑥 plus ℎ” and to create a spanning gesture with his two fingers. He then moved 

his fingers closer together when he said, “𝑥 minus ℎ goes to here.” This movement can 

be taken as evidence that Desmond was perhaps performing the quantitative operation 

“take away” by indicating that a part of the segment could be removed to obtain a 

shorter segment, 𝑥 − ℎ. 

Taken together, this evidence is consistent with an interpretation that Desmond 

formed a quantitative relationship with 𝑥, ℎ, and 𝑥 − ℎ. However, his replacement of 

variable with values may indicate a lingering coordinates-as-values conception, 

although I found no other disconfirming evidence that supported that conclusion. 

Moreover, coordinates can take on specific values, and Desmond could have been 
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replacing the unknowns with numeric values as a way of providing an example for 

how he was thinking about 𝑥 − ℎ. Because he later seemed to form another 

quantitative relationship (which I discuss below), it is reasonable to conclude that 

Desmond did form the quantitative relationship 𝑥 − ℎ after quantifying the 

coordinates 𝑥 and ℎ as distances. 

Desmond also formed a quantitative relationship as he worked on the Ellipse 

Task in the post-interview. Consider this exchange, in which Desmond seemed to 

quantify the coordinates 𝑦 and 𝑘 and form the quantitative relationship 𝑦 − 𝑘. 

Interviewer: So, where do you see the 𝑦 minus 𝑘? 
Desmond: The distance of 𝑦	is this whole line [gestures with 

his pen vertically from (𝑥, 𝑦) to the 𝑥-axis, as 
annotated below in Figure 4.16]. 

Interviewer: Uh huh. 
Desmond: The distance of 𝑘 is that line [draws a vertical 

segment and labels it 𝑘; annotated with an oval in 
Figure 4.16 below]. 

Interviewer: Ok. So then the 𝑦 minus 𝑘 is from where to where? 
Desmond: Here [points to the 𝑦 − 𝑘 he wrote on his page 

earlier, annotated with a rectangle in Figure 4.16 
below]. 

Interviewer: Ok. 
Desmond: And that was [gestures with his pen vertically up and 

down along the vertical leg of the right triangle]— 
Interviewer: That distance? 
Desmond: That distance. 
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Figure 4.16. Desmond’s work on the Ellipse Task and the author’s annotations of 

Desmond’s gestures and drawings. 

The previous transcript evidence begins with me asking Desmond where he 

sees 𝑦 − 𝑘. Instead of answering that directly (perhaps by taking the question literally, 

as he seemed to earlier in the post-interview), Desmond spontaneously quantified 𝑦 

and 𝑘, which is noteworthy considering his work on this task in the pre-interview. 

Desmond’s gesture along a vertical line from (𝑥, 𝑦) to the 𝑥-axis while saying “The 

distance of 𝑦 is this whole line” suggests that he quantified the coordinate 𝑦 as a 

distance. This stands in contrast to the pre-interview in which he contradicted the 

notion of 𝑦 being a distance by saying “Uh, it’s more of a value.” After he quantified 

𝑦, he drew a vertical segment to the 𝑥-axis while saying, “The distance of 𝑘 is that 
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line.” By inscribing the line, Desmond made clear that he was not referencing a value 

or a printed label, as he did in the pre-interview. Instead, Desmond seemed to be 

marking off a distance in the plane with a measure of 𝑘; in other words, Desmond 

quantified the coordinate 𝑘 as a distance.  

At the end of this exchange I made two moves that could have been leading. 

First, I said to Desmond “The 𝑦 − 𝑘 would be where to where?” I also finished his 

statement when he gestured along the segment: Desmond started saying “And that 

was,” and I interrupted and said, “That distance.” These two moves may have affected 

what Desmond said and did afterward. Even so, he did gesture along the vertical leg of 

the right triangle, which could indicate he had quantified that segment as a distance. 

Desmond seemed to quantify the coordinates 𝑦	and	𝑘 as distance, and used similar 

gestures to indicate 𝑦 − 𝑘 as a distance, and these actions are consistent with actions 

taken when forming quantitative relationships. 

Sierra 

Unlike Desmond and Willow, who both seemed to demonstrate very little 

quantitative reasoning in the pre-interview, Sierra was able to quantify segments in the 

plane as distances in the pre-interview. However, she did not quantify coordinates as 

distances, nor did she seem to form quantitative relationships. From the pre- to post-

interviews, Sierra apparently experienced a shift in the sophistication of her 

quantitative reasoning. In the post-interview, not only did Sierra quantify coordinates 

as distances, but she also appeared to form first and second-order quantitative 

relationships. 
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Coordinates as values used to calculate distances. In the pre-interview, 

Sierra seemed to conceive of segments in the plane as distances. To start the task, she 

drew a bracket along the two segments from 𝐹5 to 𝐹6, labeled each of those two 

segments 𝑐, traced the smaller triangle, and drew circles next to the legs of that 

triangle (it was unclear if those were labels). She did all of this silently, and her initial 

work is visible in Figure 4.17 below. In the following exchange, notice how Sierra 

formed the expression 𝑦 − 𝑘 and discussed it as a “distance” or a “length.” She even 

used gestures to indicate which segment in the plane had a length of 𝑦 − 𝑘. However, 

she did not appear to conceive of either coordinate 𝑦 or 𝑘 as distances in the plane. 

Instead she demonstrated a conception of the endpoints of the segment as values, 

which allowed her to calculate the segment’s length. Consequently, Sierra did not 

seem to form the quantitative relationship 𝑦 − 𝑘. 

Sierra: This distance right here [gestures with her pen along 
the vertical leg of the right triangle; annotated with a 
circle in Figure 4.17 below] is this point [gestures 
with her pen toward the point labeled (𝑥, 𝑦); 
annotated 1 in Figure 4.17 below] minus this point 
[gestures with her pen toward the vertex of the right 
angle; annotated 2 in Figure 4.17 below], which is 
some 𝑦 minus 𝑘 [writes the expression 𝑦 − 𝑘 next to 
the line segment]. 

Interviewer: And where do you see the 𝑘? 
Sierra: Right here [points with her pen to the printed label 𝑘 

in the point (ℎ, 𝑘); annotated with a square in Figure 
4.17 below]. 

Interviewer: Ok. 
Sierra: This is ℎ. And over here is my 𝑥 [as she says this, 

she makes two marks on the 𝑥-axis and labels them 
ℎ and 𝑥; these can be seen in Figure 4.17 below]. 

Interviewer: Ok. 
Sierra: So up here is my 𝑦 and right here is my 𝑘 [as she 

says this, she makes two marks on the 𝑦-axis and 
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labels them 𝑦	and 𝑘; these can be seen in Figure 4.17 
below]. 

Interviewer: Ok. And so just so that I am crystal clear, how is this 
𝑦 minus 𝑘? 

Sierra: Because it’s the distance. 
Interviewer: Mmhmm. 
Sierra: Yeah, distance is, like the highest number [gestures 

in a circle around the point annotated with a 1 in 
Figure 4.17 below] minus the lowest number 
[gestures in a circle around the point annotated with 
a 2 in Figure 4.17 below] will give you the total 
distance here [gestures with her pen back and forth 
between those two points]. 

Interviewer: Ok. And so where do you see the 𝑦? 
Sierra: Right here [points with her pen to the printed label 𝑦 

in the point (𝑥, 𝑦); annotated with a square in Figure 
4.17 below]. 

 
Figure 4.17. Sierra’s initial work, along with the author’s annotations of Sierra’s 

gestures. 
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 Sierra conceived of the vertical leg of the right triangle as a distance. She 

gestured back and forth along the leg and called it a distance, both in response to my 

initial question and later when she said, “the highest number minus the lower number 

will give you the total distance here.” However, quantifying the leg of a triangle as a 

distance does not mean that Sierra had formed a quantitative relationship with 

coordinates quantified as distances in the plane. In particular, she did not quantify the 

coordinates 𝑦 and 𝑘 as distances. When I asked her where she saw these, she pointed 

to the printed labels for each. She also said that 𝑦 − 𝑘 is a distance because it is the 

“highest number minus the lowest number,” which suggests Sierra conceived of the 

coordinates as values, but not necessarily as distances. Indeed, I asked her twice more 

where she saw the 𝑦 and the 𝑘, and both times she pointed to the printed label or the 

point itself.  

This was typical of the kind of reasoning Sierra seemed to demonstrate in the 

pre-interview. Even though she appeared to have a conception of “distance” that was 

linked with segments in the plane, at no point in the pre-interview did she explicitly 

link coordinates to distances. Instead, she conceived of the coordinates of the points as 

values that allowed her to calculate the distances of segments in the plane. 

Forming quantitative relationships. I now present two episodes from 

Sierra’s work in the post-interview in which she appeared to quantify coordinates as 

distances and form quantitative relationships with these distances. Early in her work 

on the Parabola Task, Sierra had made several inscriptions on her paper and labeled 

some of the distances. She also conjectured that Sasha and Keoni would have given 
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the height of the directrix above the 𝑥-axis a specific value, for example 3. She then 

labeled the segment from (𝑥, 𝑦) to the directrix as 𝑦 − 3, which can be seen in Figure 

4.18 below. In this exchange, Sierra explained how she thought about 𝑥 − ℎ.  

Sierra: Since this is ℎ units on the 𝑥-axis [gestures along the 
directrix from where the directrix intersects the 𝑦-
axis to a point roughly below the vertex; annotated 
with an arrow labeled 1 in Figure 4.18 below]. 

Interviewer: Yeah. 
Sierra: So it’s, this is the same thing, this would be ℎ units 

[gestures in a circle around the point annotated with 
a circle in Figure 4.18 below]. 

Interviewer: Mmmhmm. 
Sierra: And if I say this whole thing is 𝑥 [gestures 

horizontally from the 𝑦-axis to (𝑥, 𝑦), annotated as 2 
with an arrow in Figure 4.18 below], this distance 
[gestures with her pen along the horizontal leg of the 
right triangle] is 𝑥 minus ℎ. 

Sierra seemed to quantify the coordinate 𝑥 as a distance when she called it “the 

whole thing” as she gestured along a horizontal segment. Additionally, her use of the 

phrase “the whole thing” suggested that Sierra viewed 𝑥 as being something in the 

plane other than a value. Similarly, she also appeared to quantify ℎ, as evidenced by 

her gesture along a horizontal segment while saying it would be “ℎ units.” Sierra then 

said, “If I say this whole thing is 𝑥, this distance is 𝑥 − ℎ” (emphasis added). The use 

of the word “if” suggests that the forming of 𝑥 − ℎ depended on quantifying 𝑥; in 

other words, 𝑥 − ℎ is the result of a relationship that includes the quantity 𝑥. This 

evidence suggests that Sierra formed the quantitative relationship 𝑥 − ℎ with the 

quantities 𝑥 and ℎ. 
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Figure 4.18. Sierra’s work and author’s annotations of her gestures. 

Later during her work on the Parabola Task (approximately ten minutes after 

the previous exchange), Sierra seemed to form the second-order quantitative 

relationship 𝑦 − 𝑘 + 𝑝 with the quantities 𝑦 − 𝑘 and 𝑝. The quantity 𝑦 − 𝑘 + 𝑝 is one 

way of conceiving of the length of the segment extending from the point (𝑥, 𝑦) to the 

directrix (which is comprised of both the blue and red segments in Figure 4.19b 

below).  
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Figure 4.19. (a) Inscriptions Sierra made as she seemed to form a second order 

quantitative relationship and (b) Author’s recreation of the same. 
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First, Sierra seemed to form the quantitative relationship 𝑦 − 𝑘 in a manner 

consistent with how she formed the quantitative relationship 𝑥 − ℎ in the previous 

episode. She quantified the coordinates 𝑦 and 𝑘, using language and gestures in ways 

similar to when she quantified 𝑥 and ℎ. For example, she said “This is 𝑘 all the way” 

while gesturing along the segment labeled 𝑘 in Figure 4.19b above. She then said she 

wanted “this distance” while gesturing along the segment from the point (𝑥, 𝑦) to the 

directrix, and “not this distance” while gesturing along the blue segment I have labeled 

𝑦 − 𝑘 in Figure 4.19b above. This suggests that she had quantified that segment as a 

distance, and is consistent with her earlier actions in which she formed the quantitative 

relationship 𝑥 − ℎ. In other words, Sierra formed the quantitative relationship 𝑦 − 𝑘. 

Sierra said she did not want the distance 𝑦 − 𝑘, so I asked her if she could 

modify it. Sierra then seemed to form a second-order quantitative relationship by 

combining the quantities 𝑦 − 𝑘 and 𝑝. 

Interviewer: So, could you modify it? 
Sierra: Modify this [gestures around the expression 𝑦 − 𝑘 

she had written]? 
Interviewer: Yeah. 
Sierra: So, it would be 𝑦	minus	𝑘 plus 𝑝 [modifies her 

expression so that it is 𝑦 − (𝑘 + 𝑝)]. This is, wait. 
No, no, 𝑦 minus 𝑘 without the parentheses, plus 𝑝 
[amends her expression so that it is 𝑦 − 𝑘 + 𝑝]. 

Interviewer: Ok so can you show me that, the distances involved 
there, and explain how you got to that 

Sierra: So it would be 𝑦, this whole thing [gestures along 
from the point 𝑥, 𝑦  to the 𝑥-axis]— 

Interviewer: Uh huh 
Sierra: —minus 𝑘 [makes a span gesture with her middle 

finger and thumb; middle finger on the vertex (ℎ, 𝑘) 
and thumb directly below on the 𝑥-axis]— 

Interviewer: Yeah 
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Sierra: —plus this distance [draws a small bracket near the 
segment that I have colored red in Figure 4.19b 
above], because I want this whole thing [gestures 
with her pen along the segment comprised of the 
blue and red segments in Figure 4.19b above]. 

Sierra originally modified the expression 𝑦 − 𝑘 by writing 𝑦 − (𝑘 + 𝑝); 

however, without being prompted, she seemed to notice that something was not right 

about the expression. She said “No, no, 𝑦 minus 𝑘 without the parentheses, plus 𝑝.” 

Her use of the phrase “𝑦 minus 𝑘 without the parentheses” suggests that Sierra had 

formed a quantitative relationship 𝑦 − 𝑘 with the quantities 𝑦 and 𝑘. This was 

confirmed when I asked her to show me how she came up with her expression, and she 

first pointed out a segment 𝑦 (“So it would be 𝑦, this whole thing”) “minus 𝑘.” She 

then went on to explain that because she wanted a certain segment (the one comprised 

of both the blue and red segments in Figure 4.19b above), she would want to add the 

distance of 𝑝 (“plus this distance, because I want this whole thing”). In other words, 

Sierra seemed to form the second-order quantitative relationship 𝑦 − 𝑘 + 𝑝 with the 

quantities 𝑦 − 𝑘 and 𝑝. 

In summary, three participants experienced a shift in quantitative reasoning. 

Willow appeared to initially conceive of points as locations, and both she and 

Desmond seemed to conceive of points as values. Like Willow and Desmond, Sierra 

demonstrated a conception of coordinates as values, but her conception included using 

those values to calculate distances. All three participants shifted in their quantitative 

reasoning, with both Willow and Desmond not only quantifying coordinates as 

distances, but also forming quantitative relationships. Sierra’s quantitative reasoning 
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in the post-interview went even further, as she seemed to form second-order 

quantitative relationships. 

Of the four remaining participants, Lily exhibited strong quantitative reasoning 

in both pre- and post-interviews but little noticeable difference in the level of 

sophistication of her reasoning. The other three participants, Marshall, April, and 

Jasper, also demonstrated some quantitative reasoning in the pre-interview, so their 

shifts were not as pronounced as those of Willow, Desmond, and Sierra. Instead, 

Marshall, April, and Jasper experienced shifts in their ability to adopt the quantitative 

reasoning of high school students. This shift, which I call a shift in point of view, is 

the subject of the next section of this chapter. 

A Shift in Point of View (Decentering) 

This section is divided into three parts. First, I discuss the construct of 

decentering and elaborate its use as an analytical tool for answering my first research 

question. Next, I carefully analyze Marshall’s work on the Parabola Task in the post-

interview to demonstrate what a shift in point of view looked like for my participants. 

Jasper’s and April’s shifts in point of view were like Marshall’s, so in many ways 

Marshall’s shift is representative of the group. Nevertheless, I conclude this section 

discussing more briefly the work of those participants to further elaborate this 

category. 

Decentering 

The construct of decentering was originally developed by Piaget to describe a 

child’s actions as he or she considers thoughts, feelings, or perspectives that are 
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different from his or her own (Teuscher et al., 2016). Piaget and Inhelder (1967) 

extended this idea to mathematics by arguing that through decentering, a child is able 

to take on the visual perspective of another without physically changing locations 

(e.g., “imagining” how another individual perceives an array of geometric objects). In 

simplest terms, then, decentering is the process by which an individual foregoes his or 

her own understanding of a situation in order to attempt to understand the situation 

from the perspective of another individual (Teuscher et al., 2016). 

Teuscher et al. (2016) argued that decentering is a key component in the 

formation of MKT. In particular, they linked decentering to the notions of first and 

second-order models. According to Steffe and Olive (2010), first-order models are 

“the models an individual constructs to organize, comprehend, and control his or her 

experience, i.e., their own mathematical knowledge” (p. 16). In other words, first-

order models are the ways in which individuals understand mathematical situations. 

By contrast, a second-order model is an image of another’s ways of operating in and 

understanding of a mathematical situation (Teuscher et al., 2016). Teuscher et al. 

argued that decentering is necessary for the creation of second-order models; 

essentially one must first cast aside his or her own understanding in order to 

understand the situation from another’s perspective. 

According to Silverman and Thompson (2008), reflecting on the ways in 

which students understand and come to understand mathematical ideas is necessary for 

the development of MKT. Consequently, the construct of decentering offers one way 

to think about how a teacher develops MKT: by turning away from his or her own 
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ways of operating in order to create second-order models of students’ mathematical 

understandings (Teuscher et al., 2016). 

During the post-interview, I wanted to explore the degree to which participants 

could take on the point of view of Sasha and Keoni. My protocol included a follow-up 

question to the Parabola Task, for which I asked participants how they thought Sasha 

and Keoni would solve the same task. Sasha and Keoni’s method for solving the 

Parabola Task (which can be viewed in Lesson 9 of the parabola unit, currently 

available at http://cpucips.sdsu.edu/website/parabolas-lesson-9.html) closely follows 

the conceptual analysis of the Parabola Task that I elaborated in Chapter 3. It must be 

stressed that even though participants viewed several clips of videos that featured 

Sasha and Keoni working on problems dealing with parabolas, I did not show 

participants any clips from the lesson in which Sasha and Keoni solved the Parabola 

Task.  

Three participants, Marshall, Jasper, and April, provide the strongest evidence 

for decentering because they changed their solution in response to the follow-up 

prompt to describe how Sasha and Keoni might solve the task. For the rest of this 

section I present evidence that supports my claim that those participants demonstrated 

an ability to decenter and consider a mathematical situation from the perspective of 

high school students. Because participants had no experience with Sasha and Keoni’s 

ways of thinking prior to engaging in the mini-course, I did not ask them how they 

thought Sasha and Keoni would solve tasks in the pre-interview. Consequently, 

evidence for this claim comes exclusively from the post-interview. 
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Marshall 

In this subsection, I first present evidence from Marshall’s initial attempts to 

solve the Parabola Task (see Figure 4.1 above). This evidence will be used to help 

establish the claim that while his initial attempts included two different methods, each 

leading to a correct equation, those attempts were qualitatively different than Sasha 

and Keoni’s method. I will then present evidence from Marshall’s final attempt to 

solve the Parabola Task, which came about in response to my follow-up prompt to talk 

about how he thought Sasha and Keoni would solve the task. Marshall’s final attempt 

was similar to Sasha and Keoni’s method, which suggests that Marshall was able to 

decenter by turning away from his own understanding of the mathematical situation in 

order to elaborate his understanding of how Sasha and Keoni would understand the 

task.  

Marshall’s first two attempts were dissimilar from Sasha and Keoni’s 

method. Marshall’s initial solution of the Parabola Task featured a written equation 

which Marshall justified by leveraging his prior knowledge of the effect that 

translating a base parabola has on its equation. In this excerpt, which happened right at 

the start of Marshall’s engagement with the Parabola Task, Marshall seemed to have 

little difficulty in expressing his understanding of the task and how it could be solved:  

You have this distance here [draws a segment from the focus to the 
vertex, then another from the focus to the directrix, these are indicated 
by annotated arrows in Figure 4.20 below], that’s going to show up and 
be 𝑝. You have a horizontal shift of ℎ, a vertical shift of 𝑘, so it’s going 
to look like, something like 𝑦 equals 𝑥 minus ℎ squared over four 𝑝 
plus 𝑘 [writes the equation 𝑦 = (JKL)M

NO
+ 𝑘]. 
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Figure 4.20. Marshall’s drawings indicating the distance 𝑝 (annotated with arrows) 

and the equation he wrote. 

After quantifying the distance between the focus and the vertex as the distance 

𝑝, which had been discussed at length during the mini-course, Marshall immediately 

noted that the parabola was shifted from having its vertex at the origin to having its 

vertex at (ℎ, 𝑘). After stating the two shifts he saw in the graph, Marshall wrote the 

equation for the parabola. A bit later, the following exchange took place in which 

Marshall admitted to not using the definition to solve the task. 

Marshall: So, uh, I think that is the equation of the parabola, 
just based on the fact that I’m remembering this sort 
of general equation, applying these horizontal and 
vertical shifts to it, and that’s the result that I get. 
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Interviewer: So, could you point out where you used the 
definition to help you find that? 

Marshall: Um, I mean, I guess I didn’t really use it directly, I 
just relied a lot on my prior knowledge and the idea 
that the definition gets you to this [points to the 
equation he wrote], yeah so. If you want to go just 
from, you could just start with the definition and like 
use the distance formula to do it, that might be a way 
that uses the definition more. 

This first attempt by Marshall illustrates one of the ways that he demonstrated his 

understanding of the task. His prior knowledge about the general equation of a 

parabola as well as horizontal and vertical shifts seemed to enable him to develop an 

equation for the parabola.  

Marshall’s initial solution was qualitatively different from Sasha and Keoni’s 

method. Sasha and Keoni’s method for solving the Parabola Task involved their 

quantifying of several coordinates as distances and forming multiple quantitative 

relationships. They also leveraged the definition as well as the creation of a right 

triangle in order to use the Pythagorean Theorem to generate an equation. Although 

Marshall’s method yields a correct equation, it involved quantifying only one distance 

(𝑝, the distance from the focus to the vertex), did not leverage the definition, did not 

involve a right triangle in any way that was evident in the data, and made no use of the 

Pythagorean Theorem. 

At the end of the previous excerpt, Marshall mentioned he could leverage the 

definition and the distance formula, which I encouraged him to try. He proceeded to 

solve the Parabola Task a different way, which I will now describe. He began by 

labeling the focus (𝑥5, 𝑦5) and the directrix 𝑦 = 𝑦6. He then labeled a point on the 
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parabola (𝑥, 𝑦) and said it was an “arbitrary point” (see Figure 4.21 below). Although 

he did begin by invoking the definition of a parabola, Marshall quickly turned to the 

distance formula and a series of algebraic manipulations: 

 
Figure 4.21. Marshall’s inscriptions at the beginning of his second attempt, with labels 

annotated with circles. 

Marshall: You can use the definition to realize these two 
distances [draws two segments from 𝑥, 𝑦 , one to 
the directrix and one to the focus, then marks them 
with tick marks; these are visible in Figure 4.22 
below] have to be equal for it to be on the parabola. 
So then use the distance formula, of uh [trails off as 
he writes the equation (𝑥 − 𝑥5)6 + (𝑦 − 𝑦5)6 =
(𝑦 − 𝑦6)6; this can be seen in Figure 4.22 below]. 

That, and uh, I think you would eventually get to, if 
you square both sides and solve for just 𝑦 you’ll get 
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to somewhere that looks something like this 
equation [draws an arrow to the equation he wrote 
earlier, 𝑦 = (JKL)M

NO
+ 𝑘]. 

 
Figure 4.22. Marshall’s work for his second attempt on the Parabola Task. 

I asked Marshall where he thought the ℎ, 𝑘, or 𝑝 would show up in his second 

equation. Marshall responded by performing several algebraic calculations to describe 

relationships between the unknowns he identified (e.g., 𝑥5, 	𝑦5, 𝑦6, and others) that 

would yield ℎ, 𝑘, and 𝑝. For example, he noted that 2𝑝 would be the distance between 
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the focus and the directrix; so = VWKVM
6

 . Marshall’s equations describing the 

relationships he elaborated can be seen in Figure 4.23 below. 

 
Figure 4.23. The annotated red box indicates the many equations Marshall used to 

describe relationships between the unknowns he identified and the parameters of the 
parabola ℎ, 𝑘, and 𝑝. 

Marshall’s second attempt was mathematically accurate and produced a correct 

solution; however, like his first attempt, it was qualitatively different from Sasha and 

Keoni’s. For example, Marshall did not quantify coordinates as distances nor did he 

seem to form quantitative relationships in order to develop his equation. Also, despite 
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leveraging the definition in a way that was like how Sasha and Keoni found two 

segments that had the same length emanating from an arbitrary point, Marshall did not 

build upon the definition or those segments. He did not form a right triangle nor did he 

use or mention the Pythagorean Theorem. Instead, he used the distance formula. 

Although the distance formula is mathematically equivalent to the Pythagorean 

Theorem when dealing with right triangles in the coordinate plane, it utilizes more 

complex notation and may be more difficult for high school students to understand or 

use. Consequently, high school students might not think that the two formulas are the 

same.  

Finally, unlike Sasha and Keoni, who developed their equation by carefully 

analyzing the geometry of the situation, Marshall developed his equation by relying 

almost exclusively on algebra. Moreover, the connections he made between his 

algebraic equation and the geometry of the parabola were made through a series of 

complex algebraic maneuvers, and Marshall never seemed to genuinely connect the 

geometry of the parabola to his algebra. 

Marshall decentered. The evidence presented previously demonstrates that 

Marshall had developed mathematical content knowledge that enabled him to think 

flexibly about the Parabola Task and approach it from different angles. Whether that 

knowledge developed as a result of his participation in the mini-course is not a claim I 

am making. However, the goal for the mini-course was for participants to develop 

MKT, not just mathematical content knowledge. I told Marshall that Sasha and Keoni 
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had solved the task in a lesson we did not watch in the mini-course, and I asked 

Marshall how he thought Sasha and Keoni would solve the Parabola Task.  

I first present evidence that suggests that Marshall solved the task in a way that 

was similar to Sasha and Keoni’s method. Then I present transcript evidence to show 

that Marshall had several ideas about what Sasha and Keoni would figure out and 

what they would struggle with as they solved the task. Taken together, this evidence 

supports the claim that Marshall decentered to take on the perspective of Sasha and 

Keoni. 

Marshall’s third solution was similar to Sasha and Keoni’s method. Marshall 

began his third attempt by stating that Sasha and Keoni would pick an arbitrary point 

on the parabola and label it 𝑥, 𝑦 , which he then did. He drew two segments from 

𝑥, 𝑦 , one to the directrix and the other to the focus and said, “They would be able to 

construct their triangle, since they used the Pythagorean Theorem for all of these.” As 

he said this, he drew a right triangle on the graph. This initial work can be seen in 

Figure 4.24 below. 

Comparing this initial work to Sasha and Keoni’s solution (see Figure 4.25 

below), there is already evidence that suggests Marshall decentered. For example, 

Marshall drew segments from 𝑥, 𝑦  which he later used in forming a right triangle, 

which is similar to what Sasha and Keoni did. Moreover, despite having never seen 

the videos in which Sasha and Keoni solve the Parabola Task, Marshall justified 

drawing and using a right triangle by noting that Sasha and Keoni would attempt to 
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use the Pythagorean Theorem, which is how Sasha and Keoni approached the Parabola 

Task.  

