
Streamlining the Design-to-Build Transition with Build-Optimization
Software Tools
Ernst Oberortner,†,‡ Jan-Fang Cheng,†,‡ Nathan J. Hillson,†,§,∥ and Samuel Deutsch*,†,‡,∥

†DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, United States
‡Environmental Genomics and Systems Biology Division, and ∥Biological Systems and Engineering Division, Lawrence Berkeley
National Laboratory, 1 Cycloton Road, Berkeley, California 94720, United States
§Fuels Synthesis and Technology Divisions, DOE Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608,
United States

*S Supporting Information

ABSTRACT: Scaling-up capabilities for the design, build, and test of
synthetic biology constructs holds great promise for the development
of new applications in fuels, chemical production, or cellular-behavior
engineering. Construct design is an essential component in this
process; however, not every designed DNA sequence can be readily
manufactured, even using state-of-the-art DNA synthesis methods.
Current biological computer-aided design and manufacture tools
(bioCAD/CAM) do not adequately consider the limitations of DNA
synthesis technologies when generating their outputs. Designed
sequences that violate DNA synthesis constraints may require
substantial sequence redesign or lead to price-premiums and temporal delays, which adversely impact the efficiency of the
DNA manufacturing process. We have developed a suite of build-optimization software tools (BOOST) to streamline the design-
build transition in synthetic biology engineering workflows. BOOST incorporates knowledge of DNA synthesis success
determinants into the design process to output ready-to-build sequences, preempting the need for sequence redesign. The
BOOST web application is available at https://boost.jgi.doe.gov and its Application Program Interfaces (API) enable integration
into automated, customized DNA design processes. The herein presented results highlight the effectiveness of BOOST in
reducing DNA synthesis costs and timelines.

KEYWORDS: DNA synthesis, synthetic biology, design−build−test, bioCAD/CAM

Ongoing sequencing efforts across a diversity of species
and biomes continue to reveal large numbers of novel

genes and pathways, expanding the range of hypothetical
biochemical activities performed within living cells.1−4

Synthetic biology tools enable access to these new biochemical
reactions, for applications in fuel, chemical production, or
cellular-behavior engineering.5−7

The synthetic biology engineering process involves (i) iden-
tifying relevant genetic components (e.g., coding and regulatory
elements), (ii) composing selected components into genetic
designs, (iii) optimizing the designed DNA sequences for
function in the selected host, (iv) building the optimized
synthetic DNA, and (v) transforming/transfecting the synthetic
constructs into the host. Significant efforts have been devoted
to automate this process through the development of biological
computer-aided design and manufacture tools (bioCAD/CAM)
that address different portions of this synthetic biology
workflow. Sequence and design repositories (e.g., ICE,8

IMG,9 KEGG,10 NCBI,11 SBOLStack12), enable querying and
retrieving genetic components for reuse in new designs.
Software tools, such as Cello,13 DeviceEditor,14 GenoCAD,15

Eugene,16 or DoubleDutch17 automate the composition of
genetic components. Depending on the type of component,

tools can also be used to (i) reverse-translate or codon optimize
protein coding sequences (e.g., GeneDesign18), or (ii) design
and analyze the sequences based on biophysical models (e.g.,
RBS and Operon Calculators19−22). The design phase of the
synthetic biology process outputs DNA sequences to be manu-
factured, which will include the assembly of synthetic fragments
typically ordered from commercial DNA synthesis providers.
Tools such as j523 and Raven24 can design and optimize the
DNA assembly process. Software tools such as PR−PR25 auto-
mate the execution of DNA assembly protocols by generating
instructions for liquid-handling robotics and microfluidic
devices. Data-exchange standards, such as the Synthetic Biology
Open Language (SBOL)26,27 have emerged for software tools
to exchange design-specific information. However, multiple
remaining gaps preclude the full automation of scalable
synthetic biology processes.
Over the past decade, through the synthesis of many millions

of DNA base pairs, and the generation of constructs ranging in
complexity from single genes to entire chromosomes,28−30

Received: July 17, 2016
Published: December 6, 2016

Research Article

pubs.acs.org/synthbio

© 2016 American Chemical Society 485 DOI: 10.1021/acssynbio.6b00200
ACS Synth. Biol. 2017, 6, 485−496

pubs.acs.org/synthbio
http://dx.doi.org/10.1021/acssynbio.6b00200

there has been a collective realization that not all DNA
sequences are equally synthesizable. Empirical success/failure
data analyzed through regression and machine learning
methods have enabled the identification of sequence features
that significantly adversely impact the likelihood of correctly
synthesizing and assembling a DNA construct, including
repeats, secondary structure, and sequence stretches with extreme
%GC content. Current synthesis technologies accumulate errors
through oligo synthesis, amplification, and assembly,31 limiting
the number of synthesized bases before each requisite sequence
verification step.
Commercial DNA synthesis vendors streamline their DNA

manufacturing process by screening DNA sequences for
features that are predictive of synthesis failure, which we term
“DNA synthesis constraints”. Different vendors have different
sets of DNA synthesis constraints depending on their machine
learning and data analytics as well as internal manufacturing and
QA/QC processes. Sequences that violate the vendor’s DNA
synthesis constraints are flagged, and most vendors provide
expressive violation reports through their web-based UIs for
ordering synthetic DNA. Constraint violations can lead to
workflow inefficiencies, as sequences may need to be sub-
stantially redesigned and/or noncompliant sequence synthesis
may incur price-premiums and temporal delays.
Currently, DNA synthesis constraints are not considered as

part of an automated design process through bioCAD/CAM
software tools. Software tools, which provide the functionality
of codon optimization, can be utilized to redesign protein
coding sequences in case of violations. After every codon

optimization step, the redesigned sequence must be verified
against the DNA synthesis constraints. Such an approach,
however, constitutes an inefficient trial-and-error process that
could also unnecessarily introduce new violations or regress to
previously resolved violations. Most DNA synthesis vendors
offer web-based software tools that facilitate the resolution of
DNA constraint violations, but this is done one sequence at a
time, and assumes that sequences exclusively comprise coding
DNA, which is often not the case. The integration of function-
alities provided by unrelated web-based software tools into an
automated design process is challenging to implement and
maintain in the absence of provided APIs. In addition, ad-hoc
sequence redesign poses a number of problems for tracking
sequence changes that impact downstream processes including
assembly, cloning, and sequence verification.
Automating the detection and resolution of synthesis

constraints removes process inefficiencies and reduces the
cost and turnaround times of DNA synthesis and assembly.
Therefore, we have developed a suite of build optimization
software tools (BOOST) for the automated generation of DNA
constructs ready for DNA synthesis through commercial DNA
vendors. BOOST includes tools for reverse-translation/codon
juggling of sequences, detection, and resolution of DNA syn-
thesis constraint violations in an annotation-dependent manner,
and partitioning of long DNA sequences into shorter fragments
optimized for assembly. The modular architecture of BOOST
follows state-of-the-art software engineering principles (i) by
providing a Web UI for human interactions, (ii) by providing
APIs that can be invoked by other software tools, and

Figure 1. A flowchart illustrating the macro−microflow of the “Design for Synthesis and Assembly” workflow. Empty circles denote the start, and
filled circles the end, of macro- and microflows. Rectangles with rounded corners represent tasks, and diamonds represent conditions, the evaluation
of which determines the next step in the workflow.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00200
ACS Synth. Biol. 2017, 6, 485−496

