
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Exact Learning of Graphs Using Queries

Permalink
https://escholarship.org/uc/item/84d4g3r6

Author
Afshar, Ramtin

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/84d4g3r6
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Exact Learning of Graphs Using Queries

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Ramtin Afshar

Dissertation Committee:
Distinguished Professor Michael T. Goodrich, Chair

Distinguished Professor David Eppstein
Professor Sandy Irani

2023



Chapter 3 © 2022 Springer
All other materials © 2023 Ramtin Afshar



DEDICATION

To my parents Elham and Ali, to my wife Parinaz, and to my sister Melika, for their
unconditional support throughout my journey.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

VITA ix

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1
1.1 Learning Rooted Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Learning Multitrees and Almost-trees . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Learning Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Learning Rooted Trees 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Learning Rooted Trees using Path Queries . . . . . . . . . . . . . . . . . . . 10

2.3.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Learning Multitrees and Almost-trees 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Learning Multitrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Rooted Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Multitrees of Arbitrary Height . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Butterfly Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

iii



3.4 Parallel Learning of Almost-trees . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Learning an Arborescence in a DAG . . . . . . . . . . . . . . . . . . 54
3.4.2 Learning a Cross-edge . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.3 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Learning Connected Graphs 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Prior Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Parallel Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Our Fast Parallel Network Mapping Algorithms . . . . . . . . . . . . . . . . 78
4.4 A Greedy Network Mapping Algorithm . . . . . . . . . . . . . . . . . . . . . 88
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 96

iv



LIST OF FIGURES

Page

2.1 A digital phylogenetic tree of images, from Dias et al. [44] showing the evolu-
tionary relationship between a set of near-duplicate images. . . . . . . . . . . 7

2.2 This figure shows the divide and conquer approach using an edge-separator,
(x, y) for rooted trees. Note that the root of T ′′ is r, while y becomes root of T ′. 12

2.3 Illustration of how scattered sample S is on path Y . The ith blue interval
represents the ith section of Y , the black dots correspond to the nodes on the
path Y , and red crossed marks represent elements of S. . . . . . . . . . . . 18

2.4 Illustration of the path reduction in Phase 1 of find-splitting-edge. At the end
of this phase, the path Y is trimmed down into the subpath consisting of the
nodes between w and z, which contains b w.h.p. . . . . . . . . . . . . . . . . 27

2.5 Illustration of the Ω(dn + n log n) lower bound for path queries in directed
rooted trees (shown for d = 6). . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Comparing Our Algorithm’s number of rounds (left) and total queries (right)
with Wang and Honorio’s [103], for fixed d = 5 and varying n. . . . . . . . . 32

2.7 Comparing our algorithm’s number of rounds (left) and total queries (right)
with Wang and Honorio’s [103], for n = 50000 and varying values for d. . . 33

2.8 Change in the total number of rounds (left) and total number of queries (right)
when running our algorithm for varying values of C2 (n = 50000, d = 5). . . 33

2.9 A scatter plot comparing the number of queries and rounds of our algorithm
and with the one by Wang and Honorio [103] for real-world trees from Tree-
Base [84]. Since our algorithm is parallel, we include round complexity to
serve as a comparison for the sequential complexity. . . . . . . . . . . . . . . 34

3.1 An example of a butterfly network with height 4 (Depth 4), F 4, as a compo-
sition of two F 3 (A and B) and 24 additional vertices, C, in Height 0. . . . . 41

3.2 The reduction of separator queries (left) to path queries (right). We have
that (i) sep(r, u, v) = 1 ⇐⇒ path(u, v) = 1 and (ii) sep(r, u, w) = 0 ⇐⇒
path(u,w) = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 An example of a complete 3-ary tree attached to the last level of a caterpillar
graph of height Θ(h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Partial map of the Internet circa 2005. Image by The Opte Project, unchanged
and licensed under the Creative Commons Attribution 2.5 Generic license. . 68

v



4.2 This figure represents a partial structure of our Voronoi Diagram. Blue ver-
tices represent centers from A. The circle centered at a ∈ A represents the
vertices of distance at most 2δmax from a. We use clusters of nearby vertices
of a to discover boundary edges. For simplicity, we draw only two clusters for
two arbitrary nodes w1, w2 ∈ N2δmax(a). . . . . . . . . . . . . . . . . . . . . . 85

vi



LIST OF TABLES

Page

4.1 Our w.h.p. bounds for the network mapping problem, where ϵ denotes a fixed
constant, 0 < ϵ < 1/2, n = |U | and ∆, δmax, µ, and τ(·) are as defined above. 73

vii



ACKNOWLEDGMENTS

I would like to start by thanking my advisor, Michael Goodrich, for conceding me this journey
and for his continuous support. I also want to thank him for the independence to pursue
the research directions that interested me the most despite all the ups and downs. During
periods of uncertainty, he led by example showing me how to do things better and faster
helping me to have little progress each and every single day. I thank David Eppstein for his
helpful feedback on my projects during theory seminars and for serving in my defense and
advancement committees. I thank Sandy Irani for serving in my defense and advancement
committees. I also thank Milena Mihail and Carter T. Butts for serving in my advancement
committee. I am thankful to Vijay Vazirani, without him my journey probably would have
been a different one, as he reviewed my Ph.D. application and he connected me with Michael
Goodrich. I also want to thank Michael Dillencourt with whom I had the pleasure of being
a TA most of the times, for his understanding about my research commitments.

I want to thank all my co-authors for their collaboration during my doctoral studies. In
particular, I thank Ami Amir, Michael Dillencourt, Michael Goodrich, Pedro Matias, Martha
Osegueda, and Evrim Ozel. I am thankful that I received funding support from Donald Bren
School of Information and Computer Science. A part of this dissertation is also supported
by National Science Foundation, under grant 1815073. Chapter 3 of this dissertation is a
reprint of the material as it appears in [8], used with permission from Springer, and the
co-author listed in this publication is Michael Goodrich.

Finally, I want to thank my family and friends for being always there for me and motivating
me throughout this journey. I want to thank my parents, starting from my mother, Elham,
who dedicated her youth to raise me and motivated me to reach my ideal self, and my father,
Ali, who had faith in me, supported me unconditionally. I also thank my sister, Melika, for
her cheerfulness and her sense of humor who turned around my bad days. I want to thank
my lovely wife, Parinaz, whom I met in her senior year of her bachelor at UC Irvine. She
always pushed me to the next level and supported me when I was mentally broken. Having
her in my life undoubtedly made me a better person in every single way. I also thank my
parents-in-law, Farhnaz and Kamran, who welcomed me in their family. I want to thank
my best friend, Saman, who was always like an older brother for me and I’m grateful that I
found him at UC Irvine.

viii



VITA

Ramtin Afshar

EDUCATION

Doctor of Philosophy in Computer Science 2023
University of California, Irvine Irvine, USA

Master of Science in Computer Science 2022
University of California, Irvine Irvine, USA

Bachelor of Science in Computer Engineering, Software 2014
Sharif University of Technology Tehran, Iran

EXPERIENCE

Graduate Research Assistant 2018–2023
University of California, Irvine Irvine, California

Teaching Assistant 2018–2023
University of California, Irvine Irvine, California

Software Engineering Intern 2022
Google Mountain View, California

Data Analyst Intern 2021
Samsung San Jose, California

ix



REFEREED CONFERENCE PUBLICATIONS

Noisy Sorting Without Searching: Data Oblivious Sort-
ing with Comparison Errors

2023

Ramtin Afshar, Michael Dillencourt, Michael Goodirhc, Evrim Ozel

In reivew for Symposium on Experimental Algorithms (SEA)

Exact Learning of Multitrees and Almost-Trees Using
Path Queries

2022

Ramtin Afshar, Michael T. Goodrich

Latin American Theoretical Informatics Symposium

Efficient Exact Learning Algorithms for Road Networks
and Other Graphs with Bounded Clustering Degrees

2022

Ramtin Afshar, Michael T. Goodrich, Evrim Ozel

International Symposium on Experimental Algorithms (SEA)

Mapping Networks via Parallel kth-Hop Traceroute
Queries

2022

Ramtin Afshar, Michael T. Goodrich, Pedro Matias, Martha C. Osegueda

International Symposium on Theoretical Aspects of Computer Science (STACS)

Parallel Network Mapping Algorithms 2021
Ramtin Afshar, Michael T. Goodrich, Pedro Matias, Martha C. Osegueda

Symposium on Parallelism in Algorithms and Architectures (SPAA)

Reconstructing Biological and Digital Phylogenetic
Trees in Parallel

2020

Ramtin Afshar, Michael T. Goodrich, Pedro Matias, Martha C. Osegueda

European Symposium on Algorithms (ESA)

Reconstructing Binary Trees in Parallel 2020
Ramtin Afshar, Michael T. Goodrich, Pedro Matias, Martha C. Osegueda

Symposium on Parallelism in Algorithms and Architectures (SPAA)

Adaptive Exact Learning in a Mixed-Up World: Dealing
with Periodicity, Errors and Jumbled-Index Queries in
String Reconstruction

2020

Ramtin Afshar, Amihood Amir, Michael T. Goodrich, Pedro Matias

International Symposium on String Processing and Information Retrieval (SPIRE)

x



ABSTRACT OF THE DISSERTATION

Exact Learning of Graphs Using Queries

By

Ramtin Afshar

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Distinguished Professor Michael T. Goodrich, Chair

Given the vertices, V , of an unknown graph G = (V,E), exact learning refers to the process

of reconstructing the edges, E, to learn its structure using an all-knowing black box oracle.

This is motivated by a broad range of applications from network discovery, where the goal

is to infer the topology of a communication network from queries, to computational biology

and digital phylogeny, where we wish to learn how a set of objects have been evolved through

a set of experiments. In this dissertation, we study various instances of exact learning of

graphs using different query settings. For instance, we present an optimal algorithm to

learn digital phylogenetic trees (directed rooted trees) using path queries, where a path

query given two vertex, u and v, it returns true if and only if there is a directed path

from u to v. We also provide efficient algorithms to learn other directed graphs such as

multitrees, butterfly networks, and almost-trees from path queries. In addition, we study

efficient learning algorithms for network mapping using kth-hop queries, where a kth-hop

query given vertex u and v and integer k, it returns the kth vertex on a shortest path from

u to v.

xi



Chapter 1

Introduction

The exact learning of a graph, also known as graph reconstruction, refers to the process

of reconstructing an unknown ground-truth graph data structure, through an all-knowing

oracle, which answers certain types of queries involving a subset of vertices of the graph.

This process can be abstracted in terms of two parties, a querier, Bob, who issues queries of

a certain type with the goal of learning a hidden ground-truth graph, G, and, a responder,

Alice, who must correctly answer queries regarding the structure G.

We distinguish three settings for exact learning of graphs, namely, non-adaptive, adaptive,

and an intermediate setting, parallel [42]. In non-adaptive, the querier, has to issue all the

queries at once upfront. In adaptive setting, the querier may choose queries depending on

the answers to the prior queries. Finally, in the parallel setting, the querier issues queries in

batches where the queries in the same batch should not depend on the answer of the other

queries in the same batch, but they may rely on the queries issued in the previous batches.

Since the provided query responses may eliminate the search space, that is, it may remove

the need to ask some specific queries, it is reasonable to think the more parallel a solution

is, the more likely it demands more queries.

1



In this dissertation, we mostly focus on studying parallel exact learning algorithms. We

measure the efficiency of our methods in terms of the number of vertices of the graph, n,

using two complexities, i) query complexity, Q(n), which is the total number of queries

that we perform, and it comes from the learning theory [5, 32, 47, 7, 95] and complexity

theory [26, 107], and ii) round complexity, R(n), which is the number of rounds that we

perform our queries. In particular, we provide efficient algorithms for exact learning of

various graph classes including directed graphs such as rooted trees, multi-trees, almost-

trees, and undirected connected graphs with various query models which we describe next.

Note that while the focus of this dissertation is to study exact learning methods for learning

a hidden ground truth graph, there are other frameworks for learning as well. For instance,

as proposed by Valiant [102], probably approximate correct (PAC) learning is a framework

with the goal of learning with high probability an approximately correct hidden concept

(e.g. graphs in this dissertation). In addition, throughout this dissertation we assume all the

query responses are correct. Note that in the presence of an independent noise probability

p < 1/2 for query responses, that is, when response of each query is correct independently

with probability 1−p and incorrect otherwise, all of our results still hold with high probability

by repeating each query for O(log n) times in parallel and taking the majority vote as the

response [30].

1.1 Learning Rooted Trees

We present an optimal parallel algorithm to learn an unknown directed rooted tree T =

(V,E, r), with vertex set V , and root vertex, v ∈ V , and edges E oriented away from r using

path queries. A path query given two vertices u and v, it returns true if and only if there

is a directed path from u to v. The querier knows V , but learning r and E is the objective

of the algorithm. Motivated by applications in biological and digital phylogeny, we assume

2



that the tree has a maximum degree of some constant, d.

Results.

We show that a fixed-degree rooted tree with n vertex can be learnt using path queries with

R(n) ∈ O(log n) and Q(n) ∈ O(n log n), with high probability, w.h.p. 1 We also prove that

our algorithm is optimal in terms of query complexity and round complexity by providing

a matching lower bound of Ω(dn + n log n) for any randomized or deterministic algorithm.

In addition, our parallel algorithm outperforms the best-known sequential complexity of

Q(n) ∈ O(n log2 n) for this problem by Wang and Honorio [103]. We also suggest some

real-world applications by accompanying an experimental analysis of our algorithm.

1.2 Learning Multitrees and Almost-trees

Given the vertices V of a directed acyclic graph (DAG), G = (V,E), we aim at learning

E using path queries. However, not every directed acyclic graphs can be learnt using path

queries, for instance, transitive edges in a DAG cannot be distinguished. For this purpose, we

study families of DAGs that do not have transitive edges. We devise exact learning algorithms

for multitrees—a Dag with at most one directed path between any pair of vertices. We also

study how to efficiently learn an almost-tree, where we define an almost-tree as a union of a

directed rooted tree with an additional cross edge.

Results.

We first present a deterministic result for learning a directed rooted tree using path queries,

giving a sequential deterministic approach to learn fixed-degree trees of height h, with O(nh)

path queries, which forms a building block for some of the algorithms in Chapter 3. We then

1We say that an event occurs with high probability, w.h.p., if it occurs with probability at least 1− 1
nc ,

for some constant c ≥ 1.

3



employ a tree-learning method to design a learning method for a multitree with a roots

using Q(n) ∈ O(an log n) path queries and R(n) ∈ O(a log n) rounds w.h.p. Additionally,

we use our tree learning to devise a method with Q(n) ∈ O(n3/2 · log2 n) path queries to learn

butterfly networks w.h.p. We present a parallel algorithm to learn almost-trees of height h,

with Q(n) ∈ O(n log n+ nh) and R(n) ∈ O(log n) w.h.p. We prove that our our almost-tree

learning algorithm is optimal by providing a lower bound of Ω(n log n + nh) for the worst

case query complexity of a deterministic algorithm or an expected query complexity of a

randomized algorithm for learning fixed-degree almost-trees. In addition, our asymptotically-

optimal query complexity bound improves the best-known sequential query complexity for

this problem due to Janardhanan and Reyzin [69] who achieved Q(n) ∈ O(n log3 n+ nh) in

expectation.

1.3 Learning Undirected Graphs

For a source node u and a target node v, the kth-hop query returns kth vertex on a shortest

path from u to v. Indeed, kth-hop query forms the inner loop of how the traceroute

command works, as traceroute issues kth-hop query for k = 1, 2, · · · , δ(u, v), where δ(u, v)

is the number of edges on a shortest path from u to v. Suppose we are given access to a subset

U ⊆ V of vertices of a connected, undirected, unweighted graph G = (V,E), in the network

mapping problem, we wish to learn the induced shortest path graph H = (U, Ẽ), such that

there is an edge (u, v) ∈ Ẽ if and only if kth-hop(k, u, v) return vertices of a shortest path

from u to v that does not include any other vertex in U except v, that is, no kth-hop(k, u, v)

query would return a vertex w ∈ U aside from vertex v. Therefore, the objective of the

network mapping problem is to learn a weighted, connected, undirected, graph H, where for

two vertices u and v the edge (u, v) in H has weight δ(u, v)

Results.

4



We begin by introducing a new parallel implementation of a well-known graph clustering

technique of Thorup and Zwick [98] with round complexity of O(1), while their original im-

plementation implies an expected round complexity of O(log n). In doing so, we introduce

a parameter that allows us to trade off parallel time and cluster size. We will use this new

construction to learn a graph-theoretic Voronoi diagram in our network mapping algorithm.

We then provide the first non-trivial algorithmic results for the network mapping problem.

We characterize the query complexity and our round complexity using the size of the van-

tage point, n = |U |, and some interesting parameters that capture the sampling coverage

provided by the set U . For instance, let ∆ be the maximum degree of the graph, H, and we

introduce a distance coverage parameter, δmax, which is the maximum weight for an edge in

H, and a nearby-vertices parameter, µ, which is an upper bound on the number of vertices

within a distance of 2δmax of any given vertex v ∈ U . We show that these parameters are

required to avoid trivial quadratic solutions. For instance, under reasonable assumptions

regarding these parameters, we present the first constant-round network-mapping algorithm

with query complexity better than the trivial brute-force algorithm. We also introduce a

greedy approach for network mapping that is based on parallel greedy approximate set cover,

which allows us to achieve a near-quasilinear query complexity.

5



Chapter 2

Learning Rooted Trees

2.1 Introduction

Phylogenetic trees demonstrate how a group of objects have been evolved from one another.

Phylogenetic trees most commonly refer to the biological phylogenetic trees, however, re-

cently, there has been a growing interest to study the evolutionary relationships in digital

phylogenetic trees [54, 83, 70, 77, 92, 27, 46, 45, 44]. Within a digital phylogenetic tree, each

vertex is a data object, such as a multimedia object (e.g. images or videos) [27, 46, 45, 44],

a text document [77, 92], a source-code [70], or a computer virus [54, 83], and the edges

show how these objects are evolved using edits, data compression, or data corruption. (See

fig. 2.1.)

In this chapter, we provide efficient algorithms for exact learning of digital phylogenetic

trees using queries involving nodes of the tree. In digital phylogenetic trees, we can perform

queries involving any nodes in the tree, including internal nodes, as these represent digital

artifacts, which are often archived. In particular, we focus on path queries, where one is

given two nodes, v and w, and the response is “true” if and only if v is an ancestor of w.

6



Figure 2.1: A digital phylogenetic tree of images, from Dias et al. [44] showing the evolu-
tionary relationship between a set of near-duplicate images.

Reconstructing these phylogenetic trees helps us to better understand the evolutionary

process of the digital artifacts. Specifically, learning the structure of digital phylogenetic

trees has applications in several areas such as security, forensics, and copyright enforce-

ment [54, 83, 70, 77, 92, 27, 46, 45, 44]. For instance, learning a phylogeny of original

and near-duplicate documents can help forensic experts as they may achieve better results

if they analyze the original document rather than near-duplicate documents [44]. On the

other hand, these experts may want to focus more on individuals who distribute the contents

closer to the root of tree since they are more likely to be the one who created the original

content, therefore, learning the tree can help them to identify the nodes close to the root.

While previous work focused on learning trees sequentially, we provide an efficient parallel

exact learning method to learn trees. We measure the performance of our exact learning

methods in terms of the number of vertices of the tree, n, using two complexities:

• Query complexity, Q(n): This is the total number of queries that we perform. This

parameter comes from learning theory [5, 32, 47, 95] and complexity theory [106, 26].

7



• Round complexity, R(n): This is the number of rounds that we perform our queries.

The queries performed in a round are in a batch and they may not depend on the

answer of the queries in the same round (but they may depend on the queries issued

in the previous rounds).

Roughly speaking, R(n) corresponds to the span of a parallel exact learning algorithm, while

Q(n) corresponds to its work. In this chapter, we are interested in studying complexities for

R(n) and Q(n) with respect to digital phylogenetic trees with fixed maximum degree, d.

2.1.1 Related Work

Kannan et al. [71] study the problem of learning a connected, undirected, and unweighted

fixed-degree graph using distance queries, where the query returns the distance between two

given vertices of the graph, and they provide a randomized algorithm for learning a graph

of n vertices using Õ(n3/2) distance queries.1 Abrahamsen et al. [3] study the same problem

with a weaker query type, called betweenness, where the query given three vertices u, v, w

returns whether v lies on a shortest path from u to w, and they provide an algorithm to

exactly learn the graph using Õ(n3/2) betweenness queries.

We are not aware of previous parallel work for learning digital phylogenetic trees using

a similar query model to ours. With respect to prior work on sequential tree learning,

Culberson and Rudnicki [39] provide an algorithm to learn a weighted undirected tree with

n vertices using additive distance queries, where each query given two vertices returns the

sum of the weights of edges on the path between these two vertices. They show that their

algorithm takes O(n2) queries to learn the tree in general, but for a tree of maximum degree,

d, they provide an analysis showing that their algorithm takes O(dn logd n) additive queries.

Reyzin and Srivastava [87] show that Culberson-Rudnicki algorithm indeed uses O(n3/2 ·
√
d)

1The Õ(·) notation hides poly-logarithmic factors.

8



queries for learning a tree of maximum degree, d, and they provide tight examples. Hein [61]

study the problem of learning a biological phylogenetic tree using additive distance query

where the query returns the distance between two species and they give an algorithm using

O(dn logd n) additive queries.

With respect to digital phylogenetic tree reconstruction, there are a number of sequential

algorithms with O(n2) query complexities, including the use of what we are calling path

queries, where the queries are also individually expensive, e.g., see [54, 83, 70, 77, 92, 27,

46, 45, 44]. Jagadish and Sen [68] consider reconstructing undirected unweighted degree-d

trees, giving a deterministic algorithm that requires O(dn1.5 log n) separator queries, which

answer if a vertex lies on the path between two vertices. They also give a randomized

algorithm using an expected O(d2n log2 n) number of separator queries, and they give an

Ω(dn) lower bound for any deterministic algorithm. Wang and Honorio [103] consider the

problem of reconstructing bounded-degree rooted trees, giving a randomized algorithm that

uses expected O(dn log2 n) path queries. They also prove that any randomized algorithm

requires Ω(n log n) path queries.

Our Contributions. In this chapter, we show that an n-node fixed-degree digital phylogenetic

tree can be reconstructed from path queries, which ask whether a given node, u, is an ancestor

of a given node, w, with R(n) that is O(log n) and Q(n) that is O(n log n), w.h.p. We

also provide an Ω(dn+ n log n) lower bound for the query complexity of any randomized or

deterministic algorithm suggesting that our algorithm is optimal in terms of query complexity

and round complexity. Further, this asymptotically-optimal Q(n) bound actually improves

the sequential complexity for this problem, as the previous best bound for Q(n), due to Wang

and Honorio [103], had a Q(n) bound of O(n log2 n) for reconstructing fixed-degree rooted

trees using path queries. Of course, our method also applies to biological phylogenetic trees

that support path queries. These results are accompanied by an experimental analysis of

our algorithm at the end of this chapter showing the real-world applications.

9



2.2 Preliminaries

A digital phylogenetic tree can be represented using using a directed rooted tree, T =

(V,E, r), with a vertex set V , root r ∈ V , and the edge set E oriented away from the root.

The degree of a vertex in such a tree is the sum of its in-degree and out-degree, and the

degree of a tree, T , is the maximum degree of all vertices in T . In this chapter, we assume

that the trees have a maximum degree of constant, d.

Next, we review a few commonly used terms in this chapter.

Definition 2.1. (ancestry) Assume T = (V,E, r) is a rooted tree, we call u a child of v

(and v parent of u) if there exists a directed edge (v, u) in E. The descendant relation is

the transitive closure of the child relation, and the ancestor relation is the transitive closure

of the parent relation. We call a node leaf if its out-degree is 0. Let D(v) be the set of

descendants of a vertex v.

Definition 2.2. (path query) Given two nodes, u and v in a rooted tree T , a path query

returns 1 if there is a directed path from u to v, and otherwise returns 0. Also, for v ∈ V and

U ⊆ V , we represent the number of descendants of v in U with count(v, U) = |D(v) ∩ U | =∑
u∈U path(v, u).

2.3 Learning Rooted Trees using Path Queries

Let T = (V,E, r) be a rooted digital phylogenetic tree with fixed degree, d. In this section,

we show how a querier can reconstruct T by issuing Q(n) ∈ O(n log n) path queries in

R(n) ∈ O(log n) rounds, w.h.p., where n = |V |. We provide a lower bound to prove that our

algorithm is optimal in terms of query complexity and round complexity. At the outset, the

only thing we assume the querier knows is n and V , that is, the vertex set for T , and that

10



the names of the nodes in V are unique, i.e., we may assume, w.l.o.g., that V = {1, 2, . . . , n}.

The querier doesn’t know E or r—learning these is his goal.

2.3.1 Algorithms

We start by learning r, which we show can be done via any maximum-finding algorithm in

Valiant’s parallel model [100], which only counts parallel steps involving comparisons. The

challenge, of course, is that the ancestor relationship in T is, in general, not a total order, as

required by a maximum-finding algorithm. This does not actually pose a problem, however.

