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1. INTRODUCTION

This report describes the code VHBORE which can be used to model fluid electric
conductivity profiles in a borehole intersecting fractured rock under conditions of
changing pressure in the well bore. Pressure changes may be due to water level variations
caused by pumping or fluid density effects as formation fluid is drawn into the borehole.

"Previous reports describe the method of estimating the hydrologic behavior of fractured
rock using a time series of electric conductivity logs (Tsang et al,, 1989), and an earlier
code, BORE, to generate electric conductivity logs under constant pressure and flow rate-
conditions (Hale and Tsang, 1988).

The earlier model, BORE, assumed a constant flow rate, gj, for each inflow into the
well bore. In the present code the user supplies the location, constant pressure, hj,
transmissivity, Tj, and storativity, Si, for each fracture, as well as the initial water level in
the well, hw (0), In addition, the input data contains changes in the water level at later
times, Ahw(t), typically caused by turning a pump on or off. The variable density
calculation also requires input of the density of each pf the inflow fluids, pj, and the intial
uniform density of the well bore ﬂuid, pw(0). These parameters are used to compute the
flow rate for each inflow point at each time step.

The numerical method of Jacob and Lohman (1952) is used to compute the flow rate
into or out of the fractures based on the changes in pressure in the wellbore. A
dimensionless function relates flow rate as a function of time in response to an imposed
pressure change. The principle of superposition is used to determine the net flow rate
from a time series of pressure changes. Additional reading on the relationship between
drawdown and flow rate can be found in Earlougher (1977), particularly his Section 4.6,
“Constant-Pressure Flow Testing.” |

The primary difference between variable and constant density applications of the code

is that with variable densities the pressure profile is computed at each time step, and when




density variations in the well bore result in a significant pressure change (i.e. equal to a
column of water of height equal to one half of the cell height, pgAx/2), this is also added
to the flow rate calculations. The wellbore is assumed to be vertical for purposes of
pressure calculations; however no gravity-driven flow effects are considered in this code.
The electrolyte concentration and the density are not related in the present code.
Therefore the code can be considered to model the trahSport of two independent
substances using the same flow field. Only the electrolyte is affected by diffusion in the
current code, and only the density affects the pressure profile. The decision to separate
the density calculation from the electrolyte concentration was made to permit modeling of
conditions where the density effects are due to something other than the electrolyte
solutions, such as drilling mud. Full radial mixing is assumed in the cells, and fingering

effects are not considered.

2. NUMERICAL AND ANALYTICAL SOLUTIONS

Governing Equation for Borehole Flow with Sources

The differential equation for mass or solute transport in a borehole is:
d(,dCY) o oC
ox\ ox) ox ot

where
C is the concentration (kg/m 3)
K is the dispersion coefficient (m2/sec)
S is the source term (kg/m3-sec), and
V is the fluid velocity (m/sec)
This partial differential equation is solved numerically using the finite difference method

(FDM). The following initial and boundary conditions are also specified:



C(x,0) =C,(x) (2a)
C(x>Xpax,t)=0 (2b)

K=0 for X>Xmax O X<ZXmin (2c)

The first condition allows for the specification of initial electrolyte concentrations in
‘the borehole. The second condition implies that there is no electrolyte in the borehole
fluid flowing from below the area of interest. If there is a background concentration in the
fluid flowing from the borehole bottom, this value should be added to all of the resulting
concentrations. The third condition indicates that dispersion does not take place across
" the specified boundaries of the area of interest. In general, advection will be the dominant
process at the boundaries. If dispersion is dominant for a particular problem, the
boundaries should bé extended in order to prevent improper trapping of electrolyte.

'I’his is the same govermning equation used by the constant flow code, BORE. The
differences in VHBORE are seen in the source, velocity and, if velocity dependent,
dispersion terms. The source term, Si, is no longer constant, but include the effects of
two-way flow between the well bore and the formation as the pressure changes in the
borehole. The velocity term, Vj, varies in response to the pressure history of the well,

and thus, if the dispersion coefficient, Kj, is velocity dependent, it will also vary

continuously with time.

