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 A semi-empirical elasto-plastic model with a hyperbolic stress-strain curve was developed 

with the goal of predicting the seismic compression of unsaturated sands in the funicular regime 

during undrained cyclic shearing. Using a flow rule derived from energy considerations, the 

evolution in plastic volumetric strain (seismic compression) is predicted from the plastic shear 

strains of the hysteretic hyperbolic stress-strain curve. The plastic volumetric strains are used to 

predict the changes in degree of saturation from phase relationships and changes in pore air 

pressure from Boyle’s and Henry’s laws. The degree of saturation is used to estimate changes in 

matric suction from the transient scanning paths of the soil-water retention curve. Changes in 

small-strain shear modulus estimated from changes in mean effective stress computed from 

constant total stress and changes in pore air pressure, degree of saturation and matric suction, in 

turn affect the hyperbolic stress-strain curve’s shape. The model was validated using experimental 

data from undrained cyclic simple shear tests on unsaturated sand specimens with different initial 

degrees of saturation in the funicular regime. While the model captured trends in hydromechanical 

variables as a function shearing cycles well, it underestimated the measured volumetric strain and 

degree of saturation changes at large numbers of cycles in some tests. A linear decreasing trend 

between seismic compression and initial degree of saturation was predicted from the model while 

a nonlinear increasing-decreasing trend was observed in the experiments, which may be due to not 

considering post-shearing reconsolidation or experimental variations in cyclic shear strain 

amplitudes. 
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1 Introduction 

1.1 Research Motivation 

This study is focused on contributing to the understanding of the volume change response 

of unsaturated soils during cyclic or seismic shearing, a phenomenon referred to as seismic 

compression (Stewart et al. 2004). Unsaturated soil profiles are encountered near the earth’s 

surface in both natural and engineered settings. Natural unsaturated soil profiles are encountered 

when the water table is below the ground surface. The depth of the water table may vary with time 

due to infiltration, evaporation or groundwater flow. In addition to founding structures in natural 

unsaturated soil profiles, they are encountered when making cuts into the subsurface to form 

excavations or changes in grade. Engineered unsaturated soil profiles are encountered in fill-type 

geostructures like embankments and retaining walls constructed above the ground surface and the 

water table. Although they may be affected by infiltration and evaporation, drainage systems are 

typically included in fill-type geostructures to help ensure that they remain in unsaturated 

conditions. Embankments and retaining walls are encountered often in transportation 

infrastructures like pavements, railways, and bridge abutments to help ensure that they remain 

above the water table.  

Unsaturated soils contain air, water, and solids. The amount of water in unsaturated soils 

can be represented by the degree of saturation (volume of water per volume of voids), the 

volumetric water content (volume of water per total volume), or the gravimetric water content 

(mass of water per mass of solids). These variables can be used interchangeably and are related 

through phase relationships. The energy state in the pore water of unsaturated soils with respect to 

free water is typically represented by the matric suction, which is equal to the difference between 

the pore water and air pressures in the soil. A difference between the pore water and air pressures 
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forms due to the curvature of the air-water interface (referred to as a meniscus) associated with the 

surface tension of water and the water-solid contact angle. The degree of saturation, matric suction, 

and pore air pressure are important variables that can have effects on the effective stress in the 

unsaturated soil profile. The shear strength and stiffness of the unsaturated soil are both closely 

tied with the effective stress, indicating that the mechanical response of the unsaturated soil profile 

is coupled with the hydraulic conditions in the soil.  

During cyclic or seismic shearing of unsaturated soils, rearrangement of soil particles may 

occur, leading to a reduction in total volume of the soil as the particles rearrange into a tighter 

arrangement and the void space is decreased (Youd 1972; Rong and McCartney 2020a, 2020b). 

Although it is well known that loose soils contract and dense soils dilate during monotonic 

shearing, both loose and dense sands will experience seismic compression during cyclic or seismic 

shearing (Youd 1972). Drainage conditions for the pore fluids in a soil is known to have a major 

effect on the seismic shearing response. The pore air and water pressures may change during this 

process during undrained shearing, which may occur in a soil layer with no drainage boundaries 

or when the rate of shearing is faster than the rate of pore fluid drainage (Okamura and Soga 2006; 

Unno et al. 2008; Okamura and Noguchi 2009; Rong and McCartney 2020b). Regardless of the 

drainage conditions, the degree of saturation is expected to increase as the volume of voids 

decreases (Rong and McCartney 2020a, 2020b). The changes in pore fluid pressures and degree 

of saturation will lead to changes in the effective stress state in the soil, which controls the shear 

strength and stiffness of the soil. In engineered unsaturated soil profiles in particular, it is 

imperative to understand the changes in volume for soils having different initial degrees of 

saturation because changes in volume and associated changes in hydro-mechanical variables will 

result in settlements of the soil layer and a reduction in effective stress. Settlements and changes 
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in effective stress may have significant impacts on the performance of overlying structures 

supported by the unsaturated soil layer. 

Seismic compression is defined as the accrual of permanent contractive volumetric strains 

in soils during earthquakes and has been recognized as a major cause of seismically-induced 

damage in earth structures (Stewart et al. 2001, 2004). A report on the effects of the Northridge 

earthquake by Stewart et al. (1995) found that seismic compression of fills caused damages on the 

order of $50,000 to $100,000 per lot over 2,000 sites. Seismic compression has been recognized 

as a major cause of seismically induced damage in earth structures. Konagai et al. (2013) reported 

surface settlement of fill soils along the northeastern shorelines of Tokyo Bay during the 2011 

Tohoku earthquake. Surface settlements measured at locations 12-20 m away from the pile were 

300-400 mm and gradually increased to approximately 870 mm alongside the base wall. It was 

verified that the backfill, which primarily experienced seismic compression, was in unsaturated 

state as the ground water level was found to be at a depth of 25 m. Although backfill soils in fill-

type geostructures are typically in an initially dense state and are expected to have minimal 

settlement under static or traffic loading, they may still experience volumetric contraction during 

earthquakes. Even small backfill settlements can have a negative impact on the functionality of 

transportation systems and can lead to high repair costs. Accordingly, it is critical to have a 

constitutive model that can be used to predict the seismic compression of unsaturated soils and 

consider the hydro-mechanical coupling mentioned in the previous paragraph.  

1.2 Research Objectives 

 The current state of the practice in prediction of seismic compression during earthquakes 

is to empirically relate vertical strain profiles with depth to the shear strain induced in a soil layer 

as part of a site response analysis (Yee and Stewart 2011). This is a practical approach as it builds 
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upon analyses performed for the earthquake site response but does not necessarily consider hydro-

mechanically coupling observed in laboratory experiments. While complex elasto-plastic models 

have been developed to simulate the cyclic response of unsaturated soils, many do not consider 

hydro-mechanical coupling (e.g., Khalili et al. 2005). Alternatively, empirical models have been 

developed to predict the seismic compression of unsaturated soils by separately considering 

collapse of air voids and post-shaking reconsolidation (e.g., Ghayoomi et al. 2013; Ghayoomi and 

McCartney 2016). However, it can be difficult to objectively define the parameters for these 

models. Accordingly, based on this gap in the literature, the objective of this study is to develop a 

constitutive model that can represent the hydro-mechanical coupling expected in unsaturated soils 

undergoing seismic compression during cyclic or seismic shearing. This constitutive model is 

intended to be simple so that properties can be calibrated with non-specialized laboratory tests and 

to facilitate implementation into software packages typically used to perform geotechnical 

earthquake engineering simulations (OpenSees, FLAC, etc.).   

1.3 Research Approach 

The research approach in this thesis is to develop a semi-empirical constitutive model that 

links the plastic volume changes during undrained cyclic shearing of an unsaturated soil to the 

changes in degree of saturation and pore fluid pressures, then use these to update the effective 

stress and shear modulus that control the further evolution in plastic volume changes. Specifically, 

an elasto-plastic model with a hyperbolic stress-strain curve is used to capture the hysteretic 

response of the soil to cyclic shearing, and a flow rule derived from energy considerations is used 

to predict the evolution in plastic volumetric strain. The plastic volumetric strains are then used to 

estimate changes in pore air pressure from Boyle’s Law, the Ideal Gas Law and Henry’s Law 

during undrained cyclic simple shear. Assuming undrained conditions, the degree of saturation 
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calculated from the plastic volumetric strain is also used to estimate changes in matric suction 

using the transient scanning curves of the soil-water retention curve for the soil. Changes in the 

small-strain shear modulus of the soil are then estimated using the mean effective stress computed 

from the constant total stress and the varying pore air pressure, degree of saturation and matric 

suction. The parameters of the elasto-plastic model were calibrated from triaxial tests on dry sand 

and the backbone curve from a cyclic simple shear test. The model was then validated using 

experimental data from a series of undrained cyclic simple shear tests on unsaturated sand 

specimens with a relative density of 45%, a constant vertical normal stress of 50 kPa, and different 

initial degrees of saturation in the funicular regime.  

1.4 Thesis Organization 

 Following this introduction, Chapter Two presents an introductory section to the mechanics 

of unsaturated sands. in particular, a literature review is presented to illustrate the historical 

understanding of unsaturated soil mechanics from inception to present day design practices. The 

model and results illustrate the difficulties in developing predictive earthquake designs for 

unsaturated sands due to the complexities in soil skeleton pore network relationships. Chapter Two 

also presents the different static mathematical derivations for the effective stress equation of 

unsaturated sands. Chapter Two includes the dynamic analysis of unsaturated sands during seismic 

compression in literature and derivation of a sand specimen’s backbone curve. Chapter Three 

presents a model to predict multiple cycles of applied shear strain cyclic shearing of undrained 

unsaturated sand using semi-empirical equations derived from initial cycling data. Chapter Four 

provides a brief description of the collected drained and undrained CSS data collected from 

experiments performed by Rong and McCartney (2020b). Chapter Five focuses on the calibration 

of the model, including the hyperbolic stress-strain curve model parameters, the failure model 
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parameters, and the pore water pressure generation model parameters. While the pore air pressure 

generation model does not require soil-specific calibration as it is based solely on the predicted 

plastic volumetric strain and initial soil conditions, the pore water pressure generation model 

calibration required the definition of a slope of the transient SWRC scanning curve paths that 

depends on the initial degree of saturation of the sand.  

A comparison between the model prediction and a set of experimental data from Rong and 

McCartney (2020b) is presented in Chapter 6. Specifically, this includes a comparison of the 

evolution of the key hydro-mechanical variables during cyclic shearing for sands having the same 

initial relative density of 45% with different initial degrees of saturation under a cyclic shear strain 

amplitude of 1% and a frequency of 1 Hz for 200 cycles.  Chapter 6 also includes comparisons of 

the trends in the hydro-mechanical variables as a function of the initial degrees of saturation 

obtained after 15 and 200 cycles to demonstrate how the trends evolve with cycles.  The 

conclusions from the model development and the observations from the comparison between the 

model and experiments are summarized in Chapter 7. Chapter 8 includes a summary of 

developments which may help improve the model predictions and recommendations to guide 

future experiments. This thesis also includes several appendices that include detailed derivations 

of key equations used in the model along with the full time series for all model results compared 

against the undrained cyclic simple shear data from Rong and McCartney (2020b). 
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2 Background  

2.1 Introduction to Unsaturated Soils 

 In most settlement methods used in soil mechanics designs, soils are typically assumed to 

be in either dry or saturated conditions. This assumption is partly due to simplicity, and partly due 

to the belief that these two extremes in the degree of saturation (0 for dry soils and 1 for saturated 

soils) will yield worst-case scenarios for design as the air-water menisci in unsaturated soils will 

provide increased interparticle connections. A saturated soil is a two-phase system composed of 

soil solids with void spaces totally occupied by fluid water. A dry soil is also a two-phase system 

composing of a soil solid with all void spaces occupied by fluid air. Although fully saturated soils 

are encountered below the water table or in soils beneath lakes or oceans, it is rare to encounter 

fully dry soils because soil layers usually are continuously interacting with the atmosphere. In 

general, soils above the capillary fringe overlying the water table can be characterized as a three-

phase system consisting of soil solids and two fluids: air and water. 

In nature, the hydrologic cycle of water on earth will have various movements in and out 

of the superficial ground soil through precipitation, infiltration, and evaporation processes. Since 

the movement of water will continue throughout seasonal periods, the ground soil can anticipate 

degrees of saturation ranging from 0<S<1. The zone above the water table is referred to as the 

vadose zone. An illustration of the vadose zone is shown in Figure 2.1.1 along with typical profiles 

of degree of saturation (S), pore water pressure (u), total stress (), and effective and horizontal 

vertical stresses representative of hydrostatic conditions (i.e., no infiltration or evaporation). It is 

possible for soils to be saturated above the water table within the capillary fringe designated by 

the dashed red line in Figure 2.1.1.  
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Figure 2.1.1 Typical near-surface unsaturated soil profile with hydrostatic conditions (after Lu 

and Likos 2004) 

 

The vadose zone can be subdivided into three regimes: capillary fringe, funicular and 

pendular. The capillary fringe regime is the zone located immediately above the water table source 

and is saturated or nearly saturated. If air is present in the capillary regime, it is in the form of 

occluded bubbles that may have become trapped during fluctuations in the water table depth. The 

height of the capillary fringe is related to the air entry suction for the soil, which will be introduced 

later. The funicular regime represents the zone where pore air can enter the void spaces between 

the water and soil particles. As the air enters the pores, desaturation commences, and the pore 

water exists in menisci at soil particle contacts. The air and water phases in the soil are typically 

continuous in the funicular regime. In the pendular regime at heights well above the water table, 

the pore water is discontinuous and is only present in thin films around the soil particles while the 

air phase is continuous throughout the voids of the soil skeleton.  

The depth of the water table is defined as the location where the pore water pressure is zero 

(in gage pressure). Below the water table, the water is continuous (no curvature or interfacial 

tension due to the lack of air) throughout the soil skeleton and is under positive pore water 

pressures. Above the water table, the pore water is under negative pore water pressures. Negative 

water pressures arise from capillary forces at the curved air-water interface. Although it is common 
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to assume that pore air pressures are equal to zero (in gage pressure) or equal to the atmospheric 

pressure (in absolute pressure), the air pressure may not be zero if the air is occluded in the water 

phase or if void collapse causes compression of air-filled voids. Regardless, as a result of the 

negative pore water pressures, positive matric suction is exhibited in the soil above the water table. 

Different soils such as clays and sands will have different distributions of degree of saturation 

above the water table, which are governed by the soil-water retention curve (SWRC) as shown in 

Figure 2.1.2. The shape of the SWRC is related to the pore size distribution and soil particle 

mineralogy, which will lead to different interactions between the pore water and the soil solids that 

can be referred to as adsorption. For granular soils like sands and gravel, the SWRC is mainly 

related to the pore size distribution and capillarity caused by air-water menisci at the particle 

contacts. The SWRC is path dependent and will have different shapes depending on whether the 

soil is being wetted or dried, a phenomenon referred to as hydraulic hysteresis.  

