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Abstract
This paper presents a statistical approach based on data mining to estimate the riverine 
environmental water demand (EWD). A river’s environmental water demand defines the 
quantity, timing, and quality of streamflow that are required to sustain riverine ecosystems 
and human activities. Genetic programming (GP), artificial neural network (ANN), 
and support vector regression (SVR) are herein applied to model the environmental 
demand. Input and output data for the use of GP, ANN, and SVR are the average monthly 
temperature and precipitation in 1995–2005 plus climate projections by the Canadian Land 
System Model (CanESM2) under the recommended concentration pathways RCPs 2.6, 4.5 
and 8.5 in 2025–2035. A case study illustrates this paper’s methodology using temperature 
and precipitation data and monthly discharge of the Karaj River, Iran. The applied data 
mining models were evaluated with R2, RMSE, and the NSE criteria. This work’s results 
show that the largest values of R2 and the NSE equal respectively 0.94 and 0.95, and 
the smallest value of the RMSE equals 0.07, which correspond to the SVR predictions. 
These results establish that SVR is a suitable model for the purpose of estimating the 
environmental water demand in comparison to GP and ANN in the study area. The SVR 
projections indicate that by 2035 and under the RCPs 2.6, 4.5, and 8.5 projected changes of 
the environmental water demand with respect to baseline conditions would be respectively 
63, 118, and 126  m3/s. It is demonstrated in this work that under climate change conditions 
the correlation between the EWD index and temperature was 83%, while the said value for 
rainfall was estimated to be 76%.

Keywords Water demand · Support vector regression · Genetic programming · Artificial 
neural network · SDSM · CanEMS2 · Karaj River

1 Introduction

Greenhouse gas emissions since the Industrial Revolution have raised the earth’s surface air 
temperature and have had multiple adverse social and environmental impacts (Abbass et  al. 
2022; Mozaffari 2022; Malla et  al. 2022). Climate data demonstrate that the Earth’s aver-
age temperature increased by 0.6  °C in the last century due to a rise in greenhouse gases 

Extended author information available on the last page of the article

http://orcid.org/0000-0001-6607-9581
http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-024-06656-4&domain=pdf


 Natural Hazards

1 3

concentrations in its atmosphere (Bozorg-Haddad et al. 2020a, b). The atmospheric warming 
has multiple effects on the hydrologic cycle, including modification of river runoff (Sarzaeim 
et al. 2017a, b).

Rivers are a valuable water resource of primary importance for water supply and ecosystem 
conservation (Hailu et al. 2018; Than et al. 2021). Therefore, determining the environmental 
water demand of rivers downstream of reservoirs whose operation affects river streamflow 
is of central importance to river management (Mengistu et al. 2021; Sedighkia et al. 2021; 
Ghoreishi et al. 2021). Four primary methods to estimate the environmental water demand 
were identified by Tharme’s 2003 worldwide assessment of 207 environmental demand stud-
ies conducted in 44 countries, which involved the use of hydrological, hydraulic rating, habitat 
modeling, and holistic methods. Each method has unique data challenges. The straightforward 
hydrological methods depend on flow time series, and they are the most cost-effective. Com-
paratively, holistic methods, which are more data intensive, do not share widely accepted pro-
cedures (Sarzaeim et al. 2017a, b). Hydraulic rating methods are intended for single-channel 
rivers (Linnansaari et al. 2012) and they require field research data. Habitat modeling methods 
are relatively accurate; they require detailed biological data and are costly and time-consuming 
to acquire. The holistic methods cover a variety of river flow factors; they are typically expen-
sive and time-consuming because they require detailed data and expert judgment (Linnansaari 
et  al. 2012). The Tennant method (Tennant 1976), the Tessman method (Tessman 1980), 
RVA (Richter et al. 1997), BBM (King and Louw 1998), and DRIFT (King et al. 2003) are 
examples of commonly used methods to estimate the riverine environmental water demand 
(EWD). Estimating the riverine environmental water demand in the context of climate change 
is a complex process that is computationally burdensome and requires the analysis of mega 
data (Khelifa et al. 2021; Tian et al. 2021; Wang et al. 2021; Ahmadzadeh et al. 2022). The 
data and modeling challenges involved in the estimation of the environmental water demand 
(EWD) under climate change dfsinvolve the use of computationally efficient methods with 
advanced pattern recognition capabilities (Oliazadeh et al. 2021, 2022; Arefinia et al. 2022a).