Discretization in Space

In the borehole, uniform, one-dimensional spacing of nodes is used. It is assumed that
the borehole has uniform diameter d, and that the region of interest is divided into N
equal length cells of length Ax. Position values indicate depth in the borehole; thus x is
zero at the surface and increases downward. The flow within the borehole is generally
upward, and the cell index i increases downstream (upward, toward the surface). Thus

cells 1 and N are located at the bottom and top of the region, respectively, and node xj is




upstream of and at a greater depth than node xj+1. In general, node i is located at xmax —
(1 - 1/2) Ax, with boundaries of xmax — (i — 1)Ax upstream (at a depth below the node),
and xmax — (1)Ax downstream (at a depth above the node). Note that because all cells are
assumed to have the same geometry, flow rates are directly proportional to linear
velocities.

Each inflow is given a specific location in the input file, and the inflows are then
'assigned to specific cells. If multiple inflows are assigned to the same cell, their flow
rates and mass transfer rates are summed to produce a single source term for the cell. The
single source for the cell is assumed to be located at the midpoint of the cell.

The BORE code modeled a fracture as an infinite source of fluid with zero
concentration until a specified time, after which time the infinite source provides fluid
with a constant concentration. In the codes described here, a set of 50 “buckets” of
variable volume and concentration have been set between the borehole and this infinite
fluid source of fixed concentration. These buckets represent no particular geometry, but
rather just a volume of water with a particular concentration.

As fluid flows from the borehole to the fracture, the buckets are filled, one at each
time step. In the code, this is accomplished by storing a volume and concentration in
corresponding positions in the matrices VFRAC and CFZ, which are indexed by fracture
and bucket. The volume and concentration of the fluid transferred to the fracture depend
on the time step, flow rate, and local borehole fluid concentration. If fluid has been
flowing into the fracture for some time, and all of the buckets are full (i.e., all elements of
the matrices VFRAC and CFZ for the fracture are in use), the oldest ten volumes are
combined (i.e., dumped into one bucket, providing nine more empty buckets) by
summing the volumes and computing a new concentration based on the total mass.

As fluid flows from the fracture zone to the borehole, the buckets are ¢mptied in the

reverse order. If all of the buckets are empty, fluid is drawn from the infinite source of



constant concentration. If a number of buckets are necessary to meet the volume
requirements for a single time step, the concentrations are averaged.

The user specifies an initial volume and concentration in the first bucket. There is no
longer an initial period of zero concentration, rather fluid transfer between the borehole
and the fracture begins immediately. It is possible, however, to specify an intial volume
of infiltrated water with a zero concentration.

The concentration of the fluid moving between the borehole and the fracture zone (in
either direction) is determined by subroutine CTFRAC which is executed at each time
step. Subroutine TSTEP computes the actual mass transfer from the borehole to the

fracture zone.

Discretization in Time

Because the flow rates are not constant, a constant time step is not practical. Rather
than having the user specify a time step, the subroutines FLOWS, DFLOWS, FLOWSA
and TSTEP work together to compute a variable time step based on maximum velocity
and mass transfér rates. The time step is initially set by FLOWS or DFLOWS based on
flow rates (velocities) in the previous time step, if possible. Then FLOWSA modifies the
time step based on the expected flow rates during the present time step. If due to
dispersion effects this time step results in mass transfer inconsistencies, the time step is

further reduced by subroutine TSTEP.

Methods of Computing the Dispersion Coefficient

Within the code, three methods are available for determining the dispersion
coefficient for use at the interface between each pair of cells, Ki+1/2: constant, velocity
scaled, and velocity squared scaled. The first approach is used to model dispersion due to
molecular diffusion; the second, velocity dependence, is an approximation for porous

medium transport; and the last, velocity-squared dependence, corresponds to Taylor

dispersion for flow in a pipe. With each method, the dispersion coefficients at the two




adjacent cells to an interface are computed, then the harmonic mean is used at the

interface. Because no dispersion occurs across the region boundaries, K1/2 and KN+1/2

are defined to be zero.

