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Abstract

Ehrhart Theory of Combinatorially Defined Polytopes

by

Magda L Hlavacek

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Matthias Beck, Co-chair

Professor Mark Haiman, Co-chair

In geometric, algebraic, and topological combinatorics, properties such as symmetry, uni-
modality, and real-rootedness of combinatorial generating polynomials are frequently stud-
ied. In this thesis, we present three projects exploring various properties of polynomials
arising from Ehrhart theory, the study of counting integer points in lattice polytopes.

Many of the open questions on real-rootedness and unimodality of polynomials pertain to the
enumeration of faces of cell complexes. When proving that a polynomial is real-rooted, we
often rely on the theory of interlacing polynomials and their recursive nature. We relate the
theory of interlacing polynomials to the shellability of cell complexes. We first derive a suf-
ficient condition for stability of the h-polynomial of a subdivision of a shellable complex. To
apply it, we generalize the notion of reciprocal domains for convex embeddings of polytopes
to abstract polytopes and use this generalization to define the family of stable shellings of a
polytopal complex. We characterize the stable shellings of cubical and simplicial complexes,
and apply this theory to answer a question of Brenti and Welker on barycentric subdivisions
for the well-known cubical polytopes. We also give a positive solution to a problem of Mo-
hammadi and Welker on edgewise subdivisions of cell complexes. We end by relating the
family of stable line shellings to the combinatorics of hyperplane arrangements.

The Ehrhart polynomial ehrP (t) of a lattice polytope P counts the number of integer points
in the n-th dilate of P . The f ∗-vector of P , introduced by Felix Breuer in 2012, is the vector of
coefficients of ehrP (n) with respect to the binomial coefficient basis

{(
n−1
0

)
,
(
n−1
1

)
, ...,

(
n−1
d

)}
,

where d = dimP . Similarly to h/h∗-vectors, the f ∗-vector of P coincides with the f -vector of
its unimodular triangulations (if they exist). We present several inequalities that hold among
the coefficients of f ∗-vectors of polytopes. These inequalities resemble striking similarities
with existing inequalities for the coefficients of f -vectors of simplicial polytopes; e.g., the first
half of the f ∗-coefficients increases and the last quarter decreases. Even though f ∗-vectors
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of polytopes are not always unimodal, there are several families of polytopes that carry the
unimodality property. We also show that for any polytope with a given Ehrhart h∗-vector,
there is a polytope with the same h∗-vector whose f ∗-vector is unimodal.

Posets can be viewed as subsets of the type-A root system that satisfy certain properties.
Geometric objects arising from posets, such as order cones, order polytopes, and chain
polytopes, have been widely studied, though many open questions concerning them remain
open, such as the unimodality of their h∗-vectors. In 1993, Vic Reiner introduced signed
posets, which are subsets of the type-B root system that satisfy the same properties. We
introduce the analogue of order and chain polytopes in this setting, focusing on the Ehrhart
theory of these objects. We are able to determine when these signed order polytopes have
symmetric h∗-vectors, and end with a discussion of open questions regarding signed chain
polytopes.
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Chapter 1

Introduction

This thesis consists of several projects, each concerning polynomials related to enumer-
ative problems about discrete geometric objects, such as lattice polytopes and simplicial
complexes. A lattice polytope is the convex hull of finitely many integer points in Rd; enu-
merative data corresponding to these objects show up in many fields of mathematics, such
as representation theory, algebraic geometry, and commutative algebra. In particular, in
1962, for a lattice polytope P ⊂ Zd, Eugene Ehrhart introduced and proved polynomiality
of the Ehrhart enumerator ehr(n) = |nP ∩Z| [38]. This Ehrhart polynomial can be seen as a
discrete measure of volume, and many objects in combinatorics, such as order polynomials,
chromatic polynomials of graphs, and magic squares have interpretations in Ehrhart theory
(for examples, see [13]).

It can be helpful to view the information encoded in the Ehrhart polynomial in other
forms. The generating series Ehr(P ; z) of a d-dimensional lattice polytope can be written as

Ehr(P ; z) = 1 +
∑
n≥1

ehrP (n)z
n =

h∗
0 + h∗

1z + · · ·+ h∗
d+1z

d

(1− z)d+1
.

The numerator of this expression is called the h∗-polynomial of P . Unlike the Ehrhart poly-
nomial, Stanley showed that that the coefficients of the h∗-polynomial of a lattice polytope
are always non-negative integers [64].

When studying a combinatorial polynomial, an often studied question is one of classi-
fication: Exactly which polynomials can be realized as this specific type of combinatorial
polynomial? This question is open for Ehrhart polynomials and h∗-polynomials, and one
way that people have been chipping away at this is by studying specific properties that these
polynomials may have. For example, there is a large collection of work asking if specific
families of polytopes have h∗-polynomials that are unimodal or real-rooted, for e.g, [10],
[31]. The three projects making up the bulk of this thesis are all related to this broad goal
in some way, and are titled:

1. Subdivisions of shellable complexes.
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2. Inequalities of f ∗- polynomials.

3. Signed poset polytopes.

Project 1 is joint work with Liam Solus and published in [46], and is discussed in Chap-
ter 3 of this thesis; it contributes to work exploring properties of h-polynomials of certain
collections of simplicial complexes. A foundational result regarding simplicial complexes,
the g-theorem ([15], [54], [66]), implies that the h-polynomial of the boundary complex of
a simplicial polytope is unimodal. Since then, extensions via the relationship between h-
polynomials of simplicial complexes and their subdivisions became of interest. For example,
the barycentric subdivision of a polytope is a simplicial complex based on the combinatorial
data of the face lattice of the polytope.

In [27], Brenti and Welker strengthened the unimodality result implied by the g-theorem
for a specific family of simplicial complexes, the barycentric subdivision of the boundary
complex of a simplicial polytope, by showing that the h-polynomial in question is real-
rooted, a stronger property than unimodality. They then propose the following question:
Does the barycentric subdivision of the boundary complex of any polytope yield a real-
rooted h-polynomial? As a starting point, they suggested to look at the boundary complex
of cubical polytopes (polytopes where all the faces are combinatorially equivalent to cubes).

In Chapter 3 of this thesis, we develop a tool based around a shelling argument and results
from Ehrhart theory that can be used to prove real-rootedness results of h-polynomials of
subdivisions of complexes; this tool is given by Theorem 3.3.1. We then apply this tool to
various specific families of subdivisions of polytopal complexes, proving results such as, for
example, the real-rootedness of the h-vector of barycentric subdivisions of specific families
of cubical complexes, shown in Corollaries 3.4.9, 3.4.8, and 3.4.10. In the process of proving
these results, we describe a specific type of shelling order, a stable shelling that we are
interested in studying further.

Project 2 is joint work with Matthias Beck, Danai Deligeorgaki, and Jerónimo Valencia,
published in [14], and is discussed in Chapter 4 of this thesis. It concerns expanding the
current knowledge on a relatively new Ehrhart-related polynomial, the f ∗-polynomial of
a lattice polytope. There is a well-known basis change that transforms the f -polynomial
of a simplicial complex, enumerating its faces, into what is called the h-polynomial of the
simplicial complex and vice versa. The same basis change can be applied to the h∗-polynomial
of a lattice polytope, giving rise to the polytope’s f ∗-polynomial. In 2012, Breuer proved
that the f ∗-polynomial has nonnegative coefficients not only for lattice polytopes but also
for any complex of lattice polytopes [29].

In Chapter 4, we prove some additional inequalities regarding the coefficients of the f ∗-
vector mirroring inequalities for the f -vectors of simplicial polytopes [19]. These inequalities
are listed in Theorem 4.0.1. We also give additional results strengthening these inequalities
for specific families of polytopes, and also give a method for constructing polytopes with
unimodal f ∗-vectors, detailed in Corollary 4.0.6.

Project 3 is the subject of Chapter 5 of this thesis, and explores the Ehrhart theory of
polytopes constructed from a generalization of posets, signed posets, introduced in 1994 by
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Vic Reiner [58]. In 1986, Stanley introduced two polytopes coming from posets, the order
polytope and the chain polytope [68]. For a given poset P , the order polytope is

O(P ) = {ϕ ∈ RP : 0 ≤ ϕ(p) ≤ 1 for all p ∈ P and ϕ(a) ≤ ϕ(b) when a ≤ b in P},

and the chain polytope is defined using inequalities constructed from chains in the poset.
Since then, the Ehrhart theory of the order polytope has been well studied, and is still the

subject of large open problems. One well-known conjecture in algebraic combinatorics, the
Neggers–Stanley conjecture [56], can be rephrased in Ehrhart theory: The h∗-polynomial of
any order polytope is real-rooted. In 2007, Stembridge disproved this conjecture by finding an
explicit counterexample [73]. However, a weaker question is still open: Is the h∗-polynomial
of any order polytope unimodal?

In 1993, Reiner introduced signed posets, a type B generalization of posets [58]. In Chap-
ter 5, we describe analogous type B generalizations of order and chain polytopes, focusing
on the Ehrhart theory of these polytopes. Results such as Proposition 5.3.5 show analogous
results appearing in [68], such as describing the lattice points and facets of signed order poly-
topes. We also classify when a given signed poset yields a Gorenstein signed order polytope
in Proposition 5.5.4. We end by describing signed chain polytopes, giving some analagous
results to those appearing in [68] and end with some open questions.
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Chapter 2

Background

This chapter presents the main objects of study and establishes notation used throughout
this thesis.

2.1 Polytopes

A polyhedron P is the solution set of finally many linear inequalities,

P := {x ∈ Rd : Ax ≤ b},
for some real matrix A ∈ Rx×d and some real vector b ∈ Rm. A bounded polyhedron is
called a polytope .

Equivalently, a polytope can be described as the convex hull of finitely many points in
Rd, where the convex hull of a set of points v1,v2, . . . ,vn is given by

conv(v1, . . . ,vn) =

{
n∑

i=1

λivi : λi ≥ 0 for 1 ≤ i ≤ n and
n∑

i=1

λi = 1

}
.

For reasons we will see later, this is referred to as the vertex description of a polytope.
For a proof of the equivalence between the vertex description and the hyperplane description
of a polytope, see, for e.g., [23], and as we will see in the following discussion of some
properties of polytopes, sometimes it is more helpful to use the vertex description, and
sometimes the hyperplane description is more natural.

The dimension of a polytope is the dimension of the affine span of its vertices,
defined as aff(v1, . . . ,vn) = {

∑n
i=1 λivi : λi ≥ 0 for 1 ≤ i ≤ n}. Note that the dimension

of a polytope is not necessarily equal to the dimension of the space it is embedded in.
For example, the triangle with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) is a 2-dimensional polytope
living in R3. We call a polytope full-dimensional if its dimension is equal to the dimension
of its ambient space.

Given a polytope P ⊂ Rd, consider a hyperplane H = {x : ⟨w, x⟩ = a} such that
P ⊂ {x : ⟨w, x⟩ ≤ a}, or in other words P is entirely contained underneath H. Such a
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Figure 2.1: Simplices in 2, 3, and 4 dimensions.

hyperplane is called an admissible hyperplane of P . A face of P is any intersection of
P with an admissible hyperplane. We also consider the empty set and P to be faces of P .
The dimension of a non-empty face is the dimension of its affine span. We call 0-dimensional
faces vertices , 1-dimensional faces edges , and (d− 1)-dimensional faces facets . Note that
any polytope can be expressed the convex hull of its vertices. In this thesis, we are mostly
concerned with polytopes whose vertices are integer points; we will refer to these here as
lattice polytopes, though in the literature they are sometimes also refered to as integral
polytopes. We call all faces of P except for P itself and the empty set to be proper faces
of P . The relative interior of a polytope P = {x ∈ Rd : Ax ≤ b} can be thought of as P
with all of its proper faces removed, and is formally defined below as

P ◦ := {x ∈ Rd : Ax < b.}
Now that we have the fundamental definitions of polytopes, let’s look at some examples.

Example 2.1.1. A d-simplex a polytope with exactly d + 1 vertices. For example, a
triangle is a 2-dimensional simplex, and a tetrahedron is a 3-dimensional simplex. We often
mention to the standard simplex, which by convention will refer to

conv((1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . (1, 1, . . . , 1)) ⊂ Rd.

The equivalent hyperplane description of the standard simplex is {x ∈ Rd : 0 ≤ x1 ≤ x2 ≤
· · · ≤ xd ≤ 1}.

A d-simplex has exactly
(
d+1
i+1

)
faces of dimension i for 0 ≤ i ≤ d, since the convex hull

of any subset of vertices of a simplex forms a face. Each face is itself a simplex of some
dimension.

Example 2.1.2. The standard d-cube is given by the hyperplane description {x ∈ Rd : 0 ≤
xi ≤ 1 for 1 ≤ i ≤ d}., or alternatively, the convex hull of the points in {0, 1}d. A standard
d-cube has 2d−i

(
d
i

)
faces of dimension i, each of which is a possibly shifted version of an

i-dimensional cube.
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Polytopal operations and maps

There are many ways to construct new polytopes from old; the one that we will need the
most for what follows is the Minkowski sum of two polyhedra. For two polyhedra P and
Q, their Minkowski sum is denoted

P +Q = {v +w : v ∈ P,w ∈ Q}

There are also various notions for what it means for two polytopes to be considered
equivalent. First, there is a notion of combinatorial equivalence , which generally means
that the polytopes in question have the same facial structure. A more precise definition will
be given in Section 2.2.

Since much of the material in this thesis concerns questions of counting integer points
in lattice polytopes, we introduce a notion of equivalence that preserves such enumerative
properties introduced in the Ehrhart Theory section of this chapter. We call a matrix
U ∈ Zd×d unimodular if its determinant is ±1. We call two lattice polytopes P,Q ⊆ Rd

unimodularly equivalent if there exists a unimodular matrix U and a vector b ∈ Zd such
that P = fU(Q) + b, where fU(Q) = {Ux : x ∈ Q}.

Triangulations

When considering a polytope P , it is often helpful to break it into bite-sized pieces. A
dissection is a d-dimensional polytope P is a set of d-dimensional polytopes P1, . . . , Pn,
such that

⋃
Pi = P and P ◦

i ∩ P ◦
j = ∅.

It is helpful to have a stricter condition on how the bite-sized pieces in the decomposition
of a polytope intersect. A polytopal complex is a nonmpty finite set S of polytopes that
satisfies the conditions:

• If P ∈ S and F is a face of P , then F ∈ S.

• If P,Q ∈ S, then P ∩Q is a face of both P and Q.

The elements of S are called its faces , and its maximal faces (with respect to inclusion) are
called its facets . If all the facets of S have the same dimension then S is called pure .

Example 2.1.3. For any polytope P , the set of all proper faces of P is a polytopal complex,
which we call the boundary complex of P and denote δP . For a proof of this, see, for e.g.,
[23].

A subdivision of a polytope P is a polytopal complex whose union is P . A subdivision
of a P whose cells are all simplices is called a triangulation . If P is a lattice polytope, a
triangulation of P into lattice simplices is called a lattice triangulation .

Theorem 2.1.1. Every lattice polytope admits a lattice triangulation.
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Figure 2.2: A triangulation of the 3-cube into 6 simplices.

For a full proof of this result, see, for e.g., [23]. The proof of this actually shows a stronger
result: that every lattice polytope has a regular triangulation . Since these triangulations
appear later, we will introduce them and vaguely sketch their construction. For a more
detailed definition and construction, see, for e.g., [33].

Let V = {v1, . . . ,vn} ⊂ Rd be the set of lattice points in a polytope P , and consider a
lifting of ω ∈ Rn of these points as follows:

V ω = {(vi, ωi) : vi ∈ V }.

Now, let Rup = {(0, . . . , 0, t) ∈ Rd+1 : t ≥ 0}, and consider the unbounded polyhedra
conv(V ω) +Rup. The set of bounded faces of this polyhedra, when projected back down to
Rd, gives a subdivision of P . Any subdivision (or triangulation) that can be constructed in
this way for some choice of ω is called a regular subdivision (or triangulation).

Another special type of triangulation is a unimodular triangulation , which is a lat-
tice triangulation whose simplices are all unimodularly equivalent to the standard simplex.
Unimodular triangulations are often very helpful for computing volume and lattice point
enumerations of polytopes.
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2.2 Posets, with a view towards polytopes

A partially ordered set (P,⪯), called a poset for short, is a set P together with a relation
⪯ that satisfies:

• reflexivity: a ⪯ a for every a ∈ P .

