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G E N E T I C S

Melanoma progression and prognostic models drawn 
from single-cell, spatial maps of benign and 
malignant tumors
Nick R. Love1, Claire Williams2, Emily E. Killingbeck2, Alexander Merleev1,  
Mohammad Saffari Doost1, Lan Yu1, John D. McPherson3, Hidetoshi Mori4,  
Alexander D. Borowsky4, Emanual Maverakis1, Maija Kiuru1,4*

Melanoma clinical outcomes emerge from incompletely understood genetic mechanisms operating within the 
tumor and its microenvironment. Here, we used single-cell RNA-based spatial molecular imaging (RNA-SMI) in 
patient-derived archival tumors to reveal clinically relevant markers of malignancy progression and prognosis. We 
examined spatial gene expression of 203,472 cells inside benign and malignant melanocytic neoplasms, including 
melanocytic nevi and primary invasive and metastatic melanomas. Algorithmic cell clustering paired with intratu-
moral comparative two-dimensional analyses visualized synergistic, spatial gene signatures linking cellular prolif-
eration, metabolism, and malignancy, validated by protein expression. Metastatic niches included up-regulation 
of CDK2 and FABP5, which independently predicted poor clinical outcome in 473 patients with melanoma via Cox 
regression analysis. More generally, our work demonstrates a framework for applying single-cell RNA-SMI tech-
nology toward identifying gene regulatory landscapes pertinent to cancer progression and patient survival.

INTRODUCTION
Melanocytic tumors—both benign and malignant—exhibit a great 
variety of morphologies and clinical outcomes (1, 2). For example, 
the melanocytes of nevi (benign melanocytic neoplasms colloquially 
known as “moles”) initially replicate, quiesce, and remain confined 
within their tissue microenvironment. The melanocytes of melanoma, 
in contrast, have the capacity to aggressively proliferate, invade nearby 
tissues, and metastasize. Although both nevi and melanoma can have 
similar driver mutations, most commonly in BRAF and NRAS, mela-
nomas are known to harbor a multitude of oncogenic mutations that 
are not fully understood but differ from the mutations identified in 
nevi (2). In addition to individual DNA mutations, the clinical fates of 
patients with melanocytic neoplasms emerge from a combination of 
incompletely understood molecular, genetic, and cellular mechanisms 
interacting within the tumor microenvironment.

Unregulated melanocyte cell proliferation (i.e., tumor growth) 
and inappropriate cell migration (i.e., tissue invasion and metasta-
sis) define melanoma (3–7). Previous studies have defined oscilla-
tory gene expression profiles that promote melanocyte “proliferative” 
versus “invasive” phenotypes (3, 4, 7). For instance, proliferative 
melanocytes generally exhibit high levels of transcription factor 
MITF and other genes (7, 8), although how this phenotype is spa-
tially arranged and modulated within the tumor microenvironment 
remains poorly understood.

Our understanding of melanocyte biology and gene expression 
has relied on RNA measurement techniques, e.g., gene expression 
microarrays, bulk RNA sequencing, and single-cell RNA sequenc-
ing (scRNA-seq). These techniques, however, lack spatial informa-
tion and thus preclude insight into factors such as cell proximity to 

lymphovasculature (9), tumor-stroma boundary (10), or lympho-
cytic infiltrate (11). To overcome these limitations, the evolving field 
of “spatial profiling” (also called “spatial transcriptomics”) (12, 13) 
holds promise for measuring in situ gene expression within skin and 
other cancers types (14–18). Realization of the full clinical utility of 
spatial profiling in the fight against cancer, however, necessitates ef-
fective strategies for extracting biologically and clinically useful in-
formation from this new class of data.

Here, using a technique enabling in situ simultaneous visualiza-
tion of ~1000 RNAs at single-cell and subcellular resolution (18), we 
generated single-cell maps of gene expression within benign, malig-
nant, and metastatic melanocytic neoplasms. We then deconvolute 
these maps to identify proliferative gene signatures that influence 
progression to malignancy and melanoma patient survival.

RESULTS
Single-cell RNA-based spatial molecular imaging generates 
maps of gene expression within benign, malignant, and 
metastatic melanocytic neoplasms
We visualized in situ gene expression of 203,472 cells using single-cell 
RNA-based spatial molecular imaging (RNA-SMI) (18), which allows 
utilization of patient-derived, formalin-fixed, paraffin-embedded 
(FFPE) specimens (Fig.  1A; further explanatory technical details 
found in the Supplementary Text).

We first analyzed 10 patient-derived tumors: three intradermal 
nevi, four primary invasive melanomas, and three cutaneous metas-
tases (fig. S1 and data S1). Metastases had been DNA sequenced dur-
ing their clinical workup, revealing mutations in KRAS, NRAS, TP53, 
NF1, and TERT in the respective bulk DNA samples (data S2). The 
probe set used included ~1000 cancer-associated genes (data S3).