 
Figure 4.24. Marshall’s initial work for his third attempt. He has drawn a right 

triangle, which was missing from his first two attempts. 

In fact, his drawing of a right triangle and mentioning of the Pythagorean 

Theorem is notable because he did neither of these in either of his two first attempts. 

This suggests that Marshall’s initial ideas about the task did not necessarily include 

right triangles and the Pythagorean Theorem, but as he thought about how high school 
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students (Sasha and Keoni) might solve the task, he was able to think about the task 

from their perspective. In other words, Marshall appeared to decenter. 

 
Figure 4.25. A screenshot from Lesson 9 of the MathTalk videos illustrating Sasha and 

Keoni’s initial work on the Parabola Task. 

Marshall continued his third attempt by explaining how he thought Sasha and 

Keoni would find the length of each side of the right triangle. His explanations 

leveraged the kind of quantitative reasoning Sasha and Keoni employed, including 

quantifying coordinates as distances and forming quantitative relationships with those 

quantities. For example, he talked about how Sasha and Keoni would find the vertical 

leg of the right triangle: 

Marshall: As they [Sasha and Keoni] look at that distance they 
would have the 𝑦 minus 𝑘 to get up to the vertex, 
and then they need to take away a little more, they 
need to take away 𝑝. 

Interviewer: Ok, so I’m going to ask you to just show me that on 
your diagram, and if you want a new one, I can get 
you a new one. 
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Marshall: So we have 𝑦 [draws a line segment off to the side, 
starting at a point that is roughly the same height 
above the 𝑥-axis as the point 𝑥, 𝑦 , down to the 𝑥-
axis and labels it 𝑦, recreated with a red segment in 
Figure 4.26b below] and then take away 𝑘 from it 
[draws a bracket/line down part of the line he just 
drew and labels it 𝑘, recreated in blue in Figure 
4.26b below]. 

Interviewer: Ok. Where 𝑘 is? 
Marshall: Oh, it doesn’t look like it in the drawing, but it’s 

where the vertex is [revises his diagram by drawing 
a short horizontal segment; recreated in green in 
Figure 4.26b below] 

Interviewer: Ok, so if that new line is there, then you would? 
Marshall: And then we have this little more, it’s 𝑝 [labels a 

segment 𝑝, see Figure 4.26 below]. So, to get up to 𝑦 
right here [makes a dot at the top of the line labeled 
𝑦], we have this whole piece 𝑦	[motions with his pen 
up and down along that line, which is the red 
segment in Figure 4.26b below], we take away 𝑘, 
and we take away 𝑝, and that gives us that side of 
the triangle. 

This episode serves as evidence to support the claim that Marshall took on the 

perspective of Sasha and Keoni. At the beginning of the episode he talked about what 

“they” would need to do, where the “they” was referencing Sasha and Keoni. As he 

explained the quantitative reasoning that yields 𝑦 − 𝑘 − 𝑝, he seemed to be taking 

Sasha and Keoni’s perspective through his repeated use of the word “we.” His 

explanations regarding how he thought Sasha and Keoni would find the lengths of 

each side of the right triangle were accurate, and captured the spirit of Sasha and 

Keoni’s method. These explanations can be taken as more evidence that Marshall 

decentered in an effort to think about and solve the problem from Sasha and Keoni’s 

perspective. 
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Figure 4.26. (a) At left, the diagram Marshall used to explain how he thought Sasha 
and Keoni would think about 𝑦 − 𝑘 − 𝑝, and (b) at right, the author’s recreation of 

Marshall’s inscriptions. 

Marshall finished his third attempt by stating that Sasha and Keoni would find 

the lengths of the sides of the right triangle to be 𝑥 − ℎ, 𝑦 − 𝑘 − 𝑝, and 𝑦 − 𝑘 + 𝑝, 

and he explained that Sasha and Keoni would use the Pythagorean Theorem to set up 

an equation. Marshall’s third solution is qualitatively different from his first two 

solutions. He did not seem to demonstrate much quantitative reasoning with 

coordinates as distances in his first two solutions, instead relying on his own prior 

knowledge about geometric transformations. He also leveraged the distance formula 

along with sophisticated algebraic notation schemes in order to solve the task by 

explicitly using the geometric definition. These solutions stand in contrast to his 

solution given from Sasha and Keoni’s perspective, which featured Marshall’s 

demonstration of quantitative reasoning with coordinates as distances, the formation of 
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quantitative relationships, and the use of a right triangle along with the Pythagorean 

Theorem. Indeed, Marshall’s third solution serves as strong evidence that Marshall 

decentered and took on the perspective of Sasha and Keoni in producing a new 

solution. 

Marshall’s ideas about Sasha and Keoni and their understanding of the task. 

Marshall did not just solve the task in a way that was similar to Sasha and Keoni’s 

method. He also expressed several ideas about what Sasha and Keoni might 

understand and what they might have difficulty understanding. For example, Marshall 

said that Sasha and Keoni “would try to build on what they did before,” but that “when 

it comes to labeling distances they [Sasha and Keoni] would run into some trouble.” 

He also expected that Sasha and Keoni would “think of 𝑝 right away” which would 

help them figure out that “𝑘 plus 𝑝 is the 𝑦-value of the focus, and the directrix is at 𝑘 

minus 𝑝.” As mentioned before, Marshall noted that Sasha and Keoni would use the 

Pythagorean Theorem. He also stated multiple times that Sasha and Keoni liked to 

draw their triangle “above it,” meaning the horizontal leg of the right triangle 

extending leftward from 𝑥, 𝑦 , instead of extending rightward from the focus (these 

two ways are highlighted in Figure 4.27 below), and Marshall even drew a triangle 

“above it” to illustrate what he meant (visible in Figure 4.26a above, and highlighted 

in green in Figure 4.27 below). 
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Figure 4.27. The red annotated triangle is how Marshall drew the triangle, while the 
green annotated triangle is how Sasha and Keoni drew theirs, and is what Marshall 

meant when he said they would draw theirs “above it.” The original triangles can be 
seen in Figure 4.26a above. 

These examples are indicative of the kinds of comments Marshall made as he 

worked through his third solution. I provide these to support my overarching claim 

that Marshall turned away from his own mathematical understanding of the Parabola 

Task in order to solve the task from the perspective of two high school students. These 

statements add texture to Marshall’s solution as they suggest Marshall did not just 

offer a different solution. Instead, Marshall appeared to thoughtfully consider the task 

from Sasha and Keoni’s perspective by considering what they might or might not do, 

as well as what they may or may not struggle with. These statements, along with his 

solution, can be taken as evidence that Marshall decentered by shifting his point of 

view from his own mathematical understanding to the mathematical understandings he 

thought Sasha and Keoni would have. 

April and Jasper 
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In this section I briefly discuss the work in the post-interview of two more 

participants, April and Jasper. Their initial solutions were qualitatively different from 

Sasha and Keoni’s solution. Then, like Marshall, April and Jasper changed their 

solutions after I asked them how they thought Sasha and Keoni would solve the task. 

Their new solutions were similar to Sasha and Keoni’s and both provided evidence of 

decentering.  

April’s initial attempts were dissimilar from Sasha and Keoni’s method. 

Like Marshall, April’s initial attempts to solve the Parabola Task involved using 

transformations and the distance formula. For example, April spent several minutes 

working in silence producing several diagrams in which she appeared to be applying 

transformations or shifts of the parabola (see Figure 4.28 below). When I asked her 

about this, she said her plan was to place a parabola with its vertex at the origin and 

then apply a series of shifts to help her determine the 𝑦-coordinate of the focus. In 

response, I asked her what she planned to do with that coordinate, and she said she 

ultimately wanted to use the distance formula to derive the equation for the parabola. 

After some time in which she appeared to reason quantitatively with some coordinates 

as distances (e.g., quantifying 𝑦X, 𝑘, and 𝑎 to form the quantitative relationship 𝑦X −

(𝑘 + 𝑎), where 𝑎 is the distance from the vertex to the focus), April wrote the 

equation (𝑥X − ℎ)6 + (𝑦X − 𝑘 + 𝑎 )6 = (𝑥X − 𝑥X)6 + (𝑦X − 𝑘 − 𝑎 )6. 
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Figure 4.28. April’s initial work on the Parabola Task, including transformations of 

the parabola (annotated with ovals), seen at the top of the page, and her final equation, 
seen at the bottom of the page. 

To the extent that April demonstrated quantitative reasoning, it seemed to be in 

service of finding coordinates of points so she could use the distance formula. For 

example, consider this quote from April which confirms this claim: 

What I want to do is, use the distance formula. And I want to know 
what this coordinate is [circles the 𝑚, which she had written to stand in 
for the 𝑦-coordinate of the focus; see Figure 4.29 below], well the 
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coordinate of the focus, and I want to know what my 𝑦-point is for here 
[points to the focus] and for here [points to the point labeled 𝐿; see 
Figure 4.29 below], that way I can just use the distance formula. 

 
Figure 4.29. April circled the 𝑦-coordinate of the focus (annotated with an arrow) and 

indicated the point labeled 𝐿 (annotated with a circle). 

This approach is qualitatively different than Sasha and Keoni’s approach. Sasha and 

Keoni wanted to find the lengths of the sides of a triangle in service of using the 

Pythagorean Theorem, whereas April did not draw a triangle nor did she refer to a 

triangle during her initial attempts. April’s quantitative reasoning appeared to be in 

service of finding the values of the coordinates of certain points, which were then used 

in the distance formula. By contrast, Sasha and Keoni’s quantitative reasoning was in 

service of finding lengths of sides of triangles to be used in the Pythagorean Theorem. 

April decentered. In response to the follow-up question about how Sasha and 

Keoni would solve the Parabola Task, April appeared to take on their perspective in 
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solving the task. She started by saying that Sasha and Keoni would label an arbitrary 

point on the parabola 𝑥, 𝑦 , and then draw lines from that point to the directrix and 

the focus, which she then did (see Figure 4.30 below). 

 
Figure 4.30. April’s inscriptions indicating how she thought Sasha and Keoni would 

start the Parabola Task. Note that the segments are not dashed, and there are no 
subscripts for the coordinates. 

April later noted that Sasha and Keoni would attend to the distance from the 

focus to the directrix and label it with a variable (she chose 𝑧, unlike Sasha and Keoni 

who used	𝑝). She claimed that Sasha and Keoni would be able to determine that the 

distance from the 𝑥-axis to the vertex was 𝑘 and would then say that the focus was at 

ℎ, 𝑘 + 𝑧 . She continued by saying that Sasha and Keoni would draw a horizontal 

line from the 𝑥-axis through the vertex to help them find the height of the directrix, 

which she labeled 𝑘 − 𝑧 (see Figure 4.31 below). She claimed that Sasha and Keoni 
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would then find the distance from 𝑥, 𝑦  to the directrix, which would be 𝑦 − (𝑘 − 𝑧). 

Finally, April stated that Sasha and Keoni would draw a triangle and use the 

Pythagorean Theorem once they found the lengths of the sides of the triangle. She then 

sketched a line from the 𝑦-axis through 𝑥, 𝑦 , and drew a line segment from the focus 

to that line to form a triangle and drew a bracket for one side (see Figure 4.31 below). 

At this point, April seemed fatigued with the problem; so I did not push her any 

further. 

 
Figure 4.31. April found the distance 𝑘 − 𝑧 (annotated with an oval), and later 

sketched a dotted line (annotated with a rectangle) and formed a triangle (annotated 
with a circle). 

April’s description of how Sasha and Keoni would solve the task serves as 

evidence of my claim that she decentered. First, there are differences between her 

initial attempt and her final attempt. For example, April initially used a notation 
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scheme for her arbitrary point that used subscripts (she used 𝑥X, 𝑦X  as her arbitrary 

point); by contrast, in her final attempt she used 𝑥, 𝑦  as the arbitrary point, which is 

exactly what Sasha and Keoni used throughout the lessons, as well as in their own 

solution of the Parabola Task. April also used dashed line segments for the segments 

from the arbitrary point to the focus and directrix (see Figure 4.29 above) in her initial 

work, but used solid line segments for those segments when describing how Sasha and 

Keoni would solve the task. Sasha and Keoni used solid line segments for much of 

their work throughout the parabola unit, (see Figure 4.32 below as one example). Her 

use of solid lines, rather than dashed lines, is consistent with taking on the point of 

view of Sasha and Keoni. These qualitative differences are notable because the lack of 

subscripts and the use of solid segments match what Sasha and Keoni did in their own 

attempt. In other words, April changed her approach in ways that matched how Sasha 

and Keoni approached the task. 

Second, throughout the entire mini-course, April seemed to strongly prefer a 

method of finding coordinates of points to use with the distance formula (see Chapter 

5 for evidence). This method was how she initially approached the Parabola Task in 

the post-interview. However, when I asked her to describe how Sasha and Keoni 

would solve the task, she appeared to think about the task from their perspective. As 

evidence of this claim, consider that her solution initially did not involve a right 

triangle; yet in her description of Sasha and Keoni’s method, she not only made a 

point that they would draw a triangle, she also drew one herself. Indeed, her final 

attempt was driven by a search for the lengths of the legs of a right triangle, whereas 
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her initial attempt was driven by a search for the values of coordinates of certain 

points to be used in the distance formula. Moreover, she explicitly said in her initial 

attempt that she was trying to use the distance formula, which contrasts with her 

statement in her final attempt that Sasha and Keoni would use the Pythagorean 

Theorem. 

 
Figure 4.32. Sasha and Keoni’s work typically featured solid line segments, as seen in 

this screenshot from Lesson 9, Episode 6. 

April’s statements about how she thought Sasha and Keoni would solve the 

Parabola Task were qualitatively different from her own solution attempts to solve the 

task. The evidence I have provided from her attempts to solve the task suggests that 

April decentered and took on the perspective of Sasha and Keoni. I now turn to Jasper, 

who like Marshall and April, seemed to decenter by taking on the perspective of Sasha 

and Keoni to produce a solution method that was qualitatively different from his initial 

solution attempts. 
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Jasper’s initial attempt was dissimilar from Sasha and Keoni’s method. 

Like Marshall’s initial attempt, Jasper’s first solution for the Parabola Task seemed to 

leverage transformations in the plane. Specifically, Jasper wrote the equation 𝑦 =

(JKL)M

N(VYKZ)
+ 𝑘 (where 𝑦[ is the 𝑦-coordinate of the focus; see Figure 4.33 below).  

 
Figure 4.33. Two equations from Jasper’s initial work on the Parabola Task. 

He explained how he arrived at that solution by stating that “the general one 

will be 𝑥 squared over four 𝑦-eff [writes J
M

NVY
],” which would be the equation if the 

parabola “crossed at the origin.” I asked him to clarify, and he said he meant that the 

vertex would be at the origin. He then described some transformations of the parabola: 
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If I remember correctly, that we do some shifts, because we shifted 
over ℎ times, then it would be 𝑥 minus whatever the shift is, which is ℎ, 
squared. And then down here [points to where he wrote 𝑦[ − 𝑘] will be 
the shift up and down, which in this case, will be, instead of the origin 
is zero, in this case it would be 𝑘, that would be the shift. 

Jasper decentered. After I asked Jasper how he thought Sasha and Keoni 

might solve the task, he produced a solution that was similar to the students’ approach. 

Jasper began by placing an arbitrary point and drawing segments from that point to the 

directrix and to the focus (see Figure 4.34 below). He then said “They [Sasha and 

Keoni] would do the triangle,” and as he said this he drew a triangle (see Figure 4.34 

below). He said that Sasha and Keoni would say that the arbitrary point would be 

𝑥, 𝑦 , and he labeled the point as such. 

 
Figure 4.34. Jasper’s second attempt featured segments drawn from an arbitrary point 

and a right triangle. 

Jasper then discussed how Sasha and Keoni would find the lengths of each side 

of the right triangle he drew. He began by stating they would find the length of the 
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horizontal leg by finding the distance from 𝑥, 𝑦  to the 𝑦-axis as 𝑥 and then the 

distance from the focus to the 𝑦-axis as ℎ. He concluded by saying that Sasha and 

Keoni would say the horizontal leg would be 𝑥 − ℎ. He used similar quantitative 

reasoning to find the distances of the other two sides of the right triangle. Jasper did 

state that he thought Sasha and Keoni would have difficulty with finding the length of 

the hypotenuse because they would have trouble finding the equation for the directrix. 

Eventually he decided they would say that the directrix was at 𝑦 = 𝑑, so that the 

hypotenuse would have a length of 𝑦 − 𝑑. His equation can be seen in Figure 4.35 

below. 

 
Figure 4.35. Jasper’s work for his second attempt, including his final equation 

(annotated with a rectangle). 

Jasper’s descriptions of how he thought Sasha and Keoni would solve the task 

can be taken as evidence that Jasper decentered. First, there are several notable 
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differences between his two attempts. For example, in Jasper’s initial attempt he did 

not draw an arbitrary point, nor did he draw segments from that point in an effort to 

leverage the definition of a parabola. In contrast, he did both of these things in his 

second attempt. In his initial attempt, he did not tend to reason quantitatively with 

coordinates as distances, nor did he seem to form quantitative relationships. However, 

in his second attempt he did reason quantitatively. Jasper also did not draw a triangle 

or mention the Pythagorean Theorem in his initial attempt; instead he talked about 

shifts and “general” parabolas. By contrast, in his second attempt Jasper did draw a 

triangle, found the lengths of the sides of the triangle, and used the Pythagorean 

Theorem to generate an equation for the parabola. These differences suggest that 

Jasper was able to turn away from his own initial understandings of the task. 

Moreover, his second attempt, as described above, was similar to Sasha and Keoni’s 

method. This suggests that not only did Jasper set aside his own mathematical 

understandings, but that he also took on the perspective of Sasha and Keoni. In other 

words, Jasper appeared to decenter. 

In summary, three participants (Marshall, April, and Jasper) seemed to be able 

to shift their point of view to that of Sasha and Keoni’s to solve the Parabola Task like 

high school students. Three other participants, Willow, Sierra, and Lily, produced 

initial solutions to the Parabola Task that were similar to Sasha and Keoni’s solution. 

When I asked them how they thought Sasha and Keoni would solve the task, all three 

replied that Sasha and Keoni would produce solutions similar to theirs. Willow even 

said, “I would assume they went at it the same way I did, because I was going the way 
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Sasha and Keoni might approach this, because that it how I learned about it.” In other 

words, Willow, Sierra, and Lily may have decentered during the mini-course as they 

looked to the videos with Sasha and Keoni to deepen their understanding of the 

mathematics. If this is the case, the shift to decentering may not have been visible in 

the post-interview, because it had occurred previously during instruction. As for 

Desmond, he had few ideas about what Sasha and Keoni would do with the task. He 

did state they would use the "𝑎6 + 𝑏6 = 𝑐6 triangle like I did” However, there was not 

sufficient data to suggest that Desmond had clear ideas about how Sasha and Keoni 

would solve the task. 

I now turn toward the third shift in MKT around quantitative reasoning, which 

was a shift in orientation toward problem solving. All three participants who 

experienced a shift in quantitative reasoning (Willow, Sierra, and Desmond), as well 

as two participants who experienced a shift in point of view (Jasper and April) seemed 

to shift from a calculational orientation in the pre-interview to a conceptual orientation 

in the post-interview. 

A Shift in Orientation 

This section is divided into three parts. First, I discuss the constructs of 

calculational and conceptual orientations. Second, I provide evidence in support of my 

claim that one of the participants, Sierra, experienced a shift in her orientation toward 

problem solving from one that was calculational in nature in the pre-interview to one 

that was conceptual in nature in the post-interview. Finally, I briefly discuss four other 

participants’ shifts in orientation. 
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Calculational and Conceptual Orientations 

A. G. Thompson et al. (1994) characterized two different orientations that 

mathematics teachers may exhibit in their teaching: calculational and conceptual. A 

calculational orientation is characterized by teaching that seems to focus on (a) 

calculations and procedures, (b) finding numerical answers or performing arithmetic 

operations; (c) performing calculations whenever an opportunity to do so arises, 

regardless of the context or purpose of the task; and (d) speaking in terms of numbers 

or numerical operations. By contrast, a teacher with a conceptual orientation tends to 

have: (a) images of different ways students understand an idea; (b) images of how 

those understandings develop; (c) images of instruction that promote that 

development; and (d) expectations that students are intellectually engaged in 

mathematical activity (Silverman & Thompson, 2008; A. G. Thompson et al., 1994).  

A. G. Thompson et al. (1994) argued that orientations influence classroom 

discourse and in turn influence student learning. For example, in a two-part series, A. 

W. and P. W. Thompson (A. G. Thompson & Thompson, 1996; P. W. Thompson & 

Thompson, 1994) explored how talking about rates from different orientations seemed 

to influence the learning of one student, Ann. They reported on a four-day teaching 

experiment for which the goal was for Ann to develop a conceptual understanding of 

speed. 

Bill, the teacher for the first two days and the subject of the first part of the 

series, appeared to have a deep understanding of speed, but his calculational 

orientation seemed to be problematic for Ann’s own learning (P. W. Thompson & 
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Thompson, 1994). For example, one of the tasks in the teaching experiment was to 

figure out the speed an animal traveled if it went 100 feet in seven seconds. Bill 

continually tried to focus Ann’s attention on the operation needed to produce the 

answer (division). For Bill, a measurement induced a partition and vice versa, so he 

saw Ann’s initial successful attempts to find time given a speed as being indicative 

that she could find speed given time. Bill’s focus was on the arithmetic operation of 

division, particularly the fact that division was an appropriate operation in either 

context (find speed given time and vice versa). However, Ann did not see the two 

contexts as requiring the same operation; indeed, Ann did not seem to see the 

necessity that as distance accumulates, so does time at a rate that is proportional to the 

rate that distance is accumulating. Bill’s apparent calculational orientation prevented 

him from being able to attend to Ann’s conceptual difficulties, which eventually led to 

a breakdown in the teaching experiment. 

In the second part of the series, A.G. Thompson and Thompson (1996) 

reported on Pat’s attempts to help Ann come to understand speed during the third day 

of the teaching experiment. The authors highlighted differences between Pat’s and 

Bill’s orientations, and argued that Pat’s conceptual orientation helped Ann come to 

better understand speed. For example, Pat believed that Ann needed to see speed as a 

simultaneous accumulation of both distance and time. To help Ann come to 

understand speed in this way, he swept his index fingers simultaneously along both a 

distance line and a time line to represent an animal’s motion. Moreover, his language 
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also reflected his desire to have Ann come to understand division not only as an 

operation, but also as a tool for both measuring and partitioning. 

During the analysis of the pre- and post-interviews I noticed that the constructs 

of calculational and conceptual orientations seemed useful for characterizing how 

participants oriented themselves to the interview tasks. Moreover, several participants 

approached the Ellipse Task (see Figure 4.1a above) with an orientation toward the 

task that could be characterized as calculational, yet seemed to approach the Parabola 

Task (see Figure 4.1b above) with an orientation that could be characterized as 

conceptual. In other words, some participants experienced a shift in their orientations. 

The calculational and conceptual constructs elaborated by A. G. Thompson et 

al. (1994) are useful for this analysis for two reasons. First, the characterizations of 

these orientations provided by the authors include descriptions of actions and language 

that can be applied to problem solving activities (e.g., a focus on numbers, values, and 

numerical operations). Second, and more importantly, participants in this study were 

prospective teachers. Furthermore, the purpose of this study is to investigate MKT 

development by PSTs. The Silverman and Thompson (2008) framework for MKT 

development takes as a foundation for MKT rich conceptual understanding of a 

mathematical situation; consequently, a conceptual orientation toward problem solving 

can be thought of as a necessary prerequisite for a conceptual orientation toward 

teaching. Accordingly, I use the constructs of calculational and conceptual orientations 

primarily to characterize my participants’ orientation toward solving mathematical 

tasks. However, because some of the follow-up probes in both the pre- and post-
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interview dealt with pedagogical ideas, I also apply these two orientations to the 

participants’ images of instruction. 

Sierra 

I now present evidence to support the claim that Sierra experienced a shift in 

her orientation toward problem solving and in her images of instruction. I present four 

pairs of episodes, with one episode from the pre-interview and one episode from the 

post-interview comprising a single pair. These paired events are similar in terms of 

what Sierra was trying to accomplish mathematically or in terms of her reflections on 

mathematics instruction. Presenting the episodes in this manner allows for contrasts in 

her orientation to be analyzed. 

Before presenting the analysis, I acknowledge that a careful reader might start 

to wonder how this analysis differs from the analysis in the Shifts in Quantitative 

Reasoning section. In that section, the analysis targeted ways in which participants 

reasoned quantitatively with distances. I examined how they seemed to conceive of 

coordinates and whether they formed quantitative relationships. In the following 

analysis, quantitative reasoning (or a lack thereof) features prominently, but it serves 

as the backdrop for the analysis. Instead, I investigate participants’ images of 

instruction and approach to solving problems that feature quantitative reasoning.  

Emphasis on numeric values versus quantities. In the pre-interview, Sierra 

seemed to emphasize finding and working with numeric values. For example, consider 

that she appeared to treat points as numeric values to be operated on. Early in her 

attempt to solve the Ellipse Task, Sierra stated that the length of the vertical leg of the 
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right triangle was 𝑦 − 𝑘 (see Figure 4.17 in the Shift in Quantitative Reasoning 

section). In response to my question about where she saw 𝑦 − 𝑘, Sierra referred to the 

point (𝑥, 𝑦) and/or the coordinate 𝑦 (it was not always clear if she meant the point or 

the coordinate) as “the highest number,” “the higher value,” and “the top height.” 

When I asked her to show me y as the higher number, she replied “My higher number? 

This is the point” while pointing to (𝑥, 𝑦). She also referred to the vertex of the right 

angle and/or 𝑘 (again, it was often unclear to which she was referring) as “the lowest 

number” and “the bottom height.” These statements are consistent with a calculational 

orientation toward problem solving. 

By contrast, in the post-interview Sierra seemed to emphasize finding and 

working with quantities. In the post-interview, Sierra declared that the length of a 

horizontal leg of a right triangle was 𝑥 − ℎ. Instead of emphasizing the numeric 

values, as she did in the pre-interview, Sierra emphasized the quantities that the 

coordinates represented. For example, she gestured along a horizontal segment and 

said “the whole thing” would be 𝑥, indicating the quantity of distance with her gesture. 

She characterized another segment by using a similar gesture and claiming it would be 

“ℎ units.” As elaborated in the Shifts in Quantitative Reasoning section, Sierra was 

quantified coordinates as distances, which suggests that she emphasized quantities and 

reasoning with quantities in the post-interview. This behavior is consistent with a 

conceptual orientation toward problem solving.  

Arithmetic versus quantitative operations. In the pre-interview, Sierra 

seemed to focus on arithmetic operations, which is consistent with a calculational 
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orientation toward problem solving. For example, initially Sierra formed a quantitative 

relationship, namely 𝑦 − 𝑘 (this episode is analyzed in detail in the Shifts in 

Quantitative Reasoning section—I briefly recap it here). However, when I asked her to 

explain how she saw the 𝑦 − 𝑘, she said “this distance right here is this point minus 

this point,” and later said the “distance is like the highest number minus the lowest 

number.”  

This language suggests that Sierra did not form a quantitative relationship 

since she did not quantify 𝑦 or 𝑘 as distances. Moreover, rather than performing a 

quantitative operation such as take away or compare (see the conceptual analysis for 

the interview tasks in Chapter 3) Sierra seemed to be performing the arithmetic 

operation of subtraction with unknown values without explicit links to a quantitative 

meaning for subtraction. She also said it did not have to be that way (i.e. highest minus 

lowest), because she could find “𝑘 minus 𝑦, which would be negative” and then take 

the absolute value. 