• transitivity: for a, b, c ∈ P , if apreceqb and b ⪯ c, then a ⪯ c.

• antisymmetry: for a, b ∈ P , if a ⪯ b and bpreceqa, then a = b.

A poset if finite if P is a finite set. We call a sequence of n + 1 related elements,
x0 ⪯ x1 ⪯ · · · ⪯ xn a chain of length n (note that we allow for repeated elements). We say
that there is a cover relation between x, y ∈ P and that y covers x if x ⪯ y and there
is no such z such that x ⪯ z ⪯ y. Posets are often visualized by diagrams called Hasse
diagrams , in which the elements of P are represented with labeled dots, and for every pair
(x, y) in which y covers x, the dot representing y is drawn above the dot representing y, and
they are connected with an edge.

Throughout this thesis, we call a poset graded if all of its maximal chains are of the
same length. (Note that there a few related but different definitions of graded posets in the
literature.) A graded poset can always be given a rank function ρ : P → Z that satisfies
the following properties:

• if x ⪯ y ∈ P , then ρ(x) ≤ ρ(y).

• if y covers x, then ρ(y) = ρ(x) + 1.

Below, we list a few examples of posets.

Example 2.2.1. Consider ([n],≤), where ≤ is the standard less-than-or-equal relation on
real numbers. One can verify that this satisfies all the properties needed to be a poset, and
in fact the relation actually gives a total order, since each pair of elements is related. We
call this the chain on n elements.

Example 2.2.2. Let P be the set of subsets of [d], and let ⪯ be the inclusion relation
on sets, for e.g., {1, 4} ⪯ {1, 3, 4, 5}. One can verify that this is a poset; we call this the
Boolean lattice on d and denote it Bd.

Example 2.2.3. Consider ([n],=). Note that no two distinct elements are related. We call
this the antichain on n elements.
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{1}

{1, 2}

{2}

{1, 2, 3}

{3}

{2, 3}{1, 3}

∅

Figure 2.3: The Hasse diagram of the Boolean lattice on a set of size 3.

Face lattice of a polytope

Let P be a polytope and Φ(P ) be the set of its faces, including P itself and ∅. Note that
(Φ(P ),⊆) is a poset (and also a lattice). We refer to this as the face lattice of P .

Example 2.2.4. Consider a d-simplex ∆d, with vertices v1, . . . , vd, vd+1. As noted before,
the faces of ∆d are in bijection with the subsets of [d+1], and the mapping respects inclusion.
Thus, the face lattice of a d-simplex is isomorphic to the boolean lattice on [d+ 1].

We are now ready to formally define another type of equivalence between polytopes. Two
polytopes are combinatorially equivalent if their face lattices are isomorphic.

Order and chain polytopes

In the previous subsection, we discussed one example of a poset constructed from any given
polytope. We note that there are at least two examples of polytopes constructed from any
given poset, the order polytope and chain polytope , both of which first appeared in [67]
and have been well-studied since. In Chapter 5 of this thesis, we will give a detailed definition
and overview of these, as well as describing a type B generalization of these polytopes.

2.3 Ehrhart Theory

Given a lattice polytope P , it makes sense to count the number of integer points (also called
lattice points) in P . Perhaps one of the first such results involving counting lattice points is
Pick’s Theorem, concerning polygons, or 2-dimensional polytopes.
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Theorem 2.3.1 (Pick’s Theorem (1899)). For a polygon P ⊂ R2 whose vertices are integer
coordinates, let I be the number of integer points in the interior of P , let B be the number
of integer points on the boundary of P , and let A be the area of P . Then,

A = I +
B

2
− 1.

In 1962, for a lattice polytope P ⊂ Zd, while trying to generalize the ideas in Pick’s
Theorem to higher dimensions, Eugene Ehrhart introduced and proved polynomiality of the
Ehrhart enumerator ehrP (t) = |tP ∩ Z|, [38]. Note that the tth dilate of P is tP := {tp ∈
Rn : p ∈ P}.

Theorem 2.3.2. (Ehrhart’s Theorem) For any d-dimensional lattice polytope P ⊆ Rn, the
quantity ehrP (t) = |tP ∩ Zn| agrees with a polynomial of degree d.

This Ehrhart polynomial can be seen as a discrete measure of volume. In general, the
coefficients of the Ehrhart polynomial of a lattice polytope are rational numbers that can
be negative. Certain families of polytopes have been shown to have Ehrhart polynomials
with non-negative coefficients, a property known as Ehrhart positivity. One major open
problem is to classify which polytopes are Ehrhart positive; a survey of these results are
in[52].

The generating series Ehr(P ; z) of a d-dimensional lattice polytope can be written as

Ehr(P ; z) = 1 +
∑
t≥1

ehrP (t)z
t =

h∗
0 + h∗

1z + · · ·+ h∗
d+1z

d

(1− z)d+1
.

The numerator of this expression is called the h∗-polynomial of P and denoted h∗(P ; z).
Sometimes we view the coefficients of this polynomial as a vector called the h∗-vector. Note
that h∗(P ; z) can have degree less than d, and the degree of h∗(P ; z) is called the degree
of P . It can be helpful to view the information encoded by the Ehrhart polynomial in this
form, since this h∗-polynomial satisfies nice properties. Unlike the Ehrhart polynomial, the
coefficients of the h∗-polynomial of a lattice polytope are always non-negative integers [64].
One major open problem is classifying exactly when these polynomials are unimodal . A
polynomial p is called unimodal if there exists t ∈ [d] such that p0 ≤ · · · ≤ pt ≥ · · · ≥ pd.
It is called log-concave if p2k ≥ pk−1pk+1 for all k ∈ [d], and it is called real-rooted (or
(real) stable) if p ≡ 0 or p has only real zeros. A classic result states that p is both log-
concave and unimodal whenever it is real-rooted [26, Theorem 1.2.1]. Since real-rootedness
is the strongest of these three conditions, many conjectures in the literature ask when certain
generating polynomials are not only unimodal or log-concave, but also real-rooted. There is
currently a well-studied chain of conjectures by Stanley and others about which families of
polytopes have h∗-vectors satisfying these properties, for an overview see [43].

One helpful property of Ehrhart polynomials, that will be used in Chapter 3 of this thesis,
for example, is that they satisfy a reciprocity theorem.
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Figure 2.4: Several values of the ehrhart polynomial of the standard 2-simplex.

Theorem 2.3.3 (Ehrhart-Macdonald Reciprocity Theorem[38]). Let P be a d-dimensional
lattice polytope. Then:

ehrP (t) = (−1)dehrP ◦(−t)

For a full survey of the other various properties of Ehrhart and h∗-polynomials, see, for,
example, [23].

We end this subsection with an example of Ehrhart and h∗-polynomials.

Example 2.3.1. The standard d-simplex ∆d has Ehrhart polynomial
(
t
d

)
. We now compute

the h∗-polynomial:

Ehr(∆d; z) = 1 + Σt≥1

(
t

d

)
zt =

1

(1− z)d+1
.

Thus, h∗
∆d(z) = 1.

2.4 Simplicial complexes

An (abstract) simplicial complex is any family of sets closed under taking subsets. Figure
2.5 illustrates why theses are called simplicial complexes, as any (abstract) simplicial complex
can be visualized using a polytopal complex of simplices. Each face in the polytopal complex
is identified by its set of vertices.
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Figure 2.5: An example of an (abstract) simplicial complex and its realization as a polytopal
complex of simplices.

Given a simplicial complex, the f-polynomial of a (d−1)-dimensional simplicial complex
C is

f(C;x) = f−1(C) + f0(C)x+ f1(C)x2 + · · ·+ fd−1(C)xd,

where f−1(C) = 1 and fk(C) is the number of k-dimensional faces of C for 0 ≤ k ≤ d − 1.
The h-polynomial of C is given by

h(C;x) = (1− x)df(C;x).

The h-polynomial is closely related to the h∗-polynomial described in Section 1.1; if a lattice
polytope P has a unimodular triangulation, then the h-polynomial of the triangulation is the
h∗-polynomial of P . Like with the h∗-polynomial, there is interest in which simplicial com-
plexes have h-polynomials that satisfy properties such as real-rootedness and unimodality,
for e.g. see [28].
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Chapter 3

Subdivisions of shellable complexes

3.1 Introduction

In algebraic, geometric, and topological combinatorics, we are often interested in proper-
ties such as unimodality and real-rootedness of the f - or h-polynomial associated to a cell
complex. A foundational result in the field, known as the g-theorem, implies that the h-
polynomial associated to the boundary complex of a simplicial polytope is unimodal [63].
In the years following the proof of the g-theorem, extensions via the relationship between
h-polynomials of simplicial complexes and their subdivisions became of interest [3, 65]. In
[27], Brenti and Welker strengthen the unimodality result implied by the g-theorem for one
family of simplicial complexes when they showed that the h-polynomial of the barycentric
subdivision of the boundary complex of a simplicial polytope is real-rooted. They then asked
if their result generalizes to all polytopes [27, Question 1]. In [55], Mohammadi and Welker
again raised this question and suggested cubical polytopes as a good starting point.

Most proofs of real-rootedness conjectures rely on interlacing polynomials, [22], which
are inherently tied to recursions associated to the polynomials of interest. In the same way
that proofs of real-rootedness via interlacing polynomials often rely on polynomial recursions,
proofs pertaining to the geometry of polytopal complexes often make use of the recursive
structure of the complex (when it exists). This recursive property of polytopal complexes
is termed shellability . In this chapter, we relate the recursive structure of interlacing
polynomials to the notion of shellability so as to derive a sufficient condition for the h-
polynomial of a subdivision of a shellable complex to be real-rooted. It turns out that, in
many cases, this sufficient condition can be applied to the same shelling order of a complex for
different subdivisions. Shelling orders to which this phenomenon applies are termed stable
shellings in this chapter, and they arise via a generalization of the notion of reciprocal
domains for convex embeddings of polytopes, as studied by Ehrhart [38, 36] and Stanley
[61]. By generalizing reciprocal domains to abstract polytopes, we introduce the family of
stable shellings for an abstract polytopal complex. The stable shellings of both simplicial
and cubical complexes are then characterized. As an application, we recover a positive
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answer to the question of Brenti and Welker for the well-known families of cubical polytopes;
namely, the cuboids [41], the capped cubical polytopes [49], and the neighborly cubical
polytopes [8].

The remainder of the chapter is structured as follows: In Section 3.2, we develop the nec-
essary preliminaries pertaining to polytopal complexes, interlacing polynomials, and lattice
point enumeration. In Section 3.3, we derive a sufficient condition for the real-rootedness
of the h-polynomial of a subdivision of a shellable complex (Theorem 3.3.1). We then de-
fine the family of stable shellings, and we characterize the such shellings for simplicial and
cubical complexes. In Section 3.4, we apply the results of Section 3.3 to deduce that the h-
polynomial of the barycentric subdivision of the boundary complexes of the aforementioned
cubical polytopes are real-rooted. We then apply these techniques to give an alternative
proof of the original result of Brenti and Welker [27], establishing stable shelling methods as
a common solution to [27, Question 1] for all known examples. We also apply stable shellings
to solve a second problem proposed by Mohammadi and Welker [55] pertaining to edgewise
subdivisions of cell complexes, thereby demonstrating how the same stable shelling can be
used to recover real-rootedness results for multiple different subdivisions of a given complex.
In Section 3.5, we end by relating the theory of stable line shellings to the combinatorics of
hyperplane arrangements and the geometry of realization spaces of polytopes. Some ques-
tions are proposed; answers to which could potentially settle the question of Brenti and
Welker in its fullest generality.

The results in this chapter can be found in [46], and are joint work with Liam Solus.

3.2 Preliminaries

The results in this chapter are concerned with the f - and h-polynomials of polytopal com-
plexes. When all facets of a polytopal complex C are simplices, we call C a simplicial
complex , and when all facets of C are cubes, we call C a cubical complex . Note that, in
this definition, we do not require our polytopal complex to be embedded in some Euclidean
space, but instead treat it as an abstract cell complex. Given an abstract polytope P , or
convex polytope P ⊂ Rn, we can naturally produce two associated (abstract) polytopal com-
plexes: the complex C(P ) consisting of all faces in P and the complex C(∂P ) consisting of all
faces in ∂P , the boundary of P . The facets of the polytope P are the facets of the complex
C(∂P ). We call C(∂P ) the boundary complex of P . In a similar fashion, given a collection
of polytopes P1, . . . , Pm, we can define the polytopal complex C(P1∪· · ·∪Pm) = ∪i∈[m]C(Pi).
Given a polytopal complex C, a polytopal complex D is called a subcomplex of C if every
face of D is also a face of C. We refer to the difference C \ D = {P ∈ C : P /∈ D} as a
relative (polytopal) complex , and we define the dimension of C \ D to be the largest
dimension of a polytope in C \ D. When D = ∅, note that C \ D = C.

The f-polynomial of a (d− 1)-dimensional polytopal complex C is the polynomial

f(C;x) := f−1(C) + f0(C)x+ f1(C)x2 + · · ·+ fd−1(C)xd,
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where f−1(C) := 1 when C ≠ ∅ and fk(C) denotes the number of k-dimensional faces of C
for 0 ≤ k ≤ d− 1. Given a subcomplex D of C, the f-polynomial of the relative complex
C \ D is then

f(C \ D;x) := f(C;x)− f(D;x).

The h-polynomial of the (m− 1)-dimensional relative complex C \ D is the polynomial

h(C \ D;x) := (1− x)mf

(
C \ D;

x

1− x

)
.

We write h(C \D;x) = h0(C \D)+h1(C \D)x+ · · ·+hm(C \D)xm when expressing h(C \D;x)
in the standard basis, and we similarly write f(C \ D;x) = f0(C \ D) + f1(C \ D)x + · · · +
fm(C \ D)xm. The following lemma, whose proof is an exercise, relates the h-polynomial of
a polytopal complex to those of its relative complexes.

Lemma 3.2.1. Let C be a (d− 1)-dimensional polytopal complex and suppose that C can be
written as the disjoint union

C =
s⊔

i=1

Ri

where Ri are relative (d− 1)-dimensional polytopal complexes. Then

h(C;x) =
s∑

i=1

h(Ri;x).

Proof. From the definition of the f -polynomial of a relative complex, we have f(C;x) =∑s
i=1 f(Ri;x). Since the transformation from f -polynomial to h-polynomial is linear, and

all Ri are (d− 1)-dimensional, it follows that h(C;x) = (1− x)d−1
∑s

i=1 f(Ri;x/(1− x)) =
h(Ri;x).

Subdivisions and local h-polynomials

In this subsection, we expand our discussion of subdivisions of polytopes given in Section
2.1 and define subdivisions of abstract polytopal complexes. Given a polytopal complex C,
a (topological) subdivision of C is a polytopal complex C ′ such that each face of F ∈ C
is subdivided into a ball by faces of C ′ such that the boundary of this ball is a subdivision
of the boundary of F . The subdivision is further called geometric if both C and C ′ admit
geometric realizations , G and G′, respectively; that is to say, each face of C and C ′

is realized by a convex polytope in some real-Euclidean space such that G and G′ both
have the same underlying set of vertices and each face of G′ is contained in a face of G.
When referring to a subdivision C ′ of C, we may instead refer to its associated inclusion map
φ : C ′ → C. While the main result of this chapter applies to general topological subdivisions,
the applications of these results will pertain to some special families of subdivisions that are
well-studied in the literature. These include the barycentric subdivision and the edgewise
subdivision of a complex.
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Interlacing polynomials

Two real-rooted polynomials p, q ∈ R[x] are said to interlace if there is a zero of p between
each pair of zeros of q (counted with multiplicity) and vice versa. If p and q are interlacing,
it follows that the Wronskian W [p, q] = p′q − pq′ is either nonpositive or nonnegative on
all of R. We will write p ≺ q if p and q are real-rooted, interlacing, and the Wronskian
W [p, q] is nonpositive on all of R. We also assume that the zero polynomial 0 is real-rooted
and that 0 ≺ p and p ≺ 0 for any real-rooted polynomial p.