Using machine learning augmented segmentation, we digitally 
segmented over 63,000 cells per slide, assigning ~70 million gene 
transcripts to the diagnostic regions of each tumor microenviron-
ment (fig. S2 and data S4). Because we did not find an earlier study 
examining the skin with this technology, we first confirmed that our 
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Fig. 1. Single-cell RNA-based SMI generates maps of gene expression within benign, malignant, and metastatic melanocytic neoplasms. (A) FFPE samples are sec-
tioned and undergo SMI (18). Native RNA is hybridized in situ to gene-specific antisense oligonucleotides fused to multiplexed readout domains, which undergo cyclical 
reactions with four different fluorophores (Alexa Fluor 488, ATTO 532, Dyomics-605, or Alexa Fluor 647) or null, nonfluorescent domain (represented in white). The readout 
domain length and number of iterative cycles are plexed to allow detection of ~1000 unique genes. Slides are then stained with DAPI to detect nuclei and other IHC markers, 
which facilitate automated cell segmentation in silico. Segmented cells and nuclei generate a “map” onto which RNA transcripts are assigned. Bottom left panels show epi-
dermis above melanocyte-containing tissue with 11 differentially colored gene transcripts, with DAPI shown in white. The solid white arrows show a detected RNA transcript 
outside a cell border, which may represent a z-axis out-of-plane RNA or extracellular RNA. (B) H&E and RNA imaging of an intradermal nevus and cutaneous melanoma 
metastasis. The solid outlined, rectangular boxes in panels show highlighted insets below. The panels show the expected increased detection of melanoma marker PRAME 
amongst the S100B melanocytes of metastatic melanoma as well as the expected increase in S100A8 (black open arrow) in epidermal keratinocytes (marked by KRT14) 
overlying the malignant proliferation. Closed arrows show mitotic cells. Open arrow shows malignant melanocytes juxtaposed to the epidermis. (C) UMAP projections of 
gene expression amongst 203,472 cells analyzed in 10 patient-derived tumors. S100B expression includes melanocytes, a subset of which express melanoma marker PRAME 
(black versus green dashed boxes); the red dashed box shows epidermal keratinocytes that express KRT14, a subset of which express S100A8 (blue dashed ellipse).
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dataset accurately recapitulated known spatial gene expression pat-
terns, including superficial-to-deep epidermal keratin and collagen 
profiles (fig. S3).

For further validation, we examined known melanoma gene expres-
sion of melanocytic nevi versus melanoma cutaneous metastases. This 
confirmed the expected comparative increase in the known melanoma 
marker PRAME (19) amongst S100B melanocytes of the metastatic 
melanoma versus nevus as well as the previously identified increased 
S100A8 in the keratinocytes overlying the melanoma (Fig. 1B) (17).

To visualize gene expression in 203,472 cells simultaneously, we 
used uniform manifold approximation and projection (UMAP) 
(Fig. 1C), a dimension reduction technique allowing visualization 
of clustered patterns of high-dimensional data (20). Consistently, 
UMAP showed distinct subsets of PRAME expression within S100B-
postive cells (i.e., presumptive malignant melanocytes) and the 
S100A8-​expressing subset of KRT14-positive cells (presumptive ke-
ratinocytes overlying melanoma).

Collectively, these and other candidate gene UMAP plots and 
interlesional melanocyte comparisons (fig. S4) showed that our 

dataset—a series of two-dimensional (2D) maps showing the location 
of ~70 million mRNA transcripts in 203,472 cells—was amenable to 
further algorithmic extraction of biologically meaningful gene ex-
pression signatures between the different lesion classes examined.

Clustering analyses identify a proliferative gene signature 
that includes CDK2
We next sought to identify gene signatures that correlated with 
cell proliferation via algorithmic clustering approaches. We clus-
tered the 203,472 cells into 11 unique groups using unsupervised 
Leiden clustering, an unbiased clustering algorithm that improves 
on Louvain clustering to yield better-connected communities 
(Fig. 2A) (21).

To visualize Leiden clusters within tumor microenvironments, 
we mapped cell cluster identities onto the nevi, melanoma, and cu-
taneous metastases samples (Fig. 2A). The S100B-expressing mela-
nocytes of two of three intradermal nevi (nevi #2 and #3) segregated 
into a single cluster (cluster 4); one melanoma (melanoma #1) and 
two metastasis samples (cutaneous metastases #2 and #3) clustered 

Fig. 2. Clustering analyses identify a proliferative gene signature that includes CDK2. (A) UMAP projection of 203,472 cells into 11 unsupervised Leiden clusters, 2D mapped 
onto the nevi, melanoma, and cutaneous metastases samples. Black square insets magnified in right panels, showing portions of melanocytic tumors expressing S100B (white dots). 
(B) UMAP and 2D mapping with semisupervised clusters using HCA skin reference (solid rectangles magnified below). Black square insets magnified in right panels. (C) Heatmap of 
normalized gene expression in Leiden clusters. Proliferative markers MKI67 and CENPF localized to cluster 8, which also included melanoma-associated proliferative genes CDK2 and 
CDH1 (top hits listed below cluster in alphabetical order). (D) UMAP projection with combinatorial overlap of MKI67-, CDK2-, and CDH1-expressing cells; inset shows a portion of 
cluster h enriched for MKI67, CDK2, and CDH1 coexpression. (E) H&E and RNA-SMI of MKI67, CDK2, CDH1, S100B, and predominately nuclear localized MALAT1 within cutaneous 
metastasis #1 (predominately composed of tumor cluster h–type cells). Black solid rectangle is magnified in the middle horizontal row; white solid squares magnified in the bottom 
horizontal row. White open arrows point to mitoses. Green arrow shows predominately nuclear localization of MALAT1. The middle column DAPI panels are overlayed in the right 
column with semisupervised HCA cell clusters, most of which are tumor cluster h, as shown in (B). Detected RNA transcripts are shown as outlined in the key at bottom right key. 
Collectively, the panels show expression of MKI67, CDK2, and CDH1 in cells of the mitotically active portion of the tumor. (F) Gene expression correlation of tumor cluster h, showing 
a positive Spearman correlation (Sprm. cor.) of CENPF and CDK2 with MKI67 (correlation absent with PRAME and CDH1). ***, adjusted P value < 0.0001; ns, P value > 0.05.
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independently (clusters 10, 8, and 3, respectively). Three melanomas 
and one cutaneous metastasis formed a single cluster (cluster 1). 
These results led us to explore additional clustering methods to 
group clinically similar tumoral melanocytes to facilitate subse-
quent comparative analyses.

We improved cell clustering by using the scRNA-seq–derived, 
Human Cell Atlas (HCA) skin gene expression dataset as a cell type 
reference (22–24). Considering the expression of all genes, we as-
signed cells to known cell types (e.g., inflammatory cells, kerati-
nocytes, fibroblasts, endothelial cells, etc.) while simultaneously 
allowing space for identification of previously undefined cell pro-
files. This “semisupervised” approach resulted in eight distinct neo-
plastic melanocyte cell types (clusters a to h) that notably grouped 
all nevus melanocytes into a single group (cluster a), three of the 
four melanoma samples into a single group (cluster e), and each me-
tastasis independently (Fig. 2B).