Data mining is the application of computerized algorithms and process to discover non-
obvious and useful information from large datasets (Kelleher and Tierney 2018; Li et  al. 
2019; Tan et al. 2019; Abualigah and Dulaimi 2021; Arefinia et al. 2021a, b), which is used 
in many studies across various scientific fields (Akbari-Alashti et al. 2014; Beygi et al. 2014; 
Bozorg-Haddad and Mariño 2011, 2007; Bozorg-Haddad et al. 2009a, b, 2010a, 2013, 2015, 
2016, 2017a; b; Fallah-Mehdipour et al. 2011, 2013a, b; Karimi-Hosseini et al. 2011; Orouji 
et  al. 2014; Sabbaghpour et  al. 2012; Soltanjalili et  al. 2011). Applications of data mining 
in water resources include water-quality simulation (Bozorg-Haddad et al. 2017a, b; Arefinia 
et al. 2020), runoff simulation (Sarzaeim et al. 2017a, b; Al-Juboori 2022), and virtual water 
forecasting (Arefinia et  al. 2022b). This study is a novel application because data mining 
models have not been used to evaluate the riverine EWD before. This work applies three 
types of data mining algorithms (i.e., GP, ANN and SVR) to estimate the riverine EWD under 
climate change conditions. The performances of the three algorithms are herein evaluated. 

2  Methodology

The method presented in this paper consists of four parts: (1) temperature and rainfall 
projections in the period 2025–2035 under three RCPs, (2) projection of runoff scenar-
ios in the same period, (3) estimation of the EWD in the baseline period (1995–2005), 
and (4) application of data mining models to estimate the riverine EWD under 
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climate-change conditions. The method’s flow diagram is depicted in Fig. 1. Figure 1 
shows that the estimation of the EWD begins with the prediction of surface air tem-
perature and rainfall in the baseline period, followed by the application of data-mining 
models to estimate the EWD under climate-change conditions.

2.1  Projecting climate‑change temperature and rainfall

The projection of future surface air temperature and rainfall over a study region relies 
on the application of the CanESM2 general circulation model (GCM), which has been 
evaluated and used in numerous studies in the Middle East and found to have accurate 
predictive skill (Sarzaeim et al. 2017a, b; Zolghadr-Asli et al. 2019; Arefinia et al. 2022a, 
b). The CanESM2 is implemented under the RCP2.6, 4.5, and 8.5 (RCP6’s data did not 
exist for the study region). The GCM outputs are made at coarse spatial scale and are 
downscaled to the regional scale for the purpose of simulating hydrologic processes in 
the study region. The Statistical Downscaling Model (SDSM, Wilby and Dawson 2013) 
is a decision support tool that is applied in this work to downscale the CanESM2 outputs. 
The SDSM uses public-domain climate projections for downscaling purposes. The down-
scaling of GCM outputs proceeds in two steps. First, regression functions are obtained 
between model-projected and observed surface air temperature and rainfall temperature 
corresponding to the baseline period. Second, these regressions are applied to obtain 
downscaled surface air temperature and rainfall in a future period (2025–2035) represent-
ative of climate-change conditions based on the CanESM2 projections of these variables.

The CanESM2 model’s climate projections were obtained from the model site (http:// 
clima te- scena rios. canada. ca). The downscaled surface air temperature and rainfall projec-
tions required to implement the data-mining models under the RCPs 2.6, 4.5 and 8.5 climate 
change conditions were downscaled for the period 2025–2035 using the SDSM 4.2.9. The 
monthly surface air temperature and rainfall were applied to calculate the riverine EWD.

2.2  Data mining models

This work applies artificial neural networks (ANNs), genetic programming (GP), and 
support vector regression (SVR) to estimate the EWD under climate change. These 
data-mining models are briefly described next.