Lemma 2.1. Suppose A be a parallel maximum-finding algorithm in Valiant’s model, with

O(f(n)) span and O(g(n)) work. We can use A to find the root, r in a rooted tree T =

(V,E, r), using R(n) ∈ O(f(n)) rounds and Q(n) ∈ O(g(n) + n) total queries.

Proof. We pick an arbitrary vertex v ∈ T . In the first round, we perform queries path(u, v)

in parallel for every other vertex u ∈ V to find S, the ancestor set for v. If S = ∅, then v is

the root. Otherwise, we know all the vertices in a path from root to the parent of v, albeit

unsorted. Still, note that for S the ancestor relation is a total order; hence, we can simulate

A with path queries to resolve the comparisons made by A. We have just a single round and

O(n) queries more than what it takes for A to find the maximum. Thus, we can find the

root in O(f(n)) rounds and O(g(n) + n) queries.

Thus, by well-known maximum-finding algorithms, e.g., see [34, 93, 100]:

corollary 2.1. We can find r of a rooted tree T = (V,E, r) deterministically in O(log log n)

rounds and O(n) queries.

Determining the rest of the structure of T is more challenging, however. At a high level, our

approach to solving this challenge is to use a separator-based divide-and-conquer strategy.

11



+

Figure 2.2: This figure shows the divide and conquer approach using an edge-separator,
(x, y) for rooted trees. Note that the root of T ′′ is r, while y becomes root of T ′.

We next study a separator for degree-d rooted trees.

Definition 2.3. In a tree T = (V,E, r) of maximum degree d, we call an edge e = (x, y) ∈ E

an even-edge-separator if removing e from T partitions it into two rooted trees of with at

most |V | · (d− 1)/d vertices (see fig. 2.2).

Lemma 2.2. Every rooted tree of maximum degree d has an even-edge-separator.

Proof. This follows from a result by Valiant [101, Lemma 2].

If we can find an even-edge-separator, then we can cut the tree in two by removing that

edge and recurse on the two remaining subtrees in parallel (see fig. 2.2), but this requires an

exact calculation of the number of descendants of a node which takes too many queries. We

instead find a “near” edge-separator in T , divide T using this edge, and recurse on the two

remaining subtrees in parallel. The difficulty, of course, is that the querier has no knowledge

of the edges of T ; hence, the very first step, finding a “near” edge-separator, is a bottleneck

computation. Fortunately, as we show in lemma 2.3, if v is a randomly-chosen vertex, then,

with probability depending on d, the path from root r to v includes an edge-separator.

Lemma 2.3. Let T = (V,E, r) be a rooted tree of degree d and let v be a vertex chosen

uniformly at random from V . Then, with probability at least 1
d
, an even-edge-separator is

one of the edges on the path from r to v.

12



Proof. By lemma 2.2, T has an even-edge-separator. Let e = (x, y) be an even-edge-separator

for T = (V,E, r) and let T ′ = (V ′, E ′, y) be the subtree rooted at y when we remove e. Then,

every path from r to each v ∈ V ′ must contain e. By definition 2.3, T ′ has at least |V |/d

vertices. Therefore, if we choose v uniformly at random from V , then with probability

|V ′|
|V | ≥

1
d
, the path from r to v contains e.

Definition 2.4. (splitting-edge) In a degree-d directed rooted tree, an edge (parent(s), s) is

a splitting-edge if |V |
d+2
≤ |D(s)| ≤ |V |(d+1)

d+2
, where D(s) is the set of descendants of s.

Note that a degree-d rooted tree T always has a splitting-edge, as every even-edge-separator

is also a splitting-edge and by lemma 2.2, it always has an even-edge-separator—a fact we

use in our tree learning algorithm, which we describe next. This recursive algorithm (given in

pseudo-code in Algorithm 1), assumes the existence of a randomized method, find-splitting-

edge, which returns a splitting-edge in T , with probability Ω(1/d), and otherwise returns

Null . Our reconstruction algorithm is therefore a randomized recursive algorithm that takes

as input a set of vertices, V , with a (known) root vertex r ∈ V , and returns the edge set,

E, for V . At a high level, our algorithm is to repeatedly call the method, find-splitting-edge,

until it returns a splitting-edge, at which point we divide the set of vertices using this edge

and recurse on the two resulting subtrees.

In more detail, during each iteration of a repeating while loop, we choose a vertex v ∈ V

uniformly at random. Then, we find the vertices on the path from r to v and store them

in a set, Y , using the fact that a vertex, z, is on the path from r to v if and only if

path(z, v) = 1. Then, we attempt to find a splitting-edge using the function find-splitting-

edge (shown in pseudo-code in Algorithm 2). If find-splitting-edge is unsuccessful, we give up

on vertex v, and restart the while loop with a new choice for v. Otherwise, find-splitting-edge

succeeded and we cut the tree at the returned splitting-edge, (u,w). All vertices, z ∈ V ,

where path(w, z) = 1 belong to the subtree rooted at w, thus belonging to V1, whereas the

remaining vertices belong to V2 and the partition containing both u and rooted at r. Thus,

13



Algorithm 1: Reconstruct a rooted tree with path queries

1 Function reconstruct-rooted-tree(V, r):
2 E ← ∅
3 if |V | ≤ g then // g is a chosen constant

4 return edges found by a quadratic brute-force algorithm
5 while true do
6 Pick a vertex v ∈ V uniformly at random
7 for z ∈ V do in parallel
8 Perform query path(z, v)
9 Let Y be the vertex set of the path from r to v

10 splitting-edge ← find-splitting-edge(v, Y, V )
11 if splitting-edge ̸= Null then
12 (u,w)← splitting-edge
13 E ← E ∪ {(u,w)}
14 for z ∈ V do in parallel
15 Perform query path(w, z)
16 split V into V1, V2 at (u,w) using query results
17 parallel do
18 E ← E ∪ reconstruct-rooted-tree(V1, w)
19 E ← E ∪ reconstruct-rooted-tree(V2, r)

20 return E

after cutting the tree we recursively reconstruct-rooted-tree on V1 and V2.

The main idea for our efficient tree reconstruction algorithm lies in our find-splitting-edge

method (see Algorithm 2), which we describe next. This method takes as input the vertex

v, the vertex set Y , (comprising the vertices on the path from r to v), and the vertex set V .

As we show, with probability depending on d, the output of this method is a splitting-edge;

otherwise, the output is Null . Our algorithm performs a type of “noisy” search in Y to

either locate a likely splitting-edge or return Null as an indication of failure.

Our find-splitting-edge algorithm consists of two phases. We enter Phase 1 if the size of

path Y is too big, i.e., |Y | > |V |/K = |Y |
C2 log |V | , where C2 is a predetermined constant and

K = C2 log |V |. The purpose of this phase is either to pass a shorter path including an

even-edge-separator to the second phase or to find a splitting-edge in this iteration. The

search on the set Y is noisy, because it involves random sampling. In particular, we take a

14



Algorithm 2: Finding a splitting-edge from vertex set, Y , on the path from vertex
v to the root r
1 Function find-splitting-edge(v, Y, V ):
2 splitting-edge ← Null

3 m = C1

√
|V |, K = C2 log |V |

Phase 1:
4 if |Y | > |V |/K then
5 S ← subset of m random elements from Y
6 S ← S ∪ {v, r}
7 for each s ∈ S do in parallel
8 Xs ← subset of K random elements from V
9 Perform queries to find count(s,Xs)

10 if ∀s ∈ S : count(s,Xs) <
K
d+1

then return Null

11 if ∀s ∈ S : count(s,Xs) >
Kd
d+1

then return Null

12 if ∃s ∈ S : K
d+1
≤ count(s,Xs) ≤ Kd

d+1
then

return verify-splitting-edge(s, V )
13 for each {a, b} ∈ S do in parallel
14 perform query path(a, b)

15 Find w, z such that they are two consecutive nodes in the sorted order of

S such that count(w,Xw) >
Kd
d+1

and count(z,Xz) <
K
d+1

16 Y ← nodes from Y in the path from w to z

Phase 2:
17 if |Y | > |V |/K then return Null
18 for each s ∈ Y do in parallel
19 Xs ← subset of K random elements from V
20 Perform queries to find count(s,Xs)

21 if ∃s ∈ Y s.t. K
d+1
≤ count(s,Xs) ≤ Kd

d+1
then

return verify-splitting-edge(s, V )
22 return Null

random sample S of size m = C1

√
|V | from path Y (where C1 is a predetermined constant).

We include r and v, the two endpoints of the path Y , to S. Then, we estimate the number

of descendants of s, D(s), for each s ∈ S. To estimate this number for each s ∈ S, we take

a random sample Xs of K elements from V and we perform queries to find count(s,Xs),

the number of descendants of s in Xs. Here, we use m · K ∈ O(
√
|V | log |V |) queries in

a single round. Then, if all the estimates were less than K/(d + 1), we return Null as an

indication of failure (we guess that all the nodes on the path Y have too few descendants

to be a separator). Similarly, if all the estimates were greater than Kd
d+1

, we return Null (we

15



guess that all the nodes on the path Y have too many descendants to be a separator). If

there exists a node s such that K
d+1
≤ count(s,Xs) ≤ Kd

d+1
, we check if s is a splitting-edge by

counting its descendants using a function, verify-splitting-edge. This function takes vertex s

and the full vertex set V to return edge (find-parent(s, V ), s) if |V |
d+2
≤ count(s, V ) ≤ |V | · d+1

d+2

and return Null otherwise.

If none of these three cases happens, we perform queries to sort elements of S using a trivial

quadratic work parallel sort which takes O(m2) ∈ O(|V |) queries in a single round. We know

that two consecutive nodes w and z exist on the sorted order of S, where count(w,Xw) >
Kd
d+1

and count(z,Xz) <
K
d+1

. We find all the nodes on Y starting at w and ending at z, and use

this as our new path Y .

In Phase 2, we expect a path of size under |Y |/K, we will later prove this is true with

high probability. Otherwise, we just return Null . In this phase, we estimate the number of

descendants much like we did in the previous phase, except the only difference is that we

estimate the number of descendants for all the nodes on our new path Y . If there exists

a node s ∈ Y such that K
d+1
≤ count(s,Xs) ≤ Kd

d+1
, we verify if it is a splitting-edge, as

described earlier.

Finally, let us describe how we find the parent of a node s in V . We first find, Y , the set of

ancestors of v in V in parallel using |V | queries. Let x ≻ y describe the total order of nodes

in path Y , where for any x, y ∈ Y : x ≻ y if and only if path(x, y) = 1. The parent of s is the

lowest vertex on the path. Then, the key idea is that if |Y | ∈ O(
√
|V |), we can sort them

using O(|V |) queries. If the path is greater than this amount, we instead use S, a sample of

size O(
√
|V |) from the path. Next, we sort the sample to obtain x1 < . . . < xm for S and

then find all of the nodes in Y which are less than the smallest sample x1. Finally, we replace

Y with these descendants of x1 and repeat the whole procedure again. We later prove that

with high probability after two iterations of this sampling, the size of the path is O(
√
|V |),

allowing us to sort all nodes in Y to return the minimum (see Function find-parent).

16



Function find-parent(s, V )

1 find Y , ancestor set of s from V using |V | queries in parallel

2 m = C1

√
|V |

3 for i← 1 to 2 & |Y | > m do
4 S ← random subset of Y with m elements
5 sort S as x1 < ... < xm using O(m2) queries in parallel
6 find Y ′ = {u ∈ Y | u ≤ x1} using O(|Y |) queries in parallel, replace Y with Y ′

7 if |Y | ≤ m then
8 sort Y using O(m2) queries in parallel
9 return (minimum of this path)

10 return Null

2.3.2 Analysis

The correctness of the algorithm follows from the fact that our method first learns the root,

r, of T and then learns the parent of each other node, v in T .

Theorem 2.1. Given a set, V , of nodes of a rooted tree, T , such as a biological or digital

phylogenetic tree, with degree bounded by a fixed constant, d, we can construct T using path

queries with round complexity, R(n), that is O(log n) and query complexity, Q(n), that is

O(n log n), with high probability.

Our proof of theorem 2.1 begins with lemma 2.4.

Lemma 2.4. In a rooted tree, T = (V,E, r), let Y be a (directed) path, where |Y | > m =

C1

√
|V |. If we take a sample, S, of m elements from Y , then with probability 1− 1

|V | , every

two consecutive nodes of S in the sorted order of S are within distance O

(
|Y | log |V |√

|V |

)
from

each other in Y .

Proof. Note that some nodes of Y may be picked more than once as we pick S in parallel.

Divide the path Y into

√
|V |

log |V | equal size sections (the difference between the size of any two

sections is at most 1). For each 1 ≤ i ≤
√

|V |
log |V | , let Ai be the subset of S lying in the ith section

of Y . (See fig. 2.3.) It is clear that each node s ∈ S ends up in section i with probability

17



x x x x x x x xx

Figure 2.3: Illustration of how scattered sample S is on path Y . The ith blue interval
represents the ith section of Y , the black dots correspond to the nodes on the path Y , and
red crossed marks represent elements of S.

log |V |√
|V |

, and therefore, for each 1 ≤ i ≤
√

|V |
log |V | , E [|Ai|] = C1 log |V |. Thus, using standard a

Chernoff bound, Pr [|Ai| = 0] < 1
|V |2 for any constant C1 > 6 ln 10. Using a union bound, all

the sections are non-empty with probability at least 1 − 1
|V | . Hence, the distance between

any two consecutive nodes of S from each other in Y is at most 2|Y | log |V |√
|V |

.

Lemma 2.4 allows us to analyze the find-parent method, as follows.

Lemma 2.5. The find-parent(s, V ) method outputs the parent of s with probability at least

1− 2/|V |, with Q(n) ∈ O(n) and R(n) ∈ O(1).

Proof. The find-parent method succeeds if, after the for loop, the size of the set of remaining

ancestors of s, Y , is |Y | ≤ m, so it is enough to show that this occurs with probability at least

1− 2/|V |. By lemma 2.4, the size of Y at the end of the first iteration is |Y | ∈ O(m log |V |),

with probability at least 1− 1/|V |. Similarly, a second iteration, if required, further reduces

the size of Y into |Y | ∈ o(m), with probability at least 1− 1/|V |. Thus, by a union bound,

the probability of success is at least 1− 2/|V |.

The query complexity can be broken down as follows, where m ∈ O(
√
|V |):

1. O(|V |) queries in 1 round to determine the ancestor set, Y , of s.

2. O(m2) + O(|Y |) ∈ O(|V |) queries in 2 rounds for each of the (at most) 2 iterations

performed in find-parent, whose purpose is to discard non-parent ancestors of s in Y .

3. O(m2) ∈ O(|V |) queries to find, in 1 round, the minimum among the remaining ances-

tors of Y (at most m w.h.p.). If |Y | > m, then no further queries are issued.

18



In total, the above amounts to Q(n) ∈ O(n) and R(n) ∈ O(1).

We next analyze the find-splitting-edge method. Let us first use an intricate Chernoff-bound

analysis to prove the following useful probability bounds in lemma 2.6.

Lemma 2.6. There exists a constant C2 > 0, as used K = C2 log |V |in line 3 of Algorithm 2,

such that if we take a sample X of size K from V , the following probability bounds always

hold:


Pr

(
count(s,X) ≥ K

d+1

)
≥ 1− 1

|V |2 if count(s, V ) ≥ |V |
d
,

Pr
(
count(s,X) ≤ K d

d+1

)
≥ 1− 1

|V |2 if count(s, V ) ≤ |V |d−1
d
,

(2.1)


Pr

(
count(s,X) < K

d+1

)
≥ 1− 1

|V |2 if count(s, V ) < |V |
d+2

,

Pr
(
count(s,X) > K d

d+1

)
≥ 1− 1

|V |2 if count(s, V ) > |V |d+1
d+2

(2.2)

Proof. Recall that count(s,X) |V |
K

is an estimation of |D(s)| = count(s, V ), the number of de-

scendants of vertex s in algorithm 2. Let Z be sum ofK independent binary random variables

with expected value E[Z]. Using a Chernoff bound, we know that Pr
[∣∣Z − E[Z]

∣∣ ≥ ϵE[Z]
]
≤

2e
−1
3
ϵ2E[Z]:

In this case, our random variable is Z = count(s,X) and E[Z] = |D(s)| K|V | . By reformulating

a Chernoff bound, we have

Pr

[∣∣Z − |D(s)| K
|V |

∣∣ ≥ ϵ|D(s)| K
|V |

]
≤ 2e

−1
3
ϵ2|D(s)| K

|V | (2.3)

Now, we find the value of C2 used in line 3 of algorithm 2 to compute K, the size of the

19



sample. We do this for each of the 4 cases distinguished in equations 2.1, 2.2:

Case 1: We want to prove that if |D(s)| ≥ |V |
d
,

then Pr
[
count(s,X) |V |

K
≥ |V |

(d+1)

]
≥ 1− 1

|V |2 :

Suppose |D(s)| ≥ |V |
d
; we prove that Pr

[
count(s,X) |V |

K
< |V |

d+1

]
< 1

|V |2 .

If we set ϵ = 1
d+1

, we show that

Pr

[
count(s,X)

|V |
K

<
|V |
d+ 1

]
≤ Pr

[∣∣∣∣count(s,X)− |D(s)| K
|V |

∣∣∣∣ ≥ ϵ|D(s)| K
|V |

]
(2.4)

In order to prove this, given the facts that ϵ = 1
d+1

, and |D(s)| ≥ |V |
d
, we show that, for

any count(s,X) |V |
K

such that the inequality count(s,X) |V |
K

< |V |
d+1

holds, then the inequality[∣∣∣count(s,X)− |D(s)| K|V |

∣∣∣ ≥ ϵ|D(s)| K|V |

]
also holds.

d

d+ 1
|D(s)| K

|V |
≥ K

d+ 1
> count(s,X)

=⇒
[(

1− 1

d+ 1

)(
|D(s)| K

|V |

)
≥ count(s,X)

]
=⇒

[(
|D(s)| K

|V |
− count(s,X)

)
≥ 1

d+ 1
|D(s)| K

|V |

]
=⇒

[∣∣∣∣count(s,X)− |D(s)| K
|V |

∣∣∣∣ ≥ ϵ|D(s)| K
|V |

] (
ϵ =

1

d+ 1

)

Thus, inequality 2.4 is true. Combining inequalities 2.3 and 2.4, we have that:

Pr

[
count(s,X)

|V |
K

<
|V |
d+ 1

]
≤ 2e

−1
3
ϵ2|D(s)| K

|V |

Now, we find the value of C2, such that for K = C2 log |V |:

2e
−1
3
ϵ2|D(s)| K

|V | <
1

|V |2

20



Taking the logarithm of both sides and given that |D(s)| ≥ |V |
d

and ϵ = 1
d+1

, we have that:

1

3
ϵ2|D(s)| K

|V |
≥ 1

3

(
1

d+ 1

)2 |V |
|d|

K

|V |
=

1

3

(
1

d+ 1

)2
K

d
> 2 ln (2|V |)

⇐⇒ K > 6d(d+ 1)2 ln (2|V |)

K=C2 log |V |⇐======⇒ C2 >
6d(d+ 1)2 ln (2|V |)

log |V |

Thus, C2 is not more than a constant.

Case 2: We want to prove that if |D(s)| ≤ |V |(d−1)
d

,

then Pr
[
count(s,X) |V |

K
≤ |V |d

(d+1)

]
≥ 1− 1

|V |2 :

Suppose |D(s)| ≤ |V |(d−1)
d

; we prove that Pr
[
count(s,X) |V |

K
> |V |d

(d+1)

]
< 1

|V 2 .

Reminding that Z = count(s,X), if we set ϵ = K
d(d+1)E[Z]

, we show:

Pr

[
count(s,X)

|V |
K

>
|V | d
(d+ 1)

]
≤ Pr

[∣∣∣∣Z − |D(s)| K
|V |

∣∣∣∣ ≥ ϵ|D(s)| K
|V |

]
(2.5)

In order to prove this, given the facts that ϵ = K
d(d+1)E[Z]

, and |D(s)| ≤ |V |(d−1)
d

, we show

that, for any count(s,X) |V |
K

such that the inequality Z = count(s,X) > Kd
d+1

holds, then the

inequality
[∣∣∣Z − |D(s)| K|V |

∣∣∣ ≥ ϵ|D(s)| K|V |

]
also holds.

Given that Z > Kd
d+1

and that |D(s)| ≤ |V |(d−1)
d

, we have:

∣∣∣∣Z − |D(s)| K
|V |

∣∣∣∣ = (
Z − |D(s)| K

|V |

)
>

Kd

d+ 1
− |V | (d− 1)

d

K

|V |
=

K

d (d+ 1)

Therefore, using the facts that ϵ = K
d(d+1)E[Z]

and that E[Z] = |D(s)| K|V | , we can say:

∣∣∣∣Z − |D(s)| K
|V |

∣∣∣∣ ≥ ϵ|D(s)| K
|V |

21



Thus, inequality 2.5 is true. Combining inequalities 2.3 and 2.5, we have:

Pr

[
count(s,X)

|V |
K

>
|V |d

(d+ 1)

]
≤ 2e

−1
3
ϵ2|D(s)| K

|V |

Now, we find the value of C2, such that for K = C2 log |V |:

2e
−1
3
ϵ2|D(s)| K

|V | <
1

|V |2

Taking the logarithm of both sides and given that ϵE[Z] = K
d(d+1)

and E[Z] = |D(s)| K|V | ≤
K(d−1)

d
, we can obtain ϵ ≥ 1

(d−1)(d+1)
, therefore:

1

3
ϵ2|D(s)| K

|V |
≥ 1

3

1

(d− 1)(d+ 1)

|K|
d(d+ 1)

> 2 ln (2|V |)

⇐⇒ K > 6d(d− 1)(d+ 1)2 ln (2|V |)

K=C2 log |V |⇐======⇒ C2 >
6d(̇d− 1)(d+ 1)2 ln (2|V |)

log |V |

Thus, C2 is not more than a constant.

Case 3: We want to show that if |D(s)| < |V |
d+2

,

then Pr
[
count(s,X) |V |

K
< |V |

(d+1)

]
≥ 1− 1

|V |2 :

Suppose |D(s)| < |V |
d+2

; we prove that Pr
[
count(s,X) |V |

K
≥ |V |

d+1

]
< 1

|V |2 .

Reminding that Z = count(s,X), if we set ϵ = K
(d+1)(d+2)E[Z]

, we show:

Pr

[
count(s,X)

|V |
K
≥ |V |

d+ 1

]
≤ Pr

[∣∣∣∣Z −D(s)
K

|V |

∣∣∣∣ ≥ ϵD(s)
K

|V |

]
(2.6)

In order to prove this, given the facts that ϵ = K
(d+1)(d+2)E[Z]

, and |D(s)| < |V |
d+2

, we show

that, for any count(s,X) |V |
K

such that the inequality Z = count(s,X) ≥ K
d+1

holds, then the

22



inequality
[∣∣∣Z − |D(s)| K|V |

∣∣∣ ≥ ϵ|D(s)| K|V |

]
also holds.

Given that Z ≥ K
d+1

and that |D(s)| < |V |
d+2

, we can say:

∣∣∣∣Z − |D(s)| K
|V |

∣∣∣∣ = (
Z − |D(s)| K

|V |

)
>

K

d+ 1
− |V |

d+ 2

K

|V |
=

K

(d+ 1) (d+ 2)

Therefore, using the facts that ϵ = K
(d+1)(d+2)E[Z]

and that E[Z] = |D(s)| K|V | , we have:

∣∣∣∣Z − |D(s)| K
|V |

∣∣∣∣ ≥ ϵ|D(s)| K
|V |

Thus, inequality 2.6 is true. Combining inequalities 2.3 and 2.6, we can say:

Pr

[
count(s,X)

|V |
K
≥ |V |

d+ 1

]
≤ 2e

−1
3
ϵ2|D(s)| K

|V |

Now, we find the value of C2, such that for K = C2 log |V |:

2e
−1
3
ϵ2|D(s)| K

|V | <
1

|V |2

Taking the logarithm of both sides and given that

ϵE[Z] = K
(d+1)(d+2)

and E[Z] = |D(s)| K|V | <
K
d+2

, we can obtain ϵ > 1
(d+1)

, therefore:

1

3
ϵ2|D(s)| K

|V |
≥ 1

3

1

(d+ 1)

|K|
(d+ 2)(d+ 1)

> 2 ln (2|V |)

⇐⇒ K > 6(d+ 2)(d+ 1)2 ln (2|V |)

K=C2 log |V |⇐======⇒ C2 >
6(d+ 2)(d+ 1)2 ln (2|V |)

log |V |

Thus, C2 is not more than a constant.

23



Case 4: We want to prove that if |D(s)| > |V |(d+1)
d+2

,

then Pr
[
count(s,X) |V |

K
> |V |d

(d+1)

]
≥ 1− 1

|V |2 :

Suppose |D(s)| > |V |(d+1)
d+2

; we prove that Pr
[
count(s,X) |V |

K
≤ |V |d

(d+1)

]
≥ 1− 1

|V |2 .