To identify the gene signature that most correlated with cell pro-
liferation, we examined expression of MKI67 (marker of prolifera-
tion Ki-67) (25) and CENPF (centromere protein F) (26), which are 
reliable mRNA proxies for cell cycling used in scRNA analyses (16, 
27). Amongst the unsupervised Leiden clusters, cluster 8 had the 
highest expression of MKI67 and CENPF and contained other genes 
implicated in melanoma growth e.g., CDH1 (cadherin-1) (8), the 
MITF transcriptional target CDK2 (cyclin-dependent kinase 2) 
(28), growth factor signaling pathway component AKT (29), and 
others (Fig. 2C and data S5).

To examine the global expression of this proliferative gene signa-
ture within our dataset, we generated UMAP plots labeled by co-
expression of these markers, noting that MKI67-expressing cells 
represented a subset of cell that expressed other proliferative signa-
ture markers, e.g., CDH1 and CDK2 (Fig. 2D). Consistently, we 
found that MKI67/CDH1/CDK2+ cells were qualitatively enriched 
in metastatic tumors (e.g., cluster h), particularly within tissue ag-
gregates undergoing active cell cycling (Fig. 2E).

To determine which proliferative signature genes best correlated 
with the MKI67 subset, we quantified expression within the 13,419 
cells comprising metastatic melanoma cluster h. As expected, cell 
proliferative marker CENPF positively correlated with MKI67, 
whereas the expression levels of nonproliferative melanoma marker 
PRAME did not (Fig. 2F). Notably, we found that CDK2 (but not 
CDH1) showed a positive correlation with MKI67, a finding also 
observed at the protein level (fig. S5).

To assess the generalizability of these findings, we examined 
The Cancer Genome Atlas (TCGA) (30) bulk tumor-derived tran-
scriptomic data from 473 patient-derived melanoma samples. 
These data confirmed the significant correlations of MKI67 with 
CENPF and CDK2 (fig. S6); we found that the correlation between 
MKI67 and CDK2 was lower than that of MKI67 and CENPF, 
which could be explained by the baseline, noncycling level of ex-
pression of CDK2 in melanocytes (28) and potential additional 
CDK functions other than cell proliferation, such as genomic and 
chromosomal modulation (31). Notably, we found that increased 
expression of CDK2 was comparatively specific to melanoma ver-
sus 16 other cancer types found in The Human Protein Atlas 
(fig. S7) (32); moreover, CDK2 was the only member of the CDK 
family to show this melanoma specificity at the transcript level 
(fig. S7).

Together, these analyses demonstrate how unsupervised and 
semisupervised clustering algorithms from single-cell spatial data 

can identify gene expression signatures of candidate cellular pro-
cesses, including cell proliferation, in melanoma.

Candidate gene analysis reveals differential tumor-stroma 
boundary expression of CDK2
We next sought to identify differential spatial expression patterns of 
genes in nevi versus melanoma using a candidate approach. Toward 
this aim, we chose to examine CDK2 due to its constellation of in-
triguing features, e.g., its correlation with cell proliferation (Fig. 2), 
comparative specificity of up-regulation in melanoma versus other 
cancers (fig. S7), and status as a MITF downstream transcriptional 
target (28).

We visualized CDK2 expression in the melanocytic neoplasms of 
our dataset, and unexpectedly, we found CDK2 expressed in benign 
melanocytes at the dermal-epidermal junction and in superficial 
dermal melanocytic nests of nevi (fig. S8). The deep dermal expres-
sion of CDK2, however, vastly differed between nevi and melanoma: 
In intradermal nevi, CDK2 expression was gradually lost with der-
mal depth, whereas CDK2 expression was retained at comparatively 
high level at the deep tumor-stromal boundary in primary melano-
ma (Fig. 3A).

To validate these findings at the protein level, we used a 
patient-derived tumor panel consisting of 59 nevi and 69 primary 
melanomas (fig. S9) and characterized their expression patterns 
(figs.  S10 to S12). We found that comparatively high CDK2 ex-
pression was at least focally retained amongst ~80% of primary 
melanoma with ≥0.8-mm tumor thickness (fig. S10, patterns #4 
and #5), a depth of invasion that correlates with comparatively 
poor clinical outcomes (33), as well as in melanoma metastases 
(34). In contrast, all intradermal nevi of the panel with compara-
ble depths exhibited decreased CDK2 expression at the deep 
tumor-stroma boundary.

To quantify the differential gene expression of CDK2 and other 
primary melanoma-increased genes in our dataset, we analyzed the 
semisupervised clusters of intradermal nevi (cluster a, N = 42,916 
cells) and primary melanoma (cluster e, N = 20,449 cells) (Fig. 3, B 
and C) and performed differential expression analysis using nega-
tive binomial regression. Within our model for each gene, we in-
cluded patient as a random effect, the expression of the gene in 
surrounding cells as a fixed effect, and the total counts in each cell 
as an offset. As an alternative visualization, we show the marginal 
means estimated from the model for three select genes (Fig. 3D). 
These data showed that quantitative up-regulation of CDK2 closely 
resembles that of PRAME, consistent with our prior study using 
sequencing-based spatial approaches (17).

Overall, this candidate gene approach revealed that compara-
tively high CDK2 expression at the tumor-stroma boundary is a fea-
ture of most primary melanomas, as might be expected from previous 
bulk RNA microarray-based studies (31). However, CDK2 expression 
is not a marker of melanocyte malignancy per se given its expression 
in certain benign melanocytes, e.g., superficial nevus melanocytes. 
This paradox hinted at the existence of other spatially defined factors 
that modulate cell phenotype in the benign and malignant tumor en-
vironment.