 

Figure 2.1.2 Typical shape of the soil-water retention curve (SWRC) partitioned into the 

capillary, funicular and pendular regimes (after Lu and Likos 2004). 
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Seasonal water movement either due to infiltration or evaporation from the ground surface 

or due to water table fluctuations will not only change the distribution in water within the soil layer 

and the pore air and water pressures, but the presence of water in the soil may change the total unit 

weight of the soil. Water movement or fluctuating ground water tables could present issues with 

slope instability due to increases in pore fluid pressures or deformation changes related to effective 

stress changes, which are described in the next section. As water is superficially evaporated due to 

earthen heating cycles, this change in degree of saturation could lead to shrinkage of the soil 

skeleton due to the changes to the effective stress state. This study assumes that there is no water 

movement in an unsaturated soil layer due to infiltration or evaporation or water table fluctuations, 

and that changes in pore air and water pressures or degree of saturation are only caused by cyclic 

or seismic shearing of the soil layer.   

2.2 Effective Stress in Unsaturated Soils 

 Terzaghi (1936) defined the effective stress in a fully saturated soil as the total stress state 

in a three-dimensional cartesian coordinate minus the neutral orthogonal pressures (also called the 

pore water pressures). For example, the vertical effective stress 𝜎′𝑣 can be defined as follows:  

𝜎𝑣′ = (𝜎𝑣 − 𝑢𝑤) (2.2.1) 

where 𝜎′𝑣  is the total stress and uw is the pore water pressure. In a free-field condition with 

hydrostatic conditions, the total stress is equal to the depth below the ground surface multiplied by 

the total unit weight of the soil, and the pore water pressure is equal to the depth of a point of 

interest below the water table multiplied by the unit weight of water. Use of Terzaghi’s effective 

stress implies that the water pressure acts in every direction with equal intensity and the difference 

between the total stress and pore water describes the stress state of the soil structure (Fredlund 
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2016). Terzaghi’s effective stress equation is still continuously used in design practices to describe 

the stress state change for a soil beneath the ground water table (i.e., fully saturated soil). 

 Bishop and Blight (1963) proposed a definition for the effective stress state of an 

unsaturated soil, given as follows: 

𝜎𝑣′ = (𝜎𝑣 − 𝑢𝑎) + 𝜒(𝑢𝑎 − 𝑢𝑤) (2.2.2) 

where the term 𝜓 =  (𝑢𝑎 − 𝑢𝑤) is the matric suction and describes the air-capillary water interface 

and adsorptive forces within the pores,  𝜎𝑛 = (𝜎𝑣 − 𝑢𝑎) is the net vertical stress, and 𝜒 is an 

effective stress parameter that is a property of the soil and must be defined experimentally. In wet 

sands, adsorptive forces are negligible and negative pore water stresses contribute an apparent 

cohesive strength through capillarity arising from air-water surface tension (Lu and Likos 2004). 

For clays, adsorptive forces associated with particle-water interaction associated with clay 

mineralogy play a more important role in water retention (Lu et al. 2016). When 𝜒 is equal to 1 

the soil is considered fully saturated, and the equation reduces to Terzaghi’s effective stress given 

in Equation 2.2.1. When 𝜒  is equal to zero, the soil is considered dry with air filling all the voids, 

and the effective stress is equal to the net stress: 

𝜎𝑣
′ = 𝜎𝑣 − 𝑢𝑎 (2.2.3) 

Many definitions have been proposed for 𝜒  , but most researchers have assumed that it is linked 

with the degree of saturation or matric suction in the soil. For example, Lu et al. (2010) assumed 

that 𝜒  is equal to the soil’s effective saturation (𝑆𝑒), which can be defined as follows:  

𝑆𝑒 =
𝑆 − 𝑆𝑟𝑒𝑠
1 − 𝑆𝑟𝑒𝑠

 
(2.2.4) 

where 𝑆𝑟𝑒𝑠 is the residual saturation. An advantage of using this definition is that the effective 

saturation is linked to the suction through the SWRC. When setting 𝜒  equal to the effective 
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saturation in Equation 2.2.2, Lu et al. (2010) proposed the definition of a new variable referred to 

as the suction stress, given as follows: 

𝜎𝑠 = 𝑆𝑒(𝑢𝑎 − 𝑢𝑤) (2.2.5) 

In this manner, the vertical effective stress in an unsaturated soil can now be defined from Equation 

2.2.2 as follows: 

𝜎𝑣′ = (𝜎𝑣 − 𝑢𝑎) + 𝜎𝑠 (2.2.6) 

This equation indicates that unsaturated conditions will lead to an increase in the effective stress 

of the soil. However, the effect of matric suction on the effective stress will depend on the amount 

of water in the soil through the effective saturation. For example, the matric suction will increase 

linearly with height above the water table for the hydrostatic profiles shown in Figure 2.1.1, but 

the effective saturation will decrease with height above the water table according to the shape of 

the SWRC. Accordingly, the SWRC provides the link between the state variables of matric suction 

and water content which can be used to describe the amount of energy in the pore water voids for 

a given amount of saturation (Lu et al. 2010). The SWRC is also linked to the definition of the 

effective stress state of a soil if the density and pore void skeleton remain unchanged. The SWRC 

is the constitutive relationship at hydraulic equilibrium (no flow) between total suction and 

volumetric water content, gravimetric content, degree of saturation or effective saturation. Since 

hydraulic hysteresis occurs during the entry and/or exit of air and water in the pore voids of the 

soil skeleton, there will be two different curves corresponding to either the wetting or drying path 

of the soil (Khalili et al. 2008). 
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Figure 2.2.1 Schematic of a hysteretic SWRC showing typical shapes of the primary drying and 

wetting paths in blue and orange, respectively. 

 

The water content, shape, radius, and packing arrangement of the solid particles w ill 

influence the shape of the SWRC and the range of effective stresses possible during wetting and 

drying (Lu et al. 2004). For sands, capillarity is the dominating suction mechanism, and the slope 

of the SWRC is controlled by the arrangement of the pore water menisci connecting the soil 

skeleton (Lu and Likos 2004).   

A way to characterize the potential capillarity stresses in a soil profile is to have extensive 

knowledge about the soil’s water retention properties during drying or wetting phases. Brooks and 

Corey (1964) derived a discontinuous function to characterize the permeability of air and water in 

terms of the air entry value or “bubbling pressure” which was used to help understand the hydraulic 

retention properties of soil for farming advancements. The air entry value is the quantity of suction 

at which the surface tension between air and water is overcome and air can begin entering the pore 
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void spaces of a fully saturated soil transitioning to an unsaturated soil (i.e., drying curve). Air 

expulsion suction corresponds to the rewetting curve path and represents the suction at which air-

filled voids collapse under water infiltration (Khalili et al. 2008). While the Brooks and Corey 

(1964) model may have the best fundamental definition, van Genuchten (1980) proposed a 

smoother SWRC which resolves issues with the discontinuity at the air entry suction that affect 

numerical modeling. The van Genuchten (1980) SWRC is given as follows:  

Se = {
1

1 + [αvG (ua − uw)]NvG
}
1−

1
NvG

 

(2.2.7) 

where αvg and Nvg are empirical fitting parameters that are related to the inverse air entry pressure 

and the pore size distribution, respectively. Using the van Genuchten (1980) SWRC model, Lu et 

al. (2010) derived an equation the suction stress of the soil at a given density, given as follows:  

𝜎𝑠 = [
ua − uw

(1 + [αvg(ua − uw)]
Nvg
)
1−

1
Nvg

] 

(2.2.8) 

Similar to the SWRC, the suction stress characteristic curve can be plotted showing the relationship 

between the suction stress and the degree of saturation, as shown in Figure 2.2.2. If the pore size 

distribution parameter Nvg is larger than 2.0 (most apparent in sands and silts), the SSCC increases 

and then decreases. When the pore size distribution parameter Nvg is less than 2.0 (most apparent 

in clays), the SSCC increases monotonically. 
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Figure 2.2.2 SSCCs representative of sands, silts, and clays (Lu et al. 2010) 

Accordingly, the effective vertical stress (σ𝑣
′) in an unsaturated soil can be calculated by 

combining the suction stress and normal stress as follows (Lu et al. 2010): 

σ𝑣
′ = (σ𝑛 − ua) + [

ua − uw

(1 + [αvg(ua − uw)]
Nvg
)
1−

1
Nvg

] (2.2.9) 

The effective stress obtained from the SWRC fitting parameters (αvg, Nvg) only applies to the 

conditions where the pore size distribution is not changed. This implies that Equation 2.2.9 should 

be used with caution when studying seismic compression of unsaturated soils as the pore size 

distribution may change. 

2.3 Cyclic Response of Soils 

The dynamic response of soils is dependent upon the shear strain magnitude. Ground 

vibrations induce strain in the soil and can occur during heavy construction, factory machine 

vibrations or earthquakes. Earthquakes impose a range of wave types on soil layers, but it is well 

known that seismic shear waves have the greatest effect on permanent ground deformations 

(Hardin and Drnevich 1972). Various models have been developed from empirical data to predict 
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the dynamic response of shear stress and strain in soils during dynamic loading or ground action 

(Hardin and Black 1969; Hardin and Drnevich 1972). The shear stress-strain behavior of soils can 

be idealized as a hyperbola using the small-strain shear modulus (Gi) and the ultimate shear stress, 

(τult) to depict the initial stage of shear loading of a soil as shown in Figure 2.3.1 (Hardin and 

Drnevich 1972). 

 

Figure 2.3.1 Example of a hyperbolic shear stress-shear strain curve with a definition of the 

small strain shear modulus Gi 

 

At small strains (10-4 to 10-3 %), the shear modulus is constant, the material is linear elastic, 

and interparticle connections remain intact (i.e., no permanent particle rearrangement). At a certain 

threshold level of shear strain, cyclic or seismic shearing movement causes individual soil particle 

contacts to redistribute into denser arrangements resulting in distortion of the original soil skeleton. 

Hardin and Drnevich idealized that the response of soil degradation to induced shearing can be 

captured by the ratio of the small strain shear modulus (Gi) and the shear modulus at the varying 

strain (G/Gi) in a hyperbolic plot called the shear modulus reduction curve (Figure 2.3.2). It is 

important to note that seismic compression is only expected when the cyclic shear strain amplitude 

is greater than the cyclic threshold shear strain. 
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Figure 2.3.2 Example of a shear modulus reduction curve  

Many studies have observed that the small strain shear modulus is governed by soil 

characteristics such as void ratio, degree of saturation and effective stress (Hardin and Drnevich 

1972; Hardin 1978; Khosravi and McCartney 2009, 2012; Khosravi et al. 2010; Dong et al. 2016, 

2017). Hardin (1978) proposed the following empirical power law relationship to describe the 

relationship between the small strain shear modulus of a dry or saturated soil with the void ratio, 

overconsolidation ratio (OCR) and mean effective stress (𝜎′𝑚): 

G𝑖 = AF€(OCR)
kPa

1−n(σm
′)n (2.3.1) 

where (e) is a void ratio factor given by: 

F(e) =
1

0.3 + 0.7𝑒2
 

(2.3.2) 

Degradation of the shear modulus occurs at shear strains induced by earthquake or repeated 

dynamic loading greater than those in the elastic regime and result in irreversible deformations of 

the soil fabric. The decreasing trend in the reduction modulus curve as strain increases exemplifies 

the plastic evolutions occurring in the soil during cyclic shearing. 
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Studies conducted on the shear modulus of unsaturated soils indicate that the small strain shear 

modulus will increase during drying of soils, with the results for several soils reinterpreted in terms 

of effective stress according to Equation 2.2.2 summarized by Khosravi and McCartney (2009).  

Khosravi and McCartney (2012) proposed an equation for the small strain shear modulus (Gi) of 

unsaturated soils using a double-hardening model extended from Equation 2.3.1: 

G𝑖 = AP𝑎 [
𝜎′𝑚𝑐0

(𝜎𝑚 − 𝑢𝑎)
𝑒𝑥𝑝 (

𝛥𝑒𝑝

𝜆 − 𝜅
)]

𝐾

[
(𝜎𝑚 − 𝑢𝑎)

𝜎′𝑚
𝑒𝑥𝑝(𝑏[𝑆𝑒0 − 𝑆𝑒])]

𝐾′

(
𝜎′𝑚
P𝑎
)

𝑛

 

(2.3.3) 

where 'mc0 is the initial mean effective preconsolidation stress and b, K, and K' are hardening 

parameters building upon the model of Wheeler et al. (2003) to consider the effects of changes in 

void ratio or changes in degree of saturation on the shear modulus of unsaturated soils. Their 

equation was used to capture hysteretic changes in the small-strain shear modulus during hydraulic 

hysteresis (drying and wetting). The model of Khosravi and McCartney (2012) indicates that 

during drying at constant mean net stress, the shear modulus will increase but that during 

subsequent rewetting, the shear modulus will decrease upon a different path. This implies that 

drying and wetting of soils can lead to permanent changes in the shear modulus due to plastic 

hardening.  