In the post-interview, Sierra appeared to not only quantify coordinates as 

distances, she also appeared to form quantitative relationships. For example, in the 

Shifts in Quantitative Reasoning subsection above, I presented an exchange in which 

Sierra formed the quantitative relationship 𝑦 − 𝑘 + 𝑝. I have reproduced that exchange 

below and added emphasis throughout. Notice that instead of speaking of values to be 

subtracted and added, Sierra used spanning gestures to indicate distances as she talked 

about each algebraic term.  
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Sierra: So it would be y, this whole thing [gestures along 
the bracket annotated with a larger oval in Figure 
4.36 below]— 

Interviewer: Uh huh 
Sierra: —minus 𝑘 [makes a span gesture with her middle 

finger and thumb; middle finger on the vertex (ℎ, 𝑘) 
and thumb directly below on the 𝑥-axis]— 

Interviewer: Yeah 
Sierra: —plus this distance [draws a small bracket near the 

segment annotated with a small circle in Figure 4.37 
below], because I want this whole thing [gestures 
with her pen along the segment annotated with an 
oval in Figure 4.37 below]. 

 
Figure 4.36. Author’s annotations indicating the segments along which Sierra 

gestured. 
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Figure 4.37. Author’s annotation of Sierra’s gestures and drawing of a line segment. 

The spanning gestures Sierra used suggests that as she talked about subtracting 

and adding, she linked those operations with quantities (i.e., distances in the 

coordinate plane) and not numeric values. In other words, her spanning gestures 

suggest she was taking away or combining distances, which are quantitative 

operations. 

Calculating versus sense making. One of the characteristics of a calculational 

orientation is performing calculations whenever an opportunity presents itself to do so 

(A. G. Thompson et al., 1994). During the pre-interview, Sierra seemed to exhibit this 

characteristic as she solved the Ellipse Task. For example, during the pre-interview, 

Sierra appeared to have the goal to use the Pythagorean Theorem to find the length 

one side of the triangle. As demonstrated in the conceptual analysis for the Ellipse 

Task presented in Chapter 3, the Pythagorean Theorem is not necessary. Yet Sierra’s 
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calculational orientation seemingly influenced her goal for the task so that she got so 

caught up in a series of calculations that she lost track of what she was trying to find: 

I know this [points to the 𝑦 − 𝑘 she had written], I know that [points to 
the label 𝑟6 printed on the graph], so I can find this [gestures along the 
horizontal leg of the smaller right triangle]. Which would be with the 
Pythagorean Theorem, 𝑦	minus 𝑘 squared plus 𝑏 will give me 𝑟-two 
squared [writes the equation (𝑦 − 𝑘)6 + 𝑏6 = 𝑟66, see Figure 4.38 
below]. So I want to solve for this [points to the 𝑏 in the equation she 
just wrote], I would subtract this whole thing [gestures in a circle 
around the (𝑦 − 𝑘)6 in the equation she just wrote, then writes a new 
equation 𝑏6 = 𝑟66 − (𝑦 − 𝑘)6, see Figure 4.38 below.], so then I would 
just square root everything [draws square root symbols over both sides 
of the equation] so these two would cancel [draws a segment through 
the exponent 2 and the square root symbol on the left side of the 
equation, annotated with a circle in Figure 4.38 below]. And I’m left 
with this, as my 𝑏, as this length [gestures back and forth along the 
horizontal leg of the right triangle; then there is 17 seconds of silence in 
which Sierra gestures with her pen across the task statement as if she is 
reading it]. Oh, ok! Find the area, I’m like “What am I trying to find?” 

 
Figure 4.38. Sierra’s equations for finding 𝑏. 

Sierra’s pause at the end of this episode suggests that she had lost track of what 

the goal for the task was. Indeed, all her work leading up to this moment seemed to be 
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in service of using the Pythagorean Theorem to find the length of the leg of the right 

triangle. As just mentioned, the Pythagorean Theorem is not needed to solve the task, 

as the legs of the triangles can be found through quantitative reasoning. Not only did 

Sierra not employ quantitative reasoning to find the length of the horizontal leg of the 

smaller right triangle, her focus on calculating its length using the Pythagorean 

Theorem obscured the main goal of the task. 

During the post-interview, Sierra seemed to forgo calculating in order to make 

more sense of the mathematical situation. This is in contrast to her work during the 

pre-interview where she calculated just for the sake of doing so. 

As evidence of Sierra’s emphasis on sense-making, I present an episode from 

the post-interview in which Sierra seemed to turn away from her calculational 

orientation toward one that is more conceptual. Leading up to this episode, Sierra had 

made some progress in solving the Parabola Task, as discussed in the Shifts in 

Quantitative Reasoning section. She had created a right triangle; set the equation for 

the directrix to be 𝑦 = 3; and represented the length of the hypotenuse of the right 

triangle as 𝑦 − 3, the length of the horizontal side of the triangle as 𝑥 − ℎ, and the 

length of the vertical length as 𝑏 (see Figure 4.39). I then asked Sierra if she could 

express 𝑏 in terms of 𝑦. During her response, there is a moment when she appeared to 

catch herself wanting to give in to her inclination to perform a series of calculations, 

but instead, she appeared to step back and try to make sense of the situation in terms 

of quantities: 

Interviewer: Now can you find 𝑏	in terms of 𝑦? 
Sierra: 𝑏 in terms of 𝑦? 
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Interviewer: Yeah, 𝑏 in terms of y and the other distances. 
Because what I see is you have used 𝑝 here, you’ve 
identified 𝑘, you’ve identified ℎ and you’ve 
identified 𝑦, and then you introduced this 𝑏 as this 
distance, and I’m wondering if you can get 𝑏— 

Sierra: In terms of 𝑦? 
Interviewer: —in terms of everything else you have identified. 
Sierra: Oh. [For the next 50 seconds, Sierra is silent. She 

looks at her paper, and moves her pen around it as 
she looks] So this whole distance would also be 
𝑦	[gestures along the segment marked 𝑏, all the way 
down to the 𝑥-axis. This is followed by another 1 
minute and 15 seconds of silence, only interrupted 
when I encouraged Sierra by telling her she was 
doing well]. I mean, I could solve it over here 
[gestures with her pen in a wide circle around the 
equation she had written], but I don’t think that’s 
what you’re looking for. I’m thinking there has to 
be something here [gestures with her pen in circles 
around the segment from 𝑥, 𝑦  to the directrix] that 
can tell me what this distance [gestures along the 
vertical leg of the triangle labeled 𝑏] will be the 
same as like a portion of this distance [gestures 
along the segment from 𝑥, 𝑦  to the directrix; 
emphasis added throughout]. 

The long pauses in this episode seemed to be moments where Sierra was trying to 

analyze the situation to see how she could answer my question about finding 𝑏 in 

terms of 𝑦. Eventually she went on to find 𝑏 in terms of 𝑦, which is outlined in more 

detail in the Shifts in Quantitative Reasoning Section. 

Two things from this episode stand out in contrast to how she approached the 

Ellipse task in the pre-interview. First, in the pre-interview, I never explicitly asked 

Sierra to solve for 𝑏, yet she did so without prompting. Given her inclination to solve 

for 𝑏 in the pre-interview, I expected her to do something similar in response to my 

question to “find 𝑏 in terms of 𝑦.” However, instead of solving for 𝑏 using algebraic 



 

 

194 

manipulations as she did in the pre-interview, she instead seemed to begin to carefully 

analyze the mathematical situation (as evidenced by the long pauses). 

 
Figure 4.39. Sierra’s initial work on the Parabola Task included declaring the equation 
of the directrix to be 𝑦 = 3 (annotated with a circle), finding the lengths of the sides of 

a right triangle (annotated with arrows), and finding an equation for the parabola 
(annotated with a rectangle). 

Second, she admitted that she could solve for 𝑏 (see the emphasized text 

above), but insisted that she could also find a way to relate one distance given the 

other. This suggests that Sierra’s orientation toward problem solving from the pre- to 
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the post-interview had begun to shift. That she appeared to analyze the situation and 

then assert that she should be able to find the distance using quantities already found 

(and then did so—see the Shifts in Quantitative Reasoning section) is consistent with a 

conceptual orientation toward problem solving. 

Telling students to substitute numerical values versus posing quantitative 

questions. From the pre-interview to the post-interview, Sierra’s images of instruction 

related to quantities changed. In the pre-interview, Sierra seemed to think that 

substituting numerical values for unknowns would help students; however, she did not 

link those values with quantities. By contrast in the post-interview, Sierra appeared to 

have developed an image of instruction that included quantitative questions. 

Part of my interview protocols included asking participants what challenges 

they thought high school students would face in solving the tasks, as well as what the 

participants would do or say as teachers to help students overcome those challenges. 

In the pre-interview in response to this question, Sierra made the claim that students 

might struggle to attend to how all points along a horizontal line above the x-axis have 

the same height above the x-axis. 

Probably relating this point [the center ℎ, 𝑘 , annotated with an oval in 
Figure 4.40 below] throughout this [gesturing across the horizontal 
segment from 𝐹5 to the vertex of the right angle of the right triangle, 
annotated with an arrow in Figure 4.40 below], knowing that this 
[pointing to the vertex of the right angle of the right triangle, annotated 
with a square in Figure 4.40 below] is the same height of 𝑘. 



 

 

196 

 
Figure 4.40. Sierra pointed to the center (annotated with an oval), then gestured along 

the line segment (annotated with an arrow) and finally pointed to the vertex of the 
right angle of the right triangle (annotated with a square). 

Sierra seemed to have in mind that students might struggle with recognizing 

that points along a segment that is parallel to the 𝑥-axis will have the same height 

above the 𝑥-axis. While this idea about students’ struggles is not necessarily indicative 

of a calculational orientation toward problem solving, the way that she said she would 

help students could be taken as evidence of a calculational orientation. Consider her 

response to my question about how she would help students come to understand that 

the points would have the same height: 

Sierra: I would probably like, let’s say this was what, like 
five, 𝑘 was five. I would tell them to just graph 
𝑦	equals five, which would be this whole line right 
here [draws a line from the 𝑦-axis through the 
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segment annotated with an arrow in Figure 4.40 
above], like that, and label it 𝑦 equals five. So that’s 
my height. So they can actually see that the value of 
𝑦 throughout this whole line is five. That’s probably 
something I would do. 

Interviewer: So, would you do that before the task, or in the 
middle of the task you would say “Ok, let’s pretend 
that 𝑘	is five?” 

Sierra: Probably when I start seeing that they’re not getting 
anywhere, like they’re just like “I don’t know what 
to do!” Just as a hint. Like “So, guys,” I would ask 
them, “Like what is my value? Let’s say my 𝑘 is 
five,” and then I would just be like, “So I want you 
to graph that line.” And then I would be like “What 
do you see? What’s my value of 𝑦 at 𝐹-one? 𝐹-two? 
And at my corner point?” 

Sierra’s image of instruction to help high school students seemed to emphasize 

numerical values rather than linking those values to quantities. She said she would 

change the unknown 𝑘	to a known value, five. She could have said that she would 

want students to understand that the value five would mean the point is five units 

above the 𝑥-axis, which would be more consistent with a conceptual orientation. In 

other words, she could have changed the unknown to five, and then emphasized that 

all points on the line would have a distance of five units from the 𝑥-axis, which would 

reflect a conceptual orientation. Instead, she said “They could actually see the value of 

𝒚 (emphasis added) throughout this whole line is five.” Her image of instruction 

included a need for students to see a value of 𝑦, rather than to see 𝑦 as a distance from 

the 𝑥-axis. 

In the post-interview, Sierra talked about moves the instructor in the MathTalk 

videos had made, and how those helped her solve the Parabola Task. For example, she 
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had this to say about how the teacher would help students attend to distances in the 

plane: 

I could remember her [the teacher] saying “Oh well, like, you have 
what this whole distance is [gestures with her pen from (𝑥, 𝑦) to the 
directrix], but what is this distance [gestures along the same segment as 
before, but stops roughly at the same height as the focus]? And, just 
remembering that will help me like, “Well I need to find what that 
distance is,” and also like bringing in a new variable I can find it in 
terms of the actual variables I already have, just to make it easier. 

Sierra’s image of instruction for helping someone (in this case, herself) find 

distances seemed to have changed from the pre-interview. Instead of trying to replace 

unknowns with knowns and focusing on values that are not explicitly linked with 

quantities, Sierra appeared to be saying that trying to find relationships between 

distances was helpful. Sierra’s statement about how the teacher helped Sasha and 

Keoni can be taken as evidence that Sierra’s images of instruction have shifted to have 

a greater emphasis on quantities and relationships between quantities (“You have what 

this whole distance is, but what is this distance?”). This emphasis on quantities and 

relationships is consistent with a conceptual orientation toward problem solving. 

Sierra’s images of instruction seemingly shifted from helping students by providing 

numerical values in lieu of quantities to posing quantitative-related questions. 

Other Participants’ Shifts in Orientation 

In total, five participants (April, Desmond, Jasper, Sierra, and Willow) 

experienced a shift in their orientation toward problem solving. In this section, I 

describe the ways in which other participants’ orientations and shifts were similar to 

Sierra’s as I described it above. 
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In the pre-interview April seemed to emphasize values and numerical 

operations, both in how she solved the problem and in her images of instruction. For 

example, she spent several minutes finding coordinates to use with the distance 

formula so she could find the length of one leg of the triangle. Later, she claimed that 

high school students would need to understand how to find coordinates to use with the 

distance formula, and how to calculate with the distance formula. Like Sierra, April 

also claimed that providing students with known values would help them better 

understand and solve the task. In the post-interview, April’s orientation seemed to 

shift to one that was more conceptual, especially when she talked about how she 

thought Sasha and Keoni would solve the task. She reasoned quantitatively, and 

though her images of instruction included providing students with known values, she 

stated clearly that such moves would be in service of helping students generalize. 

Throughout the pre-interview, Desmond emphasized numerical values over 

unknowns. Unlike Sierra, Desmond also appeared to conflate points and labels for 

values that he could operate with. For example, he found the length of one leg of a 

triangle to be 𝑥 − 𝐹5, where 𝐹5 was the label for a point in the graph. His images of 

instruction also focused on how students might struggle to differentiate between “fixed 

distances and distances that aren’t fixed,” which seemed to be in reference to his 

predominant strategy of replacing unknowns in the problem with known values (e.g., 

he replaced 𝑥 − ℎ with	10 − 5). In the post-interview, Desmond did not need to 

replace unknowns with known values, nor did he operate with points or labels as 

values. Instead, he tried to make sense of quantities and relationships between 
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quantities. Moreover, he made claims about how high school students might struggle 

because “most people like to put it in their calculator and plug and chug,” and then 

argued that high school students need to be able to see all the points on the graph and 

“pull the variables out of the picture.” 

During the pre-interview, there were several moments where Jasper calculated 

when the opportunity presented itself. For example, like Sierra, he used the 

Pythagorean Theorem to find the length of a leg of a right triangle. Moreover, he 

expanded the term (𝑦 − 𝑘)6 in his attempt to find the length of that leg, which was 

more evidence of his tendency to calculate when the opportunity presented itself. Like 

Sierra, Jasper had images of instruction that included giving students known values to 

help them solve the problem, and he said that the goal of the task was to calculate the 

lengths of the bases and heights of the triangle to find the area. By contrast, in the 

post-interview, he seemed to emphasize quantitative operations over numerical 

operations. Like Sierra, Jasper also focused his efforts on making sense of the 

Parabola Task by talking about distances as quantities and analyzing relationships 

among quantities. Jasper’s images of instruction also included helping students “see” 

distances and finding one distance in relation to another. 

Finally, Willow’s shift in quantitative reasoning seemed to include elements of 

a shift in orientation. In the pre-interview, she oriented toward numeric values and 

arithmetic operations. For example, her description of finding the height by finding the 

difference in the two points included an expression in which she tried to subtract the 

two points (see Figure 4.4 in the Shifts in Quantitative Reasoning section above). She 
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also talked about “giving” students the equation for an ellipse and “explaining it.” By 

contrast, in the post-interview, Willow reasoned quantitatively, which included 

forming quantitative relationships and using quantitative operations. She also 

mentioned how she would try to do what the teacher in the videos did to help Sasha 

and Keoni “ease into” using unknowns as distances by first introducing known values. 

Two other participants, Marshall and Lily, seemed to have more conceptual 

orientations in the pre-interview. Neither participant fixated on numeric values or 

arithmetic operations. Additionally, neither participant discussed instructional moves 

that seemed more oriented to finding or using values (or substituting such values for 

unknowns), or on arithmetic operations. Consequently, I was not able to find enough 

data in the interviews to support a claim that these two participants experienced a shift 

in their orientation. Instead, their ideas about instruction were aligned along a different 

dimension, one about affect and mindset. I now turn to the final shift in MKT, which 

emerged as a result of trying to capture the shift around their ideas about students, 

learning, and teaching that Marshall and Lily seemed to experience  

A Shift in Affect 

In this section I briefly discuss some of work the field has done to characterize 

teacher affect, which is comprised of emotions, attitudes, and beliefs (McLeod, 1992; 

Philipp, 2007). I do this in order to elaborate some ideas about affect that informed the 

analysis of the pre-interview and post-interview data. The protocols used in the 

interviews did not include items explicitly designed to measure or probe participants’ 

affect. However, I did pose three follow-up questions for both the Ellipse Task and the 
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Parabola Task that elicited traces of participants’ affect: (a) What do you think high 

school students would need to know in order to understand and solve this task? (b) 

What challenges do you think high school students would encounter as they tried to 

understand and solve this task? and (c) What would you do as a teacher to help 

students overcome those challenges and understand and solve this task? By comparing 

participants’ responses to these questions across the pre- and post-interviews, I was 

able to identify shifts in participants’ affect toward students and learning.  

Teacher Affect 

There are several dimensions along which one may measure teachers’ and 

prospective teachers’ affect toward students, learning, and knowledge. For example, 

Rheinberg (1983) reported on three different evaluation norms that reflect teachers’ 

beliefs about learning. These norms were a social reference norms (evaluation relative 

to peers); criterion-oriented norms (evaluation relative to fixed standards); and 

individual reference norms (evaluation relative to self). Dweck’s (2006) work on 

mindsets expanded and elaborated Rheinberg’s work, and others have demonstrated 

that growth mindsets (i.e., a belief that intelligence can be developed, as opposed to 

fixed mindsets which indicate a belief that intelligence is fixed or pre-determined) are 

correlated with higher achievement (as reported in Dweck, 2010). 

In her review of affect and teacher education, Richardson (1996) reported on 

conceptions held by prospective teachers on students and learning that reflect a 

positivistic view of learning. In essence, prospective teachers tend to view students as 

receivers of knowledge, learning as memorization and/or routinization of procedures, 
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and knowledge as being either correct or incorrect. In many ways, this view of 

teaching and learning reflects a teacher-centered orientation as outlined by Civil 

(1992), which includes conceptions of teachers as the primary source of knowledge 

and the linearity of knowledge and learning (McDiarmid, 1990; A. G. Thompson, 

1984). Student-centered orientations emphasize more interpretive conceptions of 

knowledge and learning, and they tend to view students as more active agents in the 

creation of knowledge (A. G. Thompson, 1984). 

Other researchers have characterized teacher affect by contrasting the beliefs, 

attitudes, and emotions of teachers who take traditional instructional approaches to 

those who take inquiry-oriented approaches (e.g., Stipek, Givvin, Salmon, & 

MacGyvers, 2001). Similar dimensions exist, including a reflective or internal learning 

orientation versus an authoritarian or external learning orientation (Richardson, 1996; 

Vermunt & Vermetten, 2004), and a dimension that measures the degree to which 

teachers and students regulate learning and learning activities (Vermunt & Verloop, 

1999; Vermunt & Vermetten, 2004). 

One thread that seems to be woven throughout this literature is that affect 

toward student thinking and learning are aligned along a spectrum. On one end of the 

spectrum, there is a pervasive deficit perspective. Teachers who take on social or 

criterion-based evaluation norms tend to measure students’ learning against other 

students or against a fixed set of standards (Rheinberg, 1983). This fixed mindset 

(Dweck, 2006) leads to notions that students either “get it” or they do not. Teacher-

centered orientations are fueled by beliefs that teachers are the gatekeepers of 
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knowledge and that students learn by watching and mimicking what the teacher does 

(Civil, 1992; A. G. Thompson, 1984), which in turn leads to an emphasis on correct 

answers. On the other end of the spectrum, teachers view learning as a continual 

process (Rheinberg, 1983), students as agents of their own learning (A. G. Thompson, 

1984), and knowledge or intelligence as something that can be developed through hard 

work (Stipek et al., 2001). 

I now present evidence that participants appeared to experience a shift in their 

affect from the pre-interview to the post-interview. Specifically, in the pre-interview, 

participants tended to talk about students, learning, and teaching in ways that were 

consistent with the deficit perspective, whereas in the post-interview participants 

expressed views of learning and student think more consistent with a growth mindset 

perspective. I first present a more detailed analysis of one participant’s shift and then 

discuss general trends among the remaining participants. Lily was not accounted for in 

any of the three prior shifts (with the exception that she was able to take on the 

perspective of Sasha and Keoni, potentially from decentering during the mini-course). 

Lily entered the study with extensive prior knowledge and already seemed oriented 

toward conceptual teaching. Consequently, I wanted to highlight her contributions to 

the mini-course and how she appeared to grow through her participation in this study. 

Of most importance, her shift in affect is representative of general trends in how 

participants experienced this shift. 

Lily 
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Lily’s responses to the three follow-up questions during the Ellipse Task (see 

Figure 4.1 above) in the pre-interview were consistent with a deficit perspective of 

student learning and thinking. She tended to talk about students’ understanding in 

terms of what students would not think about or not know. For example, she said that 

students “wouldn’t think of ℎ	is actually starting from the zero value or from the 𝑦-

axis to this point (the center of the ellipse).” She later elaborated on this by saying:  

If they are finding this distance [gestures along the vertical leg of the 
right triangle] they wouldn't thought of to borrow those information 
[circles the center (ℎ, 𝑘)] in order to fit in this point [points to the 
vertex of the right angle of the right triangle], and they wouldn't think 
about they are actually in the same height. That's where they might be 
confused about. 

Lily seemed to think that the difficulty in solving the Ellipse Task stems from 

students’ inability to think about or know how to find the distance along the legs of the 

triangles. It is true that finding distances in the Ellipse Task may be challenging for 

students, but her comments suggest she viewed students as either “getting it” or not. 

Moreover, her ideas about how to help students overcome this challenge can be taken 

as more evidence that Lily had a deficit perspective of student understanding, and that 

for Lily, teachers are the source of knowledge. For example, she said  

I would just jot down the dots [points to the dotted line she drew from 
the 𝑦-axis to the point (𝑥, 𝑦), see Figure 4.41 below] and also let them 
know that any point on the 𝑥-𝑦 coordinates, it would be starting from 
the coordinate [gestures along the y-axis, then rightward along the 𝑥-
axis, which I believe indicates she meant to say axis] to that point 
[gestures vertically from the x-axis to the center of the ellipse (ℎ, 𝑘)], 
and make sure that this is 𝑥 and 𝑦 [points to the coordinates of the point 
(ℎ, 𝑘)]. 
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Figure 4.41. Author’s annotations of Lily’s work, including the dotted line she drew 

(indicated by an oval), and her gestures (1) along the 𝑦-axis, (2) along the 𝑥-axis, and 
(3) from the 𝑥-axis to the center of the ellipse. 

In this excerpt, Lily seemed to suggest that she would do some of the work for 

the students. She said she would “just jot down the dots” and “let them know” how 

they should view the 𝑥	and 𝑦 coordinates. These statements are consistent with a 

teacher-centered view of learning and instruction, and serve as more evidence that Lily 

appeared to have a deficit perspective of student thinking. Her statements suggest that 

she believed students lacked some skill or knowledge (e.g., jotting down dots or 

seeing that a point has a fixed distance from each of the axes) and that as a teacher she 
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could provide the skill or knowledge by showing the students. In other words, she 

seemed to say that the challenge would be a deficit in student understanding that she 

could fix by showing and telling. 

In the post-interview, Lily’s comments about students’ thinking and 

understanding suggested she had experienced a shift away from a deficit perspective. 

Even though Lily still thought that finding distances or lengths in the plane would be a 

significant challenge for students, she now talked about this challenge in terms of what 

students would need to know or understand to overcome it:  

They [students] need to be able to distinguish what does the point 
actually mean. So for example, if I know this is ℎ and 𝑘, then I need to 
know that 𝑘 is the height from the origin to that point, so it’s the 
distance. 

Lily also said students must be able to “change the meaning of the point, convert it 

into the distance, the meaning of distance from the 𝑥-axis or the 𝑦-axis to that point.” 

There is evidence in these statements of a shift away from a deficit perspective. For 

example, no longer did Lily talk about students’ knowledge and understanding by 

stating what they will not know, understand, or remember. Instead, she talked about 

what they’ll need to know or do to come to an understanding about distance. The 

difference is subtle, yet important. Lily appeared to shift away from thinking about 

students not having knowledge, to shifting toward thinking about how students can 

come to understand a mathematical idea. In other words, in the pre-interview Lily 

focused on what students would not know (a deficit perspective), whereas in the post-

interview Lily focused on what students need to come to understand (a growth 

mindset). 
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This shift is also apparent in how Lily talked about how she would help 

students. She no longer mentioned showing or telling students how to do something or 

“letting them know.” Instead, she talked about a “process of improving their 

understanding.” For example, in describing how to help students tackle the Parabola 

Task, Lily had the following to say: 

I would let them [the students] start with [a parabola at] the origin so 
they don't have to deal with that much information, but they can still 
generate the equation by choosing a random point from the parabola. 
And then, I would move parabola, I wouldn't move the parabola right 
above the axis that much. I would either move up and down – so that’s 
one action – or left or right. So it's a process of improving their 
understanding. 

This excerpt serves as evidence of Lily’s shift away from a fixed, deficit-perspective. 

Lily talked about providing students with a task they can access (“they don’t have to 

deal with that much information, but they can still generate the equation”) and learn 

from as they build up understanding (“it’s a process of improving their 

understanding”).  

The previous excerpt points to another characteristic of how Lily talked about 

students in the post-interview, namely she appeared to express care for their 

understanding. For example, Lily said she would start with having students work with 

problems in which the parabola was on the grid, like Sasha and Keoni did in the 

MathTalk videos. She explained “Just like Sasha and Keoni did, they liked to circle 

things out to look for distance. It helps them see the relationship.” Lily also seemed to 

think that telling students wouldn’t help them, another shift from the pre-interview. In 

talking about how she might help students with the task she had this to say: 
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I would say “Ok, this is the point to the directrix”—well, I can’t think 
of the words right now, but I wouldn’t tell them. I would want them to 
see the point to the directrix is the same as the point to the focus” 

Lily did not quite know how to help students with using the definition of a parabola, 

but she was sure that she did not just want tell students how to use it. This and other 

statements represent a shift in affect for Lily, from seeing her role as a teacher as 

someone who shows (e.g., “jotting down the dots”) or tells (“I would just let them 

know…”) to seeing her role as a guide or facilitator. 

In summary, during the pre-interview Lily seemed to have a deficit perspective 

of students’ thinking and understanding, and a teacher-oriented perspective with 

regard to her role in students’ learning. By contrast, in the post-interview Lily’s ideas 

were more consistent with a growth mindset for students’ thinking and understanding, 

and she seemed to view her role as a guide for students, rather than as the source of 

knowledge.  