With the constant method, the input dispersion parameter, K, is used for all the cell

interfaces and Equation (1) simplifies to

0 oC
—&-(CV)‘FS ==~5t— ' 3)

‘K a2C
° ox2
The velocity scaled methods use a somewhat arbitrary reference dispersion coefficient Ko

‘defined as the dispersion coefficient at a depth where the flow velocity is equal to the

mean velocity or the mean velocity squared,
<5 min(V}])+max(V})
v mnln 2 SR @

n. . . - .
where V' is the fluid flow velocity at node i raised to the first or second power (n = 1 or

2). Then the dispersion coefficient for node iis given by

Vi
Ki=Ko| 57 | . ©)

Note that since the cells have a uniform volume the velocities are proportional to the
flow rates, and the actual calculations are based on qj rather than vj (since qi =ViA,
where A is the uniform cross-sectional area).

- The dispersion coefficient at the interface between two cells is the harmonic mean:

11 Y
Kiti/2 = 1(‘I'<—i+ K, il‘) )]

For cells with no flow (e.g., upstream from the first feed point), the dispersion coefficient
of the first cell with nonzero flow is used.

The dispersion coefficients are then adjusted for the problem geometry,



AKji1/2

Yi+1/2 = T Ax @

where A is the uniform cross-sectional area.

If the dispersion type is flow rate dependent (ITYPDK is 2 or 3), the dispersion
coefficients must be computed during each time step. This is done in subroutine
FLOWSA after the current flow rates and velocities have been computed by subroutines

FLOWS or DELOWS.

Calculation of Flow Rates

At a given time the flow rate from a fracture zone to the borehole (or from the
borehole to the fracture zone) is a function of the fracture zone hydraulic parameters and
the pressure history in the borehole. At each time step the flow rate is computed by a
superposition of the effects of individual pressure changes. This calculation is performed
in subroutine FLOWS for constant density calculations and by subroutine DFLOWS for
variable density calculations.

The effect of a single pressure change, j, for a single inflow, i, is computed using a

dimensionless function, qD, which is defined as follows:

q;,j(t) =27T;Ahjqp (tp (1)) ®)
where
B T;(t—-1;)
tD(t)"( S ] | ©)

where Tj is the transmissivity of the inflow, Sj is the storativity of the inflow, r is the well
bore radius, Ahj is the drawdown for pressure change j, and Tj is the time of pressure
change j.

In these codes, the terms 2 Tj and Ti/Sir2 are calculated in subroutine RDFRAC and

stored as QCOEF(I) and TCOEF(I), respectively. The dimensionless function D is




computed using linear interpolation on a table for arguments values between 104 and

1012, The table is from Jacob and Lohman (1952). For dimensionless times (tD) greater
than 1012, Earlougher (1977) suggests using qD = Zl(ln(tD) +0.80907). For values
below 10—4, a somewhat arbitrary constant value of 56.9 is used (this is the value for
dimensionless time 10~4 given by Jacob and Lohman). Figure 1 shows the graph of the -
function qD.

| The calculation of flow rates is more complex for variable density cases. As the fluid
of different densities enters the well bore, the pressure profile in the well bore changes.
The pressure is no longer just a function of the drawdown values specified in the input
file, but also of the changing density profile in the well. At any given time, the pressure

(in meters of water) can be calculated as:

1 ¢
pi()=—— | px,t) dx 1)
W Xew
where pw is the density of water, g is the acceleration due to gravity, and X is the depth
of the water surface.