Intratumoral spatial analyses reconcile field-level 
proliferative and metabolic gene expression signatures
To search for microenvironmental factors that help define benign 
versus malignant melanocytes, we sought to directly compare benign 
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and malignant CDK2-expressing melanocytes. To reduce potential 
confounders from intertumoral analyses (e.g., different patient, age, 
biopsy site, sun exposure, and genetic background), we performed 
intratumoral analyses in a single tumor having both melanoma and 
nevus portions.

We confirmed the canonical nevus and melanoma portions of 
the tumor via histomorphological and immunohistochemical anal-
yses (Fig. 4A and fig. S12). Melanocytes expressed both PRAME and 
CDK2 as expected of their benign or malignant status (Fig.  4B). 
Similarly, keratinocytes associated with the malignant portion of the 
tumor expressed S100A8 (Fig. 4B). Consistently, Leiden unsuper-
vised and semisupervised clustering generated differential cell 
clusters within the nevus and melanoma portions of the combined 
tumor (Fig. 3C).

Using the semisupervised clusters (nevus, cluster A, N =  3861 
cells; melanoma, cluster E, N = 5132 cells), we performed differen-
tial expression analysis and quantitatively confirmed that expected 
marker genes, including PRAME and IFI27, were significantly dif-
ferentially expressed (Fig. 4D) (35). This confirmatory analysis gave 
us confidence that the semisupervised cell clusters contained valid 
transcriptomic profiles amenable to subsequent spatial 2D analyses.

Using Lee’s L spatial association analysis to evaluate gene expres-
sion in the malignant tumor, which captures the correlation of ex-
pression between genes in space (36), we identified four distinct 
clusters of genes showing distinct fields of synergistic expression 
within the malignant portion of the tumor (Fig. 4E and data S6). For 
example, spatial cluster #3 showed up-regulation of inflammatory- 
and immune-modulating genes HLA-A, HLA-B, HLA-C, and HLA-E 

Fig. 3. Candidate gene analysis reveals differential tumor-stroma boundary expression of CDK2. (A) Panels show the comparative loss of CDK2 expression in dermal 
melanocytes of intradermal nevi versus retained expression of CDK2 in dermally invasive primary melanoma. Left H&E panels have solid rectangular insets subsequently 
magnified in the rightward panels. H&E stains show characteristic, bland appearing nested melanocytes of an intradermal nevus versus the hyperchromatic, crowded, and 
pleomorphic cells of primary melanoma. RNA + DNA panels show comparatively increased expression of CDK2 and PRAME in S100B-expressing malignant melanoma 
melanocytes. RNA + cell type panels show semisupervised HCA clustering of the cells of the tumor, with annotation of intradermal nevus-like melanocytes (cluster a) and 
malignant melanoma melanocytes (cluster e). Right panels show CDK2 protein expression, which was notable for comparatively increased expression at the deep, tumor-
stroma border in malignant melanoma versus nevus. (B) Volcano plot showing quantification of differential gene expression between nevus (cluster a) and melanoma 
(cluster e) melanocytes. Each dot on this plot represents a gene. The location of PRAME and CDK2 within the plot is shown. Orange dots represent genes with higher ex-
pression in nevus (cluster a), whereas green dots represent genes with higher expression in melanoma (cluster e). Gray dots represent genes that failed to reach the FDR 
threshold of 0.05 (Benjamini-Hochberg correction). (C) Bar graphs highlighting select genes from volcano plot shown in (B). ***P value < 0.0001; ns, P value > 0.05. Error 
bars show SEM. (D) Forest plots showing marginal means (gray dashed line) with a 95% confidence interval. Note that graphics shown in (B) to (D) are different ways to 
visualize the same quantification of differential expression of PRAME, CDK2, MKI67, and other genes between clusters a and e.
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and BST-2 in the upper left region of the tumor (Fig. 4E) (37), sug-
gesting that this microenvironmental region elicited a comparatively 
greater innate immune response.

To identify which microenvironmental region most aligned with 
cell proliferation, we located CDK2 within spatial cluster #4, which 
was highly expressed in tissue aggregates with CDK2/Ki-67 coexpres-
sion at the protein level by dual immunofluorescence immunohisto-
chemistry (IHC) (Fig. 4E and fig. S13). Notably, spatial cluster #4 also 
included metabolic genes COX5B and FABP5, both of which have 
been implicated in modulating the pro-growth cancer metabolome 
(38–40). Mapping these spatially regulated genes onto the tumor con-
firmed their differential spatial expression (Fig. 4F and fig. S14).

Together, these intratumoral analyses revealed distinct spatial 
gene signatures within the microenvironments of a single heteroge-
nous neoplasm with both benign and malignant components, re-
vealing potential genes relevant for progression into malignancy.

Differential expression of MKI67, CDK2, and FABP5 
retrospectively predicts melanoma patient survival
To further explore clinically relevant melanoma markers, we trans-
lated our RNA-SMI spatial gene expression maps into gene models 
for melanoma survival. Toward this aim, we visualized the survival 
of 473 TCGA patients via Kaplan-Meier plots stratified by expres-
sion levels of genes identified via our unsupervised clustering and 