 One issue with the use of Equation 2.3.3 is that it is very difficult to apply with several 

parameters. Alternatively, Dong et al. (2016) proposed a simplified model for the small strain shear 

modulus of an unsaturated soil based on measurements of the small strain shear modulus using 

bender elements: 

G𝑖
𝑢𝑛𝑠𝑎𝑡 = 𝐺𝑖

𝑠𝑎𝑡 (
1

S𝑒
)
𝛽

(
𝜎′𝑚
𝑃𝑎
+ 1)

𝛾𝑜

 
(2.3.3) 

 

(2.3.4) 

where 𝛾𝑜 and 𝛽 are empirical fitting parameters. This model was found to represent the small strain 

shear modulus of unsaturated soils well and has a consistent definition to that of Hardin (1978). 
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During cyclic shearing of a soil specimen, the sign of the shear strain will reverse, and the 

soil will be loaded and unloaded in a hysteretic manner. If the strain level is greater than the cyclic 

threshold shear strain, plastic deformations will occur and the hysteretic stress-strain curve will 

form a closed loop, as shown in Figure 2.3.3. As the shear strain amplitude increases, a decrease 

in shear modulus is expected according to the shear modulus reduction curve shown in 

Figure 2.3.2, which has been represented by the following equation (Darendeli 2001):  

𝐺

𝐺𝑖
= [

1

1 + (
𝛾
𝛾𝑟
)
𝑎] 

(2.3.3) 

 

(2.3.3) 

where r is a reference strain and a is an empirical fitting parameter. The seismic compression 

model developed in this study will use a form of this equation that is related to the derivative of a 

hyperbolic stress-strain curve and will be introduced in Chapter 3. The reversal shear stress is 

expected to follow the small strain shear modulus slope until reaching higher strains. Reload 

shearing of the soil follows the same trend (all stages are depicted in Figure 2.3.3) and represent 

the shear stress strain hysteresis loop. The area within the shear stress strain hysteresis loop in 

Figure 2.3.3 corresponds can be used to calculate the damping ratio of the soil D, which is another 

key soil dynamic property. The seismic compression obtained from the semi-empirical model 

developed in this study depends only on the shear modulus G, so the damping ratio is not discussed 

further in this study even though it could be derived from the hysteretic stress-strain curve.  
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Figure 2.3.3 Example of shear stress-strain hysteresis of soils during loading, unloading and 

reloading (Hardin and Drnevich 1972) 

 

2.4 Seismic Compression of Unsaturated Soils in Literature 

Compression of soils during is expected during cyclic or seismic shearing and may occur 

in either drained or undrained conditions depending on the rate of shearing (Youd 1972, Silver and 

Seed 1971; Rong and McCartney 2019, 2020b). Historically in soil mechanics design, it has been 

considered conservative to assume the soil to be fully saturated or dry in settlement predictions as 

these are considered extreme cases of the soil’s stress state (Tokimatsu and Seed 1987, Silver and 

Seed 1971). For saturated soils, seismic compression is not possible because the pore water is 

incompressible. Instead, cyclic or seismic shearing of saturated soils will lead to an increase in 

pore water pressure, which may result in liquefaction. It is possible that after liquefaction occurs, 

dissipation of the pore water pressures may lead to reconsolidation and corresponding settlements 

after the end of earthquake shaking (Bray and Olaya 2022). It is interesting to note that even a 

slight reduction of degree of saturation can increase the soil’s resistance to liquefaction 

(Tsukamoto et al. 2002; Okamura et al. 2006). For unsaturated soils, soil interparticle stresses will 

increase due to capillary effects, and occluded air bubbles can mitigate the generation of pore water 

pressures during seismic shearing. However, there are cases where unsaturated soils with relatively 

high initial degrees of saturation can still liquefy under seismic excitation (Unno et al. 2008).  
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Ghayoomi et al. (2013) developed an empirical model that combined estimates of the post-

liquefaction reconsolidation of unsaturated soils with estimates of the collapse of air-filled voids 

to predict the seismic compression of unsaturated soils in all three water retention regimes. Their 

model was able to capture trends in seismic compression of sand specimens with different initial 

degrees of saturation observed from centrifuge modeling results as shown in Figure 2.3.4. 

However, the model includes many parameters that are not easy to determine which could have 

major effects on the trends in the seismic compression as a function of the initial degree of 

saturation. The model being developed in this study focuses on predicting the seismic compression 

of unsaturated soils during earthquake shaking using hydro-mechanical coupling, and 

reconsolidation settlements due to dissipation of excess pore water pressures are not included.  

 

Figure 2.3.4 Comparison between seismic compression results from centrifuge tests and the 

empirical model of Ghayoomi et al. (2013) 

 

In unsaturated soils with lower initial degrees of saturation, seismic compression is 

expected during strong shaking by earthquakes with shear strain amplitudes greater than the cyclic 

threshold shear strain (Stewart et al. 2004, Rong and McCartney 2019, 2020b).  Earthquakes and 
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aftershocks often have rapid shearing with short durations that can lead to undrained conditions 

even for sands. Unsaturated soils have lower hydraulic conductivity than saturated soils, so it is 

expected that undrained conditions will be present in unsaturated soils during earthquake shaking. 

In undrained conditions, pore air and water pressures increase during shaking and compression of 

the air voids may occur which coincides with an increase in the saturation of the overall soil 

system. Several studies have performed cyclic triaxial tests (Unno et al. 2008; Kimoto et al. 2011) 

and cyclic simple shear tests (Whang et al. 2004; Duku et al. 2008, Craciun and Lo 2010; Milatz 

and Grabe 2015; Rong and McCartney 2019, 2020) to characterize the cyclic response of 

unsaturated soils. Early cyclic simple shear tests involved compaction of soils to different initial 

degrees of saturation followed by undrained shearing without measurement of changes in pore air 

or water pressures (Whang et al. 2004, 2005; Duku et al. 2008). It was not possible to separate the 

effects of hydro-mechanical coupling from the effects of soil structures induced by the compaction 

process. Other studies characterized the changes in pore air and water pressures and stress-strain 

responses during cyclic shearing (Unno et al. 2008; Kimoto et al. 2011; Craciun and Lo 2010; 

Milatz and Grabe 2015; Rong and McCartney 2020a, 2020b). Results from these studies indicate 

that it is critical to measure the pore air and water pressures in specimens with the same initial 

preparation conditions to effectively interpret the results from seismic shearing tests. In the 

funicular regime, Rong and McCartney (2020b) found that different changes in pore air and water 

pressures may occur during cyclic shearing, which is a focus of the model development in this 

study. In most of the studies on seismic compression, the soil skeleton compresses in response to 

the redistribution of the pore void spaces and the SWRC shifts in different ways depending on the 

drainage conditions (Rong and McCartney 2020a, 2020b). A thorough overview of the results from 

seismic compression measurements from cyclic simple shear and triaxial tests in the literature can 
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be found in Rong and McCartney (2021a). Chapter 4 also includes a discussion on the results from 

cyclic simple shear tests performed by Rong and McCartney (2021a) along with unpublished data 

from additional cyclic simple shear tests.  
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3 Model 

3.1 Stresses and Strains during Cyclic Simple Shear Testing 

This study involves the development of a semi-empirical model for the seismic 

compression of unsaturated soils that is calibrated based on the results from cyclic simple shear 

tests presented by Rong and McCartney (2020b). Cyclic simple shear tests first involve application 

of a vertical stress to a specimen confined with a housing that prevents lateral expansion, resulting 

in an at-rest initial stress state, as shown in the central figure of Figure 3.1.1. The horizontal stress 

is typically estimated using a coefficient of lateral earth pressure at rest, K0, which can be defined 

using Jaky’s equation and the friction angle or Hooke’s law and elastic parameters. Then shear 

stresses are imposed to the specimen without changing the mean stress. In a cyclic simple shear 

test, the specimen is typically sheared in one direction until reaching the target cyclic shear strain 

amplitude, then the direction of shearing is reversed until reaching the cyclic shear strain amplitude 

in the other direction. The shear stresses required to reach the shear strain amplitude are recorded 

during the test, and may decrease or increase depending on the changes in soil properties during 

shearing. 

  

Figure 3.1.1 Key variables in a cyclic simple shear test on a soil specimen after vertical loading 

and during bi-directional cyclic simple shearing.  



25 
  

Mohr circles for a cyclic simple shear test are shown in Figure 3.1.2. The initial stress state 

is shown as a black circle, with h = K0 v. This initial anisotropic stress state implies that there 

are initially shear stresses in the specimen. A cyclic simple shear tests involves increasing the shear 

stresses applied to an element of soil, which lead to expansion of the circle about the same mean 

stress until reaching the blue circle. It is critical in a cyclic simple shear test that the blue circle 

does not reach the failure envelope. Reversal of the shear stresses makes the circle return to the at-

rest state, after which shearing in the opposite direction causes the circle to expand back to the 

blue circle. The reversal of signs of the shear stresses during cyclic shearing is represented by the 

black and blue vertical lines on the Mohr circle. Because the mean effective stresses do not change 

during the cyclic simple shear test, a simplified constitutive model can be developed to represent 

seismic compression process that only focuses on the stress paths shown in Figure 3.1.2. 

 

Figure 3.1.2 Schematic of the changes in stress state during cyclic simple shear testing of a soil 

specimen showing the directions of the stresses during applied shear strain testing 
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The first step in developing the semi-empirical constitutive model for seismic compression 

was to define a backbone curve. The backbone curve represents the shear stress-strain curve if the 

soil were sheared monotonically to failure (in either direction of shearing as shown in Figure 3.1.2). 

A major assumption of this study is that the backbone curve has a shape similar to a hyperbola. 

Hyperbolic models have been used most frequently to represent the stress-strain curves obtained 

from triaxial tests (e.g., Duncan et al. 1980) so several modifications are necessary to apply a 

hyperbolic model to cyclic simple shear tests.  The equation for a hyperbolic shear stress strain 

curve, which provides the shear stress for any applied shear strain γapplied, is given as follows:  

τ = (
γapplied

1
Gi
+
γapplied ∗ R𝑓

τult

) 

(3.1.1) 

where Gi is the initial shear modulus (or small-strain shear modulus), τult is the ultimate shear stress 

from the shape of the hyperbola, and Rf is a reduction factor that is used to adjust the curve to the 

actual shear stress at failure f observed in an experiment. An example of a hyperbolic shear stress-

strain curve in as shown in Figure 3.1.3.  

 

Figure 3.1.3 Backbone curve shape from the hyperbolic model: (a) Shear stress-strain curve; 

(b) Shear stress ratio-shear strain curve 
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This figure also shows that as the shear strain increases, the shear modulus decreases from Gi to a 

lower value of plastic shear modulus Gp, which will be defined in the next section. A normalized 

version of the shear stress-strain curve is shown in Figure 3.1.3 in terms of the shear stress ratio  

= /m', ult = ult/m', and f = f/m'.  

Additional modifications are necessary to the hyperbolic model when simulating a cyclic 

simple shear test (Naesgaard 2011). Specifically, the backbone curve only represents the shape of 

the shear stress-strain curve for the first N = 0.25 cycles of shearing. When the applied shear strain 

is reversed, a hysteresis loop can be formed that has a different shape from the backbone curve but 

has the same parameters. The first step in defining the equations for this hysteresis loop is to define 

the cyclic shear stress c that will occur during application of a certain cyclic shear strain amplitude 

c is defined as follows:  

τc = (
γc

1
Gi
+
γc ∗ R𝑓
τult

) 

(3.1.2) 

After reaching τc in a cyclic simple shear test after the number of cycles N = 0.25, the direction of 

shearing will be reversed until reaching τc in the opposite direction of shearing when N = 0.75. 

The equations for the hysteretic shear stress strain curves can be derived from the equation for the 

backbone curve. Specifically, the equation for the shear stress strain curve for increasing applied 

strain (shearing to the right in Figure 2.1) is given as follows:  

𝜏 =

(

 
 γc + γapplied

1
Gi
+
(γc + γapplied) ∗ R𝑓

2 ∗ τult )

 
 
− τc 

 

(3.1.3) 

Similarly, the equation for the shear stress strain curve for decreasing applied strain (shearing to 

the left in Figure 2.1) is given as follows: 
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τ =

(

 
 γc − γapplied

1
Gi
+
(γc − γapplied) ∗ R𝑓

2 ∗ τult )

 
 
+ τc 

 

(3.1.4) 

In this sense, Equations 3.1.3 and 3.1.4 can be used to form a hysteretic shear stress-strain loop as 

shown in Figure 3.1.4. The backbone curve intersects the hysteresis loop at ±(c,c). 

 

Figure 3.1.4 Hysteretic loop showing the hyperbolic shear stress strain reversals along with the 

hyperbolic backbone curve. 

 

3.2 Prediction of the Volumetric Strain during Cyclic Shearing 

 As the unsaturated specimen is cyclically sheared in undrained conditions, particles will 

move into denser arrangements causing volumetric contraction of the soil skeleton. A simplified 

schematic depicting the volumetric changes during undrained cyclic simple shearing of spherical 

particles is seen in Figure 3.2.1. Although the water in the unsaturated specimen will likely be 

distributed throughout the specimen height, water will take up more of the space after the specimen 

rearranges into a tighter packing, causing an increase in degree of saturation.   
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Figure 3.2.1 Schematic of soil particle rearrangement before and after cyclic shearing showing 

initial and final heights of specimen and changes in degree of saturation. 

 

Due to the nonlinear shape of the hyperbolic stress-strain curve in Figure 3.1.4, it is 

assumed that each cycle of shearing will cause plastic shear strains. The experimental study of 

Youd (1971) suggests that plastic volumetric strains will thus occur during each cycle of shearing 

and will accumulate over multiple cycles. Accordingly, a flow rule is needed to relate the plastic 

shear strains with the plastic volumetric strains. The flow rule developed in the UBCSAND model 

was used to capture the indirect plastic volumetric strains caused by the shear stress-shear strain 

response of the soil. UBCSAND is a semi-empirical model described by Beaty and Byrne (2011) 

that combines a normalized semi-empirical hyperbolic shear stress-strain curve shown in Figure 

3.2.2 with the elasto-plastic framework developed by Byrne et al. (1995). UBCSAND was 

originally developed to study the liquefaction behavior of sands and silty sands having relative 

densities less than 80% during monotonic shearing (Puebla et al. 1997) but was later extended to 

study liquefaction during earthquakes (Byrne and Park 2003; Byrne et al. 2004; Naesgaard 2011). 

This model has been adapted to study the liquefaction of unsaturated soils during earthquake 

shaking by assuming a combined bulk stiffness for the air and water pressures (Seid-Karbasi and 

Byrne 2006), but it has not been used to investigate the seismic compression of unsaturated soils. 



30 
  

  

Figure 3.2.2 UBCSAND model hyperbolic stress-strain relationship (Byrne and Park 2003) 

In the UBCSAND model, the initial small strain shear modulus is dependent on the changes 

in the mean effective stress through the following relationship:  

Gi = kG
e ∗ Pa ∗ (

σ′m
Pa
)

n𝑒

 

 

(3.2.1) 

where ne is the elastic shear modulus exponent that governs the effect of mean effective stress on 

the shear modulus and ke
G is the elastic shear modulus number. The first quarter cycle of shear 

stress – shear strain response from a drained cyclic simple shear test (i.e., the backbone curve) is 

typically used to calibrate the best fit values of kG
e  and n𝑒. Chapter 5 will include a summary of the 

model calibration, and Appendix A1 shows the procedure for defining the hyperbolic model 

parameters.  

As mentioned, the shear stress-strain curve in the UBCSAND model is normalized. The 

normalized shear stress is defined as  = /m'. The plastic shear modulus is the ratio of the plastic 

shear stress and the plastic shear strain. To avoid having to carry the mean effective stress through 

all calculations as shown in Figure 3.1.3, the UBCSAND model defines the plastic shear modulus 

in a normalized manner. For example, the initial plastic shear modulus (Gi
P) at small strains is 

defined by dividing the small-strain shear modulus from Equation 3.2.1 by the mean effective 

stress, as follows:  
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Gi
P = kG

e × (
σ′m
Pa
)

n𝑒−1

 

 

(3.2.2) 

Accordingly, Gi has the same units as the shear stress while Gi
P  is dimensionless. When shear 

stresses increase, the normalized tangent slope of the plastic response can be predicted the 

derivative of the hyperbolic curve, as follows:   

Gp = Gi
P × [1 −

τ

τf
Rf]

0.5

 

 

(3.2.3) 

This equation indicates that the normalized plastic shear modulus is a function of the mean stress, 

the shear stress at failure (τf), and the failure ratio (Rf).  