486

http://dx.doi.org/10.1021/acssynbio.6b00200

(iii) through compliance with existing and emerging standards.
The BOOST web application (available at https://boost.jgi.
doe.gov) provides easy and interactive access to all BOOST
functionalities. The BOOST web application builds upon a
representational state transfer (REST) application program
interface (API) that enables the integration of BOOST func-
tionalities into bioCAD/CAM tools for the automated design
of ready-to-order DNA constructs at minimal synthesis costs
and turn-around time. Lastly, BOOST supports community
standard data-exchange formats including FASTA, GenBank,32

and SBOL.26,27

■ RESULTS AND DISCUSSION

A High-Level Design Workflow for DNA Synthesis and
Assembly. The goal of BOOST is to streamline, in a scalable
fashion, the process of designing readily synthesizable DNA
fragments. In Figure 1, we present a flowchart illustrating the
“Design for Synthesis and Assembly” workflow. Our workflow
design follows the macro−microflow pattern,33 which separates
a workflow into a flow of short-running activities (“microflow”)
and long-running activities (“macroflow”). The macroflow of
our DNA synthesis and assembly design workflow includes
three activities: “Codon Adjustments”, “Sequence Polishing”,
and “Sequence Partitioning” each of which has its own micro-
flow process.
The type of input sequence determines the first step of the

“Codon Adjustment” microflow. If the input comprises protein
sequences, each protein sequence is “Reverse Translated” into
a DNA according to a user-determined strategy and desired
codon usage table (e.g., that of the target host organism). For
each input DNA sequence not originating from the target host
organism, the “Juggle Codons” step adjusts the codon usage
within protein coding (sub)sequences according to a user-
determined strategy and desired codon usage table. The result

of the “Codon Adjustment” microflow is a set of DNA
sequences (with desired codon usage).
The “Sequence Polishing” microflow starts with the ‘Verify

against Constraints’ step, which analyzes the input set of DNA
sequences for violations of DNA synthesis constraints. To
resolve violations (if any) detected in modifiable protein coding
regions, the “Modify Coding Sequence” step replaces codons
within violation regions according to a user-determined strategy
and codon usage table. The verification and modification
tasks are performed iteratively until either all violations have
been resolved or violations persist only in noncoding regions
(Figure 1). For example, if the remaining violations occur in
intergenic, intronic, or regulatory regions such as promoters,
ribosomal-binding-sites, or terminators, no further sequence
modifications are performed. The outcome of the “Sequence
Polishing” microflow is a set of DNA sequences with a minimal
number of DNA synthesis constraint violations.
Lastly, the “Sequence Partitioning” microflow checks if

sequences are within a specified DNA length range. Sequences
within the allowed range will not be further modified. If a
sequence is too short, it will simply be flagged. For sequences
exceeding the maximum length, partitioning will be performed
according to a set of parameters which maximize the likeli-
hood of successful assembly. The resulting sequences of the
“Sequence Partitioning” can then be synthesized and/or
ordered from a commercial DNA synthesis vendor.
Our design of the “Design for Synthesis and Assembly”

workflow enables its customization depending on the type of
input sequences. For example, the tasks of reverse translation
and codon juggling do not have to be performed for DNA
sequences that have been codon optimized for the desired
target host organism. Also, not every sequence needs to be
partitioned into synthesizable building blocks. Our workflow
ensures, however, that every sequence is verified against DNA
synthesis constraints.

Figure 2. A walkthrough of the BOOST web application to automate the design for synthesis and assembly process.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00200
ACS Synth. Biol. 2017, 6, 485−496

487

https://boost.jgi.doe.gov
https://boost.jgi.doe.gov
http://dx.doi.org/10.1021/acssynbio.6b00200

BOOST Automates Design for Synthesis and Assem-
bly. The design of DNA sequences that violate synthesis
constraints impact the success rate of synthesis and can lead
to workflow inefficiencies. We have therefore developed and
implemented BOOST, each tool automating one step of the
macroflow (Figure 1). Each tool in BOOST can be integrated
with upstream bioCAD/CAM tools (via a RESTful API) in
order to fully automate the process of converting the designs
of DNA constructs into physical DNA molecules.
Figure 2 shows screenshots of the BOOST Web UI, and the

organization of the screenshots provides a process-oriented
walkthrough of the Juggler, Polisher and Partitioner tools of
BOOST that respectively automate the tasks of “Codon
Adjustment”, “Sequence Polishing”, and “Sequence Partition-
ing” of the design for DNA synthesis and assembly workflow
(see Figure 1). As shown in Figure 2 the output sequences of
one tool serve as the input of the next downstream tool.
In all three tools of BOOST, the user can enter either single

sequences or a batch of sequences in CSV, Fasta, Genbank,
or SBOL file format. Every tool automatically detects the file
format and the sequence type. Since any DNA sequence can
theoretically be a protein sequence, the user can overrule the
detected sequence type. Both, the Juggler and Polisher work
better with annotated input sequences, such as provided by
the Genbank and SBOL sequence file formats. However, both
tools allow the user to specify that all sequences are 5′-3′
in-frame, protein coding sequences exclusively if the input
DNA sequences are encoded in a sequence format that does
not support the annotation of sequence features, such as CSV
or FASTA. Currently, only the Juggler supports the input of
protein sequences for the task of reverse translation. In the
Juggler and Polisher, the user must select a codon selection
strategy and, depending on the strategy, needs to provide a
codon usage table, for example, of the target host organism.
A list of commonly used codon usage tables is provided on
BOOST’s Web UI of the Juggler and Polisher.
The Juggler tool in BOOST automates the “Reverse-

Translate” and “Juggle Codons” tasks of the “Codon Adjust-
ments” microflow. The Juggler outputs the reverse-translated or
codon juggled input sequences in a sequence format selected
by the user.
The Polisher tool in BOOST automates the “Verify Against

Constraints” and “Modify Coding Sequences” tasks of the
“Sequence Polishing” microflow. The user can select between
two options: “Detect” and “Polish”. When selecting “Detect”,
then the Polisher verifies the input DNA sequences against the
DNA synthesis constraints of a selected DNA synthesis vendor.
IDT, GeneArt-Thermo Fisher, and SGI DNA kindly provided
their set of DNA synthesis constraints. The synthesis con-
straints of Gen9 are publicly available at http://help.gen9bio.
com/docs/gene-synthesis-guidelines. Besides selecting a DNA
synthesis vendor, the Polisher tool also supports a language that
enables the end-user to specify customized DNA synthesis
constraints. For the time being, the language supports the
specification of %GC content, repeats, and length constraints.
In addition, the user can enter sequence patterns, such as
restriction sites, instructing the Polisher to treat them as
additional constraints. When the user selects the “Polish” task,
the Polisher verifies and additionally modifies the protein
coding regions within the input DNA sequences. For both
“Detect” and “Polish” tasks, the Polisher outputs a tree-view
of all input sequences and flags those that violate the DNA
synthesis constraints. Expanding the node of a violating

sequence provides detailed information about the violations,
such as the constraint type and the violation location. In the
case of the “Polish” task, the Polisher outputs the modified
sequences, a log of the performed modifications, and a tree-
view to compare the constraint violations before and after the
modifications.
The Partitioner tool in BOOST checks if DNA sequences

are within a defined length range. The user can configure the
minimum and maximum length. Sequences that are above
the maximum length are decomposed into building blocks.
The partitioning algorithm searches for sequence overlaps
among the building blocks that are optimized for downstream
DNA assembly. The user can configure the %GC content and
the length of the overlap sequences to be compatible with
downstream DNA assembly methods, but other features such
as overlap uniqueness, and excluding the presence of hairpins
and homopolymers, are hard coded into the algorithm. If the
partitioning function finds overlaps that comply with the
parameters for each pair of building blocks, then an output
will be generated. Otherwise the user needs to adjust the par-
titioning parameters.
The input sequences for any BOOST functionality are

sequences that are either under design or the output of
upstream bioCAD tools, allowing BOOST to be integrated into
pre-existing design pipelines. The modular structure of BOOST
enables to customize the execution of an automated design for
synthesis and assembly process depending on design-specific
requirements. The automation of internal and cross-organiza-
tional workflows requires functionalities to be invoked in a pro-
grammatic manner. As a result, every BOOST functionality
is accessible via a RESTful API. Further information about the
RESTful API is provided on the BOOST web site (https://
boost.jgi.doe.gov).
More detailed information and examples about the supported

sequence formats, the codon selection strategies and algorithms
for reverse-translation, codon juggling, violation resolution,
and partitioning are provided in the Methods section and the
Supporting Information.