Remark 3.2.1. Notice that if the signs of the leading coefficients of two real-rooted poly-
nomials p and q are both positive, then p ≺ q if and only if

· · · ≤ β2 ≤ α2 ≤ β1 ≤ α1,

where . . . , β2, β1 and . . . , α2, α1 are the zeros of p and q, respectively. In particular, when
we work with combinatorial generating polynomials, p ≺ q is equivalent to p and q being
real-rooted and interlacing.

A polynomial p ∈ C[x] is called stable if p is identically zero or if all of its zeros
have nonpositive imaginary parts. The Hermite-Biehler Theorem relates the relation p ≺ q
to stability in such a way that we can derive some useful tools for proving results about
interlacing polynomials:

Theorem 3.2.2. [57, Theorem 6.3.4] If p, q ∈ R[x] then p ≺ q if and only if q+ ip is stable.

Remark 3.2.1 and Theorem 3.2.2 allow us to quickly derive some useful results.

Lemma 3.2.3. If p and q are real-rooted polynomials in R[x] then

1. p ≺ αp for all α ∈ R,

2. p ≺ q if and only if αp ≺ αq for any α ∈ R \ {0},

3. p ≺ q if and only if −q ≺ p, and

4. if p and q have positive leading coefficients then p ≺ q if and only if q ≺ xp.

We will also require the following proposition.

Proposition 3.2.4. [21, Lemma 2.6] Let p be a real-rooted polynomial that is not identically
zero. Then the following two sets are convex cones:

{q ∈ R[x] : p ≺ q} and {q ∈ R[x] : q ≺ p}.



CHAPTER 3. SUBDIVISIONS OF SHELLABLE COMPLEXES 17

It follows from Proposition 3.2.4 that we can sum a pair of interlacing polynomials to
produce a new polynomial with only real-roots. More generally, we will work with recursions
for which we need to sum several polynomials to produce a new real-rooted polynomial. Let
(pi)

s
i=0 = (p0, . . . , ps) be a sequence of real-rooted polynomials. We say that the sequence of

polynomials (pi)
s
i=0 is an interlacing sequence if pi ≺ pj for all 1 ≤ i ≤ j ≤ s. Note that,

by Proposition 3.2.4, any convex combination of polynomials in an interlacing sequence is
real-rooted.

For a polynomial p ∈ R[x] of degree at most d, we let Id(p) := xdp(1/x). When d is the
degree of p, then Id(p) is the reciprocal of p. A polynomial p = p0 + p1x+ · · ·+ pdx

d ∈ R[x]
is called symmetric with respect to degree d if pk = pd−k for all k = 0, . . . , d. If p is a
degree d generating polynomial that is both real-rooted and symmetric with respect to d then
Id(p) ≺ p. However, non-symmetric polynomials also satisfy the latter condition, making
it a natural generalization of symmetry for real-rooted polynomials. In [23], the authors
characterized the condition Id(p) ≺ p in terms of the symmetric decomposition of p,
which has been of recent interest [4, 5, 6, 10, 12, 23, 60]. In this chapter, the polynomials
that we aim to show have only real zeros are known to be symmetric with respect to their
degree. However, we will make use of the more general phenomenon Id(p) ≺ p in some of
the proofs.

Ehrhart Theory

In Section 3.4, we will use some techniques from Ehrhart theory as described in Section 2.3.
Here, we expand the notions described there to half-open polytopes. Let H = {⟨a, y⟩ = b}
be a subset of the facet-defining hyperplanes of P and set

SH := {z ∈ Rn : ⟨a, z⟩ = b for some ⟨a, y⟩ = b ∈ H}.

We then define the half-open polytope P \ SH, (which we note is not exactly a polytope,
however, this terminology is standard [13]). We may also use the notation P \ H when we
need to highlight the facet-defining hyperplanes that capture the points in SH. Analogously
to the construction for lattice polytopes described in Section 2.3, the tth dilate of P \ SH
is t(P \ SH) := {tp ∈ Rn : p ∈ P \ SH} and the Ehrhart function of P \ SH is defined to
be ehrP\SH(t) := |t(P \ SH) ∩ Zn| for t > 0 (see [13, Section 5.3]). Notice that if H = ∅
then P = P \SH, and if H is the complete collection of facet-defining hyperplanes of P then
P \ SH =: P ◦, the relative interior of P . The Ehrhart series of the relative interior of P
is defined as

Ehr(P ◦;x) :=
∑
t>0

ehrP ◦(t)xt.

In the case that H is not the complete set of facet-defining hyperplanes of P , the Ehrhart
series of P \ SH is defined as

Ehr(P \ SH;x) :=
∑
t≥0

ehrP\SH(t)x
t,
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and the constant term is computed to be the Euler characteristic of P \S (see [13, Theorem
5.1.8]). When written in a closed rational form, the Ehrhart series of P \ SH, for any choice
of H, is

Ehr(P \ SH;x) =
h∗
0 + h∗

1x+ · · ·+ h∗
dx

d

(1− x)d+1
,

and the polynomial h∗(P \ SH;x) := h∗
0 + h∗

1x + · · · + h∗
dx

d is called the (Ehrhart) h∗-
polynomial of P \ SH. It is well-known that h∗(P \ SH;x) has only nonnegative integral
coefficients (see for instance [48]). Since a lattice polytope P is a subset of Rn with vertices in
Zn, it is natural to consider its subdivisions into polyhedral complexes whose 0-dimensional
faces correspond to the lattice points in P∩Zn. When such a (geometric) subdivision consists
of only simplices, we call it a triangulation of P . When each simplex ∆ in a triangulation
of P has h∗(∆;x) = 1, we call it a unimodular triangulation of P . The following lemma
is also well-known, and a proof appears in [12, Chapter 10].

Lemma 3.2.5. Let P ⊂ Rn be a d-dimensional lattice polytope and let T be a unimodular
triangulation of P . Then

h∗(P ; z) = h(T ;x).

We will need a slight generalization of Lemma 3.2.5, whose proof is analogous to that of
Lemma 3.2.5. However, we provide it below for the sake of completeness. In the following,
given a facet-defining hyperplane H of P , we will let FH denote the facet of P defined by H.

Lemma 3.2.6. Let P ⊂ Rn be a d-dimensional lattice polytope with a unimodular triangu-
lation T , and let H be a subset of its facet-defining hyperplanes. If the Euler characteristic
of P \ SH is 0 then

h∗(P \ SH;x) = h(T \ (∪H∈HT
∣∣
FH

);x).

Proof. To prove the claim, we first write P \ SH as a disjoint union of the (nonempty) open
simplices in the relative complex T \ (∪H∈SHT

∣∣
FH

):

P \ SH =
⊔

∆∈T\(∪H∈SHT |FH
)

∆◦,

and we note that
ehrP\SH(t) =

∑
∆∈T\(∪H∈SHT |FH

)

ehr∆◦(t).
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It then follows that

Ehr(P \ SH, x) =
∑
n≥0

ehrP\SH(t)x
t,

= ehrP\SH(0) +
∑
n>0

 ∑
∆∈T\(∪H∈SHT |FH

)

ehr∆◦(t)

xt,

= ehrP\SH(0) +
∑

∆∈T\(∪H∈SHT |FH
)

(∑
n>0

ehr∆◦(t)xt

)
,

=
∑

∆∈T\(∪H∈SHT |FH
)

Ehr(∆◦;x),

where the last equality follows from the definition of the Ehrhart series of the relative interior
of a lattice polytope and the fact that ehrP\SH(0) is the Euler characteristic of P \SH (which
we have assumed to be zero). Since each ∆◦ is the interior of a unimodular simplex, it follows
by Ehrhart-Macdonald reciprocity [12, Theorem 4.1] that

Ehr(∆◦;x) =
xdim(∆)+1

(1− x)dim(∆)+1
.

Therefore, in analogous fashion to the proof of [12, Theorem 10.3], we have that

Ehr(P \ SH;x) =
∑

∆∈T\(∪H∈SHT |FH
)

Ehr(∆◦;x),

=
∑

∆∈T\(∪H∈SHT |FH
)

xdim(∆)+1

(1− x)dim(∆)+1
,

=
d∑

k=−1

fk(T \ (∪H∈SHT |FH
))

(
x

1− x

)k+1

,

=

∑d
k=−1 fk(T \ (∪H∈SHT |FH

))xk+1(1− x)d−k

(1− x)d+1
,

=

∑d+1
k=0 fk−1(T \ (∪H∈SHT |FH

))xk(1− x)d−k+1

(1− x)d+1
,

=
h(T \ (∪H∈SHT

∣∣
FH

);x)

(1− x)d+1
,

which completes the proof.

To prove the desired results in Section 3.4, we will use well-chosen sets H and SH.
Let q ∈ Rn, and let P ⊂ Rn a d-dimensional convex polytope. A point p ∈ P is called
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visible from q if the open line segment (q, p) in Rn does not meet the interior of P . Let
B ⊂ ∂P denote the collection of all points visible from q, and set D := ∂P \B, the closure
of ∂P \ B. Given a facet F of P , the point q is said to be beyond F if q /∈ TF (P ), the
tangent cone of F in P . It follows that q is beyond F if and only if the closed line segment
[q, p] satisfies [q, p] ∩ P = {p} for all p ∈ F [13, Section 3.7]. Otherwise, the point q is
said to be beneath F . Hence, B consists of all points in ∂P that lie in a facet which q
is beyond; that is, P \ B = P \ HB, where HB denotes the collection of facets which q is
beyond. Similarly, D consists of all points in ∂P that lie in a facet which q is beneath;
that is, P \ D = P \ HD, where HD denotes the collection of facets which q is beneath.
Stanley observed in [61, Proposition 8.2], that ehrP\B(t) is a polynomial and that classical
Ehrhart-Macdonald reciprocity, Theorem 2.3.3, [53, Theorem 4.6], [37] can be extended to

(−1)dehrP\D(t) = ehrP\B(−t). (3.1)

In [38, 36], Ehrhart referred to the half-open polytopes P \ B and P \ D as reciprocal
domains , since they satisfy the reciprocity law in equation (3.1). The notion of reciprocal
domains, and a natural generalization thereof, will be important to us in the coming sections
as we derive real-rootedness results via shellings of polytopal complexes. A first lemma
that will help us along the way is the following, which translates equation (3.1) into a
statement about h∗-polynomials. To prove the the lemma, one can use the equation (3.1),
together with the result of [12, Exercise 4.7], to compare the Ehrhart series and thus the
h∗-polynomials of the two complexes, recalling that for any polynomial p of degree at most
d+ 1, Id+1(p) = xd+1p(1/x).

Lemma 3.2.7. Let P ⊂ Rn be a d-dimensional lattice polytope, and let q ∈ Rn. Let B
denote the points in ∂P that are visible from q, and set D := ∂P \B. If B and D are both
nonempty then

h∗(P \D;x) = Id+1h
∗(P \B;x).

3.3 Subdivisions of Shellable Complexes and Stable

Shellings

In this section, we provide a sufficient condition for the h-polynomial of a subdivision of a
polytopal complex to have only real zeros. As part of this condition, we will require the
complex to be shellable.

Definition 3.3.1. Let C be a pure d-dimensional polytopal complex. A shelling of C is a
linear ordering (F1, F2, . . . , Fs) of the facets of C such that either C is zero-dimensional (and
thus the facets are points), or it satisfies the following two conditions:

1. The boundary complex C(∂F1) of the first facet in the linear ordering has a shelling,
and



CHAPTER 3. SUBDIVISIONS OF SHELLABLE COMPLEXES 21

2. For j ∈ [s], the intersection of the facet Fj with the union of the previous facets is
nonempty and it is the beginning segment of a shelling of the (d − 1)-dimensional
boundary complex of Fj; that is,

Fj ∩
j−1⋃
i=1

Fi = G1 ∪G2 ∪ · · ·Gr

for some shelling (G1, . . . , Gr, . . . , Gt) of the complex C(∂Fj) and r ∈ [t].

A polytopal complex is shellable if it is pure and admits a shelling.

A shelling of a polytopal complex presents a natural way to decompose the complex into
disjoint, relative polytopal complexes. Given a shelling order (F1, . . . , Fs) of a polytopal
complex C, and a subdivision φ : C ′ → C, we can let

Ri := C ′∣∣
Fi
\

(
i−1⋃
k=1

C ′∣∣
Fk

)
,

to produce the decomposition of C ′ into disjoint relative complexes

C ′ =
s⊔

i=1

Ri, (3.2)

with respect to the shelling (F1, . . . , Fs) of C. For a fixed shelling (F1, . . . , Fs) of a polytopal
complex C and subdivision φ : C ′ → C, for i ∈ [s], we will call the relative complex Ri the
relative complex associated to Fi by (F1, . . . , Fs) and φ.

The recursive structure of shelling orders of polytopal complexes, and the additive nature
of the h-polynomials of their associated relative simplicial complexes (see Lemma 3.2.1) pairs
nicely with the properties of interlacing polynomials discussed in Section 3.2. In particular,
Lemma 3.2.1 allows us to combine the fact that a shellable complex C always admits a
decomposition as in equation (3.2) with the facts about interlacing sequences collected in
Subsection 3.2. We can then prove a theorem that directly relates the recursive nature of
shelling orders to the recursive nature of interlacing sequences of polynomials.

Theorem 3.3.1. Let C be a shellable polytopal complex with shelling (F1, . . . , Fs) and sub-
division φ : C ′ → C. If (h(Rσ(i);x))

s
i=1 is an interlacing sequence for some σ ∈ Ss, the

symmetric group on [s], then h(C ′;x) is real-rooted.

Proof. Notice first that since C is a shellable polytopal complex of dimension d, and since
C ′ is a (topological) subdivision of C, then each subcomplex C ′

∣∣
Fi

:= φ−1(2F ) is also d-
dimensional. Moreover, since Ri only removes faces of dimension strictly less than d, then
each Ri is a d-dimensional relative simplicial complex. So, by Lemma 3.2.1, we have that

h(C ′;x) =
s∑

i=1

h(Ri;x).
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Supposing now that there exists σ ∈ Ss such that (h(Rσ(i);x))
s
i=1 is an interlacing sequence,

it then follows from Proposition 3.2.4 that h(Ω;x) is real-rooted.

While the proof of Theorem 3.3.1 is straightforward to derive (once we have carefully
defined and identified all of the necessary ingredients), its applications are much more in-
teresting. The key to applying Theorem 3.3.1 lies in our ability to identify a shelling order
(F1, . . . , Fs) of the polytopal complex C such that the relative complexes Ri constructed
for each facet Fi with respect to the subdivision φ : C ′ → C will all have real-rooted and
interlacing h-polynomials h(Ri;x). While the real-rootedness and interlacing conditions are
inherently tied to the choice of subdivision φ, we will see in Section 3.4 that for many com-
plexes, the type of shelling to which Theorem 3.3.1 applies is independent of the choice of φ
when φ is chosen from amongst the most commonly studied subdivisions. Here, the ‘most
commonly studied subdivisions’ refers to uniform subdivisions [2], such as the barycen-
tric and edgewise subdivisions, which will be the focus of our results in Section 3.4. Indeed,
when the geometry of a given polytopal complex is such that the barycentric subdivision of
the complex has a real-rooted h-polynomial, it is often the case that the edgewise subdivision
admits the same property for the given complex. This phenomenon was noted, and formal-
ized, in the case of simplicial complexes in the recent preprint [2], where the author studied
the class of F-uniform triangulations . In this chapter, we make a similar observation
for more general polytopal complexes, and apply this reasoning to shelling orders. Namely,
we are interested in the class of shellings (F1, . . . , Fs) of a polytopal complex C for which the
associated relative complexes R1, . . . ,Rs with respect to (F1, . . . , Fs) and uniform subdivi-
sions, such as the barycentric subdivision and edgewise subdivision, fulfill the hypotheses of
Theorem 3.3.1. As it turns out, such shellings arise when we insist that the relative com-
plexes Ri are given by a generalization of Ehrhart’s reciprocal domains for convex lattice
polytopes (see the related discusion in Section 3.2).

Stable shellings

The family of shellings to which we will apply Theorem 3.3.1 will be called stable shellings.
To define them we first need to generalize the reciprocal domains for convex embeddings of
rational polytopes to general (abstract) polytopes. Let P = ([n], <P) be a partially ordered
set on elements [n] with partial order <P . If P has a unique minimal element, which we will
denote by 0̂, then we can define its set of atoms to be all elements i ∈ [n] such that 0̂ <P i and
there is no j ∈ [n] such that 0̂ <P j <P i. Given a poset P with a unique minimal element,
we will denote its set of atoms by A(P). The dual poset of P is the poset P∗ on elements [n]
with partial order <P∗ in which i <P∗ j if and only if j <P i. Given two elements i, j ∈ [n],
the closed interval between i and j in P is the set [i, j] := {k ∈ [n] : i ≤P k ≤P j}. Note
that we can view the closed interval [i, j] as a subposet of P by allowing it to inherit the
partial order <P from P .