The incremental change in the developed stress ratio can be computed as the derivative of 

the hyperbolic stress-strain curve shown in Figure 3.2.2 as follows:  

ηd =
τ

σ′m
= 𝑠𝑖𝑛𝜙𝑑 

 

(3.2.4) 

∆ηd = [
∆τ

σ′m
− (

τ

(σ′m)2
)∆σ′m] 

 

(3.2.5) 

where d is the developed friction angle.  

In general, due to the nonlinear shape of the hyperbolic stress strain curve, any shear strains 

generated during loading or reloading are be considered plastic shear strains. The plastic shear 

response is captured assuming a hyperbolic relationship between the incremental changes in the 

plastic shear strains (∆γp) and the developed stress ratio (∆ηd =
∆τ

σ′m
), as follows The plastic shear 

strains can be computed using the change in the de veloped stress ratio and the plastic shear 

modulus. 

∆γp = ∆ηd (
1

Gp
) 

 

(3.2.6) 
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UBCSAND uses a flow rule developed from energy considerations to compute the 

coupling between the plastic shear strain and the plastic volumetric strain response, as follows: 

∆εv
p = ∆γp(sinϕcv − ηd) 

 

(3.2.7) 

where (ϕcv) is the constant volume friction angle (Puebla et al. 1997). Additional derivations 

related to the flow rule are presented in Appendix A5. Plastic volumetric strains in loose sands are 

contractive and are influenced by the evolution of the developed stress ratio. In dense sands, the 

plastic volumetric strains are dilative (Puebla et al. 1997). Lateral constraint during the applied 

shear strain in a cyclic simple shear test indicates that the plastic volumetric strain will be due 

solely to vertical axial strains (e.g., no radial strains).  

An important aspect of this model is that the cumulative volumetric strain only accrues 

during loading/reloading and not during unloading because loading/reloading is a plastic response 

causing permanent deformations whereas unloading is considered to be an elastic response 

garnering no permanent deformation of the structure. Unloading is defined as the case when the 

shear stress is reduced from a value of  = c until  = 0. The schematic in Figure 3.2.3 shows the 

development of plastic shear and volumetric strains during loading/reloading (labeled in red) and 

elastic unloading (labeled in green).  Elastic changes in volumetric strain are only expected if there 

are changes in mean effective stress, so during elastic unloading (labeled in green), no volumetric 

strains will occur.  
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Figure 3.2.3 Hysteretic shear stress-shear strain showing plastic load/reload and elastic unload, 

with the corresponding plastic/elastic cyclic shear strain and cumulative plastic volumetric strain  

 

To calculate the cumulative plastic volumetric strain (εv
P ), the increment of plastic 

volumetric strain during each cycle (Δεv
p

 ) is added to the plastic volumetric strain from the 

previous cycle (εvo
p
): 

εv
P = Δεv

p
+ εvo

p
 

 

(3.2.8) 

The cumulative plastic volumetric strain in percent is:  

εv
P(%) = εv

p
(100%) 

 

(3.2.9) 

The total volumetric strain εv
T is equal to the sum of the plastic volumetric strain and the 

elastic volumetric strain, where the elastic volumetric strain is directly proportional to the mean 

effective stress through the bulk modulus of the soil (which can be estimated from the shear 

modulus and Poisson’s ratio). However, it can be assumed that the elastic volumetric strain in a 

cyclic simple shear test on an unsaturated sand in the funicular regime is approximately equal to 

zero as the changes in mean effective stress are not expected to be significant. While Rong and 

McCartney (2020b) did observe changes in mean effective stress, they were within 10% of the 

mean total stress applied in the experiments.  
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3.3 Changes in Degree of Saturation during Undrained Shearing 

It is assumed that there will be no change between the initial and final volume of water in 

an undrained specimen during cyclic simple shearing due to the high bulk modulus of water. 

Saturation is the ratio between water volume and void volume (i.e., void volume is comprised of 

the total water volume and air volume), therefore the change in saturation due to plastic volumetric 

compression is linked to the volume change of the pore air voids. By incorporating the pore air 

volume change in terms of the plastic volumetric strain and initial void ratio, the following 

relationship for saturation change during cyclic simple shearing can be defined where the volume 

of solids Vs is assumed to equal 1 (derivation in Appendix A2): 

S =
VseoSo

eo − (Vs + eo)εv
p 

 

(3.4.1) 

As the volume of solids, the initial void ratio, and initial degree of saturation are constants, 

Equation 3.4.1 indicates that the degree of saturation is inversely related to changes in the plastic 

volumetric strain.  
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3.4 Estimation of Changes in Pore Air Pressure During Undrained Shearing 

A major difference in the presented model compared to UBCSAND is that the air and water 

pressures are assumed to increase at different rates (surface tension not ignored) whereas 

UBCSAND assumes the pressures are increasing at constant rates by implementing a bulk stiffness 

to account for both pressures simultaneously (Seid-Karbasi and Byrne 2006). To account for 

surface tension, separate equations are derived for air and water pressure generation. The 

instantaneous bulk modulus of air is assumed to be initially at atmospheric conditions and increase 

incrementally during undrained cyclic simple shearing. The degrees of saturations considered in 

this study are in the funicular regime and the pore air voids are assumed to be continuous and 

connected. Some voids may be water filled, air filled or have partial air and water menisci. To 

extend the hyperbolic model to include a poromechanical approach, it is assumed that all 

volumetric compression is a reduction in air volume due to the incompressibility of water and the 

assumption that no particle crushing occurs to the soil. Air is assumed to be an ideal gas and the 

temperature of the air-water-soil system is at ambient conditions (T = 294 K) with no fluctuation. 

Incorporating volumetric definitions of the soil’s 3-phase diagram into the equations of the Ideal 

Gas Law, Henry’s Law, allows for a derivation to find the pore air pressure change corresponding 

to a volume change during undrained cyclic simple shearing (derivation in Appendix A1). The 

relationship between pore air pressure and volumetric strain for a given initial degree of saturation 

and initial void ratio can be defined as follows: 

ua =
(Patm × εv

p
 ∗ (1 + eo))

(h × So × eo × RT + eo × (1 − So) − εv
p
 ∗ (1 + eo))

 

 

(3.2.9) 

This pore air pressure equation is an isothermal equation that is comprised of constant values 

(initial void ratio, initial degree of saturation, Henry’s constant, and temperature) and the plastic 

volumetric strain that will evolve during cyclic shearing. The study of Youd (1971) indicates that 



36 
  

all soils are expected to have compressive plastic volumetric strains occurring during cyclic simple 

shearing, which implies that that air pressure calculated from Equation 3.2.9 will increase during 

the course of a cyclic simple shear test. Further, the pressurization of the pore air during cyclic 

simple shearing is expected to affect the seismic compression in unsaturated sands during 

earthquakes by leading to a decrease in the mean effective stress according to Equation 2.2.2.  

3.5 Estimation of Changes in Pore Water Pressure During Undrained Shearing 

The application of the UBCSAND model to unsaturated soils by Seid-Karbasi and Byrne 

(2006, 2007) and Byrne et al. (2006) assumed that the changes in pore water pressure are equal to 

the changes in pore air pressure during undrained cyclic shearing of unsaturated soil for simplicity. 

However, several experimental studies (Unno et al. 2009; Rong and McCartney 2020) found that 

the pore air and water pressures evolved in different manners during undrained cyclic shearing. 

The approach followed in this study was to estimate the changes in matric suction from the changes 

in degree of saturation predicted from Equation 3.4.1, then to use the definition of the matric 

suction to calculate the pore water pressure from the pore air pressure calculated in Equation 3.2.9. 

Specifically, the pore water pressure can be calculated from the pore air pressure and matric suction 

as follows:  

uw = ua −ψ 

 

(3.5.2) 

Use of this equation implies that the water retention in the soil is due primarily to capillarity (Lu 

and Likos 2004). It is assumed that the thermodynamic state of the soil is constant throughout the 

duration of cyclic simple shearing as surface tension and capillarity are affected by temperature.  

During undrained cyclic shearing, Rong and McCartney (2020b) found that unsaturated 

sand specimens initially on the primary drying path of the SWRC followed a wetting transient 

SWRC scanning path having a slope that depended on the initial degree of saturation of the 
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specimens. Using the relationship between degree of saturation and matric suction, a semi-

empirical equation is derived from the soil’s SWRC. To predict the changes in the model’s matric 

suction, a log-linear relationship between the saturation and matric suction was defined empirically 

as follows (derivation in Appendix C): 

ψ = 10
S−(S0+mlog10ψ0)

−m  

 

(3.5.1) 

This equation is only valid for initial degrees of saturation in the funicular regime as shown in 

Figure 3.5.1. For greater degrees of saturation, a reconsolidation analysis using pore water 

pressures predicted using the model of Seid-Karbasi and Byrne (2004) is necessary. This is a topic 

for a future study. Using the model’s prediction of matric suction from Equation (3.5.1) and the 

pore air pressure from Equation 3.2.9, the pore water pressure can be computed. 

 

Figure 3.5.1 Schematic of the transient scanning path of the SWRC for a sand specimen initially 

on the primary drying path. 
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3.6 Calculation of Effective Stress Changes during Cyclic Shearing  

Once the air pressure, saturation and matric suction changes are predicted, the incremental 

effective stress can now be computed using Lu et al. (2010) equation for effective stress, given as 

follows using the effective saturation as the effective stress parameter:   

σv
′ = (σv − ua) + S𝑒ψ    

 

(3.6.1) 

Since the cyclic simple shear test is confined to a cylindrical specimen that does not deform radially 

(no bulging sides) during shearing, Ko conditions are considered to be valid. The effective stress 

is converted to mean effective stress assuming (Ko) conditions using Poisson’s ratio (v). 

Ko =
𝜐

1 − 𝜐
 

 

(3.6.2) 

σm
′ = (

1 + 2Ko
3

) σv
′  

 

(3.6.3) 

3.7 Predicting the Evolution in Hydro-Mechanical Variables during Undrained Shearing  

The prediction of the volumetric strain during undrained cyclic shearing is closely related 

to the plastic shear modulus, and it was shown in section 3.2 that the mean effective stress governs 

the dynamic soil properties through the hyperbolic shear modulus equation. Accordingly, the 

values of σm
′  calculated during application of the cyclic shear strains in the hysteretic stress-strain 

curve equations are used to calculate the shear modulus that affect the evolution in cyclic shear 

stress. The sequence of the model is shown in the flow chart in Figure 3.6.1. 
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Figure 3.7.1 Flow chart for the semi-empirical hyperbolic model with hydro-mechanical 

coupling for seismic compression in the funicular regime 
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4 Data 

4.1 Sand Specimens in Cyclic Simple Shear Database 

 The sand used in the available experimental database provided by Rong and McCartney 

(2020a, 2020b, 2021a, 2020b) is classified as a well-graded sand (SW) according to the Unified 

Soil Classification System (USCS). The sand has a mean particle diameter (D50) and an effective 

particle diameter (D10) of 0.8 and 0.2 mm, respectively. The sand is reported to have a coefficient 

of uniformity (Cu) and curvature (Cc) of 6.1 and 1.0, respectively. The maximum and minimum 

void ratios are 0.853 and 0.371, respectively. Figure 4.1.1 shows the particle size distribution curve 

for the SW sand. 

 
Figure 4.1.1 Particle size distribution curve for the SW sand (Rong and McCartney 2020b). 

To prepare the specimens for cyclic simple shear tests, the sand was funneled into the specimen 

housing to reach a target relative density of 0.45 without tamping. The primary wetting and drying 

path of the SWRC were obtained using the hanging column approach, and the data points fitted 

with the van Genutchen (1980) SWRC model as shown in Figure 4.1.2 (Rong and McCartney 

2020b). 
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Figure 4.1.2 SWRC for the sand specimen at Dr = 0.45 (Rong and McCartney 2020b) 

 

 Rong and McCartney (2020b) used the hanging column technique similar to the approach 

used by Tatsuoka et al. (1979) to desaturate initially saturated sand specimens to reach different 

initial degrees of saturation in the funicular regime of the SWRC. During initial application of a 

target suction, the water outflow was tracked using the hanging column and the pore water pressure 

was monitored using a tensiometer until the target matric suction was reached and held for 

approximately 30 minutes, at which point the specimen is assumed to be at hydraulic equilibrium 

and ready for cyclic simple shearing (Rong and McCartney 2020b). They performed tests in both 

drained and undrained conditions. Rong and McCartney (2019, 2020b) reported the results from 

drained cyclic shearing tests having a range of different applied shear strain amplitudes (0.3, 1.0, 

5, 10) for 200 to 1000 cycles. Rong and McCartney (2020a, 2020b) reported the results from 

undrained cyclic shearing tests applied shear strain of 1% at a strain rate of 0.833 %/min for a 

duration of 200 cycles. The drained tests were useful to define the backbone curve as they were 

performed to higher shear strain amplitudes, but this study is primarily focused on the seismic 
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compression during undrained shearing. Accordingly, in this thesis only selected drained tests are 

reported while several undrained tests are reported.  

The cyclic simple shear tests reported by Rong and McCartney (2020a, 2020b, 202c) were 

performed in a modified NGI cyclic simple shear apparatus that has a wire-reinforced membrane 

that does not permit radial expansion and therefore the volumetric strain during shearing can be 

measured by the changes to the height of the cylindrical specimen. The schematic of the specimen 

housing used in the modified NGI cyclic simple shear device is shown in in Figure 4.1.3. 

 

Figure 4.1.3 Schematic view of the specimen housing in the modified NGI simple shear device 

used for drained and undrained experiments (dimensions in mm) (Rong and McCartney 2021a). 

 

The cylindrical sand specimens tested by Rong and McCartney (2020a, 2020b, 2021a) had 

a height of approximately 20 mm and a 66.7 mm diameter. The resulting height to diameter ratio 

was 0.3 which was less than the maximum value of 0.4 defined by ASTM D6528. All specimens 

regardless of drained or undrained were subjected to an applied vertical stress of 50kPa to recreate 
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loading conditions of a transportation design backfill during seismic shaking. A NGI simple shear 

device was modified by Rong and McCartney (2021a) to permit cyclic simple shearing of a soil 

from left to right by encapsulating the specimen in a cylindrical housing that permits for shear 

stresses in both directions to be applied to the top of the device. Rong and McCartney (2021a) also 

updated the NGI simple shear ports for sensors to record internal pore pressures during testing. 