BOOST Results in Efficiency Gains. BOOST has been
used internally as the final design step for over 6 Mbp of
synthetic DNA over the last 18 months. To evaluate
potential efficiency gains derived from the implementation of
BOOST, we focused on a set of 1950 sequences (1424 DNA
and 526 Proteins) that were ordered from the same com-
mercial synthesis provider over a 1-year period, for a total
of 2 918 254bp. For this set, the Polisher tool in BOOST
identified 546 sequences (28%, 1 194 138bp) that violate at least
one synthesis constraint with the remaining 1404 sequences
(1 724 116bp) being compliant.
In total, 53 543 individual violations were detected that,

when merged, resulted in 2608 sequence regions that violated
DNA synthesis constraints (see Methods). Out of the 546 com-
plex sequences, the Polisher was able to resolve all violations
in 447 instances (747 756bp) using the balanced-to-random
modification strategy (see Methods). We analyzed the 99 DNA
sequences that still contained violations after the polishing
procedure. Out of these, two sequences did not contain any
annotated sequence features and the BOOST polisher was not
able to annotate the sequences automatically, resulting in
entirely immutable sequences. Eleven sequences code proteins
with long stretches of repeating amino acids, making it hard for
the BOOST heuristics to find a DNA sequence that complies
with the DNA synthesis constraints. The remaining 86

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00200
ACS Synth. Biol. 2017, 6, 485−496

488

http://help.gen9bio.com/docs/gene-synthesis-guidelines
http://help.gen9bio.com/docs/gene-synthesis-guidelines
https://boost.jgi.doe.gov
https://boost.jgi.doe.gov
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.6b00200/suppl_file/sb6b00200_si_001.pdf
http://dx.doi.org/10.1021/acssynbio.6b00200

sequences had feature annotations including both modifiable
coding sequences and immutable regulatory elements. A
detailed analysis of the remaining 86 sequences with constraint
violations revealed that all 299 remaining violations (of the
original 2608) occurred in immutable features, demonstrating
that the BOOST polisher addressed the violations in the
modifiable coding regions and left the immutable features
unchanged. Next, we analyzed the immutable features and
discovered that 69 constraint violations occurred in sequence
regions annotated as promoters (promoter), 16 in origins of
replication (rep_origin), 73 in terminators (terminator), 2 in
miscellaneous signals (misc_signal), 12 in regions annotated
as source, 8 in regions annotated as loci, 2 in recombination
features (misc_recomb), and 117 in miscellaneous noncoding
features (misc_feature). Then, we analyzed the 117 miscella-
neous noncoding features and identified 12 promoter
(incl. RBS sequences) and 23 protein coding sequences. The
remaining features were homology arms required for genome
editing/integration. Our closer analysis of the miscellaneous
noncoding features clearly highlights the need for users to
provide more precise sequence feature annotations, either
manually or with the support of bioCAD/CAM tools.
For the set of 1950 sequences described above the total cost

of synthesis would be $291,825 assuming an industry average of
$0.10/bp. However, sequences that violate synthesis constraints
are typically synthesized at a premium price ranging from
$0.20-$0.50/bp depending on the sequence complexity. If we
conservatively assume a $0.20/bp cost for all fragments that
violate constraints, then the total synthesis cost would increase
to $411,239.20. However, the actual synthesis cost when using
the BOOST toolkit would be $336,463.60 assuming the cost
model above, which constitutes a 18% savings. In addition to
cost benefits, using BOOST results in much improved cycle
times. First, it eliminated any time spent in sequence redesign.

Second, fragments without sequence complexities are usually
delivered in about 25 business days, whereas those with com-
plexities usually require about 40 business days and have higher
failure rates. For DNA foundry operations that closely monitor
cost and cycle time metrics, using BOOST can result in very
significant efficiency gains.

BOOST-Related Software Tools. BOOST was developed
with the main goal of providing DNA synthesis design func-
tionalities (described above) that can operate on batches of
annotated sequences, either for researchers/scientists through
a Web UI and for bioCAD/CAM tools through APIs. Some
individual BOOST features can be performed through existing
software, however the integrated functionalities to automatically
codon optimize, polish, and partition complex sequence batches
in an annotation-dependent manner to produce ready-to-
synthesize sequences, fill an existing gap in the design-to-build
transition.
In Table 1 we compare the BOOST functionalities against

the functionalities provided on the web portals of commercial
DNA synthesis providers (IDT, Gen9, ThermoFisher, Twist,
and DNA2.0) and DNA design tools (DNA2.0s GeneDesigner,34

GeneDesign,18 GenomeCalligrapher35). Recently, some ven-
dors augmented their web portal with web-based DNA design
software tools, such as Gen9’s collaboration with Benchling
(https://benchling.com/), and Twist’s GenomeCompiler
(http://www.genomecompiler.com/).
All web portals from DNA synthesis vendors support the

identification of DNA synthesis constraints (Table 1).
However, in order to resolve the violations, current tools
operate on individual sequences and require (i) manual
annotation of coding sequences, (ii) additional upload of the
protein sequences, or (iii) that all DNA sequences exclusively
comprise in-frame coding sequences. All of these options are
time-consuming, and and DNA sequence modification at this

Table 1. Comparing BOOST’s Functionalities with the Functionalities Provided at (i) the Web Portals of Commercial DNA
Synthesis Providers and (ii) DNA Design Software Tools with Respect to Processing a Batch of Sequences

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00200
ACS Synth. Biol. 2017, 6, 485−496

489

https://benchling.com/
http://www.genomecompiler.com/
http://dx.doi.org/10.1021/acssynbio.6b00200

stage needs to be captured and tracked appropriately which is
not an easy task. BOOST takes advantage of standardized
sequence formats for the specification and exchange of se-
quence features and annotations such as GenBank or SBOL. As
such, BOOST can automatically polish within coding regions
using vendor specific constraints and track all the changes as
part of the design process.
To the best of our knowledge, BOOST is the first published

software tool to decompose (i.e., partition) large sequences
into synthesizable building blocks with sequence overlaps that
can be configured to be compatible with downstream DNA
assembly methods. Partitioning large sequences into synthesiz-
able building blocks is a design-specific functionality that needs
careful tracking during (automated) downstream assembly and
cloning steps.
One technical requirement of BOOST was to provide APIs,

making it possible to integrate its functionalities into bioCAD/
CAM tools. While invoking the functionalities of a web-based
portal such as those from commercial DNA synthesis providers
is theoretically possible (e.g., via HTTP), the associated com-
plications (e.g., building and sending the request, parsing and
interpreting the response, secure communication, authentica-
tion mechanisms) make it hard to implement in practice.
Future Plans. During our extensive use of the current