The use of the Jacob-Lohman solution requires that at every time step following a
pressure change the effect of the pressure change be computed. In order to provide for
some reasonable number of pressure changes to be recorded during the run, the wellbore
pressure at each inflow in discretized in time. If a pressure change at an inflow exceeds

 one half of a cell length, it is considered significant, recorded, and affects all following
flow rate calculations. All of the is done in subroutine DFLOWS. The array PHIST
stores the pressure history (pressure and time) for each inflow. Stated more concisely, the

current criterion for recording a significant pressure change due to density 1s:

Ipi(t1) —pi(t2)]> Ax /2 (11)



This condition make the assumption that the water level, xw, does not change between
times t] and t2.

After the flows between the fracture zones and the borehole have been determined,
the flow rates in the remaining cells are computed by subroutine FLOWSA assuming a
closed lower boundary and open upper boundary in the borehole, using the discretized
version of Equation (1).
| Note that if the input value for the initial drawdown and inflow depths and pressure
heads results in pressure differences between the input values for the fractures, it is

assumed that this pressure change took place at the model starting time (TSTART).

Calculation During Each Time Step

The constant mass injection of BORE has been replaced in the variable pressure
éodes by possible two-way mass transfer between the borehole and the fractures. At each
timé step the flow rate (and direction) and fluid concentration for transfer between the
borehole and the fracture zones is computed. This has been described above.

The mass transfer within the borehole during time step k is due to flow to or from the
feed points (the source of electrolyte), advection, and dispefsion. The finite-ditference |

version of Equation (1) may be written in terms of mass transfer (kg/sec) as follows:

(AC;  / At)(AAX) = Cf (gb)

+Ci-1,k-1(qi-1/2) = Ci x-1(Qi+is2) 12)
+(Ci—1.xk-1 - Cix-1)Vi-1/2) = (Ci k-1 = Cis1,k-1)(Yi+1/2)

~ where Cg i 1s the average concentration of electrolyte in the fluid flowing from the feed

points into cell i during time step k, and ¥j+1/2 is the dispersion coefficient at the
interface between two adjoining cells adjusted for the problem geometry. The first line of

the right-hand side is the source term, the second line is the advection term, and the third

line is the dispersion term. Upstream weighting is used in the advective terms.




This equation can be rewritten by collecting coefficients of the different cell

concentrations as:
(AC; x / At)(AAX) = Cif,k(Qf )

+Ci-1,k-1(Qi-1/2 +Yi-1/2)

(13)
+HCi,k-1(~Qi+i/2 = Yi-1/2 = Yi+1/2)

+Ci+1,k-1(Yi+1/2)

At each time step k a check is made to verify that the total mass in the cell at the
beginning of the time step is greater than or equal to the total mass to be transported out
of the cell during the time step. If this condition is not met, an error message is printed
and the time step Iis reduced.

Conservation of mass is verified during each time step and at the end of the problem.
Mass may flow into the system from the infinite reservoir in each fracture zone, and mass
may flow out of the system at the top of the borehole section. All other boundaries are

closed.

‘Temperature Dependence of Conductivity

All calculations are made assuming a uni\%form temperature of 20°C throughout the
borehole. Generally temperature increases with depth below the land surface, so
temperature corrections must be applied to field conductivity data to permit direct
comparison with model output.

The effect of temperature on conductivity can be estimated using the following

equation from NAGRA (1987):

o(Tx)
20°C) =
S = ST, - 20°0) (49

where Ty is the temperature (°C) at depth x. The value of S is estimated at 0.022.

10



Conductivity as a Function of Concentration
Assuming that all of the ions in the borehole fluid can be converted to NaCl
equivalents, the conduétivity and concentration data in Shedlovsky and Shedlovsky

(1971) can be fit fairly well using a quadratic approximation:

6=2,075C-45C2 ' (15)

where C is the concentration in kg/{m3 and o is the conductivity in pS/cm at 25°C. The
.expression is accurate for arange of Cup to 5 kg/m3 and o up to 10,000 puS/cm. For even
lower C up to 1 kg/ {m3 } and o up to 0.2 puS/cm, the second term may be neglected.