Let P be a d-dimensional polytope with face lattice L(P ); that is, L(P ) is the partially
ordered set whose elements are the faces of P and for which the partial order is given by
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inclusion. Since L(P ) is a lattice (see [62, Chapter 3.3]), it follows that L(P ) has a unique
minimal and maximal element, corresponding to the faces ∅ and P of P . Let C(P ) denote
the polytopal complex consisting of all faces of P . Given a face F of P we call the pair of
relative complexes

C(P ) \ C(A([F, P ]∗)) and C(P ) \ C(A(L(P )∗) \ A([F, P ]∗))

the reciprocal domains associated to F in P . We call a relative complex R stable if it
is isomorphic to one of the reciprocal domains associated to a face F in some polytope P .
Using this terminology, we can now define the family of shellings, to which we will apply
Theorem 3.3.1.

Definition 3.3.2. Let C be a polytopal complex. A shelling (F1, . . . , Fs) of C is stable if
for all i ∈ [s] the relative complex Ri associated to Fi by the shelling (F1, . . . , Fs) and the
trivial subdivision φ : C → C is stable.

The set of stable shellings of a (shellable) simplicial complex is, in fact, the set of all
shellings of the complex.

Proposition 3.3.2. Let C be a shellable simplicial complex. Then any shelling (F1, . . . , Fs)
of C is stable.

Proof. Suppose that C is d-dimensional, let φ : C → C denote the trivial subdivision of C,
and fix a facet Fi of C. If i = 1, then since (F1, . . . , Fs) is a shelling, it follows that the
relative complex associated to Fi by the shelling (F1, . . . , Fs) and φ is C(Fi). Fix the face
F = Fi of the simplex Fi. Then the reciprocal domains associated to F in Fi are C(Fi) and
C(Fi) \ C(A(L(Fi)

∗)). Hence, C(Fi) is a stable relative complex.
Suppose now that i > 1. Since (F1, . . . , Fs) is a shelling order, it follows that Fi ∩ (F1 ∪

· · · ∪ Fi−1) = G1 ∪ · · · ∪Gr is the initial segment of a shelling order (G1, . . . , Gr, . . . , Gd) of
the boundary complex C(∂Fi). Hence, G1, . . . , Gr are facets of Fi. Since Fi is a simplex,
each face of Fi corresponds to an intersection of a subset of its facets G1, . . . , Gd. Consider
the face F of Fi given by G1 ∩ · · · ∩Gr. It follows that the reciprocal domains associated to
F in Fi are

C(Fi) \ C(A([F, Fi]
∗)) = C(Fi) \ C(G1 ∪ · · · ∪Gr),

and
C(Fi) \ C(A(L(Fi)

∗) \ A([F, Fi]
∗)) = C(Fi) \ C(Gr+1 ∪ · · · ∪Gd),

Hence, it follows that the complex Ri = C(Fi) \ C(G1 ∪ · · · ∪Gr) is stable, which completes
the proof.

Hence, any shelling of a simplicial complex is stable. As we will see in Section 3.4, this
observation coincides with the recent results on F -uniform triangulations [2], in the sense
that we will be able to apply Theorem 3.3.1 to any shelling of a simplicial complex with
respect to uniform subdivisions like the barycentric and edgewise subdivisions.
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Stable shellings of cubical complexes

In general, it is not the case that all shellings of a polytopal complex are stable. For example,
in the case of cubical complexes, stable shellings become a proper subclass of the class of
all shellings. To see this, we can characterize which relative complexes of the combinatorial
d-cube are stable.

In the following, we let □d denote the (abstract) d-dimensional cube. When we consider
a standard geometric realization of □d, such as the cube [−1, 1]d ∈ Rd, we assign each facet
F of □d to a facet-defining hyperplane xi = ±1 of [−1, 1]d. Given a facet F of □d we will say
that F is opposite (or opposing) the facet G of □d whenever F is identified with xi = 1
and G is identified with xi = −1 (or vice versa), for some i ∈ [d]. In this case, we call the
pair of facets F,G an opposing pair . Given the embedding [−1, 1]d we can also define the
half-open polytopes

[−1, 1]dℓ := [−1, 1]d \ {xd = 1, . . . , xd+1−ℓ = 1} (3.3)

for 0 ≤ ℓ ≤ d, and

[−1, 1]dℓ := [−1, 1]d \ {xd = 1, . . . , x1 = 1} ∪ {xd = −1, . . . , x2d+1−ℓ = 1} (3.4)

for d + 1 ≤ ℓ ≤ 2d. The following lemma gives two characterizations of stable relative
subcomplexes of the cube, one in terms of its possible geometric realizations and the other
in terms of opposing pairs of facets.

Lemma 3.3.3. Let □d be the d-dimensional (combinatorial) cube, and let D be a subcomplex
of C(□d). Then the following are equivalent:

1. The relative complex C(□d) \ D is stable,

2. C(□d) \ D has geometric realization [−1, 1]dℓ for some 0 ≤ ℓ ≤ 2d.

3. The set of codimension 1 faces of C(□d) \ D or the set of facets of D does not contain
an opposing pair.

Proof. We first prove the equivalence of (1) and (2). Suppose that C(□d) \ D is stable.
Then C(□d) \ D is isomorphic to a reciprocal domain C(□d) \ C(A([F,□d]

∗)) or C(□d) \
C(A(L(□d)

∗) \ A([F,□d]
∗)) for some face F of the cube □d. Let F1, . . . , F2d denote the set

of facets of □d. Given the geometric realization [−1, 1]d of □d, without loss of generality,
we can assume that the facet Fi is identified with the facet-defining hyperplane xi = 1 and
that the facet Fd+i is identified with the facet-defining hyperplane xi = −1 of [−1, 1]d, for
all i ∈ [d]. Given this identification, the face F of □d corresponds to the intersection of the
facet-defining hyperplanes identified with the atoms in the closed interval [F,□d]

∗. Since the
geometric realization of any nonempty face F cannot lie in both xi = 1 and xi = −1 for any
i ∈ [d], it follows that the hyperplanes corresponding to the atoms in [F,□d]

∗ are of the form

{xi1 = 1, . . . , xis = 1} ∪ {xj1 = −1, . . . , xjt = −1},
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where the sets {i1, . . . , is}, {j1, . . . , jt} ⊂ [d] are disjoint. Hence, by reflecting over the
hyperplanes xj1 = 0, . . . , xjt = 0, we can instead identify the face F with the intersection of
the hyperplanes

{xi1 = 1, . . . , xis = 1} ∪ {xj1 = 1, . . . , xjt = 1}.

Finally, by a simple permutation of coordinates, we can identify F with the intersection of
the hyperplanes

{xd = 1, . . . , xd+1−ℓ = 1},

where ℓ = |{xi1 = 1, . . . , xis = 1} ∪ {xj1 = 1, . . . , xjt = 1}|. Hence, a geometric realization of
C(□d) \ D is given either by [−1, 1]dℓ or [−1, 1]d2d−ℓ.

Conversely, suppose that C(□d)\D has geometric realization [−1, 1]dℓ for some 0 ≤ ℓ ≤ 2d.
If 0 ≤ ℓ ≤ d, then let F be the face of □d whose geometric realization is the intersection
of the hyperplanes xd = 1, . . . , xd+1−ℓ = 1. Then C(□d) \ D = C(□d) \ C(A([F,□d]

∗)). If
d < ℓ ≤ 2d then let F be the face of □d whose geometric realization is the intersection of the
hyperplanes x1 = −1, . . . , x2d−ℓ = −1. Then C(□d)\D = C(□d)\C(A(L(□d)

∗)\A([F,□d]
∗)).

We now prove the equivalence of (2) and (3). Suppose first that C(□d) \D has geometric
realization [−1, 1]dℓ for some 0 ≤ ℓ ≤ 2d. Then C(□d)\D is isomorphic to one of two types of
half-open cubes described in equations (3.3) and (3.4). Suppose that C(□d)\D has geometric
realization corresponding to a half-open cube given in equation (3.3). Then the subset of
facets in D are, without loss of generality, given by a subset of the facets x1 = 1, . . . , xd = 1 of
[−1, 1]d. Hence, the set of facets of D cannot contain an opposing pair, as this set contains no
facet with defining hyperplane xi = −1. In that case that C(□d)\D has geometric realization
corresponding to a half-open cube given in equation(3.4), the codimension 1 faces of C(□d)\D
correspond to a subset of the facet-defining hyperplanes x1 = −1, . . . , xd = −1 of [−1, 1]d,
and therefore cannot contain an opposing pair.

Conversely, suppose that C(□d)\D is such that the set of codimension 1 faces of C(□d)\D
or the set of facets of D does not contain an opposing pair. In the former of these two cases,
the set of codimension 1 faces of C(□d) \ D is given by a subset of facets of [−1, 1]d of the
form

{xi1 = 1, . . . , xis = 1} ∪ {xj1 = −1, . . . , xjt = −1},

for two disjoint subsets, {i1, . . . , is} and {j1, . . . , jt}, of [d]. As in the proof of equivalence
of (1) and (2), by reflecting through the hyperplanes xj1 = 0, . . . , xjt = 0, we obtain that
C(□d) \ D is isomorphic to

H := [−1, 1]d \ {xi1 = 1, . . . , xis = 1} ∪ {xj1 = 1, . . . , xjt = 1}.

By applying the correct permutation matrix to Rn, we recover that H is unimodularly
equivalent to [−1, 1]dℓ where ℓ = |{xi1 = 1, . . . , xis = 1} ∪ {xj1 = 1, . . . , xjt = 1}| ≤ d. Hence,
C(□d) \ D has geometric realization [−1, 1]dℓ for some 0 ≤ ℓ ≤ d.

In the second case, we assume that the set of facets of D does not contain an opposing
pair. By applying a similar argument, we see that the set of facets of D can be identified
with a subset of the hyperplanes x1 = −1, . . . , xd = −1, which we assume without loss
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of generality is x1 = −1, . . . , xℓ = −1 for some ℓ ≤ d. Following the same steps as in
the previous case, we find that C(□d) \ D is isomorphic to [−1, 1]dd+ℓ, which completes the
proof.

Lemma 3.3.3 characterizes the possible relative complexes that can be associated to the
facets of a shellable cubical complex by a stable shelling, and hence, it characterizes the
stable shellings of cubical complexes. Furthermore, Lemma 3.3.3 shows that, in the case of
cubical complexes, any linear ordering of the facets of a complex for which all associated
relative complexes are stable is a shelling order.

Lemma 3.3.4. Let C be a pure d-dimensional cubical complex and let (F1, . . . , Fs) be a linear
ordering of the facets of C such that the relative complex

Ri := Fi \ (F1 ∪ · · · ∪ Fi−1)

associated to Fi by (F1, . . . , Fs) is stable for all i ∈ [s]. Then (F1, . . . , Fs) is a shelling order.

Proof. A well-known result states that a set of facets of a d-dimensional cube □d forms a
shellable subcomplex of the boundary complex of □d if and only if either it contains no facets
of □d, contains all facets of □d, or if it contains at least one facet such that its opposing
facet is not in the complex (see, for instance, [76, Exercise 8.1(i)]). Moreover, it follows from
this result that the boundary complex of the d-dimensional cube is extendably shellable ;
meaning that any partial shelling of the complex can be continued to a complete shelling.
Hence, it suffices to prove that Fi ∩ (F1 ∪ · · · ∪ Fi−1) determines a shellable subcomplex of
the boundary of the d-dimensional cube for all i ∈ [s].

Notice first that F1 is a d-dimensional cube, and hence the boundary complex C(∂F1) is
shellable. So let i > 1 and consider the complex determined by Fi ∩ (F1 ∪ · · · ∪ Fi−1). This
complex has facets given by the set of facets of Fi that are not codimension 1 faces of Ri.
Since Ri is a stable complex, by Lemma 3.3.3, it follows that either the set of codimension
1 faces of Ri or the set of facets of Fi ∩ (F1 ∪ · · · ∪ Fi−1) does not contain an opposing
pair. Moreover, all facets of the cube Fi are either codimension 1 faces of Ri or facets of
Fi ∩ (F1 ∪ · · · ∪ Fi−1).

Suppose first that Fi∩(F1∪· · ·∪Fi−1) does not contain an opposing pair. Then either the
set of facets of Fi∩(F1∪· · ·∪Fi−1) is empty, or Fi∩(F1∪· · ·∪Fi−1) contains a facet of Fi but
not its opposite. In either case, according to the result cited above [76, Exercise 8.1(i)], the
set of facets of Fi ∩ (F1 ∪ · · · ∪Fi−1) form a shellable subcomplex of C(∂Fi). Suppose, on the
other hand, thatRi does not contain an opposing pair. Then either Fi∩(F1∪· · ·∪Fi−1) is the
entire complex C(∂Fi) (i.e., the boundary complex of a d-dimensional cube), or Ri contains
a facet of Fi but not its opposite. In the latter case, it follows that Fi ∩ (F1 ∪ · · · ∪ Fi−1)
contains a facet of Fi but not its opposite. Hence, in a similar fashion to the previous case,
Fi∩ (F1∪ · · ·∪Fi−1) forms a shellable subcomplex of C(∂Fi), which completes the proof.

In two dimensions, any relative subcomplex of the cube is stable. However, already in
three dimensions there exist relative complexes that are not stable, and hence are forbidden
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Figure 3.1: The eight possible relative complexes Ri for a facet Fi in a shelling order
(F1, . . . , Fs) if Fi is a 3-dimensional cube. All of the complexes are stable, excluding the
bottom-right complex.

from being associated to a facet of a cubical complex in any of its stable shellings. For
example, Figure 3.1 depicts the eight possible relative complexes of a three cube that may
arise as the relative complex associated to a 3-dimensional facet of a cubical complex with
respect to an arbitrary shelling. By Lemma 3.3.3, we see that only the first seven are stable.
The eighth, with its table-top shape, is such that both the codimension 1 faces of C(□3) \D
(depicted in blue) and the facets of D (depicted by their absence) contain an opposing pair.
Hence, this relative complex cannot be included in any stable shelling of a 3-dimensional
cubical complex.

Example 3.3.1 (The stable subcomplexes of the 3-cube). Recall that our motivation for
excluding certain relative complexes is that, upon subdivision, we need that all relative
complexes associated to our shelling order have real-rooted and interlacing h-polynomials
(see Theorem 3.3.1). Suppose we fix a 3-dimensional cubical complex C and consider its
barycentric subdivision sd(C) (as defined in subsection 3.4). We will see in Section 3.4 that
any of the stable relative complexes depicted in Figure 3.1 have real-rooted and interlacing h-
polynomials with respect to this subdivision. On the other hand, the barycentric subdivision
of the table-top shaped relative complex in Figure 3.1 will have h-polynomial

6x+ 36x2 + 6x3.

which is real-rooted, but it does not interlace all the h-polynomials of the other seven com-
plexes. For instance, the complex just above it in Figure 3.1 has h-polynomial 8x+32x2+8x3,
and these two polynomials do not interlace. Hence, the stable relative subcomplexes of the
3-cube are the natural maximal subset of relative complexes to which we can apply Theo-
rem 3.3.1 with respect to the barycentric subdivision. As we will see in Section 3.4, this will
also be true for the other well-studied uniform subdivisions.

Given that not all relative subcomplexes of the cube are stable, it is then natural to
ask which cubical complexes admit stable shellings. In the remainder of this section, we
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give some first examples of cubical complexes admitting stable shellings, and we provide an
example of a shelling of a cubical complex that is not stable. These results will be used in
Section 3.4, when we apply this theory to answer some open questions on the real-rootedness
of h-polynomials of barycentric subdivisions of cubical complexes.