The data presented in this thesis was tested using a modified NGI apparatus incorporated with a 

special bottom platen which transmits water from a hanging column and permits port access for 

tensiometer measurements (Rong and McCartney 2021a). 

4.2 Drained Monotonic Simple Shear Data  

 The testing protocol for the fully drained experimental data was kept at a constant matric 

suction, valves on top/bottom of housing were left open and the ventilation permitted air flow 

thereby reflecting the pore air pressures at atmospheric conditions. As cyclic shearing was applied 

to the specimen, volumetric contraction commenced which induced the outflow of water. Shearing 

during the experiment was reported by Rong and McCartney (2020b) to be considered slow 

enough to allow for the dissipation of any generated excess pore water pressure. Several drained 

data sets were collected at constant matric suctions: 4kPa, 6kPa and 10kPa. Drained shearing tests 

with a constant suction of 4 kPa with cyclic shear strain amplitudes of 1% and 3% strain were used 

in the calibration of the backbone curve parameters, and the results shown in Figure 4.2.1 indicate 

that the shear-stress strain curves from the other tests were generally in good agreement.  It should 

be noted that even when extrapolating this curve to 5% shear strain, the specimen had still not 

reached failure, which is expected to occur at a shear stress of approximately 63-65 kPa for these 

unsaturated conditions based on the shear strength parameters reported by Zheng et al. (2019).  
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Figure 4.2.1 Backbone curves for drained sand (Dr = 0.45) at various constant suctions (4 kPa, 

6 kPa, 10 kPa) and different shear strain amplitudes (1%, 3%) (Rong and McCartney 2020a) 

 

Table 1: Summary of initial testing conditions and final shear strain 

Specimen 

No. 

Initial Matric 

Suction 

 𝜓𝑜 (kPa) 

Initial 

Saturation 

𝑆𝑜 

Target Strain 

Range 

𝛾𝑛 (%) 

Initial 

Achieved 

Strain Range 

𝛾𝑜(%) 

Final 

Achieved 

Strain Range 

𝛾𝑓 (%) 

C-3 3.96 0.31 3.00 : (-3.00) 2.75 : (-2.86) 2.71 : (-3.01) 

C-2 3.87 0.31 1.00 : (-1.00) 0.98 : (-1.06) 0.91 : (-1.13) 

D-3 5.95 0.20 3.00 : (-3.00) 3.01 : (-2.64) 2.99 : (-2.83) 

D-2 5.93 0.20 1.00 : (-1.00) 0.94 : (-0.95) 1.58 : (-0.22) 

E-3 10.03 0.12 3.00 : (-3.00) 2.89 : (-2.76) 3.24 : (-2.34) 

E-2 10.15 0.11 1.00 : (-1.00) 0.74 : (-1.20) 0.77 : (-1.10) 

Note: Strain rate for all tests: 0.833%/min; Initial and final achieved shear strain ranges were 

measured for N = 1 and N = 200, respectively. 

 

4.3 Undrained Cyclic Simple Shear Data 

 The testing protocol for the undrained experimental data had a gauge air pressure 

transducer attached to the top of the housing platen which blocked air ventilation and allowed for 

the pore air pressure to be measured during shearing. Once the sand specimen reached its target 

matric suction, the bottom housing valve was closed to water flow which caused excess pore water 
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pressures to increase during shearing. The initial conditions for the undrained experimental data 

sets are summarized in Table 2.  

Table 2: Summary of initial conditions of undrained cyclic simple shear experiments of Rong 

and McCartney (2020) that were modeled in this study 

 

So (unitless) 0.117 0.2 0.3 0.4 0.558 

ψo (kPa) 10 6 4 3 2 

 

Table 3: Summary of initial testing conditions and final shear strain for the undrained cyclic 

simple shear experiments (after Rong and McCartney 2020b). 

 

Specimen 

No. 

Initial Matric 

Suction 

 𝜓𝑜 (kPa) 

Initial 

Saturation 

𝑆𝑜 

Target Strain 

Range 

𝛾𝑟𝑛 (%) 

Initial 

Achieved 

Strain Range 

𝛾𝑟𝑜 (%) 

Final 

Achieved 

Strain Range 

𝛾𝑟𝑓 (%) 

Set 1 1.99 0.560 1.00 : (-1.00) 0.98 : (-1.00) 0.86 : (-0.95) 

Set 2 1.99 0.560 1.00 : (-1.00) 0.94 : (-0.82) 1.19 : (-0.69) 

Set 1 2.99 0.400 1.00 : (-1.00) 0.80 : (-0.89) 0.61 : (-1.22) 

Set 2 2.99 0.400 1.00 : (-1.00) 0.88 : (-0.81) 0.51 : (-1.16) 

Set 1 3.99 0.300 1.00 : (-1.00) 0.85 : (-0.94) 0.68 : (-1.04) 

Set 2 3.99 0.300 1.00 : (-1.00) 0.88 : (-0.81) 0.51 : (-1.16) 

Set 1* 6.00 0.206 1.00 : (-1.00) 0.89 : (-1.08) 0.83 : (-1.03) 

Set 2  5.99 0.206 1.00 : (-1.00) 0.91: (-0.72) 0.87: (-0.82) 

Set 1 9.99 0.118 1.00 : (-1.00) 1.10 : (-0.81) 1.03 : (-0.94) 

Set 2 10.00 0.117 1.00 : (-1.00) 0.89 : (-1.04) 0.78 : (-1.18) 

Set 1* 100.00 0 1.00 : (-1.00) 0.92 : (-1.03) 1.00 : (-0.88) 

Set 2* 100.00 0 1.00 : (-1.00) 0.92 : (-0.94) 0.78 : (-1.06) 

Notes: The dry specimen is assumed to have a suction value of 100 kPa; Initial and final achieved 

shear strain ranges were measured for N = 1 and N = 200, respectively; *Unpublished data 
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(a) 
(b) 

(c) (d) 

 (e)  (f) 

(g) (h) 

(i) 

Figure 4.3.1 Data Set 1 S=0.56 Time series of (a) Shear strain (b) shear stress (c) Degree of 

saturation (d) Volume change (e) Pore air pressure change (f) Pore water pressure change 

(g) Matric suction change  (h) Mean effective stress change  (i) Cyclic shear stress and cyclic 

shear strain 
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 (a)  (b) 

 (c)  (d) 

 (e)  (f) 

 (g)  (h) 

 (i) 

Figure 4.3.2 Data Set 2 S=0.56 Time series of (a) Shear strain (b) shear stress (c) Degree of 

saturation (d) Volume change (e) Pore air pressure change (f) Pore water pressure change 

(g) Matric suction change  (h) Mean effective stress change (i) Cyclic shear stress and cyclic 

shear strain 
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 (a)  (b) 

(c) €) 

 (e)   (f) 

 (g)  (h) 

(i) 
Figure 4.3.3 Data Set 1 S=0.4 Time series of (a) Shear strain (b) shear stress (c) Degree of 

saturation (d) Volume change (e) Pore air pressure change (f) Pore water pressure change (g) 

Matric suction change  (h) Mean effective stress change (i) Cyclic shear stress and cyclic 

shear strain 
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 (a)   (b) 

 (c)  (d) 

 (e)  (f) 

 (g)  (h) 

 (i) 

Figure 4.3.4 Data Set 2 S=0.4 Time series of (a) Shear strain (b) shear stress (c) Degree of 

saturation (d) Volume change (e) Pore air pressure change (f) Pore water pressure change 

(g) Matric suction change  (h) Mean effective stress change (i) Cyclic shear stress and cyclic 

shear strain 
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  (a)  (b) 

 (c)   (d) 

 (e)  (f) 

  (g)   (h) 

 (i) 
Figure 4.3.5 Data Set 1 S=0.3 Time series of (a) Shear strain (b) shear stress (c) Degree of 

saturation (d) Volume change (e) Pore air pressure change (f) Pore water pressure change 

(g) Matric suction change  (h) Mean effective stress change (i) Cyclic shear stress and cyclic 

shear strain 
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 (a)  (b) 

 (c) 
 (d) 

 (e)  (f) 

 (g)  (h) 

 (i) 

Figure 4.3.6 Data Set 2 S=0.3 Time series of (a) Shear strain (b) shear stress (c) Degree of 

saturation (d) Volume change (e) Pore air pressure change (f) Pore water pressure change 

(g) Matric suction change  (h) Mean effective stress change (i) Cyclic shear stress and cyclic 

shear strain 
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 (a)  (b) 

 (c)  (d) 

 (e)  (f) 

 (g)  (h) 

 (i) 

Figure 4.3.7 Data Set 1* S=0.206 Time series of (a) Shear strain (b) shear stress (c) Degree of 

saturation (d) Volume change (e) Pore air pressure change (f) Pore water pressure change 

(g) Matric suction change  (h) Mean effective stress change (i) Cyclic shear stress and cyclic 

shear strain 
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 (a)  (b) 

 (c)  (d) 

 (e)  (f) 

 (g)  (h) 

 (i) 

Figure 4.3.8 Data Set 2 S=0.2 Time series of (a) Shear strain (b) shear stress (c) Degree of 

saturation (d) Volume change (e) Pore air pressure change (f) Pore water pressure change 

(g) Matric suction change  (h) Mean effective stress change (i) Cyclic shear stress and cyclic 

shear strain 
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(a)  (b) 

(c) (d) 

 (e)  (f) 

(g)  (h) 

 (i) 

Figure 4.3.9 Data Set 1 S=0.118 Time series of (a) Shear strain (b) shear stress (c) Degree of 

saturation (d) Volume change (e) Pore air pressure change (f) Pore water pressure change 

(g) Matric suction change  (h) Mean effective stress change (i) Cyclic shear stress and cyclic 

shear strain 
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 (a)  (b) 

 (c)  (d) 

 (e)  (f) 

 (g)  (h) 

 (i) 

Figure 4.3.10 Data Set 2 S=0.117 Time series of (a) Shear strain (b) shear stress (c) Degree of 

saturation (d) Volume change (e) Pore air pressure change (f) Pore water pressure change 

(g) Matric suction change  (h) Mean effective stress change (i) Cyclic shear stress and cyclic 

shear strain 
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 (a) 
 (b) 

 (c)  (d) 

 (e)   (f) 

Figure 4.3.11 Data Set 1* S=0 DRY (a) Shear strain time series (b) shear stress time series 

(c) Volume change time series (d) Pore air pressure change time series (e) Mean effective 

stress change time series (f) Cyclic shear stress and cyclic shear strain loops 
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 (a)  (b) 

 (c) (d) 

 (e)  (f) 

Figure 4.3.12 Data Set 2* S=0 DRY (a) Shear strain time series (b) shear stress time series 

(c) Volume change time series (d) Pore air pressure change time series (e) Mean effective 

stress change time series (f) Cyclic shear stress and cyclic shear strain loops 
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5 Model Calibration 

5.1 Calibration of Backbone Curve from Drained Shearing of Unsaturated Sand  

 While the focus of this thesis is on the prediction of the seismic compression during 

undrained cyclic simple shearing, the data available from undrained cyclic simple shear tests 

performed by Rong and McCartney (2020b) only included tests that were performed to a shear 

strain of 1%. However, Rong and McCartney (2020a) performed drained cyclic simple shear tests 

on sands in the same conditions but to higher shear strains. To calibrate the parameters of the 

backbone shear stress-strain curve, data were used from two drained cyclic simple shear tests on 

sand at a relative density of 45%, a vertical total stress of 50 kPa, and an initial degree of saturation 

of 0.3 (corresponding to initial matric suction values of 4 kPa) performed to shear strains of 1% 

and 3% shear strains. Two sets of data were used to ensure that the calibration was a good match 

to both low and high strain values. The experimental data from each of the tests is shown in Figure 

5.1.2 and 5.1.3 in both natural scales and a transformed scale. The transformed scale was used to 

identify the slope a and intercept b that can be used to identify the hyperbolic model parameters 

Gi and ult as described in Figure 5.1.1. 

 

Figure 5.1.1 Linear transformation of hyperbolic shear stress-strain relationship. 
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The calibrated model parameters are summarized in Table 4 for the two tests, along with 

the average value of the parameters used in future model predictions. The shear stresses at failure 

f in Table 4 was determined from the friction angle of this sand of 51.3° reported by Zheng et al. 

(2019) based on triaxial compression tests on dry sand and the vertical effective stress 

corresponding to the initial conditions in the specimens. The critical volume friction angle was 

assumed to be equal to 34°, although further laboratory tests are necessary to better quantify this 

value.  The reduction factors were defined as the ratio of the shear stresses at failure f and the 

ultimate shear stress from the hyperbolic fitting ult, and an average value of Rf = 0.9 was used in 

future predictions. Although only one vertical effective stress was available for calibration of the 

model in the data presented by Rong and McCartney (2020a), the variation in shear modulus with 

normal stress could not be fully investigated. Accordingly, a value of n = 0.5 was used in the 

calibration (Duncan et al. 1980).  

(a) (b) 

Figure 5.1.2 Hyperbolic fitting process for drained test to 1% shear strain: (a) Monotonic loading 

to 1% shear strain (b) Linearization of curve to find hyperbolic parameters 
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(a) (b) 

Figure 5.1.3 Hyperbolic fitting process for drained test to 3% shear strain: (a) Monotonic loading 

at 3% shear strain; (b) Linearization of curve to find hyperbolic parameters 

 

Table 4: Calibrated hyperbolic model parameters for drained tests at a constant suction of 4 kPa 

performed to 1% and 3% shear strain  

 

Strain 

amplitude 

Initial 

Shear 

Modulus 

Ultimate 

Shear 

Stress 

Shear 

Stress 

at 

Failure 

Reduction 

Factor 

Shear 

Modulus 

Number 

Shear 

Modulus 

Exponent 

 𝐺𝑖 = 1 𝑎⁄  𝜏𝑢𝑙𝑡 = 1 𝑏⁄  τf Rf ke
G ne 

(%) (kPa) (kPa) (kPa) (unitless) (unitless) (unitless) 

1 5950 68.89 63.91 0.9277   

3 5810 72.52 63.91 0.8813   

Average - - - 0.9 100 0.5 

 

A comparison between the calibrated backbone curve and the hysteretic shear stress-strain 

curves and the experimental curves from the drained cyclic simple shear tests to shear strains of 

1% and 3% is shown in Figure 5.1.4. A good match was observed between the calibrated and 

experimental curves. In this figure, the backbone curve is approaching the shear stress at failure at 

a shear strain of 10%. However, the test at 3% cyclic shear strain has a slightly steeper stress-strain 

loop upon application of negative shear strains, with maximum shear stresses close to the value at 

failure. When cyclic shear stress amplitude is close to the value at failure, there is a likelihood for 

creep or cyclic degradation that could lead to complex behavior. Fortunately, all of the undrained 

 

  

  

  

  

  

  

    

  
  
  
  
  
  
  
  
  

                

                              

 

      

      

      

      

      

      

      

      

      

     

             

  
 
  

  
  
  
 

      

                              



61 
  

cyclic simple shear tests performed by Rong and McCartney (2021b) were performed at a cyclic 

shear strain amplitude of approximately 1% and are well below the shear stress at failure.  