Although the experimental values are for 25°C, they may be used at 20°C if
multiplied by 0.89 (based on Equation (14) for the temperature dependence of

conductivity). Thus the above relationship would be
' c=1,850C-40C2 . (16)

3. DESCRIPTION OF FORTRAN CODE VHBbRE

The main program is little more than a single time step loop and a series of subroutine
calls. Before the time step loop begins, a single call to the subroutine INITS is made to
initialize all data areas and read the problem descriptions. Within the time step loop, the
flow rates are first computed using either constant or variable density approaches (using
either subroutine FLOWS or subroutine DFLOWS). Once the flow rates are computed, a
time step size is determined, and the mass transfer for the time step is accomplished using
subroutine ONESTEP. If the time step was determined to be too large (too much mass
was transferred out of a cell), the time step is reduced and the flow rates and mass transfer
are preformed again. If the time step was successful, the subroutine GOODSTERP is called
to check for output requests. After the ending time has been reached, a single call to the

subroutine ENDPROB is made to produce the final messages regarding mass transfer.

11




Common Blocks

The program has four named common blocks, CORR, FRACS, SEGS and STEP
which are defined in a separate source code file, VPCOMMS.F, and included as needed
in the main source file. The common block source file uses a set of parameters to specify
arfasr sizes, making it easier to change array sizes as need to suit different problems and
computing environments.

Common block CORR contains the coefficients for converting electrolyte
concentration in kg/m3 to conductivity in uS/cm. These terms are derived from a second
degree polynomial fit to experimental data, and are read by subroutine RDCORR.

Common block FRACS contains the arrays describing the fractures, including the
fracture flow rates, concentrations, positions, segment locations, transmissivities,
storativities, inﬁltration volumes, fluid densities, etc.

Common block SEGS contains the arrays describing each segment, including the
concentration and density at the beginning and end of the time step, the fracture inflow
average concentration and density, external flows into and out of the segment, fracture
flow into the segment, downstream flow to the next segment, total flow into the segment,
the position of the segment and the dispersion coefficient between the segment and the
next downstream segment.

Common block STEP contains other variables used during the time steps, including
the step duration, number of segments, maximum number of segments allowed, uniform
segment volume, cumulative mass and volume out of the system, cumulative mass and
volume into the system, time at the beginning and end of the time step, number of

fractures, conductivity output unit number, toggle index for the concentration array, etc.

Subroutines and Functions
The first level of subroutines includes INITS, FLOWS, DFLOWS, ONESTEP,
GOODSTEP and ENDPROB. These subroutines are called by the main program.

12




INITS performs global variable initialization, opens the input and output files, reads
the problem definition input file and performs the initial mass balance using subroutine
SMASS.

The two main portions of the the time step loop compute the variable flow rates and
perform the mass transfer. For a constant density calculation, the variable flow rates are
determined by subroutine FLOWS; while for a variable density case, the ‘subroutine
'DLFLOWS is used. The primary difference between these two routines is that FLOWS
using only depth to determine pressure differences (assuming a constant density fluid in
the well bore), whereas DFLOWS performs an actual integration of the density of all well
bore fluid in order to determine the pressure at some depth. Both subroutines uée the
function QD to determine individual inflow rates using the Jacob-Lohman solution, and,
after the individual inflow rates have been determined, both subroutines also call the
subroutine FLOWSA to develop the full flow rate profile, estimate the time step size, and
determine any velocity dependent aspects of the calculation.

The mass transfer for a single time step is carried out by subroutine ONESTEP. This
subroutine advances the simulation clock, save current state variables in case the time
step must be reversed, and calls subroutines CTFRAC and TSTEP. Subroutine CTFRAC
determines the average concentration and density of the source terms for the time step
based on the inflow rates, the time step, and any storage of fluid in the inflow zones.
Subroutine TSTEP peforms the actual mass transfer calculation and checks for
conservation of mass. If the subroutine TSTEP indicates that an attempt was made to
transfer too much mass out of a cell during the time step (due to the combined effects of
advection and diffusion), a flag is set and the time step is reduced.