Example 3.3.2 (The boundary of the d-cube). Let ∂□d denote the boundary of the d-
dimensional cube □d, and consider its geometric realization as the boundary of [0, 1]d ⊂ Rd.
Let Fi denote the facet of □d corresponding to the facet of [0, 1]d defined by the hyperplane
xi = 0 for i ∈ [d], and let Fd+i denote the facet corresponding to that of [0, 1]d defined
by xi = 1 for i ∈ [d]. Hence Fi, Fd+i is an opposing pair for all i ∈ [d]. We claim that
the linear ordering (F1, . . . , Fd, . . . , F2d) is a stable shelling of C(∂□d). By Lemma 3.3.4, it
suffices to show that, for all i ∈ {1, . . . , 2d}, the relative complex Ri associated to Fi by
(F1, . . . , Fd, . . . , F2d) is stable.

Fix i ∈ [d] and consider Fi ∩ (F1 ∪ · · · ∪ Fi−1). This intersection consists of the facets of
[0, 1]d−1 ≃ Fi defined by x1 = 0, x2 = 0, . . . , xi−1 = 0. Hence, Fi∩(F1∪· · ·∪Fi−1) determines
a subcomplex of C(∂□d−1) whose set of facets does not contain an opposing pair. It follows
from Lemma 3.3.3 that Ri = C(Fi) \ C(Fi ∩ (F1 ∪ · · · ∪Fi−1)) is stable. Now consider a facet
Fd+i for i ∈ [d], and the subcomplex

G = Fd+i ∩ (F1 ∪ · · · ∪ Fd ∪ · · · ∪ Fd+i−1)

of its boundary complex C(∂Fd+i). It follows that the codimension 1 faces ofRd+i = C(Fd+i)\
C(G) are determined by the hyperplanes xi+1 = 1, . . . , xd = 1. Hence, the set of codimension
1 faces of Rd+i does not contain an opposing pair of facets of Fd+i. By Lemma 3.3.3, Rd+i

is stable, and we conclude that (F1, . . . , Fd, . . . , F2d) is a stable shelling of C(∂□d).

Example 3.3.3 (Piles of cubes). For integers a1, . . . , ad ∈ Z≥0, the pile of cubes
Pd(a1, . . . , ad) is the polytopal complex formed by all unit cubes with integer vertices in the
d-dimensional box

B(a1, . . . , ad) := {x ∈ Rd : 0 ≤ xi ≤ ai, i ∈ [d]}.

Each facet of B(a1, . . . , ad) is uniquely associated to an integer point in the half-open box

B◦(a1, . . . , ad) := {x ∈ Rd : 0 ≤ xi < ai, i ∈ [d]}.

In particular, the integer point (z1, . . . , zd) ∈ Zd ∩ B◦(a1, . . . , ad) indexes the unit cube
whose lexicographically smallest vertex is (z1, . . . , zd). (For two points a, b ∈ Zd

≥0, a >lex b
in the lexicographic ordering >lex whenever the left-most entry in a − b is positive.) The
lexicographic ordering induces a total (linear) ordering of the points in B◦(a1, . . . , ad). Con-
sider the linear ordering of the facets of Pd(a1, . . . , ad) induced by the lexicographic order
on the integer points in B◦(a1, . . . , ad) indexing the facets (from smallest-to-largest). By
[76, Example 8.2], this is a shelling order for Pd(a1, . . . , ad). To see that this shelling or-
der is stable, consider a facet F(z1,...,zd) of Pd(a1, . . . , ad), and suppose its associated relative
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F(0,0,0) F(0,1,0) F(0,2,0)

F(0,0,1)

F(0,1,1)

F(0,2,1)

Figure 3.2: The pile of cubes P3(1, 3, 2) (on the left) and the final step in the shelling from
Example 3.3.4(on the right). Since the last relative complex is not stable, then neither is
this shelling.

complex R(z1,...,zd) does not contain its facet lying in the hyperplane xi = zi + 1 for some
i ∈ [d]. It follows that F(z1,...,zi+1,...,zd) was before F(z1,...,zd) in the shelling order. However,
(z1, . . . , zi +1, . . . , zd) >lex (z1, . . . , zi, . . . , zd), so this cannot not be the case. Hence, the set
of facets of the complex

C

F(z1,...,zd) ∩
⋃

(z1,...,zd)>lex(y1,...,yd)

F(y1,...,yd)


does not contain an opposing pair because it does not contain any of the facets of F(z1,...,zd)

lying in a hyperplane xi = zi + 1 for any i ∈ [d]. It follows from Lemma 3.3.3 that R(z1,...,zd)

is stable, and thus the lexicographic shelling of Pd(a1, . . . , ad) is stable.

Example 3.3.4 (A non-stable shelling). While the pile of cubes Pd(a1, . . . , ad) always admits
a stable shelling (as seen in Example 3.3.3), there exist piles of cubes with shellings that
are not stable. For instance, the pile of cubes P3(1, 3, 2), depicted in Figure 3.2, has six
facets F(0,0,0), F(0,1,0), F(0,2,0), F(0,0,1), F(0,1,1), and F(0,2,1). The linear ordering of these facets
(F(0,0,0), F(0,1,0), F(0,2,0), F(0,0,1), F(0,2,1), F(0,1,1)) is a shelling order of P3(1, 3, 2). However, the
relative complex associated to F(0,1,1) by this order is the table-top complex depicted in the
bottom-right of Figure 3.1. Since this complex is not stable, then neither is this shelling of
P3(1, 3, 2).

The previous observations demonstrate that some of the classic examples of cubical com-
plexes admit stable shellings but also that not all shellings of these complexes are stable.
In the coming sections, we will show that more complicated examples of cubical complexes
admit stable shellings, and we will use this fact, together with Theorem 3.3.1 to provide
some answers to open questions in the literature. However, while we can prove the existence
of stable shellings in the desired cases, it is not clear if they exist in all cases. So we end this
section with the following question.
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Question 3.3.1. Does there exist a shellable cubical complex C for which no shelling is
stable?

3.4 Applications

In this section, we apply Theorem 3.3.1 and the notion of stable shellings to some classical
subdivisions of the boundary complexes of polytopes that are of interest in algebraic, geo-
metric, and topological combinatorics. In Subsection 3.4, we show that the barycentric sub-
division of a cubical complex admitting a stable line shelling has a real-rooted h-polynomial.
Applying this result, we positively answer a question of Brenti and Welker [27, Question 1]
for the well-known constructions of cubical polytopes ; i.e., polytopes whose facets are all
cubes. In its most general form, the question is as follows:

Problem 3.4.1. [27, Question 1] Let C be the boundary complex of an arbitrary polytope.
Is the h-polynomial of the barycentric subdivision of C real-rooted?

In [55], cubical polytopes are proposed as the first case of interest, as the results of [27]
already answered the question in the case of simplicial (and simple) polytopes. Within the
literature on cubical polytopes there are surprisingly few explicitly constructed cubical poly-
topes. The most well-known constructions are the cuboids , which were first introduced by
Grünbaum in [41], the capped cubical polytopes [49], which are a cubical generalization
of stacked simplicial polytopes [51], and the neighborly cubical polytopes [8]. Construct-
ing cubical polytopes is, in general, a nontrivial task, as noted in [50] and the thesis [59].
However, by applying Theorem 3.3.1 and the notion of stable shellings, in Subsection 3.4 we
will be able to positively answer Problem 3.4.1 for all three of these constructions.

At the same time, Theorem 3.3.1 and the associated stable shellings can also be applied
to subdivisions other than the barycentric subdivision. In Subsections 3.4 and 3.4, we apply
these techniques to the edgewise subdivision of simplicial and cubical complexes so as to
solve a second problem of Mohammadi and Welker [55, Problem 27] for shellable complexes.
We also observe that a (non-geometric) solution to this problem follows from a recent result
of Jochemko [47].

In the following, we will make use of some well-studied real-rooted polynomials, which
can be defined as follows: For d, r ≥ 1 and 0 ≤ ℓ ≤ d, let A

(r)
d,ℓ be the polynomial defined by

the relation ∑
t≥0

(rt)ℓ(rt+ 1)d−ℓxt =
A

(r)
d,ℓ

(1− x)d+1
. (3.5)

We call A
(r)
d,ℓ the dth r-colored ℓ-Eulerian polynomial . When r = 1 and ℓ = 0, A

(r)
d,ℓ is

the classical Eulerian polynomial, which enumerates the elements of Sd by the excedance
statistic. When r = 2 and ℓ = 0, A

(r)
d,ℓ is the type B Eulerian polynomial , which

enumerates signed permutations. For d ≥ 1, the polynomials A
(1)
d,0 and A

(2)
d,0 are symmetric
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with respect to degree d − 1 and d, respectively. When ℓ = 0 and r ≥ 1, A
(r)
d,ℓ is the dth r-

colored Eulerian polynomial , which enumerates the the elements of the wreath product
Zr ≀ Sd with respect to their excedance statistic (see [23, Section 3], for example). It is

an immediate consequence of [24, Theorem 4.6] that A
(r)
d,ℓ has only real, simple zeros for all

d, r ≥ 1 and 0 ≤ ℓ ≤ d.

Lemma 3.4.2. For d, r ≥ 1 and 0 ≤ ℓ ≤ d, the polynomial A
(r)
d,ℓ has only simple, real zeros.

Moreover, for a fixed d, r ≥ 1,
(
A

(r)
d,ℓ

)d
ℓ=0

is an interlacing sequence.

Lemma 3.4.2 will play a key role in the coming subsections.

The barycentric subdivision of cubical complexes

Given a polytopal complex C, let L(C) denote its face lattice with partial order <C given
by inclusion. The barycentric subdivision of C is the simplicial complex sd(C) whose
k-dimensional faces are the subsets {F0, F1, . . . , Fk} of faces of C for which

∅ <C F0 <C F1 <C · · · <C Fk

is a strictly increasing chain in L(C). Our goal in this subsection is to show that h(sd(C);x)
is real-rooted when C is a cubical complex admitting a stable shelling. To do so, we need to
first consider the h-polynomials of relative complexes of barycentrically subdivided cubes. To
determine these polynomials, we will make use of the lemmata developed in Subsection 3.2.
In the following, we will let □d denote the (abstract) d-dimensional cube. The following
result is well-known, with the first equality appearing, for example, in [55].

Lemma 3.4.3. For d ≥ 1 we have that

h(sd(∂□d);x) = A
(2)
d,0 = h(sd(□d);x).

We will also let [−1, 1]d ⊂ Rd denote the geometric realization of □d in d-dimensional
real-Euclidean space as the convex hull of all (−1, 1)-vectors in Rd. The following lemma is
likely well-known to experts in the field and can be proved by induction on d.

Lemma 3.4.4. Let Td denote the triangulation of the d-cube [−1, 1]d that is induced by the
hyperplanes xi = ±xj for 0 ≤ i < j ≤ d and xi = 0 for i ∈ [d]. Then Td is abstractly
isomorphic to the barycentric subdivision of the d-cube.

The triangulation Td from Lemma 3.4.4 has an h-polynomial with a well-known combina-
torial interpretation: A signed permutation on [d] is a pair (π, ε) ∈ Sd ×{−1, 1}d, which
we sometimes denote as πε1

1 · · · πεd
d , where π = π1 · · · πd and ε = (ε1, . . . , εd). Set π0 := 0 and

ε0 := 1 for all (π, ε) ∈ Sd × {−1, 1}d and all d ≥ 1. Then i ∈ [d− 1]0 := {0, 1, . . . , d− 1} is
a descent of (π, ε) if εiπi > εi+1πi+1. We also let

Des(π, ε) := {i ∈ [d− 1]0 : εiπi > εi+1πi+1}, and

des(π, ε) := |Des(π, ε)|.
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Let 0 ≤ ℓ ≤ d. Going one step further, we define the ℓ-descent set of (π, ε) to be

Desℓ(π, ε) :=

{
Des(π, ε) ∪ {d} if d+ 1− ℓ ≤ εdπd ≤ d,

Des(π, ε) otherwise.

We then let desℓ(π, ε) := |Desℓ(π, ε)|. The type B ℓ-Eulerian polynomial is defined as

Bd,ℓ :=
∑

(π,ε)∈Sd×{−1,1}d:εdπd=d+1−ℓ

xdesℓ(π,ε).

For 0 ≤ ℓ ≤ d, we can then make use of the following theorem from [10]:

Theorem 3.4.5. [10, Theorem 5.1] For d ≥ 1 and 0 ≤ ℓ ≤ d,

Ehr([−1, 1]dℓ ;x) =
Bd+1,ℓ+1

(1− x)d+1
.

In [10], it is further noted that for 0 ≤ ℓ ≤ d,

ehr[−1,1]dℓ
(t) =

∑
[ℓ]⊆S⊆[d]

(2t)|S| = (2t)ℓ(2t+ 1)d−ℓ. (3.6)

From this, it follows that Bd+1,ℓ+1 = A
(2)
d,ℓ , for 0 ≤ ℓ ≤ d. The polynomials Bd+1,ℓ+1 for

d + 1 ≤ ℓ ≤ 2d can also be computed using the polynomials A
(2)
d,ℓ . However, it requires a

small geometric trick.

Lemma 3.4.6. For d ≥ 1 and 0 ≤ ℓ < d,

h∗([−1, 1]d2d−ℓ;x) = Id+1h
∗([−1, 1]dℓ ;x).

In particular, h∗([−1, 1]d2d−ℓ;x) = xIdA
(2)
d,ℓ .

Proof. Notice first that for 0 ≤ ℓ ≤ d, the half-open polytope [−1, 1]dℓ corresponds to [−1, 1]d\
H where we have removed all facets visible from a point q ∈ Rn for a fixed choice of q. Let
Bℓ denote the set of all such points visible from q on ∂[−1, 1]d, and let Dℓ := ∂[−1, 1]d \Bℓ.
Notice also, if [−1, 1]dℓ = [−1, 1]d \Bℓ then [−1, 1]d2d−ℓ is unimodularly equivalent to [−1, 1]d \
Dℓ (namely, up to rotation).

Next, consider the case when ℓ = 0. Then the desired statement follows directly from
classic Ehrhart-Macdonald reciprocity [12, Theorem 4.1]. Thus, we need only to prove the
statement when 0 < ℓ < d. Assuming this is the case, we then know that Bℓ and Dℓ are both
nonempty, and i(P \ B; t) is a polynomial in t (see equation (3.6)). Thus, by Lemma 3.2.7,
we know that

h∗([−1, 1]d2d−ℓ;x) = h∗(P \Dℓ;x) = Id+1h
∗(P \Bℓ;x) = Id+1h

∗([−1, 1]dℓ ;x).

The fact that h∗([−1, 1]d2d−ℓ;x) = xIdA
(2)
d,ℓ then follows from equations (3.5) and (3.6).
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Given our interpretation of the polynomials h∗([−, 1, 1]dℓ ;x) for 0 ≤ ℓ ≤ 2d in terms of

the polynomials A
(2)
d,ℓ , we can prove the following theorem for shellable cubical complexes.

Theorem 3.4.7. Let C be a cubical complex with a stable shelling. Then h(sd(C);x) is
real-rooted.

Proof. Let (F1, . . . , Fs) be a stable shelling of the d-dimensional cubical complex C. Then
for all i ∈ [s], the relative complex Ri associated to Fi by (F1, . . . , Fs) is stable. Since C is
a d-dimensional cubical complex, each Ri is a relative subcomplex of a d-dimensional cube.
By Lemma 3.3.3, it follows that each Ri is isomorphic to sd([−1, 1]d)ℓ for some 0 ≤ ℓ ≤ 2d,
where

sd([−1, 1]d)ℓ := sd([−1, 1]d) \ {xd = 1, . . . , xd+1−ℓ = 1}
for 0 ≤ ℓ ≤ d, and

sd([−1, 1]d)ℓ := sd([−1, 1]d) \ {xd = 1, . . . , x1 = 1} ∪ {xd = −1, . . . , x2d+1−ℓ = −1}

for d+1 ≤ ℓ ≤ 2d. So by Theorem 3.3.1, it suffices to show that the sequence of h-polynomials
(h(sd([−1, 1]d)ℓ;x))

2d
ℓ=0 forms an interlacing sequence.

By Lemma 3.4.4, each sd([−1, 1]d)ℓ is a relative subcomplex of the unimodular trian-
gulation Td of the d-cube [−1, 1]d. In the case that ℓ = 0, this complex is a unimodular
triangulation of the entire d-cube [−1, 1]d. So by Lemma 3.2.5, Theorem 3.4.5, and equa-
tion (3.6), we find that

h(sd([−1, 1]d)0;x) = h∗([−1, 1]d;x) = A
(2)
d,0.

