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Abstract

Purpose—To improve the performance of less experienced clinicians in the diagnosis of benign 

and malignant spinal fracture on MRI, we applied the ResNet50 algorithm to develop a decision 

support system.

Methods—A total of 190 patients, 50 with malignant and 140 with benign fractures, were 

studied. The visual diagnosis was made by one senior MSK radiologist, one fourth-year resident, 

and one first-year resident. The MSK radiologist also gave the binary score for 15 qualitative 

imaging features. Deep learning was implemented using ResNet50, using one abnormal spinal 

segment selected from each patient as input. The T1W and T2W images of the lesion slice and its 

two neighboring slices were considered. The diagnostic performance was evaluated using tenfold 

cross-validation.

Results—The overall reading accuracy was 98, 96, and 66% for the senior MSK radiologist, 

fourth-year resident, and first-year resident, respectively. Of the 15 imaging features, 10 showed 

a significant difference between benign and malignant groups with p < = 0.001. The accuracy 

achieved by using the ResNet50 deep learning model for the identified abnormal vertebral segment 

✉Jeon-Hor Chen, jeonhc@hs.uci.edu.
Lee-Ren Yeh and Yang Zhang equally contributed to the article.

Conflict of interest There was no conflict of interest/competing interest about this work. No relevant financial activities outside the 
submitted work.

Code availability Custom code can be shared on reasonable request.

Ethics approval This study was approved by the Institutional Review Board.

Consent to participate The informed consent was waived due to the retrospective analysis nature of this study.

Consent for publication Not Applicable. No subject identifiable information is published.

HHS Public Access
Author manuscript
Eur Spine J. Author manuscript; available in PMC 2022 December 20.

Published in final edited form as:
Eur Spine J. 2022 August ; 31(8): 2022–2030. doi:10.1007/s00586-022-07121-1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was 92%. Compared to the first-year resident’s reading, the model improved the sensitivity from 

78 to 94% (p < 0.001) and the specificity from 61 to 91% (p < 0.001).

Conclusion—Our deep learning-based model may provide information to assist less experienced 

clinicians in the diagnosis of spinal fractures on MRI. Other findings away from the vertebral body 

need to be considered to improve the model, and further investigation is required to generalize our 

findings to real-world settings.

Keywords

Automated differential diagnosis; Benign spinal fractures; Less experienced radiologists; 
Malignant spinal fractures

Introduction

Imaging plays an important role in the evaluation of spinal diseases. Benign and malignant 

vertebral fractures may present similar features and challenging for diagnosis in some 

cases, especially for inexperienced trainees. Studies have shown that the misdiagnosis 

rate of vertebral fractures can be as high as 20% [1]. Appropriate differentiation and 

staging of benign osteoporotic, traumatic, and malignant fractures are essential for therapy 

planning, especially in the acute and subacute stages. However, benign vertebral lesions 

occur in approximately one-third of cancer patients [1], and fractures from minor trauma are 

commonly seen in the elderly, which can further complicate the evaluation and diagnosis of 

malignant lesions.

In clinical settings, images acquired using various modalities are evaluated by radiologists 

and other clinicians, and the diagnostic accuracy depends on their specialty and level of 

experience [2, 3]. For diagnosis of fractures, orthopedics are known to be more accurate 

than general physicians, and among orthopedics, the accuracy is also dependent on their 

specialty training [4]. In detecting spinal abnormalities, neuroradiologists are in general 

more experienced than body radiologists [5].

For diagnosis of spinal lesions, MRI is the most helpful imaging modality. When the 

vertebral fat-containing yellow bone marrow is edematous or replaced by enough cancer 

cells, signal intensity changes can be seen on T1-weighted (T1W), T2-weighted (T2W), and 

fat-suppressed images acquired using short tau inversion recovery (STIR) [6, 7]. However, 

even after combining information from images acquired using all the sequences, accurate 

diagnosis remains challenging in patients with ambiguous features [8].