BOOST release we identified several areas that should be
considered for future improvements.
The major challenge to keep BOOST’s DNA synthesis

constraints up-to-date with rapidly evolving DNA synthesis
methods and technologies could, for example, be addressed
through a language-based approach. DNA synthesis constraints
can then be specified in such a language and can be exchanged
in a standardized manner. In BOOST, we now provide a proto-
type for such a language, but this would have to be adopted by
the vendors for it to constitute an effective solution. A more
realistic alternative is for DNA synthesis providers to provide
APIs in addition to their existing Web UIs. This would allow
for, bioCAD/CAM tools, such as BOOST, to programmatically
invoke these APIs to verify DNA sequences against the vendor’s
current synthesis constraints. At a minimum, these APIs should
report the sequence region (i.e., start- and end-positions) and
constraint violation type. Recently IDT has provided such
a functionality, which will be invoked by BOOST in future
releases. Our approach, going forward, will be to use a
combination of these two alternatives to keep BOOST’s DNA
synthesis constraints up-to-date and consistent with DNA
synthesis vendors.
Additional areas of future development are (i) development

of a workflow manager that combines the BOOST function-
alities for the automation of customized workflows depending
on the input sequences and values, (ii) deployment of a
queuing/management system enabling the use of the BOOST
functionalities in an asynchronous manner, and (iii) availability
of BOOST as a cloud-based infrastructure.

■ METHODS
Sequence Exchange Formats. One challenge in the

exchange of sequences is to support the different types of input
sequences (i.e., DNA, RNA, or protein) represented in
commonly used and standardized exchange formats. Every
tool in BOOST supports the input and output of sequences
in FASTA, GenBank,32 Synthetic Biology Open Language
(SBOL),26,27 and a simple Comma Separated Values (CSV).
The import and export of sequences represented in FASTA and

Genbank is implemented using the BioJava library.36 BOOST
integrates libSBOLj37 to input and output SBOL files.
BOOST prefers Genbank and SBOL sequence exchange

formats, which support sequence feature annotation, because
coding sequence (e.g., CDS) features cue BOOST as to which
DNA sequence regions may be altered without changing their
corresponding translated protein products (see below; the user
is responsible for ensuring that coding sequence regions have
been properly annotated). While BOOST also supports
sequence specification via CSV or FASTA, these formats do
not support feature annotations and the user must enable the
’Auto-Annotate’ feature that annotates each sequence as a
coding sequence (“CDS”) if its length is a multiple of 3bp in
order to take advantage of BOOST’s codon juggling and
sequence polishing features (see below).

Reverse-Translation and Codon Juggling. Reverse-
translation (also known as back-translation) is the process of
mapping a given protein sequence back into one of several
possible RNA or DNA sequences that could encode it. That is,
reverse-translation is the inverse process of translating an RNA
or DNA sequence into its corresponding protein sequence.
Following the standard genetic code, each 3-nucleotide RNA or
DNA sequence (’codon’) is translated into a specific amino acid
(or possibly a translation stop signal). Since there are 64
codons (43) but only 20 standard natural amino acids, multiple
codons may encode the same amino acid. For example, there
are two codons (TTT and TTC) for phenylalanine and four
codons (TCT, TCC, TCA, and TCG) for serine. Con-
sequently, there are multiple valid reverse-translations of the
same protein sequence.
The process of “codon juggling” is useful when transferring

coding genes between organisms. Two organisms may have
different preferences for using particular codons to encode the
same amino acid. Consequently, DNA sequences that encode
the same protein will likely differ across organisms with distinct
codon usage preferences.
Genome sequencing reveals to what extent an organism

preferentially uses certain codons over others to encode a given
amino acid. Codon usage tables suggest to what extent a given
organism may prefer one putative valid DNA sequence to
another to encode the same protein. To the best of our
knowledge, there is no standardized format for the specification
and automated exchange of codon usage tables. Therefore,
BOOST supports the following formats:

1. The Relative Synonymous Codon Usage (RSCU)
format,38 as used and generated by the GeneDesign
toolkit (http://genedesign.jbei.org),18

2. a two-column comma-separated values (CSV) format, in
which the first column contains the codon and the
second contains its usage value

3. both formats provided by the Codon Usage Database
(http://www.kazusa.or.jp/codon/)

a. [triplet] [frequency: per thousand] ([number])
b. [triplet] [amino acid] [fraction] [frequency: per

thousand] ([number])

Regardless of the format, the codon usages are normalized so
that the sum of codon usages is 1.00 for every amino acid.
BOOST uses these codon usage tables to guide the codon

selection process. BOOST reverse-translates protein sequences
one amino acid at a time. BOOST provides three codon selec-
tion strategy options:

• Random: For each amino acid, select a codon randomly.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00200
ACS Synth. Biol. 2017, 6, 485−496

490

http://genedesign.jbei.org
http://www.kazusa.or.jp/codon/
http://dx.doi.org/10.1021/acssynbio.6b00200

• Mostly Used: For each amino acid, select the codon with
the highest codon usage.

• Balanced: For each amino acid, distribute usage across
codons so that the resulting DNA sequence statistically
resembles the codon usage table. This codon selection
algorithm works as follows: For every amino acid,
generate a random number between zero (0) and one
(1). Pick the mostly used codon and subtract its usage
from the random number. If the difference is below or
equal to zero, then select the mostly used codon.
Otherwise, select the second mostly used codon, subtract
its usage from the remaining difference, and check again
if the difference is below or equal to zero. If so, then pick
the second mostly used codon. This loop of iterative
selection and subtraction repeats until the remaining dif-
ference is below or equal to zero. In BOOST, the
algorithm first normalizes the codon usages so that their
sum equals to one (1) and sorts the codons by their
descending usage. Hence, the random number is gener-
ated between zero (0) and one (1). If the codon usages
are not normalized, then the random number should be
generated between zero (0) and the sum of the codon
usages of each amino acid’s codons.

For codon juggling, BOOST provides an additional codon
selection strategy option:

• Least Different: Replace each codon with a codon that
has the most-similar usage among the codons that
encode the same amino acid. If two or more codons are
equally similar, then select randomly among them.

All codon selection strategy options have been inspired by
Richardson et al.18 All codon selection strategies iterate only once
over the amino acids in a protein sequence or codons in a coding
DNA sequence. Furthermore, the codon replacement strategies
do not select codons with zero usage (although these codons
could be accessible via a random strategy with no usage table
provided). Currently, BOOST does not support the specification
of a minimum codon usage threshold (greater than zero).
Verification of a DNA Sequence against Common

DNA Synthesis Constraints. BOOST supports the verifica-
tion of DNA sequences against a range of sequence features
that define the success/failure rate of synthesis. In collaboration
with commercial DNA synthesis providers, we have identified
the following common sequence features:
%GC Content: The percentage of Gs and Cs in a sequence

must be balanced in a specific range of a minimum value and a
maximum value. The %GC content must be in the range either
in the entire sequence (global) and/or within sequence
windows of a specific length (local). For global %GC content
constraints, BOOST calculates the %GC content of the entire
sequence. For local %GC content constraints, BOOST
calculates the %GC content for each sequence window of
specified length. In either case, if the calculated %GC content
is lower/higher than the minimum/maximum %GC content
(respectively) then BOOST reports a violation, outputting the
%GC content and whether it is too low/high. For local %GC
content violations, BOOST also reports the sequence window
location.
Repeats: Readily synthesizable sequences are often con-

strained to be free of repeating sequences greater than a
minimum length k. Repeats can occur (i) within the entire
sequence (global) or within certain regions of the sequence
(local), (ii) on the same (direct) or opposite (inverted) strand,