 

Figure 5.1.4 Comparison of the calibrated backbone and hysteretic shear stress-strain curves with 

the experimental data for S0 = 0.3 and sv = 50 kPa from Rong and McCartney (2020a) 

 

During each cycle of shearing, plastic shear strains will occur during loading and reloading. 

Accordingly, plastic volumetric strains will also be generated. This means that the model 

parameters governing the evolution in the plastic shear strain during cyclic shearing are those 

governing the shape of the hysteretic shear stress-strain curve. Similarly, the degree of saturation 

can be directly calculated from the volumetric strain using phase relationships without the need 

for additional model parameters. Similarly, the pore air pressure model developed in Chapter 3 

and Appendix A2 did not include additional parameters beyond the initial conditions of the sand 

specimen and those necessary to predict the plastic volumetric strain. 

5.2 Calibration of Pore Water Pressure Generation Model 

Different from the model for the pore air pressure generation, the model for the pore water 

pressure generation depends on the shape of the transient SWRC scanning paths for specimens 

with different initial degrees of saturation. An interesting aspect from evaluation of the 
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experimental results of Rong and McCartney (2020b) indicates that the slope of the transient 

changes in degree of saturation and matric suction will change during cyclic shearing, with greater 

changes for specimens with higher initial degrees of saturation, as shown in Figure 5.2.1.  

 

Figure 5.2.1 Transient SWRC wetting paths of undrained cyclic shear data set 1 after 200 cycles. 

Since the volumetric compression data is changing most rapidly at the onset of cycling, the 

first 1.25 cycles of simple shearing are averaged to see the prediction response of the saturation 

versus matric suction. The shear modulus model parameters (𝑛𝑒 , 𝑘𝐺
𝑒 ) were calibrated from the first 

cycle of shearing, and therefore it seemed logical to calibrate the transient curve in the same 

manner for comparison. 

Using undrained experimental data from cyclic simple shearing of initial saturations in the 

funicular regime at 1% strain, the initial 1.25 cycles of the saturation versus matric suction data 

are fit to the linear equation in excel. Initial parameters are selected for the slope (m). An excel 

column is created with the transient scanning curve equation for matric suction using a selected 

slope (m) and the input saturation (S) will be the actual data points from the 1.25 undrained cycling 

data. Another excel column is created to compute the squared difference between the calculated 

matric suction (using the selected slope parameter) and the actual matric suction data. A cell is 

designated as the residual sum of squares and is used to calculate the sum of the squared differences 

   

   

   

   

   

   

   

         

  
  
  
 
 
 

                    

       

     

     

     

       



63 
  

of the predicted matric suction and data matric suction column. Using Solver in excel, the residual 

sum of squares is input as the ‘target cell’ and is selected to be minimized by changing the (m) cell 

to fit the actual data. By selecting ‘solve’, excel computes the values for (m) that best fit the actual 

matric suction data by reducing the residual sum of squares cell to 0. The same procedure is used 

to find the slopes of the transient scanning curve at 200 cycles. 

Using the above procedure, the rewetting path of the undrained specimen can be defined 

as a log-linear equation is defined to track the changes in saturation with the changes in matric 

suction (the equation is derived in Appendix A3). Undrained cyclic simple shear test data set 01 

from Rong and McCartney (2020b) have initial degrees of saturation ranging in the funicular 

regime and are presented in Table 5 with corresponding initial matric suctions. The calibrations of 

the undrained data from 1.25 cycles were found to have initial slopes very close to the same value 

despite the range in initial saturations and is presented in Figure 5.2.2.  

Table 5: Initial values of degree of saturation and matric suction from the undrained CSS Data 

Set 01 from Rong and McCartney (2020b). 

 

So ψo 

(unitless) (kPa) 

0.117 10 

0.200 6 

0.300 4 

0.400 3 

0.558 2 
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Figure 5.2.2 Slopes of transient SWRC wetting paths of data after 1.25 cycles of undrained 

cyclic simple shear. 

 

Table 6: Initial conditions of the saturation, matric suction, and average slope for the transient 

SWRC rewetting path of the undrained data. 

 

So ψo (kPa) mave (slope) 

0.117 10  

 

0.021 
0.200 6 

0.300 4 

0.400 3 

0.558 2 

 

The undrained cyclic simple shear transient SWRC slopes from Data Set 1 for 200 cycles 

at 1% shear strain is presented in Figure 5.2.1. It is apparent from the undrained experimental CSS 

data that the slope of the transient curve is higher for specimens with higher initial saturation. The 

CSS data showed the initial transient SWRC slopes at 1.25 cycles for all the funicular regime 

saturations were approximately the same value of 0.021. The average transient SWRC slope over 

the entire 200 cycles for each set of unsaturated undrained data is presented in Table 7. 

 

 

 

    

    

    

    

    

    

                     

  
  

  
  

  
  
 
 
 
   

            

                          



65 
  

Table 7: Averaged transient SWRC slopes over entire 200 cycles from undrained cyclic simple 

shear Data Set 01 for funicular regime saturations. 

 

Initial Degree 

of Funicular 

Saturation 

(Sf) 

 

0.117 

 

0.2 

 

0.3 

 

0.4 

 

0.558 

Slope (m200) 0.021 0.043 0.053 0.076 0.085 

 

The test at the lowest degree of saturation of S = 0.117 had no further evolution in the 

transient SWRC slope and remained constant at 0.021. The transient SWRC slope increased for 

initial degrees of saturation in the funicular regime that were larger than S = 0.117 (Sf is defined 

as an initial degree of saturation higher than test value of 0.117), and it was found that the slope 

increase for each saturation in the funicular regime (msf) (where msf represents the new predicted 

slope based on the lowest slope value for initial degree of saturation S = 0.117) could be 

approximated using the initial transient SWRC slope of the lowest saturation (ms=0.117 = 0.021) that 

had no further slope change using Eq. (5.4.1): 

msf = 𝑚𝑠=0.117 + 𝑆𝑠=0.117𝑆𝑓 

 

(5.4.1a) 

msf = 0.021 + 0.117𝑆𝑓 

 

(5.4.1b) 

Using the empirically derived equation in Eq. (5.4.1), a model is created to link the slope 

at the lowest saturation with the slope for higher degrees of saturation in the funicular regime. 

Figure 5.2.3(a) shows the undrained CSS data initial transient slope averages at 1.25 cycles and 

200 cycles and Figure 5.2.3(b) shows the empirically derived equation representing the evolution 

in the transient slope with continued cycles of shear strain in blue with the data from the undrained 

cyclic simple shear tests in orange. Using the empirical equation to derive the remaining transient 

slopes from the lowest degree of saturation allows for fewer tests to model the full range of 

saturations in the funicular regime and the predicted slope values can be found in Table 8. 
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(a) (b) 

Figure 5.2.3 (a) Slopes of the transient SWRC scanning curve with averages at 1.25 cycles and 

200 cycles (b) Empirical prediction of the slope of the transient SWRC scanning curve with 

degree of saturation in the funicular regime for 200 cycles 

 

Table 8: Predicted transient SWRC slope of undrained CSS data set 01 for funicular regime 

saturations. 

 

Initial Degree 

of Funicular 

Saturation 

(Sf) 

 

0.117 

 

0.2 

 

0.3 

 

0.4 

 

0.558 

Slope (m200) 0.021 0.045 0.056 0.070 0.086 
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6 Analysis 

6.1 Evolution in Hydro-Mechanical Variables during Undrained Cyclic Shearing  

While comparisons between the evolution in key hydro-mechanical variables during 

undrained cyclic shearing for all the initial conditions summarized in Table 3 are presented in 

Appendix A6, this section presents an example of the evolution in the key hydro-mechanical 

variables for one of the tests on a sand specimen having an initial matric suction 4kPa and an initial 

saturation of 0.3. A comparison between the model prediction and the experimental results are 

presented in Figure 6.1.1 for undrained cyclic shearing at 1% shear strain (model in black, data in 

grey). The results in Figure 6.1.1(a) indicate that the model can capture the evolution in the 

volumetric strain well, especially at the beginning and end of cyclic shearing. The incremental 

results of the model show that the mean effective stress decreases with increasing cycles. The 

model’s volumetric compression increases due to the lowering of the mean effective stress but at 

a decreasing rate, which is similar to the undrained CSS data results. The model’s incremental pore 

air and water pressures increase at different rates during cyclic simple shearing which results in a 

decrease in the predicted value of matric suction from the models. 
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(a) (b) 

(c) (d) 

(e) 
(f) 

Figure 6.1.1 Comparison between cyclic simple shear results for a specimen with S0 = 0.3 and 

model results: (a) Volume compression after 200 cycles; (b) Mean effective stress changes after 

200 cycles; (c) Pore air pressure after 200 cycles; (d) Pore water pressure after 200 cycles; (e) 

Suction stress after 200 cycles; (f) Transient scanning path after 200 cycles 
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6.2 Evaluation of the Effects of Initial Degree of Saturation on Seismic Compression 

A comparison between the evolution in the key hydro-mechanical variables between the 

different tests in Data Set 1 is shown in Figure 6.2.1. The dry soil had the highest volumetric 

compression in both the model and the experiments. Overall, the model represents the evolution 

in hydromechanical variables well during many cycles of undrained shearing. However, the 

model’s predictions for the volumetric compression were lower than the actual experimental data 

as shown in Figures 6.2.1(a) 6.2.1(b).  
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.2.1 Data Set 1 vs. Model: (a) Volume vs. Cycles; (b) Model: Volume vs. Cycles; 

(c) Matric suction vs. Cycles; (d) Saturation vs. Cycles; (e) Data: Mean Stress vs. Cycle; 

(f) Model: Mean Stress vs. Cycle 

 

Using the calibrated parameters from the backbone curve and transient SWRC wetting path 

slope (m200) averaged over 200 cycles of undrained CSS data, the pore pressures changes, volume 
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compressions and mean effective stress after 15 cycles are predicted and presented with the 

experimental results in Figure 6.2.2. The model’s prediction of the pore matric suction changes 

over 15 cycles show a linear decreasing trend with increasing initial saturation, which is the same 

trend seen in the available data set. The model’s prediction of the pore air pressure changes over 

15 cycles show a linear increasing trend with decreasing initial saturation, which is in agreeance 

with the available data set. However, the model’s pore water pressure changes over 15 cycles 

appear to overpredict the available data sets. The volumetric compression predictions appear to 

underpredict the experimental data. The mean effective stress predictions of the model show a 

decreasing trend with increasing initial saturations, which is very similar to the data set at 15 cycles 

of shearing. 

Using the calibrated parameters from the backbone curve and transient SWRC wetting path 

(calibrated to 200 cycles), the pore pressures changes, volume compressions, mean effective stress 

and predicted transient wetting path after 200 cycles (only Data Set 1) can be seen in Figure 6.2.3 

and Figure 6.2.4. The results of the model show an uneven generation of pore air and water 

pressure, which is similar to the experimental data. The model’s prediction of matric suction over 

200 cycles has a good match to the experimental data. The volumetric compression predictions 

show a linear increasing trend with decreasing initial degree of saturation. The lowest degree of 

saturation in the undrained experiments had the lowest volumetric compression, however the 

model’s predictions showed a linear increasing trend with the S=0.117 having the largest 

volumetric compressive strain aside from the modeled dry case. 
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(a) 
 

(b) 

(c) (d) 

 
 (e) 

Figure 6.2.2 Comparison of trends between key hydro-mechanical variables after 15 cycles of 

undrained cyclic shearing and the initial degree of saturation obtained from the experiments of 

Rong and McCartney (2020b) and the model: (a) ∆𝜓 vs. So; (b) ∆𝑢𝑎vs. So; (c) ∆𝑢𝑤 vs. So; 
(d) ∆𝑉 vs. So; (e) ∆𝜎′𝑚 vs. So 
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(a) 

 
(b) 

 
(c) 

 
(d) 

  
(e) 

Figure 6.2.3 Comparison of trends between key hydro-mechanical variables after 200 cycles of 

undrained cyclic shearing and the initial degree of saturation obtained from the experiments of 

Rong and McCartney (2020b) and the model: (a) ∆𝜓 vs. So (b) ∆𝑢𝑎vs. So (c) ∆𝑢𝑤 vs. So (d) ∆𝑉 

vs. So (e) ∆𝜎′𝑚 vs. So  
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Figure 6.2.4 Transient SWRC scanning paths and predict transient SWRC paths from the model 

and experimental results from Data Set 1. 

 

6.3 Evaluation of Reasons behind Discrepancy between Model and Experiments 

6.3.1 Pore Air Pressure Generation 

The predictions of pore air pressure generation from the model at 15 cycles show an 

increase with rising levels of initial degree of saturation. Similar results were observed in the 

undrained CSS data showing that higher initial degrees of saturation garnered more pore air 

compression and volume compression. The results in Figure 6.3.1.1 show that the model predicts 

an increasing trend in pore air pressure as initial degrees of saturation increase. During undrained 

CSS the air voids are squeezed by the pore water (due to the incompressibility of water) which 

increases the pore air pressure. A specimen with a higher initial saturation will contain more water 

exerting pressures on the air-filled voids and therefore will garner more air pressure generation in 

the voids during undrained CSS. The poromechanical coupling effect of the pore water squeezing 

the air voids to induce volumetric compression results in an overall increase to the saturation of 

the pore voids and a reduction in the mean effective stress of the soil skeleton. The predictions of 

pore air pressure at 15 cycles appears to capture the characteristic behavior of a loose granular soil. 

However, after several cycles the predicted pore air pressures approach similar values with slight 
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increases for higher initial degrees of saturations as observed in Figure 6.3.1.1(b). This was an 

unexpected observation from the model and may be due to the hydro-mechanical coupling effects 

on the mean effective stress for the different tests.   

 (a) (b) 

Figure 6.3.1.1 Model predictions of pore air pressure generation by initial saturation after (a) 15 

cycles (b) 200 cycles 

 

At 15 cycles, the model predictions of matric suction are captured by the uneven generation 

of pore water and air pressure. The model’s results exhibited a decreasing trend in the matric 

suction regardless of 15 or 200 cycles, which is consistent with the available undrained cyclic 

shearing data from the literature. Similar trends were reported in Craciun and Lo (2010) showing 

a decrease in the matric suction of unsaturated soils during repeated cycles of undrained shearing 

on unsaturated soils. As the soil experiences a decrease in matric suction during undrained cyclic 

simple shearing, the largest air voids become flooded with nearby capillary water due to the 

shaking and rearrangement of soil particles. Occluded air bubbles can become trapped within 

water-filled pores due to the wetting process during cyclic shearing and may then damp out 

changes in pore water pressure during soil particle rearrangement.  
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6.3.2 Pore Water Pressure Generation 

 The slope of the transient scanning curve is dependent on the applied shear strain, initial 

degree of saturation, and initial matric suction. Although vertical effective stress does contribute 

to volumetric compression, it is not as significant as the effect of shear strain as the vertical total 

stress is maintained constant and changes in suction and degree of saturation have relatively small 

effects on the vertical effective stress. The pore water occupancy has a dual effect in that its 

representation as a pore void stress both can reduce and increase the effective stress during cyclic 

simple shear depending on draining conditions and its ratio to the remaining solids (soil) and fluids 

(air). If the drained conditions permit water to leave and matric suction increases, this typically 

correlates to a decrease in pore void water as the water is drawn out of the soil (drying effects) and 

the effective stress increases. When performing undrained cyclic simple shear tests, the matric 

suction will inevitably decrease due to the inability of water to flow out of the sample leading to 

air void compression (plastic volumetric compression), saturation increase and loss of effective 

stress. The developed hyperbolic model captures the trends of CSS testing to aid in replicating the 

seismic compression response of unsaturated sand during an earthquake, but the trends are only 

reliable for the initial cycles and begin to deviate around 25 cycles.  

In the hyperbolic model presented, data was collected from experiments conducted by 

Rong and McCartney (2020b), and slopes of the transient scanning curve for initial cycling data at 

1.25 cycles and 200 cycles were calibrated to fit and predict the pore pressures and volumetric 

changes of a sand specimen of approximately 45% density under a vertical stress of 50 kPa and 

1% applied cyclic shear strain. The slopes of the transient scanning curve are a function of the 

applied cyclic shear strain, initial degree of saturation and initial matric suction. Since the model 

is centralized around the slopes of the transient scanning curve, it can only accurately predict the 
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volumetric compressions and pore pressure generation for the sand specimen at Dr=0.45 and 1% 

cyclic shear strain. In the undrained cyclic simple shear tests, the slope of the transient curve 

increases for initial degrees of saturations higher than 0.117 after initial cycling. Although there is 

a deviation in the model’s pore pressure generation after numerous cycles, the model still provides 

a good approximation to the pore air generation and matric suction trends compared to the 

undrained CSS data up to 15 cycles.  

 The model does not provide insight on how the initial slope of the transient curve changes 

with higher or lower shear strains. More undrained tests of unsaturated sands at higher or lower 

shear strains are needed to provide insight on how the transient slopes evolve with increasing or 

decreasing shear strain. The best model representation will always be actual experimental data, 

and this is due to the various fallacies that can arise during parameter selection. 

 A compilation of the model results using the slope predictions equation (equation 5.4.1b) 

based on the lowest transient slope at the initial degree of saturation S = 0.117 are summarized in 

Appendix A6. The results of the model’s volumetric compressions increase due to the response of 

the saturation change is more accurately captured given the change from the initial slope. The 

mean effective stress decreased which corresponds to the increase in volumetric compression. The 

model prediction of the pore air pressure increased while the pore water pressure predictions 

decreased slightly. The largest graphical variation is captured in the saturation versus matric 

suction plot as shown in Figures 6.3.2.1(a) and 6.3.2.1(b). 
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Figure 6.3.2.1 Variation in results between Data Set 1 transient SWRC: (a) S=0.3 ψ=4 kPa model 

calibrated to 1.25 cycles (b) S=0.3 ψ=4 kPa model calibrated to 200 cycles.  

 

Figure 6.3.2.2 Variation in results between Data Set 1 matric suction vs. N cycles (a) S=0.3 

ψ=4 kPa model calibrated to 1.25 cycles, (b) S=0.3 ψ=4 kPa model calibrated to 200 cycles 
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7 Conclusions  

Results of the strain-controlled hyperbolic model showed that the permanent volumetric 

compressions are underpredicted and this could be due to the assumption that unloading is purely 

elastic overestimating hysteretic damping in the soil specimen. The model is intended for 

unsaturated soils in the funicular regime and a key feature is it assumes that the pore pressures 

have different generations due to the presence of air-water menisci with continuous air and water 

phases. While the model captured the trends in hydromechanical variables measured in many tests, 

a linearly decreasing trend between seismic compression and the initial degree of saturation was 

predicted from the model while a nonlinear increasing-decreasing trend was observed from the 

experiments. This may have been due to: 

• Initial saturation may control the linear decreasing predictions of plastic volumetric strain 

causing air pressure generation to be the same after numerous cycles  

• The model at 15 cycles shows a similar increasing trend for pore air generation to the 

experimental data but after many cycles pore air generation is approximately the same value 

as all other funicular saturation predictions with vary slight variation. 

• Amplitudes of cyclic shear strains in the experimental data varied in range and never achieved 

intended strain range of ∓1.0% during cycling (i.e., strain variance ∓0.2% to ∓0.4%) 

• Possible equipment issues in the measured pore air pressures during the test (probe interference 

with soil during shearing) 

• Unloading path during cyclic shearing considered purely elastic, unable to fully capture 

nonlinearity of shear modulus 

• Variation in small strain shear modulus for different suctions not considered in modeling of 

small strain shear modulus 
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• Model cannot predict the effect of different controlled shear strains due to empirical derivation 

of transient SWRC path. 

• The evolution in the degree of saturation from the model did not capture the effects of creep 

during cycling. 
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8 Recommendations for Future Research  

The model development raised several interesting questions that can be explored in future 

studies as additional experimental data becomes available, including:  

• The role of the parameter ne is not well understood in the model. As Rong and McCartney 

(2020a, 2020b) performed all tests under the same vertical total stress of 50 kPa, the actual 

value of ne could not be confirmed. Cyclic simple shear tests performed at different values of 

mean effective stresses would help to understand the impact of the mean effective stress on the 

parameters of the hyperbolic curve. Changes in the magnitude of n will mean that evolution in 

the mean effective stress during cyclic shearing will have a greater effect on the evolution in 

plastic volumetric strain.  

•  The shift in the hysteretic shear stress-strain curves in the experiments should be better 

understood and may have been due to creep.  

• For the collection of undrained data, the cyclic simple shear apparatus appeared to have issues 

with applying the target shear strain which can be observed in the shear stress versus shear 

strain plot in Figure 8.1 and also had a non-symmetric shape. Additional experimental 

improvements may be needed.  

 

Figure 8.1 Shear stress-shear strain loops from undrained Data Set 2: 𝜓𝑜 = 6𝑘𝑃𝑎, 𝑆𝑜 = 0.2  
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Appendix A  

A1: Hyperbolic fitting for cyclic shearing Appendix 

Using the small strain shear modulus and the ultimate shear stress, a hyperbolic model can 

be defined from initial loading data of the soil and is referred to as the backbone curve as shown 

in Figure A1.  

 

Figure A1: Depiction of backbone curve with a hysteretic loop depicting shear strain range of 

1% representing 1.25 cycles of shear strain. 

 

 The backbone curve shown in Figure A1 was defined by fitting a hyperbola to the results 

from a monotonic set of shear stress versus shear strain data. Using hyperbolic fitting, the shear 

modulus is converted to a strain dependent parameter by linearizing the initial loading data of the 

stress strain curve. Specifically, by linearizing the relationship between (
𝛾

𝜏
) and (𝛾), the slope and 

intercept can be interpreted as (
1

𝜏𝑢𝑙𝑡
) and (

1

𝐺𝑖
), ultimate shear stress and initial shear modulus, 

respectively. 

𝜏 =
𝛾

1
𝐺𝑖
+
𝛾
𝜏𝑢𝑙𝑡

 (A1-1) 
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𝛾

𝜏
=
1

𝐺𝑖
+
𝛾

𝜏𝑢𝑙𝑡
 

(A1-2) 

The empirically based mathematical model can be seen in Figure A2. The ultimate shear stress is 

considered a fake parameter because the value is never reached and is used in calculating the 

reduction factor to truncate the hyperbolic curve from linear elastic shearing to nonlinear plastic 

shearing. 

 

Figure A2: Linear transformation of hyperbolic shear stress-strain relationship. 

Using the ultimate shear stress from the best fit hyperbola and the shear stress at failure, 

(𝜏𝑓), the failure ratio (Rf) can be defined: 

R𝑓 =
𝜏𝑓

𝜏𝑢𝑙𝑡
 

(A1-3) 

The failure ratio aids in governing the overall shape of the shear stress strain curve. The ultimate 

shear stress will always be larger than the shear stress at failure and therefore (Rf) will be smaller 

than unity. An (Rf) value close to 1 signifies that the hyperbolic curve is very ductile, (Rf) values 

approaching 0 signify a very brittle curve. 

Since the actual data does not match a hyperbola perfectly, a certain stress level range is 

needed when fitting the slope and intercept. The stress level (SL) is defined as follows: 

𝑆𝐿 =
𝜏

𝜏𝑓
 (A1-4)  
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 If multiple data sets are available for the same soil sample at varying mean stresses, 

linearizing the data as seen in Figure 3A, the shear modulus number, (𝐾𝐺
𝑒) and exponent, (ne), can 

be interpreted as the slope and intercept, respectively.  

 

Figure A3: Variation of initial shear modulus with changing mean stress 

Gi = KG
e ∗ Pa ∗ (

σ′m
Pa
)

ne

 
(A1-5) 

  

log [
Gi
Pa
] = log(KG

e ) + ne log (
σ′m
Pa
) 

(A1-6) 

 

A2. Pore Air Pressure Derivation 

Using Boyle’s Law and an isothermal fluid elasticity, a relationship for the bulk modulus 

of air can be defined for seismic compression. It is assumed that all volumetric compression occurs 

in the air voids. The initial and final volume of water and soils does not change during undrained 

cycling. The image below shows before and after cycling as it pertains to the air in the sample: 
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Figure A4: (a) Before cycling air pressure and volume (b) After cycling air pressure and volume 

Boyle’s Law for the undrained compression of air is given by: 

uaoVao = uafVaf (A2-1) 

The change in volume of air can be defined as: 

∆Va = Vao − Vaf (A2-3) 

Which can be rearranged to find the Vao and Vaf:  

Vao = ∆Va + Vaf (A2-4) 

Vaf = Vao − ∆Va (A2-5) 

Using these relationships, the volumetric strain of the air can be defined:  

εa = ∆Va/Vao =
Vao − Vaf
Vao

 
(A2-6) 

Rearranging Eq. (6) to simplify to strain in terms of Vaf: 

Vaf = Vao − εaVao = Vao(1 − εa) (A2-7) 

Substituting Eq. (6) into Boyle’s Law Eq. (1): 

uaoVao = uaf × Vao(1 − εa)  (A2-8) 

uao = uaf(1 − εa) = uaf − uafεa  (A2-9) 
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uafεa = uaf − uao = ∆ua  (A2-10) 

uaf = ∆ua/εa  (A2-11) 

The isothermal pressurization for air can be represented can be represented by fluid elasticity: 

εa = ∆ua/Ka (A2-2) 

Combining Eq (A2-11) and Eq (A2-2), the bulk modulus of air can be defined as: 

Ka = uaf (A2-14) 

Assuming that the initial pore air pressure is at atmospheric pressure and under isothermal 

conditions (T = 70 C): 

∆ua = uaf − uao = uaf − Patm (A2-12) 

uaf = ∆ua + Patm  (A2-13) 

Ka = ∆ua + Patm (A2-15) 

This equation implies that when cycling initiates, the bulk modulus of air will evolve with the 

change in pore air pressure.  To define the change in pore air pressure, a model needs to be defined 

in terms of the three-phase system (air, water, solids): 

 

Figure A5: Three phase system of air (white), water (blue), and solids (brown) in the funicular 

region of SWRC. 
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Figure A6. Idealized image of partitioned three-phase system. 

To represent the properties of the three-phase system, it is advantageous to define each 

phase in terms of their individual volumes: 

 

Figure A7. Idealized image of volumes of a 3-phase system. 

The sums of the volumes of the 3-phase system need to be defined in terms of saturation 

and void ratio. The phase relationships can be used to define the equations: 

VT = Vso + Vwo + Vao (A2-16) 

VVo = Vwo + Vao (A2-17) 
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VT = Vso + Vvo (A2-18) 

S𝑜 =
Vwo
VVo

=
Vwo

Vao + Vwo
 

(A2-19) 

e𝑜 =
Vvo
Vso

=
Vao + Vwo
Vso

 
(A2-20) 

If the volume of the solids is equal to one, which is the case when finding relationships between 

different phase variables, the following relationships can be defined: 

Vso = 𝑉𝑠𝑓 = 1 (A2-21) 

e𝑜 =
Vv
Vs
=
Vv
1
→ e𝑜 = Vvo 

(A2-22) 

S𝑜 =
Vw
VV
=
Vw
e𝑜
→ S𝑜 × e𝑜 = Vwo 

(A2-23) 

If the previous relationships are true, then the three-phase system can be redefined as Figure 5: 

 

Figure A8. Three-phase system new relationship 

Using these relationships, the volume of air can be redefined in terms of void ratio and saturation: 

Vao = VT − Vwo − Vso (A2-24) 

VT = 1 + e𝑜 (A2-25) 

Vao = 1 + e𝑜 − S𝑜 × e𝑜 − 1 = e𝑜 − S𝑜 × e𝑜 (A2-26) 
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Vao = e𝑜 × (1 − S𝑜) (A2-27) 

The three-phase system can now be defined as shown in Figure 5A below: 

    

Figure A9. Three-phase system defined in terms of saturation and void ratio. 