Other Participants 

Five other participants (Desmond, Jasper, Marshall, Sierra, and Willow) also 

seemed to experience a shift in their affect. In broad terms, the shifts they experienced 

were similar to Lily’s, which I briefly describe in this section. In the pre-interview 

participants appeared to have a narrow, deficit perspective view of students’ thinking 

and understanding and they tended to view the role of a teacher instruction as showing 

and telling students what to do.  

For example, Marshall said that students needed to “remember” the area 

formula for a triangle, since “if they didn’t remember, it’s, you almost don’t know 
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where to begin.” Willow echoed this by stating “They don’t know that formula, they 

wouldn’t even have anywhere to really start.” Willow also seemed to think students 

would struggle with the task since ellipses are not “covered” until later in high school. 

Desmond said that students would experience “word overload” and “constant 

overload” when trying to solve the task. Jasper seemed to think that students would 

need actual values to solve the task. He said “I don’t know if high school students 

would think of it this way [meaning the task as given with unknowns]. A high school 

student wants numbers, they want actual values.” According to Sierra, students would 

forget how to use the Pythagorean Theorem by confusing the hypotenuse for a leg. 

She said “They [students] don’t know that the 𝑐 is on the other side [of the equation], 

like that it equals 𝑐 squared. They use the hypotenuse over here [the other side of the 

equation] with the other leg.” 

Like Lily, the other five participants appeared to have a teacher-oriented 

perspective. For instance, Desmond, Jasper, and Sierra all seemed to think that 

providing students with values instead of unknowns would be a good way to help 

them solve the Ellipse Task. Jasper succinctly stated the prevailing idea when he said, 

“I mean, that’s a way to help them [students] understand this, is to give them values.” 

Unlike Lily’s suggestion in the post interview to link those values with quantities, 

participants in the pre-interview tended to offer this suggestion by only considering 

values in the absence of any context or without an underlying goal of helping students 

quantify. 
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Desmond, Jasper, Marshall, and Willow appeared to have in mind a step-by-

step instructional method for helping students with the task. Desmond talked about 

showing students “extensive, detailed problems on the board,” and Marshall said he 

would “guide them” by “breaking it down into simpler steps” and giving students “a 

worksheet with a list of steps of what needs to be done.” To put it succinctly, these 

participants seemed to think of instruction in terms of providing clear information and 

step-by-step procedures for students to follow, which suggests they believed that 

students need teachers to fill in the deficits in knowledge students may have. 

In the post-interview, participants appeared to shift away from a deficit 

perspective of students’ knowledge and learning. Like Lily, the other five participants 

seemed to have more ideas about what students will already understand and be able to 

do. Instead of emphasizing what students will not know or remember, they discussed 

what they must understand in order to solve the task. For example, Willow said that 

students might struggle with algebra, but “that’s kind of not the main goal of being 

able to do the algebra, because that’s really fixable. But understanding how the 

triangle, like how we get these distances for the triangle is key.” Instead of focusing on 

“being able to do the algebra,” Willow emphasized how to find the distances or 

lengths of the sides of the triangle. Jasper, Marshall, and Sierra all made similar claims 

about students needing to come to understand how to find distances in the coordinate 

plane. 

 Compared to the pre-interview, participants also had different ideas about 

their role as a teacher. For example, instead of providing step-by-step worksheets, 
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Marshall talked about leveraging students’ prior knowledge and building on that. He 

said he would ask them questions such as “What did we use in the previous tasks?” 

and “What have you done in the past that you can use again?” Sierra said that she 

would use a sequence of tasks like those used in the videos, which she seemed to think 

would help students “build up to generalizing.” Jasper said he would ask students to 

“explain what each term was—What is 𝑥? What is ℎ?” Finally, Desmond abandoned 

his idea that solving a task was of the utmost importance. Instead, he would ask 

students “What does it look like? Don’t try to solve, but what should this be like.” 

Desmond seemed to say that he would want students to analyze the task before 

jumping in and trying to solve it; this is very different from his pre-interview ideas 

about giving students values to make the problem easier for them to solve. 

The lone participant who did not seem to experience a shift in affect was April. 

I did not include her in this shift because her statements about students and instruction 

in the pre-interview did not strongly reflect a deficit perspective. Instead, they were 

more consistent with a growth-oriented perspective. For example, she talked about 

asking guiding questions to help students rather than telling them directly, or 

prompting them by asking them what they already knew. Her statements about student 

understanding reflected a view that students may “have trouble” or “struggle,” but not 

that students lacked knowledge or understanding. This affect seemed magnified in the 

post-interview, and it more closely matched the other participants’ affect from the 

post-interviews. However, it did not appear that April’s affect had shifted dramatically 
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from the pre-interview to the post-interview, specifically because her affect in the pre-

interview already seemed to be more growth-oriented and student-centered. 

Summary and Brief Discussion 

In posing Research Question 1, I wanted to investigate the nature of MKT that 

developed. By examining shifts in MKT, I identified different facets of MKT related 

to quantitative reasoning that seemed to develop, as well as a shift in participants’ 

affect. The shift in quantitative reasoning accounts for the mathematical knowledge 

participants developed, knowledge that is foundational to developing MKT. The shift 

in point in view explicitly accounts for how participants were able to solve a task 

using quantitative reasoning that was qualitatively and mathematically similar to the 

reasoning used by high school students in the MathTalk videos. The shift in 

orientation accounts for how participants’ orientation toward solving problems related 

to quantitative reasoning changed from one that emphasized calculations and 

procedures in the pre-interview to one that emphasized quantities and quantitative 

operations. Finally, the shift in affect describes a broader aspect of MKT, and seems to 

be related to van Bommel’s (2012) finding that MKT development requires a shift in a 

prospective teacher’s identify from a learner of mathematics to a teacher of 

mathematics. 

In total three of the four shifts (the shifts in quantitative reasoning, point of 

view, and orientation) account for different ways participants developed MKT around 

quantitative reasoning. Additionally, though only three of the seven participants 

seemed to experience strong shifts in quantitative reasoning, of the other four 
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participants, three of those appeared to develop the ability to decenter (shift in POV) 

and two of those shifted in orientation. In other words, six of the seven participants 

experienced one or more shifts in MKT related to quantitative reasoning. 

In Chapter 2, I described the framework for MKT presented by Silverman and 

Thompson (2008), which includes five components of MKT: (a) KDU around the 

content, in this case quantitative reasoning; (b) images of students’ thinking and 

understanding; (c) images of milestones for a learning trajectory for how the content 

develops over time; (d) images of instruction; and (e) images of mathematical 

connections. My study was designed with this framework in mind; however, in 

hindsight my interview protocols did not align completely with this framework and 

were not sensitive enough to capture MKT development across each of these 

dimensions. That said, the shifts I identified in this chapter do have a degree of 

alignment with the framework, which I now briefly discuss. 

The shift in quantitative reasoning corresponds to the development of a KDU, 

which is the first component of MKT. In this chapter I do not make claims that 

participants developed or had a KDU around quantitative reasoning, as that construct 

describes a more complex and larger web of knowledge for which I did not analyze. 

Nonetheless, the shift in quantitative reasoning seems related to, and necessary for, the 

development of a KDU around quantitative reasoning. 

The second shift, which is a shift in point of view, is related to the construct of 

decentering. Teuscher et al. (2016) described decentering as the ability to put aside 

one’s own mathematical understanding to better understand another’s way of 
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understanding a mathematical situation. They argued that decentering is a necessary 

requirement for the development of MKT, and Silverman and Thompson (2008) used 

the construct to describe how teachers build images or models of how students 

understand the content, which is the second component of MKT. 

In presenting their framework, Silverman and Thompson (2008) said, “A 

teacher has knowledge that supports conceptual [emphasis added] teaching of a 

particular mathematical topic when he or she [has developed the five components of 

MKT]” (p. 508). I emphasized the qualifier conceptual because the framework 

attempts to account for how teachers develop MKT for teaching that is different than 

traditional teaching in which calculations and procedures are emphasized over 

understanding and concept development. Consequently, it can be argued that having a 

conceptual orientation is a prerequisite for developing MKT for conceptual teaching. 

In this way, the third shift, a shift in orientation, is linked with the framework for 

MKT development. In Chapter 6 I discuss these results in more detail. 

Having identified the nature of MKT participants seemed to develop during the 

mini-course, I now turn to answering Research Question 2. In the next Chapter, I 

describe how what participants noticed appeared to be linked with the shifts in MKT 

around quantitative reasoning. I then explore how features of the mini-course 

contributed to participants’ noticing.
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Chapter 5: Development of MKT Around Quantitative Reasoning with Distances 

In this chapter, I argue that shifts in participants’ MKT around quantitative 

reasoning with distances appear to be linked to elements of the learning environment. 

In Chapter 4, I elaborated four shifts that described the nature of the MKT participants 

seemed to develop during the mini-course. Three of these shifts were associated with 

quantitative reasoning with distances, while the fourth was related to participants’ 

affect. This fourth shift was unexpected, as I had not accounted for such a shift, either 

in the planning or execution of the design of the study. Consequently, there was little 

data from the mini-course that suggested how this shift developed. Considering this, I 

restate Research Question 2 below:  

Research Question 2: How do particular elements of the designed 
learning ecology contribute to the development of MKT by prospective 
secondary teachers during a video-based mini-course? 

The mini-course provided participants with a flood of information emanating 

from the math tasks they completed, the conversations in which they engaged, and the 

MathTalk videos they watched. Accordingly, participants’ attention could be drawn to 

any of the myriad mathematical or pedagogical features of these elements of the mini-

course. As defined by Lobato et al. (2013) in their presentation of the focusing 

framework, noticing is “selecting, interpreting, and working with particular 

mathematical features or regularities when multiple sources of information compete 

for one’s attention” (p. 809). To answer Research Question 2, I extend this definition 

to include pedagogical features or regularities (e.g., instructional moves to foster 

learning or students’ mathematical struggles), in addition to mathematical ones.  
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In this chapter, I leverage the focusing framework to account for how 

participants’ shifts in MKT around quantitative reasoning with distances seemed to 

develop. This chapter is organized around the four components of that framework. 

First, I investigate the centers of focus, which describe features of the mini-course that 

participants noticed, and I discuss how a shift between those centers of focus seemed 

related to the development of participants’ MKT. Next, I examine how two focusing 

interactions may have contributed to that shift in noticing. These discourse practices 

had the effect of directing participants’ attention toward one of the centers of focus. 

Finally, I provide accounts for how features of mathematical tasks supported 

participants’ noticing and changes in the nature of mathematical activity contributed to 

the shift in what participants noticed. I conclude the chapter with a summary of the 

results and a brief discussion about the role the MathTalk videos seemed to play in the 

development of participants’ MKT. 

Centers of Focus 

Lobato et al. (2013) defined centers of focus as “the properties, features, 

regularities, or conceptual objects that students notice” (p. 814). In other words, 

centers of focus account for what seems to hold individuals’ attention. Two caveats 

must be made about centers of focus. First, researchers do not have direct access to the 

process of noticing; consequently, centers of focus are inferred based on participants’ 

verbal utterances, gestures, and written responses. Second, centers of focus capture 

what individuals notice; therefore, it is likely to observe multiple centers of focus in 

each learning situation. 
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Conception and Methods 

The centers of focus that Lobato, Rhodehamel, et al. (2012) and Lobato et al. 

(2013) described were mathematical features or regularities in a classroom setting that 

seemed to capture students’ attention. I extend this conception of centers of focus to 

include other features or regularities of a teacher training course. While participants in 

this study attended to mathematical features, they also tended to notice pedagogical 

features of the mini-course. Such features included the reasoning of Sasha and Keoni, 

the tasks or questions posed by the instructor in the videos, and the questions and 

prompts I posed to participants during the instructional sessions.  

To identify centers of focus that seemed to emerge in the mini-course, I 

analyzed two sources of data. The first source of data was approximately 24 hours of 

video from the six instructional sessions. I used two video cameras to capture each 

two-hour session; one camera was fixed on one of the two small groups, while the 

other was operated by the observer, who focused the camera on the other small group 

or the whole class as appropriate. The written work and reflections participants 

completed during the mini-course served as the second data source. 

Reducing the corpus of data was crucial given the amount of video data I 

collected. To reduce data, I watched all videos from the instructional sessions and 

created descriptive accounts. I flagged episodes in the descriptive accounts that 

appeared related to the shifts in MKT around quantitative reasoning with distances. 

The first analytic pass of the data focused on those episodes. 
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My first pass through the data was informed by the framework for MKT 

(Silverman & Thompson, 2008). I thought it would be fruitful to look for instances in 

the data where participants seemed to notice components of MKT since I had designed 

the mini-course with this framework in mind. Accordingly, I applied the framework to 

the content (quantitative reasoning with distances) and the context (a video-based 

mini-course) to develop the following a priori codes: (a) mathematics associated with 

quantitative reasoning with distances; (b) ways Sasha and Keoni reasoned 

quantitatively with distances; (c) milestones for a learning trajectory for developing 

quantitative reasoning with distances; and (d) the video instructor’s quantitative 

instructional moves. These codes correspond with the first four components from the 

framework for the development of MKT proposed by Silverman and Thompson (see 

Chapter 2 for elaboration of the framework). The code that corresponds with the fifth 

component (mathematical connections) was not used because as I had conjectured 

prior to conducting the study, participants did not attend to the connections students 

could make as a result of developing quantitative reasoning with distances. 

Following Lobato et al. (2013), I considered the verbal utterances, gestures, 

and written work of each participant during each instructional session and labeled data 

using the a priori codes to describe what the participant seemed to be noticing. Using a 

mixed approach (Miles & Huberman, 1994) to grounded theory (Strauss & Corbin, 

1990) allowed me to use a priori codes while remaining open to the emergence of new 

codes. Indeed, as I analyzed data, new codes emerged because the four a priori codes 

did not account for all centers of focus. As a new code emerged, I reevaluated 
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previously coded data to determine if the new code was a more appropriate label. 

Using this constant comparative method (Glaser & Strauss, 1967) provided for greater 

precision and accuracy in developing codes to describe centers of focus.  

In total, four additional codes emerged that seemed related to components of 

the Silverman and Thompson (2008) framework for MKT. However, these centers of 

focus were not related to quantitative reasoning with distances. Instead, they were 

related to mathematics that does not appear in the MathTalk videos (such as the 

distance formula, law of sines, quadratic equations, etc.). In other words, these centers 

of focus emerged from participants’ own mathematical knowledge they brought into 

the mini-course. These centers of focus were: (a) mathematics not in the MathTalk 

videos; (b) ways of reasoning Sasha and Keoni did not use; (c) milestones for learning 

trajectories of mathematics not addressed in the MathTalk videos; and (d) the video 

instructor’s moves related to mathematics not in the MathTalk videos. All eight codes 

are summarized below in Table 5.1. They are grouped into two macro-codes: (a) MKT 

around quantitative reasoning with distances, and (b) MKT around mathematics not in 

the MathTalk videos. 

Finally, I note that these codes capture what participants seemed to notice 

during the mini-course. In presenting data with corresponding codes, I am not 

evaluating or judging the data. In other words, my coding of the data was not attaching 

an evaluative label such as “correct” or “appropriate.” 

From micro to macro centers of focus. Initial analysis of the classroom data 

resulted in the eight centers of focus (CoFs) described in Table 5.1 below. To account 
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for participants’ development of MKT, I looked for links between individuals’ shifts 

in MKT and shifts from one CoF to another. However, a major issue immediately 

emerged with this approach: the eight CoFs did not directly correlate with the shifts in 

MKT I had identified in the interview data (as presented in Chapter 4). 

Two factors may account for this, each associated with an aspect of the design 

of my study. First, in hindsight, my interview protocols lacked the sensitivity to 

capture participants’ explicit knowledge about the various components of the 

Silverman and Thompson framework for MKT. My tasks and follow-ups did not 

adequately address these components, (e.g., milestones for a learning trajectory for 

developing quantitative reasoning with distances). Consequently, the shifts in MKT 

identified in Chapter 4 are not closely aligned with components of the MKT 

framework. 

Second, when designing the mini-course, I did not anticipate the specific shifts 

in MKT that participants seemed to experience. Additionally, the mini-course was 

designed with the framework for MKT in mind. Consequently, it is not surprising that 

the CoFs that did emerge were linked with the components of the framework, and not 

the shifts in MKT from Chapter 4. 
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Table 5.1. Description and examples of eight codes that emerged during the initial 
analysis of the classroom data. These codes are grouped into two macro codes: (a) 

MKT around quantitative reasoning (QR) with distances, and (b) MKT around 
mathematics not in the MathTalk videos.
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One additional issue complicated linking specific shifts in MKT with shifts 

between CoFs. The eight CoFs capture micro-level noticing. This made it difficult to 

identify significant shifts in CoFs that I could link to the three shifts in MKT related to 

quantitative reasoning with distances present in the interview data. For example, in 

Chapter 4, I presented evidence that suggested Willow had experienced a shift in 

quantitative reasoning. One might think that I would see evidence of Willow shifting 

from the CoF mathematics not in the MathTalk videos to the CoF mathematics 

associated with quantitative reasoning with distances. Indeed, this shift did occur; 

however, this shift in CoFs alone did not account for Willow’s shift in quantitative 

reasoning. For example, at several points in the mini-course, Willow seemed to notice 

the CoF the video instructor’s quantitative instructional moves. Consider this 

exchange in Session 5 in which Willow points out the quantitative questions the 

instructor in the videos posed: 

Willow: She [the instructor] went from the broad, like the 
general parabola—right?—to the grid, and then back 
to the general. It’s like now they [Sasha and Keoni] 
can visualize the units without actually—like if she 
had kept the graph there, they still probably would 
have been stuck. 

Jasper: I think she’s having them explain every single 
variable they’re using. Like 𝑦, 𝑝, 𝑥. “What do you 
mean by 𝑦?” “Now what do you mean by 𝑝?” “Now 
what about 𝑥?” Explain each variable. 

Willow: And “What do you mean by 𝑦 plus 𝑝?” “Which one 
is 𝑝?” “Which one is 𝑦?” “And which one is 𝑦 
minus 𝑝?” 

Lily: And she keeps asking “Where is the 𝑝?” “Where is 
the 𝑦 plus 𝑝?” 

Willow: Every time! 
Lily: “Where is the 𝑦 minus 𝑝?” 
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Willow: And even when they were using numbers, they were 
asked that. 

Willow and other members of her group seemed to notice the quantitative 

questions the instructor posed to Sasha and Keoni. Later, in Session 6, Willow said 

that the questions the instructor asked “were the kind of questions you could ask 

yourself in the future.” Taken together, this suggests that the teacher’s instructional 

moves were salient for Willow, and it is reasonable to conclude that noticing these 

moves contributed to Willow’s shift in quantitative reasoning. In other words, 

Willow’s shift in quantitative reasoning cannot be attributed solely to a shift in CoFs 

that are purely mathematical (i.e., from mathematics not in the MathTalk videos to 

mathematics associated with quantitative reasoning with distances). Consequently, the 

grain size for the CoFs presented in Table 5.1 was too fine to account for shifts in 

MKT around quantitative reasoning with distances. 

Settling on a productive grain size appears to be part of the process of 

identifying CoFs (J. Lobato, personal communication, May 3, 2017). Considering the 

preceding discussion, I examined CoFs on a macro-level by collapsing the four CoFs 

that dealt with MKT around quantitative reasoning with distances into one macro code 

and the four CoFs that dealt with MKT around mathematics not in the MathTalk 

videos into another macro code. This resulted in two macro-level CoFs: MKT around 

quantitative reasoning with distances and MKT around mathematics not in the 

MathTalk videos. These codes are at the far left of Table 5.1. 

Once these macro-level CoFs were established, I counted instances when each 

participant seemed to notice either of these CoFs. I did this for each participant across 
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the six instructional sessions. Those counts are provided in Table 5.2 below. As a 

reminder, I could only infer what participants noticed based on their visual or audible 

contributions to the group and classroom conversations, or their written inscriptions. 

These counts only include instances for which I could reasonably infer what a 

participant noticed. Consequently, the counts almost certainly do not account for all 

instances in which each participant noticed either CoF. 

To get a better idea of how these CoFs may have played a role in the 

development of each of the shifts in MKT around quantitative reasoning identified in 

Chapter 4, I also counted instances of the CoFs by shift in MKT around quantitative 

reasoning with distances. For example, I counted all instances for each participant who 

experienced a shift in quantitative reasoning (Desmond, Willow, and Sierra). These 

counts are also provided in Table 5.2 below. To remind the reader of which 

participants experienced each shift I use the following symbols: (a) * denotes 

participants who experienced a shift in quantitative reasoning (QR); (b) † denotes 

participants who experienced a shift in point of view (POV); and (c) ‡ denotes 

participants who experienced a shift in orientation toward problem solving 

(Orientation). 

Centers of Focus: Results 

Table 5.2 provides an overview of what participants seemed to notice. For 

example, looking across the row for April one can see that she initially noticed MKT 

around mathematics not in the videos more frequently than she noticed MKT around 

quantitative reasoning with distances. However, in Session 4, those counts were equal, 
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and after Session 4, April noticed MKT around quantitative reasoning with distances 

more frequently than she did MKT around mathematics not in the videos. Not all 

participants followed this pattern. For example, only in Session 1 did Lily seem to 

notice MKT around mathematics not in the videos more frequently than she did MKT 

around quantitative reasoning with distances. One pattern that held for all participants 

(except Desmond) was that from Session 4 onward, participants tended to notice MKT 

around quantitative reasoning with distances as frequently as or more frequently than 

they tended to notice MKT around mathematics not in the videos. 

In looking at aggregate totals for shifts in MKT, one can also see that there 

appeared to be a shift in CoFs between Session 2 and Session 3. For example, in 

looking at the “Total: QR” row, in Sessions 1 and 2, participants in this category 

noticed MKT around mathematics not in the videos far more frequently than they did 

MKT around quantitative reasoning with distances. But this trend reversed itself 

starting in Session 3 and continued throughout the remainder of the mini-course. 

Similar trends can be seen in the “Total: POV” and “Total: Orientation” rows. 

Center of focus: MKT around mathematics not in the MathTalk videos. In 

this section, I present qualitative evidence to support the claim that in Session 1 and 

Session 2 participants noticed MKT around mathematics not in the MathTalk videos. I 

present two episodes as examples of how this CoF manifested during the first two 

instructional sessions.  
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Table 5.2. Counts of instances of each center of focus, by participant, across the six 
instructional sessions. The bottom part of the table includes count totals for each shift 

in MKT around quantitative reasoning with distances.
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In the first episode, participants seemed determined to utilize a coordinate grid 

to create a parabola, even though a grid is not needed, and potentially obfuscates 

quantitative aspects of the task. This episode took place in Session 1, during which 

participants were creating a parabola using its geometric definition:  

A parabola is the set of all points equidistant from a fixed point (the 
focus) and a fixed line (the directrix).  

April, Desmond, and Sierra seemed fixated on the idea that to create a parabola, they 

needed to first construct a coordinate grid, and then use coordinates to either find the 

equation of a parabola (such as 𝑦 = 𝑥6) they could place on the grid or to place points 

that they could test with the distance formula.  

April argued that “it would be easier to put it [the parabola] on a coordinate 

system” so the group could leverage the distance formula. When I asked the group to 

talk about their method, Desmond explained that they “went back to the equation,” 

presumably referring to the distance formula. At one point, I issued the following 

challenge to the group: “Without using a coordinate grid, create a parabola for a given 

fixed point and fixed line.” However, their fixation with the grid continued even after 

this challenge. As can be seen in Figure 5.1a below, the group labeled the points (2,0) 

and (0,0). When I asked the group to explain their solution, April told me that the 

directrix could be the 𝑥-axis and the segment connecting the two labeled points could 

be their 𝑦-axis. Finally, it appears they used a grid-like system to place points on the 

wider parabola, and in Figure 5.1b below, I have superimposed a grid on their work, 

highlighting the degree to which their inscriptions fit a grid-like system. 
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Figure 5.1. (a) Original inscriptions by Desmond, Sierra, and April. The focus and 

directrix were drawn by the author during the first instructional session. (b) Author’s 
annotations highlighting the grid-like nature of the participants’ inscriptions. 
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The use of a grid with coordinates does not appear in Lesson 1 of the MathTalk 

videos, in which Sasha and Keoni create a parabola from the definition. While 

constructing a grid and using the distance formula (as April suggested) would be a 

viable mathematical approach for the task, such an approach would foreground 

calculations and numerical operations at the expense of quantities and quantitative 

reasoning. Recall that quantifying means recognizing that an object has a certain 

quality that can be measured, and then assigning a measure to it (P. W. Thompson, 

1994). One of the primary features of the task is that it provides opportunities for 

solvers to explore distances as quantities in the absence of fixed numerical systems 

(such as a coordinate grid).  

For example, when placing or testing points, solvers of the task need to 

determine if a point is “equidistant” from both the focus and the directrix. Solvers can 

use several different tools (e.g., string, wire, compass, or ruler) to measure the two 

distances, and the choice of tool is not important. What matters is that approaching the 

task without a grid allows solvers to attend to distances as quantities, which can be 

imagined in the absence of numerical systems. If participants first construct a grid in 

an attempt to use a known equation for a parabola (e.g., 𝑦 = 𝑥6) or use the distance 

formula, this potentially reduces the number of opportunities to quantify, and instead 

the task serves as an opportunity to calculate with coordinates as values. 

Participants also tended to notice MKT around mathematics not in the videos 

even while watching or discussing the videos. At times, particularly during the first 

two instructional sessions, participants attended to the videos through a lens of the 
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mathematics and instructional moves not present in the videos. In other words, 

participants saw “deficiencies” in the mathematics and instructional moves they 

noticed in the videos. As an example, I present the following episode in which some 

participants noticed that the instructor in the videos, along with Sasha and Keoni, 

seemed to ignore or be unaware of the fact that when solving an equation involving 

square roots, there are often two solutions, one positive and one negative. 

In the second instructional session, participants were tasked with creating a 

method for finding specific 𝑥-values when given the 𝑦-value of a point on a parabola 

(see Figure 5.2). After they completed this task, they watched videos in which Sasha 

and Keoni solved a similar task. During the class discussion about the videos, 

Marshall reported that his group (which also included Jasper, Sierra, and Desmond) 

noticed that Sasha and Keoni solved the equation 𝑥6 = 4𝑦 for 𝑥 to get 𝑥 = 4𝑦. 

Marshall continued by saying his group noticed that “it really should be plus-or-minus 

square root of four 𝑦,” and that because Sasha and Keoni did not include the negative, 

it “only described the right-half of the parabola.” 

April noticed the “plus-or-minus” as well, arguing that the instructor did not 

want to bring up “plus-or-minus” square roots. When I asked the class if there was 

anything they would want to tell Sasha and Keoni, April said she thought if you drew 

a horizontal line through the parabola, Sasha and Keoni would see there are two 𝑥’s, 

and that then they would “know to put plus-or-minus”. She continued, saying she was 

“really curious why the teacher did not want to bring that up yet.” 
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Figure 5.2. The math task for Session 2. 

Finally, Willow offered her thoughts by observing that Sasha and Keoni 

“didn’t even suggest to put [plus-or-minus].” She conjectured that perhaps Sasha and 

Keoni were thinking since the parabola was symmetrical, they could “just flip it,” 

presumably referring to finding the values for the 𝑥-coordinates for one side of the 

parabola and then copying or mirroring that side to find corresponding values for the 

other side. Willow also wondered about the instructor, stating “would it be too much 
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to explain to them that it [the square root] is the absolute value, it’s the distance from 

zero that we’re looking at.” Not only did Willow notice that Sasha and Keoni did not 

use “plus-or-minus,” but her comment “would it be too much to explain to them…” 

suggests that Willow had ideas or expectations about instruction that were not realized 

in the videos. 