' As mentioned aboVe, the subroutine GOODSTERP is called if the time step was
successful in order to determine if any output has been requested following the current

time step. Actual output of conductivity profiles is produced by subroutine CPRT.
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4. INPUT AND OUTPUT GUIDE

Input and Output Files

At the end of the computation, the subroutine ENDPROB is called to produce a

number of informational messages about the calculation.

The model uses one input and four output files. The input file contains the problem
description consisting of borehole geometry, top and bottom borehole flows, feed point
flows, timing parameters, dispersion parameters, and initial concentrations. The output
files consist of (1) messages produced by the model, (2) conductivity-depth pairs for each
borehole cell at the requested output times, (3) flow rate-depth pairs for each cell at the
requested output times, and (4) density-depth pairs for each cell at the requested output

times, The following table summarizes the input and output files and indicates their

FORTRAN unit numbers.
Table 4-1. Input and Output Files
UNIT NUMBER INPUT/OUTPUT DESCRIPTION
5 INPUT Problem description
6 OUTPUT Messages
7 OUTPUT computed conductivity
data
8 OUTPUT Flow rate profile
9 OUTPUT Density profile

Problem Description

14

The problem description is entered in free format, with values being separated by
spaces or commas. The number of lines in the problem description will be variable

depending on the number of feed points, number of times at which conductivity output is




desired, and number of initial concentrations specified. The following table provides a

detailed description of each line of the input.

Table 4-2. Input Guide.

LINE : NAME UNITS DESCRIPTION

1 XTOP m Top of study area, surface is zero and
positions increase downward, adjusted
if necessary to fit XBOT and DELX

XBOT m Bottom of study area
DELX m Cell length
DIAM cm Borehole diameter (uniform)
WATLEV m , Initial water level in well
TOPD none ' Initial density of well bore fluid
normalizedby density of water (spec.
grav.). TOPD<O0 for constant density
calculation
2 IFLIM none Number of inflows
21 XIN(®D) m Position of inflow
I=1,IFLIM CIN(LD) keg/m 3 Constant concentration for formation
water
TFRAC(I) m?/sec Inflow transmissivity
SFRAC() Inflow storativity
HFRAC(I) m Inflow pressure (over pg) \
VFRAC(, m3 Inflow initial volume of infiltrated
i3] deionized water
CFZ(1,1,1) kg/m3 Infiltrated water concentration
CIN(,2) none Density of inflow fluid normalized by

density of water (spec. grav.) (only for
variable density calculation)

15




Table 4-2. Continued.

3
31

I-1, IDHLIM
4

41
I=1,ILPT

6
6.1
I=1,ICON

IDHLIM

DELHT(I)
-DELHH()

TSTART
TEND
TSMAX
ILPT
PT[M

ITYPDK.

DK
ICON
X

CoMm
DO()

OFSET

COEFA
COEFB

none
hr

m

hr
Hr
min

hr

none

m2/sec
none

m
kg/m3
none

uS/cm

W S-m2)/100
kg

Number of water level changes

Time at which water level in borehole
changes

Change in water level (positive down)

Problem start time
Problem end time
Maximum time step
Number of print times
Time to print profile

Type code for dispersion coefficient
1 means DK is constant over all cells
2 means DK is the value for the mean
velocity,
g = (min(qi) + max(q))/2, ki =
DK(qivq)
3 means KD is the value for mean vel.
squared
\O(q . ) = (min{gq\S(, g) +
maX(q )2, Kj=DK((q /q )
D1sper510n coefficient

Number of initial concentrations

Position of initial concentration

Initial concentration

Initial density, normalized by density of
water (spec. grav.) (only for variable
density calculation)

constant term for converting
concentration in kg/m3 to conductivity
in pS/cm

linear ceotficient for converting
concentration to conductivity

(uS .m3)/1000 quadratic coefficient for converting

kg2

concentration to conductivity

The output subroutine CPRT converts concentration to conductivity just prior to

output by means of the coefficients in common CORR. If the coefficients 0,1,0 are

entered, then the output values are equivalent to the concentrations. The output

subroutine CPRT also converts flow rates to liters per minute just prior to output.