(iii) immediately after each other (tandem) or with a number
of base pairs between them (interspersed), and (iv) identical
(exact) or differing by a number of base pair substitutions/
insertions/deletions (mutated). To detect direct or inverted
repeats of a minimum length k within a maximum edit-distance
d and interspersed by a maximum number of base pairs l,
BOOST creates a key/value-list lookup-table for the strands
and location(s) of each k-mer (and the sequences within an
edit distance d thereof). BOOST calculates the keys of the
lookup-table by mapping each k-mer on both top and reverse
complement strands into a pair of numeric values. For example,
the 4-mer ATCG is transformed into the binary code
00110110, which is 54 in decimal. Its reverse complement
CGAT (binary: 01100011) results in 99. For each pair of
mapped numeric values (top strand and reverse complement),
BOOST appends to the key/value-list lookup-table a triplet
that represents the k-mer’s location, strand, and edit distance.
For example, if the ATCG 4-mer occurs on the top strand at
position 10 without any substitutions and insertions/deletions,
then BOOST appends the ⟨10,+1,0⟩ triplet to the value-list of
key 54. BOOST integrates BBTools to create the lookup-
tables efficiently (https://sourceforge.net/projects/bbmap/).
Depending on the types of repeats to be detected, for each
key in the lookup-table, BOOST identifies any sets of repeated
locations/orientations that meet the detection criteria. For
example, if we are detecting both direct and inverted repeats of
4-mers with a maximum edit distance of 0 base pairs, which are
interspersed by less than 10 base pairs, and the sequence
contains ATCG at location 10 and CGAT at location 20, then
the value-list for key 54 would be [⟨10,+1,0⟩, ⟨20,−1,0⟩].
BOOST would report this as an inverted repeat of ACTG
interspersed by six base pairs.
Sequence Patterns: Restriction enzymes cut DNA sequences

at specific motifs, so-called restriction sites. If a sequence con-
tains restriction sites, then restriction enzymes can impact not
only the success rate of gene synthesis, but also the function of
the designed sequence. The plethora of restriction enzymes
and motifs requires a flexible approach for specification and
verification. In BOOST, the user can input a CSV- or FASTA-
format file containing unwanted sequence patterns, such as
restriction sites, that should not appear in a sequence. BOOST
compiles the sequence patterns into a single regular expression
in order to detect the occurrence each sequence pattern on
both DNA strands. BOOST reports the location, strand, and
sequence of each identified sequence pattern.
Sequence Length: DNA synthesis vendors provide synthetic

DNA blocks of certain size ranges as part of their product portfolio.
If a designed sequence construct is longer than the vendor’s
specified ranges, then the sequence needs to be decomposed
into synthesizable fragments (building blocks) that need then
be assembled at a later point. BOOST calculates the length of
the sequence and compares it against the minimum/maximum
allowable gene synthesis length.
Additional DNA synthesis constraints exist, such as repeat

coverage, the percentage of unique k-mers, or the maximum
number of occurrences of sequence patterns. Such constraints
can be specified as a function of the four enumerated con-
straints combined with conditions. For example, if the repeat
coverage is greater than a specific threshold, then the sequence
cannot be synthesized at minimal cost. That is, the repeat
coverage is a function of the number of k-mers and the
sequence length and the threshold defines the condition.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00200
ACS Synth. Biol. 2017, 6, 485−496

491

https://sourceforge.net/projects/bbmap/
http://dx.doi.org/10.1021/acssynbio.6b00200

In Figure 3, we visualize an example of verifying a DNA
sequence against synthesis constraints. The verif y_sequence
algorithm evaluates the input sequence against all prescribed
synthesis constraints. In this example, we first evaluate each
12 bp sequence window to ensure that the %GC content is
greater than 15% and less than 75%. Then, we check if the
sequence pattern for the BsaI restriction site occurs on either
DNA strand. The last constraint searches both DNA strands
of the input sequence for perfect (zero edit distance) repeats
of at least 9 bp, which may be direct or inverted, tandem or
interspersed (separated by 1 or more bps).
The verif y_sequence algorithm finds three overlapping

sequence windows that violate the local %GC constraint. The
sequence pattern for the BsaI restriction site occurs once on the
top strand. The algorithm finds various repeats that are close to
the 3′-end of the sequence.
Reporting Sequence Regions that Violate Gene Syn-

thesis Constraints. As illustrated in Figure 3 and described
immediately above, the verif y_sequence algorithm may detect
various constraint violations including extreme %GC, sequence
patterns, and repeats. To generate a comprehensive violation
report for the user, BOOST performs a merge_violations step
that takes as input all detected violations, merges overlapping
sequence regions that violate the same constraint, and outputs
the consolidated sequence regions with their corresponding
constraint violation information.
Modifying Coding Sequences to Comply with Gene

Synthesis Constraints. The user can enable BOOST to
attempt to automatically modify a DNA sequence to resolve
identified constraint violations. If so, then BOOST determines
the modifiable sequence regions, which are features annotated
as coding sequence (CDS). If a violation occurs entirely in a
modifiable region, then BOOST attempts to modify sequence
region to resolve the violation. For example, if the %GC
content is too low or too high in a coding sequence region,
then BOOST attempts to make silent mutations (following
one of several strategies) to increase or decrease the %GC.
If a violation spans modifiable and immutable regions, then
BOOST attempts to modify only the modifiable region to
resolve the violation. For example, if a sequence were repeated

in a promoter sequence region (immutable) and in a coding
sequence region (modifiable), BOOST would only attempt to
make silent mutations in the coding sequence region to resolve
the repeat. If BOOST detects a violation that occurs entirely in
an immutable region, then BOOST only reports the violation
and does not perform any modifications (the user must
manually resolve the constraint violation by, for example,
redesigning the sequence and/or synthesizing the sequence at
higher cost).
Figure 4 (a continuation of Figure 3) exemplifies BOOST’s

modif y_sequence functionality, which takes as input the
sequence, its constraint violations, and a codon usage table.
First, modif y_sequence brings each modifiable violation region
into the appropriate reading-frame. Next, the violated region is
translated into its protein sequence. Then, each amino acid is
reverse-translated into a nucleotide codon. BOOST reverse-
translates using the same codon selection strategies as listed in
the Reverse-Translation and Codon Juggling section. That is,
every violated sequence region is codon juggled with the goal
being to resolve violations without introducing new violations.
Therefore, BOOST must verify the entire sequence against the
DNA synthesis constraints after modifying a violated region.
If the modifications introduced new violations or the violations
have not been resolved, then BOOST tries to iterate over
the violated sequence regions again in order to modify them.
BOOST performs these steps until all violations are resolved or
the maximum number of iterations has been reached.
For the modif y_sequence functionality, we have developed

two additional strategies. Both strategies adjust codon usage
values when some violations remain unresolved after a
prescribed maximum number of iterations.
The Relaxed Weight strategy progressively reduces the

codon usage values of the most frequently used codons and
redistributes the usage equally among the other codons. That is,
the most frequently used codons are progressively selected with
lower frequency, whereas the other codons are progressively
selected with higher frequency.
The Balanced-to-Random strategy modifies the codon usage

values according to the formula (i/N)·(1/M) + (N − i)/N·
codon_usage(c), where i counts the number of codon usage

Figure 3. An example of verifying a DNA sequence against gene synthesis constraints and reporting violations in a comprehensible manner.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00200
ACS Synth. Biol. 2017, 6, 485−496

492

http://dx.doi.org/10.1021/acssynbio.6b00200

adjustment iterations, N denotes the maximum number of
codon usage adjustments and M is the number of codons of an
amino acid. The function codon_usage(c) refers to the codon
usage of a codon. At early iterations, this codon selection
strategy resembles the balanced strategy and at later iterations it
resembles the random codon selection strategy.
BOOST outputs the modified sequence regardless if all viola-

tions have been resolved or not. In addition, BOOST outputs a
log of the codon replacement modifications as illustrated in
Figure 4. BOOST merges neighboring codon replacements into
consolidated sets of contiguous replaced codons, in a fashion
analogous to the violation reporting process (see above). The
log of modifications contains the start- and end-position of each
modified sequence region along with the original sequence.
BOOST generates a Genbank format file that annotates the
modifications as misc_difference sequence features.
Partitioning DNA Sequences into Synthesizable

Building Blocks. Here, we describe and exemplify the
partition_sequence algorithm that partitions a sequence that
exceeds the maximum length of commercial gene synthesis.
In Figure 5, we illustrate graphically a step-by-step example
in order to demonstrate the concepts of the algorithm.
The pseudocode of partition_sequence algorithm is provided
in the Supporting Information.

Step I: The algorithm initializes the working number of
building blocks to the absolute minimum number of

building blocks required to partition the sequence.
For example, if the maximum gene synthesis length
is 3 kb (3000 base pairs), then the algorithm
would determine that at least four building blocks are
required to partition a 10 kb (10 000 base pairs)
sequence.

Step II: The algorithm divides the sequence without gaps
into the working number of equally sized nonover-
lapping blocks. If the nonoverlapping block length is
less than the minimum gene synthesis length, then the
algorithm fails to partition the sequence, and termi-
nates accordingly.

Step III: As illustrated in Figure 5, the partition_sequence
algorithm determines putative overlap sequences
based on a sequence region (neighborhood) defined
by the block-boundary (neutral position) and the
specified minimum, optimum, and maximum overlap
length (see Supporting Information). The lengths
of putative overlap sequences must be greater than or
equal to the minimum overlap length, and less than or
equal to the maximum overlap length. The total search
space for overlap sequences is the neutral position ±
the maximum overlap sequences.

Putative overlap sequences are verified against additional
DNA assembly constraints, to eliminate overlap sequences
anticipated to perform poorly. For example, the overlap

Figure 4. Modifying a protein coding sequence to resolve constraint violations using codon replacement strategies according to a genetic code and a
codon usage table.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00200
ACS Synth. Biol. 2017, 6, 485−496

493

http://pubs.acs.org/doi/suppl/10.1021/acssynbio.6b00200/suppl_file/sb6b00200_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.6b00200/suppl_file/sb6b00200_si_001.pdf
http://dx.doi.org/10.1021/acssynbio.6b00200

sequence constraints tailored for chew-back assembly methods,
such as Gibson,39 include the following:

• the %GC content of the overlap must be ≥40% and ≤62%
• no exact 6-mer repeats, direct or inverted, tandem or

interspersed
• no homopolymer stretches >5bp
• no tandem repeats of trimers that cover the overlap

by >50%
• the overlap sequence cannot occur more than once in the

entire sequence with a maximum edit-distance (number
of substitutions, insertions/deletions) of 5bp

Putative overlap sequences that comply with these
constraints are then scored. If no putative overlap sequence
complies with the constraints, then the algorithm increments
the working number of building blocks and then continues at
Step II (with building blocks of shorter length).
Otherwise, the algorithm selects the best (lowest) scoring

overlap sequences (in case of a tie, the algorithm selects among
the winners randomly). The scoring function to determine an
optimal overlap sequence places equally weighted penalties
on the distance from the block-boundary to the center of the
overlap sequence, deviation from optimal overlap sequence

length, and the deviation from the optimal overlap sequence
%GC content.

Step IV: Overlap sequences have now been successfully
identified for all pairs of neighboring blocks, and the
nonoverlapping blocks are extended to fully contain
the overlap sequence identified at each block
boundary, yielding overlapping blocks not exceeding
the maximum gene synthesis length (the algorithm
successfully terminates).

Implementation Details. The core functionalities of
BOOST are purely implemented in Java 1.7, and the BOOST
web application is deployed on a Apache Tomcat web server
(http://tomcat.apache.org) on a cluster of the DOE National
Energy Research Scientific Computing Center (NERSC)
(http://www.nersc.gov). The BOOST web application’s UI
(front-end) is implemented in jQuery (https://jquery.com)
and its styling is based on Twitter Bootstrap (http://
getbootstrap.com). The RESTful API (back-end) of the
BOOST web application is developed in Java 1.7 and based
on the Jersey framework (https://jersey.java.net).

Availability and System Requirements. BOOST is
available in three different formats: as an executable Java
ARchive (JAR), as a RESTful API, and as a web application.

Figure 5. A step-by-step example of partitioning a DNA sequence into synthesizable building blocks with assembly specific overlap sequences.
We have chosen a short randomly generated sequence and small parameter values in order to facilitate explaining the concepts of the
partition_sequence algorithm.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00200
ACS Synth. Biol. 2017, 6, 485−496

494

http://tomcat.apache.org
http://www.nersc.gov
https://jquery.com
http://getbootstrap.com
http://getbootstrap.com
https://jersey.java.net
http://dx.doi.org/10.1021/acssynbio.6b00200

The executable JAR file can either be executed on the
command line or integrated into larger, sophisticated Java-
based software tools. The RESTful API version of BOOST is
deployable on a web server and can be invoked programmati-
cally from other software tools, which are not necessarily
implemented in Java. Lastly, the BOOST web application is
build atop the RESTful API, can be deployed on a web server,
and it provides a UI, enabling humans to utilize the BOOST
functionalities using a web browser. All three versions of
BOOST are available based on the Docker deployment
framework (http://www.docker.com) and further information
is provided at the BOOST Web site.
Executing the BOOST JAR file requires the installation of

a Java Runtime Environment (JRE), which is available for
common platforms. If the execution of BOOST runs out of
memory, then additional memory can be requested using
the -Xms and -Xmx command line input arguments. The
deployment of the BOOST RESTful API as well as the BOOST
web application require a web server that supports Java, such as
Apache Tomcat. At the DOE JGI, we have deployed the
RESTful API and web application of BOOST on an Apache
Tomcat 8 Web server.
Licensing Information. BOOST is available at no cost

to noncommercial (e.g., academic, nonprofit, or government)
users through the public BOOST web server (https://boost.jgi.
doe.gov), under a Lawrence Berkeley National Lab end-
user license agreement (https://boost.jgi.doe.gov/License).
Manuals describing how to use the BOOST Web UI, and
technical documentation for programmatically invoking the
RESTful API, are provided on the public BOOST web server.
Commercial use is available through the Innovations and
Partnerships Office of Lawrence Berkeley National Laboratory
(ipo@lbl.gov).

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acssynbio.6b00200.

Formal description of the partitioningSequence algorithm
(PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: eoberortner@lbl.gov.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work has been supported by the DOE Joint Genome
Institute (http://jgi.doe.gov) and the DOE Joint BioEnergy
Institute (http://www.jbei.org) by the U.S. Department of
Energy, Office of Science, Office of Biological and Environ-
mental Research, through Contract DE-AC02-05CH11231
between Lawrence Berkeley National Laboratory and the U.S.
Department of Energy. The Department of Energy will provide
public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan). The authors thank
Adam Clore (IDT), Thomas Hofmeister and Axel Trefzer
(Thermo Fisher Scientific - Life Technologies), Gisela Canales,
and Rahul Gautam (SGI-DNA) for sharing, explaining, and
discussing DNA synthesis constraints. The DNA synthesis

guidelines of Gen9 are freely available at http://help.gen9bio.
com/docs/gene-synthesis-guidelines. We also thank Elizabeth
Nickerson, Andrew Bond, and Ann Longueville (Gen9) as well
as Amanda Skeen and Rahul Gautam (SGI-DNA) for useful
discussions. The development of BOOST is a collaborative
effort, managed between end-users and software developers.
We thank Cameron Coates and Robert Evans for testing the
software tools and for providing constructive feedback on each
individual tool’s usability and applicability. Also we thank Jacob
Coble, Mark Forrer, Hector Garcia Martin, Sarah LaFrance,
Xianwei “John” Meng, William Morrell, Oge Nnadi, Hector
Plahar, and Lisa Simirenko for reviewing the BOOST source
code and for their helpful suggestions regarding the BOOST
Web UI. We thank Sarah Richardson for her insights into the
development of the algorithms. Lastly, we thank the DOE
National Energy Research Scientific Computing Center
(NERSC) for providing the hard- and software facilities for
executing, deploying and hosting both, the BOOST command-
line tool and the BOOST web application.

■ REFERENCES
(1) Koppel, N., and Balskus, E. P. (2016) Exploring and
Understanding the Biochemical Diversity of the Human Microbiota.
Cell Chem. Biol. 23, 18−30.
(2) Walker, M. C., and Chang, M. C. (2014) Natural and engineered
biosynthesis of fluorinated natural products. Chem. Soc. Rev. 43, 6527−
6536.
(3) Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson,
I. J., Cheng, J. F., Darling, A., Malfatti, S., Swan, B. K., Gies, E. A.,
Dodsworth, J. A., Hedlund, B. P., Tsiamis, G., Sievert, S. M., Liu, W.
T., Eisen, J. A., Hallam, S. J., Kyrpides, N. C., Stepanauskas, R., Rubin,
E. M., Hugenholtz, P., and Woyke, T. (2013) Insights into the
phylogeny and coding potential of microbial dark matter. Nature 499,
431−437.
(4) Long, P. E., Williams, K. H., Hubbard, S. S., and Banfield, J. F.
(2016) Microbial Metagenomics Reveals Climate-Relevant Subsurface
Biogeochemical Processes. Trends Microbiol. 24 (8), 600−610.
(5) Paddon, C. J., Westfall, P. J., Pitera, D. J., Benjamin, K., Fisher, K.,
McPhee, D., Leavell, M. D., Tai, A., Main, A., Eng, D., Polichuk, D. R.,
Teoh, K. H., Reed, D. W., Treynor, T., Lenihan, J., Fleck, M., Bajad, S.,
Dang, G., Dengrove, D., Diola, D., Dorin, G., Ellens, K. W., Fickes, S.,
Galazzo, J., Gaucher, S. P., Geistlinger, T., Henry, R., Hepp, M.,
Horning, T., Iqbal, T., Jiang, H., Kizer, L., Lieu, B., Melis, D., Moss, N.,
Regentin, R., Secrest, S., Tsuruta, H., Vazquez, R., Westblade, L. F., Xu,
L., Yu, M., Zhang, Y., Zhao, L., Lievense, J., Covello, P. S., Keasling, J.
D., Reiling, K. K., Renninger, N. S., and Newman, J. D. (2013) High-
level semi-synthetic production of the potent antimalarial artemisinin.
Nature 496, 528−532.
(6) Burgard, A., Burk, M. J., Osterhout, R., Van Dien, S., and Yim, H.
(2016) Development of a commercial scale process for production of
1,4-butanediol from sugar. Curr. Opin. Biotechnol. 42, 118−125.
(7) Cheong, S., Clomburg, J. M., and Gonzalez, R. (2016) Energy-
and carbon-efficient synthesis of functionalized small molecules in
bacteria using non-decarboxylative Claisen condensation reactions.
Nat. Biotechnol. 34, 556−561.
(8) Ham, T. S., Dmytriv, Z., Plahar, H., Chen, J., Hillson, N. J., and
Keasling, J. D. (2012) Design, implementation and practice of JBEI-
ICE: an open source biological part registry platform and tools. Nucleic
Acids Res. 40, e141.
(9) Markowitz, V. M., Chen, I. M., Palaniappan, K., Chu, K., Szeto,
E., Grechkin, Y., Ratner, A., Jacob, B., Huang, J., Williams, P.,
Huntemann, M., Anderson, I., Mavromatis, K., Ivanova, N. N., and
Kyrpides, N. C. (2012) IMG: the Integrated Microbial Genomes
database and comparative analysis system. Nucleic Acids Res. 40,
D115−122.
(10) Kanehisa, M., and Goto, S. (2000) KEGG: kyoto encyclopedia
of genes and genomes. Nucleic Acids Res. 28, 27−30.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00200
ACS Synth. Biol. 2017, 6, 485−496

495

http://www.docker.com
https://boost.jgi.doe.gov
https://boost.jgi.doe.gov
https://boost.jgi.doe.gov/License
mailto:ipo@lbl.gov
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acssynbio.6b00200
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.6b00200/suppl_file/sb6b00200_si_001.pdf
mailto:eoberortner@lbl.gov
http://jgi.doe.gov
http://www.jbei.org
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://help.gen9bio.com/docs/gene-synthesis-guidelines
http://help.gen9bio.com/docs/gene-synthesis-guidelines
http://dx.doi.org/10.1021/acssynbio.6b00200