Reminding that Z = count(s,X), if we set ϵ = K
(d+1)(d+2)E[Z]

, we show:

Pr

[
count(s,X)

|V |
K
≤ |V |d

(d+ 1)

]
≤ Pr

[∣∣∣∣X − |D(s)| K
|V |

∣∣∣∣ ≥ ϵ|D(s)| K
|V |

]
(2.7)

In order to prove this, given the facts that ϵ = K
(d+1)(d+2)E[Z]

, and D(s) > |V |(d+1)
d+2

, we show

that, for any count(s,X) |V |
K

such that the inequality Z = count(s,X) ≤ Kd
d+1

holds, then the

inequality
[∣∣∣Z − |D(s)| K|V |

∣∣∣ ≥ ϵ|D(s)| K|V |

]
also holds.

Given that Z ≤ Kd
d+1

and that |D(s)| > |V |(d+1)
d+2

, we can say:

∣∣∣∣Z − |D(s)| K
|V |

∣∣∣∣ = (
|D(s)| K

|V |
− Z

)
>
|V |(d+ 1)

d+ 2

K

|V |
− Kd

d+ 1
=

K

(d+ 1) (d+ 2)

Therefore, using the facts that ϵ = K
(d+1)(d+2)E[Z]

and that E[Z] = |D(s)| K|V | , we have:

∣∣∣∣Z − |D(s)| K
|V |

∣∣∣∣ ≥ ϵ|D(s)| K
|V |

Thus, inequality 2.7 is true. Combining inequalities 2.3 and 2.7, we can see:

Pr

[
count(s,X)

|V |
K
≤ |V |d

(d+ 1)

]
≤ 2e

−1
3
ϵ2|D(s)| K

|V |

Now, we find the value of C2, such that for K = C2 log |V |:

2e
−1
3
ϵ2|D(s)| K

|V | <
1

|V |2

24



Taking the logarithm of both sides and given that

ϵE[Z] = K
(d+1)(d+2)

and E[Z] = |D(s)| K|V | ≤ K, we can obtain ϵ ≥ 1
(d+1)(d+2)

, therefore:

1

3
ϵ2|D(s)| K

|V |
≥ 1

3

1

(d+ 1)(d+ 2)

|K|
(d+ 2)(d+ 1)

> 2 ln (2|V |)

⇐⇒ K > 6(d+ 2)2(d+ 1)2 ln (2|V |)

K=C2 log |V |⇐======⇒ C2 >
6(d+ 2)2(d+ 1)2 ln (2|V |)

log |V |

Thus, C2 is not more than a constant.

Therefore, it’s enough to choose C2 as the maximum of these 4 constants at the beginning

of the algorithm.

Lemma 2.7. Any call to find-splitting-edge returns true with probability 1
2d
; hence Algo-

rithm 1 calls find-splitting-edge O(d) times in expectation.

Proof. By lemma 2.3, we know that if we pick a vertex v, uniformly at random, then with

probability 1
d
, an even-edge-separator lies on the path from r to v. We show that if there is

such an even-edge-separator (Definition 2.3) on that path, find-splitting-edge(v, Y, V ) returns

a splitting-edge (Definition 2.4) with probability at least 1
2
, and otherwise returns Null .

It is clear that we either return a splitting-edge or Null when passing through verify-splitting-

edge. We break the probability of returning Null according to the phases. We call a vertex

v ineligible if count(v, V ) < |V |
d+2

or count(v, V ) > |V |(d+1)
d+2

((parent(v), v) is not a splitting-

edge). On the other hand, we call vertex v candidate if after estimating the number of its

descendants: K
d+1
≤ count(v,X) ≤ Kd

d+1
. Let (a, b) be an even-edge-separator on path Y .

Phase 1:

• lines 10,11: By definition 2.3, |V |
d
≤ count(b, V ) ≤ |V |(d−1)

d
. We add {r, v} to S in

25



line 6 of the algorithm (the two endpoints of path Y ). Notice that |V |
d
≤ count(b, V ) ≤

count(r, V ) and that count(v, V ) ≤ count(b, V ) ≤ |V |(d−1)
d

. So, by eq. (2.1), with prob-

ability at least 1− 2
|V |2 , count(r,Xr) ≥ K

d+1
and count(v,Xv) ≤ Kd

d+1
, and consequently,

we don’t return Null in lines 10,11 of the algorithm.

• line 12: eq. (2.2) shows that an ineligible node is not a candidate with probability

1 − 1
|V |2 . Thus, by a union bound, none of our candidates is ineligible in line 12 with

probability at least 1− |S|
|V |2 . Moreover, if there exists a candidate s in S, the algorithm

outputs a splitting-edge (parent(s), s) with probability at least 1− 2
|V | , by lemma 2.5.

• lines 15,16: Let us partition S into Sl and Sr (see fig. 2.4), as follows:

Sl = {s ∈ S | count(s, V ) > count(b, V )}, Sr = {s ∈ S | count(s, V ) < count(b, V )}

Then, by definition of b:

∀s ∈ Sl : count(s, V ) > |V |/d, ∀s ∈ Sr : count(s, V ) < |V |(d− 1)/d.

and thus, by eq. (2.1) and a union bound, we have with probability at least 1− |S|
|V |2 :

∀s ∈ Sl : count(s,Xs) ≥ K/(d+ 1), ∀s ∈ Sr : count(s,Xs) ≤ Kd/(d+ 1).

Finally, since S does not contain any candidate nodes (otherwise we would have picked

them in line 12), the above inequalities imply that:

∀s ∈ Sl : count(s,Xs) > Kd/(d+ 1), ∀s ∈ Sr : count(s,Xs) < K/(d+ 1).

Therefore, w ∈ Sl and z ∈ Sr, which implies that the subpath from w to z in Y

must include vertex b. This means that with probability 1 − O( 1
|V |), we either find a

splitting-edge in this phase or pass b to the next phase.

26



x x x x x x xx

Figure 2.4: Illustration of the path reduction in Phase 1 of find-splitting-edge. At the end of
this phase, the path Y is trimmed down into the subpath consisting of the nodes between w
and z, which contains b w.h.p.

Now, consider Phase 2:

• line 17: Here, if |Y | > |V |/K, then we have passed through Phase 1. Using lemma 2.4,

we know that since S was a sample of size C1

√
|V | from Y , with probability 1 −

1
|V | the distance between any two consecutive nodes of S in Y was O(|Y | log |V |√

|V |
) ∈

O(
√
|V | log |V |). Thus, the size of path Y after passing through line 15 is at most

O(
√
|V | log |V |). Thus, the probability of returning Null in line 17 is at most 2

|V | .

• line 21: By eq. (2.2), with probability at least 1 − |Y |
|V |2 , no ineligible node is between

candidate set. Besides, for a candidate node s, the algorithm outputs a splitting-edge

(parent(s), s) with probability at least 1− 2
|V | , by lemma 2.5.

• line 22: The probability that we return Null here is equal to the probability that our

candidate set in line 21 is empty. By eq. (2.1), with probability at least 1 − 2
|V |2 ,

b is between candidates at line 21 and candidate set is non-empty. Thus, the total

probability of failing to return a splitting-edge in this phase is at most O( 1
|V |).

Therefore, for |V | greater than the chosen constant g, the probability of returning Null in

the existence of an even-edge-separator is at most O( 1
|V |) ≤ 1/2. Thus, the probability of

returning a splitting-edge in any call to find-splitting-edge is at least 1
2d
.

Lemma 2.8. The subroutine find-splitting-edge(v, Y, V ) has query complexity, Q(n), that is

O(|V |), and round complexity, R(n), that is O(1).

27



Proof. The queries done by find-splitting-edge(v, Y, V ), in the worst case, can be broken down

as follows, where m = O(
√
|V |):

Phase 1: A total of O(|V |) queries in O(1) rounds, consisting of:

• O(mK) ∈ O(
√
|V | log |V |) queries in one round for estimating the number of descen-

dants for the m samples.

• O(m2) ∈ O(|V |) queries in one round for sorting the m samples.

• O(|Y |) ∈ O(|V |) queries in a round to find the subpath of Y that is the input for Phase

2.

• O(|V |) queries in O(1) rounds for determining the parent of s (see lemma 2.5).

Phase 2: If we enter this phase, it spends O(|V |) queries in O(1) rounds:

• |Y | ·K ∈ O(|V |) queries in one round to evaluate count(s,Xs) for each s ∈ Y .

• O(|V |) queries in one round to find the number of descendants of node s.

• O(|V |) queries in O(1) rounds to determine the parent of s (see lemma 2.5).

Overall, the above break down amounts to Q(n) ∈ O(n) and R(n) ∈ O(1).

Now, recall theorem 2.1: Given a set, V , of nodes of a rooted tree, T , such as a biological

or digital phylogenetic tree, with degree bounded by a fixed constant, d, we can construct T

using path queries with round complexity, R(n), that is O(log n) and query complexity, Q(n),

that is O(n log n), with high probability.

Proof. The expected query complexityQ(n) of Algorithm 1 is dominated by the two recursive

calls
(
Q
(

n
d+2

)
and Q

(
n(d+1)
d+2

))
and the calls to find-splitting-edge. By lemma 2.7, we call

28



find-splitting-edge an expected O(d) times, incurring a cost of O (dn) ∈ O(n) path queries in

O(d) ∈ O(1) rounds (see lemma 2.8). Thus, Q(n) and R(n) are:

Q(n) = Q

(
n

d+ 2

)
+Q

(
n(d+ 1)

d+ 2

)
+O (n) ,

R(n) = max

(
R

(
n

d+ 2

)
, R

(
n(d+ 1)

d+ 2

))
+O(1)

which shows it needs Q(n) ∈ O(n log n) and R(n) ∈ O(log n) in expectation. To prove the

high probability results, note that the main algorithm is a divide-and-conquer algorithm

with two recursive calls per call; hence, it can be modeled with a recursion tree that is a

binary tree, B, with height h = O(log d+2
d+1

n) = O(log n). For any root-to-leaf path in B, the

time taken can modeled as a sum of independent random variables, X = X1+X2+ · · ·+Xh,

where each Xi is the number of calls to find-splitting-edge (each of which uses O(|V |) queries

in O(1) rounds) required before it returns true, which is a geometric random variable with

parameter p = 1
2d
. Thus, by a Chernoff bound for sums of independent geometric random

variables (e.g., see [56, 80]), the probability that X is more than O(d log d+2
d+1

n) is at most

1/nc+1, for any given constant c ≥ 1. The theorem follows, then, by a union bound for the

n root-to-leaf paths in B.

2.3.3 Lower Bound

We establish the following simple lower bound, which extends and corrects lower-bound

proofs of Wang and Honorio [103].

Theorem 2.2. Learning an n-node, degree-d tree requires Ω(dn+n log n) path queries. This

lower bound holds for the worst case of a deterministic algorithm and for the expected value

of a randomized algorithm.

Proof. Consider an n-node, degree-d tree, T , as shown in fig. 2.5, which consists of a root,

29



r, with d children, each of which is the root of a chain, Ti, of at least one node rooted at a

child of r. Since a querier, Bob, can determine the root, r, in O(n) queries anyway, let us

assume for the sake of a lower bound that r is known; hence, no additional information is

gained by path queries involving the root. Let us denote the vertices in chain Ti as Vi. In

order to reconstruct T , Bob must determine the nodes in each Vi and must also determine

their order in Ti. For a given path query, path(u, v), say this query is internal if u, v ∈ Vi,

for some i ∈ [1, d], and this query is external otherwise. Note that even if Bob knows the full

structure of T except for a given node, v, he must perform at least d− 1 external queries in

the worst case, for a deterministic algorithm, or Ω(d) external queries in expectation, for a

randomized algorithm, in order to determine the chain, Ti, to which v belongs. Furthermore,

the result of an (internal or external) query, path(u, v), provides no additional information

for a vertex w distinct from u and v regarding the set, Vi, to which w belongs. Thus, Bob

must perform Ω(d) external queries for each vertex v ̸= r, i.e., he must perform Ω(dn)

external queries in total. Moreover, note that the results of external queries involving a

vertex, v, provide no information regarding the location of v in its chain, Ti. Even if Bob

knows all the vertices that comprise each Vi, he must determine the ordering of these vertices

in the chain, Ti, in order to reconstruct T . That is, Bob must sort the vertices in Vi using

a comparison-based algorithm, where each comparison is an internal query involving two

r

V1 V2 V3 V4 V5 V6

Figure 2.5: Illustration of the Ω(dn+n log n) lower bound for path queries in directed rooted
trees (shown for d = 6).

30



vertices, u, v ∈ Vi. By well-known sorting lower bounds (which also hold in expectation for

randomized algorithms), e.g., see [56, 37], determining the order of the vertices in each Ti

requires Ω(|Vi| log |Vi|), as one of the chain can be as great as n− d vertices, then he needs

Ω(n log n) internal queries.

corollary 2.2. Algorithm 1 is optimal for bounded-degree trees when asking θ(n) queries per

round.

The query complexity of Algorithm 1 matches the lower bound provided by theorem 2.2

when d is constant. Besides, we need Ω(d+ log n) rounds if we have θ(n) processors; hence,

the round complexity of Algorithm 1 is also optimal.

2.4 Experiments

To assess the practical performance of our method for learning (biological and digital) phy-

logenetic trees from path queries, we performed experiments using both synthetic and real

data to compare our algorithm with the algorithm by Wang and Honorio [103], which is

the best known reconstruction algorithm for phylogenetic trees from path queries. 2 Our

experimental results provide evidence that Algorithm 1 provides significant parallel speedup,

while simultaneously improving the total number of queries.

Synthetic Data.

To perform our extensive experimental analysis on synthetic data, we designed a generator

of a random degree-d trees using the fact that Prüfer sequences [85] provide a bijection

between trees of n vertices and sequences of length n− 2 on labels 1 to n. That is, a labeled

2The complete source code for our experiments, including the implementation of our algorithm and the
algorithms we compared against, is available at github.com/UC-Irvine-Theory/ParallelTreeReconstruction .

31

https://github.com/UC-Irvine-Theory/ParallelTreeReconstruction


Figure 2.6: Comparing Our Algorithm’s number of rounds (left) and total queries (right)
with Wang and Honorio’s [103], for fixed d = 5 and varying n.

tree T = (V,E) with |V | = n is associated with a unique Prüfer sequence x1, x2, · · · , xn−2,

such that for all 1 ≤ i ≤ n − 2, xi ∈ V and a node of degree k in the tree appears exactly

k− 1 times in the sequence. Therefore, we compiled a data set of trees with various number

of vertices, n, and maximum degree, d by recovering the corresponding tree from a random

Prüfer sequence generated while simultaneously maintaining that each label appears at most

d− 1 times in the sequence and at least 1 label appears exactly d− 1 times.

Since our parallel reconstruction algorithm using path queries is parameterized by a constant,

C2, we ran our algorithm using different values for C2. The constant C2 controls sample size

from V used to estimate the number of descendants of a node. Furthermore, to reduce noise

from randomization, each data-point will be averaged for 3 runs on 10 randomly generated

trees. In fig. 2.6, we compare our algorithm’s rounds and total number of queries with the one

by Wang and Honorio [103], for fixed degree trees d = 5 and varying tree-sizes. These results

provide empirical evidence that our algorithm provides a noticeable speedup in parallel

round complexity while also outperforming the algorithm by Wang and Honorio [103] in

total number of queries.

In fig. 2.7, we compare Algorithm 1 with the one by Wang and Honorio [103] for fixed size

and varying values of d. Again, this supports our theoretical findings that our algorithm

32



Figure 2.7: Comparing our algorithm’s number of rounds (left) and total queries (right) with
Wang and Honorio’s [103], for n = 50000 and varying values for d.

Figure 2.8: Change in the total number of rounds (left) and total number of queries (right)
when running our algorithm for varying values of C2 (n = 50000, d = 5).

achieves both a significant parallel speedup and a simultaneous improvement in the number

of total queries.

In fig. 2.8, we study the behavior of Algorithm 1 under different values of C2, so as to

experimentally find the best value for C2. While our high probability analysis requires

C2 ≈ (d + 2)4, fig. 2.8 suggests that we do not need that high probability reassurance in

practice, and we can use smaller sample to reduce the total number of queries.

33



Figure 2.9: A scatter plot comparing the number of queries and rounds of our algorithm and
with the one by Wang and Honorio [103] for real-world trees from TreeBase [84]. Since our
algorithm is parallel, we include round complexity to serve as a comparison for the sequential
complexity.

Real Data.

Our experiments on real-world biological phylogenetic trees also confirm the superiority of

our algorithm in terms of performance as compared to the one by Wang and Honorio [103].

We used a dataset of trees from the phylogenetic library TreeBase [84], which includes more

than 100000 taxa. Figure 2.9 summarizes our experimental results, where each data point

corresponds to an average performance of 3 runs on the same tree. Our algorithm is superior

in both queries and rounds for all the values of C2 we tried: C2 ∈ {1, d + 2, (d + 2)2}. The

best performance corresponds to C2 = d+ 2 = 5, which is the one illustrated in fig. 2.9.

34



2.5 Conclusion

We have provided an optimal parallel algorithm for learning digital phylogenetic trees using

path queries. Our methods assume that the tree has a maximum degree of some constant d,

which is a reasonable assumption for these trees. Additionally, we provided a lower bound

for this problem, where we showed that there is no non-trivial learning algorithm for learning

directed rooted trees without bounding the maximum degree of the tree. We also compile a

set of experiments to compare our algorithm and the best known prior work, and we showed

that our algorithm not only provides a significant parallel speedup, but it also uses fewer

number of queries in total.

35



Chapter 3

Learning Multitrees and Almost-trees

3.1 Introduction

The exact learning of a graph, which is also known as graph reconstruction, is the process of

learning how a graph is connected using a set of queries, each involving a subset of vertices of

the graph, to an all-knowing oracle. In this chapter, we focus on learning a directed acyclic

graph (DAG) using path queries. In particular, for a DAG, G = (V,E), we are given the

vertex set, V , but the edge set, E, is unknown and learning it through a set of path queries

is our goal. A path query, path(u, v), takes two vertices, u and v in V , and returns whether

there is a directed path from u to v in G.

The results of this chapter are motivated by applications in various disciplines of science, such

as biology [99, 79, 75, 97], computer science [24, 44, 27, 45, 46, 54, 70, 82], economics [66, 65],

psychology [81], and sociology [60]. For instance, it can be useful for learning phylogenetic

networks from path queries. Phylogenetic networks capture ancestry relationships between a

group of objects of the same type. For example, in a digital phylogenetic network, an object

may be a multimedia file (a video or an image) [44, 27, 45, 46], a text document[77, 92], or

36



a computer virus [54, 82]. In such a network, each node represents an object, and directed

edges show how an object has been manipulated or edited from other objects [10]. In a digital

phylogenetic network, objects are usually archived and we can issue path queries between a

pair of objects (see, e.g., [44]).

Learning a phylogenetic network has several applications. For instance, learning a multi-

media phylogeny can be helpful in different areas such as security, forensics, and copyright

enforcement [44]. Afshar et al. [10] studied learning phylogenetic trees (rooted trees) using

path queries, where each object is the result of a modification of a single parent, as presented

in Chapter 2. Our work extends this scenario to applications where objects can be formed by

merging two or more objects into one, such as image components. In addition, our work also

has applications in biological scenarios that involve hybridization processes in phylogenetic

networks [21].

Another application of our work is to learn the directed acyclic graph (DAG) structure of

a causal Bayesian network (CBN). It is well-known that observational data (collected from

an undisturbed system) is not sufficient for exact learning of the structure, and therefore

interventional data is often used, by forcing some independent variables to take some spe-

cific values through experiments. An interventional path query requires a small number

of experiments, since, (i,j), intervenes the only variable correspondent to i. Therefore,

applying our learning methods (similar to the method by Bello and Honorio, see [24]), can

avoid an exponential number of experiments [73], and it can improve the results of Bello and

Honorio [24] for the types of DAGs that we study.

We measure the efficiency of our methods in terms of the number of vertices, n = |V |, using

these two complexities:

• Query complexity, Q(n): This is the total number of queries that we perform. This

parameter comes from the learning theory [5, 32, 47, 95] and complexity theory [26,

37



107].

• Round complexity, R(n): This is the number of rounds that we perform our queries.

The queries performed in a round are in a batch and they may not depend on the

answer of the queries in the same round (but they may depend on the queries issued

in the previous rounds).

3.1.1 Related Work

The problem of exact learning of a graph using a set of queries has been extensively stud-

ied [10, 9, 88, 78, 11, 12, 90, 69, 3, 103, 68, 61, 72, 87]. With regard to previous work on

learning directed graphs using path queries, Wang and Honorio [103] present a sequential

randomized algorithm that takes Q(n) ∈ O(n log2 n) path queries in expectation to learn

rooted trees of maximum degree, d. Their divide and conquer approach is based on the notion

of an even-separator, an edge that divides the tree into two subtrees of size at least n/d. As

explained in Chapter 2, learning a degree-d rooted tree with n nodes requires Ω(nd+n log n)

path queries [10] and we provide a randomized parallel algorithm for the same problem using

Q(n) ∈ O(n log n) queries in R(n) ∈ O(log n) rounds with high probability (w.h.p.)1, which

instead relies on finding a near-separator, an edge that separates the tree into two subtrees

of size at least n/(d + 2), through a “noisy” process that requires noisy estimation of the

number of descendants of a node by sampling. That method, however, relies on the fact the

ancestor set of a vertex in a rooted tree forms a total order. In section 3.4, we extend that

work to learn a rooted spanning tree for a DAG.

Regarding the reconstruction of trees with a specific height, Jagadish and Anindya [68]

present a sequential deterministic algorithm to learn undirected fixed-degree trees of height

h using Q(n) ∈ O(nh log n) separator queries, where a separator query given three vertices

1We say that an event happens with high probability if it occurs with probability at least 1 − 1
nc , for

some constant c ≥ 1.

38



a, b, and c, it returns “true” if and only if b is on the path from a to c. Janardhanan and

Reyzin [69] study the problem of learning an almost-tree of height h (a directed rooted tree

with an additional cross-edge), and they present a randomized sequential algorithm using

Q(n) ∈ O(n log3 n+ nh) queries.

A more general form of this problem is studied in terms of sorting the partially ordered

sets (or posets) [28, 31, 43, 52]. Faigle and Turán [52] study the problem of sorting posets

and they provide an algorithm with query complexity of O(wn log n) queries, where n is the

number of elements and w is the width of the poset. Daskalakis et al. [43] give an algorithm

with optimal query complexity of O(n log n+ nw) and a matching lower bound, where each

query given a pair of elements, it returns whether the two are not comparable or which

element is greater than the other. In this problem, the width, w, is defined as the maximum

cardinality antichain of the poset, where an antichain is a subset of mutually incomparable

elements. Note that the width of the tree can be very large even when the maximum degree

of the corresponding DAG is small, for instance, a binary tree can have a width of O(n) with

a maximum degree of 3. Therefore, our results provide an improvement upon those DAGs

with fixed maximum degree and large width.

3.1.2 Our Contributions

In Section 3.3, we present our learning algorithms for multitrees—a DAG with at most one

directed path for any two vertices. We begin, however, by first presenting a deterministic

result for learning directed rooted trees using path queries, giving a sequential deterministic

approach to learn fixed-degree trees of height h, with O(nh) queries, which provides an

improvement over results by Jagadish and Anindya [68]. We then show how to use a tree-

learning method to design an efficient learning method for a multitree with a roots using

Q(n) ∈ O(an log n) queries and R(n) ∈ O(a log n) rounds w.h.p. We finally show how to

39



use our tree learning method to design an algorithm with Q(n) ∈ O(n3/2 · log2 n) queries to

learn butterfly networks w.h.p.

In Section 3.4, we introduce a separator theorem for DAGs, which is useful in learning

a spanning-tree of a rooted DAG. Next, we present a parallel algorithm to learn almost-

trees of height h, using O(n log n + nh) path queries in O(log n) parallel rounds w.h.p.

We also provide a lower bound of Ω(n log n + nh) for the worst case query complexity of

a deterministic algorithm or an expected query complexity of a randomized algorithm for

learning fixed-degree almost-trees proving that our algorithm is optimal. Moreover, this

asymptotically-optimal query complexity bound, improves the sequential query complexity

for this problem, since the best known results by Janardhanan and Reyzin [69] achieved a

query complexity of O(n log3 n+ nh) in expectation.

3.2 Preliminaries

For a DAG, G = (V,E), we represent the in-degree and out-degree of vertex v ∈ V with

di(v) and do(v) respectively. Throughout this paper, we assume that an input graph has

maximum degree, d, i.e., for every v ∈ V , di(v) + do(v) ≤ d. A vertex, v, is a root of the

DAG if di(v) = 0. A DAG may have several roots, but we call a DAG rooted if it has only

one root. Note that in a rooted DAG with root r, there is at least one directed path from r

to every v ∈ V .

Definition 3.1. (arborescence) An arborescence is a rooted DAG with root r that has exactly

one path from r to each vertex v ∈ V . It is also referred to as a spanning directed tree at

root r of a directed graph.