Cyclic shearing will cause compression of the three-phase system over time. The 

compression of the water volume is considered very small in comparison to the compression of 

the air volume. The volume of air will be the largest contributor to compression of the three-phase 

system. Some air may dissolve into the capillary water due to Henry’s law and the remainder of 

air (free air) may change in density as the air volume compresses. Assuming the Ideal Gas Law is 

valid for pore air, the free air in the system can be defined as: 

uaoVao = nao(FA)RT = constant (A2-28) 

uafVaf = naf(FA)RT = constant (A2-29) 

Eq. (28) and Eq. (29) can be set equal to each other, which also defines Boyle’s Law for energy 

conservation: 

uaoVao = uafVaf (A2-1) 

Since our system is in an undrained state, the amount of air particles is constant and can exist as 

free air in the voids or as dissolved air particles (Henry’s Law) in the capillary water. The following 

equations are valid and true: 
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nao(FA) =
uaoVao
RT

 
(A2-30) 

naf(FA) =
uafVaf
RT

 
(A2-31) 

nao = naf (A2-32) 

nao = nao(FA) + nao(DA) (A2-33) 

naf = naf(FA) + naf(DA) (A2-34) 

Henry’s law can be written as follows assuming that volume of water is constant (Vwo = 𝑉𝑤𝑓 =

𝑉𝑤) during cycling: 

nao(DA) = h × uao × Vw (A2-35) 

naf(DA) = h × uaf × Vw (A2-36) 

Inserting Eq. (36) into Eq. (34) yields: 

naf = naf(FA) + h × uaf × Vw (A2-37) 

Rearranging Eq. (37) and inserting into Eq. (31) yields: 

naf − h × uaf × Vw =
uafVaf
RT

 
(A2-38) 

Inserting Eq. (32) into Eq. (38): 

nao − h × uaf × Vw =
uafVaf
RT

 
(A2-39) 

Inserting Eq. (33) into Eq. (39): 

nao(FA) + nao(DA) − h × uaf × Vw =
uafVaf
RT

 
(A2-40) 

Inserting Eq. (30) and Eq. (35) into Eq. (40): 

uaoVao
RT

+ h × uao × Vw − h × uaf × Vw =
uafVaf
RT

 
(A2-41) 

Inserting Eq. (30), Eq. (13) and Eq. (5) into Eq. (41): 
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uaoVao
RT

+ h × uao × Vw − h × (∆ua + Patm) × Vw =
(∆ua + Patm)(Vao − ∆Va)

RT
 

(A2-42) 

Inserting Patm = uao: 

PatmVao
RT

+ h × Patm × Vw − h × (∆ua + Patm) × Vw =
(∆ua + Patm)(Vao − ∆Va)

RT
 

Expand (): 

PatmVao
RT

+ h × Patm × Vw − h × ∆uaVw − h × Patm × Vw =
(∆ua + Patm)(Vao − ∆Va)

RT
 

Reduce: 

PatmVao
RT

− h × ∆uaVw =
(∆ua + Patm)(Vao − ∆Va)

RT
 

Expanding RHS: 

PatmVao
RT

− h × ∆uaVw =
(∆ua × Vao)

RT
−
(∆ua × ∆Va)

RT
+
(Patm × Vao)

RT
−
(Patm × ∆Va)

RT
 

Reduce: 

−h × ∆uaVw =
(∆ua × Vao)

RT
−
(∆ua × ∆Va)

RT
−
(Patm × ∆Va)

RT
 

 

Multiply both sides by RT and rearrange to put all ∆𝑢𝑎 on one side: 

(Patm × ∆Va) = h × ∆uaVw × RT + (∆ua × Vao) − (∆ua × ∆Va)  

(Patm × ∆Va) = (h × Vw × RT + Vao − ∆Va)∆ua  

The change in pore air pressure is equivalent to: 

(Patm × ∆Va)

(h × Vw × RT + Vao − ∆Va)
= ∆ua 

(A2-43) 

Using saturation and void ratio definitions from Eq. (23) and Eq. (27) to replace Vw and  Vao 

respectively: 

(Patm × ∆Va)

(h × S𝑜 × e𝑜 × RT + e𝑜 × (1 − S𝑜) − ∆Va)
= ∆ua 

(A2-44) 



92 
  

For cumulative volume strain, the pore air pressure is defined as: 

𝑉𝑡 = 1 + 𝑒𝑜  

∆Va
𝑉𝑡
= Δ𝜀𝑣

𝑝
 

 

∆Va = Δ𝜀𝑣
𝑝(1 + 𝑒𝑜)  

𝜀𝑣
𝑝 = Δ𝜀𝑣

𝑝 + 𝜀𝑣𝑜
𝑝

  

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 = 𝜀𝑣
𝑝(1 + 𝑒𝑜)  

ua =
(Patm × 𝜀𝑣

𝑝(1 + 𝑒𝑜))

(h × S𝑜 × e𝑜 × RT + e𝑜 × (1 − S𝑜) − 𝜀𝑣
𝑝(1 + 𝑒𝑜))

 

(A2-44b) 

The solubility constant in Henry’s equation is defined as below (ℎ𝑎 = 0.187
𝑚𝑜𝑙

(𝐿∗𝑏𝑎𝑟)
): 

ℎ =
ρa
ρw
ℎ𝑎 (A2-45) 

Inserting the equation for pore pressure change Eq. (44b) into bulk modulus of air Eq. (15):  

Ka = [
(Patm × 𝜀𝑣

𝑝(1 + 𝑒𝑜))

(h × S𝑜 × e𝑜 × RT + e𝑜 × (1 − S𝑜) − 𝜀𝑣
𝑝(1 + 𝑒𝑜))

+ Patm] 

(A2-46) 

Rearranging Eq. (46): 

Ka = [
𝜀𝑣
𝑝(1 + 𝑒𝑜)

(h × S𝑜 × e𝑜 × RT + e𝑜 × (1 − S𝑜) − 𝜀𝑣
𝑝(1 + 𝑒𝑜))

+ 1] × Patm 

(A2-47) 

A3: Relationship between Degree of Saturation and Volumetric Strain  

Incremental change in saturation can be found using the initial conditions and assuming 

the change in pore air volume is responsible for the change in total volume of the specimen:  

S =
𝑉𝑤
𝑉𝑣

 
(A3-1) 
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S =
𝑉𝑤𝑜

𝑉𝑎𝑓 + 𝑉𝑤𝑜
 

(A3-2) 

Using the equations defined in appendix A1, the following relationship exists for the initial 

volume of water: 

Vso = 𝑉𝑠𝑓 = 1 (A3-21) 

e𝑜 =
Vv
Vs
=
Vv
1
→ e𝑜 ∗ Vs = Vvo 

(A3-22) 

S𝑜 =
Vwo
VV

=
Vwo
e𝑜Vs

→ S𝑜 × e𝑜Vs = Vwo 
(A3-23) 

S =
Vs𝑒𝑜𝑆𝑜

𝑉𝑎𝑜−∆𝑉𝑎 + Vs𝑒𝑜𝑆𝑜
 

(A3-3) 

S =
Vs𝑒𝑜𝑆𝑜

(Vs𝑒𝑜(1 − 𝑆𝑜)) − ∆𝑉𝑎 + Vs𝑒𝑜𝑆𝑜
 

(A3-4) 

S =
Vs𝑒𝑜𝑆𝑜
𝑒𝑜 − ∆𝑉𝑎

 
(A3-5) 

where ∆εv
p
 =

∆𝑉𝑎

𝑉𝑡
, 𝑉𝑡 = (Vs + 𝑒𝑜) 

S =
Vs𝑒𝑜𝑆𝑜

𝑒𝑜 − 𝑉𝑡∆εv
p
 
 

(A3-6) 

S =
Vs𝑒𝑜𝑆𝑜

𝑒𝑜 − (Vs + 𝑒𝑜)∆εv
p 

(A3-7) 

S =
Vs𝑒𝑜𝑆𝑜

𝑒𝑜 − (Vs + 𝑒𝑜)∆εv
p 

(A3-8a) 

For cumulative saturation change, the cumulative volumetric strain can be defined as follows: : 

𝜀𝑣
𝑝 = Δ𝜀𝑣

𝑝 + 𝜀𝑣𝑜
𝑝

 (A3-9) 

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝜀𝑣
𝑝(Vs + 𝑒𝑜) (A3-10) 
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S =
Vs𝑒𝑜𝑆𝑜

𝑒𝑜 − (Vs + 𝑒𝑜)εv
p 

(A3-8b) 

A4. Transient Scanning Curve Equation 

To capture the poromechanical evolutions, the model uses empirical transient SWRC paths 

to calculate the changes in matric suction as the degree of saturation increases during rewetting. 

The data from Rong and McCartney (2020b) showed that the transient rewetting slopes increased 

with initial degree of saturation. The equation was derived using a simple linear path transformed 

for a semi-log plot. Using the rewetting path to create a linear equation to track the change in 

saturation with the change in matric suction would provide a way to model the pore water pressure 

generation. If initial cycling data is available, the slopes (m) can be interpreted and used to predict 

the trend of matric suction if the saturation changes are known: 

S = −m log10ψ + b (A4-1) 

S − b = −m log10ψ (A4-2) 

10
S−b
−m = 10log10𝜓 

(A4-3) 

10
S−b
−m = 𝜓 

(A4-4) 

S0 +m log10ψ0 = b (A4-5) 

ψ = 10
S−(S0+mlog10ψ0)

−m  
(A4-6) 

 

A5. Volume Compression Equations 

 The volumetric compression equations are derived using a hyperbolic model similar to 

Duncan-Chang and can be found in Puebla et al (1997). The developed stress ratio is defined as 

the maximum shear stress divided by the mean stress. The developed stress ratio plotted against 
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the plastic shear strains has a hyperbolic function with the plastic tangential shear modulus as the 

slope. Taking the derivative, the developed stress ratio is defined as follows: 

∆ηd = [
∆𝜏

𝜎′𝑚
− (

𝜏

(𝜎′𝑚)2
) ∆𝜎′𝑚] 

 

(A5-1) 

The increment of the mean stress is defined as the final mean stress minus initial mean stress: 

∆𝜎′𝑚 = 𝜎′𝑚 − 𝜎′𝑚0 

 

(A5-2) 

The increment of the shear stress is defined similarly as the final shear stress minus the initial 

mean stress: 

∆𝜏 = 𝜏 − 𝜏0 

 

(A5-3) 

Using the energy considerations for plane strain conditions: 𝑑𝜀2
𝑒 = 𝑑𝜀2

𝑝 = 0, the dissipated 

energy can be defined as: 

𝑑𝐸𝐷 = 𝜎′1 ∗ 𝑑𝜀1
𝑝 + 𝜎′3 ∗ 𝑑𝜀3

𝑝
 

 

(A5-4) 

 The equation can be expressed in the following way: 

𝜎′1 ∗ 𝑑𝜀1
𝑝 + 𝜎′3 ∗ 𝑑𝜀3

𝑝 =
𝜎′1 + 𝜎′3

2
(𝑑𝜀1

𝑝 + 𝑑𝜀3
𝑝) +

𝜎1 − 𝜎3
2

(𝑑𝜀1
𝑝 − 𝑑𝜀3

𝑝) 

 

(A5-5) 

Now the equation for energy can be defined in terms of mean stress and shear stress: 

𝑑𝐸𝐷 = 𝜎′𝑚 ∗ 𝑑𝜀𝑣
𝑝 + 𝜏 ∗ 𝑑𝛾𝑝 

 

(A5-6) 

For constant volume assumptions, the energy dissipation can be defined as: 

𝑑𝐸𝐷 = 𝜏 ∗ 𝑑𝛾𝑝 = 𝜎′𝑚 sin ∅𝑐𝑣 𝑑𝛾
𝑝 

 

(A5-7) 

The Cam Clay model for plastic energy dissipation is defined as: 

𝑑𝐸𝑃 = 𝜎′𝑚 sin ∅𝑐𝑣 𝑑𝛾
𝑝 

 

(A5-8) 

 Combining equations A4-6 and A4-8: 

𝜎′𝑚 ∗ 𝑑𝜀𝑣
𝑝 + 𝜏 ∗ 𝑑𝛾𝑝 = 𝜎′𝑚 sin ∅𝑐𝑣 𝑑𝛾

𝑝 

 

(A5-9) 

Now the plastic volumetric strain can be defined as: 
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𝑑𝜀𝑣
𝑝 = (sin ∅𝑐𝑣 −

𝜏

𝜎′𝑚
) 𝑑𝛾𝑝 

 

(A5-10) 

In incremental form, the plastic volumetric strain increment can now be obtained: 

∆𝜀𝑣
𝑝 = (sin ∅𝑐𝑣 −

𝜏

𝜎′𝑚
) ∆𝛾𝑝 

 

(A5-10b) 

The plastic shear strain increment is found using the derivative of the developed stress ratio and 

the tangential plastic shear modulus: 

∆γ𝑝 = (
1

𝐺𝑝
) [
∆𝜏

𝜎′𝑚
− (

𝜏

(𝜎′𝑚)2
)∆𝜎′𝑚] 

 

(A5-11) 

Figure A10 shows the hyperbolic relationship between the plastic shear strain, tangential plastic 

shear modulus and the developed stress ratio (where 𝜂𝑑 =
𝜏

𝜎′𝑚
): 

 

Figure A10. Normalized shear stress-shear strain curve. 
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A6. Graphical Results of Model for All Specimens  

(a)  (b) 

(c) (d) 

(e) (f) 

(g) 

Figure A6-1: Comparison between experimental results and model predictions for a sand 

specimen with So=0.117, ψo=10 kPa: (a) Volume change; (b) Degree of Saturation; 

(c) Pore air pressure; (d) Matric suction; (e) Pore water pressure; (f) Mean effective 

stress; (g) Degree of saturation vs. matric suction 
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 (a)  (b) 

 (c)  (d) 

 (e)  (f) 

 (g) 

Figure A6-2 Comparison between experimental results and model predictions for a sand 

specimen with So=0.2, ψo=6 kPa for SWRC fit to low cycles: (a) Volume change; 

(b) Degree of Saturation; (c) Pore air pressure; (d) Matric suction; (e) Pore water 

pressure; (f) Mean effective stress; (g) Degree of saturation vs. matric suction 
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 (a)  (b) 

 (c)  (d) 

 (e)  (f) 

 (g) 

Figure A6-3 Comparison between experimental results and model predictions for a sand 

specimen with So=0.3, ψo=4 kPa for SWRC fit to low cycles: (a) Volume change; 

(b) Degree of Saturation; (c) Pore air pressure; (d) Matric suction; (e) Pore water 

pressure; (f) Mean effective stress; (g) Degree of saturation vs. matric suction 
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 (a)  (b) 

 (c)  (d) 

(e)  (f) 

 (g) 

Figure A6-4 Comparison between experimental results and model predictions for a sand 

specimen with So=0.4, ψo=3 kPa for SWRC fit to low cycles: (a) Volume change; 

(b) Degree of Saturation; (c) Pore air pressure; (d) Matric suction; (e) Pore water 

pressure; (f) Mean effective stress; (g) Degree of saturation vs. matric suction 
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 (a)  (b) 

 (c)  (d) 

 (e)  (f) 

 (g) 

Figure A6-5: Comparison between experimental results and model predictions for a sand 

specimen with So=0.56, ψo=2 kPa for SWRC fit to low cycles: (a) Volume change; 

(b) Degree of Saturation; (c) Pore air pressure; (d) Matric suction; (e) Pore water 

pressure; (f) Mean effective stress; (g) Degree of saturation vs. matric suction 
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