Fig. 4. Intratumoral spatial analyses reconcile field-level proliferative and metabolic gene expression signatures. (A) Melanocytic tumor with nevus and malignant 
melanoma portions, with insets shown as indicated by black squares. Bottom row shows nuclear and cytoplasmic CDK2 protein expression in melanocytes. Black open 
arrow shows loss of CDK2 expression in deep nevus cells. (B) Top panel shows comparatively increased PRAME and S100A8 in melanoma portion of the tumor. The middle 
panel shows expression of CDK2 and melanocytic marker MITF, progressively magnified as indicated with white bordered rectangular insets. (C) Unsupervised Leiden 
(top) and semisupervised HCA (middle) clustering generated nevus-type and melanoma-type melanocyte clusters (clusters A and E, respectively). (D) Top panel shows 
volcano plot of differential gene expression between nevus (cluster A) and melanoma (cluster E) melanocytes. Blue dots represent genes with higher expression in nevus 
(cluster A), whereas red dots represent genes with higher expression in melanoma (cluster E). Gray dots represent genes that failed to reach the FDR threshold of 0.05 
(Benjamini-Hochberg correction). The top hit in each condition outlined in blue (APP) or red (IFI27) were mapped out in the bottom DNA + RNA imaging panel. Scale bar: 
500 μm. (E) Heatmap shows results of Lee’s L spatial association analysis of malignant melanocytes (cluster E), with each row and column representing a spatially pat-
terned gene. Genes clustered into four hierarchical fields as numbered on the left. This spatial analysis used a combination of proximity and differential expression level 
to define four distinct fields of gene expression within the melanoma. The panels on the right show the normalized expression of all genes in each numbered field. 
(F) Spatial plots showing relative expression of known gene PRAME as well as immunoregulatory gene HLA-B and metabolic genes FABP5, which spatially clustered with 
CDK2 [field 4 in (E)].
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spatial analyses, e.g., MKI67, CENPF, CDK2, CDH1, COX5B, and 
FABP5 (Fig. 5A and fig. S15). To quantify the influence of gene ex-
pression on survival rate, we performed Cox (proportional hazards) 
regression analysis with gene expression, patient age, sex, and can-
cer stage as independent covariates.

As expected, the quantitative expression of PRAME did not sig-
nificantly discriminate patient survival (Fig. 5A) (41). In contrast, 
we found that increased MKI67 expression significantly correlated 
with decreased patient survival [log2expression hazard ratio 
(HR) = 1.27, P = 2.5 × 10−3], whereas CENPF did not (fig. S15). 

Covariate expression of CDK2 (HR = 1.17, P = 2.7 × 10−4) more so 
than CDH1 (HR = 1.05, P = 1.0 × 10−2) as well as metabolic genes 
FABP5 (HR = 1.13, P = 1.9 × 10−2) and COX5B (HR = 1.21, P = 
3.3 × 10−2) significantly correlated with survival.

Notably, we found that a survival model that included the sum-
mation of MKI67, CDK2, and FABP5 expression levels as well as 
patient age, sex, and cancer stage as independent covariates resulted 
in further differential survival in Kaplan-Meier analysis (Fig. 5A). 
In this model, MKI67, CDK2, and FABP5 were independent and 
significant contributors to survival, a result not seen with the 

Fig. 5. Differential expression of MKI67, CDK2, and FABP5 retrospectively predicts melanoma patient survival. (A) Kaplan-Meier survival curves from 473 patients 
with melanoma after stratification into low, medium (med.), and high and top expression quartiles of PRAME, MKI67, CDK2, and FABP5. Rightmost curve shows the com-
paratively increased differential survival stratification using the sum of log2 MKI67, CDK2, and FABP5 expression. Cox (proportional hazards) regression analyses HRs with 
their respective P values are shown below each Kaplan-Meier curve. The Cox regression analyses were based on a model that included gene expression values, patient 
age, gender, and tumor stage as covariates. The analysis showed that expression of MKI67, CDK2, and FABP5 was statistically significant and independent predictors of 
poor prognosis. (B) UMAP shows combinatorial overlap of MKI67-, CDK2-, and FABP5-expressing cells enriched in the metastatic melanoma cell clusters f, g, and h identi-
fied in Fig. 2. (C) The panels show comparative increased expression of CDK2 and FABP5 in metastatic melanoma compared to nevus, both at the RNA and protein level. 
White and black bordered rectangles are magnified in adjacent panels as shown. White open and black arrowheads show expression of FABP5 RNA and protein in the 
upper layers of the epidermis. Green open arrows show normal, physiologic melanin visible in both H&E- and IHC-processed tissue sections. Green closed arrow shows 
atypical mitotic figure within metastatic melanoma. (D) Protein expression of PRAME, CDK2, and FABP5 highlight malignant melanoma metastasized to lymph node. (E) scRNA 
expression following cell cycle inhibition using CDK4/6 inhibitor abemaciclib or control (DMSO) in melanoma IGR37 (top row) and UACC-257 (bottom row) cell lines. The 
t-SNE plots show loss of MKI67 expression, partial loss of FABP5, and comparatively little change in CDK2 expression in abemaciclib-treated cells versus control.
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combination of MKI67, CDK2, and COX5B (fig. S15), which sug-
gested potential biological ramifications of MKI67/CDK2/FABP5 
coexpression.

We examined MKI67, CDK2, and FABP5 coexpression within 
the tumor microenvironments in our dataset. Using UMAP, we 
found MKI67/CDK2/FABP5 enrichment in the malignant and met-
astatic melanoma cell clusters (Fig. 5B). Consistently, cellular map-
ping of RNA-SMI transcripts exhibited increased CDK2 and FABP5 
expression in cutaneous metastatic melanoma versus nevus, which 
we confirmed at the protein level (Fig. 5C). To assess the generaliz-
ability of this finding, we confirmed increased CDK2 and FABP5 ex-
pression in an independent panel of lymph node metastases (Fig. 5D 
and fig. S16).

Unexpectedly, we found marked FABP5 expression in the upper 
layers of the epidermis in nonlesional skin (Fig. 5C). This baseline 
epidermal expression may help explain why FABP5 did not initially 
cluster in the melanocyte-enriched proliferation clusters (Fig. 2) 
and highlights the utility of the spatial analyses toward the identifi-
cation of microenvironmental gene expression signatures.

To mechanistically address the relationship of MKI67, CDK2, 
and FABP5 expression manifesting within the cycling cell, we exam-
ined previously published scRNA-seq data obtained following cell 
cycle inhibition in vitro via the CDK4/6 inhibitor abemaciclib ver-
sus dimethyl sulfoxide (DMSO) controls (42). In both IGR37 and 
UACC-257 melanoma cell lines, t-distributed stochastic neighbor 
embedding (t-SNE) plots showed loss of cell proliferation marker 
MKI67 expression after cell cycle inhibition (Fig. 5E). In contrast, 
t-SNE plots showed no appreciable loss of CDK2 and partial loss 
of FABP5 in abemaciclib- versus DMSO-treated controls, suggest-
ing that CDK2 expression is upstream of the cell proliferative state, 
whereas FABP5 expression levels may represent an adaptive re-
sponse to the replicative, melanocytic cellular milieu during the 
progression to metastatic potential (mechanistic hypothesis shown 
in fig. S17).