We next introduce a multitree, which is a family of DAGs useful in distributed computing [35,

67] that we study in Section 3.3.

40



Definition 3.2. (multitree) A multitree is a DAG in which the subgraph reachable from any

vertex induces a tree, that is, it is a DAG with at most one directed path for any pair of

vertices.

We next review the definition of a butterfly network, which is a multitree used in high

speed distributed computing [86, 36, 55] for which we provide efficient learning method in

Section 3.3.

Definition 3.3. (Butterfly network) A butterfly network, also known as depth-k Fast Fourier

Transform (FFT) graph is a DAG recursively defined as F k = (V,E) as follows:

• For k = 0: F 0 is a single vertex, i.e. V = {v} and E = {}.

• Otherwise, suppose F k−1
A = (VA, EA) and F k−1

B = (VB, EB) each having m sources

and m targets (t0, ..., tm−1) ∈ VA and (tm, ..., t2m−1) ∈ VB. Let VC = (v0, v1, ..., v2m−1)

be 2m additional vertices. We have F k = (V,E), where V = VA ∪ VB ∪ VC and

E = EA ∪EB

⋃
0≤i≤m−1(ti, vi)∪ (ti, vi+m)∪ (ti+m, vi)∪ (ti+m, vi+m) (See Figure 3.1 for

illustration).

Definition 3.4. (ancestory) Given a directed acyclic graph, G = (V,E), we say u is a parent

of a vertex v (v is a child of u), if there exists a directed edge (u, v) ∈ E. The ancestor

Figure 3.1: An example of a butterfly network with height 4 (Depth 4), F 4, as a composition
of two F 3 (A and B) and 24 additional vertices, C, in Height 0.

41



relationship is a transitive closure of the parent relationship, and descendant relationship is

a transitive closure of child relationship. We denote the descendant (resp. ancestor) set of

vertex v, with D(v), (resp. A(v)). Also, let C(v) denote children of v.

Definition 3.5. A path query in a directed graph, G = (V,E), is a function that takes

two vertices u and v, and returns 1, if there is a directed path from u to v, and returns 0

otherwise. We also let count(s,X) = Σx∈Xpath(s, x).

As Wang and Honorio observed [103], transitive edges in a directed graph are not learnable

by path queries. Thus, it is not possible using path queries to learn all the edges for a

number of directed graph types, including strongly connected graphs and DAGs that are

not equal to their transitive reductions (i.e., graphs that have at least one transitive edge).

Fortunately, transitive edges are not likely in phylogenetic networks due to their derivative

nature, so, we focus on learning DAGs without transitive edges.

Definition 3.6. In a directed graph, G = (V,E), an edge (u, v) ∈ E is called a transitive

edge if there is a directed path from u to v of length greater than 1.

Definition 3.7. (almost-tree) An almost-tree is a rooted DAG resulting from the union of

an arborescence and an additional cross edge. The height of an almost-tree is the length of

its longest directed path.

Note: some researchers define almost-trees to have a constant number of cross edges (see,

e.g., [14, 19]). But allowing more than one cross edge can cause transitive edges; hence,

almost-trees with more than one cross edge are not all learnable using path queries, which

is why we follow Janardhanan and Reyzin [69] to limit almost-trees to have one cross edge.

We next introduce even-separator, which will be used in Section 3.4.

Definition 3.8. (even-separator) Let G = (V,E) be a rooted degree-d DAG. We say that

vertex v ∈ V is an even-separator if |V |
d
≤ count(v, V ) ≤ |V |(d−1)

d
.

42



3.3 Learning Multitrees

In this section, we begin by presenting a deterministic algorithm to learn a rooted tree (a

multitree with a single root) of height h, using O(nh) path queries. This forms the building

blocks for the main results of this section, which are an efficient algorithm to learn a multitree

of arbitrary height with a number of roots and an efficient algorithm to learn a butterfly

network.

3.3.1 Rooted Trees

Let T = (V,E, r) be a directed tree rooted at r with maximum degree that is a constant, d,

with vertices, V , and edges, E. At the beginning of any exactly learning algorithm, we only

know V , and n = |V |, and our goal is to learn r, and E by issuing path queries.

To begin with, learning the root of the tree can be deterministically done using O(n) path

queries as suggested in Chapter 2. Recall that our approach is to pick an arbitrary vertex v,

(ii) learning its ancestor set and establishing a total order on them, and (iii) finally applying

a maximum-finding algorithm [34, 93, 100] by simulating comparisons using path queries.

Next, we show how to learn the edges, E. Jagadish and Anindya [68] propose an algorithm

to reconstruct fixed-degree trees of height h using O(nh log n) queries. Their approach is to

find an edge-separator—an edge that splits the tree into two subtrees each having at least

n/d vertices—and then to recursively build the two subtrees. In order to find such an edge,

(i) they pick an arbitrary vertex, v, and learn an arbitrary neighbor of it such as, u, (ii) if

(u, v) is not an edge-separator, they move to the neighboring edge that lies on the direction

of maximum vertex set size. Hence, at each step after performing O(n) queries, they get

one step closer to the edge-separator. Therefore, they learn the edge-separator using O(nh)

queries, and they incur an extra O(log n) factor to build the tree recursively due to their

43



edge-separator based recursive approach.

We show that finding an edge-separator for a deterministic algorithm is unnecessary, however.

We instead propose a vertex-separator based learning algorithm. Our learn-short-tree(V, r)

method takes as an input, the vertex set, V , and root vertex, r, and returns edges of the

tree, E. Let {r1, . . . , rd} be a tentative set of children for vertex r initially set to Null , and

for 1 ≤ i ≤ d, let Vi represents the vertex set of the subtree rooted at ri. For 1 ≤ i ≤ d, we

can find child ri, by starting with an arbitrary vertex ri, and looping over v ∈ V to update ri

if for v ̸= r, path(v, ri) = 1. Since, in a rooted tree, an ancestor relationship for ancestor set

of any vertex is a total order, ri will be a child of root r. Once we learn ri, its descendants

are the set of nodes v ∈ V such that path(ri, v) = 1. We then remove Vi from the set of

vertices of V to learn another child of r in the next iteration. It finally returns the union

of edges (r, ri) and edges returned by the recursive calls learn-short-tree(Vi, ri), for 1 ≤ i ≤ d

(see Algorithm 3).

Algorithm 3: Our algorithm to learn trees of height-h

1 Function learn-short-tree(V, r):
2 E ← ∅, V ← V \ {r}
3 for i← 1 to d do
4 ri ← Null , Vi ← ∅
5 for i← 1 to d do
6 if |V | ≥ 1 then
7 Let ri be an arbitrary vertex in V
8 for v ∈ V do
9 if path(v, ri) = 1 then ri ← v

10 for v ∈ V do
11 if path(ri, v) = 1 then Vi ← Vi ∪ {v}
12 V ← V \ Vi

13 E ← E ∪ (r, ri)
14 E ← E ∪ small-height-tree-reconstruction(Vi, ri)

15 return E

The query complexity, Q(n), for learning the tree is as following:

44



Q(n) = Σd
i=1Q(|Vi|) +O(n) (3.1)

Since the height of the tree is reduced by at least 1 for each recursive call, Q(n) ∈ O(nh).

Hence, we have the following theorem.

Theorem 3.1. One can deterministically learn a fixed-degree height-h directed rooted tree

using O(nh) path queries.

This, in turn, implies the following theorem (3.2) for rooted trees of arbitrary height by

employing our method learn-short-tree in an algorithm by Jagadish and Andyia [68], which

was introduced for learning undirected trees of large height using separator queries.

Theorem 3.2. One can deterministically learn a fixed-degree directed rooted tree of arbitrary

height using O(n3/2
√
log n) path queries.

Proof. Jagadish and Anindya [68, Section 5.2] provided an algorithm to learn undirected

trees of arbitrary height with separator queries through the following subroutine: Given a

tree T and an arbitrary node set as root r, return a subgraph T ′ such that for any path such

as P , from r to a leaf in T , T ′ contains at least n− h vertices of P . Once they find T ′, they

use a an algorithm to learn trees of short height for the missing parts on each path. They

control h by a controlling parameter, l, where h = n/l. Besides, all the queries to find T ′ are

in the form ancestor queries which can be simply simulated by O(1) path queries. Further,

we can replace their short height tree learning algorithm with our learn-short-tree algorithm.

Their algorithm takes O(nl log n) to learn T ′, and O(nh log n) ∈ O(n
2

l
log n) queries to learn

the missing parts on the paths through their short depth tree learning method. We learn T ′

using O(nl log n) path queries since all of their separator quries are in the form of sep(r, x, y)

where r is the root, by simulating it with path(x, y). Since our learn-short-tree method takes

45



O(nh) ∈ O(n2/l) queries, if we set l =
√

n/ log n, this amounts to a method using a total

number of Q(n) ∈ O(n3/2
√
log n) queries to learn trees of arbitrary height.

We now show how to adapt a path-querying algorithm to derive an algorithm for learning an

undirected fixed-degree tree using separator queries. This will establish improvements upon

the results of Jagadish and Anindya [68].

Definition 3.9. (separator query) On an undirected tree T = (V,E), a separator query is a

function, sep : V ×V ×V → {0, 1}, such that sep(a, b, c) = 1 if removing vertex b disconnects

vertex a from vertex c, and sep(a, b, c) = 0 otherwise.

Our separator querying method (learn-undirected-tree) is based on a simple simulation of a

path-query algorithm (learn-rooted-tree), and an observation that we can implement path

queries using separator queries. Given an undirected tree T = (V,E ′), we transform it into a

rooted directed tree T = (V,E, r) by arbitrarily choosing a vertex, r, as the root of the tree.

Then, we orient the edges in E away from r. Given this view, for each path query in our

tree-reconstruction algorithm, we note that path(u, v) = 1 if and only if sep(r, u, v) = 1 (see

Figure 3.2). Finally, we report the edges returned in learn-rooted-tree(V, r) with direction

removed.

Algorithm 4: Learn an undirected rooted tree with separator queries

1 Function learn-undirected-tree(V ):
2 pick a vertex r arbitrarily from V and set it as root.
3 We define the path query path(u, v) according to sep(r, u, v): if sep(r, u, v) = 1,

then path(u, v) = 1; otherwise, path(u, v) = 0.
4 E ← learn-rooted-tree(V, r)
5 E ′ ← edges of E with direction removed
6 return E ′

Theorem 3.3. Let T = (V,E) be a fixed-degree undirected tree. If T has height h, we can

deterministically learn T with O(nh) separator queries, and if it has an arbitrary height, we

can learn it with O(n3/2
√
log n) queries.

46



Figure 3.2: The reduction of separator queries (left) to path queries (right). We have that
(i) sep(r, u, v) = 1 ⇐⇒ path(u, v) = 1 and (ii) sep(r, u, w) = 0 ⇐⇒ path(u,w) = 0.

Proof. This follows directly from our results in Subsection 3.3.1, which establish the query

query complexity of learn-rooted-tree, the subroutine used in Algorithm 4 that dominates

the query complexity.

3.3.2 Multitrees of Arbitrary Height

We next provide a parallel algorithm to learn a multitree of arbitrary height with a number

of roots. Recall that Wang and Honorio [103, Theorem 8] prove that learning a multitree

with Ω(n) roots requires Ω(n2) queries. Suppose that G = (V,E) is a multitree with a roots.

We show that we can learn G using Q(n) ∈ O(an log n) queries in R(n) ∈ O(a log n) parallel

rounds w.h.p.

Let us first explain how to learn a root. Our learn-root method learns a root using Q(n) ∈

O(n) queries in R(n) ∈ O(1) rounds w.h.p. Note that in a multitree with more than one

root, the ancestor set of an arbitrary vertex does not necessarily form a total order, so, we

may not directly apply a parallel maximum finding algorithm on the ancestor set to learn a

root.

Our learn-root method takes as input vertex set V , and returns a root of the DAG. It first

learns in parallel, Y , the ancestor set of v (the nodes u ∈ V such that path(u, v) = 1).

While |Y | > m, where m = C1 ∗
√
|V | for some constant C1 fixed in the analysis, it takes

a sample, S, of expected size of m from Y uniformly at random. Then, it performs path

47



queries for every pair (a, b) ∈ S × S in parallel to learn a partial order of S, that is, we say

a < b if and only if path(a, b) = 1. Hence, a root of the DAG should be an ancestor of a

minimal element in S. Using this fact, we keep narrowing down Y until |Y | ≤ m, when we

can afford to generate a partial order of Y in Line 11, and return a minimal element of Y

(see Algorithm 5).

Algorithm 5: Our algorithm to find a root in V

Function learn-root(V ):

1 m = C1 ∗
√
|V |

2 Pick an arbitrary vertex v ∈ V
3 for each u ∈ V do in parallel
4 Perform query path(u, v) to find ancestor set Y
5 while |Y | > m do
6 S ← a random sample of expected size m from Y
7 for (a, b) ∈ S × S do in parallel

Perform query path(a, b)
8 Pick a vertex y ∈ S such that for all a ∈ S: path(a, y) == 0
9 for a ∈ Y do in parallel

Perform query path(a, y) to find ancestors of y, Y ′

10 Y ← Y ′

11 for (a, b) ∈ Y × Y do in parallel
Perform query path(a, b)

12 y ← a vertex in Y such that for all a ∈ Y : path(a, y) == 0
13 return y

Before providing the anlaysis of our efficient learn-root method, let us present Lemma 3.1,

which is an important lemma throughout our analysis, as it extends Lemma 2.4 to directed

acyclic graphs.

Lemma 3.1. Let G = (V,E) be a DAG, and let Y be the set of vertices formed by the union

of at most c directed (not necessarily disjoint) paths, where c ≤ |V | and |Y | > m = C1

√
|V |.

If we take a sample, S, of m elements from Y , then with probability 1 − 1
|V |2 , for each of

these c paths such as P , every two consecutive nodes of S in the sorted order of P are within

distance O(|Y | log |V |/
√
|V |) from each other in P .

Proof. Since we pick our sample S independently and uniformly at random, some nodes of

48



Y may be picked more than once, and each vertex will be picked with probability p = m
|Y | =

C1·
√

|V |
|Y | . Let P be the set of vertices of an arbitrary path among these c paths. Divide P

into consecutive sections of size, s = |Y | log |V |√
|V |

. The last section on P can have any length

from 1 to |Y | log |V |√
|V |

. Let R be the set of vertices of an arbitrary section of path P (any section

except the last one). We have that expected size of |R ∩ S|, E[|R ∩ S|] = s · p = C1 log |V |.

Since we pick our sample independently, using standard Chernoff bound for any constant

C1 > 8 ln 2, we have that Pr[|R ∩ S| = 0] < 1/|V |4. Using a union bound, with probability

at least 1− c/|V |3, our sample S will pick at least one node from all sections except the last

section of all paths. Therefore, if c ≤ |V |, with probability at least 1 − 1
|V |2 , the distance

between any two consecutive nodes on a path in our sample is at most 2s.

Lemma 3.2. Let G = (V,E) be a DAG, and suppose that roots have at most c ∈ O(n1/2−ϵ)

for constant 0 < ϵ < 1/2 paths (not necessarily disjoint) in total to vertex v, then, learn-

root(V ) outputs a root with probability at least 1− 1
|V | , with Q(n) ∈ O(n) and R(n) ∈ O(1).

Proof. The correctness of the learn-rootmethod relies on the fact that if Y is a set of ancestors

of vertex v, then for vertex r, a root of the network, and for all y ∈ Y , we have: path(y, r) = 0.

Using Lemma 3.1 and a union bound, after at most 1/ϵ iterations of the While loop, with

probability at least 1 − 1/ϵ
|V |2 , the size of |Y | will be O(m). Hence, we will be able to find

a root using the queries performed in Line 11. Note that this Las Vegas algorithm always

returns a root correctly. We can simply derive a Monte Carlo algorithm by replacing the

while loop with a for loop of two iterations.

Therefore, the query complexity of the algorithm is as follows w.h.p:

• We have O(|V |) queries in 1 round to find ancestors of v.

• Then, we have 1/ϵ iterations of the while loop, each having O(m2) +O(|Y |) ∈ O(|V |)

queries in 1/ϵ rounds.

49



• Finally, we have O(m2) queries performed in 1 round in Line 11.

Overall, this amounts to Q(n) ∈ O(n), R(n) ∈ O(1) w.h.p.

Since in a multitree with a ∈ O(n1/2−ϵ) roots (for 0 < ϵ < 1/2), each root has at most one

path to a given vertex v, we have at most a ∈ O(n1/2−ϵ) directed paths in total from roots to

an arbitrary vertex v. Therefore, we can apply Lemma 3.2 to learn a root w.h.p. Note that

if a /∈ O(n1/2−ϵ), as an alternative, we can learn a root w.h.p. using O(n log n) queries with

R(n) ∈ O(log n) rounds by (i) picking an arbitrary vertex v ∈ V and learning its ancestors,

A(v)∩V in parallel (ii) replacing path queries with inverse-path queries (inverse-path(u, v) = 1

if and only if v has a directed path to u), (ii) and applying the rooted tree learning method,

Algorithm 1, to learn the tree with inverse direction to v. Note that any of the leaves of the

inverse tree rooted at v is a root of the multitree.

Our multitree learning algorithm works by repetitively learning a root, r, from the set of

candidate roots, R (R = V at the beginning). Then, it learns a tree rooted at r by calling

the rooted tree learning, Algorithm 1. Finally, it removes the set of vertices of the tree from

R to perform another iteration of the algorithm so long as |R| > 0. We give the details of

the algorithm below.

1. Let R be the set of candidate roots for the multitree initialized with V .

2. Let r ← learn-root(R).

3. Issue queries in parallel, path(r, v) for all v ∈ V to learn descendants, D(r).

4. Learn the tree rooted at r by calling learn-rooted-tree(r,D(r)).

5. Let R = R \D(r), and if |R| > 0 go to step 2.

Theorem 3.4 analyzes the complexity of our multitree learning algorithm.

50



Theorem 3.4. One can learn a multitree with a roots using Q(n) ∈ O(an log n) path queries

in R(n) ∈ O(a log n) parallel rounds w.h.p.

Proof. The query complexity and the round complexity of our multitree learning method is

dominated by the calls to Algorithm 1, which takes Q(n) ∈ O(n log n) queries in R(n) ∈

O(log n) parallel rounds w.h.p. Hence, using a union bound and by adjusting the sampling

constants for Algorithm 1 we can establish the high probability bounds.

3.3.3 Butterfly Networks

Next, we provide an algorithm to learn a butterfly network. Suppose that F h = (V,E) is

a butterfly network with height h (i.e., a depth-h FFT graph, see definition 3.3). We show

that we can learn F h using Q(n) ∈ O(23h/2h2) path queries with high probability. Note that

in a butterfly networks of height h, the number of nodes will be n = 2h · (h+ 1). Also, note

that the graph has a symmetry property, that is, all leaves are reachable from the root, and

all roots are reachable from the leaves if we reverse the directions of the edges, and that each

node but the leaves has exactly two children, and each node but the roots have exactly two

parents, and so on. Due to this symmetry property, we can apply learn-short-tree but with

inverse path query (inverse-path(u, v) = 1 if and only if v has a directed path to u) to find

the tree with inverse direction to a leaf.

Our algorithm first learns all the roots and all the leaves of the graph. We first perform

a sequential search to find an arbitrary root of the network, r. Note that we can learn r

by picking an arbitrary vertex x and looping over all the vertices and updating x to y if

path(y, x) = 1. After learning its descendants, D(r), we make a call to our learn-short-tree

method to build the tree rooted at r, which enables us to learn all the leaves, L. Then, we

pick an arbitrary leaf, l ∈ L, and after learning its ancestors, A(l), we call the learn-short-tree

method (with inverse path query) to learn the tree with inverse direction to l, which enables

51



us to learn all the roots, R. We then take two sample subsets, S, and T , of expected size

O(2h/2h) from R, and L respectively, and uniformly at random. We will show that the union

of the edges of trees rooted at r for all r ∈ S and the inverse trees rooted at l for all l ∈ T

includes all the edges of the network w.h.p. We give the details of our algorithm below.

1. Learn a root, r, using a sequential search.

2. Perform path queries to learn descendant set, D(r), of r.

3. Call learn-short-tree(r,D(r)) method to learn the leaves of the network, L.

4. Let l ∈ L be an arbitrary leaf in the network, then perform path queries to learn the

ancestors of l, A(l).

5. Call learn-short-tree(l, A(l)) with inverse path query definition to learn the roots of the

network, R.

6. Pick a sample S of size c·2h/2h from R, and a sample T of size c·2h/2h from L uniformly

at random for a constant c > 0.

7. Perform queries to learn descendant set, D(s), for every s ∈ S, and to learn ancestor

set A(t), for every t ∈ T .

8. Call learn-short-tree(s,D(s)) to learn the tree rooted at s for all s ∈ S.

9. Call learn-short-tree(t, A(t)) using inverse reverse path query to learn the tree rooted

at t for all t ∈ T .

10. Return the union of all the edges learned.

Theorem 3.5. One can learn a butterfly network of height, h, using Q(n) ∈ O(23h/2h2) path

queries with high probability.

52



Proof. The query complexity of the algorithm is dominated by O(2h/2h) times the running

time of our learn-short-tree method, which takes O(2hh) queries for each tree. Consider a

directed edge from vertex x at height k to vertex y at height k − 1 in the network. If

k ≤ h/2, then x has at least 2⌊h/2⌋ ancestors in the root, that is, |A(x) ∩ R| ≥ 2⌊h/2⌋. Since

our sample, S, has an expected size of 2h/2 · ch, the expected size of |S ∩A(x) ∩R| ≥ ch/2.

Using a standard Chernoff bound, the probability, Pr[|S ∩ A(x) ∩ R| = 0] ≤ e−ch/4. Hence,

for large enough c, this probability is less than 1/22h. Therefore, we will be able to learn

edge (x, y) through a tree rooted at s ∈ S. Similarly, we can show that if k > h/2, then y

has at least 2⌊h/2⌋ descendants in the leaves, that is, |D(y) ∩ L| ≥ 2⌊h/2⌋. Since, our sample

T , has an expected size of 2h/2 · ch, the expected size of |T ∩ D(y) ∩ L| ≥ ch/2. Using a

standard Chernoff bound, the probability, Pr[|T ∩D(y)∩L| = 0] ≤ e−ch/4. Hence, for large

enough c, this probability is less than 1/22h. Therefore, we will be able to learn edge (x, y)

through a tree inversely rooted at t ∈ T in this case. A union bound establishes the high

probability.

3.4 Parallel Learning of Almost-trees

Let G = (V,E) be an almost-tree of height h. We learn G with Q(n) ∈ O(n log n + nh)

path queries in R(n) ∈ O(log n) rounds w.h.p. Note that we can learn the root of an

almost-tree by Algorithm 5, and given that the root has at most 2 paths to any vertex, it

will take Q(n) ∈ O(n) queries and R(n) ∈ O(1) w.h.p. by Lemma 3.2. We then learn a

spanning rooted tree for it, and finally we learn the cross-edge. We will also prove that our

algorithm is optimal by showing that any randomized algorithm needs an expected number

of Ω(n log n+ nh).

53



3.4.1 Learning an Arborescence in a DAG

Our parallel algorithm learns an arborescence, a spanning directed rooted tree, of the graph

with a divide and conquer approach based on our separator theorem, which is an extension

of Lemma 2.2 for DAGs.

Theorem 3.6. Every degree-d rooted DAG, G = (V,E), has an even-separator (see Defini-

tion 3.8).

Proof. We prove through a iterative process that there exists a vertex v such that |V |
d
≤

|D(v)| ≤ |V |·(d−1)
d

. Let r be the root of the DAG. We have that |D(r)| = |V |. Since r has

at most d children and each v ∈ V is a descendent of at least one of the children of r, r has

a child x, such that D(x) ≥ |V |/d. If D(x) ≤ |V |·(d−1)
d

, x is an even-separator. Otherwise,

since do(x) ≤ d− 1, x has a child, y, such that |D(y)| ≥ |V |/d. If |D(y)| ≤ |V |·(d−1)
d

, y is an

even-separator. Otherwise, we can repeat this iterative procedure with a child of y having

maximum number of descendants. Since, |D(y)| < |D(x)|, and a directed path in a DAG

ends at vertices of out-degree 0 (with no descendants), this iterative procedure will return

an even-separator at some point.

Next, we introduce Lemma 3.3 which shows that for fixed-degree rooted DAGs, if we pick

a vertex v uniformly at random, there is an even separator in A(v), ancestor set of v, with

probability depending on d.

Lemma 3.3. Let G = (V,E) be a degree-d DAG with root r, and let v be a vertex chosen

uniformly at random from v. Let Y be the ancestor set for v in V . Then, with probability at

least 1
d
, there is an even-separator in Y .

Proof. By Theorem 3.6, G has an even-separator, e. Since |D(e)| ≥ |V |
d
, with probability at

least 1
d
, v will be one of the descendants of e.

54



Although a degree-d rooted DAG has an even-separator, checking if a vertex is an even-

separator requires a lot of queries for exact calculation of the number of descendants. Thus,

we use a more relaxed version of the separator, which we call near-separator, for our divide

and conquer algorithm.