Recently, artificial intelligence (AI)-based imaging analysis has emerged as a popular 

method due to its potential to provide a comprehensive evaluation of imaging features, 

which can be used to aid in diagnosis of many diseases. Machine learning methods have 

been developed to anatomically localize and categorize vertebral fractures on radiographs [4, 

9] and CT images [10]. The AI diagnostic tools can provide a decision support system, not 

only to improve diagnostic accuracy for less experienced radiologists, but also to improve 

workflow efficiency for all radiologists.
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The purpose of this study is to apply an automatic deep learning with Residual Network-50 

(ResNet50) algorithm [11] to distinguish between benign and malignant vertebral fractures 

on MRI. The results were compared to the diagnosis made by three radiologists with various 

level of training, including one experienced MSK attending and two residents, to investigate 

whether and how the AI model can assist less experienced radiologists. The MSK radiologist 

also assigned scores to a panel of imaging features, and these were used to characterize the 

wrong diagnoses made by trainees to investigate the features that may be emphasized in 

further training to improve their accuracy.

Materials and methods

Patients

The dataset was selected from the radiological reporting system in a period of 4 years, 

using the key words fracture, vertebral collapse, pathological, and metastasis. A total of 190 

patients were included (mean age 66.5, range 23–95 years old), 140 with benign fractures 

(mean age 68.8) and 50 with malignant fractures (mean age 61.7). Malignant cases had 

either biopsy-proven cancer or a known history of primary tumor with progressive disease. 

The most common primary cancer came from the lung, followed by colon/rectum, breast, 

and prostate. All benign cases had no known cancer history and had been followed and 

confirmed with stable disease. This retrospective study was approved by the Institutional 

Review Board with waiver of informed consent.

MRI protocols

All subjects received MR imaging of the spine on a 1.5 T scanner (GE Signa Excite, 

Milwaukee, Wisconsin, USA). Imaging sequences included axial and sagittal non-fat-sat 

spin-echo T1-weighted, axial and sagittal non-fat-sat fast spin-echo T2-weighted, and 

coronal fast spin-echo T2-weighted fat-sat sequences. The imaging parameters of the two 

sequences used for analysis were as follows: sagittal spin-echo T1-weighted sequence with 

TR = 400 ms, TE = 15 ms, matrix size = 320 × 192, field of view = 30 cm, and slice 

thickness = 4 mm; and sagittal fast spin-echo non-fat-sat T2-weighted sequence with TR = 

3200 ms, TE = 90 ms, matrix size = 448 × 224, field of view = 30 cm, and slice thickness = 

4 mm. These images were reconstructed into a matrix of 512 × 512.

Visual assessment of MR images and diagnostic reading

The analysis flowchart is shown in Fig. 1. The first part was the visual reading by 

three radiologists. An MSK radiologist (LRY, with 28 years of experience) performed 

reading and gave a binary score to each of 15 qualitative features, as listed in Table 1. 

Based on all features, the radiologist gave a final diagnostic impression of benign versus 

malignant fracture for each patient. To compare the diagnosis performed by less experienced 

radiologists, two residents, one in the fourth year of training (ACW) and the other in the first 

year of training (JYY), were given the dataset to evaluate. For each patient, they gave a final 

diagnostic impression of benign or malignant.
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Deep learning architecture

The second part of analysis in Fig. 1 was the AI analysis using deep learning, by using 

the most prominent abnormal vertebra in each patient as the input, marked by another 

experienced body radiologist (JHC). The abnormal region was first identified on sagittal 

T2W images. A square box containing the entire abnormal vertebra was generated and 

used as the input. The defined box was mapped onto T1W images using linear registration. 

The input of network included both T1W and T2W images of the identified slice with its 

two neighboring slices that also contained the lesion. Therefore, the total number of input 

channel was six. The bounding box was resized to 64 × 64 by linear interpolation. The 

intensities of each patch were normalized to a mean of zero and a standard deviation of one.

The ResNet50 architecture was applied to differentiate between benign and malignant 

groups, shown in Fig. 2. While convolutional neural networks (CNN) such as VGG or 

AlexNet learn features using large, convolutional network architectures [12], the ResNet can 

extract residual features, as subtraction of features learned from input of that layer, using 

“skip connections” [13]. The ResNet50 architecture contains one 3 × 3 convolutional layer, 

one max pooling layer, and 16 residual blocks. Each block contains one 1 × 1 convolutional 

layer, one 3 × 3 convolutional layer and one 1 × 1 convolutional layer. The residual 

connection is from the beginning to the end of the block. The output of the last block is 

connected to a fully connected layer with sigmoid function to provide the prediction. With 

ResNet, since it is pre-trained with photographs with RGB colors, only three sets of images 

can be used in input channel [13]. Thus, a convolutional layer with 1 × 1 filter was added to 

extract inter-channel features and transform from six channels to three channels.