When ℓ = 2d, sd([−1, 1]d)2d is the relative complex produced by taking the barycentric
subdivision of the d-cube and then removing its subdivided boundary. Hence, the f -
polynomial satisfies f(sd([−1, 1]d)2d;x) = xf(sd(∂□d);x). So by Lemma 3.4.3, we know that

h(sd([−1, 1]d)2d;x) = xA
(2)
d,0. Moreover, since A

(2)
d,0 is known to be symmetric with respect to

degree d, it follows that
h(sd([−1, 1]d)2d;x) = xIdA

(2)
d,0.

In the case that 0 < ℓ < 2d, the complex sd([−1, 1]d)ℓ has Euler characteristic 0. So it
follows by Lemma 3.2.6, Theorem 3.4.5, and equation (3.6) that

h(sd([−1, 1]d)ℓ;x) = h∗([−1, 1]dℓ ;x) = A
(2)
d,ℓ

when 0 < ℓ ≤ d. Hence, by Lemma 3.4.6, for all 0 ≤ ℓ ≤ 2d it follows that h(sd([−1, 1]d)ℓ;x)

is of the form A
(2)
d,ℓ′ or xIdA

(2)
d,ℓ′ for some 0 ≤ ℓ′ ≤ d. Thus, it suffices to show that the sequence(

A
(2)
d,0, A

(2)
d,1, . . . , A

(2)
d,d−1, A

(2)
d,d, xIdA

(2)
d,d, . . . , xIdA

(2)
d,1, xIdA

(2)
d,0

)
is interlacing. By [24, Lemma 2.3], we need only check that each of the following relations
are satisfied:
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1. A
(2)
d,0 ≺ xIdA

(2)
d,0,

2. A
(2)
d,ℓ ≺ A

(2)
d,k for all 0 ≤ ℓ < k ≤ d,

3. A
(2)
d,d ≺ xIdA

(2)
d,d, and

4. xIdA
(2)
d,k ≺ xIdA

(2)
d,ℓ for all 0 ≤ ℓ < k ≤ d.

Case (1) is immediate from the fact that A
(2)
d,0 = IdA

(2)
d,0 and Lemma 3.2.3 (4). Case (2) follows

from Lemma 3.4.2. Case (3) follows from [23, Theorem 3.1], which shows that IdA
(2)
d,d ≺ A

(2)
d,d,

and Lemma 3.2.3 (4), and case (4) follows directly from case (2). Thus, since this sequence
is interlacing, it follows that h(sd(C);x) is real-rooted, which completes the proof.

We now apply these results to give a positive answer to Problem 3.4.1 for the well-known
constructions of cubical polytopes; namely, the cuboids, capped cubical polytopes, and the
neighborly cubical polytopes.

Barycentric subdivisions of cuboids

Cuboids are a family of cubical polytopes described by Grünbaum in [41]. For each dimension
d ≥ 1, there are d + 1 cuboids, denoted Qd

ℓ for 0 ≤ ℓ ≤ d. The first cuboid in dimension d,
denoted Qd

0, is the d-cube and the rest are defined recursively as follows: To construct Qd
ℓ for

ℓ > 0, glue two copies of Qd
ℓ−1 at a common Qd−1

ℓ−1 . The boundary of the resulting complex
is the boundary complex of the cuboid Qd

ℓ . Equivalently, to construct the ℓth d-dimensional
cuboid for 0 < ℓ ≤ d, start by taking the geometric realization [−1, 1]d of Qd

0. Then consider
the geometric subdivision of [−1, 1]d given by intersecting [−1, 1]d with the ℓ hyperplanes
x1 = 0, x2 = 0, . . . , xℓ = 0. The boundary of the resulting cubical complex is the boundary
complex of the cuboid Qd

ℓ . Using this second construction of the cuboid Qd
ℓ , we can deduce

that all cuboids admit a stable shelling, yielding the following corollary to Theorem 3.4.7:

Corollary 3.4.8. The barycentric subdivision of the boundary complex of a cuboid has a
real-rooted h-polynomial.

Proof. Recall that the cuboid Qd
0 is the d-dimensional cube, whose barycentric subdivision

is well-known to have a real-rooted h-polynomial See Lemma 3.4.3. So fix 0 < ℓ ≤ d. By
Theorem 3.4.7, it suffices to show that the boundary complex of Qd

ℓ , denoted C(∂Qd
ℓ ), has a

stable shelling. By construction, the boundary complex ofQd
ℓ is isomorphic to the subdivision

of the boundary complex of [0, 2]d induced by the hyperplanes x1 = 1, . . . , xℓ = 1. For i ∈ [d],
let Fi and Fd+i denote, respectively, the facets of [0, 2]d lying in the hyperplanes xi = 0 and
xi = 2. It follows that, to construct C(∂Qd

ℓ ), each facet Fi and Fd+i is subdivided into a
complex isomorphic to the pile of cubes Pd−1(c

(i,ℓ)), where

c(i,ℓ) = (1, 1, . . . , 1) +
∑

j∈[ℓ]\{i}

ej,
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where e1, . . . , ed−1 ∈ Rd−1 denote the standard basis vectors (see Example 3.3.3 for the
definition of a pile of cubes). The facets of Qd

ℓ are then the facets of the piles of cubes
Pd−1(c

(i,ℓ)) for all i ∈ [d]. Here we have two copies of each pile of cubes, one for Fi and one
for Fd+i.

Fix the stable shelling order (F1, . . . , Fd, . . . , F2d) of C(∂□d) ≃ C(∂[0, 2]d) from Exam-
ple 3.3.2, and suppose that Fi and Fd+i have been subdivided into the pile of cubes Pd−1(c

(i,ℓ))
consisting of Mi cubes. Also set Md+i := Mi. Just as in Example 3.3.3, we index the cubes
in the facet Fi (for i ∈ [2d]) by their lexicographically smallest vertex. As proven in Exam-
ple 3.3.3, this is a stable shelling order for Pd−1(c

(i,ℓ)). Suppose this shelling order for the
cubes in Fi is (C1i , . . . , CMi

). We claim that the linear ordering

(C11 , . . . , CM1 , C12 , . . . , CM2 , . . . , C12d , . . . , CM2d
) (3.7)

is a stable shelling of the boundary of Qd
ℓ . To see this, fix Cjk for k ∈ [d] and suppose that

Cjk is indexed by the integer point (a1, . . . , ad) ∈ Fk, the facet of [0, 2]d. Note here that Fk

is assumed to be a facet of [0, 2]d whose corresponding facet-defining hyperplane is xk = 0.
Since Cjk is a cube in the subdivided facet Fk, it follows that ak = 0 and that Cjk has
facet-defining hyperplanes

x1 = a1, . . . , xk−1 = ak−1, xk+1 = ak+1, . . . , xd = ad,

and xi = ai+bi for i ∈ [d]\{k} and some bi ∈ {1, 2}. In this context, xi = ai and xi = ai+bi
contain the opposing pair of facets Gi, Gd+i of Cjk for i ∈ [d] \ {k}.

We then have two cases: either bi = 1 or bi = 2. In the former case, the facet Gd+i defined
by xi = ai + bi would only not be a codimension 1 face of the relative complex associated to
Cjk if the cube indexed by (a1, . . . , ak +1, . . . , ad) in Fk had preceded Cjk in the order (3.7).
However, this cannot happen since (a1, . . . , ak + 1, . . . , ad) >lex (a1, . . . , ak, . . . , ad) in the
lexicographic order. In the latter case, the facet-defining hyperplane xi = ai + bi is the
hyperplane xi = 2, and hence the facet Gd+i defined by this hyperplane would not be in the
associated relative complex if and only if a cube lying in a facet Fd+i of [0, 2]

d for some i ∈ [d]
had preceded Cjk in the order (3.7). Since this is impossible, we conclude that the facet of
Cjk defined by xi = ai + bi is in the relative complex associated to Cjk . Since this argument
holds for all i ∈ [d] \ {k}, it follows that the set of facets of the complex determined by

Cjk ∩ (C11 ∪ · · · ∪ CM1 ∪ · · · ∪ C1k ∪ · · · ∪ Cj−1k)

does not contain an opposing pair. Hence by Lemma 3.3.3, the relative complex associated
to Cjk by the order (3.7) is stable.

Now suppose that k = d+k′ for some k′ ∈ [d]. Hence, Cjk is a facet of C(∂Qd
ℓ ) lying in the

facet Fd+k′ of [0, 2]
d. Assume once more that Cjk is indexed by the integer point (a1, . . . , ad)

in the facet Fk of [0, 2]d. We claim that none of the facets of Cjk defined by the hyperplanes

x1 = a1, . . . , xk′−1 = ak′−1, xk′+1 = ak′+1, . . . , xd = ad,
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are facets of the relative complex Rjk associated to Cjk by the order (3.7). This follows via
induction. Suppose first that jk = 1k. In this case, Cjk is the first cube in the facet Fk that
appears in the order (3.7). Hence, the integer point in Fk indexing Cjk must be ek′ , the
standard basis vector in Rd. Thus, ai = 0 for all i ∈ [d] \ {k′} (and ak′ = 1). Since all cubes
in the facets F1, . . . , Fd preceded Cjk in the order (3.7), then none of the facets defined by
the hyperplanes xi = ai(= 0) for i ∈ [d] \ {k′} can be a facet of the relative complex Rjk

associated to Cjk . Hence, by Lemma 3.3.3, the relative complex Rjk is stable.
Similarly, the next cube in the ordering Cjk+1 will be indexed by (a1, . . . , ak∗ +1, . . . , ad),

where k∗ is the right-most coordinate in (a1, . . . , ad) for which adding 1 produces a new point
in [0, 2]d ∩ Zd that indexes a cube. It then follows that ak∗ = 0 and bk∗ = 1, by construction
of Qd

ℓ . Hence, Cjk+1 has the set of facet-defining hyperplanes

x1 = a1, . . . , xk∗ = ak∗ + 1, . . . , xk′−1 = ak′−1, xk′+1 = ak′+1, . . . , xd = ad, (3.8)

and their opposites xi = ai + bi for i ∈ [d] \ {k′} and some bi ∈ {1, 2}. Since each of the
hyperplanes listed in (3.8) is also a facet-defining hyperplane of Cjk , it follows that none
of them define a facet in the relative complex Rjk+1 associated to Cjk+1. Hence the set
of facets of Rjk+1 does not contain an opposing pair. Therefore, it is a stable complex by
Lemma 3.3.3. By iterating this argument, we see that the relative complex of each facet
following Cjk in the order (3.7) is stable. The fact that the order (3.7) is a shelling order
now follows from Lemma 3.3.4. Applying Theorem 3.4.7 completes the proof.

Corollary 3.4.8 gives a positive answer to Problem 3.4.1 in the case of cuboids, one of
the three well-known constructions of cubical polytopes. In the next subsection, we deduce
a positive answer to Problem 3.4.1 for the remaining two.

Barycentric subdivisions of capped cubical polytopes

Capped cubical polytopes, or stacked cubical polytopes, are the cubical analogue to
stacked simplicial polytopes [51]. A polytope P is called capped over a given cubical
polytope Q if there is a combinatorial cube C such that P = Q ∪ C and F := Q ∩ C is a
facet of Q. In this case, we then think of P as produced by capping Q over F , and we
write

P = capped(Q,F ).

We say that a polytope is ℓ-fold capped cubical for some ℓ ∈ Z≥0 if it can be obtained
from a combinatorial cube by ℓ capping operations. In the following, let C denote a (d− 1)-
dimensional cubical complex that is the boundary complex of an ℓ-fold capped polytope.
Let □d denote the (abstract) d-cube. Our goal in this subsection is to show that h(sd(C);x)
is real-rooted whenever C is the boundary complex of an ℓ-capped cubical polytope P for
some ℓ ∈ Z≥0. To do so, we again use Theorem 3.4.7 and the machinery of stable shellings
developed in Subsection 3.3.

Corollary 3.4.9. Let C denote the boundary complex of a d-dimensional ℓ-capped cubical
polytope. Then h(sd(C);x) is real-rooted.
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Proof. By Theorem 3.4.7, it suffices to show that C admits a stable shelling. To prove this,
we proceed by induction on ℓ ≥ 0. When ℓ = 0, C is the boundary complex of a d-dimensional
cube. Hence, as we saw in Example 3.3.2, C admits a stable shelling.

Suppose now that C is the boundary complex of a d-dimensional ℓ-capped cubical poly-
tope P = capped(Q,F ), for ℓ > 0. Then Q is a d-dimensional (ℓ − 1)-capped cubical
polytope, and hence, by our inductive hypothesis, the boundary complex D of Q admits a
stable shelling

(F1, . . . , FM). (3.9)

Since P = capped(Q,F ), then it follows that C is produced from D by subdividing the facet
F of D into the Schlegel diagram [76, Definition 5.5] of the d-dimensional cube □d based at
a facet G of □d that is identified with F in D. Suppose that the facets of □d are G1, . . . , G2d,
and suppose that (G1, . . . , Gd, Gd+1, . . . , G2d) is the stable shelling order of C(∂□d) given in
Example 3.3.2, where we assume G = G1. We claim that the linear ordering

(F1, . . . , Fk−1, G2, . . . , Gd, Gd+1, . . . , G2d, Fk+1, . . . , FM) (3.10)

is a stable shelling of C. Since the relative complex of each Fi for i ̸= k in the linear
ordering (3.10) is the same is its relative complex in the ordering (3.9), it suffices to show
that the relative complex associated to each Gi for i ∈ [2d] is stable.

To see this, consider first a facet Gi for 1 < i ≤ d. Since G = G1 is identified with the
facet Fk = F of D, then

Gi ∩ (F1 ∪ . . . ∪ Fk−1 ∪G2 ∪ · · · ∪Gi−1) = Gi ∩ (G1 ∪G2 ∪ · · · ∪Gi−1) (3.11)

if Gi ∩ (F1 ∪ . . . ∪ Fk−1) ̸= ∅, or

Gi ∩ (F1 ∪ . . . ∪ Fk−1 ∪G2 ∪ · · · ∪Gi−1) = Gi ∩ (G2 ∪ · · · ∪Gi−1) (3.12)

otherwise. In the former case, as in Example 3.3.2, the subcomplex (3.11) consists of the
facets of Gi defined by the hyperplanes x1 = 0, . . . , xi−1 = 0. Therefore, Gi ∩ (F1 ∪ . . . ∪
Fk−1 ∪ G2 ∪ · · · ∪ Gi−1) determines a subcomplex of C(∂□d−1) whose set of facets does not
contain an opposing pair. In the latter case, the subcomplex (3.12) consists of the facets of
Gi defined by the hyperplanes x2 = 0, . . . , xi−1 = 0, and it again determines a subcomplex
of C(∂□d−1) whose set of facets does not contain an opposing pair. Hence, by Lemma 3.3.3,
the relative complex Ri associated to Gi by the ordering (3.10) is stable in both cases.

Now consider the facet Gd+i for some i ∈ [d] and the subcomplex

H := Gi ∩ (F1 ∪ . . . ∪ Fk−1 ∪G2 ∪ · · · ∪Gd ∪ · · · ∪Gd+i−1).

of the boundary complex C(∂Gd+i). Just as in the case of Gi with 1 < i ≤ d, this subcomplex
is equal to Gi ∩ (G1 ∪G2 ∪ · · · ∪Gd ∪ · · · ∪Gd+i−1) if Gi ∩ (F1 ∪ . . . ∪ Fk−1) ̸= ∅. Otherwise,
it is equal to Gi ∩ (G2 ∪ · · · ∪ Gd ∪ · · · ∪ Gd+i−1). In either case, the relative complex Rd+i

associated to Gd+i by the ordering (3.10) is

Rd+i = C(Gd+i) \ C(H).
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In the former case, its codimension 1 faces are determined by the hyperplanes xi+1 =
1, . . . , xd = 1. Therefore, the set of codimension 1 faces of Rd+i does not contain an opposing
pair. In the latter case, Gi ∩ (F1 ∪ . . . ∪ Fk−1) = ∅, which can happen in one of two ways:
either i = 1 or i ̸= 1. In the case that i = 1, it follows that the set of codimension 1 faces
of Rd+i is determined by the hyperplanes xi+1 = 1, . . . , xd = 1, and thus does not contain
an opposing pair. In the case that i ̸= 1, the set of codimension one 1 is determined by the
hyperplanes xi+1 = 1, . . . , xd = 1 and the hyperplane x1 = 0. However, since i+ 1 > 1, this
set still does not contain an opposing pair. Thus, by Lemma 3.3.3, the relative complexes
Ri and Rd+i are stable for all i ∈ [d]. It follows that the ordering (3.10) is a stable shelling
order of C, which completes the proof.