(11) Geer, L. Y., Marchler-Bauer, A., Geer, R. C., Han, L., He, J., He,
S., Liu, C., Shi, W., and Bryant, S. H. (2010) The NCBI BioSystems
database. Nucleic Acids Res. 38, D492−496.
(12) Madsen, C., McLaughlin, J. A., Misirli, G., Pocock, M., Flanagan,
K., Hallinan, J., and Wipat, A. (2016) The SBOL Stack: A Platform for
Storing, Publishing, and Sharing Synthetic Biology Designs. ACS
Synth. Biol. 5, 487−497.
(13) Nielsen, A. A., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov,
V., Strychalski, E. A., Ross, D., Densmore, D., and Voigt, C. A. (2016)
Genetic circuit design automation. Science 352, aac7341.
(14) Chen, J., Densmore, D., Ham, T. S., Keasling, J. D., and Hillson,
N. J. (2012) DeviceEditor visual biological CAD canvas. J. Biol. Eng. 6,
1.
(15) Czar, M. J., Cai, Y., and Peccoud, J. (2009) Writing DNA with
GenoCAD. Nucleic Acids Res. 37, W40−47.
(16) Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia,
M., Anderson, J. C., and Densmore, D. (2011) Eugene–a domain
specific language for specifying and constraining synthetic biological
parts, devices, and systems. PLoS One 6, e18882.
(17) Roehner, N., Young, E. M., Voigt, C. A., Gordon, D. B., and
Densmore, D. (2016) Double Dutch: A Tool for Designing
Combinatorial Libraries of Biological Systems. ACS Synth. Biol. 5,
507−517.
(18) Richardson, S. M., Wheelan, S. J., Yarrington, R. M., and Boeke,
J. D. (2006) GeneDesign: rapid, automated design of multikilobase
synthetic genes. Genome Res. 16, 550−556.
(19) Espah Borujeni, A., Channarasappa, A. S., and Salis, H. M.
(2014) Translation rate is controlled by coupled trade-offs between
site accessibility, selective RNA unfolding and sliding at upstream
standby sites. Nucleic Acids Res. 42, 2646−2659.
(20) Na, D., and Lee, D. (2010) RBSDesigner: software for designing
synthetic ribosome binding sites that yields a desired level of protein
expression. Bioinformatics 26, 2633−2634.
(21) Reeve, B., Hargest, T., Gilbert, C., and Ellis, T. (2014)
Predicting translation initiation rates for designing synthetic biology.
Front. Bioeng. Biotechnol. 2, 1.
(22) Salis, H. M., Mirsky, E. A., and Voigt, C. A. (2009) Automated
design of synthetic ribosome binding sites to control protein
expression. Nat. Biotechnol. 27, 946−950.
(23) Hillson, N. J., Rosengarten, R. D., and Keasling, J. D. (2012) j5
DNA assembly design automation software. ACS Synth. Biol. 1, 14−21.
(24) Appleton, E., Tao, J., Haddock, T., and Densmore, D. (2014)
Interactive assembly algorithms for molecular cloning. Nat. Methods
11, 657−662.
(25) Linshiz, G., Stawski, N., Goyal, G., Bi, C., Poust, S., Sharma, M.,
Mutalik, V., Keasling, J. D., and Hillson, N. J. (2014) PR-PR: cross-
platform laboratory automation system. ACS Synth. Biol. 3, 515−524.
(26) Galdzicki, M., Clancy, K. P., Oberortner, E., Pocock, M., Quinn,
J. Y., Rodriguez, C. A., Roehner, N., Wilson, M. L., Adam, L.,
Anderson, J. C., Bartley, B. A., Beal, J., Chandran, D., Chen, J.,
Densmore, D., Endy, D., Grunberg, R., Hallinan, J., Hillson, N. J.,
Johnson, J. D., Kuchinsky, A., Lux, M., Misirli, G., Peccoud, J., Plahar,
H. A., Sirin, E., Stan, G. B., Villalobos, A., Wipat, A., Gennari, J. H.,
Myers, C. J., and Sauro, H. M. (2014) The Synthetic Biology Open
Language (SBOL) provides a community standard for communicating
designs in synthetic biology. Nat. Biotechnol. 32, 545−550.
(27) Roehner, N., Beal, J., Clancy, K., Bartley, B., Misirli, G.,
Grunberg, R., Oberortner, E., Pocock, M., Bissell, M., Madsen, C.,
Nguyen, T., Zhang, M., Zhang, Z., Zundel, Z., Densmore, D., Gennari,
J. H., Wipat, A., Sauro, H. M., and Myers, C. J. (2016) Sharing
Structure and Function in Biological Design with SBOL 2.0. ACS
Synth. Biol. 5, 498−506.
(28) Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang,
R. Y., Algire, M. A., Benders, G. A., Montague, M. G., Ma, L., Moodie,
M. M., Merryman, C., Vashee, S., Krishnakumar, R., Assad-Garcia, N.,
Andrews-Pfannkoch, C., Denisova, E. A., Young, L., Qi, Z. Q., Segall-
Shapiro, T. H., Calvey, C. H., Parmar, P. P., Hutchison, C. A., 3rd,
Smith, H. O., and Venter, J. C. (2010) Creation of a bacterial cell
controlled by a chemically synthesized genome. Science 329, 52−56.

(29) Annaluru, N., Muller, H., Mitchell, L. A., Ramalingam, S.,
Stracquadanio, G., Richardson, S. M., Dymond, J. S., Kuang, Z.,
Scheifele, L. Z., Cooper, E. M., Cai, Y., Zeller, K., Agmon, N., Han, J.
S., Hadjithomas, M., Tullman, J., Caravelli, K., Cirelli, K., Guo, Z.,
London, V., Yeluru, A., Murugan, S., Kandavelou, K., Agier, N.,
Fischer, G., Yang, K., Martin, J. A., Bilgel, M., Bohutski, P., Boulier, K.
M., Capaldo, B. J., Chang, J., Charoen, K., Choi, W. J., Deng, P.,
DiCarlo, J. E., Doong, J., Dunn, J., Feinberg, J. I., Fernandez, C., Floria,
C. E., Gladowski, D., Hadidi, P., Ishizuka, I., Jabbari, J., Lau, C. Y., Lee,
P. A., Li, S., Lin, D., Linder, M. E., Ling, J., Liu, J., Liu, J., London, M.,
Ma, H., Mao, J., McDade, J. E., McMillan, A., Moore, A. M., Oh, W. C.,
Ouyang, Y., Patel, R., Paul, M., Paulsen, L. C., Qiu, J., Rhee, A.,
Rubashkin, M. G., Soh, I. Y., Sotuyo, N. E., Srinivas, V., Suarez, A.,
Wong, A., Wong, R., Xie, W. R., Xu, Y., Yu, A. T., Koszul, R., Bader, J.
S., Boeke, J. D., and Chandrasegaran, S. (2014) Total synthesis of a
functional designer eukaryotic chromosome. Science 344, 55−58.
(30) Hutchison, C. A., 3rd, Chuang, R. Y., Noskov, V. N., Assad-
Garcia, N., Deerinck, T. J., Ellisman, M. H., Gill, J., Kannan, K., Karas,
B. J., Ma, L., Pelletier, J. F., Qi, Z. Q., Richter, R. A., Strychalski, E. A.,
Sun, L., Suzuki, Y., Tsvetanova, B., Wise, K. S., Smith, H. O., Glass, J.
I., Merryman, C., Gibson, D. G., and Venter, J. C. (2016) Design and
synthesis of a minimal bacterial genome. Science 351, aad6253.
(31) Kosuri, S., and Church, G. M. (2014) Large-scale de novo DNA
synthesis: technologies and applications. Nat. Methods 11, 499−507.
(32) Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and
Sayers, E. W. (2009) GenBank. Nucleic Acids Res. 37, D26−31.
(33) Hentrich, C., and Zdun, U. (2006) Patterns for business object
model integration in process-driven and service-oriented architectures,
In Proceedings of the 2006 conference on Pattern languages of programs,
pp 1−14, ACM, Portland, Oregon, USA.
(34) Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J., and
Govindarajan, S. (2006) Gene Designer: a synthetic biology tool for
constructing artificial DNA segments. BMC Bioinf. 7, 285.
(35) Christen, M., Deutsch, S., and Christen, B. (2015) Genome
Calligrapher: A Web Tool for Refactoring Bacterial Genome
Sequences for de Novo DNA Synthesis. ACS Synth. Biol. 4, 927−934.
(36) Holland, R. C., Down, T. A., Pocock, M., Prlic, A., Huen, D.,
James, K., Foisy, S., Drager, A., Yates, A., Heuer, M., and Schreiber, M.
J. (2008) BioJava: an open-source framework for bioinformatics.
Bioinformatics 24, 2096−2097.
(37) Zhang, Z., Nguyen, T., Roehner, N., Misirli, G., Pocock, M.,
Oberortner, E., Samineni, M., Zundel, Z., Beal, J., Clancy, K., Wipat,
A., and Myers, C. J. (2015) libSBOLj 2.0: A Java Library to Support
SBOL 2.0. IEEE Life Sciences Letters 1, 34−37.
(38) Sharp, P. M., Tuohy, T. M., and Mosurski, K. R. (1986) Codon
usage in yeast: cluster analysis clearly differentiates highly and lowly
expressed genes. Nucleic Acids Res. 14, 5125−5143.
(39) Gibson, D. G. (2011) Enzymatic assembly of overlapping DNA
fragments. Methods Enzymol. 498, 349−361.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00200
ACS Synth. Biol. 2017, 6, 485−496

496

http://dx.doi.org/10.1021/acssynbio.6b00200

