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Abstract 

The value associated with reward is sensitive to external factors, such as the

time between the choice and reward delivery as classically manipulated in

temporal discounting tasks. Subjective preference for two reward options is

dependent on objective variables of  reward magnitude and reward delay.

Single  neuron  correlates  of  reward  value  have  been  observed in  regions

including ventral  striatum, orbital,  and medial  prefrontal  cortex and brain

imaging  studies  show  cortico-striatal-limbic  network  activity  related  to

subjective  preferences.  To  explore  how  oscillatory  dynamics  represent

reward processing across brain regions, we measured local field potentials of

rats performing a temporal discounting task. Our goal was to use a data-

driven approach to identify  an electrophysiological  marker that correlates

with  reward preference.  We found that  reward-locked oscillations  at  beta

frequencies  signaled  the  magnitude  of  reward  and  decayed  with  longer

temporal  delays.  Electrodes  in  orbitofrontal/  medial  prefrontal  cortex,

anterior insula, ventral striatum, and amygdala individually increased power

and were functionally connected at beta frequencies during reward outcome.

Beta  power  during  reward  outcome  correlated  with  subjective  value  as

defined by a computational model fit to the discounting behavior. This data

suggests that cortico-striatal beta oscillations are a reward signal correlated

that  may  represent  subjective  value  and  hold  potential  to  serve  as  a

biomarker and potential therapeutic target. 
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Introduction 

Reward  processing  comprises  the  set  of  neural  systems  that  encode

appetitive, motivational, or pleasurable stimuli (Dalley et al. 2004; Berridge

and Kringelbach 2008). Information about reward outcomes is used to inform

future decisions and deficits in reward processes are linked with learning and

decision-making  impairments  and  likely  contribute  to  anhedonia,

amotivation, and substance abuse problems observed in various psychiatric

conditions  (Dalley  et  al.  2004;  Pujara  and  Koenigs  2014). The  value

associated with a positive outcome is sensitive to external factors, such as

the  time  between  the  choice  and  reward  delivery.  This  concept  can  be

evaluated  in  humans  and  animals  using  temporal  discounting  tasks  to

measure preference for a small  reward delivered immediately, or a larger

reward  delivered  after  a  delay  (Le  Van  Quyen  et  al.  2001).  Reward  is

devalued by  increasing temporal  delays,  but  the rate at  which  reward is

devalued may be different for everyone (Winstanley et al. 2004b; Kable and

Glimcher 2007; Kobayashi and Schultz 2008; Roesch et al. 2011; Lefner et al.

2021; Story et al., 2016). Current clinical diagnostics and treatments are not

well  suited  for  these  individual  differences  in  symptoms  and  pathology.

Discovering  a  reliable  bio-marker  that  signals  reward  processing  deficits

would provide information about specific brain regions,  or brain states to

target during treatment (Farzan, 2023). 
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In rodents, the medial prefrontal cortex exerts top-down control over reward-

related  areas  like  orbitofrontal  cortex,  ventral  striatum,  and  basolateral

amygdala  through  cortico-striatal-limbic  projections  (Groenewegen  et  al.

1997; Schultz et al. 2000; Dalley et al. 2004; Bayer and Glimcher 2005; Abler

et al. 2006; Berridge and Kringelbach 2008; Schoenbaum et al. 2009; Haber

and Knutson 2010; Salehinejad et al. 2021). This extended “reward” network

is  innervated by midbrain  dopamine neurons originating  from the ventral

tegmental  area,  which contribute to reward processing behaviors  through

reward-prediction error signals (the difference between expected and actual

rewards)  (Bayer & Glimcher, 2005; Berridge & Robinson, 1998; Francois et

al., 2014; Haber & Knutson, 2010; Humphries & Prescott, 2009; Kobayashi &

Schultz, 2008; Snyder et al., 2020). Several lines of research suggest that

cortico-striatal  circuitry  is  important  for  reward  processing  and  activated

during  temporal  discounting.  Single  neurons  in  prefrontal/  orbitofrontal

cortex and ventral striatum modulate activity during reward anticipation and

delivery (Atallah et al., 2014; Constantinople et al., 2019; Francoeur & Mair,

2018,  2019;  Goldstein  et  al.,  2012;  Levcik  et  al.,  2017;  van der  Meer  &

Redish, 2009; van Duuren et al., 2009), and can be modulated by different

types (Carelli et al., 2000; Schultz et al., 2000), magnitudes (Goldstein et al.,

2012;  Roesch et al.,  2011;  Schultz  et  al.,  2000;  Simon et al.,  2015),  and

locations  of  reward  (van der  Meer and Redish  2009;  Francoeur  and Mair

2018).  Neurons from any brain region can encode a diverse array of task-

related processes and,  alone,  may not  accurately  reflect  the larger  scale
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network-wide activity that occurs during reward processing (Cui et al., 2016;

Francoeur  &  Mair,  2018;  MacDowell  &  Buschman,  2020;  Williams  et  al.,

2018).  In humans, activity in the cortico-striatal network (LOFC and ventral

striatum)  is  involved  in  reward  processing (Ballard  &  Knutson,  2009;

Boettiger et al., 2007). Specifically, during temporal discounting, oscillatory

activity at theta and beta frequencies is associated with a preference for

larger, delayed rewards (Pornpattananangkul & Nusslock, 2016). Changes in

oscillatory activity at distinct frequencies can indicate behavioral and disease

states, and predict an individual’s response to treatment (Buzsáki & Watson,

2012; Masimore et al.,  2004).  Growing evidence supports a role for theta

oscillations  in  cognitive-control  processes  and  beta  for  reward  feedback

(Cohen et  al.  2007;  Marco-Pallares  et  al.  2008;  HajiHosseini  and Holroyd

2015;  Marco-Pallarés  et  al.  2015;  Zavala  et  al.  2018;  Patai  et  al.  2022;

Pornpattananangkul  &  Nusslock,  2016),  both  necessary  for  successful

performance on a temporal discounting task.  

Local  field  potentials  (LFP)  offer  an  opportunity  to  bridge  micro-  and

macroscopic  levels  of  brain  activity  across  the  reward  network  and  may

provide  a  more  robust,  stable,  and  simpler  framework  to  identify  neuro-

behavioral  relationships  that  can be compared with  human neuroimaging

and electrophysiological investigations (Williams et al. 2018; MacDowell and

Buschman 2020; Abbaspourazad et al. 2021; Cacioppo et al., 2008). Finding

a physiological  biomarker linked with reward processing can help uncover
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the  basic  mechanisms  of  value-based  decision-making  and  may  offer  a

potential therapeutic target for disorders where decision-making is impaired.

We have previously used multi-site LFP recordings to characterize networks

operating at distinct oscillatory frequencies to support behavioral inhibition

and default-mode-like processing  (Fakhraei,  al.  2021a;b). Here we utilized

our multi-site LFP approach to identify electrophysiology markers linked with

delay discounting behavior  during reward outcome.  We chose the reward

outcome period (and not trial onset, response, or delay period) to specifically

examine reward valuation processes opposed to choice, anticipation, or time

estimation signals (Kable & Glimcher, 2009). In temporal discounting, value

is  subjectively  attributed  to  an outcome based on objective  measures  of

reward  magnitude  and  temporal  delay  (Kable  &  Glimcher,  2007).  Beta

activity  in  cortico-striatal-limbic  electrodes  sites  was  sensitive  to  reward

magnitude  and  temporal  delay  and  correlated  with  subjective  value  as

defined by a computational model. Lastly, we provide preliminary evidence

that  modulating beta activity  with “on-demand” electrical  stimulation can

influence choice behavior. Our evidence suggests that beta oscillations may

be a translationally relevant signal of reward value that can help identifying

individual  differences  in  reward  processing  and  offer  a  new  therapeutic

target   (Berridge  &  Kringelbach,  2008;  Bilderbeck  et  al.,  2020;  Pujara  &

Koenigs, 2014; Whitton et al., 2015). 

Material and Methods
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Ethics Statement

This research was conducted in strict accordance with the Guide for the Care

and  Use  of  Laboratory  Animals  of  the  National  Institutes  of  Health.  The

protocol  was  approved  by  the  San  Diego  VA  Medical  Center  Institutional

Animal Care and Use Committee (IACUC, Protocol Number A17-014).  

Experimental Design

Subjects:  18 Long-Evans rats (15 male; 3 female) obtained from Charles

River  Laboratories  were used for  these experiments.  When received,  rats

were  ~  one  month  old  weighing  150g.  Habituation  and  pre-training  was

initiated two weeks after arrival. Rats were housed in pairs prior to electrode

implantation, and individually housed thereafter, in a standard rat cage (10 x

10.75  x  19.5  in,  Allentown,  NJ,  USA)  with  free  access  to  food  and  on  a

standard light  cycle  (lights  on at 6 am /  off at 6 pm).  During behavioral

training, animals underwent water scheduling (free access to water for two

hours/day) to maintain motivation for water reward in the tasks. Water was

unrestricted on non-training days and rats were weighed weekly to ensure

that  water  scheduling did  not  lead to reduced food intake.  Subjects  with

chronic implants were monitored daily for signs of infections, injuries, and

bleeding. 