The third class of well-known cubical polytopes with an explicit construction are the
neighborly cubical polytopes. These polytopes were introduced in [8], but no explicit con-
structions was given. However, in [50], Joswig and Zeigler proved that neighborly cubical
polytopes exist by giving such explicit constructions, which they denoted by Cd

n. In [50,
Comment 1], they note that the constructions Cd

n are also capped cubical polytopes. Hence,
as a corollary to Corollary 3.4.9, we also obtain a positive answer to Problem 3.4.1 for the
family of neighborly cubical polytopes.

Corollary 3.4.10. The barycentric subdivision of the boundary complex of a neighborly
cubical polytope has a real-rooted h-polynomial.

By combining Corollary 3.4.8, Corollary 3.4.9, and Corollary 3.4.10, we obtain a posi-
tive answer to Problem 3.4.1 for the well-known families of cubical polytopes; namely, the
cuboids, capped cubical polytopes, and the neighborly cubical polytopes. To deduce these
results we used the theory of stable shellings, developed in Subsection 3.3. As we will see
in Subsection 3.4, we can also use stable shelling techniques to give an alternate proof of
Brenti and Welker’s original solution to Problem 3.4.1 in the case of simplicial polytopes.
This suggests that the framework of stable shellings is perhaps appropriate for all polytopes,
as it yields a proof for all known cases. In fact, by a theorem of Bruggesser and Mani [30], it
is not unreasonable that these same techniques may be useful in addressing Problem 3.4.1 in
its fullest generality. In Section 3.5, we will explain some of the open questions pertaining to
this approach in more detail. Before doing so, in Subsections 3.4 and 3.4, we will demonstrate
how stable shellings can also be applied to subdivisions other than the barycentric subdivi-
sion. As one application, we will derive an answer to a second problem of Mohammadi and
Welker [55] for shellable simplicial complexes.

Barycentric subdivisions of simplicial polytopes

In this section, we give an alternative proof of the result of [27] that motivated Problem 3.4.1.
Namely, we apply Theorem 3.3.1 to show that the h-polynomial of the boundary complex of
a simplicial polytope has only real zeros. We will prove this using a similar narrative as in
Subsections 3.4 and 3.4, in that we will use a shelling argument to decompose the complex
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into relative simplicial complexes, and show that the h-polynomials of each complex form
an interlacing family. Recall that, by Proposition 3.3.2, any shelling of a simplicial complex
is stable, and that stable shellings were defined in Subsection 3.3 to capture those shellings
to which we can apply Theorem 3.3.1 for multiple different uniform subdivisions. In this
subsection and the next, we will indeed see that we can apply Theorem 3.3.1 to any shelling
of a simplicial complex with respect to the two most common uniform subdivisions: the
barycentric subdivision and the edgewise subdivision.

In this case, the relative complexes associated to facets of our shelling will be subdivided,
half-open simplices. In the following, let ∆d denote the d-dimensional simplex, and let ∆d,ℓ

denote the relative simplicial complex given by removing ℓ of the facets of ∆d for 0 ≤ ℓ ≤ d+1.
Note that ∆d,0 = ∆d. We will require the following well-known result.

Lemma 3.4.11. Let d ≥ 1 and 0 ≤ ℓ ≤ d+ 1. Then h(∆d,ℓ;x) = xℓ.

Proof. By the Principle of Inclusion-Exclusion, (as described in terms of linear transforma-
tions in [61, Theorem 2.1]), we deduce that

f(∆d,ℓ;x) =
ℓ∑

j=0

(−1)j
(
ℓ

j

)
f(∆d−j;x).

Since h(∆d;x) = 1 for all d ≥ 1, it then follows that

h(∆d,ℓ;x) =
ℓ∑

j=0

(−1)j
(
ℓ

j

)
(1− x)j = xℓ.

To make use of this observation, we need to generalize the main result of [27] (i.e. [27,
Theorem 1]) to relative complexes. We refer to the reader to [27] for the definition of a
Boolean cell complex.

Lemma 3.4.12. Let C be a (d − 1)-dimensional Boolean cell complex and D a subcomplex
of C. If the relative complex C \ D is also (d− 1)-dimensional then

h(sd(C) \ sd(D);x) =
d∑

ℓ=0

hℓ(C \ D)A
(1)
d,ℓ .

Proof. The definition of the h-polynomial of a relative complex C\D is known to be equivalent
to the condition that

hr(C \ D) =
r∑

i=0

(−1)r−i

(
d− i

r − i

)
fi−1(C \ D)
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for all r = 0, . . . , d. From this formula it follows that for all r = 0, . . . , d

hr(sd(C) \ sd(D)) =
r∑

i=0

(−1)r−i

(
d− i

r − i

)
fi−1(sd(C) \ sd(D)),

=
r∑

i=0

(−1)r−i

(
d− i

r − i

)
(fi−1(sd(C))− fi−1(sd(D)),

=
r∑

i=0

(−1)r−i

(
d− i

r − i

)
fi−1(sd(C))−

r∑
i=0

(−1)r−i

(
d− i

r − i

)
fi−1(sd(D)).

Since sd(C) and sd(D) are both Boolean cell complexes then we can apply [27, Lemma 1].
This yields

hr(sd(C) \ sd(D)) =
r∑

i=0

(−1)r−i

(
d− i

r − i

) d∑
m=0

fm−1(C)S(m, k)m!

−
r∑

i=0

(−1)r−i

(
d− i

r − i

) d∑
m=0

fm−1(D)S(m, k)m!.

Notice here that the formula for fm−1(sd(D)) given in [27, Lemma 1] still holds with respect
to degree d even if D has dimension less than d. This is immediate from the proof of [27,
Lemma 1] since fm−1(D) = 0 for all m greater than the dimension of D. Hence, it follows
that

hr(sd(C) \ sd(D)) =
r∑

i=0

(−1)r−i

(
d− i

r − i

) d∑
m=0

S(m, k)m!(fm−1(C)− fm−1(D)),

=
r∑

i=0

(−1)r−i

(
d− i

r − i

) d∑
m=0

S(m, k)m!fm−1(C \ D).

Since we have assumed that C \ D is (d− 1)-dimensional, it follows that

fm−1(C \ D) =
m∑
ℓ=0

(
d− ℓ

d−m

)
hℓ(C \ D),

and so

hr(sd(C) \ sd(D)) =
r∑

i=0

(−1)r−i

(
d− i

r − i

) d∑
m=0

S(m, k)m!
m∑
ℓ=0

(
d− ℓ

d−m

)
hℓ(C \ D),

=
d∑

ℓ=0

(
d∑

m=0

r∑
i=0

(−1)r−i

(
d− i

r − i

)(
d− ℓ

d−m

)
S(m, k)m!

)
hℓ(C \ D).
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In the proof of [27, Theorem 1], it is shown that the coefficient of hℓ(C \ D) in the above

expression is equal to the kth coefficient of A
(1)
d,ℓ . Hence,

h(sd(C) \ sd(D);x) =
d∑

ℓ=0

hℓ(C \ D)A
(1)
d,ℓ .

From Lemma 3.4.11 and Lemma 3.4.12, we recover the following proposition:

Proposition 3.4.13. Let ∆d−1 be a (d − 1)-dimensional simplex, and let 0 ≤ ℓ ≤ d be the
number of facets of ∆d−1 missing in ∆d−1,ℓ. Then,

h(sd(∆d−1,ℓ), x) = A
(1)
d,ℓ .

Applying Lemma 3.4.2 to Proposition 3.4.13, we see that the h-polynomials of the
barycentric subdivision of a simplex restricted to half-open simplices form an interlacing
family. Since a shelling of the boundary of a simplicial polytope will decompose this com-
plex into such half-open simplices, the h-polynomial of the barycentric subdivision of the
complex will be real-rooted. We summarize this observation in the following theorem, which
is originally due to Brenti and Welker [27].

Theorem 3.4.14. Let C be a (d− 1)-dimensional shellable simplicial complex. Then
h(sd(C);x) is real-rooted. In particular, the h-polynomial of the barycentric subdivision of
the boundary complex of a d-dimensional simplicial polytope is real-rooted.

Proof. The result is an immediate consequence of Theorem 3.3.1, Lemma 3.4.2, and Propo-
sition 3.4.13. The special case of boundary complexes of simplicial polytopes follows from
the fact that the boundary complex of any polytope admits a shelling [30].

The proofs of Theorems 3.4.7 and 3.4.14 given here suggest that stable shellability of
all boundary complexes of polytopes could be key to answering Problem 3.4.1 in its fullest
generality. In Section 3.5, we offer some first results in this direction and pose some related
open questions. However, we first examine some applications of Theorem 3.3.1 and stable
shellings to subdivisions other than the barycentric subdivision.

Edgewise subdivisions of simplicial complexes

The edgewise subdivision of a simplicial complex is another well-studied subdivision that
arises frequently in algebraic and topological contexts (see for instance [28, 31, 35, 40]).
Within algebra, it is intimately tied to the Veronese construction, and it is considered to
be the algebraic analogue of barycentric subdivision [28, Acknowledgements]. For r ≥
1, the rth edgewise subdivision of a simplex is defined as follows: Suppose that ∆ :=
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conv(e(1), . . . , e(d)) ⊂ Rd is a (d− 1)-dimensional simplex with 0-dimensional faces
e(1), . . . , e(d), the standard basis vectors in Rd. For x = (x1, . . . , xd) ∈ Zd, we let

supp(x) := {i ∈ [d] : xi ̸= 0},

and we define the linear transformation ι : Rd → Rd by

ι : x 7−→ (x1, x1 + x2, . . . , x1 + · · ·+ xd).

The rth edgewise subdivision of ∆ is the simplicial complex ∆⟨r⟩ whose set of 0-
dimensional faces are the lattice points in r∆ ∩ Zd and for which F ⊂ r∆ ∩ Zd is a face of
∆⟨r⟩ if and only if ⋃

x∈F

{supp(x)} ∈ ∆,

and for all x, y ∈ F either ι(x) − ι(y) ∈ {0, 1}d or ι(y) − ι(x) ∈ {0, 1}d. Given a simplicial
complex C, the rth edgewise subdivision of C, denoted C⟨r⟩, is given by gluing together
the rth edgewise subdivisions of each of its facets. In [55], the authors proposed the following
problem.

Problem 3.4.15. [55, Problem 27] If C is a d-dimensional simplicial complex with hk(C) ≥ 0
for all 0 ≤ k ≤ d+ 1, is h(C⟨r⟩;x) real-rooted whenever r > d?

Applying Theorem 3.3.1 and Proposition 3.3.2, we will give a positive answer to Prob-
lem 3.4.15 for shellable simplicial complexes via geometric methods. We then also observe
that a positive answer to Problem 3.4.15 for both shellable and non-shellable complexes
follows from some recent enumerative results of Jochemko [47]. To do this, we first note
that for every r ≥ 1 and polynomial p ∈ R[x] there are uniquely determined polynomials
p(0), p(1), . . . , p(r−1) ∈ R[x] satisfying

p = p(0)(xr) + xp(1)(xr) + x2p(2)(xr) + · · ·+ xr−1p(r−1)(x).

We define the linear operator

⟨r,ℓ⟩ : R[x] −→ R[x] where ⟨r,ℓ⟩ : p −→ p(ℓ),

and the polynomial p(r,d) := (1 + x+ · · ·+ xr−1)d. It is well-known that the sequence(
p
⟨r,r−ℓ⟩
(r,d)

)r
ℓ=1

=
(
p
⟨r,r−1⟩
(r,d) , p

⟨r,r−2⟩
(r,d) , . . . , p

⟨r,0⟩
(r,d)

)
, (3.13)

is an interlacing sequence (see [60, Remark 4.2] or [47], for instance). On the other hand, [4,
Equation 21] shows that for any d-dimensional simplicial complex C

h(C⟨r⟩;x) = ((1 + x+ x2 + · · ·+ xr−1)d+1h(∆;x))⟨r,0⟩ (3.14)

for all r ≥ 1. Let ∆d denote the d-dimensional simplex, and let ∆d,ℓ denote the relative
simplicial complex given by removing ℓ of the facets of ∆d for 0 ≤ ℓ ≤ d+ 1.
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Lemma 3.4.16. Let d ≥ 1, r > d, and 0 < ℓ ≤ d+ 1. Then

h(∆
⟨r⟩
d,ℓ;x) = xp

⟨r,r−ℓ⟩
(r,d+1).

Proof. Notice first that the relative complex ∆
⟨r⟩
d,ℓ can be constructed in two equivalent ways:

Either we first remove the ℓ facets of ∆d and then apply the subdivision procedure outlined
in the definition of the edgewise subdivision to the corresponding geometric realization of
the half-open simplex ∆d,ℓ, or we first compute ∆

⟨r⟩
d and then remove the faces of ∆

⟨r⟩
d lying

in the ℓ facets of ∆d scheduled for removal. For the purposes of this proof, we work with
the latter construction. Our first goal, then, is to prove the following fact in analogy to
equation (3.14):

h(∆
⟨r⟩
d,ℓ;x) = ((1 + x+ · · ·+ xr−1)d+1h(∆d,ℓ;x))

⟨r,0⟩.

Given the chosen construction of ∆
⟨r⟩
d,ℓ, we know that

f(∆
⟨r⟩
d,ℓ;x) =

ℓ∑
j=0

(−1)j
(
ℓ

j

)
f(∆

⟨r⟩
d−j;x),

and so

h(∆
⟨r⟩
d,ℓ;x) = (1− x)d+1

ℓ∑
j=0

(−1)j
(
ℓ

j

)
f

(
∆

⟨r⟩
d−j;

x

1− x

)
,

=
ℓ∑

j=0

(−1)j
(
ℓ

j

)
(1− x)jh(∆

⟨r⟩
d−j;x).

Since ∆d−j is a simplicial complex, it follows from equation (3.14) that

h(∆
⟨r⟩
d−j;x) = ((1 + x+ · · ·+ xr−1)d+1−jh(∆d−j;x))

⟨r,0⟩.

Since

(1− x)j((1 + · · ·+ xr−1)d+1−jh(∆d−j;x))
⟨r,0⟩

= ((1− xr)j(1 + · · ·+ xr−1)d+1−jh(∆d−j;x))
⟨r,0⟩,

it follows that

h(∆
⟨r⟩
d,ℓ;x) =

ℓ∑
j=0

(−1)j
(
ℓ

j

)
((1− xr)j(1 + · · ·+ xr−1)d+1−jh(∆d−j;x))

⟨r,0⟩,

=

(
(1 + · · ·+ xr−1)d+1

(
ℓ∑

j=0

(−1)j
(
ℓ

j

)
(1− x)jh(∆d−j;x)

))⟨r,0⟩

,

=
(
(1 + · · ·+ xr−1)d+1h(∆d,ℓ;x)

)⟨r,0⟩
,
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as desired. We then note that h(∆d,ℓ;x) = xℓ, by Lemma 3.4.11. Since r > d and 0 < ℓ ≤
d+ 1, it follows that

h(∆
⟨r⟩
d,ℓ;x) = xp

⟨r,r−ℓ⟩
(r,d+1),

which completes the proof.

Lemma 3.2.3, Theorem 3.3.1, and Lemma 3.4.16 give the necessary tools to positively
answer Problem 3.4.15 for shellable simplicial complexes.

Theorem 3.4.17. Let C be a d-dimensional shellable simplicial complex, and let r > d.
Then h(C⟨r⟩;x) is real-rooted.

As an immediate corollary to Theorem 3.4.17 we get that, for r ≥ d, the rth edgewise
subdivision of the boundary complex of any d-dimensional simplicial polytope has a real-
rooted h-polynomial.

Corollary 3.4.18. Let C be the boundary complex of a d-dimensional simplicial polytope.
Then for r ≥ d, the edgewise subdivision C⟨r⟩ of C has a real-rooted h-polynomial.

On the other hand, Theorem 3.4.17 holds more generally. This, in fact, follows directly
from some recent results of Jochemko [47], in particular, from combining [47, Theorem 1.1]
with [47, Lemma 3.1].