Definition 3.10. Let G = (V,E) be a rooted degree-d DAG. We say that vertex v ∈ V is a

near-separator if |V |
d+2
≤ |D(v)| ≤ |V |(d+1)

d+2
.

Note that every even-separator is also a near-separator. We show if an even-separator exists

among A(v) for an arbitrary vertex v, then we can locate a near-separator among A(v) w.h.p.

Incidentally, we used a similar divide and conquer approach to learn directed rooted trees in

Chapter 2, but our approach relied on the fact that there is exactly one path from root to

every vertex of the tree. We will show how to meet the challenge of having multiple paths

to a vertex from the root in learning an arborescence for a rooted DAG.

Our learn-spanning-tree method takes as input vertex set, V , of a DAG rooted at r, and

returns the edges, E, of an arborescence of it. In particular, it enters a repeating while loop

to learn a near-separator by (i) picking a random vertex v ∈ V , (ii) learning its ancestors,

Y = A(v) ∩ V , (iii) and checking if Y has a near-separator, w, by calling learn-separator

method, which we describe next. Once learn-separator returns a vertex, w, we split V into

V1 = D(w) ∩ V and V2 = V \ V1 given that path(w, z) = 1 if and only if z ∈ V1. If

|V |
d
≤ |V1| ≤ |V |(d−1)

d
, we verify w is a near-separator. If w is a near separator, then it calls

learn-parent method, to learn a parent, u, for w. Finally, it makes two recursive calls to learn

a spanning tree rooted at w for vertex set V1, and a spanning tree rooted at r with vertex set

V2 (see Algorithm 6). Note that our learn-parent(v, V ) method is similar to our learn-root(V )

method except that it passes closest nodes to v to the next iteration rather than the farthest

nodes.

55



Algorithm 6: learn a spanning tree in a DAG

Function learn-spanning-tree(V, r):
1 E ← ∅
2 if |V | ≤ g then // g is a chosen constant

3 return edges found by a quadratic brute-force algorithm
4 while true do
5 Pick a vertex v ∈ V uniformly at random
6 for z ∈ V do in parallel

Perform query path(z, v) to find Y = A(v) ∩ V
7 w ← learn-separator(v, Y, V, r)
8 for z ∈ V do in parallel

Perform query path(w, z)
9 split V into V1, V2 using query results

10 if w ̸= Null and |V |
d+2
≤ |V1| ≤ |V |(d+1)

d+2
then

11 u← learn-parent(w, V )
12 E ← E ∪ {(u,w)}
13 parallel do
14 E ← E ∪ learn-spanning-tree(V1, w)
15 E ← E ∪ learn-spanning-tree(V2, r)

16 return E

Next, we show how to adapt an algorithm to learn a near-separator for DAGs by extending

Algorithm 2. Our learn-separator method takes as input vertex v, its ancestors, Y , vertex set

V of a DAG rooted at r, and returns w.h.p. a near-separator among vertices of Y provided

that there is an even-separator in Y . If |Y | is too large (|Y | > |V |/K), then it enters Phase

1. The goal of this phase is to remove the nodes that are unlikely to be a separator in

order to pass a smaller set of candidate separator to Phase 2. It chooses a random sample,

S, of expected size m = C1

√
|V |, where C1 > 0 is a fixed constant. It adds {v, r} to the

sample S. It then estimates |D(s) ∩ V | for each s ∈ S, using a random sample, Xs, of size

K = O(log |V |) from V by issuing path queries. If all of the estimates, count(s,Xs), are

smaller than K
d+1

, we return Null , as we argue that in this case the nodes in Y do not have

enough descendants to act as a separator. Similarly, If all of the estimates, are greater than

Kd
d+1

, we return Null , as we show that in this case the nodes in Y have too many descendants

to act as a separator. If one of these estimates for a vertex s lies in the range of [ K
d+1

, Kd
d+1

], we

return it as a near-separator. Otherwise, we filter the set of Y by removing the nodes that

56



are unlikely to be a separator through a call to filter-separator method, which we present

next. Then, we enter Phase 2, where for every s ∈ Y , we take a random sample Xs of

expected size of O(log|V |) from V to estimate |D(s) ∩ V |. If one of these estimates for a

vertex s lies in the range of [ K
d+1

, Kd
d+1

], we return it as a near-separator. We will show later

that the output is a near-separator w.h.p (see Algorithm 7).

Algorithm 7: For a vertex v, find a separator among Y = A(v) ∩ V

Function learn-separator(v, Y, V, r):

1 m = C1

√
|V |, K = C2 log |V |

Phase 1:
2 if |Y | > |V |/K then
3 S ← subset of m random elements from Y
4 S ← S ∪ {v, r}
5 for each s ∈ S do in parallel
6 Xs ← subset of K random elements from V
7 Perform queries to find count(s,Xs)

8 if ∀s ∈ S : count(s,Xs) <
K
d+1

then return Null

9 if ∀s ∈ S : count(s,Xs) >
Kd
d+1

then return Null

10 if ∃s ∈ S : K
d+1
≤ count(s,Xs) ≤ Kd

d+1
then return s

11 Y ← filter-separator(S, Y, V )

Phase 2:
12 for each s ∈ Y do in parallel
13 Xs ← subset of K random elements from V
14 Perform queries to find count(s,Xs)

15 if ∃s ∈ Y s.t. K
d+1
≤ count(s,Xs) ≤ Kd

d+1
then return s

16 return Null

Next, let us explain our filter-separator method, whose purpose is to remove some of the

vertices in Y that are unlikely to be a separator to shrink the size of Y . We first establish

a partial order on elements of S by issuing path queries in parallel. Since there are at most

c = 2 directed paths from root to vertex v, for path 1 ≤ i ≤ c, let li ∈ S be the oldest node

on path i having count(li, Xli) <
K
d+1

(resp. gi ∈ S be the youngest node on path i having

count(gi, Xgi) >
Kd
d+1

). We then perform queries to remove ancestors of gi, and descendants

of li from Y . We will prove later that this filter reduces |Y | considerably without filtering

an even-separator. We will give the details of this method in Algorithm 8.

57



Algorithm 8: Filter out the vertices unlikely to be a separator

Function filter-separator(S, Y, V ):
1 for each {a, b} ∈ S do in parallel
2 perform query path(a, b)
3 Let P1, P2, . . . , Pc be the c paths from r to v.

4 For 1 ≤ i ≤ c : let li ∈ (S ∩ Pi) such that count(li, Xli) <
K
d+1

, and there exists no

b ∈ (S ∩ A(li)) where count(b,Xb) <
K
d+1

.

5 For 1 ≤ i ≤ c : let gi ∈ (S ∩ Pi) such that count(gi, Xgi) >
K·d
d+1

, and there exists

no b ∈ (S ∩D(gi)) where count(b,Xb) >
K·d
d+1

.

6 for 1 ≤ i ≤ c and v ∈ V do in parallel
7 perform query path(v, gi) to find (A(gi) ∩ V ).
8 Remove (A(gi) ∩ V ) from Y .
9 perform query path(li, v) to find (D(li) ∩ V ).

10 Remove (D(li) ∩ V ) from Y .

11 return Y

Lemma 3.4 shows that our filter-separator method efficiently in parallel eliminates the nodes

that are unlikely to act as a separator.

Lemma 3.4. Let G = (V,E) be a DAG rooted at r, with at most c directed (not necessarily

disjoint) paths from r to vertex v, and let Y = A(v) ∩ V , and let S be a random sample

of expected size m that includes v, and r as well. The call to filter-separator(S, Y, V ) in

our learn-separator method returns a set of size O(c · |Y | log |V |/
√
|V |), and If Y has an

even-separator, the returned set includes an even-separator with probability at least 1− |S|+1
|V |2 .

Proof. We first prove that the size of the set returned by our filter-separator method is

O(c·|Y | log |V |/
√
|V |). We run Line 11 of our learn-separator method only if we do not return

in Lines 8, 9, and 10; hence, for every vertex s ∈ S, we should have that count(s,Xs) >
Kd
d+1

or count(s,Xs) <
K
d+1

and there should be nodes {x, y} ⊆ S such that count(x,Xx) >
Kd
d+1

and count(y,Xy) <
K
d+1

.

Consider an arbitrary path, Pi, among these c paths from r to v. We argue that filter-

separator returns at most O(|Y | log |V |/
√
|V |) vertices of Pi. By Lemma 3.1, with probability

at least 1 − 1
|V |2 , the distance between any two consecutive vertices of Pi ∩ S is at most

58



O(|Y | log |V |/
√
|V |), and if |Pi| > 4|Y | log |V |/

√
|V |, then |Pi ∩ S| ≥ 4. Recall that li ∈

(Pi ∩ S) was the oldest node having count(li, Xli) <
K
d+1

(there is no node b ∈ (S ∩ A(li))

having count(b,Xb) < K
d+1

). Also, recall that gi ∈ (Pi ∩ S) was the youngest node having

count(gi, Xgi) >
Kd
d+1

(there is no node b ∈ (S ∩D(gi)) having count(b,Xb) >
Kd
d+1

). Since we

remove ancestors of gi, and descendants of li from Pi, our filter-separator algorithm returns at

most vertices between two consecutive vertices of Pi∩S, having a size of O(|Y | log |V |/
√
|V |).

Since, we have at most c paths, therefore the size of the set returned by this algorithm is at

most O(c · |Y | log |V |/
√
|V |).

Let e be an even-separator in Y . Next, we prove that the returned set includes e. As we

showed inn Chapter 2, there exists a constant C2 > 0, as used in Line 1 of our learn-separator

algorithm such that the following probability bound hold:


Pr

(
count(s,Xs) ≥ K

d+1

)
≥ 1− 1

|V |2 if count(s, V ) ≥ |V |
d
,

Pr
(
count(s,Xs) ≤ K d

d+1

)
≥ 1− 1

|V |2 if count(s, V ) ≤ |V |d−1
d
,

(3.2)


Pr

(
count(s,Xs) <

K
d+1

)
≥ 1− 1

|V |2 if count(s, V ) < |V |
d+2

,

Pr
(
count(s,Xs) > K d

d+1

)
≥ 1− 1

|V |2 if count(s, V ) > |V |d+1
d+2

(3.3)

Let s ∈ S be an arbitrary ancestor of e. Hence, count(s, V ) ≥ count(e, V ) ≥ |V |
d
. By

Equation 3.2, with probability at least 1 − 1
|V |2 , count(s,Xs) ≥ K

d+1
. Hence, s cannot be

equal with li, for 1 ≤ i ≤ c, and therefore, we do not remove descendants of s. Similarly, for

an arbitrary descendant, s ∈ S, of e, count(s, V ) ≤ count(e, V ) ≤ |V |(d−1)
d

. By Equation 3.2,

with probability at least 1− 1
|V |2 , count(s,Xs) ≤ Kd

d+1
. Hence, s cannot be equal with gi, for

1 ≤ i ≤ c, and therefore, we do not remove ancestors of s. Therefore, using a union bound,

with probability at least 1− |S|
|V |2 , we do not remove e from Y .

59



All together, using a union bound with probability at least 1 − |S|+1
|V |2 , the call to our filter-

separator in Line 11 of our learn-separator algorithm returns a set of size O(c·|Y | log |V |/
√
|V |)

without filtering an even-separator.

Lemma 3.5 establishes the fact that our learn-separator finds w.h.p. a near-separator among

ancestors A(v) ∩ V , if there is an even-separator in A(v) ∩ V .

Lemma 3.5. Let G = (V,E) be a DAG rooted at r, with at most c directed (not necessarily

disjoint) paths from r to vertex v, and let Y = A(v) ∩ V . If Y has an even-separator, then

our learn-separator method returns a near-separator w.h.p.

Proof. We will show that the probability of returning Null or returning a vertex that is not a

near-separator is at most 1
|V | . Let e ∈ Y be an even-separator. We evaluate this probability

according to different lines of the algorithm.

• Lines 8, 9: Since e is an even-separator, we have |V |
d
≤ count(e, V ) ≤ |V |(d−1)

d
. On

the other hand, as r ∈ A(v) we have that count(r, V ) ≥ count(e, V ) ≥ |V |
d
. Also,

since v ∈ D(e), we can establish that count(v, V ) ≤ count(e, V ) ≤ |V |(d−1)
d

. Hence,

by Equation 3.2 and a union bound, with probability at least 1 − 2
|V |2 , we have that

count(r,Xr) ≥ K
d+1

, and count(v,Xv) ≤ Kd
d+1

, and therefore we do not return Null in

Lines 8, 9.

• Line 10: Consider a vertex s ∈ S with count(s, V ) < |V |
d+2

. By Equation 3.3, with

probability at least 1 − 1
|V |2 , count(s,Xs) < K

d+1
, and therefore, s is not picked in

Line 10 as a near-separator. Similarly, for vertex s ∈ S with count(s, V ) > |V |(d+1)
d+2

, by

Equation 3.3, with probability at least 1− 1
|V |2 , count(s,Xs) >

Kd
d+1

, indicating that we

do not pick s as a near-separator Line 10. Hence, using a union bound with probability

at least 1− |S|
|V |2 , the returned vertex in Line 10 is a near-separator.

60



• Line 15: Recall that in Lemma 3.4, we proved that with probability at least 1− |S|+1
|V |2 , our

call to filter-separator method in Line 11 of our learn-separator algorithm returns a set

including an even-separator, e, and the set size of O

(
c · |Y | log |V |√

|V |

)
∈ O(

√
|V | log |V |).

Using an argument similar to the one for Line 10, we can show that with probability

at least 1− O(
√

|V | log |V |)
|V |2 , if we return a vertex in Line 15, it will be near-separator.

• Line 16: Note that the set returned by filter-separator method includes e. By Equa-

tion 3.2, with probability at least 1 − 2
|V |2 ,

K
d+1
≤ count(e,Xe) ≤ Kd

d+1
in Line 15, and

therefore, we do not get to run Line 16.

Therefore, using a union bound, we can show that if Y has an even separator, with probability

at least 1 − 2+|S|+|S|+1+O(
√

|V | log |V |)+2

|V |2 ≥ 1 − 1
|V | , our learn-separator method returns a near-

separator.

Lemma 3.6. Let G = (V,E) be a DAG rooted at r, with at most c directed (not necessarily

disjoint) paths from r to vertex v. Then, our learn-separator(v, Y, V, r) method, takes Q(n) ∈

O(c|V |) queries in R(n) ∈ O(1) rounds.

Proof. • In phase 1, it takes O(mK) ∈ o(|V |) queries in 1 round to estimate the number

of descendants for sample S.

• The call to filter-separator in phase 1 takes m2 queries in one round to derive a partial

order for S, and since there are at most c paths from r to v, it takes O(c · |V |) in one

round to remove nodes from Y .

• In Phase 2, it takes O(|Y |K) ∈ O(|V |) queries in 1 round to estimate the number of

descendants for all nodes of Y .

61



Theorem 3.7. Suppose G = (V,E) is a rooted DAG with |V | = n, and maximum constant

degree, d, with at most constant, c directed (not necessarily disjoint) paths from root, r, to

each vertex. Our learn-spanning-tree algorithm learns an arborescence of G using Q(n) ∈

O(n log n) and R(n) ∈ O(log n) w.h.p.

Proof. By Lemma 3.6, each call to learn-separator method takes at most O(c|V |) ∈ O(|V |)

queries in O(1) rounds, and using Lemma 3.3 and Lemma 3.5, it returns a near-separator

with probability at least 1
d
·
(
1− 1

|V |

)
. Then, it learns an edge through a call to learn-parent

method using O(|V |) queries in O(1) rounds with probability at least 1− 1/|V |. Hence, for

|V | ≥ 4d, using a union bound, with probability at least 1
2d
, we have that our near-separator

splits the DAG with vertices V into two DAGs of size at least |V |
d+2

. Hence, we have

Q(n) = Q

(
n

d+ 2

)
+Q

(
n · (d+ 1)

d+ 2

)
+O(n)

R(n) = R

(
n

d+ 2

)
+R

(
n · (d+ 1)

d+ 2

)
+O(1)

Therefore, we have Q(n) ∈ O(n log n) and R(n) ∈ O(log n) in expectation. We can also use

a Chernoff bound for sum of the independent geometric random variables (see [56, 80]) to

prove the bounds with high probability similar to the work done in Theorem 2.1.

3.4.2 Learning a Cross-edge

Next, we will show that a cross-edge can be learnt using O(nh) queries in just 2 parallel

rounds for an almost-tree of height h. Our learn-cross-edge algorithm takes as input vertices

V and edges E of an arborescence of a almost-tree, and returns the cross-edge from the

source vertex, s, to the destination vertex, t. In this algorithm, we refer to D(v) for a vertex

v as the set of descendants of v according to E (the only edges learned by the arborescence).

62



Algorithm 9: lean a cross-edge for an almost tree

Function learn-cross-edge(V,E):
1 for v ∈ V do
2 for c ∈ C(v) do
3 for t ∈ (D(V ) \D(c)) do in parallel
4 Perform query path(c, t)

5 Let c be the only node and let t be the node with maximum height having
path(c, t) = 1

6 for s ∈ D(c) do in parallel
7 Perform query path(s, t)
8 Let s be the node with minimum height having path(s, t) = 1.
9 return (s, t)

We will show later that there exists a vertex, c, whose parent is vertex, v, such that the

cross-edge has to be from a source vertex s ∈ D(c) to a destination vertex t ∈ (D(v)\D(c)).

In particular, this algorithm first learns t and c with O(nh) queries in 1 parallel round. Note

that t ∈ (D(v) \D(c)) is a node with maximum height having path(c, t) = 1. Once it learns

t and c, then it learns source s, where s ∈ D(c) is the node with minimum height satisfying

path(s, t) = 1, using O(n) queries in 1 round. We give the details in Algorithm 9.

The following lemma shows that Algorithm 9 correctly learns the cross-edge using O(nh)

queries in just 2 rounds.

Lemma 3.7. Given an arborescence with vertex set V , and edge set, E, of an almost-tree,

Algorithm 9 learns the cross-edge using O(nh) queries in 2 rounds.

Proof. Suppose that the cross-edge is from a vertex s to to a vertex t. Let v be the least

common ancestor of s and t in the arborescence, and let c be a child of v on the path from

v to s. Since t ∈ (D(v) \D(c)), we have that path(c, t) = 1 in Line 4. Note that since there

is only one cross-edge, there will be exactly one node such as c satisfying path(c, t) = 1.

Note that in Line 4 we can also learn t, which is the node with maximum height satisfying

path(c, t) = 1. Finally, we just do a parallel search in the descendant set of c to learn s in

Line 7.

63



We charge each path(c, t) query in Line 4 to the vertex v. Since each vertex has at most

d children the number of queries associated with vertex v will be at most O(|D(v)| · d).

Hence, using a double counting argument and the fact that each vertex is a descendant of

O(h) vertices, the sum of the queries performed Line 4 will be, Σv∈VO(|D(v)| · d) = O(nh).

Finally, we need O(n) queries 1 round to learn s in Line 7.

Theorem 3.8. Given vertices, V , of an almost-tree, we can learn root, r, and the edges, E,

using Q(n) ∈ O(n log n+ nh) path queries, and R(n) ∈ O(log n) w.h.p.

Proof. Note that in almost-trees there are at most c = 2 paths from root r to each vertex.

Therefore, by Lemma 3.2, we can learn root of the graph using O(n) queries in O(1) rounds

with probability at least 1− 1
|V | . Then, by Theorem 3.7, we can learn a spanning tree of the

graph using O(n log n) queries in O(log n) rounds with probability at least 1− 1
|V | . Finally,

by Lemma 3.7 we can deterministically learn a cross-edge using O(nh) queries in just 2

rounds.

3.4.3 Lower bound

The following lower bound improves the one by Janardhanan and Reyzin [69] and proves

that our algorithm to learn almost-trees in optimal.

Theorem 3.9. Let G be a a degree-d almost-tree of height h with n vertices. Learning G

takes Ω(n log n+ nh) queries. This lower bound holds for both worst case of a deterministic

algorithm and for an expected cost of a randomized algorithm.

Proof. We use the same graph as the one used by Janardhanan and Reyzin [69], but we

improve their bound using an information-theoretic argument. Let G be an almost-tree of

64



Figure 3.3: An example of a complete 3-ary tree attached to the last level of a caterpillar
graph of height Θ(h).

height h consisting of a caterpillar graph with height Θ(h), and a complete d-ary tree with

Ω(n) leaves attached to the last level of it. If there is a cross-edge from one of the leaves of

the caterpillar to one of the leaves of the d-ary tree, it takes Ω(nh) queries involving a leaf of

the caterpillar and a leaf of the d-ary tree. Suppose that a querier, Bob, knows the internal

nodes of the d-ary, and he wants to know that for each leaf l of the d-ary, what is the parent

of l in the d-ary tree. If there are m leaves for the d-ary tree, the number of possible d-ary

trees will be at least m!
(d!)m/d . Therofore, using an information-theoretic lower bound, we need

Ω
(
log

(
m!

(d!)m/d

))
bit of information to be able to learn the parent of the leaves of d-ary tree.

Since the queries involving a leaf of the caterpillar and a leaf of the d-ary tree do not provide

any information about how the d-ary tree is built, it takes Ω(n log n) queries to learn the

d-ary tree.

65



3.5 Conclusion

In this chapter, we extended the results of Chapter 2 to other directed acyclic graphs.

In particular, we provided efficient algorithms for learning multitrees, butterfly networks,

and almost-trees using path queries. While our almost-tree learning algorithm provides an

optimal solution for almost-trees with only one additional cross-edge, one research direction

for future work is to study efficient algorithms for learning an almost-tree with constant

number of cross-edges. On the other hand, some of the functionalities that we provided in

this chapter may be used for learning other almost-trees. For instance, our learn-spanning-

tree can efficiently learn a spanning tree for an almost-tree as long as there are at most c

directed path from root to any vertex.

66



Chapter 4

Learning Connected Graphs

4.1 Introduction

Network mapping involves inferring the topology of a communication network, such as the

Internet, from queries, e.g., see Figure 4.1 and [50, 109]. A prominent technique for network

mapping is active probing using the Unix traceroute command to perform queries that

reveal routing-path information, e.g., see [50, 63, 109].

We formulate the network mapping problem as follows. Suppose we are given access to a

subset, U ⊆ V , of the vertices of a connected, undirected, unweighted graph, G = (V,E), so

that the distance, δ(u, v), between two vertices, u and v, in G is defined as the number of

edges on a shortest path joining u and v in G. The n vertices in U are known, but the set

of edges, E, is unknown. The subset U represents vantage point nodes from which we may

issue the following type of queries:

• kth-hop(k, u, v): return the vertex, w, that is the kth vertex on a shortest path from u

to v in G. If k ≥ δ(u, v), then return v.

67



Figure 4.1: Partial map of the Internet circa 2005. Image by The Opte Project, unchanged
and licensed under the Creative Commons Attribution 2.5 Generic license.

Note that for u, v ∈ U , kth-hop(k, u, v) returns vertices in a single shortest path from u to

v. Shortest paths in G are not necessarily unique, however. So, for example, if δ(u, v) =

δ(u,w)+δ(w, v), it is not necessarily the case that kth-hop(δ(u,w), u, v) = w. In the network

mapping problem, we are interested in using kth-hop queries to learn the edges of the induced

shortest-path graph, H = (U, Ẽ), such that there is an edge (u, v) ∈ Ẽ, for u, v ∈ U , if and

only if no kth-hop(k, u, v) query would return a vertex w ∈ U other than v, that is, kth-

hop(k, u, v) would return vertices of a shortest path from u to v that does not include any

other vertex in U . Thus, H is a weighted, connected, undirected graph such that each edge

(u, v) in H has weight δ(u, v).

Our motivation for focusing on kth-hop queries is that they form the “inner loop” of how

traceroute works by default. In particular, by default traceroute works by sending a

series of packets in a network from a source, u, to a destination, v, with the packets having

increasing time-to-live (TTL) values, up to an upper bound for the diameter, diam(G), of G,

which traceroute typically sets to 30 or 64 by default depending on the underlying operating

system. The TTL field in a packet is decremented with each hop it traverses and when it

reaches 1, then that node sends an ICMP message to the source address (with message

including the node’s address), e.g., see [2, 1]. Thus, the traceroute tool can be viewed as

first performing a kth-hop(1, u, v) query, then a kth-hop(2, u, v) query, and so on, until getting

68



a response from the vertex v. In fact, one can use options with the traceroute command

to issue a kth-hop query directly, e.g., to find the 5th hop from a node to example.com, one

could use the command, “traceroute -m 5 -M 5 example.com”.

Our formulation of the network mapping problem abstracts away certain system issues. In

particular, we are implicitly assuming that messages in G are routed along shortest paths,

which is a widely used setting assumed by the prior work [4, 53, 40]. An important system

issue that we do not abstract away, however, is that only vertices in U ⊆ V may issue queries.

Indeed, there is some interesting prior work regarding the sampling biases introduced by

only being able to issue queries from a subset, U , of the set of vertices, V , in G. For

example, Achlioptas, Clauset, Kempe, and Moore [4] show that traceroute sampling1 finds

power-law degree distributions in both ∆-regular and Poisson-distributed random graphs,

even though these underlying graphs do not themselves have power-law degree distributions,

which is a statistical finding in experiments by Lakhina, Byers, Crovella, and Xie [76].

Maciej, Markopoulou, and Patrick [74] study ways to correct for this bias when samping

large graphs. Further, Zhang, Kolaczyk, and Spencer [110] and Flaxman and Vera [53]

study ways to correct for this bias for estimating degree distributions. Interestingly, Barrat,

Alvarez-Hamelin, Dall’Asta, Vázquez, and Vespignani [20] provide an analysis that power

laws still exist in the Internet graph in spite of the traceroute sampling bias, which these

authors show is related to betweenness (see also [40]).

In spite of this interesting prior work concerning the sampling biases inherent in performing

traceroute queries only from the nodes in the subset, U , we are not familiar with any prior

work on efficient algorithms for solving the network mapping problem. We focus on two

complexity measures for a network mapping algorithm, A, in terms of n = |U |:

• Q(n): the query complexity of A. This is the total number of kth-hop queries issued.

1Traceroute sampling samples the network graph as the union of paths that packets traverse in performing
traceroute queries from a subset of the nodes in a network.

69



This complexity measure comes from learning theory (e.g., see [6, 33, 48, 94]) and

complexity theory (where it is also known as “decision-tree complexity,” e.g., see [108,

25]).

• R(n): the round complexity of A. This is the number of rounds of querying performed

by A, where the queries issued in a round are given in a batch such that any query

issued in a round may not depend on the response to any other query in that round

(but each query may depend on results of queries from previous rounds).

4.1.1 Prior Related Work

As mentioned above, we are not aware of prior algorithmic work on network mapping. If

we analyze the algorithm used in existing mapping systems that use active probing, this

amounts to a brute-force quadratic algorithm implemented by cooperating nodes of the

network, which perform a traceroute to every other known node in the network, e.g.,

see [50, 49, 64]. Viewed combinatorially, this algorithm has query complexity, Q(n), that is

O(diam(G) · n2), and round complexity, R(n), that is O(diam(G)), for kth-hop queries.

The network mapping problem is related to graph reconstruction, e.g., see [71, 78, 3, 22, 91,

15, 16, 17, 23, 18, 29, 57, 58, 59, 87, 105, 61, 72, 41, 96, 9, 104, 33, 10, 89, 13, 8]. In this

problem, one is given a connected unweighted graph, G = (V,E), for which V is known and

goal is to discover E through queries, such as:

• distance(u, v): return the distance, δ(u, v), between u to v in G.

• shortest-path(u, v): return the vertices (in order) in a shortest path from u to v in G.

There is also work on other types of queries, including vertex-betweenness queries [3]; queries

returning whether a given subset of vertices induce a given edge [23, 16, 15, 29, 17, 18];

70



queries returning the number of edges induced by a given subset of vertices [58, 57, 59, 33];

queries returning all shortest paths from a given node to all other nodes [22, 91]; queries

returning the distance between two leaves in a phylogenetic tree [9, 10, 105, 61, 72, 87]; and

queries returning whether a given vertex is an ancestor of another given vertex in a rooted

tree [104, 9, 10].

There are a number of important differences between the network mapping problem and

graph reconstruction, however. Most significantly, the graph reconstruction problem assumes

queries can be performed for any vertices in V , whereas in the network mapping problem

we may only issue kth-hop queries for nodes in the subset U ⊆ V . In addition, even if we

restrict the network mapping problem to the case where U = V , previous work on graph

reconstruction has not considered kth-hop queries, which, as we mentioned above, form the

“inner-loop” for how traceroute works and are distinct from distance and shortest-path

queries. For example, it doesn’t seem possible to simulate a kth-hop query with fewer than

Θ(n) distance queries, while a distance query can be simulated with O(log diam(G)) kth-hop

queries via binary search. Also, although it is trivial to simulate a kth-hop query with a single

shortest-path query, it takes Θ(diam(G)) kth-hop queries to simulate a single shortest-path

query. Thus, kth-hop queries are strictly weaker than shortest-path queries while being better

at capturing the true message complexity of the traceroute command.

Another difference between the network mapping problem and graph reconstruction is that

previous work on graph reconstruction has mostly focused on how to sequentially recon-

struct the graph, G, whereas the network mapping problem is inherently parallel, due to the

motivation from mapping real-world networks, where each node is a computer. In terms of

previous work on graph reconstruction in parallel, Mathieu and Zhou [78] recently provided

a simple algorithm to reconstruct a connected, unweighted graph G, using an expected num-

ber of Õ(N5/3) distance queries in 2 rounds.2 They also show that their algorithm takes an

2The notation Õ(f(N)) is equivalent with O(f(N) · polylog(f(N))).

71



expected number of Õ(N) distance queries to reconstruct a random ∆-regular graphs.

The most relevant prior work on graph reconstruction, however, is by Kannan, Mathieu,

and Zhou [71], who show how to reconstruct a connected, unweighted graph, G, using an

expected number of O(∆3N3/2 log2N log logN) distance queries, or an expected number of

N1+O(τ(N)) shortest-path queries, where N = |V | and τ(N) =
√

(log logN + log∆)/ logN ,

which is o(1) when ∆, the maximum degree of G, is N o(1). They also show that verifying a

given set of edges can be done using O(N1+O(τ(N))) expected distance queries.

4.1.2 Our Results

A preliminary announcement of some of this chapter, using distance queries for graph recon-

struction, where queries can be performed for any vertices in V , was presented in [11].

In Section 4.2, we introduce a new technique that may be of independent interest, where we

provide a new parallel implementation of a well-known graph clustering technique of Thorup

and Zwick [98] with round complexity of O(1), while their original implementation implies

an expected round complexity of O(log n). In doing so, we introduce a parameter that

allows us to trade off parallel time and cluster size. Moreover, we show that our complexity

bounds hold with high probability,3 whereas Thorup and Zwick proved their complexity

bounds only in expectation. In Section 4.3, we will use this new construction to compute

a graph-theoretic Voronoi diagram in our network mapping algorithm. On the other hand,

our graph clustering technique can be applied to other problems, such as that studied by

Honiden, Houle, and Sommer [62] for balancing graph-theoretic Voronoi diagrams, to reduce

the number of centers to O(s) from O(s log n).

In Section 4.3, we provide the first non-trivial algorithmic results for the network mapping

3We say an event holds with high probability (w.h.p.) if it occurs with probability at least 1 − 1/nc, for
some constant c ≥ 1.

72



problem. Our query complexities and round complexities are characterized in terms of

n = |U | and some interesting parameters that capture the sampling coverage provided by the

set U . For example, in addition to characterizing complexities in terms of ∆, the maximum

degree of the graph, H, we introduce a distance coverage parameter, δmax, which is the

maximum weight for an edge in H, and a nearby-vertices parameter, µ, which is an upper

bound on the number of vertices within a distance of 2δmax of any given vertex v ∈ U . As we

show, these parameters are required for the sake of efficiency, for we show that without these

parameters the network mapping problem has a quadratic query-complexity lower bound.

For example, under reasonable assumptions regarding these parameters, we are the first to

give a constant-round network-mapping algorithm with query complexity better than the

trivial brute-force algorithm.

In Section 4.4, we introduce a greedy approach for network mapping that is based on parallel

greedy approximate set cover, which allows us to achieve a near-quasilinear query complexity

(when ∆ is no(1)). As with a related sequential greedy graph reconstruction result of Kannan,

Mathieu, and Zhou [71], our query and round complexity bounds are parameterized in terms

of the best sequential query complexity for verifying the edges of a graph using distance

queries (without knowing the exact value of this query complexity). Further, for small

values of the parameters, δmax and ∆, our greedy approach uses a near-quasilinear number

of kth-hop queries, which are strictly weaker than the shortest-path queries used by Kannan,

Mathieu, and Zhou. We summarize our results in Table 4.1.

Table 4.1: Our w.h.p. bounds for the network mapping problem, where ϵ denotes a fixed
constant, 0 < ϵ < 1/2, n = |U | and ∆, δmax, µ, and τ(·) are as defined above.

R(n) Q(n)

O(1) O(δmax µn3/2+ϵ)

O(log n · log diam(G)) O(µn3/2 log3/2 n · log diam(G))

if U ⊂ V : O(∆n) diam(G) · n1+O(τ(n))

if U = V : O(∆n log n) n1+O(τ(n))

73



4.2 Parallel Graph Clustering

Thorup and Zwick [98] introduced a graph clustering technique in presenting a stretch4 3

network routing scheme. We begin by describing our parallel graph clustering algorithm,

which may be of independent interest, as it provides a parameterized parallel extension of

the one by Thorup and Zwick [98]. Also, whereas Thorup and Zwick establish their bounds

in expectation, we establish ours with high probability. In Section 4.3, we apply our parallel

graph clustering algorithm in creating a graph-theoretic Voronoi diagram for our network

mapping algorithm.

We begin with some review from Thorup and Zwick [98]. Let G = (V,E) be a connected,

undirected n-vertex graph, and let δ(u, v) denote the distance between vertices u and v in G.

In this section, we allow G to be weighted, where δ(u, v) is the sum of weights on a shortest

path (lowest weight path) from u to v, but in our algorithms for parallel network mapping,

we assume G is unweighted, in which case δ(u, v) is the number of edges on a shortest path

from u to v. For a subset A ⊆ V , let δ(A, v) = mina∈A δ(a, v), and, for vertices w, v ∈ V , let

CA(w) be the cluster of w and BA(v) be the bunch of v with respect to A, defined as follows:

CA(w) = {v ∈ V | δ(w, v) < δ(A, v)} and BA(v) = {w ∈ V | δ(w, v) < δ(A, v)}.

Note that if w ∈ A, then CA(w) = ∅. Also, observe that bunches and clusters are “inverses”

of each other, in that v ∈ CA(w) if and only if w ∈ BA(v). In addition, notice that clusters

and bunches can only shrink as we add vertices to A; that is, if A′ ⊆ A, then CA(w) ⊆ CA′(w)

and BA(v) ⊆ BA′(v), for all v and w in V .

Now, let β ∈ [4, n), be a “parallelism” parameter and let s ∈ [4 lnn, n) be a “size” parameter.

Define a subset, A ⊆ V , to be a set of (β, s)-balanced centers if |CA(w)| ≤ βn/s, for all w ∈ V .

4Routing Stretch is the worst ratio between the length of a path on which a message is routed and the
length of the shortest path in the network from the source to the destination.

74



Algorithm 10: parallel-centers(V, s, β):

1 A← ∅, W ← V
2 while |W | > 0 do
3 A′ ← Sample(W, s) // a random sample of expected size s (or W if s ≥ |W |)
4 A← A ∪ A′

5 for w ∈ W do in parallel
6 CA(w)← {v ∈ V : δ(w, v) < δ(A, v)}
7 W ← {w ∈ W : |CA(w)| > βn/s}
8 return A

Thorup and Zwick [98] give a sequential algorithm for finding a set of (4, s)-balanced centers

of expected size O(s log n). In Algorithm 10, we give a parallel algorithm for finding a set of

(β, s)-balanced centers of size O(s logβ n) in O(logβ n) rounds w.h.p. Thus, the parameter β

allows one to trade off parallel time and cluster size.

Our algorithm (Algorithm 10) takes a graph G = (V,E) as input and initializes A, the

eventual output of the algorithm, to be empty, and W , the set of nodes v ∈ V where

|CA(v)| > βn/s, to be V . Then, we iteratively add Sample(W, s) to A, and replace W with

vertices w ∈ W such that |CA(w)| > βn/s, in parallel, where the function, Sample(W, s),

returns W if |W | ≤ s and, otherwise, returns a set of elements from W such that each

element in W is selected independently at random with probability s/|W |. We continue in

this way until W = ∅.

Since the size of a cluster, |CA(w)|, does not increase as we add more vertices to A, the set

A returned by our algorithm is a set of (β, s)-balanced centers. Also, the Sample function

returns a sample of size at most 2s with probability at least 1 − e−s/3, which holds with

high probability across all iterations when s ≥ 4 lnn, by a standard Chernoff bound, e.g.,

see [80, p. 69]. Incidentally, Thorup and Zwick use the same Sample function, but don’t

bound its maximum size as we do. This high-probability upper bound for the sample size

is not sufficient to achieve a high-probability bound, however, for the entire parallel graph

clustering algorithm.

75



To that end, we define a parameter, α, as follows:

α =


2 if β ≤ ((4/3)e)4

(4/3)eβ1/2 otherwise

where e ≈ 2.71828 is Euler’s number. This definition of α is made so that we may achieve

high probability bounds for a range of β values.

Let Wi denote the set W at the beginning of iteration i, let A′
i denote the set A′ that was

added in iteration i, and let Ai denote the set A in this iteration, including the set, A′
i, i.e.,

Ai = Ai−1 ∪ A′
i, for i = 1, 2, . . ., where A0 = ∅. Say that iteration i is “bad” if the following

inequality holds:

∑
w∈Wi

|CA′
i
(w)| > αn|Wi|

s
,

and that otherwise it is “good”. Note that, since Wi is a given for iteration i, whether

iteration i is good or bad depends only on A′
i.

Lemma 4.1 (Thorup-Zwick [98], Lemma 3.2). Let W ⊆ V , let 1 ≤ s ≤ n, and let A′ ←

Sample(W, s). Then, for every v ∈ V , E[ |BA′(v) ∩W | ] ≤ |W |/s.

This implies the following:

E

[ ∑
w∈Wi

|CA′
i
(w)|

]
= E

[∑
v∈V

|BA′
i
(v) ∩Wi|

]
≤ n|Wi|

s
.

Therefore, by Markov’s inequality, an iteration is bad with probability at most 1/α.

Let Wi+1 denote the set of vertices, W , whose clusters have size at least βn/s at the end of

a good iteration i. As Wi+1 ⊆ Wi, and CAi
(w) ⊆ CA′

i
(w), for all w ∈ V , in a good iteration

76



we have:

βn|Wi+1|
s

≤
∑
w∈Wi

|CAi
(w)| ≤

∑
w∈Wi

|CA′
i
(w)| ≤ αn|Wi|

s
;

hence, |Wi+1| ≤ (α/β)|Wi| in a good iteration. Thus, the number of good iterations of our

algorithm is L = O(log(β/α) n) = O(logβ n), for either choice of α. We wish to show that the

number of bad iterations is O(L) w.h.p.

Since Wi is a given for iteration i, whether iteration i is good or bad depends only on A′
i;

therefore, an iteration is good independent of whether any other iteration is good or bad,

so, for the sake of analysis, consider a set of c0L iterations (i.e., padding out with “dummy”

iterations if necessary) where c0 ≥ 4 is a constant chosen below and each iteration is bad

independently with probability 1/α. Let X denote the number of bad iterations in this

set. So E[X] = c0L/α; hence, the probability that over 3/4 of our iterations are bad can

be bounded as p = Pr(X > (3/4)c0L) = Pr(X > (3/4)α · E[X]). Thus, at least L of our

iterations are good with probability at least 1− p.

Case 1: α = 2. In this case, β is O(1); hence, L is Θ(logβ n) = Θ(log n), since β ≥ 4.

Futher, Pr(X > (3/4)α ·E[X]) = Pr(X > (3/2)·E[X]), and, by a standard Chernoff bound,5

e.g., see [80, p. 69],

Pr(X > (3/2) · E[X]) ≤ e−E[X]/12 = e−c0L/24.

Thus, choosing c0 so that c0L/24 ≥ 2 lnn, we will have more than (3/4)c0L bad iterations

with probability at most 1/n2.

Case 2: α = (4/3)eβ1/2. In this case, (α/β) ≤ β−1/4; hence, L is O(logβ n). Further, we

have that Pr(X > (3/4)c0L) = Pr(X > (3/4)α · E[X]) = Pr(X > eβ1/2 · E[X]), and, by a

5Pr(X ≥ (1 + δ) · E[X]) ≤ e−E[X]·δ2/3, for 0 < δ ≤ 1.

77



non-standard Chernoff bound,6 e.g., see [80, p. 70],

Pr(X > eβ1/2 · E[X]) ≤
(

e

eβ1/2

)(3/4)c0L

= β −(3/8)c0L.

Thus, by choosing c0 so that (3/8)c0L ≥ 2 logβ n, we will have more than (3/4)c0L bad

iterations with probability at most 1/n2.

Therefore, we have the following.

Lemma 4.2. The number of good and bad iterations in Algorithm 10 is O(logβ n) w.h.p.

This gives us the following:

Theorem 4.1. Given an undirected, connected graph, G = (V,E), we can find a set, A, of

(β, s)-balanced centers of size O(s logβ n) in O(logβ n) parallel rounds w.h.p.

For example, if β = 4, then A is constructed to have size O(s log n) in O(log n) rounds; if

β = nϵ, for constant 0 < ϵ < 1/2, then A is constructed to have size O(s) in O(1) rounds.

4.3 Our Fast Parallel Network Mapping Algorithms

In this section, we provide our fast parallel network mapping algorithms for a connected,

undirected, unweighted network, G = (V,E), given a subset U ⊆ V from which we may

perform kth-hop queries. We denote the size of U by n and the size of V by N . Let H be

the graph induced by the shortest paths in G between pairs of vertices in U . That is, H

has vertex set U and there is an edge (u, v) in H, for u, v ∈ U , if the shortest path between

u and v in G determined by kth-hop queries contains no other vertex in U besides u and

v. The weight of each edge (u, v) in H is the distance, δ(u, v), between u and v in G. The

6Pr(X ≥ (1 + δ) · E[X]) ≤ (e/(1 + δ))(1+δ)·E[X].

78



goal of network mapping is to determine the edges of H (which can then be used to easily

determine the vertices in G in a shortest path corresponding to each edge (u, v) in H in a

single round of δ(u, v) kth-hop queries). We assume we know the value of δmax, which is the

weight of a maximum-weight edge in H. For example, if U = V , then δmax = 1. In the worst

case, δmax is equal to the diameter of G, but in real-world network mapping applications,

δmax is likely to be a constant.

We perform all the queries needed in our parallel network mapping algorithms in a subrou-

tine, Distances(v,W ), which determines the distance, δ(v, w), for a given v ∈ U and every

other w ∈ W ⊆ U . We describe two possible implementations for Distances(v,W ), which

we choose between depending on our desired goals. In our first implementation, we per-

form a simple binary search using kth-hop(k, v, w) queries to determine δ(v, w), for each w.

This requires O(log diam(G)) rounds and a total of O(|W | log diam(G)) kth-hop queries, and

this implementation doesn’t require any assumptions about W . Note that we assume that

we know diam(G), and if this is not the case, we can instead perform a doubling binary

search with the same query complexity. In our second implementation, we perform δmax kth-

hop(k, w, v) queries in parallel, for each w, for k = 1 to δmax. This implementation requires a

single round of O(δmax |W |) kth-hop queries, and it requires that v ∈ W , and the nodes in W

induce a connected subgraph of H that contains the shortest path in H from each w in W to

v, and that we are only interested in finding the edges of this subgraph. This set of queries

finds all the edges of a breadth-first search (BFS) tree, Bv, rooted at v, in the induced graph,

H, since a shortest path from w to v is also a shortest path from v to w, and a subpath of

any shortest path is a shortest path for its endpoints. Thus, in this second implementation,

we can determine δ(v, w), for each w ∈ U , from Bv, by summing the weights of the edges

from v to w in Bv (which doesn’t require any additional queries). This gives us the following

lemma.

Lemma 4.3. Distances(v,W ) can be implemented in O(log diam(G)) rounds using a total of

79



O(|W | log diam(G)) kth-hop queries. Alternatively, if v ∈ W , and the subgraph of H induced

by W is connected and we are interested only in finding the edges of this subgraph, then

Distances(v,W ) can be implemented in 1 round with O(δmax |W |) kth-hop queries.

Let the cluster of vertex w with respect to centers A be CA(w) = {v ∈ U | δ(w, v) < δ(A, v)}.

The key idea of our parallel network mapping algorithm is to first find a set, A, of (β, s)-

balanced centers, using our parallel algorithm from the previous section, and then use this

set of centers to compute a graph-theoretic Voronoi diagram [51, 62] for G, from which

we may efficiently then perform a brute-force querying step for each Voronoi region. This

approach is similar in spirit to the one by Kannan, Mathieu, Zhou [71, Section 2], with some

key important differences: i) the restriction of our queries to the vantage point U ⊆ V and

the parameters capturing sampling coverage of set U , ii) the usage of kth-hop queries, and

iii) our parallel graph clustering that allows us to trade off between round complexity and

query complexity.

The initial center-finding step builds a set, A, of size O(s logβ n) such that each vertex in U

has a cluster with respect to A of size at most βn/s. One of the challenges in implementing

this algorithm efficiently in parallel using kth-hop queries is that we need to determine cluster

sizes for all vertices in U in each iteration, which would take too many queries to compute

exactly. So, rather than compute such sizes exactly, we instead build a global random set, R,

which we use to approximate the size of each cluster. We give the details in Algorithm 11.

Lemma 4.4. Our estimated-parallel-centers algorithm constructs a set, A, of (3β, s)-balanced

centers of size O(s logβ n). Suppose Distances(r, U) executes in R(n) rounds and Q(n) kth-

hop queries. Then estimated-parallel-centers algorithm executes in O(R(n) logβ n) rounds and

O(Q(n)(s/β) log n logβ n) kth-hop queries, w.h.p.

Proof. Recall that the estimated-parallel-centers algorithm uses a global random sample set,

R, for estimating cluster sizes, where R is a random subset of U of size T = c1(s/β) log n.

80



Algorithm 11: Our parallel querying algorithm, estimated-parallel-centers(U, s, β),
for finding a set of (β, s)-balanced centers A.

1 A← ∅, W ← U
2 T ← c1(s/β) log n // c1 is a constant set in the analysis
3 while |W | > 0 do
4 A′ ← Sample(W, s)
5 A← A ∪ A′

6 R← a random subset with v ∈ U chosen independently with probability T/n
7 for each r ∈ R do in parallel
8 Distances(r, U)
9 for w ∈ W do in parallel

10 S(w)← {v ∈ R : δ(w, v) < δ(A, v)} // S(w) = CA(w) ∩R
11 W ← {w ∈ W : |S(w)| > 2βT/s} // that is, |S(w)|(n/T ) > 2βn/s

12 return A

Recall that, for each vertex w ∈ W , we defined S(w) such that S(w) = R ∩ CA(w). Thus,

E[|S(w)|] = |CA(w)|(T/n). We are interested in showing that w.h.p. this sample of CA(w) is

giving neither an over-estimate nor an under-estimate for the size of CA(w), which we define

respectively as follows:

• Over-estimate event : |CA(w)| ≤ βn/s, but |S(w)| > 2βT/s. In this case, we would be

including w in W even though its cluster size is sufficiently small.

• Under-estimate event : |CA(w)| > 3βn/s, but |S(w)| ≤ 2βT/s. In this case, we would

be excluding w from W even though its cluster size is big.

Let us consider each of these types of events in turn.

Over-estimate event. We wish to bound the probability that |CA(w)| ≤ βn/s but |S(w)| >

2βT/s, where T = c1(s/β) log n. LetX denote the sum of |CA(w)| indicator random variables

for counting the members of CA(w) ∩ R, i.e., where each variable is 1 independently with

81



probability T/n. Thus, E[X] = E[|S(w)|] = |CA(w)|(T/n). So

Pr(|S(w)| > 2βT/s) = Pr(X > 2βT/s) = Pr

(
X >

2βn

s|CA(w)|
· E[X]

)
= Pr(X > (1 + δ) · E[X]),

where

δ =

(
2βn

s|CA(w)|
− 1

)
> 1.

In addition,

δ · E[X] =

(
2βn

s|CA(w)|
− 1

)
· |CA(w)|T

n
=

2βT

s
− |CA(w)|T

n

≥ 2βT

s
− βT

s
=

βT

s
= c1 log n.

Thus, by a standard Chernoff bound,7 and the fact that δ > 1,

Pr(X ≥ (1 + δ) · E[X]) ≤ e−δ2·E[X]/(2+δ) ≤ e−δ·E[X]/3 ≤ e−(c1 logn)/3 ≤ 1

n3
,

for c1 ≥ 9 ln 2 ≈ 6.24.

Under-estimate event. We wish to bound the probability that |CA(w)| > 3βn/s but

|S(w)| ≤ 2βT/s, where T = c1(s/β) log n. Let X denote the sum of |CA(w)| indicator

random variables for counting the members of CA(w) ∩ R, i.e., where each variable is 1

independently with probability T/n. Thus, E[X] = E[|S(w)|] = |CA(w)|(T/n) > 3c1 log n.

7Pr(X ≥ (1 + δ) · E[X]) ≤ e−δ2·E[X]/(2+δ), for δ > 0, e.g., see https://en.wikipedia.org/wiki/

Chernoff_bound.

82

https://en.wikipedia.org/wiki/Chernoff_bound
https://en.wikipedia.org/wiki/Chernoff_bound


So

Pr(|S(w)| ≤ 2βT/s) = Pr(X ≤ 2βT/s)

= Pr

(
X ≤ 2βn

s|CA(w)|
· E[X]

)
≤ Pr(X ≤ (2/3) · E[X]).