These questions and concerns about the “plus-or-minus” are not necessarily 

incorrect or mathematically invalid. Indeed, while conducting the study, I asked the 

instructor from the videos if she intentionally ignored the left side of the parabola and 

the “plus-or-minus” issue with square roots. She responded that there were many valid 

learning trajectories an instructor could target, but that she had decided not to 

foreground either solving square root equations or the left side of the parabola because 

either might have waylaid her goal of helping Sasha and Keoni create and interpret 

expressions and equations quantitatively in terms of distances (J. Lobato, personal 

communication, June 2016).  

As Lobato et al. (2013) contended, what one notices necessarily constrains 

what one is able to learn. In this case, by attending to the mathematics and 

instructional moves not in the MathTalk videos, participants potentially ignored the 

nascent quantitative reasoning exhibited by Sasha and Keoni and the quantitative 

questions posed by the instructor in the videos. 

Center of focus: MKT around quantitative reasoning with distances. 

Session 3 brought about a dramatic shift in what participants noticed. From Session 3 

onward, MKT around quantitative reasoning with distances was noticed more 
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frequently than was MKT around mathematics not in the videos. As an example of 

how this CoF manifested, consider this episode from Session 3. The groups were 

tasked with finding the 𝑦-value given the 𝑥-value for any point on a specific parabola 

(see Figure 5.3 for the given task). 

 
Figure 5.3. The math task for Session 3. 

The group consisting of Desmond, Willow, Sierra, and Lily had been working 

on the task for about five minutes, and their plan seemed to be to inscribe triangles on 
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the graph in service of using the Pythagorean Theorem to derive an equation. They 

had just drawn a triangle on the graph (in dashed lines, seen below in Figure 5.4) with 

vertices at 4,4 , (0,1), and (4,1). In the following exchange, notice how both Sierra 

and Lily use language and gestures that are consistent with indicating distances in the 

plane. 

 
Figure 5.4. The dashed triangle can be seen in the group’s work. The purple circles 

and green bracket were added after the exchange detailed in the given transcript while 
the group further discussed the task. 

Lily: We can still think about it with the Pythagorean 
Theorem. 

Sierra: So, we don’t know this? [points to Willow’s paper, 
possibly at a vertical segment Willow had labeled 
with a question mark; paper is partially blocked by 
Willow, so it is not clear exactly what she was 
pointing at] 

Lily: We don’t. 
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Sierra: We know this whole thing [gestures downward with 
pen from 4,4 , exact gesture was not completely 
captured by the camera] is five— 

Willow: —Is 𝑦 plus one. 
Sierra: Which for that one is five, right? 
Willow: Well, we know it’s five, but if we don’t know. 
Sierra: But how would they [Sasha and Keoni] do it? They 

would count, one, two, three [gestures with her pen 
in small circles on her paper, one circle each time 
she counts]—I mean, it’s three, never mind. 

Lily: It’s three. 
Sierra: Yeah, three. My bad. 
Lily: So this is three. 
Sierra: They would just count. 
Lily: And this is one, two, three, four, because we know 

where is 𝑥, right? So this is four, so this would be 
five. So that means from here [makes a spanning 
gesture with thumb on focus and forefinger on 
4,4 ] focus to the point is five, and then point to 

here [lifts her spanning gesture and moves it so 
forefinger is on 4,4  and thumb is on directrix] is 
five too. 

In this episode, there is evidence that participants appeared to notice MKT 

around quantitative reasoning with distances. Sierra appeared to recall Sasha and 

Keoni’s method for identifying distances in the coordinate plane when she said, “They 

would just count, one, two, three.” Even though she never said who “they” was, as she 

said this, she made circle gestures with her pen, which seemed to mimic the circles 

that Sasha and Keoni draw to find distances in the plane during Lessons 2 and 3. 

Moreover, in Session 2, after watching Sasha and Keoni solve a task in which they 

drew circles and counted, Sierra wrote in a reflection that high school students might 

solve the task by “counting the distance from the point to the directrix.” This evidence 

supports the claim that Sierra was noticing Sasha and Keoni’s method for identifying 

distances. 
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Willow and Lily also noticed MKT around quantitative reasoning with 

distances. Willow seemed to complete Sierra’s sentence “This whole thing is”—“𝑦 

plus one,” presumably referring to the distance between a general point (𝑥, 𝑦) on the 

parabola and the directrix. As Sierra was saying this, she was gesturing along a 

segment in the coordinate plane, and Willow was looking at that paper. Lily’s 

spanning gesture between two sets of points is consistent with gestures one would 

make when reasoning quantitatively with distances, as is her use of the phrase “from 

here to here.” 

During the rest of the time they solved the task they continued to notice the 

distances between points, as evidenced by their utterances, inscriptions, and gestures. 

For example, later Lily drew circles on her paper from 4,4  down to 4,1 , which can 

be seen in Figure 5.4 above. These circles look like the circles Sasha and Keoni used 

to count distances in the videos. 

Relationships Between Shift in CoFs and Shifts in MKT 

There is evidence linking each of the three shifts in MKT related to 

quantitative reasoning with distances (from the interviews) to a shift in participants’ 

CoFs (during the mini-course). Table 5.3 contains evidence of this linkage for each 

category of shift in MKT around quantitative reasoning. For each shift, I’ve provided a 

brief example of a single participant’s noticing from either Session 1 or Session 2, and 

then two brief examples of that same participant’s noticing from Session 3 (which is 

when the shift in CoFs seemed to occur) or later.
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Table 5.3. Evidence from before and after the shift in centers of focus from one 
participant from each shift in MKT around quantitative reasoning with distances.
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To give the reader a sense for how the shifts in MKT around quantitative 

reasoning with distances are linked to the shift in CoFs, I first provide an in-depth 

analysis of three vignettes that serve as evidence of a link between the shift in 

quantitative reasoning and the shift in CoFs. I then briefly describe how the other two 

shifts in MKT (the shift in point of view and the shift in orientation) are linked with 

the shift in CoFs. 

Shift in quantitative reasoning. I now present and analyze three vignettes, 

each featuring Willow. The first vignette comes from Session 2 before the shift in 

CoFs. The other two vignettes come from Sessions 3 and 4, which is after the shift in 

CoFs. These vignettes provide evidence for my claim that Willow’s shift in 

quantitative reasoning was linked to the shift in CoFs.  

Vignette 1. In Session 2, Willow’s group (which consisted of Willow, April, 

and Lily) seemed determined to use the distance formula to solve the math task for the 

session (see Figure 5.2 above for the task). The group worked together for seventeen 

minutes, and for the final fourteen minutes the group’s work revolved around the 

distance formula. 

However, Willow had reservations about the approach, as she expressed 

several times. For example, when I checked in on the group, Willow said, “I guess the 

distance formula is the distance between two points, so you’d apply it between these 

two points, but I still don’t get how that finds the 𝒙-value (emphasis added).” Later 

she asked her group “What would be another way, other than using the distance 

formula, do you think?” Her group talked very little about this question, with April 
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mentioning briefly that one could “maybe do something with triangles” and then “use 

the sine function.” Except for these two brief comments, Willow’s concerns were 

never addressed by her group. 

Despite these reservations, when Willow presented the group’s work to the 

class, she talked about using the distance formula to “eventually solve for a quadratic, 

which would be pretty simple.” However, she did not present a detailed solution, and 

provided very little evidence that she understood the method the group had developed. 

In fact, when another participant (Marshall, who was not in her group) asked her to 

clarify, April (who had argued for and explained the use of the distance formula 

during the small group portion of the class) stepped in to answer for Willow. 

In this vignette, Willow seemed to struggle to engage with the math task. She 

expressed doubt about using the distance formula, even saying at one point that she 

was “not convinced that the math is there.” Other members of her group seemed to 

engage more productively with the task, but their noticing of MKT around 

mathematics not in the video (in this case, the distance formula, which never appeared 

in any of the parabola unit lessons) was counterproductive for Willow’s development 

of MKT around quantitative reasoning with distances. Her attempts to redirect the 

group’s attention toward a different solution went largely unnoticed. Unsurprisingly, 

when she presented the group’s work in front of the class, she seemed unable to 

answer Marshall’s question, and looked relieved to have April step in for her. 

Vignette 2. As shown in Table 5.2, Willow’s noticing shifted from noticing 

MKT around mathematics not in the videos to noticing MKT around quantitative 
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reasoning with distances. This shift seems to have contributed to Willow’s shift in 

quantitative reasoning as evidenced in her post-interview. For example, in Session 3 as 

Willow’s group solved the task (see Figure 5.3 above), she and Sierra talked about the 

distance from a point to the directrix. Sierra noticed the specific measure of the 

segment from the point (4,4) to the directrix (which was the line 𝑦 = −1), while 

Willow seemed to notice a generalized quantity 𝑦 + 1. 

Sierra: We know this whole thing [gestures downward with 
pen from a point in the plane, exact gesture was not 
completely captured by the camera] is five— 

Willow: —Is 𝑦 plus one.  
Sierra: Which for that one is five, right? 
Willow: Well, we know it’s five, but if we don’t know. 
Sierra: But how would they [Sasha and Keoni] do it? They 

would count, one, two, three [gestures with her pen 
in small circles on her paper, one circle each time 
she counts]—I mean, it’s three, never mind. 

First, Willow seemed to finish Sierra’s sentence “We know this whole 

thing…” with the phrase “…is 𝑦 plus one.” Even though Willow was not gesturing as 

she said this, she appeared to be watching Sierra’s gesture. Second, Willow’s 

comment “but if we don’t know” suggests that she was generalizing the distance for 

any point in the plane. Taken together, this suggests that Willow was quantifying the 

distance from the point to the directrix as 𝑦 + 1.  

Vignette 3. In Session 4, Willow and her group (April, Jasper, and Sierra) had 

worked on developing an equation for any parabola with its vertex. The group’s 

solution was the following equation (I’ve recreated April’s graph below in Figure 5.5 

to serve as a reference for April’s notation). 

(𝑥X − 0)6 + (𝑦X − 𝑦_)6 = (𝑥X − 𝑥X)6 + 𝑦X − (−𝑦_ )6 
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Figure 5.5. Author’s recreation of April’s graph. 

After approximately seven minutes, I stopped the group and asked them to 

point out various distances in the coordinate plane. I asked Willow to show me the 

distance 𝑦X + 𝑦_. She initially said, “It would be 𝑦-naught [points to the arbitrary 

point] plus this [points to the focus].” Jasper said, “It would be here [places both 

forefingers on the directrix], the distance from the directrix [moves one finger to the 

arbitrary point].” As he said this, Willow said “Oh!” and then Jasper drew a bracket 

from the directrix to the arbitrary point. After Jasper drew the bracket, Willow said 

“So this is 𝑦-eff [motions from the directrix to the 𝑥-axis], and then this is 𝑦–naught 

[motions from the 𝑥-axis to the arbitrary point].” Willow then drew two brackets 

where she had gestured and labeled them 𝑦X and 𝑦_ (shown in Figure 5.6). 
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Figure 5.6 April’s original inscriptions, along with the bracket (in orange) and label 

that Jasper drew, and the brackets (in blue) and labels that Willow drew. 

Willow’s initial response was to gesture to specific points, which suggests that 

Willow’s quantitative reasoning with distances was still developing. However, this 

episode captures what appeared to be a generative moment for Willow. As she 

attended to Jasper’s gesture along an imagined vertical segment from the directrix to 
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an arbitrary point on the parabola, Willow exclaimed “Oh!” She then drew brackets 

and labeled them, suggesting she had quantified two imagined segments as having 

specific measures of 𝑦X and 𝑦_. It could be argued that Willow copied April’s earlier 

inscription (at the far left of Figure 5.6); however, there was no pre-existing 

inscription detailing 𝑦X for Willow to copy. Instead, she decomposed Jasper’s larger 

bracket representing the distance 𝑦X + 𝑦_ into two distinct quantities. 

Discussion. Taken together, these three vignettes serve as evidence that 

Willow’s shift in quantitative reasoning (as inferred from her post-interview) was 

linked with a shift in CoFs during the mini-course. As discussed in Chapter 4, Willow 

entered the mini-course not demonstrating any quantitative reasoning in the pre-

interview. Moreover, during the first two instructional sessions, Willow did not 

demonstrate quantitative reasoning with distances. 

In Session 3, there appeared to be a shift in what she noticed, which coincides 

with the first instances in the data in which Willow seemed to reason quantitatively. In 

the second and third vignettes, Willow’s burgeoning quantitative reasoning with 

distances seemed connected to her noticing of other participants’ gestures indicating 

distances. Notably, in the third vignette, Jasper’s gesturing along an imagined segment 

(with measure 𝑦X + 𝑦_) helped Willow quantify two imagined segments (with 

measures 𝑦X and 𝑦_) that combined formed Jasper’s imagined segment. 

Shift in point of view. The shift in CoFs from MKT around mathematics not 

in the videos to MKT around quantitative reasoning with distances seemed to involve 

increased scrutiny of the videos by the participants. In Session 1 and Session 2, 
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participants did not tend to spontaneously talk about the videos unless I prompted 

them. For example, in Session 2, no one in Marshall’s group (comprised of Marshall, 

Sierra, Jasper, and Desmond) mentioned the videos as they solved the task (see Figure 

5.2 for a reminder of the task). After watching videos from Lesson 2, Marshall said he 

noticed that Sasha and Keoni “never really figured out” what his small group did, 

which was to find an equation for the directrix. Marshall noticed ways of reasoning 

that Sasha and Keoni did not use, and specifically evaluated what Sasha and Keoni did 

(or did not do) against what he and his group had done. This suggests that Marshall 

was not decentering.  

Starting in Session 3, there was evidence that participants’ noticing of MKT 

around quantitative reasoning tended to include references to Sasha and Keoni or the 

instructor in the videos. By turning their attention to what actually happened in the 

videos (versus interpreting the videos through the lens of their more sophisticated 

mathematics), participants who experienced a shift in point of view likely began to 

develop images of how Sasha and Keoni reasoned quantitatively.  

For example, in Session 4 Marshall argued that he and his classmates “hadn’t 

really seen them [Sasha and Keoni] use distance formula, they use Pythagorean 

Theorem, which is really the same thing, so I think we’ll see them draw some 

triangles.” Contrast this statement with the one from Session 2. In Session 2, Marshall 

seemed to evaluate Sasha and Keoni’s reasoning against the reasoning of math majors 

(namely Marshall and his group). By Session 4, Marshall’s statement is more nuanced. 

Even though he compared the reasoning exhibited by some participants (i.e., the 
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distance formula) to Sasha and Keoni’s reasoning (i.e., the Pythagorean Theorem), 

Marshall appeared to value Sasha and Keoni’s reasoning as valid and productive. As I 

discussed in Chapter 4, statements like these suggest that Marshall was decentering by 

taking the point of view of Sasha and Keoni. 

Shift in orientation. The videos provide images of instruction that are 

consistent with a conceptual orientation toward instruction. The instructor in the 

videos is a veteran educator who carefully crafted tasks and prompts to elicit Sasha’s 

and Keoni’s thinking. In Chapter 4, I outlined characteristics of a conceptual 

orientation toward teaching (A. G. Thompson et al., 1994), which included (a) images 

of different ways students understand an idea; (b) images of how those understandings 

develop; (c) images of instruction that promote that development; and (d) expectations 

that students are intellectually engaged in mathematical activity.  

The instructor in the video exhibited these characteristics. For example, in 

Lesson 2, Episode 1 of the MathTalk parabola unit, she asks Sasha and Keoni “Now is 

the origin on the parabola? Can you use the definition of a parabola to justify or 

explain why it’s on the parabola?” In Lesson 2, Episode 2, in response to Sasha and 

Keoni’s confusion she says, “Why don’t we take stock of where we are at? What is it 

that you’re trying to figure out?” In Lesson 3, Episode 1, the instructor tells Keoni to 

write down his idea and then asks Sasha what she thought of the idea. In Lesson 5, 

Episode 1, the instructor tells Sasha and Keoni “First, I want you to try to make sense 

of what you’re seeing.” 
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 Now, consider how April’s noticing changed. In the first two sessions, she 

tended to notice MKT around mathematics not in the MathTalk videos. For example, 

in Session 2, she conjectured that students would “plug the unknowns into a standard 

equation” to find 𝑥-values given 𝑦-values. By Session 3, she seemed to be noticing 

MKT around quantitative reasoning. Her images of instruction (as evidenced by her 

verbal utterances and written inscriptions) from Session 3 and beyond began to sound 

more like the kinds of questions and prompts made by the instructor in the videos. For 

example, in Session 3 April said she liked how the instructor asked Sasha and Keoni 

to “prove things on the parabola" because it helped them "better understand the 

definition.” In Session 4, April wondered if the instructor in the videos would pose 

questions to Sasha and Keoni to help them "understand the length" of segments in the 

coordinate plane. Her shift from noticing MKT around mathematics not in the 

MathTalk videos to noticing MKT around quantitative reasoning with distances 

coincided with a shift in her orientation. 

Focusing Interactions 

According to Lobato, Rhodehamel, et al. (2012), “focusing interactions refer to 

the discursive practices (conceived broadly to include gesture, diagrams, and talk) that 

can give rise to particular centers of focus” (p. 440). Focusing interactions help 

account for the role that both the teacher (in this case, the author) and participants 

played in the emergence of and shift between CoFs. Additionally, focusing 

interactions help account for how what participants seemed to notice is socially 

organized. 
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To infer focusing interactions, I began with an a priori coding scheme taken 

from the research literature (Goodwin, 1994; Lobato et al., 2013; Lobato, 

Rhodehamel, et al., 2012). The extant codes include highlighting, quantitative 

dialogue, and renaming. Renaming did not seem to play a role in my data, and 

consequently does not appear in the following results. Instead, I provide an example of 

it here for the reader. As an example of renaming, Lobato et al. (2013) reported on 

how in one seventh-grade class, a teacher called the “arms” of a visually growing 

figural pattern “the growth.” This seemed to have the effect of redirecting students’ 

attention away from a relationship between the step number in the pattern and the 

number of objects, back toward additive reasoning.  

Using a grounded theory approach (Strauss & Corbin, 1990), I looked for new 

focusing interactions; however, the a priori coding scheme was sufficient for the data. 

In fact, two of these codes seemed to coincide with the shift in CoFs: quantitative 

dialogue and highlighting. I elaborate each of these below and provide evidence that 

suggests these focusing interactions contributed to the shift in CoFs in Session 3. 

Quantitative Dialogue 

Quantitative dialogue is defined as “verbal communication that focuses 

attention on quantities as measurable attributes of objects (following Thompson, 

1994)” (Lobato, Rhodehamel, et al., 2012, p. 832). One key difference between this 

study and other studies that have leveraged the focusing framework (e.g., Lobato et 

al., 2013; Lobato, Rhodehamel, et al., 2012) is that this study focuses on MKT and not 

just mathematical knowledge. Not surprisingly, throughout the mini-course, I and my 
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participants often talked about pedagogical aspects of MKT around quantitative 

reasoning with distances. Accordingly, I extend the notion of quantitative dialogue to 

include verbal communication that focuses attention on any of the following: (a) 

quantities as measurable attributes of objects; (b) ways students reason quantitatively; 

(c) milestones for a learning trajectory for quantitative reasoning; or (d) quantitative 

instructional moves. 

Quantitative dialogue appeared to play a pivotal role in the shift in CoFs. As 

evidence of this claim, I first present data from late in Session 2 in which I directed 

participants’ attention to the instructional moves made by the teacher in the video. 

This event is the first instance in the data in which quantitative dialogue appears in 

connection with the MathTalk videos. I then present evidence from Session 3 in which 

two participants, Willow and Sierra, seemed to continually redirect their group’s 

attention to reexamining a math task by considering it from Sasha and Keoni’s 

perspective. Finally, I present evidence from Session 4, in which both April and 

Willow appear to direct the group’s attention to both instructional moves the instructor 

in the videos might make and ways that Sasha and Keoni might approach a task. 

During Session 1 and much of Session 2, I had observed that participants were 

not attending to MKT around quantitative reasoning with distances during the math 

tasks. Moreover, based on the conversations the class had about the MathTalk videos, 

it seemed that participants were noticing neither the quantitative reasoning of Sasha 

and Keoni nor the instructor’s quantitative instructional moves, even though the 

MathTalk videos have several features that foreground these aspects of MKT around 
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quantitative reasoning with distances (see Chapter 3 for a broader discussion of these 

features).  

Toward the end of Session 2, the class had already watched and discussed 

videos from Lesson 2 of the MathTalk parabola unit. The class was watching a clip 

from Episode 1 of Lesson 3 (currently viewable at 

http://cpucips.sdsu.edu/website/parabolas-l3-p1.html), in which Sasha and Keoni 

begin generalizing a method for finding the 𝑥-value given the 𝑦-value for any point on 

a parabola (the same task as given in Figure 5.2 above). At one point in the episode, 

Sasha and Keoni seemed to be on the cusp of quantifying the unknown coordinate 𝑦 as 

a distance from a point to the 𝑥-axis. The instructor in the video tries to get Sasha and 

Keoni to point out the distance 𝑦 (transcript is from 4:28–4:40 of the video): 

Instructor:  Show me 𝑦, show me the distance 𝑦 on there. 
Sasha:  What? 
Instructor:  You said it was one more than 𝑦, where is 𝑦? 

I paused the video and directed participants’ attention to the instructional move 

the teacher had just made by posing the following question:  

Just talk briefly for like thirty seconds in your group, what is [the 
instructor] trying to get them to show her? She said, “Show me the 𝑦” 
and they’re sort of [gestures haphazardly with hands to indicate 
confusion], yeah. So just talk in your group, what do you think it is that 
[the instructor] is trying to get Sasha and Keoni to show her? 

By asking this question, I hoped that participants would attend to both the instructor’s 

quantitative question and the quantity 𝑦, which was the distance of a vertical segment 

from a point on the parabola to the 𝑥-axis. 
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In response to this prompt, Marshall said the instructor wanted Sasha and 

Keoni to label as 𝑦 the vertical segment from the point to the 𝑥-axis. Jasper said:  

She [Sasha] drew the unit for the directrix [makes a small span gesture 
with thumb and forefinger, see Figure 5.7a below]. Now they [the 
instructor] want to see where 𝑦, they want her to draw just the 𝑦 [makes 
a larger span gesture with thumb and forefinger, see Figure 5.7b 
below]. 

 
Figure 5.7. (a) Jasper’s gesture indicating the unit. (b) Jasper’s gesture indicating 𝑦. 

Sierra said, “Yeah, this would be 𝑦 [while seeming to swipe in a line with her pen to 

possibly indicate a distance; however, her gesture was mostly blocked by other 

participants].” 

In the one minute during which participants discussed my prompt, four 

different participants noticed MKT around quantitative reasoning with distances, 

including ways Sasha and Keoni were reasoning quantitatively and quantitative 

instructional moves the teacher made. I took these reactions to my question about the 

instructor’s motivation as evidence that my prompt served as quantitative dialogue. 
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This focusing interaction seemed important, as it came at the end of Session 2, and the 

shift in CoFs occurred in Session 3. It also served as a catalyst for more quantitative 

dialogue by participants in subsequent sessions, as I now discuss. 

Participants’ own quantitative dialogue appeared to have the effect of 

sustaining the shift in centers of focus from Session 3 onward. For example, in Session 

3, Willow and Sierra seemed to try to redirect their group’s attention to examining the 

task (see Figure 5.3 for the task) by considering what Sasha and Keoni would do. The 

group discussed solving the equation they had derived the day before (which was 𝑥 =

4𝑦) to isolate 𝑦. Willow said, “That’s what I would do, but what I don’t know is 

what a high schooler would think.” This led to a discussion about using the 

Pythagorean Theorem, which included the transcript (reproduced below) I analyzed in 

Vignette 2. 

Sierra: We know this whole thing [gestures downward with 
pen from a point in the plane, exact gesture was not 
completely captured by the camera] is five— 

Willow: —Is 𝑦 plus one.  
Sierra: Which for that one is five, right? 
Willow: Well, we know it’s five, but if we don’t know. 
Sierra: But how would they [Sasha and Keoni] do it? They 

would count, one, two, three [gestures with her pen 
in small circles on her paper, one circle each time 
she counts]—I mean, it’s three, never mind. 

The group’s attention seemed directed toward MKT around quantitative 

reasoning with distances as a consequence of Willow’s and Sierra’s quantitative 

dialogue. Sierra and Willow both quantified segments, with Sierra quantifying a 

segment as having a length of five and Willow generalizing the point to quantify the 

segment as having a length of 𝑦 + 1. Moreover, Sierra attended to ways that Sasha 
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and Keoni reasoned quantitatively with distances when she said, “They would just 

count, one, two, three.”  

As one final example, I present evidence from Session 4 that this focusing 

interaction seemed to play a role in keeping participants’ attention on MKT around 

quantitative reasoning with distances. In Vignette 3 in the previous section, I described 

how one group (April, Jasper, Willow, and Sierra) worked to develop an equation for 

any parabola with its vertex at the origin. Just after the events described in that 

vignette, April asked two questions. The first was about the possible moves the 

instructor in the videos might make, and the second was about challenges Sasha and 

Keoni might face. These questions acted as quantitative dialogue because they had the 

effect of directing participants’ attention to MKT around quantitative reasoning with 

distances. Throughout the following transcript, the pronoun they refers to Sasha and 

Keoni. 

April: I wonder if she’s [the instructor in the video] 
going to do something with, how he [the author] 
was asking us what is y naught plus y sub-f. I 
wonder if she asks them questions like that to 
understand the length (emphasis added), like that 
and that [points to the two brackets Willow had 
drawn, which are shown in Figure 5.6 above], and 
what the distance formula is showing. 

Willow: Well, is there another way to come up with that other 
than the distance formula? 

April: Um, you could probably use triangles, like right 
triangles. 

Willow: Yeah, I was thinking that, but I don’t know. They’ll 
probably try, go with triangles again, that’s what 
they’ve been doing. 

Jasper: Yeah, that’s what we were doing. 
Willow: They’ll probably start with that. 
April: Oh, you drew a triangle? 
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Jasper: Yeah. (incomprehensible) 
 [38 seconds of transcript omitted in which Jasper 

talks to April about his notation] 
April: What other challenges do you think they’ll have 

(emphasis added)? 
Willow: The distance between the points. I don’t know if 

they’ve even— 
Sierra: —have they said the distance formula? 
Willow: No. 
April: I think that they’ve used it slightly because they’ve 

used the Pythagorean Theorem which is pretty much 
the same thing [as April says this, Willow 
demonstratively shakes her head “no” from side to 
side]. 

Sierra: Yeah, I don’t know if they have connected it that 
way. 

April: Yeah. 
Willow: I don’t think they were thinking about it as the 

distance formula. 
Sierra: They were just thinking of triangles and the 

Pythagorean Theorem. 

In this exchange, April’s two questions (“I wonder if she’s going to do 

something…” and “What other challenges do you think they’ll have?”) seemed to 

direct her group’s attention on MKT around quantitative reasoning with distances. 

Consider that in response to these questions, the group began discussing instructional 

moves (e.g., asking questions about distances and quantitative relationships) and 

students ways of understanding (e.g., Willow stating Sasha and Keoni might have 

difficulty with “the distance between the points”). This can be taken as evidence that 

these questions served as quantitative dialogue. 

Before moving to the next section, I offer one final note about quantitative 

dialogue. Utterances that serve as quantitative dialogue may not themselves be 

quantitative in nature. For example, when April asked, “What other challenges do you 



 

 

258 

think they’ll have,” there was nothing in her words that would be considered 

quantitative. Moreover, there is no agency or intentionality implied for data that was 

coded as quantitative dialogue. April may or may not have intended for her group to 

turn their attention to MKT around quantitative reasoning with distances. Whatever 

her intention was, the question ultimately seemed to have the effect of directing the 

group’s attention to MKT around quantitative reasoning with distances, and for that 

reason it was coded as quantitative dialogue. 