DISCUSSION
Here, we used RNA-SMI to examine the spatial transcriptomes of 
patient-derived benign, malignant, and metastatic melanocytic 
neoplasms, pairing this analysis with publicly available clinical and 
gene expression datasets. Here, we specifically chose to focus on cell 
proliferation within melanocytic tumors as a starting point; our da-
taset, however, contains genetic and spatial information of numer-
ous other cell types, e.g., tumor-infiltrating inflammatory cells, 
fibroblasts, and vascular cells, that are amenable for future avenues 
of research.

With Leiden unsupervised clustering, we isolated CDK2 as a 
gene highly expressed at the tumor-stromal boundary in most pri-
mary invasive melanomas and metastases. The in vivo role of CDK2 
in melanoma, however, remains unclear. The cdk2−/− mouse is via-
ble but infertile (43), suggesting that it could serve as an experimen-
tal melanoma model for functional investigation. In addition, our 
results may also encourage further development and investigation 
of novel CDK2-specific pharmacologic inhibitors (44).

Using spatial analysis, we found increased FABP5 expression in 
proliferative fields of primary and metastatic melanoma versus nevi. 
FABP5 is also expressed in the keratinocytes of the upper layers of 
the epidermis and in other cell types. Thus, the inherent expression 
of FABP5 (and CDK2 for that matter) is not specific to malignancy 

per se. Instead, as shown via Cox regression analysis (Fig. 5), it is the 
combined increased expression of FABP5 and CDK2 in melanocytes 
that points to a transcriptional state associated with poor clinical 
outcomes, which corroborate an increasing number of studies sug-
gesting that FABP5 may be a suitable target for therapeutic interven-
tion (40, 45, 46).

A limitation of our study includes the retrospective versus pro-
spective analysis of patient clinical outcomes via Cox regression 
analysis. In addition, technical limitations of our approach include 
the relatively low number of samples analyzed per lesion class and 
that only ~1000 cancer-associated gene targeting probes were avail-
able, which covered a fraction of the transcriptome and limited our 
ability to identify further novel biomarkers of benign and malignant 
melanocytic neoplasms. As spatial profiling technology evolves, how-
ever, the computational strategies introduced here are scalable to sup-
port exome- and transcriptome-wide analyses. With these, more 
complete biological insights and predictive models will emerge.

MATERIALS AND METHODS
Experimental design
The objectives of the study were to use patient-derived melanocytic 
tumors to generate spatial maps of gene expression. The institution-
al review board of the University of California, Davis granted ap-
proval for this study, including a waiver of the informed consent 
requirement due to the deidentification of specimens. The research 
involved searching through pathology archives for diagnoses, and a 
board-certified dermatopathologist (M.K.) carefully reviewed the 
hematoxylin and eosin (H&E)–stained sections to confirm the pro-
vided diagnoses.

Sectioning and IHC
Serial sections (5 μm) were prepared from FFPE tissue blocks. Af-
ter antigen retrieval using EnVision FLEX Target Retrieval Solution, 
High pH (Agilent Dako), and endogenous peroxidase blocking 
(EnVision FLEX Peroxidase Block, Dako Agilent), protein expres-
sion was analyzed by IHC using antibodies and their dilutions 
listed below with 10- to 30-min incubation in room temperature on 
an automated Dako Autostainer Link 48 stainer platform accord-
ing to the manufacturer’s instructions. Goat secondary antibody 
molecules coupled with peroxidase molecules against rabbit and 
mouse immunoglobulins (EnVision FLEX/HRP, Dako Agilent) and 
3,3′-diaminobenzidine tetrahydrochloride (EnVision FLEX DAB+ 
Chromogen, Agilent Dako) were used to detect primary rabbit and 
mouse antibodies, respectively.

Antibodies used in this study include S100A8 (mouse, CF-145, 
eBioscience, 1 μg/ml), CDK2 (rabbit, mAb no. 18048, Cell Signal-
ing, 1:1000), PRAME (rabbit, ab219650, Abcam, 1:4000), CDKN2A 
(p16) (mouse, catalog no.705-4793, Ventana, 1 μg/ml), COX5B (rab-
bit, ab264401, Abcam, 1:1000), PMEL (mouse and rabbit, PM165AA, 
Biocare, ready-to-use reagent), MITF (mouse, M3621, Dako, 1:300), 
Melan-A (mouse, IR63361, Dako, ready-to-use reagent), and FABP5 
(mouse, CPTC-FABP5-3, Developmental Studies Hybridoma Bank, 
1:1500).

Light microscopy, slide scanning, image processing,  
and figure creation
Light microscopy was performed using an Olympus BX51 micro-
scope with Olympus cellSense software or a Leica GT 450 slide 
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scanner with Aperio eSlide Manager software (Leica). Raw images 
or screenshots were processed using Photoshop software (Adobe, 
San Jose), and figures were generated using Illustrator software 
(Adobe, San Jose). When the raw images of tumors or slides were 
masked, a black dashed line was used to indicate the location of the 
clipping mask and was shown in the figure panel.

NanoString CosMx RNA-SMI
CosMx SMI was performed as previously described (18). FFPE tis-
sue sections (5 μm) were mounted on VWR Superfrost Plus Micro 
slides (catalog no. 48311-703) and baked at 60°C overnight to im-
prove tissue-slide adherence. The slides were prepared for in  situ 
hybridization (ISH) by heat-induced epitope retrieval (HIER) at 
100°C for 15 min using ER1 epitope retrieval buffer (Leica Biosys-
tems, citrate-based, pH 6.0).