Theorem 3.4.19 (Essentially due to [47]). If C is a d-dimensional simplicial complex with
hk(C) ≥ 0 for all 0 ≤ k ≤ d+ 1 then h(C⟨r⟩;x) is real-rooted whenever r > d.

Theorem 3.4.19 shows that the geometric approach used in Theorem 3.4.17 was not
necessary, as it was for the solution to Problem 3.4.1 for cuboids, capped cubical polytopes,
and neighborly cubical polytopes given in Subsection 3.4. On the other hand, the geometric
proof of Theorem 3.4.17 highlights that the applications of Theorem 3.3.1 are not limited to
barycentric subdivisions. In the next subsection, a similar result for the edgewise subdivision
of a cube is derived. In this case, there is currently no other proof aside from the geometric
methods developed in this chapter.

Edgewise subdivisions of cubical complexes

In Subsection 3.4 we defined the edgewise subdivision of a simplicial complex. We now
extend this definition to cubical complexes. To do so, we perform the same operations on
a unit cube that were performed on the standard simplex ∆ in the construction of the rth

edgewise subdivision of a simplex. To reiterate, let □d denote the (abstract) d-dimensional
cube, and consider its geometric realization [0, 1]d and r[0, 1]d = [0, r]d, the rth dilation
of [0, 1]d. Recall the map ι defined in Subsection 3.4 that sends (x1, . . . , xd) ∈ Cd ∩ Zd

to (x1, x1 + x2, . . . , x1 + · · · + xd). We define the rth edgewise subdivision □⟨r⟩
d of the

d-dimensional cube in terms of a subdivision of its geometric realization [0, 1]d as follows:
Let A ⊂ [0, 1]d ∩ Zd. Then conv(A) is a face of the subdivision if and only if ι(v − v′) or
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−ι(v − v′) is in {0, 1}d for all v, v′ ∈ A. We first note that this a unimodular triangulation
of [0, 1]d, as it splits the dilated cube [0, r]d into unit cubes which are each triangulated
according to (a rotated version of) the standard unimodular triangulation of [0, 1]d; that is,
the triangulation induced by the hyperplanes xi = xj for all 1 ≤ i < j ≤ d. Given a cubical
complex C, its rth edgewise subdivision , denoted C⟨r⟩ is given by gluing together the rth

edgewise subdivisions of each of its facets.
Stable shellings were defined so as to capture those shellings to which Theorem 3.3.1

can be applied for multiple different subdivisions. In Subsections 3.4 and 3.4, we saw this
to be the case for simplicial complexes. To further substantiate this claim, we now show
that the analogous result to Theorem 3.4.7 holds for the edgewise subdivision of a cubical
complex. To do so, we will first use the fact that the rth edgewise subdivision of a cube
has a geometric realization that is a unimodular triangulation of the rth dilation of [0, 1]d so
as to give a formula for the h-polynomials of the stable relative complexes Ri associated to
the edgewise subdivision of a cubical complex. This formula will be in terms of the colored
Eulerian polynomials A

(r)
d,ℓ, which were introduced at the beginning of Section 3.4.

We first give a combinatorial interpretation of the coefficients of A
(r)
d,ℓ in terms of a descent

statistic for the wreath product Zr ≀Sd. Denote the elements of the wreath product Zr ≀Sd

as pairs (π, ε), where π = π1 · · · πd ∈ Sd and ε = (ε1, . . . , εd) ∈ {0, . . . , r − 1}d. We will
typically denote the pair (π, ε) as πε1

1 · · · πεd
d . Like the classical symmetric group, Zr ≀ Sd

admits combinatorial statistics such as descents and excedances, and there exist several
different well-studied versions of each. A brief survey of these different definitions, as well
as their uses, can be found in [11]. For our purposes, we use the following definition:

Definition 3.4.1. [11, Definition 2.5] Order the elements in the set {iεi : i ∈ [d], εi ∈
{0, 1, . . . , r − 1}} such that iεi < jεj if εi > εj or εi = εj and i < j. For (π, ε) ∈ Zr ≀ Sd, the
descent set of (π, ε) is

Des(π, ε) := {j ∈ {0, 1, . . . , d− 1} : π
εj
j > π

εj+1

j+1 },

where we use the convention that π0 = 0 and c0 = 0. The descent statistic is des(π, ε) :=
|Des(π, ε)|.

As in the case of the signed permutations used in Subsection 3.4, we can extend this
Definition 3.4.1 to ℓ-descents: Let (π, ε) ∈ Zr ≀Sd and let 0 ≤ ℓ ≤ d. Then the ℓ-descent
set of (π, ε) is

Desℓ(π, ε) :=

{
Des(π, ε) ∪ {0} if π1 ∈ [ℓ]

Des(π, ε) otherwise.

The ℓ-descent statistic is then desℓ(π, ε) := |Desℓ(π, ε)|. Using this new statistic, we can

now give a combinatorial interpretation of A
(r)
d,ℓ.

Proposition 3.4.20. For d, r ≥ 1 and 0 ≤ ℓ ≤ d,

A
(r)
d,ℓ =

∑
(π,ε)∈Zr≀Sd

xdesℓ(π,ε).
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Moreover, A
(r)
d,ℓ = h∗([0, r]dℓ ;x).

Proof. We prove this by using the following unimodular triangulation of the cube [0, r]d:
Subdivide [0, r]d into the pile of (unit) cubes Pd(r, . . . , r), and triangulate each cube in the
resulting cubical complex according to the standard triangulation of [0, 1]d. That is, the
triangulation of the cube Cz, for z = (z1, . . . , zd) ∈ B◦(r, r, . . . , r) is given by triangulating
[0, 1]d via the hyperplanes xi = xj for 1 ≤ i < j ≤ d and then translating this triangulated
version of [0, 1]d as [0, 1]d + z = Cz. Each simplex in this triangulation of Cz is then of the
form

∆d
(π,ε) := {x ∈ Rd : 0 ≤ xπ1 − zπ1 ≤ · · · ≤ xπd

− zπd
≤ 1},

for (π, ε) ∈ Zr ≀ Sd given by π
zπ(1)

1 . . . π
zπ(d)

d . This correspondence between elements of Zr ≀ Sd

and facets of this triangulation is similar in spirit to the triangulation defined in [72, Section
3]. However, we use slightly different conventions.

We now define the following half-open simplices, with π, z, and ε defined as above:

∆d,ℓ
(π,ε) :=

x ∈ Rd :
0 ≤ xπ1 − zπ1 ≤ · · · ≤ xπd

− zπd
≤ 1,

xπi
− zπi

< xπi+1
− zπi+1

for i ∈ Des(π, ε) , and
0 < xπ1 − zπ1 if 0 ∈ Desℓ(π, ε)

 .

Note that ∆d,ℓ
(π,ε) is a unimodular half-open simplex with the number of missing facets equal

to desℓ(π, ε). Hence, h∗(∆d,ℓ
(π,ε);x) = xdesℓ(π,ε). (A proof of this fact is an exercise analogous

to the proof of Lemma 3.4.11.) We now show that for fixed d, r ≥ 1 and 0 ≤ ℓ ≤ d, the
disjoint union ⊔

(π,ε)∈Zr≀Sd

∆d,ℓ
(π,ε)

is [0, r]dℓ . To do so, we first decompose [0, r]dℓ into a disjoint union of half-open unit cubes.
As before, let z ∈ B◦(r, . . . , r), and set

Cℓ
z = Cz \ {xi = zi : zi ̸= 0 or zi = 0 and i ∈ [ℓ]}.

It follows, as in Example 3.3.3, that [0, r]dℓ is the disjoint union of the half-open cubes Cℓ
z

for z ∈ B◦(r, . . . , r). We now show that for a fixed z, the half-open cube Cℓ
z is the disjoint

union of ∆d,ℓ
(π,ε) where π ranges over all elements of Sd and (π, ε) = π

zπ1
1 · · · πzπd

d . First, we
observe that the closed cube Cz is the disjoint union of half-open simplices of the form{

x ∈ Rd :
0 ≤ xπ1 − zπ1 ≤ · · · ≤ xπd

− zπd
≤ 1,

xπi
− zπi

< xπi+1
− zπi+1

for i ∈ Des(π, ε) ∩ {1, . . . , d− 1}

}
,

since this is simply a translated version of the standard half-open decomposition of the unit
cube described, for example, in [13]. From this, we can construct a half-open decomposition
of [0, r]dℓ by removing all of the points in the simplices described above that satisfy xπ1 =
zπ1 for 0 ∈ Desℓ(π, ε). Removing these points gives us the half-open simplex ∆d,ℓ

(π,ε). Hence,
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Cℓ
z is a disjoint union of ∆d,ℓ

(π,ε) where (π, ε) = π
zπ1
1 · · · πzπd

d . Since [0, r]dℓ is the disjoint union

of all Cℓ
z for z ∈ B◦(r, . . . , r), it follows that [0, r]dℓ is the disjoint union of ∆d,ℓ

(π,ε) over all

(π, ε) ∈ Zr ≀Sd.
We now compute the h∗-polynomial of [0, r]dℓ in two different ways. First, since [0, r]dℓ is

the disjoint union of ∆d,ℓ
(π,ε) over all (π, ε) ∈ Zr ≀Sd, it follows that

Ehr([0, r]dℓ ;x) =
∑

(π,ε)∈Zr≀Sd

h∗(∆d,ℓ
(π,ε);x) =

∑
(π,ε)∈Zr≀Sd

xdesℓ(π,ε),

where the last equality follows from the fact that the h∗-polynomial of a unimodular simplex
with m facets removed is xm. On the other hand, since ℓ ≤ d, we know that [0, r]dℓ is
the product of ℓ copies of the half-open 1-dimensional cube [0, r) and d − ℓ copies of the
1-dimensional cube [0, r]. Since Ehrhart polynomials are multiplicative,

it follows that

ehr[0,r]dℓ (t) = ehr[0,r)(t)
ℓehr[0,r](t)

d−ℓ) = (rt)ℓ(rt+ 1)d−ℓ.

Thus,

Ehr([0, r]dℓ ;x) =
∑
t≥0

(rt)ℓ(rt+ 1)d−ℓxt =
h∗([0, r]dℓ ;x)

(1− x)d+1
.

From the definition of r-colored ℓ-Eulerian polynomials given in Equation (3.5), we see that

h∗([0, r]dℓ ;x) = A
(r)
d,ℓ. Thus, A

(r)
d,ℓ =

∑
(π,ε)∈Zr≀Sd

xdes(π,ε), as desired.

Corollary 3.4.21. For all d ≥ 1, if r = 1 and 0 ≤ ℓ < d, then the degree of A
(r)
d,ℓ is d − 1.

Otherwise, the degree of A
(r)
d,ℓ is d.

Proof. By Proposition 3.4.20, the degree of A
(r)
d,ℓ is the maximum number of ℓ-descents of

(π, ε) ∈ Zr ≀ Sd. Since Desℓ(π, ε) is a subset of {0, . . . , d− 1}, the degree is at most d. When
r = 1, 0 ∈ Desℓ(π, ε) if and only if ℓ > 0 and π1 ≤ ℓ. If 0 ∈ Desℓ(π, ε) and r = 1, then
i ∈ Desℓ(π, ε) for all i ∈ [d − 1] if and only if πi > πi+1 for all i ∈ [d − 1]. However, this is

only possible if π = d(d− 1) · · · 1. Hence, A(1)
d,ℓ has degree d if and only if ℓ = d. Otherwise,

A
(1)
d,ℓ has degree d− 1, since (π, ε) = π0

1π
0
2 · · · π0

d has exactly d− 1 descents. If r > 1 then A
(r)
d,ℓ

has degree d since the element (π, ε) = d1(d− 1)1 · · · 11 has d descents.

Using these facts, we can apply the results on stable shellings developed in Section 3.3
to prove the following:

Theorem 3.4.22. Let C be a cubical complex with a stable shelling. Then h(C⟨r⟩;x) is real
rooted for r ≥ 2.
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Proof. Using the shelling argument detailed in the proof of Theorem 3.4.7, we see that we
can decompose C⟨r⟩ into relative complexesRj in which eachRj has geometric realization the
unimodular triangulation Td,r of [0, r]

d
ℓ , induced by the rth edgewise subdivision as described

above, for some 0 ≤ ℓ ≤ 2d. We first consider the cases in which 0 ≤ ℓ ≤ d. In this case,
[0, r]dℓ is either a closed, convex polytope and hence has Euler characteristic 1, or it is missing
a subset of facets that forms a contractible subcomplex, and hence it has Euler characteristc
0. So by Lemmas 3.2.5 and 3.2.6,

h(Rj;x) = h∗([0, r]dl ;x) = A
(r)
d,ℓ.

where the last equality follows from Proposition 3.4.20.
We now must consider the case in which more than d facets are removed. From Lemma

3.2.7, we know that for 0 ≤ ℓ ≤ d:

h∗([0, r]d2d−ℓ;x) = Id+1h
∗([0, r]dℓ ;x) = xIdA

(r)
d,ℓ,

where the last equality follows from Corollary 3.4.21 stating that the degree of A
(r)
d,ℓ is d.

Thus, we see that h(Rj;x) is either A
(r)
d,ℓ or xIdA

(r)
d,ℓ for some 0 ≤ ℓ ≤ d. Thus it suffices to

show that for a fixed r ≥ 2 and d ≥ 1 the concatenated sequence(
(A

(r)
d,ℓ)

d
ℓ=0, (xIdA

(r)
d,ℓ)

0
ℓ=d

)
is interlacing. The justification is identical to the one found in the proof of Theorem 3.4.7.

In the proofs of Corollary 3.4.8, Corollary 3.4.9, and Corollary 3.4.10, it was argued
that the boundary complexes of cuboids, capped cubical polytopes, and neighborly cubical
polytopes all admit stable shellings. Hence, as a corollary to Theorem 3.4.22, we recover
that the rth edgewise subdivision of the boundary complex of all well-known examples of
cubical polytopes have real-rooted h-polynomials.

Corollary 3.4.23. If C is the boundary complex of a cuboid, a capped cubical polytope, or a
neighborly cubical polytope, then h(C⟨r⟩;x) is real-rooted for all r ≥ 2.

The results of Corollary 3.4.23, Corollary 3.4.8, Corollary 3.4.9, and Corollary 3.4.10
collectively show how the same stable shelling allows one to deduce the real-rootedness of
h-polynomials for a variety of different uniform subdivisions.

3.5 Stable Line Shellings

One of our applications of stable shellings in Section 3.4 was that any cubical complex ad-
mitting such a shelling has a barycentric subdivision with a real-rooted h-polynomial (The-
orem 3.4.7). This gave a positive answer to Problem 3.4.1 for all well-known constructions
of cubical polytopes. A classic result of Bruggesser and Mani [30] states that, in fact, the
boundary complex of any polytope admits a shelling. Hence, the result of Theorem 3.4.7
suggests the following general question:
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Question 3.5.1. Does every polytope (cubical or otherwise) admit a stable shelling?

The result of Bruggesser and Mani [30] is, in fact, stronger than stated since they further
demonstrate that the boundary complex of any polytope admits a special type of shelling
known as a line shelling. Suppose that C is the boundary complex of a d-dimensional polytope
P with s facets and m vertices. The realization space of C, denoted RC, is the space of
all geometric realizations Σ ⊂ Rd of C as the boundary complex of a convex polytope in Rd.
Hence, each realization Σ ∈ RC is the boundary complex of a convex polytope in Rd, which
we will denote by QΣ. Note that RC can be thought of as a semialgebraic set living in Rd×m

where each realization Σ corresponds to a d×m matrix whose columns are the realizations of
the vertices of C. Since C is (d−1)-dimensional, then for all Σ ∈ RC, the geometric realization
σi ∈ Σ of a given facet Fi of C spans an affine hyperplane Hi ⊂ Rd. Let AΣ := {Hi : i ∈ [s]}
denote the corresponding hyperplane arrangement. Fix Σ ∈ RC, and let ℓ ⊂ Rd be a line
that intersects each hyperplane Hi ∈ AΣ at a point qi := ℓ ∩Hi. Assume that q1, . . . , qs are
all distinct and that ℓ intersects the interior of the convex polytope QΣ. Without loss of
generality, the point q1 then lies in the interior of some facet σ1 of Σ. Consider AