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Phase Patterning in Multi-stable Metamaterials: Transition Wave
Stabilization and Conversion

Chongan Wang and Michael J. Fraziera)

Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093,
USA

(Dated: 31 March 2023)

This letter proposes a novel metamaterial design strategy leveraging a tunable structural defect for
manipulating the propagation of transition waves toward custom multi-phase patterning in multi-stable
mechanical metamaterials. The defect reversibly adjusts the on-site potential in order to affect the motion of
the transition waves which traverse it, either prohibiting wave transmission (i.e., stabilization) or permitting
transmission of specific modes, possible converting one mode into another. Thus, the defect is able to control
the occurrence and distribution of the structural phases and realize the desired phase patterns. Although the
metamaterial model for our analytical and numerical study is a one-dimensional (1D) architecture comprising
tri-stable elements, the proposed method is shown to apply to 2D architectures and is amenable to elements
possessing more than three stable states, demonstrating greater flexibility in metamaterial design than current
approaches. The proposed method expands the configuration space of phase-transforming metamaterials,
which contributes to efforts aimed at re-programmable mechanical/dynamic performance.

Phase transformations are a prominent mechanism of
equilibration in materials whose microstructure exhibits
more than one energetically stable configuration (i.e.,
phase)1. Within a given material sample, regions
of differing configuration (i.e., domains) may coexist,
delimited by an interpolating interface (i.e., domain wall)
whose motion constitutes a transition wave effectuating
the transformation from one phase to another. The
physical properties can vary drastically between domains
of differing phase and even within the domain walls,
affecting the macroscopic material behavior. Managing
the occurrence and distribution of the disparate phases
within a material sample (i.e., phase patterning) via deft
domain wall control is at the core of many current and
emerging information technologies2–5 and, thus, attracts
significant research attention.

Intriguingly, analogous transformation phenomena
have been elicited at the structural level from engineered
media – mechanical metamaterials – comprising
multi-stable elements and, likewise, have realized
novel functionalities and diverse applications6–10 The
accessibility of the internal architecture permits a
variety of metamaterial designs11–15 for a tailored
response; yet, with rare exception16–19, most designs
are one-dimensional (1D) systems of identical
bi-stable elements within which transition waves
transform the entire structure from the (high-energy)
meta-stable phase to the (low energy) ground state,
demonstrating a severely limited global configuration
space compared to that currently exploited in traditional
phase-transforming materials.

Recently, utilizing bi-stable elements with
energetically-degenerate, though mechanically distinct
ground states, Ramakrishnan and Frazier20 realized

a)Corresponding author email: mjfrazier@ucsd.edu

stable, defect-mediated phase patterns within a
1D structure. Since the constituent phases were
mechanically distinct, the system dynamic response was
shown to be affected by the tuned patterning, enabling
the realization of waveguides with variable pass band.
Alternatively, utilizing tri-stable elements with two
degenerate ground states, Yasuda et al.21 demonstrated
stable patterns of the ground-state configurations upon
the collision of incompatible wavefronts. Likewise,
the global mechanical properties were shown to be
affected by the specific phase patterning; in particular,
the number and distribution of domain walls since
the intervening domains were mechanically identical.
While these efforts are noteworthy for introducing the
patterning concept to the metamaterial platform, we
identify two constraints inherent to each approach
that inhibit opportunities to achieve more complex
morphologies: for pattern stability, there is the apparent
requirement for (i) the on-site potential to possess
energetically-degenerate states and (ii) the metamaterial
architecture to be 1D. Thus far, patterns have also been
restricted to two phases, the minimum number.

In this letter, we present a design strategy to
achieve stable structural phase patterns in multi-stable
metamaterials with tunable defects. In implementing
the defects, our objective is to reversibly alter the
on-site potential driving transition waves in order to
control the occurrence, distribution, and stability of
phases, which involves the immobilization of domain
walls and the conversion of propagating waves from one
mode to another. The conversion of one propagating
mode into another is new to the metamaterial literature
related to transition waves but appears in other
contexts22,23. The proposed strategy neither relies
on energetically-degenerate states nor is limited to
1D architectures and can accommodate multi-stable
potentials for patterning more than two phases.

Our point of departure is the one-dimensional (1D)
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FIG. 1. (a) One-dimensional (1D) chain of tri-stable elements
with anomalous attachment. (b) (i) Tri-stable on-site
potential. (ii) Waveforms of three possible transitions: ue1/e3,
ue3/e5, and ue1/e5. The proposed method affects only the
ue1/e3 and ue1/e5 modes.

metamaterial comprising tri-stable elements depicted in
Fig. 1a. Within this architecture, we distinguish the
main lattice that comprises identical, elastically-coupled
elements with single displacement degree of freedom, ui,
i ∈ Z, and the local attachment, an anomalous element
with displacement freedom, uL, coupled to a single
site (i.e., the junction) within the lattice interior. For
simplicity, the tri-stability of each element is described
by the same form of potential function, ψ(u); however,
crucially, that of the local attachment is amplified by
a factor, K. The relevant non-dimensional discrete
governing equations with on-site viscous damping, η, are
given by [SI]:

üi + ηu̇i + (2ui − ui+1 − ui−1) + ψ′(ui) · · · (1a)

+
∑
I

kc(u0 − uL)δIi = 0,

üL + ηu̇L +Kψ′(uL) + kc(uL − uI) = 0, (1b)

where kc denotes the coupling stiffness between the local
attachment and the main lattice. The function, δIi, is the
Kronecker delta and, in the case of multiple attachments,
I collects the indices of elements within the main lattice
to which the attachments are singularly coupled. In the
following, I = 0 and u0 designates the displacement of
junction element.

The tri-stable potential function emerges from the
integration of

ψ′(u) =

5∏
i=1

(u− uei), (2)

where uei are the equilibrium configurations; likewise,
ψei = ψ(uei) are the corresponding free energies of
the equilibria. In order to support different transition

wave modes, we desire ψ(u) be asymmetric. Here,
we consider the case where (ue1, ue2, ue3, ue4, ue5) =
(−1,−1/2, 7/20, 3/5, 1) which generates a tri-stable
potential with stable states of progressively lower energy
(i.e., ψe1 > ψe3 > ψe5) as well as monotonically
decreasing energy barriers (i.e., ψe2 > ψe4) (Fig.
1b.i). This condition ensures that all back- and
forward-propagating transition waves exhibit kink and
anti-kink profiles, respectively. The condition is one
of convenience rather than functional necessity since
it permits the theoretical discussion to proceed with
reference to only one waveform with the understanding
that it is a mere reflection of the other. Here, we utilize
tri-stable elements; however, the approach outlined below
readily extends to the case of n-stable (n ≥ 3) elements,
permitting patterns comprising as many as n phases.
For the lattice initially uniform in ui = ue1, phase
transformation is effectuated by one of two transition
wave modes: ue1/e3 and ue1/e5 where uei/ej represents
the transition form the uei to the uej phase (Fig. 1b.ii).
Following a set of criteria, below, we design the

local attachment to modify the on-site potential of
the junction according to the present configuration,
uL, such that the incoming transition wave is either
immobilized at the junction, transmitted unaltered, or
transmitted as another wave mode (i.e., converted). In
short, regardless of the incoming transition wave, in
the domain beyond the junction, we desire that the
equilibrium phase match the prescribed configuration
of uL. To this end, we theoretically determine the
attachment parameters realize the desired performance.
For numerical verification, we simulate the transition
wave motion in the system described by Eq. (1) with η =
3/5. The system size, N = 101, is more than sufficient to
ensure that, following initiation at the left boundary, the
transition wave (anti-kink) profile and velocity reach a
steady-state before the influence of the junction becomes
apparent. The lattice-attachment coupling stiffness, kc,
is to be determined.

To simplify the theoretical analysis, we assume that
K → ∞ such that uL is a parameter to be prescribed
(i.e., uL = {ue1, ue3, ue5}) rather than a variable to be
determined. Nevertheless, the simulations set K = 40.
With a sufficiently large K, uL affects u0 via kc but the
reciprocal is, effectively, avoided. In this case, the local
attachment acts as a tunable boundary condition of the
main lattice. A discussion on the analytical implications
of a finiteK is presented in the SI. For the lattice initially
uniform in ui = ue1, we desire that the attachment
configuration regulate the transition wave mode that
is transmitted across the junction. The behavior is
summarized by the following criteria:

(i) The prescription of uL = {ue3, ue5} does not
stimulate a transition wave.

(ii) For uL = ue5, the incoming ue1/e5 transition wave
is transmitted across the junction while the ue1/e3
wave is converted to the ue1/e5 mode.
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FIG. 2. Attachment Calibration. Attachment stiffness and junction response for a static field with (a) C+ = C− = ψe1 and
uL = {ue3, ue5} [criterion (i)] and (b) C+ = C− = ψe3 and uL = ue5 [criterion (ii)]. Each side of Eq. (9) plotted separately
assuming (c) C+ = ψe3 and C− = ψe5 [criterion (iii)] and (d) C+ = ψe1 and either C− = ψe3 or C− = ψe5 [criterion (iv)].

(iii) For uL = ue3, the incoming ue1/e3 transition wave
is transmitted across the junction while the ue1/e5
wave is converted to the ue1/e3 mode.

(iv) For uL = ue1, all incoming transition waves are
immobilized at the junction.

Since uL is prescribed, kc is the only parameter yet to be
determined in accordance with the above criteria. For an
analytical determination, we are aided by the continuum
form of Eq. (1) derived by expanding ui±1 in Taylor
series to second order:

u,tt +ηu,t −u,xx +ψ′(u) + kc(u0 − uL)δ(x) = 0, (3)

where u0 = u(0) is the configuration of the junction
and δ(x) is the Dirac delta function. Each criterion
implies a unique steady-state configuration of the lattice;
consequently, we study the time-independent form of Eq.
(3):

−u,xx +ψ′(u) + kc(u0 − uL)δ(x) = 0. (4)

Since δ(x) is not bounded, u is continuous but not
differentiable at the junction. The gradient on either
side of the discontinuity is computed by integrating Eq.

(4) in the range x ∈ [0−, 0+], yielding

u,x (0
−)− u,x (0

+) + kc(u0 − uL) = 0. (5)

On the other hand, multiplying Eq. (4) by u,x and
integrating yields the first integral of motion:

−1

2
u,2x +ψ(u) =

{
C+ x > 0,

C− x < 0,
(6)

which is piecewise constant due to the discontinuity in
u,x at x = 0. Nevertheless, given that limx→±∞ u,x = 0,
the C± are identical to the equilibrium potential in the
remotes region, i.e., C± = ψ[u(x = ±∞)]. Consequently,
from Eq. (6):

− 1

2
[u,x (0

+)]2 + ψ(u0) = C+ = ψei, (7a)

− 1

2
[u,x (0

−)]2 + ψ(u0) = C− = ψej , (7b)

where i, j = {1, 3, 5}. Together, Eqs. (5) and (7) form
a complete set of algebraic equations for the system in
steady state. From these equations, we are able to derive
two relations for the conditions C+ = C− and C+ ̸= C−,
respectively [SI]. The former represents the scenario in
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FIG. 3. Transition Wave Stabilization and Conversion. Spatio-temporal evolution of ue1/e5- and ue1/e3-mode transition waves
in the lattice with prescribed uL = {ue1, ue3, ue5}, demonstrating wave stabilization and conversion according to the stated
criteria in the text.

which the lattice perturbed from the uniform state by
the local attachment and yields:

ψ(u0) = ψei +
k2c
8
(u0 − uL)

2. (8)

The latter corresponds to the case in which, as an effect
of the local attachment, a transition wave is immobilized
at the junction and yields (assuming an anti-kink wave
profile):

−
√

2[ψ(u0)− ψei]+
√
2[ψ(u0)− ψej ] = kc(u0−uL), (9)

where ψei > ψej and uL = uei. Equation (8) expresses
an energy balance while Eq. (9) a force balance. These
are the main theoretical results.

In light of Eqs. (8) and (9) and the above criteria,
we determine the a suitable value for kc. We compare
the theoretical predictions based upon the continuum
model [Eqs. (8) and (9)] to the numerical results from
simulations of the discrete model [Eq. (1)] for uL =
{ue1, ue3, ue5} and a parametrically increasing kc.
First, we consider criterion (i) for which uL =

{ue3, ue5} does not trigger a transition wave in the lattice
initially uniform in ui = u = ue1 (thus, C± = ψe1).

Figure 2a plots the (kc, u0) solution of Eq. (8), indicating
that, for uL = ue3, the equality is maintained by kc ∈
[0, 0.92); for uL = ue5, the equality is maintained by
kc ∈ [0, 46). The theoretical findings are supported by
the numerical results which exhibit a discontinuity in
the steady-state u0 at kc ≈ 0.91 under uL = ue3 and
kc ≈ 0.44 under uL = ue5, signaling sufficient coupling
to initiate a transition wave within the main lattice. The
analytical-numerical agreement validates the theoretical
approach. Since criterion (i) mandates that no transition
wave shall be initiated by uL = {ue3, ue5}, kc ≈ 0.46 is
the maximum allowable stiffness.

Next, we consider criterion (ii) for which setting uL =
ue5 has no lasting affect on the ue1/e5 wave profile as
it traverses the junction, while converting the incoming
ue1/e3 wave to the ue1/e5 mode. Criterion (ii) implies that

the lattice uniform in ui = u = ue3 (thus, C± = ψe3)
(as if following the passage of a ue1/e3 wave) is unstable
under uL = ue5. Figure 2b plots the (kc, u0) solution
of Eq. (8) for kc ∈ [0, 0.34). Since the equality fails
for kc > 0.34, the lattice uniform in ue3 and under
uL = ue5 is unstable such that the incoming ue1/e3
transition wave is converted to the ue1/e5 mode upon
traversing the junction. Excellent agreement is observed
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FIG. 4. Phase Patterning in 2D Architectures. (a) A hierarchical hexagonal lattice of tri-stable elements with tunable
attachment at the corner junctions. From the uniform ue1 state, a transition wave stimulated at ⋆ is guided and converted
by the attachments to produce the desired phase morphology. (b) A square lattice where attachments on elements along the
perimeter of inscribed shapes (delineated by dashed lines) create the desired phase morphology. Without the attachments,
merely prescribing the phases patterns in (a,b) would not produce stable multi-phase morphologies.

between the theoretical and numerical results, where a
discontinuity in u0 occurs at kc ≈ 0.32. Thus, kc ≈ 0.34
is the minimum stiffness that satisfies criterion (ii).

Together, criteria (i) and (ii) narrow the range of
stiffness, kc ∈ (0.34, 0.46); a result determined by
considering the stability of the uniform lattice perturbed
by uL. This uniformity was manifest in Eq. (7) as
C+ = C− and, ultimately, a single value of ψei in
Eq. (8). For criterion (iii), converting the ue1/e5
wave to the ue1/e3 mode at the junction implies the
steady-state condition in which a domain wall is pinned
at the junction, interpolating phases ue5 (x < 0) and ue3
(x > 0); thus, C+ ̸= C− and ψei ̸= ψej in Eq. (9). A
similar situation arises in satisfying criterion (iv) since
the domain wall of every transition wave is pinned to the
junction. Each side of Eq. (9) is plotted in Fig. 2c,d
for criteria (iii) and (iv), respectively. Apparently, any
kc ∈ (0.34, 0.46) that satisfies criteria (i) and (ii) also
maintains the equality in Eq. (9) and, thus, satisfies
criteria (iii) and (iv), as well.

To validate the analysis, we provide numerical
examples of transition wave stabilization and conversion
in Fig. 3, which depicts the spatio-temporal evolution
of ue1/e5 and ue1/e3 transition waves stimulated from
the left boundary of a lattice with coupled attachment
in configuration uL = {ue1, ue3, ue5}. We select kc =
0.4 from within the criteria-mediated stiffness range.
Apparently, all the criteria are met: setting uL =

{ue3, ue5} does not initiate a transition wave from the
junction (Figs. 3c–f) [criterion (i)]; setting uL = ue5 does
not generate any lasting effects for passing ue1/e5 waves,
but converts incoming waves of ue1/e3 to ue1/e5 (Fig.
3e,f) [criterion (ii)]; setting uL = ue3 does not generate
any lasting effects for passing ue1/e3 waves, but converts
incoming waves of ue1/e5 to ue1/e3 (Fig. 3c,d) [criterion
(iii)]; setting uL = ue1 immobilizes all transition waves
at the junction (Figs. 3a,b) [criterion (iv)]. In Fig. 3f,
we note that in converting a wave of ue1/e3 to ue1/e5,
a back propagating wave of the ue3/e5 mode is also
stimulated. If, in practice, this is undesirable, then a
second attachment coupled to a lattice site i < 0 and
maintained in state, uL = ue3, may prevent the back
propagation (see Fig. S7 in the SI). Nevertheless, the
tunable attachment is shown to regulate the distribution
of multiple phases, demonstrating a patterning ability.

Although the above investigation focuses on 1D
metamaterial structures, the method of tunable defects
extends phase patterning, for the first time, to 2D
structures, as well. To demonstrate this numerically,
we consider transition wave propagation within the
2D hierarchical hexagonal lattice depicted in Fig. 4a
where each lattice segment comprises a 1D chain of
ten tri-stable elements and each corner element (i.e.,
junction) is adorned with a local attachment coupled
through kc = 0.6 [SI]. The independently-tunable
attachments ensure that the transition wave approaching
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the junction is either immobilized there, transmitted
unaltered, or converted to another mode in order
to realize an improvised multi-phase pattern. We
also present the non-hierarchical square lattice with
nearest-neighbor interactions depicted in Fig. 4b within
which a subset of lattice sites couple to a tunable
attachments (kc = 0.4): along the perimeter of a circle
of radius, R = 25, attachments are set to uL = ue3;
along the perimeter of a square of side length, L =
100, attachments are set to uL = ue1. Within a ue1
background, an initial circular phase of ue5 expands
to the circular boundary where the ue1/e5 wavefront is
converted to the ue1/e3 mode following the attachment
prescription. Subsequently, the ue1/e3 wave expands until
stabilized by attachments at the square boundary.

In summary, we have developed a method utilizing
tunable soft defects for patterning stable structural
phases in mechanical metamaterials comprising
multi-stable elements. Compared to previous strategies,
the proposed approach grants additional design
flexibility in forgoing a reliance on degenerate ground
states and in extending the patterning capability to 2D
architectures suited to complex morphologies. As each
phase may be associated with unique on-site stiffness,
the defect-enabled patterning may realized meso-scale
morphologies to deliberately affect the macroscopic
metamaterial mechanics/dynamics. Similarly, as each
phase constitutes a unique structural configuration, the
method may assist in the realization of deformation
patterns for morphing surfaces. While the inherent
multi-stability of soft defects upholds the tuned state,
in practice, the switching between tuned states may be
shrewdly accomplished via electronic actuators.

See supplementary material for further details on
derivations and animations MOV S1 and S2 depicting
the time-evolution of the phase distribution in Figs. 4a,b,
respectively.

This work is supported by start-up funds provided by
the University of California.

The data that supports the findings of this study
are available within the article and its supplementary
material.
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