16



5. EXAMPLES

Verification Example: Single inflow, single pressure change

The first example allows verification by comparing with Example 4.4 in Earlougher
(1977). A single pressure change is applied to a single inflow. Earlougher's example
refers to an inflow zone of length 57.9 meters; this will be represénted in two different
.ways, both as a single inflow and as as a set of 58 inflows with a cell length of one meter.
The example applies a pressure drop of 703.6 meters (1000 psi). The hydrological
characteristics include a permeability of 6.5 millidarcy and a viscosity of 1.35 centipoise,
giving a transmissivity of 2.697 x 10~6m2/sec. The porosity-compressibility product is
2.05x 1079} psi—1, giving a storativity of 168.7 x 10~6. The single drawdown occurs at
time zero hours.

The input for this example problem with the inflow represented as a single point is

shown below.

DATA

;

000, 2000, 1, 60.96, 0, -1
1

1900. 1.00 2.697e-6 168.7e-6 1899.5 0. 0.
1 .

0703.57

0,100,159

0.2

[ Wy

Voo h W=
W

1,0.5¢-3
0
73., 1870., —40.

NOUARRBRRARRARARROWNN-

The input for the case of 58 inflows is identical to that above except for lines 2 and 2.x.

The transmissivity and storativity values have been scaled by 58:

17




LINE DATA

2 58

2.1 1900. 1.00 46.495¢e-9 2.9092e-6 1899.5 0.
0.

22 1901. 1.00 46.495e-9 2.9092¢-6 1900.5 0.
0.

2.31t0 57 (omitted)

2.58 1957. 1.00 46.495¢e-9 2.9092e-6 1956.5 0.
0. '

The negative value at the end of the first line of the input indicates a constant density
calculation. Both approaches to the inflow description result in the same number of
simulation time steps (5,415), ranging from 7.8 to 73 seconds.

Figures 2 through 6 illustrate different aspects of the calculation. Figure 2 shows the
flow rate as a function of time. The units are Earlougher's oil-field system of barrels per
day (one liter per minute is 9.0573 barrels per day). This figure matches Figure 4.13 in
Earlougher (1977). The flow rate is the same regardless of Which representation of the
inflow zone is used.

The flow rate and conductivity profiles for the single point representation are shown '
in Figures 3 and 4, and Figure 5 and 6 show the same for the 58-cell representation. The
different approaches to modeling the inflow section have fairly limited effects. The flow
rate shows a ramp for the line source, as opposed to a step for the point source, and there

is a slower buildup of saturated concentration levels with the line source.

Variable Density Examples

In order to demonstrate the effect of well bore fluid density on the flow rate, two
variations on the above single inflow, single pressure drop case are presented here. In the
first, the well bore fluid is twice as dense as the inflow fluid; and, in the second case, the
inﬁow fluid is twice as dense as the well bore fluid. The changes in the input file are

shown below:
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LINE DATA

1 1000, 2000, 1, 60.96, 0, 2 [well bore fluid
density high]

2 1

2.1 1900. 1.00 2.697e-6 168.7e-6 1899.5 0. 0. 1. 0.

LINE DATA

1 1000, 2000, 1, 60.96, 0, 1

2 1

2.1 1900. 1.00 2.697e-6 168.7e-6 1899.5 0. 0. 2. 0.
[denity high]

Figures 7 and 8 show the flow rate as a function time for these two cases. In Figure 7,
with the well bore fluid having a higher density, the pressure difference between the
inflow and the well bore at the inflow depth is initially reduced, so the flow rate is also
reduced. As the less dense fluid flows into the well bore and the denser fluid is pumped
out, the pressure difference at the inflow depth increases, until, after about 30 hours the
denser fluid initially in the well bore has been flushed out, and the problem converges
with the constant density solution.

In Figure 8, with the inflow fluid having a higher density, the flow rate is initially
similar to the constant density case. But as the denser fluid flows into the well, driving
up the pressure at the inflow depth, the flow rate decreases. Eventually, after a few
hundred hours, the flow stops since even with the drawdown of over 700 meters, the
denser fluid in the well bore has resulted in equilibrium between the well and the inflow
at the inflow depth.

Figure 9 shows the driving pressure differences in meters of water as a function of

time for these cases.

Multiple Inflow, Multiple Pressure Change

One more complex example is presented which involves three inflows and two

-

drawdown changes. The problem is a variation of the constanst density verification
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example at the start of this section. The inflow and drawdown change input is as follows:

shown below:

LINE DATA

3

1500. 1.00 2.697¢-6 168.7¢-6 1399.5 0. 0.
1700. 1.00 2.697¢-6 168.7e-6 1799.5 0. O.
1900. 1.00 2.697e—6 168.7e—6 1899.5 0. 0.
2

10 703.57

50-703.57

WWWNN NN
(PSS

Pt pomd

~ Notice that when the water level is at the surface, there is a circulation within the well
from 1700 meters to 1500 meters due to inflow pressure head ditferences. The water
level changes approximate turning a pump on at 10 hours and off at 50 hours.

Figure 10 shows the flow rate across the inflow at 1500 meters as a function of time.
Note that initially the flow is negative, i.e. water is flowing from the wellbore into the
formation. Figure 11 shows the concentration of the water flowing across the inflow.

Figures 12 and 13 show the flow rate and conductivity profiles for the entire wellbore

at times before, during and after pumping.
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Figure 1. Dimensionless flow rate as a function of dimensionless time, showing
the three solution techniques used in different subdomains.
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S$=168.7e-6, drawdown of 703.57 meters. Matches Figure
4.13 in Earlougher (1977) for example of constant-pressure
testing in an infinite-acting reservoir (Earlougher's Example 4.4).
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Initially, the flow rate is the same as the constant density
case, but as the higher density fluid flows into the well bore,
the driving pressure difference at the inflow depth decreases
until the flow stops after a few hundred hours.

27




Pressure Difference (m water)

800 U R N B

DrawdownChanqe

TN
\\\

i

600 \ /

500

S

400 = /

Well pore;' ﬂund den:sitjy:r}:igh

300

200

-

100

0 RN ERETH B A R

0.001 0.01 0.1 1 10 100 1000

Flow Time (hrs)

Figure 9. Driving pressure difference (in meters of water)
as a function of time. For the constant density calculation,
this is simply the drawdown change of 703.6 meters.
With higher density initial wellbore fluid, the pressue
difference is reduced initially but converges with the
constant density solution. With higher inflow density,
the difference is initially the same as the constant
density case, but decreases to zero as higher density
fluid moves into the well bore.

28




the inflow at 1500 m. The most striking feature is the delayed
rise in conductivity after the pump starts at 10 hours. This is
due to pre-production infiltration of low conductivity fluid from
borehole to inflow formation. At late times after pumping, as
more of the high conductivity fluid moves out of the wellbore, the
concentration gradually drops as the front moves toward 1500m.
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Flow before pumping (up to 10 hr) is from 1700m to 1500m.
During pumping (10 to 50 hr), inflows are seen at 1900m,
1700m and 1500m. After pumping (after 50 hr), flow is
again toward 1500m, both from above and below, pulling

the high conductivity fronts back toward 1500m.
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