Fig. 1  Flow diagram of this paper’s methodology

http://climate-scenarios.canada.ca
http://climate-scenarios.canada.ca
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2.2.1  Genetic programming (GP)

GP was introduced by Cramer (1985). Koza (1992, 1994) developed GP into a practical 
tool. It is a member of the family of evolutionary algorithms (Arefinia et al. 2021a). GP is 
applied to find functional relations between variables that are then used to predict dependent 
variables from independent variables. This is accomplished by generating set of numbers 
and operators that are treated as decision variables and are improved iteratively until conver-
gence to desired functional relations is achieved. The reader is referred to Mohammad-Azari 
et al. (2020) for a review of applications of GP in water resources systems analysis.

2.2.2  Artificial neural networks (ANNs)

An ANN is a data-intensive model that discovers functional relations between output and 
input variables through an algorithmic process called machine learning or data mining. 
The best functional relations that the ANN can find relating input variables to output vari-
ables might be complex and non-linear. An ANN is implemented by first training its input 
and output data. This is followed by a testing phase whereby the trained ANN’s predictive 
skill is tested with new input and output data. The ANN is used in prediction if it performs 
well during the testing phase. Several goodness-of-fit criteria are employed to train and 
test ANNs. The reader is referred to Kelleher and Tierney (2018) and Tan et al. (2019) for 
a review of ANNs, data mining, and data science, in general.

2.2.3  Support vector regression (SVR)

Vapnik (1995) introduced support vector machine (SVM). Support vector regression (SVR) 
is a regression variant of SVM. Two functions define SVR. The first function calculates the 
errors of the values calculated by SVR [see Eq. (1)]:

in which y= the vector of observed (output values), f (x)= the SVR prediction function for 
the input x ; ε = the sensitivity vector of the function f(x), ξ = the penalty vector, w= the 
weight vector.

The second function predicts the SVR output [see Eq. (2)]:

in which b= the deviation of the function f (x) , and T denotes the transpose operation.
SVR constitutes an optimization model in the form of Eqs. (3), (4) and (5) (Arefinia 

et al. 2020; 2021a):

Subjected to:

(1)|y − f (x)| =
{

0if |y − f (x)| ≤ �

|y − f (x)| − � = �otherwise

(2)f (x) = wT
⋅ x + b

(3)min
1

2
‖w‖2 + C

m�

i=1

(�−
i
+ �+

i
)

(4)(wT
⋅ x + b) − yi < 𝜀 + 𝜉+

i
i = 1, 2, 3,… ,m
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where C= the penalty coefficient, m= the number of training data, �+
i
 and �−

i
= the magnitude 

of the penalties above and below the band (− ɛ, + ɛ), respectively, and yi= the i-th observed 
data value. Problem (3), (4) and (5) is solved by Lagrange optimization for b and w. The 
output value of the SVR model is then obtained with Eq. (2).

SVR can simulate data exhibiting nonlinear behavior. In this case transfer functions, also 
referred to as kernel functions, are applied to linearize the data (see Bozorg-Haddad et al. 
2020a, b).

2.3  Estimation of the EWD using data mining models

The first step in using data mining tools to estimate the EWD under climate change is 
to build a database of average surface air temperature and monthly rainfall in a baseline 
period (1995–2005) to train a model for estimating the EWD.

The range of variability approach (RVA) (Richter et  al. 1996, 1997, 1998) is herein 
applied for the estimation of the EWD. The RVA sets streamflow-based river ecosystem 
management targets. It uses as its starting point either measured or synthesized daily 
streamflow values from a period during which human perturbations to the hydrological 
regime were negligible. This streamflow record is then characterized using thirty-two dif-
ferent hydrologic parameters (Richter et  al. 1997). The hydrologic parameters serve as 
flow targets that guide riverine management. According to the RVA method, the specific 
environmental water demand range for each month in year k has been obtained by using 
the first quartile of the river flow in the same month during the 10 years before year k.

Therefore, the EWD in the base period is given by Eq. (6):

where EWD = environmental water demand in year n, Q1

(
Qk−10,Qk−1

)
= the first quartile of 

the river discharge for a particular month in the years k − 10 through k − 1.
The analysis of the correlation between the EWD and independent variable is essential 

to obtaining a proper model structure (Gil et al. 2007). The correlation between the EWD 
and the average monthly surface air temperature and rainfall was found to be significant. 
The results indicate a strong statistical association (above 70%) between the EWD at time t 
and the average monthly surface air temperature and rainfall in periods t through t − 3.

Equation (7) describes the function between the output parameter at time t ( (EWD)t ) 
and the input parameters at time t through t − 3.

where (EWD)t= the EWD at time t, (T)t= temperature at time t, (R)t= rainfall at time t.
In the second step all information was normalized according to Eq. (8) to bring the input 

variables to a common range of values:

where xnorm= normalized x value, x= value of input variable before normalization, xmin and 
xmax= the minimum and maximum values of the parameter before normalization, respectively.

(5)qyi−(w
T
⋅ x + b) ≤ � + �−

i
i = 1, 2, 3,… ,m

(6)EWD = Q1

(
Qk−10,Qk−1

)
k = 1, 2,…

(7)(EWD)t = f
(
(T ,R)t,… , (T ,R)t−3

)

(8)xnorm =
x − xmin

xmax − xmin
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In the last step The GP, ANN, and SVM were trained after creating the database and 
normalizing the data. 75% of the data were used for training, and 25% of the data were 
used to test the data-mining model. All models are programmed using MATLAB.

The correlation coefficient (R2), Nash–Sutcliffe efficiency (NSE), and the root mean 
square error (RMSE) were used as performance indicators for each model. The closer the 
R2 and NSE value to 1, the better the fit between predictions and observations, and the 
closer the RMSE value to zero, the better the fit between predictions and observations. The 
equations for the R2 , NSE, and RMSE are as follows:

where n = number of data,  EDWobs = observed EWD, EWDobs= mean value of observed 
EWD,  EWDsim = calculated EWD.

2.4  Case study

The Karaj River Basin in northern Iran is located between longitudes 51.05 and 51.35 
degrees east and between latitudes 35.85 and 36.24 degrees north. The general topographic 
slope decreases from north to south. The total area of the basin equals to 845 square 
kilometers with a minimum and maximum average temperature equal to 9.86 and 21.96 °C, 
respectively. Table  1 lists the calculated average minimum monthly temperature, the 
average monthly temperature, the average maximum monthly temperature, and the average 
monthly rainfall.

The Karaj River provides water for agriculture, to recharge aquifers, and it is a source 
of water for Tehran, Iran’s capital (Arefinia et  al. 2020). Meeting Karaj River’s EWD is 
imperative to sustain tourism, and the economic and environmental sectors in its drainage 
basin.

3  Results and discussion

Three climatic scenarios for the average monthly surface air temperature (T) and rainfall 
(R) in the study area were projected with the CanESM2 GCM under the RCPs 2.6, 4.5, 
and 8.5, and those projections were downscaled with the SDSM for the period 2025–2035 
(120 months). The results for R and T are displayed in Figs. 2 and 3, respectively.

(9)R2 =

∑n

t=1

�
EWDsim − EWDsim

�2

×

�
EWDobs − EWDobs

�2

∑n

t=1

�
EWDsim − EWDsim

�2

×
∑n

t=1

�
EWDobs − EWDobs

�2

(10)NSE = 1 −

∑n

t=1

�
EWDobs − EWDsim

�2

∑n

t=1

�
EWDobs − EWDavg

�2

(11)RMSE =

�∑n

i=1
(EWDobs − EWDsim)

2

n
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It is seen in Fig. 2 that the average monthly T based on RCPs 2.6, 4.5, and 8.5 increases 
steadily; the results show that the rise in average monthly T based on the RCPs 8.5 is larger 
than the RCP 4.5’s, and the RCP4.5’s temperature rise is larger than the RCP 2.6’s. The 
maximum T rise based on the RCPs 2.6, 4.5, and 8.5 equal 1.60, 3.47, and 7.08 °C, respec-
tively. The largest T increase is for May, June, and July, and the lowest T increase is for 
October–November–December, which establishes that the climate change on temperature 
in the study area is more pronounced in the warmer months.

Figure 3 shows that the projected changes in monthly R in the study area do not follow 
a specific trend. The monthly R increases in some years and declines in others, whereas the 
results show that the extreme daily rainfall events increase.

The EWD was projected with GP, ANN, and SVR using monthly T and R data in the 
baseline period (1995–2005 The primary objective of this study is to estimate the environ-
mental water demand of the river in the coming years. Models trained on historical data 
are used to project potential scenarios for the future based on learned patterns. The results 
are presented in Figs. 4 and 5. The SVR model’s projections are closer to the observational 
values by (Figs. 4, 5c) than those of the GP model (Figs. 4, 5a), and ANN (Figs. 4, 5b), 
which establishes the better performance of SVR in estimating the EWD in the study area. 
A summary of the performance results for GP, ANN, and SVR based on the R2, RMSE, and 
NSE criteria is presented in Table 2.

The data show listed in Table  2 show the GP, ANN, and SVR models’ performance 
metrics (R2, RMSE, and NSE) during training and testing. The results validate the 
conclusion that SVR performs consistently better across a range of assessment criteria, 
showing improved accuracy when compared to GP and ANN.

The superiority of SVR over the other data mining models used in simulating the EWD 
in the baseline period was proved. SVR was applied next to project the EWD under climate 

Fig. 2  The anomaly of the average monthly surface air temperature (T) downscaled with the SDSM method 
in the period 2025–2035 under the RCPs 2.6, 4.5 and 8.5

Fig. 3  The anomaly of the average monthly rainfall (R) downscaled with the SDSM method in the period 
2025–2035 under RCPs 2.6, 4.5 and 8.5
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Fig. 4  Scaled EWD scatter diagrams for a GP, b ANN and c SVR

Fig. 5  Comparison of the scaled observed and projected EWD with a GP, b ANN, and c SVR in the period 
1995–2005

Table 2  Performance results 
for EWD prediction with data-
mining algorithms to the baseline 
period (1995–2005)

Model R2 RMSE  (m3/s) NSE

Testing Training Testing Training Testing Training

GP 0.74 0.83 0.19 0.14 0.62 0.66
ANN 0.86 0.89 0.09 0.08 0.90 0.93
SVR 0.91 0.94 0.08 0.07 0.91 0.95
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change conditions (RCPs 2.6, 4.5, and 8.5). The results are displayed in Fig. 6. It is seen 
in Fig. 6 that the projected change in the EWD with respect to the baseline period exhibits 
a steady upward trend that is most pronounced under the RCP 8.5. The RCP 8.5-based 
projections indicate the maximum and minimum changes in values of the EWD equal 126 
and − 10  m3/s, respectively. The maximum and minimum changes in values of the EWD 
according to the RCP4.5 equal 118 and − 34   m3/s, respectively. The projected maximum 
and minimum changes in the EWD associated with the RCP 2.6 equal respectively 63 and 
− 9  m3/s. By comparing the results depicted in Fig. 6 with those displayed in Fig. 2 and 3 
reveals patterns of statistical association between the EWD and the temperature and rain-
fall. Specifically, this work’s results show that, on average, under climate change conditions 
the correlation between the EWD index and variable temperature was 83%, while the said 
value for variable rainfall was estimated to be 76%.

4  Conclusion

This work estimated the Environmental water demand (EWD) changes in the Karaj River 
under climate-change conditions based on temperature and rainfall projections for the 
period 2025 through 2035 corresponding to the RCPs 2.6, 4.5, and 8.5.

GP, ANN, and SVR were implemented to predict the EWD in the study area, and their 
performances were compared based on the R2, RMSE, and NSE. It was concluded that SVR 
(R2 = 0.94, RMSE = 0.07(m3/s), and NSE = 0.95) performed better than GP and ANN.

SVR was applied to project the EWD under climate-change conditions. The results 
establish that the change in the EWD in 2025–2035 exhibits a projected steady 
upward trend that is more pronounced under the RCP 8.5. The SVR projections by 
2035 corresponding to the RCPs 2.6, 4.5, and 8.5 show changes equal to 63, 118, 
and 126   m3/s, respectively, in the riverine environmental water demand relative to 
the baseline period. Also, the results indicate a strong correlation (83%) between 
the Environmental Water Demand (EWD) index and temperature, emphasizing the 
significant impact of temperature on EWD. Additionally, the correlation between the 
EWD index and rainfall is estimated to be 76%, highlighting the influence of rainfall on 
environmental water demand. These findings underscore the sensitivity of EWD to both 
temperature and rainfall under climate change conditions.
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Fig. 6  Comparison of the EWD changes with respect to the baseline period projected with SVR in the 
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