Augmentation and training configurations

The following methods were used to compensate for the small case number and the 

imbalance between benign and malignant cases in the dataset. Each slice was used as an 

independent input. The benign dataset was augmented 20 times by using random affine 

transformations including translation, scaling, and rotation. To balance the fewer number of 

malignant cases, the malignant dataset was augmented 40 times. To control for overfitting, a 

L2 regularization term was added to the final loss function and, during the training process, 

early stop was applied based on the lowest validation loss to obtain the optimal model. The 

loss function was cross-entropy. The training was implemented using the Adam optimizer 

[14]. The learning rate was set to 0.0001 with momentum term β to 0.5 to stabilize training. 

Parameters were initialized using ImageNet [15]. The batch size was set to 32, and the 

number of epochs was set to 100.

Evaluation using cross-validation

The classification performance of ResNet50 was evaluated using tenfold cross-validation, 

and each case had only one chance to be included in the validation group. The prediction 

results based on 2D slices meant that each slice had its own diagnostic probability. For the 

per-patient diagnosis, the highest probability of malignancy among all slices of each patient 

was assigned to that patient. The malignancy probability obtained for each case was used to 

make the final diagnosis using the threshold of 0.5.
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Statistical analysis

The diagnostic results of three radiologists and ResNet analysis were compared to the 

ground truth to determine true positive (TP), true negative (TN), false negative (FN), and 

false positive (FP) cases, and from these, the sensitivity, specificity, and overall accuracy 

were calculated. The diagnostic sensitivity and specificity between two readers or between 

each reader and the AI model were compared by the McNemar test. The 15 binary scores 

read by the senior MSK radiologist were analyzed by Fisher’s exact test to examine the 

significance of the association (contingency) between benign and malignant groups with 

confidence interval of 0.95. Then, the scores were combined to develop a classification 

model using logistic regression, and the model accuracy was evaluated.

Results

Diagnostic performance based on radiologist’s reading

The scores of 15 imaging features are shown in Table 1. Of these, 10 features showed 

significant differences between the two groups with p < = 0.001. The diagnostic results of 

three radiologists are listed in Table 2. The senior MSK radiologist’s accuracy was 0.98. The 

fourth-year resident also had very high accuracy of 0.96, and not surprisingly, the first-year 

resident performed poorly with accuracy of 0.66.

Analysis of MSK radiologist’s reading features

When individual scores of 15 features were used to build a logistic regression model, the 

diagnostic accuracy was 0.94. Intravertebral mass-like or nodular lesion, epidural/paraspinal 

soft tissue mass, and pedicle and posterior element involvement were rarely seen in 

benign cases, and thus, strongly indicated malignancy. Diffuse signal changes occurred 

more frequently in the malignant (44/50, 88%) than in the benign group (31/140, 22%). 

Homogeneous marrow signal (no marrow edema or infiltration) and intravertebral dark 

lines or bands (representing impaction of bone trabeculae) were present only in benign 

fractures and, thus, specific benign features. Those cases without marrow signal change 

were considered to be old or chronically healed fractures with resolution of marrow edema. 

Irregular dark patches in the vertebrae, on the other hand, were found in both groups 

with similar incidence (10% vs. 10%) and may represent osteoblastic change, chronic 

hemorrhage, fibrotic component in tumor, or sclerosis, fibrosis, cement (for vertebroplasty) 

in benign fracture.

ResNet50 diagnostic performance

When deep learning using ResNet50 was applied, the accuracy was 0.92 for per-patient 

diagnosis. There were 3 false negative diagnoses and 12 false positive cases, with sensitivity 

of 47/50 = 94% and specificity of 128/140 = 91%. Figure 3 shows two malignant cases 

correctly diagnosed as true positives. Figure 4 shows two benign cases correctly diagnosed 

as true negatives. Figure 5 shows two malignant cases misdiagnosed as benign, and Fig. 

6 shows two benign cases misdiagnosed as malignant. These misdiagnosed cases by deep 

learning were all correctly diagnosed by the senior MSK radiologist, and the important 

features are described in the figure legends. The diagnostic sensitivity and specificity of the 
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ResNet model and the three readers are listed in Table 2, and the difference was compared 

using the McNemar test. The sensitivity of the MSK attending, R4, R1 resident, and ResNet 

model was 94, 94, 78, and 94%, respectively. The sensitivity of R1 was significantly worse 

compared to the others (p < 0.001). The specificity of the MSK attending, R4, R1 resident, 

and ResNet model was 99, 96, 61, and 910%, respectively. The performance of R1 was 

significantly worse compared to the others (p < 0.001), and also, the specificity of the 

ResNet model was worse compared to the MSK attending and the R4 resident (p < 0.001).

Error analysis in R1 resident’s diagnosis

In order to investigate the features in cases that the R1 resident gave wrong diagnosis, 

the feature scores determined by the senior MSK radiologist was used as references 

for comparison. In benign cases, the R1 reader had a high 54/140 (39%) false positive 

rate. The features were compared to those of 86 true negative (61%) cases. Of them, 3 

features showed significant differences. The false positive cases were less likely to present 

“Homogeneous marrow signal” 6/54 (11%) vs. 42/86 (49%), p < 0.01 and more likely to 

present “Diffuse signal change of vertebral body > 3/4” 20/54 (37%) vs. 11/86 (13%), p 
< 0.01. In Table 1, “Homogeneous marrow signal” was found in 0% malignant lesion, and 

“Diffuse signal change of vertebral body > 3/4” was found in 88% malignant cases. For 

benign cases showing heterogeneous marrow or diffuse signal change, they were likely to be 

misinterpreted by R1 as false positive diagnosis, as shown in Fig. 7. Another feature likely to 

lead to false positive was “Band pattern bone marrow edema,” 24/54 (44%) in FP vs. 20/86 

(23%) in TN, p = 0.01.

Discussion

This study investigated the potential of deep learning to diagnose benign and malignant 

vertebral fractures based on T1W and T2W MRI, and compared the performance to the 

reading of three radiologists with different levels of experience. The motivation was to 

investigate whether an AI tool can assist less experienced radiologists to diagnose spinal 

fractures. The results showed that deep learning using ResNet50 achieved a satisfactory 

diagnostic accuracy of 92%. Although it was inferior to 98% made by a senior MSK 

radiologist and 96% made by an R4 resident, much higher compared to 66% made by an R1 

resident. Compared to R1’s reading, the AI model improved the sensitivity from 78 to 94% 

(p < 0.001) and the specificity from 61 to 91% (p < 0.001).

MRI features that help differentiate between benign and malignant vertebral fractures 

have been well studied [6, 7, 16]. Table 1 shows the evaluation of 15 features, several 

of which had good diagnostic implications. Detection of an epidural or paraspinal soft 

tissue mass, pedicle and posterior element involvement, intravertebral mass-like or nodular 

lesion, and coexisting skipped nodular bone marrow replacement in other vertebrae were 

found to be specific features of malignancy, while band pattern bone marrow lesions and 

intravertebral dark lines or bands suggested benign fractures [6, 16]. The trabeculae of 

malignant fractures were destroyed before the vertebra collapse and, theoretically, lost 

the chance for formation of an impacted trabecular band. Diffuse marrow replacement, 

anteroposterior protrusion of the vertebral body [6], and non-wedged collapse (central 
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concave deformity and compression of entire body) were features shared by both benign 

and malignant fractures. Fracture or collapse in other levels was not a specific sign since 

both osteoporotic fracture and malignant fracture could exist in the same patient, especially 

in the elderly. When the fractured vertebra showed equivocal features or both features of 

benign and malignant collapse, the diagnosis might be difficult and challenging, especially 

for less experienced radiologists.

The inferior performance of ResNet50 compared to experienced readers might be partly 

explained by the limited input information, since only a small bounding box covering the 

abnormal vertebral body was considered as the input. On the other hand, the radiologist 

could assess all information on the entire image, which included the epidural/paraspinal soft 

tissue mass, pedicle and posterior element involvement, and bone marrow replacement in 

other vertebrae that were considered as specific features related to malignancy. The 92% 

accuracy of the ResNet model was much better compared to that of the inexperienced R1 

resident and may have a clinical value when there is a shortage of well-trained medical 

staff. Furthermore, there is room for further improvement to develop a more accurate AI 

model, e.g., by considering more inputs from adjacent tissues, more imaging sequences, 

more imaging planes, etc. As revealed by the experienced MSK radiologist, other features 

away from the vertebral body may provide very useful diagnostic information, and these 

need to be considered in future model development to improve the performance.

The development of AI-based methods, especially using fully automatic deep learning, has 

potential to assist radiologists in making accurate diagnoses with more confidence and 

also to be integrated into the clinical workflow and improve efficiency [17]. In this study, 

ResNet50 was used as the architecture of the convolutional neural network, and it was 

typically done using all 2D slices as individual inputs. The L2 norm regularization, dropout 

and data augmentation, were applied to control overfitting. In per-slice analysis using tenfold 

cross-validation, the AUC’s were > 0.90 in all runs, suggesting that the trained model was 

robust and not over-fitted.

Lee et al. gave a general overview for the application of deep learning in medical imaging 

[18]. Several studies have applied this method for diagnosis of bone fractures on plain 

radiography [4, 19–21] as summarized in a recent review paper by Yang et al. [19]. 

Chung et al. [4] used a pre-trained ResNet152 to classify proximal humerus fractures using 

plain anteroposterior shoulder radiographs. Olczak et al. [20] analyzed wrist, hand and 

ankle radiographs using five different neural networks to detect body parts and fractures. 

Kitamura et al. [21] used another three different network architectures, including Inception 

V3, ResNet, and Xception, to differentiate abnormal from normal radiographs and reached 

the highest accuracy of 0.8. In addition, deep learning has also been applied to CT and MR 

images [10, 22–25]. Raghavendra et al. [22] applied deep learning to distinguish normal 

from thoracolumbar spine injuries. Tomita et al. [23] implemented a sophisticated CNN 

algorithm using pre-trained ResNet34 Network and Long Short-Term Memory (LSTM) 

to classify the osteoporotic vertebral fractures and normal subjects using CT scans and 

achieved 89.2% accuracy. Pedoia et al. [24] employed deep learning using DenseNet for 

the prediction of osteoarthritis on MRI. Bien et al. [25] developed a model using MRNet 

for diagnosis of abnormalities, anterior cruciate ligament (ACL) tears, and meniscal tears 
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on knee MRI. All these studies were designed for diagnosis of abnormalities. In the present 

study, we attempted to differentiate benign from malignant fractures using deep learning, 

which was much more challenging and has to our knowledge not yet been reported in 

literature, and thus, there are no results to compare with.

We compared reading made by 3 radiologists. Training new radiologists to interpret 

vertebral fracture is an effort that requires significant time and resources. Among the 

multiple barriers is the difficulty of recognizing, weighing, and synthesizing of features 

that favor malignant versus benign conditions. Frequently the signs of malignant and benign 

lesions coexist in the same patient or even in the same vertebra, and radiologists must 

therefore establish their own “weighting” system to determine the overall probability and 

establish a final diagnosis. This is a process with a steep and long learning curve that 

beginning radiologists usually become frustrated with.

There were a total of 140 benign cases, and the R1 resident only correctly diagnosed 

86 of them (61%). In the four years residency program, usually the first-year residents 

have not had experience in interpretation of MR MSK images and that could explain 

the low accuracy. When examining the 54 wrong vs. 86 correct cases, it was found that 

FP cases were less likely to present “Homogeneous marrow signal” and more likely to 

present “Diffuse signal change of vertebral body > 3/4.” Homogeneous marrow signal is 

one of the reliable imaging features for the diagnosis of benign vertebral fracture. The less 

frequent appearance of this feature might mislead the R1 to falsely diagnose the case as 

malignancy. On the contrary, diffuse signal intensity changes of the vertebral body occurred 

more frequently in the malignant group (Table 1). The R1 might use this finding as the 

dominant imaging feature and gave wrong diagnosis. For the R4 resident, since he has 

completed one or two rotations at the MSK section and had enough knowledge in MR 

physics and signal intensity presentations, his diagnostic accuracy was much higher at 96%.

This study has several limitations. First, it is a pilot study to demonstrate feasibility, and 

the case number was relatively small. Second, only patients with metastatic cancer were 

included in the malignant group. Third, in the AI analysis, only one vertebral body segment 

in a patient was selected for analysis. In the future, a localization strategy including vertebra 

alignment segmentation and abnormality search can be integrated into the AI analysis. 

For automatic spinal segmentation, several studies have implemented CNN strategies and 

obtained satisfactory performance [26–29]. These methods may be implemented to first 

segment each vertebral body, and then, the imaging features inside and away from the 

vertebral body can be all integrated in an AI model to give a malignancy or abnormality 

probability. Lastly, we did not provide the model prediction results to the R1 resident, as 

done in Bien et al. [25], to investigate how the AI tool can be used as a decision support 

system to improve the diagnostic performance of human readers. When more cases are 

available, this can be tested in general physicians, radiologists, and orthopedic surgeons with 

different levels of training to investigate its clinical utility in real-world settings.
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Conclusion

This study investigated the application of deep learning for the differential diagnosis of 

benign and malignant vertebral fracture on MRI. These results suggest that ResNet50 

provides a feasible method to use T1-weighted and T2-weighted images on MRI to establish 

a diagnosis. The per-patient diagnostic accuracy was 92%, which was inferior to reading 

of radiologists who had sufficient training, but much higher than that of an inexperienced 

radiologist. The results suggest that the developed ResNet50 model may be used as an 

assisting decision support system in facilities lack of well-trained medical staff. With further 

technical improvement of the model, and specific refinement of the model in each clinical 

setting, this AI-based method has the potential to serve as a clinical tool to help less 

experienced readers and to improve workflow.
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Fig. 1. 
The overall analysis flowchart. The cases include 50 malignant and 140 benign patients, 

each with T1W and T2W MR images. The visual reading is performed by 3 radiologists, 

to give a diagnostic impression of malignant or benign for each case. The deep learning 

analysis is performed using the ResNet50 architecture, evaluated by tenfold cross-validation. 

The results are compared
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Fig. 2. 
Architecture of ResNet50, containing 16 residual blocks. Each residual block begins with 

one 1 × 1 convolutional layer, followed by one 3 × 3 convolutional layer and ends with 

another 1 × 1 convolutional layer. The output is then added to the input via a residual 

connection. The total input number is 6: T1W and T2W of the slice with its two neighboring 

slices, so one convolutional layer with 1 × 1 filter is added before ResNet to extract 

inter-channel features and transform from 6 to 3 channels as input
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Fig. 3. 
Two true positive malignant cases. The image at left panel shows diffuse tumor infiltration 

at the 7th cervical (C7) vertebral body with posterior cortical destruction and no apparent 

collapse. The image at right panel shows diffuse tumor infiltration at third thoracic (T3) 

vertebra with anterior wedge deformity. The fatty change of other cervical vertebrae in the 

left panel and T2/T4 vertebrae in right panel is post-radiation effect
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Fig. 4. 
Two true negative benign cases. The left case is a chronic benign osteoporotic fracture with 

resolution of bone marrow edema. Although with severe collapse, the height of posterior 

vertebral body is still preserved. The right case is a chronic osteoporotic fracture with prior 

vertebroplasty. The irregular dark patch in the vertebra represents the cement material of 

vertebroplasty. Both cases show fractures in several other vertebrae
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Fig. 5. 
Two false negative cases, malignant fracture misdiagnosed as benign. The image at left panel 

shows diffuse signal change and paravertebral soft tissue mass at L2 vertebra. The coexisted 

metastatic mass at L3 and S2 vertebrae are also noted. The right case shows diffuse tumor 

infiltration, necrotic cleft, central concave collapse, and paravertebral soft tissue mass
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Fig. 6. 
Two false positive cases, benign fracture misdiagnosed as malignant. The left case is a recent 

benign fracture with typical band pattern marrow edema. The right case is a benign fracture 

post cement vertebroplasty
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Fig. 7. 
Example of two false positive cases diagnosed by the first-year inexperienced resident. Left 

case: The presence of heterogeneous marrow signal is falsely diagnosed as malignancy. 

Right case: The presence of diffuse signal intensity change (marrow edema or replacement) 

of vertebral body > 3/4 is wrongly diagnosed as malignancy
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