Following HIER, the tissues were digested with proteinase K (3 μg/
ml) diluted in ACD Protease Plus (Advanced Cell Diagnostics Inc.) 
at 40°C for 30 min. Slides were washed twice with diethyl pyro-
carbonate (DEPC)–treated water (DEPC H2O) and incubated in 
0.0005% diluted fiducials (Bangs Laboratory Inc.) in 2X SSCT (2X 
saline sodium citrate and 0.001% Tween 20) solution for 5 min at 
room temperature in the dark. Excess fiducials were rinsed from the 
slides with 1X phosphate-buffered saline (PBS), and tissue sections 
were fixed with 10% neutral-buffered formalin for 5 min at room 
temperature. Fixed samples were rinsed twice with Tris-glycine buf-
fer (0.1 M glycine and 0.1 M Tris-base in DEPC H2O) and once with 
1X PBS for 5 min each before blocking with 100 mM N-succinimidyl-
S-acetylthioacetate (NHS-acetate; Thermo Fisher Scientific) in NHS-
acetate buffer (0.1 M NaP, 0.1% Tween, pH 8, in DEPC H2O) for 
15 min at room temperature. The sections were then rinsed with 2X 
saline sodium citrate (SSC) for 5 min, and an Adhesive SecureSeal 
Hybridization Chamber (Grace Bio-Labs) was placed over the tissue.

NanoString ISH probes were prepared by incubation at 95°C for 
2 min and placed on ice, and the ISH probe mix [1 nM 980 plex ISH 
probes, 1 nM custom probes, 10 nM Attenuation probes, 1X Buffer 
R, and SUPERase·In (0.1 U/μl; Thermo Fisher Scientific) in DEPC 
H2O] was pipetted into the hybridization chamber. The genes tar-
geted for each analysis are listed in data S3 and S7. The hybridization 
chamber was sealed to prevent evaporation, and hybridization was 
performed at 37°C overnight. Tissue sections were rinsed of excess 
probes in 2X SSCT for 1 min and washed twice in 50% formamide 
(VWR) in 2X SSC at 37°C for 25 min then twice with 2X SSC for 
2 min at room temperature and blocked with 100 mM NHS-acetate 
in the dark for 15 min. A custom-made flow cell was affixed to the 
slide in preparation for loading onto the CosMx SMI instrument.

RNA target readout was performed as described by He et al. (18). 
Briefly, the assembled flow cell was loaded onto the CosMx SMI in-
strument, and Reporter Wash Buffer was flowed to remove air bub-
bles. A preview scan of the entire flow cell was taken, and diagnostic 
areas of each tumor were targeted using 0.7 x 0.9 mm fields of view 
(FOVs) (21 to 25 per slide as listed in fig. S2 and data S4) to match 
regions of interest identified by H&E staining of an adjacent serial 
section. RNA readout began by flowing 100 μl of Reporter Pool 1 
into the flow cell and incubation for 15 min. Reporter Wash Buffer 
(1 ml) was flowed to wash unbound reporter probes, and Imaging 
Buffer was added to the flow cell for imaging. Nine Z-stack images 
(0.8-μm step size) for each FOV were acquired. Photocleavable 
linkers on the fluorophores of the reporter probes were released 
by ultraviolet illumination and washed with Strip Wash buffer. The 

fluidic and imaging procedure was repeated for the 16 reporter 
pools, and the 16 rounds of reporter hybridization imaging were re-
peated multiple times to increase RNA detection sensitivity.

After RNA readout, tissue samples were incubated with a 
4-fluorophore–conjugated antibody cocktail against CD298/B2M 
(488 nm), S100b/PMEL17 (532 nm), CD45 (594 nm), and CD3 
(647 nm) proteins and 4′,6-diamidino-2-phenylindole (DAPI) stain 
in the CosMx SMI instrument for 2 hours. After unbound antibod-
ies and DAPI stain were washed with Reporter Wash Buffer, Imag-
ing Buffer was added to the flow cell and nine Z-stack images for the 
five channels (four antibodies and DAPI) were captured.

Cell segmentation of CosMx SMI data
CosMx data underwent cell segmentation according to methods de-
scribed previously (18). This segmentation process used a machine 
learning algorithm (47, 48) that uses Z-stack images of immunostain-
ing and DAPI to delineate cell boundaries and subsequently assign 
transcripts to specific cell locations and subcellular compartments. 
The resulting transcript profiles of individual cells were created by 
integrating the target transcript’s location with the boundaries estab-
lished during cell segmentation.

napari-based RNA transcript image generation
Using the napari image viewer (49), cell segmentation outlines and 
points representing detected RNA molecules were overlaid onto the 
composite image created through additive blending, with distinct 
colors and appropriate contrast limits assigned to each of the im-
munofluorescence markers.

Dimension reduction
For visualization, cells were projected into umap space using the 
“runUMAP” function in the Giotto package (50). Counts were nor-
malized to total counts per cell. Normalized counts were square 
root transformed, and all transcripts were used as input into the 
UMAP function.

Cell type annotation, unsupervised
Unsupervised clustering was performed using Leiden clustering as 
implemented in the Giotto package (50) with a resolution of 0.4.

Cell type annotation, semisupervised
Semisupervised cell type annotation was performed by direct com-
parison of expression observed in each cell to expression profiles of 
cell types using a negative binomial model within the InSituType 
package (24). The reference cell profiles were derived from the HCA 
(23), as summarized in the “Human Adult Skin–HCA” profile in the 
CellProfileLibrary package (51). Following the defaults suggested in 
the InSituType package (available on GitHub as of 10 April 2024, 
https://github.com/Nanostring-Biostats/InSituType/tree/main, also 
deposited into Dryad at https://doi.org/10.5061/dryad.ksn02v7b1), 
2 to 10 novel clusters were requested. Cohorting was used to group 
cells with similar size and mean antibody staining to inform priors. 
Cell assignments were verified using comparison to known marker 
gene expression, protein expression, and location within tissue spa-
tial organization.

Marker gene heatmaps
Top marker genes for each cell type were identified using the Gini 
method to find the top three markers for each cell type. Known 

https://github.com/Nanostring-Biostats/InSituType/tree/main
https://doi.org/10.5061/dryad.ksn02v7b1
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marker genes from a literature search were also included in the heat-
maps. The mean expression of each marker gene across cell types 
was used to generate z scores, which are plotted.

Differential expression
To test if each gene was differentially expressed between cells of dif-
ferent melanocyte types, a negative binomial mixed-effects model 
was used, regressing raw counts for each gene against cell type us-
ing the R package “nebula” (51). The model included a random ef-
fect at the patient level and an offset term for each cell’s “transcript 
depth” or total expression across all genes. In addition, for each cell, 
we calculated the total expression of the analyzed gene in neighbor-
ing cells of other cell types within a 0.05-mm radius and included 
this variable as a fixed effect covariate in the regression model. This 
covariate is used to make the model robust to potential cell segmen-
tation errors or cell type uncertainty, which naturally arise in image-
based spatial transcriptomic technologies. Multiple comparisons were 
corrected for using the Benjamini-Hochberg correction. Volcano 
plots reflect fold changes and P values from the models, with points 
colored only if they fall below a false discovery rate (FDR) threshold 
of 0.05. Forest plots in Fig. 3 show marginal means and 95% confi-
dence intervals. The input model for differential expression testing 
included random effect variables (i.e., the patient from which an indi-
vidual cell was derived), fixed effect variables (i.e., the expression of 
the gene in surrounding cells), and the total gene counts in each cell 
(an offset in the model formula).

Gene correlations
Correlations between normalized expression of individual genes for 
a set of cells were calculated using the Spearman method. P values 
indicated have been adjusted for multiple comparisons using the 
Benjamini-Hochberg correction.

Spatial association analysis
Lee’s L tests for spatial autocorrelation were performed on cells of a 
single-cell type to identify genes with spatial patterns even within 
the same cell type. Genes with the highest Lee’s L autocorrelation 
were selected for plotting. All pairwise spatial correlations between 
these genes were calculated and hierarchically clustered into four 
clusters. The pairwise Lee’s L correlations are shown in a heatmap 
format in Fig. 4.

CDK2/Melan-A and CDK2/Ki-67 dual immunofluorescence 
and quantification
Multiplex immunofluorescence and imaging were conducted fol-
lowing established protocols as previously outlined (52). In brief, 
slides were subjected to staining with anti-CDK2 antibody (Cell Sig-
naling, CDK2 rabbit mAb no. 18048, concentration of 1:100), anti–
Ki-67 (Ventana, clone: 30-9, concentration of 1:100), anti–Melan-A 
(Dako, clone: A103, RTU), and DAPI (Biotium, no. 40011, 5 μg/mL 
as a final concentration). The BOND RX fully automated research 
stainer (Leica) was used for the staining process. Subsequently, 
stained slides were captured using the Vectra 3 automated quantita-
tive pathology imaging system (Akoya Biosciences), and the ex-
tracted signals were deconvoluted using the associated analysis 
software (Akoya Biosciences). For quantitative imaging analysis, 
QuPath software (53) was used to acquire cell segmentation data via 
performing the “Cell detection” function on the DNA (DAPI) chan-
nel of the pathologically annotated lesion. For cell segmentation, 

QuPath default settings were used except for the following: Un-
der “Nucleus parameters,” the “Sigma” value was set to 2 μm, and 
under “Intensity parameters,” the “Threshold” intensity parameter 
for DAPI signal detection was set at 0.5. The analysis comparing 
CDK2 and Ki-67 positivity was performed with the cytoplasmic 
mean intensity of CDK2 and the nuclear mean intensity of Ki-67 for 
each cell (fig. S5). Statistical analyses were executed using GraphPad 
Prism (Dotmatics).

TCGA database analyses, Kaplan-Meier, and Cox 
(proportional hazard) regression analyses
RNA-seq read count files for 473 skin cutaneous melanoma (SKCM) 
samples from TCGA were retrieved from the Genomic Data Com-
mons Data Portal (GDC) in September 2023. The counts were nor-
malized using the “median of ratios” method, as implemented in the 
DESeq2 Bioconductor R package (54), and subsequently log-
transformed for further analysis. For the x-​y plots comparing tu-
moral tumor bulk RNA expression, gene correlation was assessed 
using the cor.test function in R (55). The test statistic used was 
Pearson’s product moment correlation coefficient. Kaplan-Meier 
curves were generated using “survival” R package (56). Patients were 
grouped into low, medium, high, and top expression quartiles based 
on the expression level of the specific gene. Survival curves were 
generated for each of these quartiles and are depicted by distinct 
colored lines in the graphs. Differences in survival curves were eval-
uated using the log-rank test. Multivariate Cox proportional haz-
ards regression analysis was performed using the survival R package 
(56) to analyze the association of gene expression with prognosis in 
TCGA patients with SKCM. The gene expression values were log2-
transformed, and the model included patients’ age, tumor stage, and 
gender as covariates.

Cancer cell line bar graphs and scRNA t-SNE analyses of 
cycle inhibition
Bar graphs showing the expression of MKI67, CENPF, PRAME, 
and CDKs in various cancer types were generated using Adobe Il-
lustrator based on screenshots created within the web applications 
hosted at www.proteinatlas.org (32). The scRNA t-SNE analyses of 
cycle inhibition were generated within the web applications hosted 
at the Single Cell Portal (https://singlecell.broadinstitute.org/sin-
gle_cell) (57), using the experimental scRNA data submitted by 
Jerby-Arnon et al. (42).

Statistical analyses
Statistics were performed using the survival R package (56), the 
“nebula” R package (51), the Giotto package (50), the InSituType 
package (24), the CellProfileLibrary package (51), and the Graph-
Pad Prism software (Dotmatics). Individual statistical analyses are 
detailed in their respective methods section. P values and FDR val-
ues are indicated within their respective figure legends.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S17
Legends for data S1 to S7

Other Supplementary Material for this manuscript includes the following:
Data S1 to S7

http://www.proteinatlas.org
https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
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