Operant  Chamber  and Training:  We used  a  custom-designed  operant

chamber equipped with five nose-ports (NP), each with an LED, IR sensor and
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metal cannula for water delivery. The chamber also contained two auditory

tone generators, a house-light,  a screen to display visual stimuli,  and five

peristaltic stepper motors/water pumps that delivered the water rewards into

NPs. The chamber was 16 x 12 x 16 (Lx W x H) inches with a ceiling opening

that allowed electrophysiology tethers to move freely. Simulink (Mathworks)

installed  directly  onto  a  Raspberry  Pi  system  controlled  the  behavioral

programs. Behavioral outputs from the operant chambers were synchronized

with  electrophysiological  signals  using  lab-streaming-layer,  a  protocol

designed to integrate multiple behavioral and physiological streams into a

common timing stream (Buscher et al., 2020; Ojeda et al., 2014). The design,

operation  and  software  control  of  this  chamber  has  been  described

previously  (Buscher et al., 2020). Animals first went through a pre-training

period  (5-10  sessions),  to  learn  that  a  NP with  an LED “on”  signaled an

available response port; that responding in an available NP would trigger a

water  reward;  and finally  that  there was a  sequential  nature  to  the task

(animals start a “trial” by first entering the middle NP (3), after which they

could use either of the neighboring ports (2 or 4) to respond and collect an

immediate reward).  Animals advanced to the next stage of  training when

they consistently performed ≥100 trials in a 60 min session.

Temporal Discounting Task: Generally, temporal discounting tasks center

around choosing between a low-value reward delivered immediately,  or a

high-value reward delivered after a delay. In our version of the task, subjects
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chose  between  a  small  (1x)  reward  delivered  after  a  fixed  short  delay

(500ms after response) or a large (3x) reward delivered after a fixed delay

that varied from session to session. Each session began with 6 forced-choice

trials, orienting the rat to both the low-value (NP 2) and high-value (NP 4)

options. During these forced choice trials, the houselight was on and LED

lights  signaled the available  response port,  alternating between response

port  2 (low-value) and 4 (high-value).  A reward was delivered after  each

response with a fixed delay of 500ms. Rewards were always delivered from

NP 3 and consisted of either 10ul of water (delivered at the rate of 10ul/sec)

following the low-value response selection or 30ul of water (delivered at the

rate  of  30ul/sec)  following  the  high  value  selection.  The  forced  choices

helped remind animals each day of small and large reward magnitudes that

would be delivered following a selection of NP 2 v. NP 4. After the 6 trials

were complete, the houselights dimmed and rats began the full, self-paced,

trial sequence. Each trial began with LEDS from response ports (NP 2 and 4)

on.  Response  in  the  low-value  response  port  (NP  2)  turned  on  the

houselights, the middle NP LED (3), and a tone (500ms duration) to indicate

a choice was made. A small reward (10µL delivered over a 1s duration) was

delivered 500ms after the response (immediately after the tone ended) from

NP  3.  Selecting  the  high-value  response  port  (NP  4)  turned  on  the

houselights, the middle NP LED (3), and a tone (500ms duration). The tone

and  NP  LED  occur  500ms  before  reward  delivery.  The  motor  makes  an

audible sound during water delivery and is the only cue paired with reward,
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and  that  signals  the  duration  of  reward  (1s  v.  3s).  Each  session  had  a

different delay following the high-value selection, and that delay was held

constant for the entire session. Possible delays the animal could experience

following selection of  the high-value port  included:  (0.5s,  1s,  2s,  5s,  10s,

20s). Following the delay selected for that session, a large reward (30µL over

a 3s  duration)  was delivered from NP 3.  The high-value delay alternated

between behavioral sessions but remained the same throughout the entire

(60 min) session. The houselights turned off when water was delivered out of

NP3 and a 5s inter-trial interval began after water delivery. 

Training was performed prior to testing on this task. First, for 3 days animals

were  acclimatized  to  the  operant  chamber  and  trained  to  associate

responses in any of the 5 NPs with rewards (at this stage all responses led to

the  same  20ul  reward).  In  the  next  phase  rats  learned  to  discriminate

choices based on reward magnitude. The task structure described above was

used, but an identical delay post response (500ms) was used for both the

high (NP4) and low-value (NP2) responses. Once animals expressed a clear

preference (≥70%) for the large reward and consistently performed ≥100

trials, they were advanced to train on the other delay conditions. Animals

that did not show a clear preference for the large reward after 15 training

sessions (3 weeks) were excluded from the study. Animals who advanced

through  training  then  underwent  surgical  implantation  of  electrodes  as

described below, followed by data collection on the task. Training on average
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lasted 18 sessions across 5 weeks. After surgical electrode implantation we

waited  two  weeks  to  allow  animals  to  recover  from  surgery  before

electrophysiology recording began.

Electrophysiology  Recording:  12  male  Long-Evans  rats  were  used  to

collect  large-scale  local  field  potential  (LFP)  data  during  the  temporal

discounting task. LFP data was recorded using a 32-channel RHD headstage

(Intan Technologies, CA, USA; Part C3324) coupled to a RHD USB interface

board (Intantech, Part C3100) and SPI interface cable. We used plug-in GUI

(Open Ephys) software for acquisition.  Data was recorded at 1Khz, with a

band-pass filter set at 0.3 to 999 Hz during acquisition. Physiology data was

integrated with behavioral  data using a lab-streaming-layer (LSL) protocol

(Ojeda  et  al.,  2014),  as  described  previously  (Buscher  et  al.,  2020).  Our

analyses focused on 12 electrodes (Table 1). Recording sessions lasted 60

minutes and occurred 3-4 days a week. Analyses are based on data from 148

behavioral sessions (124 with electrophysiology) across 12 rats. There was

an average of  two sessions /delay/  subject  (n=23 sessions at 0.5s;  n=26

sessions at 1s; n=17 sessions at 2s; n=28 sessions at 5s; n=33 sessions at

10s; n=21 sessions at 20s). Rats were 8 months old at the end of recording.

Electrical Stimulation: In 6 rats (3 male; 3 female) we tested “on-demand”

electrical stimulation applied based on the rodent’s choice behavior on the

temporal  discounting  task  (30  minute  sessions).  We  applied  electrical

stimulation during the reward outcome period of large reward choices (3s).
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Beta  frequency  stimulation  (20Hz)  was  applied  to  one  of  the  12  cortico-

striatal  electrode  sites  chosen based on electrode impedance (target  30-

90kOhm). Stimulation was applied with the Tucker-Davis Technologies (TDT,

FL,  USA)  IZ2H  system.   The  32-CH  omnetics  EIB  board  (described  in

methods) was fitted with an adapter (ZCA-OMN32)  to connect a 16-Ch ZIF-

clip.  The  ZIF-  clip  connected  to  the  stimulator  through  a  motorized

commutator  (AC032,  TDT)  with  an  SPI  interface  cable.  Synapse  (TDT)

software controlled the stimulation parameters and integrated stimulation

with behavioral markers through Simulink (MATLAB). Stimulation started with

reward onset and lasted for the duration of reward (3s) and consisted of a

biphasic 20Hz pulse with 40ms duration between each bipolar pulse. Current

changed based on impedance for  each individual  rat  (35-80µA).  Likewise,

target electrode changed based on sites available within target impedance

range (see Table S3 for individual parameters). Rats had undergone training

on delay discounting for another study (data not reported here) and were

approximately 9 months old at the start of the stimulation study. 

The task was modified to include one, fixed large reward delay to ensure the

rat  completed  enough  trials  to  see  a  statistically  significant  effect  of

stimulation. The temporal delay chosen for stimulation was adjusted for each

subject to ensure that,  without  stimulation,  selection of  high-value choice

occurred on average at least 30% of the time (and no more than 70%) to

have some degree of stimulation built into the paradigm (i.e., 1s and 20s
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delays create ceiling effects where rats are making too few small or large

choices). The temporal delay for the high-value reward was thus different for

each  subject  (2s,  5s,  or  10s)  but  remained  consistent  throughout  all

stimulation sessions for each animal.  The delay for the small  reward was

fixed at 0.5s. Animals included for stimulation were well-trained (3 months)

on the temporal discounting task and had experienced at least 2 sessions at

each  delay  condition  prior  to  beginning  this  experiment.  During  this

experiment,  each  subject  had  3  consecutive  baseline  sessions  (no

stimulation),  3  stimulation  sessions,  and  3  recovery  sessions  (no

stimulation).

Surgery

Aseptic surgeries were performed under isoflurane anesthesia (SomnoSuite,

Kent  Scientific,  CT,  USA)  with  all  instruments  autoclaved  prior  to  start.

Animals  received  a  single  dose  of  Atropine  (0.05  mg/kg)  to  diminish

respiratory secretions during surgery, a single dose of Dexamethasone (0.5

mg/kg)  to  decrease  inflammation,  and  0.5-1mL  of  0.9%  sodium  chloride

solution prior to surgery. The area of incision was cleaned with 70% ethanol

and iodine solution. A local anesthetic, Lidocaine (max .2cc), was injected

under the skin at the incision site while the animal was anesthetized but

before surgery initiation. 
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The  fabrication  and  implantation  procedures  of  our  custom  fixed  field

potential  and single-unit  probes are described in  detail  (Francoeur  et  al.,

2021). Briefly, our LFP probe targets 32 different brain areas simultaneously.