Highlighting 

Highlighting, is defined as the visible acting upon an external phenomena such 

as gesturing, labeling, or annotating (Lobato et al., 2013). In the mini-course, 

highlighting played a vital role in the shift in CoFs. As an example of the role 

highlighting played, I present an episode from Session 3 in which Marshall presented 

his small group’s work to the class (for a reminder of the task for this session, see 

Figure 5.3). This episode seems significant, as it came during the middle of Session 3, 

which is when the shift in centers of focus occurred. 

In presenting his group’s work, Marshall said that “by looking at the graph, 

you can also use right triangles.” He put his graph under the document camera (as 

shown in Figure 5.8a below) and proceeded to draw a right triangle followed by 

several brackets to indicate different distances. Marshall’s highlighting took the form 

of labeling, gesturing, and annotating his graph in ways that were linked with 

distances as quantities (in the following transcript, I have added emphasis throughout 

to facilitate analysis). 
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Marshall: So, let’s say they give us 𝑥 equals negative three, so 
we have a point right here [draws the point seen in 
the upper left of Figure 5.8b below], and we draw 
our right triangle, it’s going to look like that [draws 
a right triangle, seen Figure 5.8c below]. And 
because they give us 𝑥 equals negative three, we can 
label this side, it’s three units long [labels the 
horizontal leg of the right triangle 𝟑, seen in 
Figure 5.8d below]. Now we have this length right 
here [draws a vertical segment from the point to 
the directrix, seen in Figure 5.8d below]—so we 
don’t know what 𝑦 is, we want to find it. I’m just 
going to call it 𝑦 right now. So, we know this 
[gestures with his pen vertically, down from the 
point to the x-axis] is going to be 𝑦 [stops his 
gesture momentarily], and then plus one down here 
[continues gesture from x-axis to the directrix]. 
So, this is one unit [labels the segment from the x-
axis to the directrix with a 1, seen in Figure 5.8e 
below]. So, this length right here [draws a bracket 
next to the vertical segment and labels it 𝒚 + 𝟏, 
seen in Figure 5.8e below] is 𝑦 plus one, that means 
that the hypotenuse of the triangle is y plus one 
[labels the hypotenuse 𝑦 + 1, seen in Figure 5.8f 
below] 

Author: And how do we know that? 
Marshall: Because of the definition of a parabola. We have 𝑦 

plus one is the distance [gestures vertically, down 
from the point to the directrix along the segment 
he drew] from the point [places pen back on the 
point and moves it down] to the directrix [finishes 
the gesture with his pen at the directrix]. So, it 
must be equal to the distance from the point to the 
focus [gestures with his pen along the 
hypotenuse]. Now this last side right here [gestures 
with his pen along the shorter vertical leg of the 
right triangle], the focus is one unit above the 𝑥-
axis, so we know this length is going to be 𝑦 minus 
one, because there is this one extra unit down here 
[gestures back and forth with his pen from the 
right angle of the right triangle to the 𝒙-axis, then 
labels the vertical leg 𝒚 − 𝟏, seen in Figure 5.8f 
below] 
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Figure 5.8. A series of pictures depicting the evolution of Marshall’s example in which 

he highlights several quantitative features of a solution. 

Throughout this event, Marshall repeatedly linked his quantitative language 

(e.g., length, distance, unit) with physical segments in the plane by gesturing or 

annotating his graph, as indicated with the emphasized text in the transcript. In other 

words, Marshall’s gestures and annotations highlighted quantitative aspects of his 

work.  

Indeed, highlighting seemed to serve as a catalyst for shifting participants’ 

noticing from MKT around math not in the videos to MKT around quantitative 

reasoning with distances. For example, in the previous section I presented evidence 

from two vignettes in which Willow’s attention appeared to be directed by other 

participants’ gestures and inscriptions. Notably, in the third vignette (which came in 
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Session 4) Willow exclaimed “Oh!” as Jasper first made a spanning gesture along an 

imagined segment and then drew in a large bracket to indicate a distance of 𝑦X + 𝑦_. 

Jasper’s highlighting seemed to make salient for Willow his quantifying of an 

imagined segment having a length of 𝑦X + 𝑦_. In turn, this helped Willow decompose 

that quantity into two separate quantities, 𝑦X and 𝑦_. 

Features of Tasks 

In this section, I present the result of the third analytic pass of the data, which 

is an account of how features of the tasks used in the mini-course potentially 

contributed to the shifts in the centers of focus. As described in Chapter 3, the mini-

course was driven by a variety of tasks, which included math tasks, video tasks, and 

reflective activity. These tasks served as the context in which I and the participants 

interacted. It was in the solving of math tasks and discussing of both the math tasks 

and the videos that participants’ ideas were made visible to the class. Both the Task 

Reflection Document and the video tasks (which included both watching and 

discussing the videos), had features that seemed to contribute to the social 

organization of participants’ noticing. I now briefly discuss how each of these may 

have contributed to the shift in centers of focus. 

The Task Reflection Document (which can be seen in Appendix C) was given 

to participants in each of the first five sessions. The document consisted of three 

questions: (a) What do high school students need to know in order to complete this 

task? (b) How might high school students complete this task? and (c) What challenges 

might high school students encounter and how might you help them overcome those 
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challenges? Participants recorded their thoughts about each math task by answering 

these three questions at three different times: prior to solving the task, after solving the 

task, and then again after watching the MathTalk videos. 

This document seemed to support noticing MKT around quantitative reasoning 

with distances. The questions guided participants to consider tasks through a 

pedagogical lens. The document also provided participants with ways of talking about 

the task through a pedagogical lens. For example, April’s question “What other 

challenges do you think they’ll have?” was like one of the questions from the Task 

Reflection Document. Other participants posed similar questions, notably from 

Session 3 onward, which suggests the Task Reflection Document played an important 

role in drawing their attention to MKT around quantitative reasoning with distances. 

The video tasks had three features that appeared to support participants’ 

noticing of MKT around quantitative reasoning with distances. First, as I discussed in 

Chapter 3, the videos were edited in a way that foregrounds the interactions between 

Sasha, Keoni, and the instructor. These interactions became objects of inquiry during 

the mini-course. Participants wondered aloud about the instructor’s motivation for 

particular questions, how Sasha and Keoni might solve a task or overcome a 

challenge, and what new tasks the instructor might pose or what Sasha and Keoni 

might learn about in the next video. Entire conversations sprung up during the small 

group time that revolved around the videos. These conversations seemed to generate 

rich ideas about MKT around quantitative reasoning with distances. 
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Second, I established a protocol for discussing the videos, which included 

questions like “What did you notice in the videos?” and “Did you want to tell Sasha 

and Keoni anything?” Consequently, our discussions often revolved around 

components of MKT. Initially those components were for MKT around mathematics 

not in the videos. Eventually this shifted so that our conversations were targeted 

toward MKT around quantitative reasoning with distances. 

Finally, as I discussed in Chapter 3, the videos feature the same two students 

over the course of several lessons. Consequently, the videos highlight the development 

of their quantitative reasoning with distances. The longitudinal nature of these videos 

seemed to play an important role in the shift in CoFs. Initially in Session 1 and 

Session 2, participants had little experience with students’ ways of reasoning 

quantitatively with distances. This manifested as statements like Marshall’s on his 

Session 2 Task Reflection Document. Marshall conjectured that to find 𝑥-values given 

𝑦-values (see Figure 5.2 for the task), high school students would “rewrite the 

definition using the distance formula.” He continued, stating, “How do I know? 

Experience in high school classrooms (kids know the distance formula). Guessing.”  

The longitudinal nature of the videos seemed to afford opportunities to develop 

images of ways Sasha and Keoni reasoned quantitatively as well as milestones along a 

learning trajectory for quantitative reasoning. Contrast Marshall’s statement above 

with one he made in Session 3. Again, Marshall made a conjecture about high school 

students, this time about how they might find 𝑦-values given 𝑥-values (see Figure 5.3 

for the task). On his Task Reflection Document, he wrote that to solve that task, high 
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school students would “use the def. of parabola and 𝑥-value given to create a right 

triangle and use Pythagorean Theorem to find the third side, then use that to get the 𝑦-

value.” Again, Marshall justified his answer, this time by calling to mind the videos. 

He wrote, “How do I know? Videos from last session and from doing the previous 

task.”  

His conjecture in Session 2 did not match what Sasha and Keoni did to solve 

the task, but his conjecture in Session 3 did align with how Sasha and Keoni 

approached the task. His conjecture in Session 3 can be taken as evidence that 

Marshall had begun to develop images of ways that Sasha and Keoni reason 

quantitatively and had started to identify milestones in their learning trajectory. The 

difference in his two conjectures is striking, and serves as evidence that the 

longitudinal nature of the videos afforded the shift in CoF 

The Nature of Mathematical Activity 

Lobato et al. (2013) describe the nature of mathematical activity by as “the 

participatory organization that establishes roles governing students’ and teachers’ 

actions” (p. 814). In this section, I present the results of the fourth analytic pass of the 

data, which is an account of how the social organization of participation in the mini-

course played a role in the shift in centers of focus. Before presenting this result, I note 

that unlike other studies that reported using the focusing framework (e.g., Lobato et 

al., 2013; Lobato, Rhodehamel, et al., 2012) this study featured only one class whereas 

the other studies featured multiple classes. Those studies could draw contrasts between 

differences in the nature of mathematical activity in each class. Instead, in this study I 
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looked at subtle differences between the mathematical activity in Session 1 and 

Session 2 and the mathematical activity in Session 3 onward. 

In Session 1 and Session 2, participants seemed to expect that their role during 

the time in which they solved math tasks, was to approach the task like a mathematics 

major. Mentions of pedagogical facets of MKT (e.g., students’ ways of understanding, 

milestones or challenges along a learning trajectory, and instructional moves) were 

largely missing from their conversations. During these sessions, I would often check 

in with the groups and attempted to redirect participants’ attention to pedagogical 

ideas. This usually resulted in some discussion about MKT around quantitative 

reasoning with distances. However, these check-ins did not result in sustained focus 

on MKT, as groups tended to revert to discussing only mathematical aspects of the 

task once I left the group to work on its own. 

 In Session 3, there appeared to be a shift in participants’ expectations 

regarding their role. Instead of just approaching the math tasks like a math major 

might, participants expanded the range of what they discussed to include pedagogical 

aspects of the task. They began taking on the role of future teachers by asking each 

other how students might approach a task, and wondering aloud about challenges 

Sasha and Keoni might face. Participants no longer seemed content to only discuss the 

task in front of them and instead they expected that the task would be discussed 

through the lens of what had happened and what might happen in the MathTalk 

videos. 
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These videos were designed and edited in ways that highlight Sasha and 

Keoni’s reasoning and ways of thinking. Their quantitative reasoning with distances, 

and the instructor’s moves that supported that reasoning, permeates the videos. 

Consequently, when participants more frequently included Sasha and Keoni’s 

reasoning in their conversations about math tasks, the effect was an increase in 

noticing MKT around quantitative reasoning. 

Summary and Discussion 

In this chapter, I presented the results from my analysis of the classroom data. 

The analysis consisted of four analytic passes through the data. The first pass yielded 

evidence of the emergence of, and shifts between, two centers of focus: MKT around 

mathematics not in the MathTalk videos and MKT around quantitative reasoning with 

distances. The second pass resulted in descriptions of two focusing interactions, 

highlighting and quantitative dialogue, that seemed to contribute to the shift in CoFs. 

The third and fourth analytic passes illuminated how both features of the tasks from 

the mini-course and the nature of mathematical activity contributed to and sustained 

the shift in CoFs. By leveraging the four components of the focusing framework, I 

provided a plausible account for how key elements of the learning ecology appeared to 

contribute to the development of MKT by participants. 

The MathTalk videos are woven throughout the analyses for each of the four 

components of the focusing framework. This suggests that these videos played an 

important role in participants’ development of MKT. 
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The center of focus MKT around quantitative reasoning with distances was not 

exclusively linked to videos, and indeed there are several instances in the data where 

participants seemed to notice this CoF without noticing the videos. However, the bulk 

of instances that were coded with this CoF were instances in which participant were 

noticing features or events from the videos. 

Additionally, the focusing interaction quantitative dialogue often took the form 

of prompts or questions by either myself or participants about features or events from 

the videos. When I checked in with groups I often asked them what they thought 

Sasha and Keoni might do for the task, and this seemed to direct their attention back to 

MKT around quantitative reasoning with distances. 

The video tasks provided opportunities for participants to engage in 

conversations about quantitative reasoning with distances. Because the videos so 

prominently feature Sasha and Keoni’s quantitative reasoning, the video tasks not only 

provided participants with opportunities to hone their own quantitative reasoning 

skills, but also with opportunities to consider pedagogical implications for quantitative 

reasoning. 

Finally, starting in Session 3, participants appeared to appropriate questions I 

asked, indicating their expectations about their role in the mini-course had changed. 

Participants began to push each other to talk about and engage with the task vis-à-vis 

what they thought might happen in the videos with Sasha, Keoni, and the instructor.
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Chapter 6: Conclusion 

The findings of this dissertation study contribute to the field by illuminating 

the development of MKT around quantitative reasoning. In Chapter 4, I examined 

three facets of MKT around quantitative reasoning and one shift in affect. In Chapter 

5, I linked the development of that MKT around quantitative reasoning with distances 

to shifts in what participants noticed during the mini-course. These results are both 

theoretically and methodologically significant. In this chapter I review these results 

and elaborate their significance. I then turn to describing some limitations of the study. 

I conclude the chapter by discussing areas for future research. 

Summary of Findings 

The goal for this dissertation study was to develop theory about MKT around 

quantitative reasoning. My inquiry was guided by two research questions. The first 

question examined the nature of MKT that participants seemed to develop during the 

mini-course. Answering this question provided insight into specific ways that MKT 

around quantitative reasoning manifest in prospective secondary teachers. The second 

research question explored how that MKT developed. In this section, I summarize the 

results from answering each of these research questions. 

Answering Research Question 1 

In answering Research Question 1, I identified four shifts in MKT, and three of 

these were related to quantitative reasoning with distances. I now summarize each of 

these shifts, starting first with the shift in affect. 
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Affect. Participants who experienced this shift tended to demonstrate in the 

pre-interview teacher-centered views of instruction. Additionally, in the pre-

interviews, these participants talked about students’ thinking and understanding from a 

deficit perspective. They said students “wouldn’t understand” or “wouldn’t 

remember,” and consequently students either “got it” or they didn’t. Such comments 

and attitudes are consistent with a fixed mindset (Dweck, 2006). Research has shown 

that fixed mindsets are counterproductive for teaching and are correlated with lower 

student achievement (Dweck, 2010). 

During the post-interview, participants’ affect appeared to have shifted. Their 

views of instruction seemed student-centered, and they talked with more nuance about 

student thinking and understanding. They discussed “process[es] of improving their 

[students’] understanding,” and ways “to help them [students] see the relationship.” 

These statements and attitudes are consistent with a growth mindset (Dweck, 2006), 

which has become an area of interest and emphasis for reform-oriented education 

(Boaler, 2013; Dweck, 2010; Yeager & Dweck, 2012). 

Shifts in MKT around quantitative reasoning with distances. The three 

other shifts in MKT that I identified in Chapter 4 relate to quantitative reasoning with 

distances. I briefly summarize these shifts below. 

Quantitative Reasoning. The first shift captured how participants who entered 

the study with limited quantitative reasoning with distances appeared to develop more 

sophisticated ways of reasoning quantitatively with distances. In the pre-interview, 

three participants struggled to reason quantitatively, and these struggles seemed to 
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stem from their limited conceptions of points (as locations, or as values with which 

they could calculate). Their inability to reason quantitatively with distances limited 

their progress with the Ellipse Task. 

In the post-interview, all participants reasoned quantitatively with distances. 

Notably, the three participants who seemed to struggle in the pre-interview, were able 

to demonstrate more sophisticated quantitative reasoning in the post-interview. This 

included quantifying coordinates as distances and forming quantitative relationships 

with those quantities. This quantitative reasoning seemed to serve as a powerful tool 

that enabled these participants to make significantly more progress on the Parabola 

Task than they did on the Ellipse Task. 

 Point of View. The second shift in MKT related to quantitative reasoning was 

a shift in point of view, or the ability to decenter. In the post-interview, three 

participants changed their solution for the Parabola Task to one that was qualitatively 

similar to the Sasha and Keoni’s solution in Lesson 9 of the MathTalk videos. They 

were able to do this despite having never seen the videos in which that solution is 

developed. Moreover, these participants made accurate predictions about how Sasha 

and Keoni would think about the problem, what they would do to solve the problem, 

and what challenges they might face. In total, six of the seven participants seemed to 

decenter. Three participants changed their solutions in the post-interview, while three 

others offered initial solutions that were similar to Sasha and Keoni’s solution. 

Orientation. The final shift in MKT around quantitative reasoning was a shift 

in orientation. In the pre-interview, five of the seven participants appeared to have an 
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orientation consistent with the calculational orientation described by A. G. Thompson 

et al. (1994). Broadly speaking, these participants tended to: (a) emphasize arithmetic 

operations; (b) foreground calculations; and (c) hold images of instructions that 

focused on calculating with numerical values.  

By contrast, in the post-interview these participants seemed have developed an 

orientation that was more consistent with the conceptual orientation described by A. 

G. Thompson et al. (1994). They tended to: (a) emphasize quantitative operations over 

arithmetic ones; (b) foreground sense-making instead of calculations; and (c) hold 

images of instruction focused on reasoning quantitatively. 

Answering Research Question 2 

As I have summarized, there were four shifts in participants’ MKT. To answer 

Research Question 2, I investigated how three of these shifts developed. Because the 

MathTalk videos played a central role in the mini-course, investigating what 

participants noticed in the videos and subsequent dialogue around the videos was 

crucial in explaining those shifts. Consequently, I used the focusing framework 

(Lobato et al., 2013; Lobato, Rhodehamel, et al., 2012) to develop theory about how 

MKT seemed to develop during the mini-course. By leveraging the four parts of the 

focusing framework in my analysis, I was able to link what participants learned with 

what they noticed in the mini-course. 

Centers of focus. I identified two centers of focus (CoFs) that seemed to 

capture participants’ attention during the mini-course. The first was MKT around 

mathematics not in the MathTalk videos. This CoF emerged early in Session 1 and 
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appeared to be the dominant CoF through Session 2. This CoF accounts for how 

participants initially noticed mathematics they brought with them into the mini-course. 

Surprisingly, participants even tended to view the MathTalk videos through the lens of 

their own math major knowledge. Given that all participants planned to enroll in a 

teacher credential program, I did not expect participants to view the videos almost 

exclusively through that lens. This had the effect of participants noticing what did not 

occur in the videos, such as Sasha and Keoni failing to use “plus-or-minus” when 

solving an equation involving square roots or the instructor not prompting Sasha and 

Keoni to use the distance formula. 

The second CoF, MKT around quantitative reasoning with distances, also 

emerged in Session 1. However, it was not until Session 3 that this CoF seemed to 

play a more substantial role in what participants noticed. This shift in CoFs brought 

about an increase in participants’ noticing of quantitative reasoning with distances, as 

well as the ways in which Sasha and Keoni reasoned quantitatively and the 

quantitative instructional moves made by the teacher in the videos. 

The shift from the CoF MKT around mathematics not in the MathTalk videos 

to the CoF MKT around quantitative reasoning with distances seemed to play a role in 

the development of participants’ MKT. In Chapter 5, I demonstrated how the shift in 

CoFs coincided with the first instances in the data of Willow reasoning quantitatively 

as an example of how the shift appeared to contribute to the development of 

participants’ quantitative reasoning. I also linked the shift in CoFs to participants’ 

efforts to decenter by establishing how Marshall’s emerging understanding of Sasha 
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and Keoni’s ways of reasoning coincided with the shift in CoFs. Finally, by 

illuminating how April’s images of instruction were informed by her noticing of the 

instructor in the video, I presented a plausible explanation for how the shift in CoFs 

contributed to participants’ shift in orientation. 

Focusing interactions, tasks, and the nature of mathematical activity. Part 

of the rationale for leveraging the focusing framework in my analysis is that it 

provided explanatory power for the ways in which participants’ noticing was socially 

organized. Following Lobato et al. (2013), I examined how participants’ noticing 

emerged “through the interplay of a set of discourse practices called focusing 

interactions and features of mathematical tasks during engagement in particular types 

of mathematical activity” (p. 814). I now briefly discuss results related to each of these 

factors. 

Focusing interactions. Two focusing interactions, quantitative dialogue and 

highlighting, contributed to the shift in CoFs. For example, late in Session 2, just 

before the shift in CoFs, I asked participants to consider an exchange between Sasha 

and Keoni and the instructor in the videos. This prompt acted as quantitative dialogue 

because it had the effect of directing participants’ attention to MKT around 

quantitative reasoning. Moreover, it seemed to provoke a change in participants’ own 

language, as in Session 3 and later they started using quantitative dialogue as they 

worked in groups and discussed the videos. 

Features of tasks. The features of two tasks used in the mini-course seemed to 

foster the shift in CoFs. Even though participants were planning to enroll in a teacher 



 

 

274 

credential program in the fall following the study, in Session 1 and Session 2 they 

appeared to approach the math tasks more as a student of mathematics than as a 

teacher of mathematics (Stylianides & Stylianides, 2010; van Bommel, 2012). The 

Task Reflection Document (see Appendix C) guided participants to consider the math 

tasks through a pedagogical lens. This seemed to affect their noticing, and by Session 

3, they were asking questions of each other that were similar to the questions on the 

Task Reflection Document. 

The video tasks had several features that contributed to the shift in CoFs. For 

example, the editing of the videos highlight the interactions between Sasha, Keoni, 

and the instructor, and specifically the nature of the quantitative reasoning that Sasha 

and Keoni developed as well as the instructional moves that seemed to support that 

development. This allowed participants to hone in on different facets of MKT around 

quantitative reasoning. Additionally, the conversations I led around the videos were 

rich and generative; participants’ ideas about Sasha and Keoni, the instructor, and the 

content emerged and were discussed. Finally, the longitudinal nature of the videos 

provided multiple opportunities for participants to reflect on Sasha and Keoni’s 

developing quantitative reasoning. 

The nature of mathematical activity. In Chapter 5, I elaborated how changes 

in roles that participants took on seemed to contribute to the shift in CoFs. Their 

mathematical activity in Session 1 and Session 2 was guided by implicit assumptions 

that their role was to engage in the math tasks like a math major. This meant that it 

was acceptable to contribute to the group mathematical ideas that were beyond the 
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scope of typical high schoolers (e.g., using the law of sines to find the length of one 

side of a right triangle, even when the length of two of the sides were given).  

In Session 3 the roles that participants assumed changed so that they started to 

approach the task more like a teacher of mathematics. For the most part they 

abandoned the more complex mathematical ideas that were not as appropriate for high 

schoolers, and when they did discuss such ideas they often hedged (e.g., Jasper 

suggested using limits for exploring a parameter change, but then quickly added that 

he did not think that would be appropriate for Sasha and Keoni). This change in 

participants’ roles seemed to elicit an increase in noticing MKT around quantitative 

reasoning, and thus contributed to the shift in CoFs. 

In summary, there were three elements of the learning environment that gave 

rise to the emergence of and shift between the two CoFs. Analysis presented in 

Chapter 5 explored how each of these influenced participants’ noticing and subsequent 

MKT development. I want to take a step back and examine the mini-course 

holistically. Some readers may wonder if the videos alone would be sufficient for 

prospective teachers; in other words, would it work to just post the videos online for 

PSTs to learn from on their own outside of a formal setting. I believe the answer to 

such a challenge is a resounding “No!” The videos served for me, as a teacher 

educator, a tool box for helping participants develop MKT. I carefully selected clips to 

show based on my second-order models of participants’ emerging quantitative 

reasoning and MKT around quantitative reasoning. Participants also played important 

roles in others’ development of MKT—for example, Jasper’s moment with Willow in 
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which he deliberately drew brackets to indicate his quantification of the distance 𝑦X 	+

	𝑦[ was a powerful moment in Willow’s development of quantitative reasoning. 

Additionally, the supports for reflection that I designed into the mini-course were 

likely crucial components of the course that fostered participants’ development of 

MKT. My protocol that guided conversations about the videos and the Task Reflection 

Document served as models for how participants should engage with both the math 

tasks and viewing the videos. In turn, participants seemed to appropriate some of these 

reflective prompts in their own conversations around the tasks, signaling a potential 

transformation from math student to math teacher. 

 Significance 

Having summarized the results of this dissertation study, I now return to the 

significance arguments I introduced in Chapter 1. In this section, I first elaborate 

several ways in which the study is theoretically significant. I then discuss how the 

findings from Chapter 5 have methodological significance. 

Theoretical Significance 

The findings reported in this study contribute to the field’s understanding of 

quantitative reasoning in several ways. First, three participants initially struggled to 

reason quantitatively with distances. Notably, in the pre-interview Willow, Desmond, 

and Sierra did not demonstrate quantitative reasoning at a level of sophistication one 

might expect of senior mathematics majors. This finding contributes to the narrative 

that quantitative reasoning is hard for students across grade levels; that all three 

participants seemed to develop more sophisticated quantitative reasoning through their 
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engagement in the mini-course is significant. This study contributes to the field’s 

understanding of prospective teachers’ quantitative reasoning. 

Second, I explicated two facets of MKT around quantitative reasoning: 

decentering and orientation. Decentering has recently been introduced as one way of 

thinking about MKT development, and this study contributes to the fields’ 

understanding of how decentering may specifically aid in the development of MKT 

around quantitative reasoning. For example, decentering to reason quantitatively as a 

high school student might allow teachers to better anticipate students’ conceptual 

challenges with quantifying and forming quantitative relationships. 

Additionally, by comparing two participants, Willow and Marshall, this study 

demonstrates that decentering is not developmental. Willow seemed to decenter during 

the mini-course, suggesting that her shift in quantitative reasoning and her ability to 

decenter developed concurrently. Marshall entered the study with more sophisticated 

quantitative reasoning, and was also able to decenter. This suggests that we do not 

need to wait until prospective teachers have developed sophisticated mathematical 

knowledge before providing opportunities for them to engage with students’ 

mathematical thinking. Instead, prospective teachers like Willow may benefit from 

learning the math content alongside virtual students such as Sasha and Keoni. 

Finally, while the notion of a conceptual orientation is not new, this study 

contributes to the fields’ understanding of the construct by demonstrating that a mini-

course designed around conceptually-oriented longitudinal videos can be effective in 

helping prospective teachers develop such an orientation. Moreover, the evidence 
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presented in Chapter 4 showed that all three participants who experienced a shift in 

quantitative reasoning also experienced a shift in their orientation. This suggests that 

these two constructs may co-inform one another as they develop. Of course, one might 

argue that the two constructs (quantitative reasoning and conceptual orientation) are 

equivalent; however, quantitative reasoning is a tool that teachers can deploy 

regardless of their orientation (as evidenced by April in the pre-interview). 

Additionally, findings from this study extend the Silverman and Thompson 

(2008) framework for the development of MKT. As I have discussed elsewhere, the 

framework assumes that MKT develops as teachers ask themselves questions about 

the content, instruction, and how students will approach the content. Results from this 

study do not contradict that hypothesis; however, the findings from Chapter 5 suggest 

that hypothesis alone is not sufficient for explaining the development of MKT. 