Thus, by a standard Chernoff bound,8 e.g., see [80, p. 71],

Pr(|S(w)| ≤ 2βT/s) ≤ e−(3c1 logn)/18 ≤ 1

n3
,

when c1 ≥ 18 ln 2 ≈ 12.48.

Of course, R is the same random sampling set for all our samples, S(w), for w ∈ W .

Nevertheless, by a union bound, the above analysis shows that R causes an over-estimate

event or an under-estimate event, for some S(w), with probability at most 1/n2.

By the bound on over-estimate events, we have shown that w.h.p. every cluster with size

over βn/s is included in W in any given iteration of our estimated-parallel-centers algorithm.

In addition, by the bound on under-estimate events, we have shown that w.h.p. every vertex,

w, that we exclude from W has a cluster size of at most 3βn/s. Thus, using essentially the

same analysis as we gave for the proofs of theorem 4.1 and lemma 4.2, and noting that each

iteration of our estimated-parallel-centers algorithm has round complexity O(R(n)) and query

complexity O(Q(n)(s/β) log n), where R(n) and Q(n) are the respective round and query

complexities for the Distances algorithm, we establish the lemma.

8Pr(X ≤ (1− δ) · E[X]) ≤ e−δ2·E[X]/2, for 0 < δ < 1.

83



Now that we have defined and analyzed the function estimated-parallel-centers(U, s, β), let us

next turn to our parallel algorithm for mapping a connected, undirected graph, G = (V,E),

given a subset, U ⊆ V , from which we can perform kth-hop queries. This algorithm takes as

input the vertex set U , and outputs, Ẽ, the set of edges of the induced graph, H, defined by

the vertex set U and the shortest paths in G returned by kth-hop queries.

Let A ⊆ U be a set of centers, which in our network mapping algorithm will come from a

call to our estimated-parallel-centers(U, s, β) algorithm, but a graph-theoretic Voronoi diagram

can be defined for any weighted graph and any set of centers. Given a center, a ∈ A, define

the Voronoi cell, VorA(a), for a in H as VorA(a) = {v ∈ U : δ(a, v) ≤ δ(A\{a}, v)}. The

graph-theoretic Voronoi diagram for A in U consists of the union of Voronoi cells, VorA(a),

for each center, a ∈ A. We say that an edge (v, w) ∈ Ẽ is an interior edge if v, w ∈ VorA(a),

for some center a ∈ A, and it is a boundary edge if v ∈ VorA(a) and w ∈ VorA(b), where

a ̸= b. If we were to perform a set of kth-hop queries for every pair of vertices in a Voronoi

cell, then we are guaranteed to discover every internal edge in VorA(a), but we will miss

boundary edges going between two Voronoi cells. Thus, we need to “branch out” a little bit

from the vertices of VorA(a) in order to discover all the boundary edges. To facilitate this,

for any center, a ∈ A, let N2δmax(a) be the set of “nearby” vertices in H, that is, vertices

that are within a distance of 2δmax of a. Formally,

N2δmax(a) = {v ∈ U : δ(a, v) ≤ 2δmax}.

We assume we know µ, the maximum size of N2δmax(a), for any a ∈ A. Of course, µ < n.

The following lemma shows that it is sufficient to consider these nearby neighbors, for each

center a ∈ A, in order to cover all the edges in H, including interior edges and boundary

edges. (See also Figure 4.2.)

We give the details of our network mapping algorithm in Algorithm 12. Through a call to

84



w2

w1

a
CA(w2)

CA(w1)

≤ 2δmax

Figure 4.2: This figure represents a partial structure of our Voronoi Diagram. Blue vertices
represent centers from A. The circle centered at a ∈ A represents the vertices of distance at
most 2δmax from a. We use clusters of nearby vertices of a to discover boundary edges. For
simplicity, we draw only two clusters for two arbitrary nodes w1, w2 ∈ N2δmax(a).

estimated-parallel-centers(U, s, β), we find a set of (O(β), s)-balanced centers, A. Next, we

build a BFS tree from each vertex a ∈ A to be able to identify nodes in N2δmax(a). Then,

our mapping algorithm, map, constructs graph-theoretic Voronoi diagram for the centers in

A, and then “branches out” from each center a ∈ A by considering the nodes in N2δmax(a)

and the clusters defined by nodes in N2δmax(a). Finally, after having done this Voronoi

decomposition, our algorithm performs exhaustive searches in each cluster in parallel. This

part of the algorithm uses a method, Exhaustive-Query(W ), which finds all the edges of H

between vertices in W by calling Distances(v,W ), for each v ∈ W .

Algorithm 12: Parallel network mapping using kth-hop queries

1 Function map(U):
2 A← estimated-parallel-centers(U, s, β)
3 for each a ∈ A do in parallel
4 Distances(a, U) // gives us N2δmax(a) as well
5 for each a ∈ A do in parallel
6 Ea ← Exhaustive-Query(N2δmax(a))
7 for b ∈ N2δmax(a) do in parallel
8 Distances(b, U)
9 CA(b)← {v ∈ U : δ(b, v) < δ(A, v)}

10 Ea,b ← Exhaustive-Query(CA(b))

11 return
⋃

a∈A

(
Ea ∪

⋃
b∈N2δmax (a)

Ea,b

)

The following lemmas establish the correctness and performance complexities for our network

mapping algorithm.

Lemma 4.5. Let (u, v) be an edge in H. Then there exists a center, a ∈ A, such that u and

85



v are both in N2δmax(a) or both in CA(b), for some b ∈ N2δmax(a).

Proof. Let (u, v) be an edge in H, and note that, by definition, δ(u, v) ≤ δmax. Assume,

without loss of generality, that δ(A, u) ≤ δ(A, v). Also, let a be a vertex in A such that

δ(a, u) = δ(A, u). If δ(a, u) ≤ δmax, then both u and v are in N2δmax(a), by the triangle

inequality. So, suppose δ(a, u) > δmax. Let b be a vertex in U on a shortest path from a to u

such that δmax < δ(a, b) ≤ 2δmax. Note that b must exist, since no edge in H has weight more

than δmax (it is possible that b = u). Further, b is in N2δmax(a) and δ(a, u) = δ(a, b)+ δ(b, u).

Also, δ(b, u) < δ(a, u) = δ(A, u); hence, u is in CA(b).

By the triangle inequality, and the above observations,

δ(b, v) ≤ δ(b, u) + δ(u, v)

≤ δ(b, u) + δmax

= δ(a, u)− δ(a, b) + δmax

< δ(a, u)− δmax + δmax

= δ(a, u)

= δ(A, u).

Therefore, δ(b, v) < δ(A, v); hence, v is also in CA(b).

Lemma 4.6. If Distances(v,W ) executes in R(|W |) rounds using Q(|W |) kth-hop queries,

then Algorithm 12 uses O(Q(n)(s/β) log n logβ n+µ(Q(n)+(βn/s)Q(βn/s))s logβ n) queries

in O(R(n) logβ n) rounds, w.h.p., where µ = maxa∈A |N2δmax(a)|.

Proof. By lemma 4.4, estimated-parallel-centers(U, s, β) executes in O(R(n) logβ n) rounds

and O(Q(n)(s/β) log n logβ n) kth-hop queries, and returns a set of (3β, s)-balanced centers

of size O(s logβ n), w.h.p. The parallel Distances calls in line 4 thus executes in O(R(n))

86



rounds using O(Q(n)s logβ n) kth-hop queries, w.h.p., and the calls to Exhaustive-Query in

line 6 execute in O(R(µ)) rounds using a total of O(µQ(µ)s logβ n) kth-hop queries, but

these bounds are dominated by the Distances calls in line 8, all of which execute in O(R(n))

rounds using O(µQ(n)s logβ n) kth-hop queries, w.h.p. Finally, the calls to Exhaustive-Query

in line 10 execute in O(R(βn/s)) rounds using O(µ(βn/s)Q(βn/s)s logβ n) kth-hop queries,

w.h.p.

Plugging in our derived bounds for Distances, we get the following theorem.

Theorem 4.2. Given a connected graph, G = (V,E), and subset, U ⊆ V , one can map

the n-vertex induced shortest-path graph, H, with respect to G and U in O(1) rounds using

O(δmax µn3/2+ϵ) kth-hop queries, for constant 0 < ϵ < 1/2, w.h.p. Alternatively, one can

map H in O(log n · log diam(G)) rounds using O(µn3/2 log3/2 n · log diam(G)) queries, w.h.p.

Proof. For the first result, set β = nϵ and s = n1/2+ϵ, and let us use the implementation

of Distances that executes in 1 round using O(δmax n) kth-hop queries from lemma 4.3. For

the second result, set β = 4 and s = (n/ log n)1/2 and let us use the implementation of

Distances that executes in O(log diam(G)) rounds using O(n log diam(G)) kth-hop queries

from lemma 4.3. The bounds follow by lemma 4.6.

For example, depending on the values of δmax and µ, the above theorem establishes an im-

provement over the brute-force querying algorithm for solving the parallel network mapping

problem in O(1) rounds. The following theorem shows that bounding the parameters δmax

and µ is needed in order to do better than a quadratic number of kth-hop queries.

Theorem 4.3. There is an infinite family of n-vertex graphs, G, such that mapping the

induced shortest-path graph, H, for a set, U , of O(n) vertices requires Ω(n2) kth-hop queries,

when µ is Θ(n) and δmax is Θ(log n), even if G has maximum degree 3.

87



Proof. Let G be the graph of a complete binary tree with n nodes and let U be the set of

leaves of G. Thus, the distance in H between any node, v, in the left subtree of G, and a

node, w, in the right subtree of G, is 2 log n. Thus, δmax = 2 log n and µ is Θ(n). Now, let G′

be G plus a single path in G of length (2 log n)− 1 between two vertices, v and w, in U such

that v is in the left subtree of G and w is in the right subtree of G. Thus, there is an edge

with weight (2 log n)− 1 joining v and w in the induced shortest-path graph, H ′, for G′, and

otherwise H ′ has the same edge set as H. But there are Ω(n2) such possible pairs and the

only way to discover the edge (v, w) in H is to perform a kth-hop(k, v, w) query. Any other

type of kth-hop query cannot distinguish between H and H ′.

4.4 A Greedy Network Mapping Algorithm

Kannan, Methieu, and Zhou [71] introduce a proof technique that sequentially uses a veri-

fication algorithm for unweighted graphs as an oracle for issuing shortest-path queries in a

greedy graph reconstruction algorithm. In this section, we show how to adapt this proof

technique to a parallel setting and apply it to map the weighted graph, H. For example, our

algorithm uses kth-hop queries and provides parallelism according to a parameter, 1 ≤ p < n.

Our greedy algorithm is based on performing steps of the classic greedy set cover algorithm in

parallel batches. Recall that in this problem, one is given a collection of sets, S1, S2, . . . , Sm,

whose union is the universe U , and the goal is to find a smallest sub-collection of sets whose

union is U , that is, a sub-collection that covers U . The greedy algorithm repeatedly chooses

the set covering the maximum number of uncovered items in U , and this results in a number

of sets that is at most an O(log n) factor more than optimum [38].

Let f(n,∆) be the query complexity of the best sequential algorithm for the problem of

graph verification for any connected unweighted graph of n vertices and maximum degree

88



∆ via distance queries, that is, for determining whether an unknown graph, G = (V,E), is

equal to a given graph, Ĝ = (V, Ê). For example, Kannan, Methieu, and Zhou [71] show

that f(n,∆) is n1+O(τ(n)), where τ(n) =
√

(log log n+ log∆)/ log n. The function, f(n,∆),

is used only in our analysis, where we show that, given a parallelism parameter, 1 ≤ p < n,

our parallel network mapping algorithm can be tuned to have the desired query complexity,

Q(n), and round complexity, R(n).

The distance queries in an unweighted graph verification algorithm perform two functions—

confirming that edges in Ê are actually in E and confirming that edges not in Ê are also

not in E, that is, confirming every (u, v) /∈ Ê is not in E. To that latter end, let δ̂h(u, v)

denote the hop-count (number of edges) distance between u and v based on the edges in

Ê, and let Êc denote the set of non-edges in Ĝ, that is, the set of pairs, (u, v), such that

u ̸= v and (u, v) /∈ Ê. Similarly, let Ec denote the set of non-edges in G. For any set of

tentative edges, Ê, define the following set for each pair of vertices, (u, v) ∈ Êc: Su,v(Ê) ={
(x, y) ∈ Êc | δ̂h(u, x) + δ̂h(y, v) + 1 < δ̂h(u, v)

}
.

Kannan, Methieu, and Zhou [71] prove the following two lemmas.

Lemma 4.7. Suppose Ê ⊆ E. For any (u, v) ∈ Êc, if δh(u, v) = δ̂h(u, v), where δh(u, v)

denotes the hop-count distance between u and v in G, then Su,v(Ê) ⊆ Ec, that is, each pair

in Su,v(Ê) is a non-edge in G.

Lemma 4.8. If a set of distance queries, T , verifies that every non-edge of Ĝ is a non-edge

of G, then ∪(u,v)∈T Su,v(Ê) = Êc.

We present our parallel greedy algorithm for mapping H = (U, Ẽ) in G = (V,E), for when

U ⊂ V , that is, we incrementally build our tentative edge set Ê ⊆ Ẽ:

1. We initialize a set of tentative edges, Ê, to a spanning tree of H by calling kth-

hop(k, v, u) from every vertex, v ∈ U , to an arbitrarily chosen vertex, u ∈ U , for

89



k = 1, . . . , diam(G), in parallel. We initialize a set of confirmed non-edges ofH, F ← ∅.

Note that we always maintain that F ⊆ Êc. This requires 1 round of O(diam(G)n)

kth-hop queries.

2. We compute all the Su,v(Ê) sets, for pairs (u, v) ∈ Êc, which requires no queries.

3. We perform p steps of the greedy set-cover algorithm applied to the sets, Su,v(Ê)\F ,

with the goal of covering the remaining pairs, in Êc\F , in a greedy fashion, which also

requires no queries. Let {(u1, v1), (u2, v2), . . . , (up, vp)} denote the vertex pairs for the

Su,v(Ê) sets chosen by these greedy steps.

4. We perform kth-hop(k, ui, vi) queries, for k = 1, . . . , diam(G), in parallel, to determine

the actual hop-count distance, δh(ui, vi), between ui and vi in H, for each i = 1, 2, . . . , p

in parallel. This step requires O(1) rounds of O(p · diam(G)) kth-hop queries in total.

5. For each i such that δh(ui, vi) = δ̂h(ui, vi), we add all the pairs in Sui,vi(Ê) to F . If

F = Êc, then we are done, by lemma 4.8.

6. Otherwise, if F ̸= Êc and δh(ui, vi) = δ̂h(ui, vi), for all i = 1, 2, . . . , p, then we repeat

the above process, performing another p steps of greedy set cover, looping back to

Step 3.

7. If, on the other hand, F ̸= Êc and δh(ui, vi) < δ̂h(ui, vi), for some i, then there must be

at least one edge on a shortest path from ui to vi that is in Ẽ and not yet in Ê. In this

case, we add all such edges (which were discovered when we performed the diam(G)

kth-hop(k, ui, vi) queries) to Ê, and repeat the above greedy searching for this updated

set, Ê, of candidate edges, returning to Step 2.

For the case when U = V , we modify our algorithm to be the following (note that in this

case, hop-count distance and graph distance are the same):

90



1. We initialize a set of tentative edges, Ê, to a spanning tree of H by calling kth-

hop(1, v, u) from every vertex, v ∈ U , to an arbitrarily chosen vertex, u ∈ U . We

initialize a set of confirmed non-edges, F ← ∅. This requires 1 round of O(n) kth-hop

queries.

2. We compute all the Su,v(Ê) sets, for pairs (u, v) ∈ Êc, which requires no queries.

3. We perform p steps of the greedy set-cover algorithm applied to the sets, Su,v(Ê)\F ,

with the goal of covering the remaining pairs, in Êc\F , in a greedy fashion, which also

requires no queries. Let {(u1, v1), (u2, v2), . . . , (up, vp)} denote the vertex pairs for the

Su,v(Ê) sets chosen by these greedy steps.

4. We perform a binary search using kth-hop queries to determine the actual distance,

δ(ui, vi), between ui and vi in H, for each i = 1, 2, . . . , p in parallel. This step requires

O(log n) rounds of O(p log n) kth-hop queries in total.

5. For each i such that δ(ui, vi) = δ̂(ui, vi), we add all the pairs in Sui,vi(Ê) to F . If

F = Êc, then we are done, by lemma 4.8.

6. Otherwise, if F ̸= Êc and δ(ui, vi) = δ̂(ui, vi), for all i = 1, 2, . . . , p, then we repeat

the above process, performing another p steps of greedy set cover, repeating a loop

returning to Step 3.

7. If, on the other hand, F ̸= Êc and δ(ui, vi) < δ̂(ui, vi), for some i, then there must be

at least one edge on a shortest path from ui to vi that is in E and not yet in Ê. In this

case, we perform a binary search, described below, to find at least one such an edge,

add all such edges to Ê, and repeat the above greedy searching for this updated set,

Ê, of candidate edges, returning to Step 2. This step requires O(log n) rounds of at

most O(p log n) kth-hop queries in total.

Before we give our analysis, let us describe the details for the binary search to find an undis-

91



covered edge when δ(ui, vi) < δ̂(ui, vi), for some i. We begin with a query, kth-hop(k, ui, vi),

where k = ⌊δ(ui, vi)/2⌋, and let w denote the returned vertex. So, δ(ui, w) = k and

δ(w, vi) = δ(ui, vi) − k. Since δ(ui, vi) < δ̂(ui, vi), we know that δ(ui, w) < δ̂(ui, w) or

δ(w, vi) < δ̂(w, vi). Thus, we recursively search for one of these until we discover a new edge

not in Ê, which must exist, since δ(ui, vi) < δ̂(ui, vi).

This gives us the following result.

Theorem 4.4. Let f(n,∆) be the query complexity of an optimal sequential algorithm for

graph verification for any unweighted connected graph with n vertices and maximum degree

∆ using distance queries. Then, for 1 ≤ p < n, our parallel network mapping algorithm has

kth-hop query complexity, Q(n) ∈ O((∆np + f(n,∆) log n)diam(G)) and round complexity,

R(n) ∈ O((∆n + (f(n,∆)/p) log n)), if U ⊂ V , or Q(n) ∈ O((∆np + f(n,∆) log n) log n)

and round complexity, R(n) ∈ O((∆n+ (f(n,∆)/p) log n) log n), if U = V .

Proof. Building a spanning tree of H is a one-time expense taking O(n · diam(G)) kth-hop

queries and a round complexity of O(1) (step 1), for the case when U ⊂ V , or O(n) queries

with a round complexity of O(1) (step 1), for the case when U = V . Each iteration of

our greedy algorithm takes O(p · diam(G)) kth-hop queries with a round complexity of O(1)

(step 4), for the case when U ⊂ V , or O(p log n) kth-hop queries with a round complexity of

O(log n) (step 4 and step 7), for the case when U = V .

In the case when δh(ui, vi) < δ̂h(ui, vi), for some i ∈ [1, p], we discover at least one new

edge—let us charge the queries for this iteration to this edge. Thus, the total number of kth-

hop queries due to this case is O(∆np · diam(G)), with O(∆n) rounds, for the U ⊂ V case,

or O(∆np log n), with O(∆n log n) rounds, for the U = V case. So, let us consider the case

when δh(ui, vi) = δ̂h(ui, vi), for all i ∈ [1, p], which we call a “completely-greedy” iteration.

We will provide an upper bound for the number of such iterations. Recall that in step 3, for

the case when U ⊂ V (similarly in step 3, for the case when U = V ) we performed p steps

92



of greedy set-cover algorithm applied to the sets, Su,v(Ê)\F , with the goal of covering the

remaining pairs, in Êc\F without additional queries. Let Fi denote the set of (x, y) pairs

covered by the i-th step of this greedy set-cover algorithm, for i = 1, 2, . . . , p. Thus,

|F1| ≥ |F2| ≥ · · · ≥ |Fp|,

and at the moment we chose the subset Fi it was the largest subset covering the uncovered

pairs in Ui = Êc\(
⋃i−1

j=1 Fj∪F ). The optimal sequential graph verification algorithm performs

f(n,∆) distance queries and confirms all the pairs in Êc. Thus, in particular, this optimal

algorithm must perform queries that cover Ui as a part of its f(n,∆) queries; hence, because

Fi is the subset for a distance query that covers the largest number of pairs in Ui, and the

average number of pairs in Ui covered by any distance query of the optimal algorithm is at

least |Ui|/f(n,∆), we have that

|Fi| ≥
|Ui|

f(n,∆)
.

Thus, in any iteration of our algorithm, since we perform p greedy steps, the size of the

remaining pairs in Êc\F is reduced by a multiplicative factor of

(
1− 1

f(n,∆)

)p

≤ e−p/f(n,∆).

Therefore, since Êc ≤ n(n − 1) and by the end of our algorithm we cover every pair in Êc,

the total number of completely-greedy iterations, g, can be bounded above by the smallest

value of g such that

e−(p/f(n,∆))g < n−2;

hence, the total number of completely-greedy iterations, g, is at most O((f(n,∆)/p) log n).

93



Note that the set Êc is potentially growing during our algorithm, with completely-greedy

iterations possibly interspersed with iterations that discover new edges in Ẽ. Nevertheless,

the above analysis still holds, because (1) the function, f(n,∆) is a uniform bound for

any connected graph with n nodes and maximum degree ∆, and (2) each time we (greedily)

confirm that δ̂(u, v) = δ(u, v) for a set, Su,v(Ê), all the pairs in Su,v(Ê) are, in fact, non-edges

in Ẽc. The claimed complexity bounds follow then, since each completely-greedy iteration

requires O(p · diam(G)) kth-hop queries with round complexity O(1), for the U ⊂ V case, or

O(p log n) kth-hop queries with round complexity O(log n), for the U = V case.

Thus, setting p to be nO(τ(n)) gives us the following.

corollary 4.1. One can solve the network mapping problem with query complexity, Q(n),

that is diam(G) · n1+O(τ(n)) and round complexity, R(n), that is O(∆n), if U ⊂ V , or with

Q(n) that is n1+O(τ(n)) and round complexity, R(n), that is O(∆n log n), if U = V .

This query complexity is within an no(1) factor of optimal when ∆ is no(1), by the following

simple lower bound.

Theorem 4.5. Solving the network mapping problem for an n-vertex graph, G, with maxi-

mum degree, ∆, requires Ω(∆n) kth-hop queries, even if H has only n edges.

Proof. Let H be a caterpillar (i.e., a tree where every leaf is at distance 1 from a vertex on

a central path), such that every internal node has degree ∆. Choose any pair, u and v, of

sibling leaves and connect them with an edge. The only way to discover the edge, (u, v), is to

perform a kth-hop(k, u, v) query, for k ≥ 1. Thus, in expectation, any graph reconstruction

algorithm must perform a query for over half of the pairs of siblings in H, that is, at least

Ω((n/∆)∆2) = Ω(∆n) queries, in order to discover all the edges of H.

94



4.5 Conclusion

We have given efficient algorithms for solving the network mapping problem in parallel.

Such algorithms show the effectiveness of kth-hop queries, even though they are weaker than

shortest-path queries. Our methods assume knowledge of δmax and µ, but this assumption

can be relaxed at the expense of increasing the round complexity by an O(log n) factor, while

keeping the query complexity unchanged, by using our algorithm as a blackbox to perform a

doubling search for the values of these parameters. Our methods also assume kth-hop(k, u, v)

remains same in the algorithm, which is a reasonable assumption in static routing. In our

network mapping formulation, we abstracted away some system issues such that when the

TTL field of a packet reaches 1, the node sends an ICMP message to the source address;

however, in the real Internet, some nodes may have their ICMP responses switched off.

Therefore, a direction to extend this work would be to design algorithms addressing such

system issues.

We have also given new, parallel implementations for graph clustering, which provide trade-

offs between the number of center vertices and the sizes of clusters. Even for sequential

algorithms, this result may prove useful for applications where minimizing the number of

center points is a primary optimization goal. For instance, one can apply our construction to

the problems studied by Honiden et al. [62] for balancing graph-theoretic Voronoi diagrams

to shave a O(log n) factor of the number of centers. It seems likely, therefore, that this result

will have other applications as well.

95



Bibliography

[1] TRACEROUTE for Linux. http://traceroute.sourceforge.net/. Accessed: April
6, 2020.

[2] TRACEROUTE(8) Traceroute For Linux, October 2006. http://man7.org/linux/

man-pages/man8/traceroute.8.html. Accessed: April 6, 2020.

[3] M. Abrahamsen, G. Bodwin, E. Rotenberg, and M. Stöckel. Graph reconstruction with
a betweenness oracle. In N. Ollinger and H. Vollmer, editors, 33rd Symposium on The-
oretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans,
France, volume 47 of LIPIcs, pages 5:1–5:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016.

[4] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore. On the bias of traceroute sam-
pling: or, power-law degree distributions in regular graphs. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24,
2005, pages 694–703, 2005.

[5] P. Afshani, M. Agrawal, B. Doerr, C. Doerr, K. G. Larsen, and K. Mehlhorn. The
query complexity of finding a hidden permutation. In A. Brodnik, A. López-Ortiz,
V. Raman, and A. Viola, editors, Space-Efficient Data Structures, Streams, and Al-
gorithms - Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday,
volume 8066 of Lecture Notes in Computer Science, pages 1–11. Springer, 2013.

[6] P. Afshani, M. Agrawal, B. Doerr, C. Doerr, K. G. Larsen, and K. Mehlhorn. The
query complexity of finding a hidden permutation. In A. Brodnik, A. López-Ortiz,
V. Raman, and A. Viola, editors, Space-Efficient Data Structures, Streams, and Algo-
rithms: Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday, pages
1–11, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[7] R. Afshar, A. Amir, M. T. Goodrich, and P. Matias. Adaptive exact learning in a
mixed-up world: Dealing with periodicity, errors and jumbled-index queries in string
reconstruction. In C. Boucher and S. V. Thankachan, editors, String Processing and
Information Retrieval - 27th International Symposium, SPIRE 2020, Orlando, FL,
USA, October 13-15, 2020, Proceedings, volume 12303 of Lecture Notes in Computer
Science, pages 155–174. Springer, 2020.

96

http://traceroute.sourceforge.net/
http://man7.org/linux/man-pages/man8/traceroute.8.html
http://man7.org/linux/man-pages/man8/traceroute.8.html


[8] R. Afshar and M. T. Goodrich. Exact learning of multitrees and almost-trees using path
queries. In A. Castañeda and F. Rodŕıguez-Henŕıquez, editors, LATIN 2022: Theo-
retical Informatics - 15th Latin American Symposium, Guanajuato, Mexico, November
7-11, 2022, Proceedings, volume 13568 of Lecture Notes in Computer Science, pages
293–311. Springer, 2022.

[9] R. Afshar, M. T. Goodrich, P. Matias, and M. C. Osegueda. Reconstructing binary
trees in parallel. In C. Scheideler and M. Spear, editors, SPAA ’20: 32nd ACM
Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, July
15-17, 2020, pages 491–492. ACM, 2020.

[10] R. Afshar, M. T. Goodrich, P. Matias, and M. C. Osegueda. Reconstructing biological
and digital phylogenetic trees in parallel. In F. Grandoni, G. Herman, and P. Sanders,
editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9,
2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 3:1–3:24. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[11] R. Afshar, M. T. Goodrich, P. Matias, and M. C. Osegueda. Parallel network mapping
algorithms. In K. Agrawal and Y. Azar, editors, SPAA ’21: 33rd ACM Symposium
on Parallelism in Algorithms and Architectures, Virtual Event, USA, 6-8 July, 2021,
pages 410–413. ACM, 2021.

[12] R. Afshar, M. T. Goodrich, P. Matias, and M. C. Osegueda. Mapping networks via
parallel kth-hop traceroute queries. In P. Berenbrink and B. Monmege, editors, 39th
International Symposium on Theoretical Aspects of Computer Science, STACS 2022,
March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs,
pages 4:1–4:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[13] R. Afshar, M. T. Goodrich, and E. Ozel. Efficient exact learning algorithms for road
networks and other graphs with bounded clustering degrees. In C. Schulz and B. Uçar,
editors, 20th International Symposium on Experimental Algorithms, SEA 2022, July
25-27, 2022, Heidelberg, Germany, volume 233 of LIPIcs, pages 9:1–9:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[14] T. Akutsu. A polynomial time algorithm for finding a largest common subgraph of
almost trees of bounded degree. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 76(9):1488–1493, 1993.

[15] N. Alon and V. Asodi. Learning a hidden subgraph. SIAM J. Discrete Math.,
18(4):697–712, 2005.

[16] N. Alon, R. Beigel, S. Kasif, S. Rudich, and B. Sudakov. Learning a hidden matching.
SIAM J. Comput., 33(2):487–501, 2004.

[17] D. Angluin and J. Chen. Learning a hidden hypergraph. J. Mach. Learn. Res., 7:2215–
2236, 2006.

97



[18] D. Angluin and J. Chen. Learning a hidden graph using O(log n) queries per edge. J.
Comput. Syst. Sci., 74(4):546–556, 2008.

[19] M. J. Bannister, D. Eppstein, and J. A. Simons. Fixed parameter tractability of
crossing minimization of almost-trees. In International Symposium on Graph Drawing,
pages 340–351. Springer, 2013.

[20] A. Barrat, I. Alvarez-Hamelin, L. Dall’Asta, A. Vázquez, and A. Vespignani. Sampling
of networks with traceroute-like probes. Complexus, 3(1-3):83–96, 2006.

[21] N. H. Barton. The role of hybridization in evolution. Molecular ecology, 10(3):551–568,
2001.

[22] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalák, and L. S.
Ram. Network discovery and verification. IEEE Journal on Selected Areas in Com-
munications, 24(12):2168–2181, 2006.

[23] R. Beigel, N. Alon, S. Kasif, M. S. Apaydin, and L. Fortnow. An optimal procedure for
gap closing in whole genome shotgun sequencing. In T. Lengauer, editor, Proceedings
of the Fifth Annual International Conference on Computational Biology, RECOMB
2001, Montréal, Québec, Canada, April 22-25, 2001, pages 22–30. ACM, 2001.

[24] K. Bello and J. Honorio. Computationally and statistically efficient learning of causal
bayes nets using path queries. In S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 10954–10964, 2018.

[25] A. Bernasconi, C. Damm, and I. Shparlinski. Circuit and decision tree complexity of
some number theoretic problems. Information and Computation, 168(2):113 – 124,
2001.

[26] A. Bernasconi, C. Damm, and I. E. Shparlinski. Circuit and decision tree complexity
of some number theoretic problems. Inf. Comput., 168(2):113–124, 2001.

[27] P. Bestagini, M. Tagliasacchi, and S. Tubaro. Image phylogeny tree reconstruction
based on region selection. In 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2016, Shanghai, China, March 20-25, 2016, pages
2059–2063. IEEE, 2016.

[28] A. Biswas, V. Jayapaul, and V. Raman. Improved bounds for poset sorting in the
forbidden-comparison regime. In D. R. Gaur and N. S. Narayanaswamy, editors, Algo-
rithms and Discrete Applied Mathematics - Third International Conference, CALDAM
2017, Sancoale, Goa, India, February 16-18, 2017, Proceedings, volume 10156 of Lec-
ture Notes in Computer Science, pages 50–59. Springer, 2017.

[29] M. Bouvel, V. Grebinski, and G. Kucherov. Combinatorial search on graphs motivated
by bioinformatics applications: A brief survey. In D. Kratsch, editor, Graph-Theoretic

98



Concepts in Computer Science, 31st International Workshop, WG 2005, Metz, France,
June 23-25, 2005, Revised Selected Papers, volume 3787 of Lecture Notes in Computer
Science, pages 16–27. Springer, 2005.

[30] I. Caragiannis, A. D. Procaccia, and N. Shah. When do noisy votes reveal the truth?
ACM Trans. Economics and Comput., 4(3):15:1–15:30, 2016.

[31] J. Cardinal and S. Fiorini. On generalized comparison-based sorting problems. In
A. Brodnik, A. López-Ortiz, V. Raman, and A. Viola, editors, Space-Efficient Data
Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occa-
sion of His 66th Birthday, volume 8066 of Lecture Notes in Computer Science, pages
164–175. Springer, 2013.

[32] S. Choi and J. H. Kim. Optimal query complexity bounds for finding graphs. Artif.
Intell., 174(9-10):551–569, 2010.

[33] S.-S. Choi and J. H. Kim. Optimal query complexity bounds for finding graphs. Arti-
ficial Intelligence, 174(9):551 – 569, 2010.

[34] R. Cole and U. Vishkin. Deterministic coin tossing and accelerating cascades: micro
and macro techniques for designing parallel algorithms. In J. Hartmanis, editor, Pro-
ceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30,
1986, Berkeley, California, USA, pages 206–219. ACM, 1986.

[35] C. Colombo, F. Lepage, R. Kopp, and E. Gnaedinger. Two SDN multi-tree approaches
for constrained seamless multicast. In F. Pop, C. Negru, H. González-Vélez, and
J. Rak, editors, 2018 IEEE International Conference on Computational Science and
Engineering, CSE 2018, Bucharest, Romania, October 29-31, 2018, pages 77–84. IEEE
Computer Society, 2018.

[36] F. Comellas, M. A. Fiol, J. Gimbert, and M. Mitjana. The spectra of wrapped butterfly
digraphs. Networks, 42(1):15–19, 2003.

[37] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
3rd Edition. MIT Press, 2009.

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edition, 2009.

[39] J. C. Culberson and P. Rudnicki. A fast algorithm for constructing trees from distance
matrices. Inf. Process. Lett., 30(4):215–220, 1989.

[40] L. Dall’Asta, J. I. Alvarez-Hamelin, A. Barrat, A. Vázquez, and A. Vespignani. Ex-
ploring networks with traceroute-like probes: Theory and simulations. Theor. Comput.
Sci., 355(1):6–24, 2006.

[41] L. Dall’Asta, I. Alvarez-Hamelin, A. Barrat, A. Vázquez, and A. Vespignani. Exploring
networks with traceroute-like probes: Theory and simulations. Theoretical Computer
Science, 355(1):6–24, 2006.

99



[42] P. Damaschke. Adaptive versus nonadaptive attribute-efficient learning. In J. S. Vit-
ter, editor, Proceedings of the Thirtieth Annual ACM Symposium on the Theory of
Computing, Dallas, Texas, USA, May 23-26, 1998, pages 590–596. ACM, 1998.

[43] C. Daskalakis, R. M. Karp, E. Mossel, S. J. Riesenfeld, and E. Verbin. Sorting and
selection in posets. In C. Mathieu, editor, Proceedings of the Twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January
4-6, 2009, pages 392–401. SIAM, 2009.

[44] Z. Dias, S. Goldenstein, and A. Rocha. Exploring heuristic and optimum branching
algorithms for image phylogeny. J. Vis. Commun. Image Represent., 24(7):1124–1134,
2013.

[45] Z. Dias, S. Goldenstein, and A. Rocha. Large-scale image phylogeny: Tracing image
ancestral relationships. IEEE Multim., 20(3):58–70, 2013.

[46] Z. Dias, A. Rocha, and S. Goldenstein. Image phylogeny by minimal spanning trees.
IEEE Trans. Inf. Forensics Secur., 7(2):774–788, 2012.

[47] S. Dobzinski and J. Vondrák. From query complexity to computational complexity. In
H. J. Karloff and T. Pitassi, editors, Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
1107–1116. ACM, 2012.

[48] S. Dobzinski and J. Vondrak. From query complexity to computational complexity.
In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing,
STOC ’12, pages 1107–1116, New York, NY, USA, 2012. ACM.

[49] B. Donnet. Internet topology discovery. In E. Biersack, C. Callegari, and M. Matijase-
vic, editors, Data Traffic Monitoring and Analysis - From Measurement, Classification,
and Anomaly Detection to Quality of Experience, volume 7754 of LNCS, pages 44–81.
Springer, 2013.

[50] B. Donnet and T. Friedman. Internet topology discovery: A survey. IEEE Communi-
cations Surveys and Tutorials, 9(1-4):56–69, 2007.

[51] M. Erwig. The graph Voronoi diagram with applications. Networks, 36(3):156–163,
2000.

[52] U. Faigle and G. Turán. Sorting and recognition problems for ordered sets. In
K. Mehlhorn, editor, STACS 85, 2nd Symposium of Theoretical Aspects of Computer
Science, Saarbrücken, Germany, January 3-5, 1985, Proceedings, volume 182 of Lec-
ture Notes in Computer Science, pages 109–118. Springer, 1985.

[53] A. D. Flaxman and J. Vera. Bias reduction in traceroute sampling - towards a more
accurate map of the internet. In A. Bonato and F. R. K. Chung, editors, Algorithms and
Models for the Web-Graph, 5th International Workshop, WAW 2007, San Diego, CA,
USA, December 11-12, 2007, Proceedings, volume 4863 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2007.

100



[54] L. A. Goldberg, P. W. Goldberg, C. A. Phillips, and G. B. Sorkin. Constructing
computer virus phylogenies. J. Algorithms, 26(1):188–208, 1998.

[55] M. T. Goodrich, R. Jacob, and N. Sitchinava. Atomic power in forks: A super-
logarithmic lower bound for implementing butterfly networks in the nonatomic binary
fork-join model. In D. Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages
2141–2153. SIAM, 2021.

[56] M. T. Goodrich and R. Tamassia. Algorithm Design and Applications. Wiley, New
York, NY, 2011.

[57] V. Grebinski. On the power of additive combinatorial search model. In W. Hsu and
M. Kao, editors, Computing and Combinatorics, 4th Annual International Conference,
COCOON ’98, Taipei, Taiwan, R.o.C., August 12-14, 1998, Proceedings, volume 1449
of Lecture Notes in Computer Science, pages 194–203. Springer, 1998.

[58] V. Grebinski and G. Kucherov. Reconstructing a hamiltonian cycle by querying the
graph: Application to DNA physical mapping. Discret. Appl. Math., 88(1-3):147–165,
1998.

[59] V. Grebinski and G. Kucherov. Optimal reconstruction of graphs under the additive
model. Algorithmica, 28(1):104–124, 2000.

[60] D. Heckerman, C. Meek, and G. Cooper. A bayesian approach to causal discovery. In
Innovations in Machine Learning, pages 1–28. Springer, 2006.

[61] J. J. Hein. An optimal algorithm to reconstruct trees from additive distance data.
Bulletin of mathematical biology, 51(5):597–603, 1989.

[62] S. Honiden, M. E. Houle, and C. Sommer. Balancing graph Voronoi diagrams. In Sixth
International Symposium on Voronoi Diagrams, pages 183–191, 2009.

[63] B. Huffaker, D. Plummer, D. Moore, and K. Claffy. Topology discovery by active
probing. In IEEE Symposium on Applications and the Internet (SAINT), pages 90–96,
2002.

[64] B. Huffaker, D. Plummer, D. Moore, and K. Claffy. Topology discovery by active
probing. In Proceedings 2002 Symposium on Applications and the Internet (SAINT)
Workshops, pages 90–96. IEEE, 2002.

[65] P. Hünermund and E. Bareinboim. Causal inference and data fusion in econometrics.
arXiv preprint arXiv:1912.09104, 2019.

[66] G. W. Imbens. Potential outcome and directed acyclic graph approaches to causal-
ity: Relevance for empirical practice in economics. Journal of Economic Literature,
58(4):1129–79, 2020.

101



[67] A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed networks.
Inf. Comput., 79(1):43–59, 1988.

[68] M. Jagadish and A. Sen. Learning a bounded-degree tree using separator queries. In
S. Jain, R. Munos, F. Stephan, and T. Zeugmann, editors, Algorithmic Learning Theory
- 24th International Conference, ALT 2013, Singapore, October 6-9, 2013. Proceedings,
volume 8139 of Lecture Notes in Computer Science, pages 188–202. Springer, 2013.

[69] M. V. Janardhanan and L. Reyzin. On learning a hidden directed graph with path
queries. CoRR, abs/2002.11541, 2020.

[70] J.-H. Ji, S.-H. Park, G. Woo, and H.-G. Cho. Generating pylogenetic tree of homoge-
neous source code in a plagiarism detection system. International Journal of Control,
Automation, and Systems, 6(6):809–817, 2008.

[71] S. Kannan, C. Mathieu, and H. Zhou. Graph reconstruction and verification. ACM
Trans. Algorithms, 14(4):40:1–40:30, 2018.

[72] V. King, L. Zhang, and Y. Zhou. On the complexity of distance-based evolutionary tree
reconstruction. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages 444–453.
ACM/SIAM, 2003.

[73] M. Kocaoglu, K. Shanmugam, and E. Bareinboim. Experimental design for learning
causal graphs with latent variables. In I. Guyon, U. von Luxburg, S. Bengio, H. M.
Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 7018–
7028, 2017.

[74] M. Kurant, A. Markopoulou, and P. Thiran. Towards unbiased BFS sampling. IEEE
Journal on Selected Areas in Communications, 29(9):1799–1809, 2011.

[75] V. Lagani, S. Triantafillou, G. Ball, J. Tegnér, and I. Tsamardinos. Probabilistic
computational causal discovery for systems biology. Uncertainty in biology, pages 33–
73, 2016.

[76] A. Lakhina, J. Byers, M. Crovella, and P. Xie. Sampling biases in IP topology mea-
surements. In IEEE INFOCOM, volume 1, pages 332–341, 2003.

[77] G. D. Marmerola, M. A. Oikawa, Z. Dias, S. Goldenstein, and A. Rocha. On the
reconstruction of text phylogeny trees: evaluation and analysis of textual relationships.
PloS one, 11(12):e0167822, 2016.

[78] C. Mathieu and H. Zhou. A simple algorithm for graph reconstruction. In P. Mutzel,
R. Pagh, and G. Herman, editors, 29th Annual European Symposium on Algorithms,
ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204
of LIPIcs, pages 68:1–68:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

102



[79] N. Meinshausen, A. Hauser, J. M. Mooij, J. Peters, P. Versteeg, and P. Bühlmann.
Methods for causal inference from gene perturbation experiments and validation. Pro-
ceedings of the National Academy of Sciences, 113(27):7361–7368, 2016.

[80] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

[81] G. Moffa, G. Catone, J. Kuipers, E. Kuipers, D. Freeman, S. Marwaha, B. R. Lennox,
M. R. Broome, and P. Bebbington. Using directed acyclic graphs in epidemiological
research in psychosis: an analysis of the role of bullying in psychosis. Schizophrenia
bulletin, 43(6):1273–1279, 2017.

[82] A. Pfeffer, C. Call, J. Chamberlain, L. Kellogg, J. Ouellette, T. Patten, G. Zacharias,
A. Lakhotia, S. Golconda, J. Bay, et al. Malware analysis and attribution using ge-
netic information. In 2012 7th International Conference on Malicious and Unwanted
Software, pages 39–45. IEEE, 2012.

[83] A. Pfeffer, C. Call, J. Chamberlain, L. Kellogg, J. Ouellette, T. Patten, G. Zacharias,
A. Lakhotia, S. Golconda, J. Bay, R. Hall, and D. Scofield. Malware analysis and
attribution using genetic information. In 7th International Conference on Malicious
and Unwanted Software, MALWARE 2012, Fajardo, PR, USA, October 16-18, 2012,
pages 39–45. IEEE Computer Society, 2012.

[84] W. Piel, L. Chan, M. Dominus, J. Ruan, R. Vos, and V. Tannen. Treebase v. 2: A
database of phylogenetic knowledge. e-biosphere, 2009.

[85] H. Prüfer. Neuer beweis eines satzes über permutationen. Arch. Math. Phys,
27(1918):742–744, 1918.

[86] A. G. Ranade. Optimal speedup for backtrack search on a butterfly network. In
T. Leighton, editor, Proceedings of the 3rd Annual ACM Symposium on Parallel Algo-
rithms and Architectures, SPAA ’91, Hilton Head, South Carolina, USA, July 21-24,
1991, pages 40–48. ACM, 1991.

[87] L. Reyzin and N. Srivastava. On the longest path algorithm for reconstructing trees
from distance matrices. Inf. Process. Lett., 101(3):98–100, 2007.

[88] G. Rong, W. Li, Y. Yang, and J. Wang. Reconstruction and verification of chordal
graphs with a distance oracle. Theor. Comput. Sci., 859:48–56, 2021.

[89] G. Rong, W. Li, Y. Yang, and J. Wang. Reconstruction and verification of chordal
graphs with a distance oracle. Theoretical Computer Science, 859:48–56, 2021.

[90] G. Rong, Y. Yang, W. Li, and J. Wang. A divide-and-conquer approach for recon-
struction of {c≥5}-free graphs via betweenness queries. Theor. Comput. Sci., 917:1–11,
2022.

103



[91] S. Sen and V. N. Muralidhara. The covert set-cover problem with application to
network discovery. In M. S. Rahman and S. Fujita, editors, WALCOM: Algorithms
and Computation, 4th International Workshop, WALCOM 2010, Dhaka, Bangladesh,
February 10-12, 2010. Proceedings, volume 5942 of Lecture Notes in Computer Science,
pages 228–239. Springer, 2010.

[92] B. Shen, C. W. Forstall, A. de Rezende Rocha, and W. J. Scheirer. Practical text
phylogeny for real-world settings. IEEE Access, 6:41002–41012, 2018.

[93] Y. Shiloach and U. Vishkin. Finding the maximum, merging and sorting in a parallel
computation model. In W. Händler, editor, CONPAR 81: Conference on Analysing
Problem Classes and Programming for Parallel Computing, Nürnberg, Germany, June
10-12, 1981, Proceedings, volume 111 of Lecture Notes in Computer Science, pages
314–327. Springer, 1981.

[94] G. Tardos. Query complexity, or why is it difficult to separate NPA ∩ coNPA from
PA by random oracles A? Combinatorica, 9(4):385–392, Dec 1989.

[95] G. Tardos. Query complexity, or why is it difficult to seperate NP a cap co npa from
pa by random oracles a? Comb., 9(4):385–392, 1989.

[96] F. Tarissan, M. Latapy, and C. Prieur. Efficient measurement of complex networks
using link queries. CoRR, abs/0904.3222, 2009.

[97] P. W. Tennant, E. J. Murray, K. F. Arnold, L. Berrie, M. P. Fox, S. C. Gadd, W. J.
Harrison, C. Keeble, L. R. Ranker, J. Textor, et al. Use of directed acyclic graphs
(dags) to identify confounders in applied health research: review and recommendations.
International journal of epidemiology, 50(2):620–632, 2021.

[98] M. Thorup and U. Zwick. Compact routing schemes. In A. L. Rosenberg, editor, 13th
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 1–10, 2001.

[99] S. Triantafillou, V. Lagani, C. Heinze-Deml, A. Schmidt, J. Tegner, and I. Tsamardi-
nos. Predicting causal relationships from biological data: Applying automated causal
discovery on mass cytometry data of human immune cells. Scientific reports, 7(1):1–11,
2017.

[100] L. G. Valiant. Parallelism in comparison problems. SIAM J. Comput., 4(3):348–355,
1975.

[101] L. G. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Computers,
30(2):135–140, 1981.

[102] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

[103] Z. Wang and J. Honorio. Reconstructing a bounded-degree directed tree using path
queries. In 57th Annual Allerton Conference on Communication, Control, and Com-
puting, Allerton 2019, Monticello, IL, USA, September 24-27, 2019, pages 506–513.
IEEE, 2019.

104



[104] Z. Wang and J. Honorio. Reconstructing a bounded-degree directed tree using path
queries. In 57th IEEE Allerton Conference on Communication, Control, and Comput-
ing, 2019. See also arxiv.org/abs/1606.05183.

[105] M. S. Waterman, T. F. Smith, M. Singh, and W. A. Beyer. Additive evolutionary
trees. Journal of theoretical Biology, 64(2):199–213, 1977.

[106] A. C. Yao. Decision tree complexity and betti numbers. In F. T. Leighton and M. T.
Goodrich, editors, Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory
of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 615–624. ACM,
1994.

[107] A. C. Yao. Decision tree complexity and betti numbers. J. Comput. Syst. Sci.,
55(1):36–43, 1997.

[108] A. C.-C. Yao. Decision tree complexity and Betti numbers. In Proceedings of the
Twenty-sixth Annual ACM Symposium on Theory of Computing, STOC ’94, pages
615–624, New York, NY, USA, 1994. ACM.

[109] X. Zhang and C. Phillips. A survey on selective routing topology inference through
active probing. IEEE Communications Surveys Tutorials, 14(4):1129–1141, 2012.

[110] Y. Zhang, E. D. Kolaczyk, and B. D. Spencer. Estimating network degree distributions
under sampling: An inverse problem, with applications to monitoring social media
networks. The Annals of Applied Statistics, 9(1):166 – 199, 2015.

105

arxiv.org/abs/1606.05183

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Learning Rooted Trees
	Learning Multitrees and Almost-trees
	Learning Undirected Graphs

	Learning Rooted Trees
	Introduction
	Related Work

	Preliminaries
	Learning Rooted Trees using Path Queries
	Algorithms
	Analysis
	Lower Bound

	Experiments
	Conclusion

	Learning Multitrees and Almost-trees
	Introduction
	Related Work
	Our Contributions

	Preliminaries
	Learning Multitrees
	Rooted Trees
	Multitrees of Arbitrary Height
	Butterfly Networks

	Parallel Learning of Almost-trees
	Learning an Arborescence in a DAG
	Learning a Cross-edge
	Lower bound

	Conclusion

	Learning Connected Graphs
	Introduction
	Prior Related Work
	Our Results

	Parallel Graph Clustering
	Our Fast Parallel Network Mapping Algorithms
	A Greedy Network Mapping Algorithm
	Conclusion

	Bibliography