50µm tungsten wire (California Fine Wire, CA, USA) used for our electrodes

was  housed  in  30-gauge  stainless  steel  metal  cannula  (Mcmaster-Carr,

Elmhurst,  IL,  USA)  cut  8-9mm  long.  Each  cannula  (N=8)  contained  four

electrode  wires  cut  to  their  unique  D/V  length (Fig.  S1).  The  average

impedance  of  our  blunt-cut  tungsten  microwires  is  50  kOhms  at  1  kHz.

During surgery, 8 holes were drilled in the skull (one for each cannula) at

predetermined  stereotactic  locations.  Additional  holes  were  drilled  for  a

ground wire and anchor screws (3-8). The ground wire was soldered to an

anchor  screw  and  inserted  above  cerebellum.  Electrodes  were  slowly

lowered  to  desired  depth,  pinned  to  the  EIB  board,  and  secured  with

superglue followed by Metabond (Parkell,  NY, USA). The entire head stage

apparatus was held to the skull and encased with dental cement (Stoelting,

IL, USA). 

At the conclusion of  surgery,  the skin was sutured closed, and rats  were

given a single dose (1mg/kg)  of  buprenorphine SR for  pain management.

Rats recovered from surgery on a heating pad to control body temperature

and  received  sulfamethoxazole  and  trimethoprim  in  their  drinking  water

(60mg/kg per day for 8 days) to prevent infections. 
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Rats in the stimulation experiment underwent identical surgical procedures.

At the end of their LFP recording experiment (data not included here), they

were put under isoflurane anesthesia for  ~5 minutes to add the external

adapter  (ZCA-OMN32)  to  connect  a  16-Ch  ZIF-clip.  Dental  cement  was

carefully  placed  to  secure  the  connection  between  the  adapter  and  EIB

board. Rats were observed until they were ambulatory and eating/ drinking. 

Statistical Analysis

LFP Time Frequency Analysis: We carried out  standard pre-processing

and time frequency (TF) analyses using custom MATLAB scripts and functions

from EEGLAB  (Fakhraei, et al.,  2021 a; b; Francoeur et al. 2021). 1)  Data

epoching:  We first extracted time-points for events of interest. This paper

focused  on neural  activity  time-locked  to  reward (opposed  to  trial  onset,

choice,  or delay period). Due to the number of comparisons (frequencies,

electrodes) we had to focus on one specific time period.  Our motivation was

to  examine  neural  signals  during  reward  outcome  as  is  common  in

neurophysiological  studies  of  reward  processing  during  probabilistic  or

delayed reward conditions (HajiHosseini & Holroyd, 2015; Iturra-Mena et al.,

2023;  Marco-Pallarés  et  al.,  2015;  Pornpattananangkul  &  Nusslock,  2016;

Walsh & Anderson, 2012). Time-series data was extracted for each electrode

(32), for each trial and organized into a 3D matrix (electrodes, times, trials).

2) Artifact removal: Activity was averaged across the time/electrodes to get

a single value for each trial.  Trials with activity greater than 4X standard
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deviation were treated as artifact and discarded.  3)  Median reference: At

each time-point, the “median” activity was calculated across all electrodes

(32) and subtracted from each electrode as a reference. 4) Time-Frequency

Decomposition: A  trial  by  trial  time-frequency  decomposition  (TF

decomposition)  was  calculated  using  a  complex  wavelet  function

implemented within EEGLAB (newtimef function, using Morlet wavelets, with

cycles parameter set to capture frequency windows of between 2 to 150 Hz

and otherwise default settings used. We calculated the analytic amplitude of

the signal (using the abs function in MATLAB).  5) Baseline normalization: To

measure evoked activity (i.e. change from baseline) we subtracted, for each

electrode at  each frequency,  the mean activity  within  a baseline window

(1000-750ms prior  to  the  start  of  the  trial).  6)  Trial  averaging:  We next

calculated the average activity across trials for specific trial types at each

time-point and frequency for each electrode, thus creating a 3D matrix (time,

frequency, and electrode) for each behavioral session. We separated trials

based on choice (high vs. low-value port) and delay condition. 8) Comparison

across animals: Prior  to averaging across sessions/animals,  we “z-scored”

the data recorded from each behavioral session by subtracting the mean and

dividing  by  the  standard  deviation  of  activity  in  each  electrode  (at  each

frequency)  over  time.  Z-scoring  was  helpful  for  normalizing  activity

measured from different animals prior to statistical analysis. Because we had

already  performed  a  “baseline”  subtraction  (as  described  above),  this

analysis captured whether there was a significant increase or decrease in
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activity compared to baseline. FDR-correction was performed across all time-

frequency-electrodes (FDR-corrected p-value threshold set to 0.05).  These

pre-processing  steps  resulted,  for  each  session,  in  a  3D  time-frequency-

electrode  matrix  of  dimensions  200x139x32  which  was  used  for  further

statistical analyses as described below. 

LFP Weighted Phase-Lagged Index (wPLI) Analysis: wPLI is a method

developed  to  be  less  sensitive  to  noise,  volume  conduction  and  other

artifacts compared to standard methods (like coherence) (Vinck et al. 2011).

Phase-coherence or phase synchrony has long been thought as a method to

measure some relationship between two signals for brain analyses  (Le Van

Quyen et al., 2001). However, phase-coherence can be artificially induced by

noise, common  sources, and volume conduction.  For these reasons, novel

methods  have  been  developed  to  minimize  these  spurious  contributors,

including imaginary coherence(Nolte et al.,  2004) and phase-lagged index

(PLI) (Stam et al., 2007). Imaginary coherence uses the imaginary part of the

coherence, which is 0 when spurious sources are likely to have the largest

contributor  to coherence (at  0 and 180 degree angle  phase-lags),  and is

largest when there is a 90degree phase-lag). However – this method is less

sensitive to smaller but highly consistent phase-lagged relationships. PLI is a

measure of  the asymmetry that occurs (lagging vs leading)  between two

signals  (Stam  et  al.,  2007) and  is  thus  more  sensitive  to  consistent

relationships  independent of  magnitude. The wPLI  weights  the PLI  by the
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magnitude  of  the  imaginary  coherence,  thus  providing  some  of  the

advantages of each of these methods (Vinck et al., 2011a). Work since then

has suggested that wPLI is at least as good as other methods (in terms of

sensitivity  to  detect  changes)  while  being  more  robust  to  noise/spurious

correlations induced by volume conduction or common sources  (Imperatori

et al.,  2019; Lau et al.,  2012). Data was pre-processed identically to that

noted above (epoching, artifact removal and median referencing). We next

took the epoch from 0-1s post-reward delivery and estimated the wPLI across

this epoch of time. Finally, we calculated the mean wPLI for each pair-wise

interaction at beta-frequencies within each session. Thus, for each session

we computed a 12x12 symmetric matrix of the wPLI, separately for the high-

value rewarded trials and the low-value rewarded trials.

Computational Modeling: To investigate mechanisms that drive behavior,

we estimated how the subjective value attributed to the large reward varied

as a function of the delay associated with obtaining it. The value assigned to

options is influenced by objective properties (magnitude and delay) but also

by  internal  factors  (motivation)  (Lak  et  al.,  2014;  Schultz,  2015).  We

initialized  the  subjective  value  for  each  reward  magnitude  to  30  and  10

(reflecting  the  absolute  volume  of  each  reward  size).  We  fitted  three

separate models to the behavioral data that utilized a linear, exponential, or

hyperbolic  discount  function  to  adjust  the  subjective  value  of  the  large

reward depending on the delay period. 
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Linear:            SV ( t )=R(t )∙(1−k ∙ D ( t ))

Hyperbolic:     SV ( t )=R(t )∙
1

1+k ∙ D(t )

Exponential:   SV ( t )=R(t )∙ e−k ∙ D(t ) 

For each model, the subjective value (SV) of the action selected on trial t. R

denotes the reward magnitude obtained (10 or 30 µl)  and  D  denotes the

delay period associated with each reward (0, 1, 2, 5, 10, or 20 s for the large

reward; 0s for the small  reward). The discount parameter,  k,  controls the

steepness  of  the  discount  rate.  Specifically,  an  increased  discount  rate

results in a greater reduction in the subjective value attributed to the large

reward as the delay period increases. 

For  each method,  we estimated the discount  rate for  individual  subjects.

Once the subjective value for each action had been estimated, we used a

softmax  equation  to  convert  action  value  into  choice  probabilities.  The

degree  to  which  choices  are  exploratory  (i.e.,  selecting  the  lower-valued

action) vs. exploitative (i.e., selecting the higher-valued action) is controlled

by the inverse temperature (β) parameter. A higher β parameter indicates a

greater  tendency  to  engage  in  exploitative  choices  whereas  a  lower  β

parameter is indicative of a greater tendency to explore actions associated

with a lower value. Thus, the probability of choosing option A over option B,
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given  the  subjective  value  attributed  to  each  option,  can  be  determined

according to:

p ( A )=
eSVA× β

eSVA× β
+eSVB × β                                              

The  optimal  model  parameter  values  for  each  of  the  three  models  were

identified by minimizing the negative log-likelihood of  choice probabilities

using  the  “minimize”  optimization  function  with  the  truncated  Newton

algorithm in Python’s Scipy library (v.1.5). To sample broadly from the range

of possible parameter values and reduce the possibility of the model getting

stuck  in  local  minima,  the  optimization  algorithm  was  initialized  at  20

different starting points within the parameter space for each subject.  The

parameter  values associated with  the lowest  negative  log-likelihood were

selected as the best-fitting set for each subject. The best-fitting model was

determined  by  comparing  the  corrected  Akaike  Information  Criteria  (AIC)

value for each model. To confirm the validity of the best-fitting model we

conducted  posterior  predictive  checks  and  compared  the  simulated

performance with actual rodent performance. Moreover, parameter recovery

exercises  were  also  performed  to  confirm  the  accuracy  of  parameter

estimation.

Statistical Tests: Behavior on the temporal discounting task was analyzed

in IBM SPSS Statistics v.28 (New York, United States) as a two-way ANOVA.

Percent high value choice (dependent variable) was measured for each delay
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condition (0.5, 1, 2, 5, 10, 20s), subject, and the delay*subject interaction.  A

p value less than 0.05 was considered significant.  

We analyzed the time-frequency-electrode data at the level of each session

using linear mixed models (LMM) in SPSS to account for subject and session

variance  and  missing  data  points.  To  account  for  the  variable  delay-to-

reward conditions in the temporal discounting task, data was time-locked to

reward delivery. We analyzed the first second of activity post-reward (0ms to

1000ms after reward onset) to control for the difference in water delivery

between the large (3s) and small (1s) reward magnitude durations.  First, we

generated a LMM to compare normalized power (dependent variable) of the

lOFC electrode at each oscillatory frequency band and trial type (high or low

value choice). We used the following frequency bands: delta power (1-4 Hz),

theta (4-8 Hz), alpha (8-12 Hz), beta (15 -30 Hz), gamma (40-70Hz) and high

gamma (70-150 Hz).  [Fixed: Frequency, Trial  Type. Random: (Frequency |

Subject),  Time]  with  frequency  and  trial  type  analyzed  as  repeated

measures.  Frequency  band  was  assigned  to  the  slope  parameter  of  the

random effect for each subject to account for the interdependence of power

at each frequency band. Based on this first test,  we fit a second LMM to

explore  power  (dependent  variable)  at  frequencies  of  interest  across  12

electrodes (M2, A32D, A32V, vOFC, ALM, LFC, Ains, lOFC, VMS, NAcS, NAcC,

BLA) and trial type (high or low value choice). [Fixed: Delay (0.5, 1, 2, 5, 10,

20s),  Trial  Type (High or Low- Value Choice),  Electrode (M2, A32D,  A32V,
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vOFC,  ALM,  LFC,  Ains,  LOFC,  VMS,  NAcS,  NAcC,  and  BLA).  Delay*Trial

Type*Electrode Interaction. Random: Subject, Time].  To determine best fit of

each model, we measured the Akaike information criteria (AIC) and Bayesian

information  criterion  (BIC)  of  four  commonly  used  covariance  models

(compound  symmetry,  scaled  identity,  AR(1),  and  unstructured)  (Maxwell

and  Delaney  2004;  Magezi  2015).The  scaled  identity  model,  assuming

repeated measures may be independent but with equal variance  (Magezi,

2015; Maxwell & Delaney, 2004), provided the lowest AIC and BIC scores. We

used a Restricted Maximum Likelihood (REML) model with the Satterthwaite

approximation  in  SPSS.  Significant  interactions  were  followed  up  with

pairwise comparisons (Bonferroni corrected) in SPSS.  

To  test  the  effects  of  stimulation,  our  main  outcome  variables  were

proportion of high reward choices and number of trials. We used a repeated

measures  two-way  ANOVA  to  test  the  within-subject  effects  of  condition

(baseline, stimulation, recovery) and session (3 sessions of each condition).

Significant main effects or interactions were followed with paired samples t-

tests,  Bonferroni  corrected.   A  p  value  less  than  0.05  was  considered

significant.  Statistics  were  run  in  SPSS  and  data  was  visualized  with

GraphPad Prism. 

Histology
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At completion of recording sessions wire tips were marked by passing 12μA 

current for 10s through each electrode (Nano-Z, Neuralynx, MO, USA). Rats 

were sacrificed under deep anesthesia (100 mg/kg ketamine, 10 mg/kg 

xylazine IP) by transcardiac perfusion of physiological saline followed by 4% 

formalin. Brains were extracted and immersed in 4% formalin for 24 hours 

and then stored in 30% sucrose until ready to be sectioned. Tissue was 

blocked in the flat skull position using a brain matrix (RWD Life Science Inc., 

CA, USA).  Brains were sectioned frozen in the coronal plane at 50μm thick. 

Brain slices were Nissl stained using thionine to identify the course of the 

electrode tracks. Sections were processed with a slide scanner at 40x 

magnification (Zeiss, Oberkochenn, Germany; Leica Biosystems, IL, USA). 

Positions of electrodes were inferred by matching landmarks in sections to 

the rat atlas (Paxinos and Watson, 2013) when electrode tips could not be 

identified (Fig. S1). 

Results

Beta Power Reflects Reward Processing 

Large Reward Preference Decreased at Longer Temporal Delays: This

experiment evaluated neural activity during reward-feedback modulated by

reward magnitude and delay on a temporal discounting task. Animals were

given the choice of  a small  reward (10µl  of  water)  delivered with a fixed

delay of 0.5s after response or a large reward (30µl of water) delivered at a

fixed delay that changed between sessions (0.5s, 1s, 2s, 5s, 10s, 20s) (Fig.
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1A).  To  allow  for  greater  numbers  of  trials  necessary  for  robust

electrophysiological analysis, delays on the large reward condition were kept

constant  throughout  each session but  varied across  sessions.  Results  are

based on 148 behavioral sessions (124 electrophysiology sessions) from 12

rats. 

 As expected, based on previous research, there was a main effect of delay

on the proportion of large reward choices (F(5,82)= 18.81,  p=<0.001) (Fig.

1B; top panel; Table S1).  Animals’ preference shifted from large reward to

small reward as the delay to reward increased. When delays were the same

(0.5s), animals strongly preferred the large reward (86.53 +/- 7.60%). When

the large reward followed a 20s delay,  rats only selected it  on 21.99 +/-

20.83% of trials, showing a clear preference for the immediate, small reward.

There was also a main effect of subject (F(11,82)=4.60,  p=<0.001) (Fig. 1B;

bottom panel; Table S1). Individual differences emerge in the average rate

of  discounting  across  delays,  but  there  is  no  delay  x  subject  interaction

(p=0.897).

Activity at Beta-Frequencies Reflects Reward Magnitude and Delay:

First,  to  identify  frequency  bands  of  interest  during  the  reward-feedback

period,  we analyzed normalized power  in  the lOFC electrode -  a cardinal

reward processing brain region (Dalley et al. 2004; Winstanley et al. 2004a;

Schoenbaum et  al.  2009;  Dalton et  al.  2016;  Constantinople  et  al.  2019;
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Wassum, 2022).  We hypothesized that a putative value signal would have

greater power for the large (30µl) compared to the small (10µl) reward when

delays  were  equal  (0.5s  for  both).  The  time-frequency  plots  suggested

elevated lOFC activity at beta (15-30 Hz) frequencies during reward outcome

that was greater following large reward (Fig. 2A; one exemplar session). 

To  quantify  the  patten  in  the  time-frequency  plots  and  average  across

subjects and sessions, we used a linear mixed model that helps to account

for  variance  in  subject/sessions.  We measured  base-line  normalized  lOFC

power  one second following  reward delivery  across  canonical  frequencies

(delta: 1-4 Hz; theta: 4-8 Hz; alpha: 8-12 Hz; beta: 15-30 Hz; low gamma: 30-

50 Hz; and high gamma: 50-70 Hz) and between trial types (small or large

reward). We analyzed only the first second of activity post-reward to ensure

that,  for  both  trial  types,  animals  were  receiving  the  same  quantity  of

reward.  Large reward choices result in 3s (30µL) of water, but small reward

is only 1s (10µL) of water. To account for this difference, we analyzed only

the first second of reward delivery, which was presumed to be equivalent for

both trial types. When delays for each choice were equal (500ms), there was

a  main  effect  of  trial  type  (F(1,164.43)=5.54,  p  =.020),  a  main  effect  of

frequency  (F(5,52.82)=2.90,p=.022),  and  no  interaction  (p=.274)  (Fig.  2B;

Table S2). Subject contributed to 28% of variance in the model and session

to only 0.2% of variance. Post-hoc tests (Bonferroni corrected) revealed that

only beta frequencies had a significant difference between large and small
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reward trials (t(34)=2.14,  p=.006), suggesting it had the largest contribution

to the main effect of trial type observed (Fig. 2B). The difference in base-

line normalized beta power between the trial types was 5.19 +/- 1.78.