Instead, two factors seemed to play a critical role in the development of 

participants’ MKT around quantitative reasoning with distances. First, the use of the 

focusing framework in Chapter 5 highlighted the role that socially-organized noticing 

seemed to play in participants’ development of MKT. Their reflections on quantitative 

reasoning, instruction for quantitative reasoning, and how Sasha and Keoni reasoned 

quantitatively did not occur in isolation. Instead, these reflections played out in a 

complex social environment. Ideas were shared and assumptions were challenged 

(e.g., Willow disagreeing with April’s claim that Sasha and Keoni had used the 

distance formula), and this interplay and exchange of ideas between participants 

seemed generative for their MKT. 
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Prior to conducting the study, I conjectured that while experienced educators 

may have the ability to develop MKT simply by thinking about the content, instruction 

for that content, and how students might respond, such a thought experiment would 

likely not be sufficient for prospective teachers. My hypothesis was that experience 

with students’ thinking and ways of reasoning is necessary for MKT development. 

The results from Chapter 5 are consistent with this hypothesis, which suggests that the 

MathTalk videos (due to their longitudinal nature) were an important tool that 

supported participants’ emerging MKT. 

Methodological Significance 

This study also holds methodological significance. The focusing framework 

was originally created to examine mathematical learning. My conceptualization of 

MKT is that it is fundamentally mathematical in nature (Bass, 2005; Stylianides & 

Stylianides, 2010), yet it is pedagogical in the sense that its domain of application is 

the mathematics classroom. Accordingly, I extended the focusing framework to 

include several pedagogical considerations, which allowed me to examine the 

development of MKT. 

To extend the framework, I first modified the definition of noticing given by 

Lobato et al. (2013) to include the noticing of pedagogical features in a learning 

environment. Doing so allowed me to account for both mathematical and pedagogical 

features and regularities in the learning environment that seemed to capture 

participants’ attention. Accordingly, I modified the definitions of both focusing 
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interactions and features of tasks so that they too helped account for pedagogical 

features that participants noticed. 

The focusing framework is an analytical tool that allows researchers to account 

for how noticing as a socially-situated phenomenon influences learning. By modifying 

the framework to include pedagogical features, I provided an account of how noticing 

influenced the development of MKT around quantitative reasoning with distances. 

Consequently, this study serves as a blueprint for how researchers may make similar 

modifications to the focusing framework to explore MKT development for other 

mathematical content. 

Study Limitations 

One limitation of this study was the use of clinical interviews as a tool for 

exploring participants’ MKT around quantitative reasoning. The interviews captured 

some facets of participants’ individual MKT around quantitative reasoning. However, 

I wonder about the fit between the knowledge that seemed to be captured in those 

interviews and the knowledge participants deployed during the mini-course. This 

concern stems from my view of the situated nature of MKT (Brown, Collins, & 

Duguid, 1989; Stylianides & Stylianides, 2010).  

For example, in both the pre-and post-interviews, Desmond seemed reserved, 

and he tended to rush through problems. My sense of Desmond based solely on those 

interviews is that he might not have learned much in the mini-course. However, 

throughout my analysis of the classroom data I was continually surprised at his insight 

and the contributions he made to his groups as they worked on math tasks. Almost 
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none of that emerged in the post-interview. It is plausible that as Desmond interacted 

in small groups of his peers, he “felt” more like a teacher and could more readily 

deploy his teacher knowledge, whereas in the clinical setting of a post-interview he 

“felt” more like a student who was taking a test. I have no data to support this 

interpretation; instead, I offer it as a plausible explanation for why Desmond’s post-

interview might not have adequately captured his MKT around quantitative reasoning. 

A second limitation is that the study included only seven participants. My goal 

for designing the study was to develop local theory (Prediger et al., 2015) about the 

development of MKT around quantitative reasoning. In Chapter 3, I outlined my 

rationale for limiting the number of participants, and I elaborated the selection criteria 

I used to ensure a representative sample (Corbin & Strauss, 1990). Consequently, 

while I am confident that I have succeeded in “producing theory that is ‘conceptually 

dense’” (Strauss & Corbin, 1994, p. 278), this has come potentially at the expense of 

producing theory that is more broadly generalizable that might result from a study of 

more prospective secondary teachers. 

I briefly discussed in Chapter 5 how the instruments used in the interviews did 

not seem to capture participants’ knowledge about the components of the Silverman 

and Thompson (2008) framework for MKT. In hindsight, more care should have been 

taken to design tasks and questions that would provide opportunities for participants to 

be explicit about ways students understand quantitative reasoning, milestones along a 

learning trajectory for quantitative reasoning, and instructional moves that support 

students’ quantitative reasoning. 
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Additionally, I did not anticipate the shift in affect. This is reflected in both the 

interview protocols I used as well as the design of the mini-course. Consequently, I 

was unable to link the shift in affect to specific features or regularities in the course. 

This is unfortunate since affect seems to play a large role in the efficacy of instruction 

(McLeod, 1992; Philipp, 2007; Philipp et al., 2007) and being able to explicitly link 

the shift in affect to the features of the mini-course could be informative. 

I argued in Chapter 2 and Chapter 3 that the MathTalk videos have several 

features that (a) make them unlike other videos that have been used in teacher training 

courses or professional development and/or (b) foster the development of MKT. These 

features include professional-level editing, instruction grounded by research on 

children’s thinking, and a longitudinal treatment that highlights the evolving thinking 

and reasoning of the same pair of students over several hours of lessons. 

If, as I have concluded, participants’ engagement with the MathTalk videos 

was critical to the development of their MKT around quantitative reasoning, then there 

is a practical limitation of this study to consider. The features that supported MKT 

development come at steep cost, both in money and time. The equipment used to 

create and edit the videos is expensive. It took months of planning and filming to 

capture the lessons on film, and then several more months of editing to create the final 

product that is hosted on the MathTalk website (www.mathtalk.org). Consequently, 

replicating this study to examine MKT around other mathematical content would 

likely require significant investment in resources and human capital.  
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Future Research and Implications 

Usiskin (2001a) talked of the “chicken-and-egg dilemma” that describes how 

students will not learn to reason quantitatively until they have teachers who 

themselves reason quantitatively. With the numerous recommendations to improve 

students’ quantitative reasoning, more research on prospective teachers’ MKT around 

quantitative reasoning is needed. 

Saying that researchers should examine MKT around quantitative reasoning 

requires elaboration in specificity along two dimensions. While larger grain-sized 

models of MKT for broad mathematical disciplines (e.g., algebra) contribute to the 

field’s understanding of MKT as a construct, the field seems to be missing 

descriptions of specific facets of MKT around particular mathematical ideas. Much 

like the field has developed fine-grained learning progressions and trajectories for 

mathematical knowledge (Lobato & Walters, in press), development of similar fine-

grained accounts of MKT is needed.  

This study acts as one such account by elaborating three facets of MKT around 

quantitative reasoning with distances. However, I think it is plausible that there are 

other facets of MKT around quantitative reasoning with distances. For example, due in 

part to the limitations with my interview protocol discussed previously, I did not 

capture participants’ MKT that might help them make in-the-moment instructional 

moves. Such MKT certainly played a role in the video instructor’s ability to respond to 

Sasha and Keoni’s unexpected ways of reasoning (e.g., placing the focus on the 
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directrix in Lesson 1). More research could be conducted to elaborate additional facets 

of MKT around quantitative reasoning with distances. 

The other dimension of specificity deals with the nature of quantitative 

reasoning. There are several conceptualizations of quantitative reasoning, but for this 

study I took a view of quantitative reasoning consistent with P. W. Thompson’s (e.g., 

1990, 1994, 2011). Even within this conceptualization, there are several threads one 

could follow. There is quantitative reasoning: (a) with distances; (b) related to speed 

(e.g., P. W. Thompson, 1994); (c) with functional relationships (e.g., Ellis, 2011); (d) 

with ratio and proportions (e.g., Lobato & Siebert, 2002); (e) with angle measures 

(e.g., Moore, 2013), and many others. Each of these threads can, and should, be 

objects of inquiry for developing MKT. 

Finally, I end by reflecting on the MathTalk videos. There is so much 

pedagogical power in the MathTalk videos, and I am excited at the prospect of 

leveraging these videos as a mathematics teacher educator. The longitudinal nature of 

these videos seemed to be particularly powerful for participants. Participants began 

conjecturing about Sasha and Keoni’s relationship, what they were like in high school, 

and if they went on to major in mathematics in college. Participants got to know Sasha 

and Keoni, and began treating Sasha and Keoni like their own students. Simply put, 

the MathTalk videos allowed participants to become vicarious teachers by taking on 

the role of an educator with the students in the videos.
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Appendix A: Plans for Six Instructional Sessions in the Mini-Course 

Session 1 Plan: Constructing a parabola from the definition 

5 minutes – Introduction. THANK YOU FOR PARTICIPATING! I am a former 

teacher, PhD student, interested in working with math teachers. I hope that by 

participating you’ll leave with some new understandings about parabolas and ideas 

about how to help students come to similar understandings. [Me] 

15 minutes – REFLECT – Check out this task (Construct a parabola), but don’t work 

on it yet. I want you to write your thoughts about the task on this Task Reflection 

document. [Individual] 

5 minutes – Introduce first task: “Construct a Parabola.” [Me] 

50 minutes – Task: Construct a Parabola. As you work, feel free to revise your Task 

Reflection document if you have any new insights. [Groups] 

10 minutes – REFLECT – Discussion about the task, share out some solution 

methods. [Whole Class] 

35 minutes – Watch parts of Lesson 1 with Sasha & Keoni. Discuss as we watch. As 

you watch, and as we discuss what we are seeing, feel free to revise your Task 

Reflection document if you have any new insights. [Whole Class] 
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Task: 
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Session 2 Plan: Create an Equation for a Specific Parabola 

6:00 – 6:20 – Welcome, Task Reflection document. Task will be put on side TVs, 

TRD will be at each desk. [Individual] 

6:20 – 6:40 – Task Time. Participants will work together on the sequence of tasks I’ve 

given them. – [Groups] 

6:40 – 6:50 – Discussion. Share out insights from group work. [Whole Class] 

6:50 – 6:10 – Watch videos of Sasha and Keoni. See list below. [Whole Class] 

Lesson 2 [14:40] 
• E1: 2:08 – 3:35 [1:27] 
• E2: 0:10 – 5:00 [4:50] 
• E3: 0:00 – 4:33 [4:33] 
• E4: 0:22 – 3:48 [3:26] 
• E5: 3:32 – 3:56 [0:24] 

6:10 – 6:20 – Discussion. Let participants “catch up” mathematically. 

What do you think Sasha and Keoni will do next? 

6:20 – 6:45 – Watch videos of Sasha and Keoni. See list below. [Whole Class] 

Lesson 3 [17:10] 
• E1: 0:45 – 10:30 [9:45] 
• E2: 0:18 – 2:45 [2:27] 
• E5: 0:00 – 4:58 [4:58] 

What are some of the go-to moves Joanne seems to make? Why? 

6:45 – 7:00 – Discussion. [Whole Class] 

Task: Use the definition of a parabola to create a method for locating the 𝑥-value for 

any point on the parabola given the 𝑦-value of that point.  
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Session 3 Plan: Create an Equation for a Parabola with Vertex at the Origin 

3:00 – 3:15 – Welcome, Task Reflection document. Task will be put on side TVs, 

TRD will be at each desk. [Individual] 

3:15 – 3:35 – Task Time. Participants will work together on the sequence of tasks I’ve 

given them. – [Groups] 

3:35 – 3:45 – Discussion. Share out insights from group work. [Whole Class] 

3:45 – 4:00 – Watch videos of Sasha and Keoni. See list below. [Whole Class] 

Lesson 4 [13:38] 
• E2: 0:13 – 1:55 and then 2:57 – 3:24 [2:09] (didn’t show–Based 

on what groups were saying I decided to show these instead of 
E2) 

o E1 all 
o E3 all 

• E4: 0:00 – 2:10 [2:10] 
• E6: 1:33 – 9:33 and then 11:22 – 12:41 [9:19] 

4:00 – 4:10 – Discussion. Use Post-Video Protocol. [Whole Class] 

4:10 – 4:20 – Groups discuss and fill out “Recapping the First 4 Lessons” sheet. 

[Groups] 

4:30 – 5:00 – Discussion. [Whole Class] 

Task: Your task is to create a method for locating the 𝑦-value for any point on the 

parabola given the 𝑥-value of that point. 
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Recapping the First 4 Video Lessons 

So far we have seen parts of 4 lessons with Sasha and Keoni. We are 
about half-way through the mini-course – so let’s recap what has 
happened so far. 
 
1. Summarize what has happened so far with Sasha, Keoni, and Joanne. 

2. What have Sasha and Keoni learned? What is your evidence for your 
claims? 

3. What challenges have Sasha and Keoni faced? 

4. What did Joanne do to help Sasha and Keoni overcome those 
challenges? 
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Session 4 Plan: Develop an Equation for any Parabola Whose Vertex is (0,0) 

3:00 – 3:20 – Discussion. [Whole Class] 

3:20 – 3:35 – Task Reflection document. Task will be put on side TVs, TRD will be at 

each desk. [Individual] 

3:35 – 4:00 – Task Time. Participants will work together on the task. – [Groups] 

4:00 – 4:10 – Discussion. Share out insights from group work. [Whole Class] 

4:10 – 4:40 – Watch videos of Sasha and Keoni. See list below. [Whole Class] 

Consider sprinkling in discussion after each video! 

Lesson 5 [27:59] 
• E1: 0:33 – 1:20 and then 1:33 – 6:06 [5:20] 

o Ask: Why did Joanne ask about the points? 
• E2: 0:27 – 2:08 and then 2:08 – 3:29 and then 3:29 – 3:50 and 

then 4:50 – 5:20 [4:53] 
• E4: 0:15 – 4:10 [3:55] – INTRODUCE by saying Joanne asked 

them to predict for focus at (0,3) 
• E5: 0:20 – 4:57 and then 5:47 – 6:23 [6:13] 
• E6: 0:32 – 4:22 and then 4:22 – 6:05 and then 6:05 – 8:06 

[7:34] 

4:40 – 5:00 – Discussion. [Whole Class] 

Task: Your task is to develop an equation for any parabola whose vertex is at the 

origin (0,0). 
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Session 5 Plan: Explain a Parameter Change 

3:00 – 3:15 – Task Reflection document. Task will be put on side TVs, TRD will be at 

each desk. [Individual] 

3:15 – 3:25 – Quick recap of what happened last time, then E6: 0:32 – 4:22 and then 

6:05 – 8:06 [5:51] 

3:25 – 3:50 – Task Time. Participants will work together on the task. – [Groups] 

3:50 – 4:10 – Discussion. Share out insights from group work. [Whole Class] 

4:10 – 4:40 – Watch videos of Sasha and Keoni. See list below. [Whole Class] 

Consider sprinkling in discussion after each video! 

Lesson 6 [16:53] 
• E1: 0:47 – 2:25 and then 3:20 – 4:11 and then 4:41 – 8:07 and 

then 8:27 – 11:42 [9:10] 

Tell class that Sasha and Keoni have done this for two other parabolas, using similar 
methods. Also, Joanne planned in advance to make sure that Sasha and Keoni found 
“comparison points” for each parabola – points sharing x-values, points sharing y-

values, and special points. 
• E5: 0:25 – 1:12 and then 1:46 – 2:44 and then 4:55 – 10:53 

[7:43] 
 
Lesson 7 [11:29] 

• E2: 0:20 – 3:42 and then 5:01 – 5:37 [3:58] 
• E3: 0:21 – 2:32 [2:11] 
• E6: 0:18 – 5:38 [5:20] 

4:40 – 5:00 – Discussion. Use Post-Video Protocol. [Whole Class] 

Task: Your task is to: 

1. Figure out what effect changing the value of 𝑝 in the equation 𝑦 = JM

NO
 has on 

the graph of a parabola. 

2. Explain why this relationship exists. 
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Session 6: Final Session 

4:15 – 5:00 – Watch videos of Sasha and Keoni. [Whole Class] 

Consider sprinkling in discussion after each video! 

Lesson 8 [24:30] 
• E1: 0:31 – 2:16 and then 4:29 – 6:51 [4:06] 
• E2: 0:20 – 7:00 and then 7:38 – 9:36 [8:38] 
• E4: 0:20 – 1:37 and then 2:06 – 5:41 [4:52]  
• E5: 0:18 – 3:27 and then 4:24 – 9:09 [7:54] 

5:00 – 5:45 – Final Discussion 

5:45 – 5:55 – Interview sign up 

5:55 – 6:15 – Hand out Final Reflection; collect at post-interview if not enough time. 

  



 

 

293 

Final Discussion 

Be sure to ask for attribution: For example, “Does your thinking about this build off 

of someone else’s ideas? Can you talk about that?” 

(These questions were read aloud to participants, who then discussed these in groups) 

1. Is there a difference between how you approached and solved these tasks and 

how HS students would approach and solve these tasks? 

2. What understandings did Sasha and Keoni develop as a result of lesson 6 and 7 

in which they generated three explanations for how and why changing 𝑝 

affects the graph of the parabola? 

a. Now, imagine that instead of this instructional sequence, Joanne instead 

had them experiment with sliders and then Sasha and Keoni stated that 

“as 𝑝 increases, the parabola gets wider.” Joanne replied, “Exactly! 

You can remember this by thinking ‘If I have more pea soup, I’ll need a 

wider bowl!” 

b. What understandings would Sasha and Keoni have developed in this 

scenario? 

3. Consider the following statement: 

“Joanne taught with purpose. Every task she posed, every question she 
asked, and every prompt she gave Sasha and Keoni was in anticipation 
of, or in response to, a challenge Sasha and Keoni faced.” 

How do you react to this statement? 
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Final Reflection 

(You may use the back if you need more room) 

1. What did Sasha and Keoni learn during the 8 lessons we watched? 

2. What did you learn over these six instructional sessions? 

3. The mathematical goal of these sessions was to develop deeper understanding 
of the relationships between geometric and algebraic conceptions of parabolas. 
What connections did you make?  

4. I also had some pedagogical goals for these sessions. What insights did you 
gain about how to teach this specific content to high school students? Some 
things you might think about: planning, instructional actions, tasks, student 
conceptions and understanding, challenges to learning, practices, etc. 
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Appendix B: Parabola Unit Episodes of Note 

Lesson 1 
E1:MS	 1:45	 Struggle	with	focus	on	directrix	begins.	Resolved	by	S	@5:45	
	 7:50	 K	tries	to	put	focus	on	directrix	again.	This	leads	to…	
	 8:15	 …	issues	with	measuring	distance	from	point	to	line.	Resolved	by	

K	@10:00	
E2:Ex	 1:03	 Focus	NOT	on	directrix.	First	find	vertex	@1:03.		
	 2:07	 Next	point	tested	prompted	by	Joanne	“can	you	estimate	where	

you	think	the	next	point	will	be?”	
	 2:33	 Joanne:	“What	has	to	be	–	can	you	point	to	where	the	two	things	

in	the	definition	would	be?	Where’s	the	distance	from	his	finger	
to	the	line?	And	where’s	the	distance	from	his	finger	to	the	focus?	
Are	those	two	equal?”	

	 4:15	 How	many	points	are	on	a	parabola?	
	 4:50	 Dotdotdotdotdot…		
	 5:25	 …then	Joanne	“Pick	one	–	is	that	the	same	distance	to	your	line	as	

it	is	to	the	focus?	
	 5:40	 A	new	directrix	and	focus	
	 6:15	 Special	points!	
	 8:00	 Point	tested,	not	on	parabola,	but	leads	to…	
	 9:00	 Begin	solution	with	parallel	lines	and	compass	–	this	starts	out	

when…	
	 9:00	 Point	is	wrong,	and	Joanne	says	“adapt	it,	change	it	a	little	so	that	

it	works”	
	 11:30	 Another	point	using	parallel	lines	and	compass	
	 12:30	 Another	point	using	parallel	lines	and	compass	
	 13:00	 Parabola	is	sketched	
E3:Ref	 	 Explanation	(about	1	minute)	
E4:RR	 1:30	 Prediction	is	made	regarding	shape	of	new	parabola	(focus	is	

closer	this	time,	S	predicts	it	will	be	steeper	–	V-ish	instead	of	U-
ish)	

 
EX = Episode X 
MS = Making Sense 
Ex = Explaining 
Ref = Reflecting 
RR = Repeating Your Reasoning  
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Lesson 2 
E1:MS	 1:21	 Joanne:	What	do	you	think	(2,1)	means?		
	 2:30	 Origin	is	on	parabola	
	 2:43	 Joanne:	Now	is	the	origin	on	the	parabola?	Can	you	use	the	

definition	of	a	parabola	to	justify	or	explain	why	it’s	on	the	
parabola?	

	 3:11	 Joanne:	Now	can	you	look	at	those	points…(2,1)	and	use	the	
definition	of	the	parabola	to	explain	why	those	meet	the	
definition	of	a	parabola,	why	they	are	on	the	parabola?	

E2:Ex	 0:19	 (4,4)	on	parabola	–	Joanne:	Use	the	definition	of	a	parabola	to	
justify	why	it’s	on	the	parabola	

	 2:00	 Joanne:	Can	you	mark	down	everything	you	do	know?	I	heard	you	
say	something	about	a	3	and	a	4	–	maybe	you	can	start	by	
labelling	where	those	are	

	 2:55	 Joanne:	Why	don’t	we	just	take	stock	of	where	we	are	at?	What	is	
it	that	you’re	trying	to	figure	out?	…	Can	you	summarize	what	you	
know	so	far	

	 3:40	 Joanne:	Is	there	any	math	formulas	or	methods	that	might	be	
useful	here?...now	if	you	could	find	a	right	triangle	then	the	
PythThm	might	help…	

	 4:30	 first	use	of	PythThm	
E3:Ex	 0:00	 𝑦 = 5	what	is	𝑥?	First	appearance	of	parallel	line	
	 3:15	 Joanne:	Now	can	you	write	the	coordinate	pair	for	the	point	that	

is	on	the	parabola?	
E4:RR	 0:00	 𝑦 = 7	what	is	𝑥?	Another	parallel	line	
	 3:00	 Joanne:	Now	are	you	starting	to	notice	anything	that	you	did	

similar	to	find	the	𝑥	value	when	𝑦	was	5	versus	when	𝑦	was	7?	
	 3:15	 S	–	We	do	the	Pythagorean	theorem	each	time	
	 3:45	 Joanne:	Can	you	say	the	definition	in	your	own	words?	
E5:RR	 0:00	 𝑦 = 10	what	is	𝑥?	Another	parallel	line	
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Lesson 3 
E1:MS	 0:58	 Joanne:	Let’s	pick	any	point	not	on	a	grid,	and	maybe	you	can	

make	the	coordinate	pair	for	the	𝑦,	yeah,	just	put	𝑦	for	the	𝑦-
value	

	 1:05	 Joanne:	Now	I’m	trying	to	see	if	you	can	generalize	what	you	did	
for,	like	how	would	you	find	the	𝑥?	What’s	the	method?	

	 1:20	 K	–	well	we	would	find	the	distance	between	our	point	and	the	
directrix	

	 1:25	 Joanne:	Ok	what	do	you	think	that	distance	would	be?	
	 1:30	

3:05	
4:03	
4:07	

Initial	struggle	with	generalizing	y	as	distance	(and	𝑦 + 1).		
Joanne	shows	their	previous	work	
K	seems	to	resolve	the	issue	
Joanne:	Why	don’t	you	write	that	down,	and	we’ll	see	what	Sasha	
thinks	about	that	
Joanne:	Show	me	the	distance	y	on	that	

	 8:45	 Joanne:	What	are	you	trying	to	find	Keoni?	
K	struggles	with	quantity/distance	𝑦 − 1.		
	
Resolved	by	S&K	through	11:25	

	 9:55	 S	begins	another	particular	example	to	help	K	see	
quantity/distance	𝑦 − 1	

E2:Ex	 0:26	 Joanne:	Now	can	you	use	that	information	to	find	the	𝑥-value?	
	 0:40	 K	is	still	not	ready	to	use	variables,	so	he	uses	particular	𝑦 = 7	
	 1:04	 Joanne:	This	is	helpful,	so	that’s	what	you	would	do	if	you	had	a	

specific	𝑦	value,	what	if	I	told	you	we’re	just	going	to	work	with	𝑦	
so	that	it	stands	for	any	𝑦	value?	Can	you	still	use	the	Pythagorean	
Theorem?	

	 1:22	 S	writes	first	equation	with	the	quantity/distances	
	 3:00	 S&K	solve	equation	
E3:R	 0:30	 K	has	confusion	about	how	one	might	know	what	𝑦	is.	(That	is,	he	

hasn’t	thought	of	choice	of	𝑦	being	his).	Not	really	resolved	in	this	
part,	but	S	seems	to	get	it	

	 2:30	 Joanne:	So	what	is	𝑏?	Is	it	a	point?	Is	it	a	location?	Is	it	a	
distance?...	Can	you	show	me?	

E4:RR	 0:40	 S&K	find	𝑥	value	when	𝑦	is	3.5,	first	by	using	the	triangle	method,	
then	using	the	equation.	

	 4:00	 Joanne:	Do	you	know	the	coordinate	of	that	point?	
	 4:35	 Joanne:	Do	you	know	the	coordinates	of	any	other	points?	
	 5:30	 Clarification	of	the	x/b/bsquared	confusion	
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Lesson 4 
E1:MS	 2:00	 S&K	have	drawn	a	triangle	and	found	the	distance	5,	but	they	seem	

confused	about	what	to	do	next.	
	 2:30	 Usage	of	equation	–	Joanne:	I	think	that’s	cheating!	
E2:Ex	 0:00	 𝑥 = 5	what	is	𝑦?	Long	way	(reasoning	with	quantity/distance)	
	 1:15	 Not	much	doubt	about	quantity/distance!	
	 3:10	 Joanne:	Why	do	you	think	that	works?	
E3:RR	 0:30	 𝑥 = 5	what	is	𝑦?	using	equation	
	 1:26	 𝑥 = 10	what	is	𝑦?	using	equation	
	 1:50	 Joanne:	You	pick	the	𝑏	value	this	time!	

	
𝑥 = 437	what	is	𝑦?	using	equation	

	 3:00	 Joanne:	It	sounds	to	me	like	you	have	sort	of	a	method	
E4:Ex	 0:25	 Joanne:	can	you	explain	a	sort	of	general	method	of	what	you	are	

doing?	Because	when	𝑏	was	5,	10,	437	you	had	the	same	set	of	
steps	each	time	

	 0:40	 Joanne:	How	did	you	find	your	𝑦?	
	 1:00	 Joanne:	Stop	did	you	square	both	sides	on	all?	(generalizing	move)	
	 1:40	 Joanne:	I	just	want	you	to	use	𝑏,	solve	for	𝑏.	
E5:R	 0:15	 Joanne:	What	do	you	think	about	them	[the	two	equations]?	How	

are	they	alike	how	are	they	different?	When	would	you	use	one	
versus	the	other?	

	 1:30	 Joanne:	Tell	me	what	the	y	value	of	the	parabola	is	when	𝑏	is	2.5	
	 3:45	 Joanne:	So	I	want	you	to	compare	these	two	equations.	What’s	alike	

and	what’s	different?	
E6:Ex	 2:00	 Joanne:	I	want	to	know	if	you	can	derive	that	equation	directly	by	

using	what	you	know	about	parabolas	
	 2:15	 Joanne:	Can	you	mark	something	that	you	think	would	stand	for	a	

general	point	on	the	parabola?...And	if	it’s	a	general	point	what	
would	you	call	it?	

	 2:30	 Sasha	responds	with	“Point	𝑋”	
	 2:40	 Joanne:	What	would	the	coordinates	be?	
	 2:45	 Sasha:	𝑥	𝑦	
	 2:50	 K:	it’s	kind	of	hard	to	tell		

In	fact,	at	3:40	he	moves	to	a	specific	point	to	say	why	(𝑥, 𝑦)	makes	
sense	–	I	think	it’s	because	he’s	providing	rationale	for	the	order	of	
𝑥	and	𝑦	

	 4:00	 Joanne:	I	think	you	making	a	really	important	point	that	that	𝑥	
corresponds	to	that	𝑥-axis	–	Keoni:	Yeah	–	Joanne:	You	say	yeah,	
what	sense	do	you	make	of	that?	

	 6:40	 Joanne	asks	how	they	know	two	distances	are	equal	(by	the	
definition)	

	 7:27	 Joanne:	Can	you	kind	of	point	to	where	the	–	is	the	𝑦 − 1	that	entire	
axis?	(gets	Sasha	to	draw	it	in	explicitly)	
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	 9:00	 Joanne:	So	can	you	use	what	you	have	here	to	derive	either	one	of	
those	equations?	

	 11:40	 Joanne:	Is	there	a	way	to	get	from	one	equation	to	the	other?	
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Lesson 5 
E1:MS	 0:42	 Joanne:	Your	goal	for	today	is	to	create	an	equation	for	any	

parabola	that	goes	through	the	origin,	but	we’re	going	to	start	by	
finding	the	equation	of	the	blue	parabola	

	 0:50	 Joanne:	First	I	want	you	to	try	to	make	sense	of	what	you’re	seeing	
–	tell	me	everything	you	notice	about	the	two	parabolas	

	 1:30	 Joanne:	Do	you	think	the	equation	for	the	blue	parabola	is	going	to	
be	the	same	as	the	equation	for	the	red	parabola	

	 1:45	 Keoni:	I	don’t	see	why	not	But	Sasha	has	her	doubts…	
	 2:20	 Joanne:	Let’s	start	by	finding	some	points		
	 2:50	 Joanne:	Do	you	see	any	connection	between	the	points	you	just	

found	and	the	focus	for	either	one?	
	 4:20	 Joanne:	Is	there	any	relationship	between	that	point	(2,1)	and	the	

equation?		
	 5:10	 Joanne:	Now	what	was	the	other	point	on	the	blue	parabola?	Does	

that	fit	in	the	equation	for	the	red	one?	
	 5:50	 Keoni	resolves	his	doubts	about	the	equation	
E2:Ex	 1:25	 Joanne:	When	you	say	this	is	your	𝑦,	can	you	just	motion	to	me	

what	you’re	saying	is	the	distance	that’s	𝑦?	
	 1:45	 Joanne:	Is	the	whole	thing	𝑦	or	𝑦 + 2?	Where	is	the	𝑦	then?	
E3:R	 1:30	 Both	students	explain	their	conjectures	about	the	equation	
	 1:45	 Joanne:	So	are	you	saying	there	is	a	connection	with	the	focus?	

What	is	that	connection?	
E4:RR	 1:00	 No	concerns	with	the	general	point	(𝑥, 𝑦)	at	this	point!	
E5:MS	 0:30	 Joanne:	what	do	you	think	the	equation	is	depending	on?	Why	do	

you	think	that?	What	else	are	you	noticing	about	the	equations?	
How	are	they	alike?	How	are	they	different?	

	 1:20	 Joanne:	And	before	Sasha	you	said	something	about	the	focus	and	
the	directrix	–	do	you	think	they’re	related	to	the	equation	at	all?	

	 2:15	 Joanne:	Are	you	seeing	any	relationship	between	anything	involving	
the	focus	or	the	directrix	or	both	of	them	and	those	equations?	

	 3:00	 Joanne:	Is	there	any	relationship	between	those	distances	and	the	
equations.	You	can	make	a	conjecture	–	we	can	try	some	things	out.	

	 3:20	 Joanne:	Let’s	make	two	predictions	–	what	if	the	distance	between	
the	focus	and	the	origin	was	four?		

	 4:20	 Joanne:	Did	that	pattern	work	for	the	other	ones?	
E6:Ex	 1:50	 Joanne:	Now	label	anything	else	you	know,	now	that	you	know	the	

distance	from	the	origin	to	directrix	is	𝑝	–	what	else	do	you	know?		
	 3:00	 Joanne:	Well	let’s	stop	for	just	one	second,	I	want	to	make	sure	–	

maybe	in	a	different	color	you	could	outline	each	one	of	these.	
Where	is	the	𝑦?	The	distance	of	𝑦?	Ok	now	where	is	the	distance	of	
𝑝?	Ok,	and	then	𝑦 + 𝑝?	OK	now	on	the	other	side,	where’s	the	𝑦?	
So	if	𝑦 − 𝑝,	I	think	of	you	have	some	total	distance	𝑦,	and	you’re	
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taking	off	a	distance	of	𝑝?	Ok,	and	then	what	part	represents	the	
distance	𝑦 − 𝑝?	

E7:R	 0:17	 Joanne:	Let’s	just	end	by	thinking	about	what	this	means,	what	this	
equation	gives	us	

	 1:55	 Joanne:	Now	can	you	use	that	to	generate	some	points	on	the	
parabola?	

	 2:10	 Keoni	seems	to	have	some	idea	about	special	points	already,	as	
evidenced	by	his	desire	to	choose	one	instead	of	picking	a	value	and	
using	the	equation	as	Joanne	asked	

	 2:50	 Sasha	picks	a	point	way	out	at	𝑥 = 6,	but	Keoni	says	we	don’t	know	
if	it’s	on	the	same	parabola	

	 4:00	 Joanne:	Can	you	use	Sasha’s	method	to	find	some	other	points	that	
are	visible	to	us?		

	 4:50	 Joanne:	Does	it	look	like	a	parabola?	
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Lesson 6 
E1:MS	 3:40	 Joanne:	So	you	found	a	point	on	the	parabola	–	how	did	you	find	it?	
	 4:50	 Joanne:	Can	you	find	another	point	without	plugging	in	to	the	

equation	–	just	by	using	what	you	know	about	the	geometry	of	
parabolas?	

	 5:30	 Keoni	puts	the	focus	at	(0,1)	even	though	the	𝑝	value	is	one-fourth	
	 8:25	 Joanne:	Now	can	you	use	this	information,	the	focus	and	the	

directrix,	to	find	another	point	on	the	parabola	without	plugging	
directly	into	the	equation?	

	 9:50	 Joanne:	Now	what	are	a	couple	of	different	ways	you	could	check	
that	point?	Using	the	definition	does	it	fit	the	definition?	What	is	
that	distance	from	the	point	to	the	focus?	And	from	that	point	to	
the	directrix?	Why	is	it	one-half?	
Does	it	also	fit	into	your	equation?	

	 12:20	 Joanne:	Why	don’t	you	just	go	ahead	and	finish	plotting	enough	
points	so	that	you	can	fill	in	your	parabola	–	you	can	get	the	shape	
of	it?	

	 12:46	 Joanne:	Now	I	want	you	to	make	a	prediction!	We’re	going	to	now	
plot,	we’re	going	to	graph	the	parabola	where	𝑝	is	one-half	–	can	
you	just	show	what	you	think	the	graph	will	look	like	of	the	parabola	
when	p	is	one-half?	Do	you	think,	compared	to	this	one	-	?	Just	
sketch	it	in.	

E2:Ex	 2:00	 Joanne:	Could	you	also	have	used	the	parabola	definition	to	[find	
the	point]?	

	 2:20	 Joanne:	What	is	the	distance	from	the	point	to	the	focus?	
	 3:20	 Joanne:	What’s	the	𝑝	value	–	what’s	the	distance	from	the	origin	to	

the	focus?	
	 5:40	 Joanne:	Go	ahead	and	find	some	more	points	on	the	parabola	
	 6:30	 Joanne:	You	know,	I’m	kind	of	interested	–	in	the	first	parabola	you	

have	a	point	(2,4)	–	what	do	you	think	the	𝑥	value	would	need	to	be	
for	the	y	value	to	be	4	on	this	new	parabola?	

E3:R	 0:20	 Joanne:	Now	I	would	like	you	to	tell	me	what	else	you	noticed	–	like	
comparing	different	points	in	the	two	parabolas	-		

	 0:40	 S:	When	𝑝	changes	the	focus	and	directrix	change	
	 1:30	 Joanne:	Let’s	start	with	the	special	points	–	what	do	you	notice	

about	that?	What’s	the	same	and	what	is	different?	
E4:RR	 	1:05	 Joanne:	Why	is	that	your	directrix?	And	why	was	your	focus	one	

away	from	your	origin?	
	 4:30	 Joanne:	Now	before	you	did	it	with	𝑦 = 4,	why	don’t	you	do	one	for	

this	parabola	so	we	can	get	a	nice	comparison?	
E5:MS	 0:20	 Joanne:	Can	you	compare?	

K:	They	get	wider!	
Joanne:	How	would	you	state	what	you’ve	figured	out	about	when	
you	change	the	value	of	𝑝,	what	it	does	to	the	parabola?	

	 1:00	 Joanne:	Do	you	have	any	evidence	for	that?	
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	 1:45	 Joanne:	Now	let’s	compare	points	so	we	can	see	what	we	notice	
about	these	parabolas.	So	we	can	compare	all	three	of	these	
parabolas	across	some	nice	points	of	comparison.	What	would	be	
some	points	that	we	could	nicely	compare?	

	 2:20	 S:	They	get	wider	as	they	go.	Joanne:	What	does	that	mean?	
	 2:28	 Joanne:	So	complete	the	sentence	The	𝑥-value	gets	greater	as	the…	
	 3:15	 Joanne:	are	there	any	other	comparable	points?	
	 4:00	 Joanne:	Ok,	so	as	𝑝	is	increasing	and	𝑥	is	2,	what	is	happening	to	the	

𝑦	values?	
	 4:55	 Joanne:	How	about	our	special	points?	
	 5:30	 Joanne:	What	do	you	notice	about	that?	Can	you	say	something	

about	the	𝑥	value	compared	to	the	𝑦	value	for	a	single	[special]	
point?	

	 5:45	 Sasha:	It’s	half	–	our	𝑦	value	is	half	of	the	𝑥	value	
	 6:00	 Joanne:	Uh	huh	–	why	do	you	think	that	is?	Can	you	relate	it	to	the	

𝑝	value?	And	the	focus?	
	 7:20	 S&K	are	having	trouble	putting	into	words	the	relationship	between	

𝑥	and	𝑦	coordinates	for	the	special	point	in	terms	of	𝑝,	so	Joanne:	
Let	me	trying	something	here	(puts	up	a	generic	parabola	with	
unknown	𝑝)	–	Where	is	the	special	point?	And	can	you	tell	me	the	
coordinate	pair	for	either	the	special	point,	the	focus,	or	both	of	
them?	

	 8:20	 Sasha	and	Keoni	correctly	label	(2𝑝, 𝑝)	so	Joanne:	Show	me	all	the	
other	places	where	you	can	see	p	on	this	graph	

	 9:00	 Joanne:	Show	me	where	you	see	2𝑝	
Where	else?	
Where	else?	
Where	else?	
Where	else?	
Where	else?	
Can	you	do	a	vertical	distance	that’s	2𝑝?	What	is	2𝑝	what	does	it	
mean?	
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Lesson 7 
E1:MS	 0:55	 Joanne:	What	did	you	discover	about	how	changing	the	value	of	𝑝	

affects	the	parabola?	
	 1:20	 Joanne	has	Keoni	write	down	his	two	statements	about	the	

relationship	so	he	and	Sasha	can	refer	back	to	it	later	
E2:Ex	 0:30	 Joanne:	What	do	you	notice	about	these	points?	
	 1:00	 Joanne:	Can	you	use	these	three	points	to	explain	why	when	you	

increase	p	the	parabola	gets	wider?	
	 1:30	 Joanne	uses	the	written	statement	from	Keoni	to	refocus	the	

students	
	 2:00	 Joanne:	You’ve	already	made	the	claim,	now	I	want	you	to	look	at	

these	three	points	and	see	if	you	can	explain	what’s	going	on	
	 2:20	 Joanne:	And	what’s	happening	to	the	𝑦	values	from	the	red	to	the	

blue	to	the	green?	And	why	does	that	mean	it’s	going	to	get	wider?	
	 3:20	 Joanne:	As	it	decreases	it	goes	down	–	ok	–	why	does	that	force	the	

parabola	to	get	wider?	
	 3:30	 Sasha	–	because	your	x	goes	out	and	𝑦	is	up,	so	it’s	a	shorter	𝑦	but	

the	same	amount	of	𝑥,	which	causes	it	to	go	out	
E3:R	 0:20	 Joanne:	I	want	you	to	turn	to	that	equation	at	the	top	–	in	this	case	

what	𝑥	value	were	we	considering?	Plug	that	value	in	for	𝑥.	Now	
does	that	help	you	make	an	argument	for	when	𝑝	is	increasing	
what’s	happening	to	𝑦?	

	 1:40	 Joanne:	Now	what	does	that	help	you	see?	Either	the	last	thing	we	
did	or	with	the	algebra	in	general	what	does	it	help	you	understand	
with	what’s	going	with	this	relationship	between	increasing	𝑝	and	
the	shape	of	the	graph?	

E4:RR	 1:00	 Joanne:	Now	can	you	use	these	points	to	again	give	us	an	even	
deeper	understanding	of	why	when	you	increase	the	value	of	𝑝	the	
parabola	gets	wider?	

	 3:50	 Joanne:	Now	can	you	use	that	general	equation	and	put	4	in	for	𝑦	
and	see	what’s	happening	when	you	increase	𝑝	

	 6:30	 Joanne:	Now	what	happens	as	𝑝	increases?	How	do	you	know?	
E5:MS	 1:10	 Joanne:	So	first	remind	me	how	did	you	get	the	special	points?	
	 1:40	 Joanne:	Why	is	the	𝑥	value	double	the	𝑦	value?	can	you	use	the	

definition	of	a	parabola	to	think	about	that?	
	 2:30	 Joanne:	Now	why	does	that	mean	the	𝑥	value	is	going	to	be	double	

the	𝑦	value?	
	 5:00	 S&K	play	with	applet	
E6:Ex	 	0:45	 Joanne:	And	what	are	those	two	distances?	Can	you	draw	that	in?	

And	where	is	𝑝?	
	 1:30	 Joanne:	Can	you	use	this	general	representation	to	explain	why	as	

you	increase	p	you’re	going	to	get	another	parabola	that’s	wider	
than	the	one	you	just	had?	

	 1:44	 Sasha:	For	every	𝑦	you’re	going	to	double	the	𝑥		
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	 2:45	 Joanne:	And	why	is	that	𝑥	is	double	the	𝑦	forcing	the	parabola	to	get	
wider?	

	 2:50	 Sasha:	It’s	going	out	wider	faster	
	 4:30	 Joanne:	So	you’ve	expressed	the	special	points	as	(2𝑝, 𝑝)	can	you	

use	that	to	express	again	why	that	means	that	as	you	increase	𝑝	the	
next	parabola	is	going	to	be	wider	than	the	one	that	you	had.	
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Lesson 8 
E1:MS	 1:05	 Joanne:	What	did	you	figure	out?		
	 6:00	 Joanne:	Why	do	you	think	the	focus	changes	but	not	the	directrix?	
	 6:25	 Joanne:	Can	you	see	the	𝑝	value	for	this	parabola?	Can	you	label	it?	
E2:Ex	 1:40	 Joanne:	Can	you	summarize	what	you’ve	got	so	far?	
	 2:20	 Joanne:	Keoni	–	you	drew	some	lines,	tell	me	about	those.	
	 2:30	 Joanne:	What	do	you	know	about	those	two	[lines]?	
	 3:05	 Joanne:	Let’s	see	if	you	can	figure	out	what	the	distances	will	be	
	 3:25	 Joanne:	Can	you	point	to	where	the	distance	𝑥	is?	

Ah!	But	your	Pythagorean	Theorem	only	uses	that	short	line!	
	 3:40	 Joanne:	Ok,	I	heard	𝑥 − 7	as	a	question	–	Sasha	what	do	you	think?	
	 4:00	 Joanne:	So	the	distance	𝑥 − 7	can	you	just	show	me	with	your	

hand?	
E3:R	 1:07	 Joanne:	Why	do	you	think	that’s	a	minus	7	instead	of	a	plus	7?	
E4:RR	 0:33	 Joanne:	I	want	you	to	imagine	the	applet	again,	and	instead	of	

letting	ℎ	equal	7,	I	want	you	to	in	your	mind	let	ℎ	equal	−3.	The	
vertex	will	be?	Now	make	a	prediction	what	do	you	think	the	
equation	will	be?	

	 3:15	 Joanne:	You’ve	figured	something	out	already!	What	is	it,	Sasha?	
Can	you	record	that	somewhere	on	there,	what	you	just	figured	
out?	

	 3:40	 Joanne:	So	what	would	the	expression	be	for	that	entire	horizontal	
distance?	

	 4:20	 Joanne:	And	you	figured	out	why	the	sign	will	be	a	plus	instead	of	a	
minus.	

	 5:40	 Joanne:	What	have	you	concluded	about	the	look	of	the	equation?	
E5:Ex	 0:30	 Joanne:	What’s	your	guess	as	to	what	happens?	

Sasha:	We’re	going	to	have	like	𝑦	squareds	or	something!	
	 1:50		 Joanne:	Keoni	can	you	put	a	dot	where	you	think	the	focus	is?	And	

then	I	see	a	dot	below	–	is	that	where	you	think	the	directrix	is?	
Sasha	what	do	you	think?	

	 2:20	 Joanne:	What	could	you	do	to	check?	
	 3:05	 Joanne:	What	else	do	you	notice?	How	else	can	we	check	and	make	

sure	the	focus	and	directrix	are	correct?	
	 5:00	 Joanne:	I	see	a	𝑦 − 5	can	you	show	me	how	you	got	that?	
	 5:45	 Joanne:	So	before	you	do	the	algebra,	how	does	this	differ	from	

your	base	parabola?	
	 8:50	 Joanne:	Compare	this	to	the	others	–	what	do	you	notice?	
E6:Ex	 4:00	 Joanne:	Let’s	talk	through	each	of	these.	So	you	started	with	𝑦 − 1	

then	changed	it	to	𝑦 + 1.	How	come?	
	 4:16	 Joanne:	So	where	is	the	distance	𝑦?	And	then	the	1?	So	the	distance	

𝑦 + 1	is	the	distance	between	what	and	what?	Ah,	and	you	needed	
that	because	that	helps	you	do	what?	
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	 5:30	 Joanne:	And	that	five	breaks	down	into	3	and	a	two	–	the	two	is	the	
distance	from	what	to	what?		

E7:R	 0:20	 Joanne:	You	pick	an	ℎ	and	a	𝑘	value	
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Appendix C: Task Reflection Document 
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Appendix D: Interview Contact Summary Form 

    Location: __________________ 
Interview Date: 

__________________ 
Today’s Date: 

__________________ 
1.  What were the main issues or themes that struck you in this interview? 

2.  Summarize the information you got (or failed to get) on each of the target questions you had for this 
contact. 

Question: Quantitative Reasoning    Information: 

Image of a learning trajectory? 

Images of instruction? 

3.  Anything else that struck you as salient, interesting, illuminating, or important in this interview? 

4.  What new (or remaining) questions have come up as a result of this interview? What changes to the 
protocol or tasks might you make in future interviews? 
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Appendix E: Pre-Interview Protocol 

Start Camtasia! 

At the start of the interview read to the student the 
following: 

Thank you for agreeing to participate in this study! This 
interview is part of my dissertation study, and I want to 
reassure you that your confidentiality is very important to 
me. Even though I’m videotaping this interview, as I 
mentioned in the consent form, I will not use any 
identifying information in any published results. 

The purpose of the interview is to help me better 
understand your thinking and how you solve problems. I 
am not trying to evaluate your work as good or bad or 
right or wrong. All I want to know is how you are 
thinking. Please try your best to think out loud as you 
solve each problem. 

I may stop you in the middle of a task to ask questions. 
This is a normal part of these kinds of interviews, and it 
doesn’t mean I think what you are doing is wrong or bad. 
Instead, it means I’m trying to make sure I understand all 
of your thinking. 
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Task 1 

 
Look at the curve below. Is it a parabola? Explain your 

reasoning. 
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Interviewer Protocol for Task 1: The “Parabola?” Task 

Before handing the participant the task sheet ask the following 
question: Tell me everything you know about parabolas. 

Hand the participant the task sheet. After the participant makes a 
claim about the curve, ask them to justify their claim. 

Use the half-pages if the participant says they’d like the curve to 
be in a grid, or with axes, or both. 

Follow-up Probes 

v Is there a way you can tell if a given curve is a parabola? 
What characteristics do you look for? What do you think a 
high school student would say about this curve? 

v Is there a definition for parabolas? How might that help 
you decide if the curve is a parabola/prove to me that the 
curve is a parabola? 

v One of my former students told me that any U-Shaped 
curve is a parabola. I think he’d probably argue that this 
curve is a parabola. How would you respond? 

v You mentioned something about an equation. What do you 
think the equation of this curve is? How would that help 
you determine if this was a parabola? 
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Task 2 

Below is what is known as the vertex form of a parabola. What 
do you know about this? 

𝑦 = 𝑎(𝑥 − ℎ)6 + 𝑘 
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Interviewer Protocol for Task 2: The Equation Task 

v What do you think high school students need to know in 
order to understand vertex form? 

v What do you think high school students need to know in 
order to develop vertex form? 

v How might high school students develop vertex form? 

v Can you imagine other ways high school students might 
develop vertex form? 

v What challenges do you think high school students will 
have in deriving this equation? 

v What might you do or say to help them overcome those 
challenges? 

v There are quite a few parameters there! What do you know 
about each of them (𝑎, ℎ, 𝑘)? 

o Where does a come from? What about ℎ or 𝑘? 

o What does 𝑎 “do” for the parabola? What about ℎ or 
𝑘?  
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Task 3 

The definition of an ellipse is given below, as is a graph of a 
general ellipse. Use the definition to find the area of the two 
right triangles in the picture. 

 
 

 
  

An ellipse is the set of points in the plane, the sum of whose distances 
𝑟5 and 𝑟6 from two fixed points 𝐹5 and 𝐹6, called the foci (which 
themselves are separated by a distance of 2𝑐), is a positive constant 
given by 2𝑎. 
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Interviewer Protocol for Task 3: The Ellipse Task 

v As participants label distances ask (for example) “Can you 
show me where you see 𝑐?” 

v If participants struggle, ask: 

o Have you used all of the information in the definition 
(perhaps they haven’t located distances of 𝑐, for 
example) 

o If I told you the coordinates of the point labeled 
(𝑥, 𝑦)	could you find the areas of the triangle? 

§ How did that help? 

§ Could you now find the areas with the point 
given as (𝑥, 𝑦) 

v  What do you think high school students need to know in 
order to solve this problem? 

v What do you think would be most challenging for high 
school students who solve this problem? 

o What other challenges might they encounter? 

o What might you do or say to help them overcome 
those challenges? 
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Appendix F: Post-Interview Protocol 

At the start of the interview read to the student the following: 
 
Thank you again for agreeing to participate in this study, and thank you 
for all of the hard work you put in during the sessions! As you know, this 
interview is part of my dissertation study, and I want to reassure you that 
your confidentiality is very important to me. Even though I’m videotaping 
this interview, as I mentioned in the consent form, I will not use any 
identifying information in any published results. 

The purpose of the interview is to help me better understand your thinking 
and how you solve problems. I am not trying to evaluate your work as 
good or bad or right or wrong. All I want to know is how you are 
thinking. Please try your best to think out loud as you solve each problem. 

I may stop you in the middle of a task to ask questions. This is a normal 
part of these kinds of interviews, and it doesn’t mean I think what you are 
doing is wrong or bad. Instead, it means I’m trying to make sure I 
understand all of the wonderful thinking you are doing.  
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Task 1 

Look at the curve below. Is it a parabola? Explain your 
reasoning. 
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Interviewer Protocol for Task 1: The “Parabola?” Task 

Before handing the participant the task sheet ask the following 
question:  

v Tell me everything you know about parabolas. 

Hand the participant the task sheet. After the participant makes a 
claim about the curve, ask them to justify their claim. 

Each half-page is labeled – use them if the participant says 
they’d like the curve to be in a grid, or with axes, or both. 

Follow-up Probes 

v Is there a way you can tell if a given curve is a parabola? 
What characteristics do you look for? What do you think a 
high school student would say about this curve? 

v Is there a definition for parabolas? How might that help 
you decide if the curve is a parabola/prove to me that the 
curve is a parabola? 

You mentioned something about an equation. What do you think 
the equation of this curve is? How would that help you 
determine if this was a parabola? 
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Task 2 
 
The definition of a parabola is given below, as is a graph of a general 
parabola. Use the definition to find the equation of the parabola. 

 
 
 
 
 

 
  

A parabola is the set of points that are equal distance from a point, called 
the focus, and a fixed line, called the directrix. 
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Interviewer Protocol for Task 2: The Parabola Task 

v As participants label distances ask (for example) “Can you show 
me where you see y – and what about the p?” 

v If participants struggle, ask: 

o If I told you the coordinates of the vertex could you find the 
equation? 

§ How did that help? 

§ Could you now find the equation of the general 
parabola? 

v  What do you think high school students need to know in order to 
solve this problem? 

v What do you think would be most challenging for high school 
students who solve this problem? 

o What other challenges might they encounter? 

o What might you do or say to help them overcome those 
challenges? 
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Task 3 

Below is what is known as the vertex form of a parabola. What do you know about 
this? 

𝑦 = 𝑎(𝑥 − ℎ)6 + 𝑘 
  



 

 

331 

Protocol for Task 3: Equation Task 

v What do you think high school students need to know in 
order to develop and understand vertex form? 

v How might high school students develop vertex form? 

v What challenges do you think high school students will 
have in deriving this equation? 

v What might you do or say to help them overcome those 
challenges? 

v There are quite a few parameters there! What do you know 
about each of them (𝑎, ℎ, 𝑘)? 

o Where does 𝑎 come from? What about ℎ or 𝑘? 

o What does 𝑎 “do” for the parabola? What about ℎ or 
𝑘? 
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Task 4: The Ellipse Task (Revisited) 

The definition of an ellipse is given below, as is a graph of a 
general ellipse. Use the definition to find the area of the two 
right triangles in the picture. 

 
 

 
  

An ellipse is the set of points in the plane, the sum of whose distances 
𝑟5 and 𝑟6 from two fixed points 𝐹5 and 𝐹6, called the foci (which 
themselves are separated by a distance of 2𝑐), is a positive constant 
given by 2𝑎. 
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Interviewer Protocol for Task 4: The Ellipse Task 

v As participants label distances ask (for example) “Can you 
show me where you see 𝑐?” 

v If participants struggle, ask: 

o Have you used all of the information in the definition 
(perhaps they haven’t located distances of	𝑐, for 
example) 

o If I told you the coordinates of the point labeled 
(𝑥, 𝑦) could you find the areas of the triangle? 

§ How did that help? 

§ Could you now find the areas with the point 
given as (𝑥, 𝑦) 

v  What do you think high school students need to know in 
order to solve this problem? 

v What do you think would be most challenging for high 
school students who solve this problem? 

o What other challenges might they encounter? 

o What might you do or say to help them overcome 
those challenges?  
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 (Look at their final reflection first) 
 
What are you taking from this mini-class? What will you use from this 
class? 
 
At the very end of the last session we talked about how Joanne taught 
with purpose. What enabled her to do so? 
 
We’ve filled out the task reflection document 5 times now. What did you 
notice about the document and about your answers? 
 

• How did your answers change for each task? Over the course of 
this mini-class? 

 
• Was it useful to reflect on the task at three different times? Why? 

 
How did Sasha and Keoni come to understand so much about parabolas?  
 

• What were the understandings that developed over time that 
enabled them to solve the complex problems Joanne gave them?  

 
How would you describe Joanne’s instruction?  
 

• What specific moves did Joanne make while planning?  
 

• While specific moves did Joanne make while teaching?
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