Other frequency bands (gamma) showed a generic increase for reward, but

only  beta-frequencies  were  selectively  elevated  for  large  rewards,  and

therefore, we focused subsequent analyses on this frequency band. We next

asked whether reward-locked beta power was sensitive to temporal delays of

reward.  We  hypothesized  the  following:  if  beta-power  only  reflects  the

objective magnitude of the reward, then it would always be greater for the

large  reward  regardless  of  delay.  By  contrast,  if  beta  power  reflects  the

reward  value  based  on  both  magnitude  and  temporal  delay,  then  we

predicted  it  would  be  reduced  for  the  large  reward  in  concordance  with

increasing temporal  delay.  We also extended this  analysis  to 12 putative

reward-related  electrodes  to  determine  if  beta  power  during  reward

processing was unique to lOFC or seen broadly throughout the cortico-striatal

reward network. To perform this, we used a second linear mixed-model to

measure the effect of trial type (small or large reward), delay (0.5, 1, 2, 5,

10, 20s), electrode (12 electrodes) and their interactions on reward outcome

beta power. We found a main effect of delay (F(5,2544.84)= 22.52, p<0.001) and

an interaction between delay x trial type (F(5,2550.09)= 27.60,  p<.001) (Table

S2). First looking at the lOFC electrode to explain this interaction, we found

that  beta  power  on  large  reward  trials  decayed  as  the  temporal  delay
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increased (Fig. 2C). Beta power on small reward trials does not substantially

change (or, if anything, slightly increases with increased delays) (Fig. 2C).

Post-hoc tests  (Bonferroni  corrected)  for  the lOFC electrode show that  at

short delays (0.5s, 1s) there was greater beta activity for large reward trials

(0.5s delay, p<.001; 1s delay, p=.014).  At a moderate delay (2s) there was

no difference in power between trial types (p=.192), and with long delays

(5s, 10s, 20s) there was greater beta power on small reward trials (5s delay,

p=.046;  10s  delay  p<.001;  20s  delay,  p<.001).  This  similar  trend  was

observed at other electrode sites. Across the 12 putative reward regions (M2,

A32D, A32V, vOFC, ALM, LFC, Ains, lOFC, VMS, NAcS, NAcC, BLA;  Table 1)

there was no significant difference in beta power between electrodes (p =

0.063)  (Fig.  2D),  or  a  significant  electrode  x  delay  x  trial  interaction  (p

=1.00) (Table S2). On all electrodes, beta power at short delays was greater

for large reward and beta power at long delays was greater for small reward.

Thus, beta power seems to reflect a subjective value estimate (opposed to

an objective magnitude signal) that is dispersed broadly across areas of the

cortico-striatal reward network. 

Network-Connectivity  Linked  with  High-Value  Choice:  To  better

understand  whether  beta  oscillations  during  reward  outcome  reflects  a

“network-wide”  phenomenon,  we used  a  measure  of  connectivity  termed

weighted phase-lagged index (wPLI). While no method is perfectly robust to

all noise/volume conduction issues, this method is somewhat more robust
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than many others (Vinck et al., 2011b). We first analyzed reward-locked wPLI

at beta-frequencies across the first second post-reward on the high-reward

trials  at  each  delay  (Fig.  3A shows  mean  wPLI  estimated  across  three

distinct delays). Given the high number of variables (connections between 12

electrode sites at 5 different delays) we focused our statistical analysis on

one simple question: is  there a relationship between beta-frequency wPLI

and high-value choice behavior? To calculate this,  we used a generalized

linear model to estimate slope (beta-values), with percent of large reward

choice  as  the  independent  variable  and  pair-wise  estimates  of  the  wPLI

during the first second of reward as the dependent variable across sessions.

A beta-value and p-value from the model  (percent large reward choice x

wPLI)  was  calculated  for  each  electrode  pair  followed  by  FDR-correction

across the connectivity matrix (Fig 3B; Table 2).  We found a significant

positive relationship (p-value ≤.05) between wPLI strength and selection of

the  large  reward  for  several  brain  regions  that  includes  lOFC,  prefrontal

cortex,  ventral  striatum/nucleus  accumbens  (Fig.  3B;  p-value  does  not

provide  any information  about  the  strength  of  the  correlation).  The right

panel  illustrates  the  pair-wise  connections  with  a  significant  relationship

between  wPLI  and  large  reward  choice.  Nucleus  accumbens,  lOFC  and

amygdala  are  at  the  center  of  the  network,  with  the  most  numerous

significant  correlations  with  other  electrodes.  We  did  not  observe  any

significant negative relationships (where greater wPLI on the large reward

trial  was  linked  with  less  choice  for  large  reward).  Thus,  in  general  and
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consistent  with  our  findings  from  LFP  power,  greater  beta-frequency

connectivity  between cortical  and striatal  regions (as measured using the

wPLI) during high-value rewards was associated with greater selection of the

large reward choice.

Computational Model Estimates Subjective Value on the Temporal

Delay Task:  Our data above suggests that  beta-oscillations reflect some

aspect of temporal discounting behavior. To offer one interpretation of how

this beta signal may reflect behavior,  we used computational modeling to

estimate  the  subjective  value  across  different  delays.  Subjective  value

describes the individual preference to choose large v. small reward based on

objective factors of reward magnitude and delay and internal factors such as

motivation.  In  the  computational  model,  subjective  value  of  the  action

selected is related to the magnitude of reward (10 or 30µL) and the delay to

reward delivery (0, 1, 2, 5, 10, or 20 s for the large reward; 0s for the small

reward). Prior work in both animals and humans have explored various fits to

temporal  discounting  curves,  including  exponential  and  hyperbolic

(Vanderveldt et al. 2016; Kable & Glimcher, 2007). We fit models that utilized

a linear, hyperbolic, or exponential discount function to our behavioral data.

We  found  that  the  model  using  an  exponential  discount  function  was

associated  with  the  lowest  AIC  value  (Exponential=2387.06;  Hyperbolic=

2452.39; Linear= 2868.35). 
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To validate our computational model, we first ensured that the parameter

values  estimated  for  each  subject  were  recoverable  (Wilson  and  Collins

2019;  Tranter  et  al.  2023). We  simulated  performance  in  the  delayed

discounting task 50 times using known parameter values and then fitted the

exponential model to the simulated behavior (Fig. 4A). A positive correlation

between the simulated and recovered values was evident for the discount

rate (R2=0.994, β= 0.969) and the beta parameter (R2=0.755, β= 0.717),

demonstrating that our model could accurately estimate the free parameter

values. Next, we simulated task performance using the model parameters

we estimated from the actual rodent performance. This posterior predictive

check  demonstrated  that  the  proportion  of  large  reward  choices  for  the

simulated data was comparable to that of the actual rodent data (two way

ANOVA  main  effect  of  group  (F(1,109)=0.85,  p=.358,  Fig.  4B),  thereby

confirming  that  our  exponential  model  could  capture  the  key  behavioral

components associated with task performance. 

Using  this  model,  we  found  that  subjective  value  of  the  large  reward

progressively decreased as the delay associated with obtaining it increased

(Fig.  4C).  When  the  delay  was  <5  s,  the  large  reward  had  a  greater

subjective value than the small reward, however, when the delay exceeded

5s  the  subjective  value  for  the  large reward was  smaller  than the  small

reward. This change in the relative subjective value associated with either
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option  may  explain  the  shift  to  prefer  small  reward  choices  observed

behaviorally (Fig. 1B; Fig. 4B). 

Finally,  to  provide  conceptual  validation  of  our  model,  we  simulated

performance using an agent with varying discount rates (but keeping the

beta parameter fixed; 0.1). As expected, when the discount rate is larger, the

subjective  value  of  the  large  reward  decays  more  rapidly  as  the  delay

increases (Fig. 4D). 

Beta  Power  is  Related  to  Subjective  Value  as  Defined  by  the

Computational Model: Next, we correlated reward outcome beta power on

the lOFC electrode with subjective value as defined by our computational

model. Upon observation alone, neither beta power nor subjective value was

modulated by temporal delay on small reward choice, but on large reward

choice beta power decayed at a similar rate as subjective value (Fig. 5A). 

We  used  a  linear  mixed-effects  model  that  included  lOFC  beta  as  the

dependent  variable,  the  subjective  value  of  the  large  reward  as  the

independent  variable,  and  subject  as  a  random  factor  to  quantify  this

observation. A significant relationship between lOFC beta power and value

was evident (β=0.11 + 0.024, p<0.001) indicating that as lOFC beta power

increased, so did the subjective value. To illustrate this relationship further,

we extracted the predicted beta power values from the fitted model (Fig.
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5B). The predicted beta frequency values from the linear mixed model are

related to the large reward subjective value. At long delays, both the large

reward subjective value and the beta frequency power are smaller. At short

delays, subjective value and beta power are greater. The predicted values

from the linear mixed model show the slope between beta power and large

reward subjective value separately for each subject (Fig. 5B; right panel).

Finally, we expanded this analysis to include the other 12 electrodes. The

estimated marginal mean from the linear mixed model for each electrode is

plotted in rank order (Fig. 5C). All electrodes were significant except ALM. 

To further validate our model and explore the relationship between large

reward subjective value and delay length, we repeated the above using two

alternative models; one with large reward delay length as the independent

factor and one with both delay length and subjective value as factors. All

models had significant effects on lOFC beta power, but our first model using

large reward subjective value as the independent factor accounted for more

variance in lOFC beta power (93.69%) and had the lowest AIC and BIC scores

(391.3, 400.19), and therefore was determined to be the best model to use. 

Beta frequency stimulation modulates temporal discounting choice:

The goal of the stimulation experiment was to test the hypothesis that beta

power  in  the  cortico-striatal  network,  during  reward  outcome,  represents

choice  value.  We  predicted  that  providing  beta  stimulation  on  the  large
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reward condition would increase the frequency of that choice, despite the

temporal delay. The experiment is included here as preliminary supporting

evidence because it  is  consistent with our electrophysiology observations,

but  lacks  important  controls  such  as:  stimulation  at  other  frequencies,

different delay conditions, replication of sites and parameters. We used an

“on-demand”  electrical  stimulation  approach  in  6  rats,  delivering  beta

frequency (20Hz) stimulation during the reward outcome period (3s) of the

high-value choice. The electrical stimulation parameters (current, electrode

location)  were adjusted for  each subject (Table S3).  Notably,  to test our

hypothesis regarding the fact that this was a distributed signal we provided

stimulation  at  different  sites  in  each  animal.  Out  of  all  sites  within  the

putative  reward  network,  the  electrode  with  the  lowest  impedance  was

selected. Sites included ALM, A32D, A32V, Ains, vOFC, and VMS (Table 1).

Amplitude was adjusted according to the impedance measure but ranged

from 35-80µA. The temporal delay for the large reward was different for each

subject (2s, 5s, or 10s) but remained consistent throughout all stimulation

sessions for each animal. The delay for the small reward was fixed at 0.5s. 

We used a two-way repeated measures ANOVA to test the within-subjects

effects of condition (baseline, stimulation, recovery) and session (3 of each

condition)  on the dependent  measures of  percent  high-value choices  and

number of trials. The number of trials was not significantly different across

conditions  (F(2,10)=  1.39,  p=.293)  or  days  (F(2,10)=0.42,  p=.645)  (Fig.  6).
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However,  there  was  a  significant  condition  x  day interaction  (F(4,20)=5.55,

p=0.029)  for  the  percent  of  high-value  choices  (Fig.  6).  Beta  frequency

stimulation increased the proportion of high-value choices within a session

compared  to  baseline  (F(1,5)=8.99,  p=0.030).  On  average  stimulation

increased high-value responding (from a mean of 29.25% to 42.43%). Post-

hoc tests showed that the interaction between condition x day was driven by

significant differences between day 2 baseline v. stimulation (p=.017, mean

difference=  20.59)  and  day  2  stimulation  v.  recovery  (p=.021,  mean

difference= 23.55) (Fig. 6).  Therefore,  stimulation had its maximal effect

during the second consecutive session.  Generally,  the proportion  of  high-

value choices was similar to baseline on recovery days following stimulation.

Individual differences in results may be due to impedance, current, electrode

site,  or behavioral  parameters and will  need to be standardized in future

tests.  However,  notably,  we  show  that  stimulating  beta  frequencies  on

striatal, insular, prefrontal, and orbitofrontal sites during reward outcome can

directly  influence  value-based  decision  making  suggesting  a  distributed

signal. Further studies will be needed to better understand the specificity of

these results according to frequency and site (i.e., further testing at “control”

electrode sites”).  

Discussion

In  humans  and  animals,  temporal  discounting  tasks  have  been  used  to

classify  impulsivity  and  maladaptive  behavior  associated  with
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neuropsychiatric  disorders  including  schizophrenia,  depression,  attention

deficit hyperactivity disorder, and substance use (Mitchell, 2019; Story et al.,

2014). Defining a brain signature that reflects reward processing on this task

could help uncover the mechanisms behind value-based decision making and

may offer a potential therapeutic target to treat such disorders. In this study

we used LFP recordings in rodents to identify a brain state associated with

temporal discounting behavior. We identified cortico-striatal beta oscillations

that reflect both reward magnitude and temporal delay and correlate with

subjective value as  defined by a computational  model.  Previous research

posits  that  the  cortico-striatal  network  is  important  for  reward  valuation

(especially during temporal discounting) (Bayer & Glimcher, 2005; Ballard &

Knutson,  2009;  Boettiger  et  al.,  2007;  Haber  &  Knutson,  2010;

Pornpattananangkul & Nusslock, 2016; Snyder et al., 2020), and we believe

cortico-striatal-limbic  beta  oscillations  during  reward outcome may reflect

this process. 

In  the  temporal  discounting  task,  rats  choose  between  a  small  reward

delivered with a fixed, short delay or a large reward that was given with fixed

delays that  varied across  sessions.  Animals  were less likely  to select the

large reward with increased delays (Fig. 1). We measured normalized power

across  canonical  frequency  bands  during  the  first  second  of  reward-

feedback.  As  we  were  limited  by  the  number  of  statistical  comparisons

(frequencies,  delays,  electrodes),  we  restricted  our  analyses  to  reward
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outcome  (not  trial  onset,  choice,  or  delay  period),  consistent  with  our

motivation  to  examine neural  markers  of  reward valuation.  Even in  well-

trained animals, there is likely an updating that needs to occur after reward

outcome based on objective measures of  reward magnitude and delay to

inform  future  decisions.  Beta  (15-30  Hz)  frequency  power  during  reward

outcome tracked objective reward magnitude when delays  were matched

(0.5s)  and scaled dynamically as value as a byproduct  of  temporal  delay

(Fig.  2).  Connectivity  between  BLA,  ventral  striatum  and

prefrontal/orbitofrontal cortex during the high-value reward was correlated

with the proportion of large reward choices across delay conditions (Fig. 3).

Next,  we  used  a  computational  model  to  estimate  subjective  preference

based off the observed behavior for each subject. In temporal discounting

tasks,  subjective  preference  (value)  changes  based  on  objective  task

variables  (delay  and  reward  magnitude).  The  model  showed  a  positive

relationship  between beta frequency power  and subjective value,  offering

one  possible  interpretation  of  beta  activity  in  the  cortico-striatal-limbic

network might reflect behavior on this task (Fig. 4, 5). 

In a preliminary data set, we show that modulating beta-frequency (20Hz)

activity with electrical stimulation can bias behavior toward a larger, delayed

reward. By applying “on-demand” stimulation (stimulation based on the rats’

behavior)  during  the  reward-outcome period  of  large  reward  choices,  we

were able  to increase the number of  high reward choices made within a
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session  (Fig.  6).  Multiple  cortical  (prefrontal,  orbitofrontal,  insular)  and

striatal (ventral striatum) stimulation targets (Table S3) lead to significant

changes  in  discounting  behavior,  consistent  with  our  findings  from  the

wPLI/connectivity analysis that suggest beta oscillations are a network-wide

phenomenon.  These results  support  our  observation that beta oscillations

during reward outcome are correlated with subjective value but should be

interpreted  with  caution  due  to  several  limitations:  stimulation  was  not

tested at other frequencies, results are limited to only one delay condition,

there is a lack of replication in stimulation parameters and sites, and there is

no  control  to  determine  if  stimulation  is  rewarding.  Moreover,  in  this

preliminary  study  LFP  was  not  paired  with  electrical  stimulation  and

therefore we cannot be certain that stimulation was enhancing (opposed to

disrupting)  oscillatory  activity,  although  prior  work  shows  that  beta-

frequency (15 HZ) deep brain stimulation  in rats  does not  suppress local

(globus  pallidus)  or  distal  (dorsal  striatum and  motor  cortex)  oscillations

(McCracken & Kiss, 2014). 

We  observe  that  beta  oscillations  in  the  cortico-striatal-limbic  network

change based on reward magnitude and delay. One interpretation, based on

the  computational  model  of  behavior,  is  that  beta  oscillations  reflect

subjective reward value.  Alternative explanations  of  our  findings are that

beta  activity  reflects:  1)  a  non-neural  artifact  time-locked  with  reward

delivery (i.e. muscle/EMG-related contamination during reward consumption
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or  electrical  noise  associated  with  reward  delivery)  or  2)  is  neuro-

physiological in nature but does not reflect rewards per se (for example, time

estimation  or  working  memory).  To  elaborate  more  on  this  idea:  beta-

oscillations have been well-characterized within motor cortex (Witham et al.

2007; Kilavik et al. 2012; Feingold et al. 2015; Khanna and Carmena 2017;

Luhmann  et  al.  2021) and  dorsolateral  striatum  (Feingold  et  al.,  2015;

Jenkinson & Brown, 2011; Luhmann et al., 2021; Schwerdt et al., 2020) and

tend to be largest pre/post-movement, but are classically suppressed during

movement (Hammond et al. 2007; Engel and Fries 2010; Kilavik et al. 2012;

Khanna and Carmena 2017). Thus, one explanation  for our findings is that

increased  beta  power  reflects  motor  inhibition  that  might  occur  during

reward consumption. However, there are several aspects of our data that are

not consistent with a motor-inhibition explanation. First, sensorimotor beta-

oscillations, as previously described, are localized within motor and dorsal

striatum,  whereas  we  observe  oscillations  in  ventral  cortical  orbitofrontal

cortex, insula, and striatal brain regions. Second, we observe greater beta

power  selectively  for  large  reward  choices  when  delays  (and  thus

noise/motor activity) would be most likely to be balanced (and even using

the same reward 1 second post-reward delivery window). We unfortunately

did  not  collect  the  data  we  need  (high-frequency  video  of  licks/motor

behavior) to properly quantify consummatory behavior, and this will need to

be clarified with further research. Similarly, noise/muscle artifacts would not

obviously  lead to phase-lagged differences between distinct  nodes of  the
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reward  network  as  we  observe  here  (difference  in  wPLI  correlating  with

choice), and that again were strongest in non-motor parts of PFC. It is also

possible  that  beta  power  represents  time estimation  or  working  memory

related to the reward delay. Several studies implicate beta power in working

memory maintenance and clear-out (Chen & Huang, 2016; Miller et al., 2018;

Schmidt et al., 2019; Spitzer & Haegens, 2017b). Beta power increases with

working memory load (Chen & Huang, 2016) and is heightened at the end of

a trial  which is speculated to represent memory clear-out  (Schmidt et al.,

2019). If the beta signal is a time estimation or working memory signal, it is

not clear why we see greater beta power for large reward when the delays

are equal (500ms) or why beta power is decreased following longer delays.

As the goal of this paper was to specifically examine reward-related activity,

we are missing timeframes of interest (like response-locked data) that may

provide  a more holistic  view of  beta during active memory maintenance,

memory  clear-out,  and  reward  anticipation.  We  believe  the  theory  most

consistent  with  the  totality  of  our  data  is  that  beta  oscillations  integrate

information about objective task variables (reward magnitude and temporal

delay) to signal subjective preference for reward. 

Growing  research  has  identified  beta-oscillations  outside  of  sensorimotor

networks related to attention  (Schmidt et al., 2019; Shin et al., 2017), top-

down processing (Buschman and Miller 2007; Engel and Fries 2010), working

memory  (Marco-Pallarés  et  al.,  2015;  Schmidt  et  al.,  2019;  Siegel  et  al.,
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2009;  Spitzer  & Haegens,  2017a) ,  effort  (Hoy et  al.  2023) and outcome

evaluation (Pesaran et al., 2008; Torrecillos et al., 2015). Consistent with our

findings,  beta-oscillations  during  reward  feedback  have  previously  been

observed in humans and animals.  EEG and MEG measures in humans find

beta oscillations during positive-valence reward within cortico-striatal circuits

that  are sensitive  to  reward valence,  magnitude,  and predict  subsequent

choice  (Hoy  et  al.  2023.;  Cohen  et  al.  2007;  Marco-Pallares  et  al.  2008;

HajiHosseini  and  Holroyd  2015;  Marco-Pallarés  et  al.  2015;  Zavala  et  al.

2018; Patai et al. 2022). Most relevant to our study, data from humans on a

temporal  discounting  task  showed  that  feedback-locked  theta  and  beta

activity  measured  with  EEG was  associated  with  a  preference  for  larger,

delayed rewards  (Pornpattananangkul & Nusslock,  2016).  Theta activity is

thought  to be a product  of  cognitive-control  processes integrating reward

outcome information and is reliably stronger for bad-performance feedback

and predicts behavioral adjustment on the subsequent trials  (Cohen et al.

2011). On the other hand, beta activity is consistently related to positive

reward feedback (Cohen et al. 2007; Marco-Pallares et al. 2008; HajiHosseini

and Holroyd 2015; Marco-Pallarés et al. 2015; Zavala et al. 2018; Patai et al.

2022;  Pornpattananangkul  &  Nusslock,  2016).  Both  ventral  striatum  and

LOFC activity measured with fMRI are also associated with a preference for

larger, delayed rewards  (Ballard & Knutson, 2009; Boettiger et al.,  2007).

Reward  processing  signals  in  these  regions  may  predict  individual

differences in the tendency to wait for larger rewards over small, immediate
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rewards, important in the context of relating reward sensitivity with high-risk

behaviors seen in many neuropsychiatric disorders.

Similarly, increased beta power in cortico-striatal regions has been observed

in rodents approaching reward locations  (Howe et al., 2011; Samson et al.,

2017)that  was modulated by reward magnitude (Samson et  al.  2017)and

stabilized with task experience (Howe et al., 2011; van der Meer & Redish,

2009). Recently, it was observed that during a reward discrimination task,

increased  beta  power  100-200ms  after  reward-feedback  in  the  anterior

cingulate  cortex  and  nucleus  accumbens  of  rodents  was  correlated  with

response bias  (Iturra-Mena et al. 2023).  The congruency with human EEG

studies bolsters the translatability of using animal LFP to define brain-based

biomarkers of reward processing.  

Although we find a significant relationship between reward value and beta

oscillations, how reward modulates beta frequency activity remains unclear.

One hypothesis is that beta frequency activity during reward processing is

linked with dopamine.  Dopaminergic, “reward-prediction-error” (RPE) signals

are  related  to  value  estimation,  i.e.  they  are  positively  modulated  by

difference between expectation of reward and reward delivery (Schultz, et al.

1997; Bayer and Glimcher 2005; HajiHosseini and Holroyd 2015; Snyder et

al. 2020). The feedback-related negativity ERP signal classically observed in

humans  is  negative  following  positive  reward  and  is  thought  to  reflect
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dopamine  transmission  (Holroyd  & Coles,  2002;  Iturra-Mena et  al.,  2023;

Walsh  &  Anderson,  2012);  the  opposite  of  our  beta  oscillatory  signal.

Previous  research  in  humans  explored  the  possibility  of  frontal  beta-

oscillations  as  an  RPE  signal  but  found  that  stimuli  signaling  expected

rewards elicited more beta power than unexpected rewards; the inverse of

an  RPE  (HajiHosseini  &  Holroyd,  2015).  Thus,  we  believe  our  results  are

consistent  with  an  inverse  correlation  between  beta  activity  and  the

dopaminergic  RPE  signal.  During  temporal  discounting  paradigms

dopaminergic  activity  is  greater  for  longer  delay  periods  (Kobayashi  &

Schultz, 2008) whereas we observe reduced beta power during these longer

delay periods. Interestingly, an inverse relationship between dopamine and

beta-oscillations  has  been  observed  in  motor  cortex  and  dorsolateral

striatum as well (Bayer & Glimcher, 2005; Schwerdt et al., 2020). Therefore,

a  similar  relationship  between  beta-oscillations  and  dopamine  may  exist

within  ventral  striatum and prefrontal  cortex.  The inverse of  an RPE (the

action value) is thought to reflect a cortico-striatal weight. During decision-

making, cortico-striatal weights are strengthened or weakened based on RPE

signals (Barnett et al., 2023; Vich et al., 2020). Thus, our marker of reward-

related  cortico-striatal  beta  oscillations  may  reflect  this  weight  formation

process,  used to  inform future  decisions  and is  known to  be impaired in

cases of neuropsychiatric disorders like depression (Kumar et al., 2018). 
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Future analyses  will  need to investigate network-level  connectivity  at the

level of single units or using methods (like calcium imaging) in which distinct

networks can be targeted, to determine whether beta-oscillations originate in

brain areas, like the striatum, or if they are an emergent property of cortico-

striatal networks, and the degree to which they are influenced by dopamine.

Previous  research suggests  that  focal  v.  long-range beta oscillations  may

operate at different frequencies to serve different functions (Bonaiuto et al.,

2021;  Seedat  et  al.,  2020),  and thus  it  will  be  important  to  define local

processing with single unit investigations. Additionally, our results are mostly

limited to male rats. We are now repeating this set of studies in a balanced

cohort  of  male/females  to  understand  whether  these  findings  generalize

across  sexes  and  plan  to  expand  the  stimulation  study  with  appropriate

controls.  We  propose  that  beta-oscillations  during  reward-feedback  may

present a phenotype that can be used to identify disturbed reward-related

processing deficits in psychiatric disorders. The beta oscillations we observe

appear in physiologically relevant time windows (reward outcome), making

this a potential signature to influence trial-by-trial decision-making behavior.

If  these  findings  can  be  extended  across  reward-guided  decision-making

tasks, it will suggest that beta-oscillations can be utilized as a cross-species

translational  marker  of  value  estimation  that  is  linked  to  reward-guided

behavior  and  could  be  used  to  predict  reward  sensitivity,  risk-taking

behavior, and impulsivity.
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Figure 1. Behavior on the Temporal Discounting Task. A) Our version 

of the temporal discounting task centers around the subject selecting 

between a low-value choice (small reward delivered after 0.5s) and a high-

value choice (large reward delivered after a fixed delay). The large reward 

delay was fixed within a session, but changed from 0.5, 1, 2, 5, 10 and 20s 

between sessions. Water reward was delivered from the middle noseport 

(NP3) at a rate of 10µL/s. The small reward was 10µL and the large reward 

was 30µL.  B)  The group mean shows a significant effect of delay on percent

of large reward choices within a session (p<0.001; top panel). Subjects 
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discount the large reward as its temporal delay increases (Mean and SEM). 

There is a significant difference between individual subjects (p<0.001), but 

no subject x delay interaction (p=0.897; bottom panel). Full statistics are 

reported in Table S1. 
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Figure 2. Local Field Potential Activity During the Temporal 

Discounting Task. A) Time-frequency plots of lateral orbitofrontal cortex 

(lOFC) activity during large and small rewards when the delay for both is 

500ms from response is shown from one exemplar session. Activity is time-

locked to reward onset (0ms) and normalized power for large and small 

rewards is identically scaled.  We see heightened beta-frequency (15-30Hz) 

activity following either reward, that is greater for the large reward choice. B)

LOFC power (normalized to baseline) at each canonical frequency band 

during the first second of reward delivery. Beta power is greater for large 
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rewards (p<.006) when delays are equal (500ms). The mean and SEM of 

LOFC power on small (solid) and large (striped) reward choices are shown. C)

Beta power modulates activity coinciding with temporal delay of the large 

reward. There is a significant interaction between delay and trial type 

(p<.001), such that lOFC beta power following the large reward choice 

decreases as the temporal delay to reward increases. Mean and SEM of lOFC 

power on large (dashed) and small reward (solid) are shown at each large 

reward delay. D) Beta power is greater for large reward at short delays and 

greater for small reward at long delays at all 12 electrode locations (no effect

of electrode; p=.063). Mean and SEM of the contrast of beta power for large-

small reward. Abbreviations are listed in Table 1. Full statistics are reported 

in Table S2. 
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Figure 3. Beta Power in a Reward-Related Network Linked with 

Large Reward Choice. A) Weighted phase-lagged index (wPLI), a measure 

of connectivity, is significantly positive between multiple electrode locations 

at beta frequencies during large reward choice including regions of prefrontal

cortex, orbitofrontal cortex, and ventral striatum. Connectivity between 

these regions is the most robust (yellow) when the large reward temporal 
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delay is short (0.5s) and diminishes as the temporal delay increases (20s). B)

We used a GLM to examine the relationship between the percent of large 

reward choice within a session and the beta power wPLI during the first 

second of reward delivery. The non-thresholded p-value from the GLM is 

shown for each electrode pair. P-values do not provide information about the 

strength of correlation for each pair. We only observe positive relationships 

between electrode sites. The p-values and beta values for the GLM are 

included in Table 2.  The network graph highlights the significant nodes of 

beta-frequency wPLI during large rewards anchored around nucleus 

accumbens/amygdala and lOFC. Abbreviations included in Table 1. 
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Figure 4.  Computational  Model  to Define Subjective Value on the

Temporal Discounting Task. A) The parameter recovery estimates show

that the simulated and recovered discounting rates are highly related (R2

=.994). Likewise, the estimated and actual beta values are highly related (R2

=.755), thus confirming that the parameter values can be reliably estimated.

B)  The  posterior  predictive  check  shows  no  difference  between  the

proportion  of  large  reward  choices  in  the  simulated  (exponential  model;

dashed line) and actual rodent data (solid line) (p=.358). C) Subjective value

of  the  large  reward  starts  at  30  (reflecting  30µL  reward  amount)  and
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decreases  exponentially  as  the  temporal  delay  increases.  The  subjective

value of the small reward starts at 10 (reflecting 10µL reward amount) and

does not change because its delay is fixed at 0.5s while the large reward is

increasingly delayed. D) The simulation validation shows that as the discount

rate  of  our  model  increased,  the  subjective  value  of  the  large  reward

decreases at a faster rate.  
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Figure 5. Subjective Value is Related to Large Reward Beta Power. A)

LOFC Beta power during the first second of reward outcome is related to 

subjective value as defined by our computational model. On small reward 
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choice, neither beta power (filled circle, solid line) nor subjective value (open

circle, dashed line) is modulated by large reward delay. On large reward 

choice, both beta power and subjective value decay at a similar rate as 

temporal delay of the large reward increases. B) We used a linear mixed 

model to quantify the observed relationship between subjective value and 

large reward beta power with subject as a random factor. Each subject has a 

positive relationship between fitted LOFC beta power and subjective value of 

the large reward, but the intercept for each subject differed (left panel). 

Concatenated across all subjects, at long delays (dark circles) both the beta 

power and subjective value are small, whereas at short delays (light circles) 

power and subjective value are high (right panel). C) The predicted means 

(and SEM) from the model are shown in rank-order for all 12 electrodes. 

LOFC data is included again as a comparison. Only ALM was not significant. *

p<.05, ** p<.001, ***p<.0001.
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Figure 6. On-Demand Beta Frequency Stimulation. A) The behavioral 

effects of beta frequency stimulation during large reward outcome in a 

temporal discounting task in 6 rats. Stimulation parameters are provided in 

Table S3. Behavioral parameters (number of trials and percent of high-value

choice) are measured across three baseline days (no stimulation), three 

stimulation days, and three recovery days (no stimulation). Beta frequency 

stimulation had no effect on the number of trials (p=.293 but did increase 

the percent of high-value choices compared to baseline (p=.030). Lines 

represent the mean for each subject. B) We observe a significant day x 
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stimulation condition effect (p= .029), driven by significant differences 

between day 2 stimulation and day 2 baseline (p=.017) and day 2 recovery 

(p=.021), suggesting that stimulation had a maximal effect after repeated 

sessions.
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Table 1: List of 12 electrode sites 

Abbreviation Brain Area
M2 Secondary Motor Cortex

A32D Dorsomedial Prefrontal 

Cortex
A32V Ventromedial Prefrontal 

Cortex
vOFC Ventral Orbitofrontal Cortex
ALM Anterolateral Motor Cortex
LFC Lateral Frontal Cortex
Ains Anterior Insula
lOFC Lateral Orbitofrontal Cortex
VMS Ventromedial Striatum
NAcS Nucleus Accumbens Shell

NAcC Nucleus Accumbens Core
BLA Basolateral Amygdala
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M2 A32
D

A32
V

vOF
C

LFC ALM lOFC Ains VMS Nac
C

NacS BLA

M2 1.00
0

0.06
0

1.00
0

1.00
0

1.00
0

1.00
0

1.00
0

1.00
0

1.00
0

0.09
9

0.05
0

0.02
1

A32
D

0.06
0

1.00
0

1.00
0

0.07
1

1.00
0

1.00
0

1.00
0

1.00
0

0.00
6

0.00
0

0.02
1

0.00
6

A32
V

1.00
0

1.00
0

1.00
0

1.00
0

1.00
0

0.07
6

1.00
0

1.00
0

0.06
7

1.00
0

0.00
0

0.03
4

vOF
C

1.00
0

0.07
1

1.00
0

1.00
0

1.00
0

1.00
0

1.00
0

0.05
4

0.06
0

0.07
6

1.00
0

0.00
4

LFC 1.00
0

1.00
0

1.00
0

1.00
0

1.00
0

1.00
0

0.00
4

0.00
7

1.00
0

0.00
1

0.00
1

0.00
9

ALM 1.00
0

1.00
0

0.07
6

1.00
0

1.00
0

1.00
0

0.00
7

0.06
0

0.02
3

0.06
7

0.00
5

1.00
0

lOFC 1.00
0

1.00
0

1.00
0

1.00
0

0.00
4

0.00
7

1.00
0

0.08
1

0.08
3

0.00
0

0.04
8

0.01
6

Ains 1.00
0

1.00
0

1.00
0

0.05
4

0.00
7

0.06
0

0.08
1

1.00
0

1.00
0

0.02
1

0.00
0

1.00
0

VMS 1.00
0

0.00
6

0.06
7

0.06
0

1.00
0

0.02
3

0.08
3

1.00
0

1.00
0

1.00
0

0.02
8

0.06
7

Nac
C

0.09
9

0.00
0

1.00
0

0.07
6

0.00
1

0.06
7

0.00
0

0.02
1

1.00
0

1.00
0

0.01
6

0.00
9

NacS 0.05
0

0.02
1

0.00
0

1.00
0

0.00
1

0.00
5

0.04
8

0.00
0

0.02
8

0.01
6

1.00
0

0.00
6

BLA 0.02
1

0.00
6

0.03
4

0.00
4

0.00
9

1.00
0

0.01
6

1.00
0

0.06
7

0.00
9

0.00
6

1.00
0

GLM p-values

GLM beta values

M2 A32
D

A32V vOFC LFC ALM lOFC Ains VMS NacC NacS BLA

M2 0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.74
1

A32
D

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.78
5

0.81
0

0.57
3

0.81
0

A32
V

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

2.82
5

0.85
0

vOF
C

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.86
8

LFC 0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

1.17
1

0.79
8

0.00
0

1.60
2

2.34
6

1.04
1

ALM 0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.00
0

0.47
8

0.00
0

0.62
1

0.00
0

0.59
4

0.00
0

lOFC 0.00
0

0.00
0

0.00
0

0.00
0

1.17
1

0.47
8

0.00
0

0.00
0

0.00
0

1.29
6

1.36
4

0.90
6

Ains 0.00
0

0.00
0

0.00
0

0.00
0

0.79
8

0.00
0

0.00
0

0.00
0

0.00
0

1.04
7

1.74
4

0.00
0
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VMS 0.00
0

0.78
5

0.00
0

0.00
0

0.00
0

0.62
1

0.00
0

0.00
0

0.00
0

0.00
0

0.40
5

0.00
0

Nac
C

0.00
0

0.81
0

0.00
0

0.00
0

1.60
2

0.00
0

1.29
6

1.04
7

0.00
0

0.00
0

0.81
3

0.75
3

Nac
S

0.00
0

0.57
3

2.82
5

0.00
0

2.34
6

0.59
4

1.36
4

1.74
4

0.40
5

0.81
3

0.00
0

1.44
1

BLA 0.74
1

0.81
0

0.85
0

0.86
8

1.04
1

0.00
0

0.90
6

0.00
0

0.00
0

0.75
3

1.44
1

0.00
0

Table 2: GLM statistics 




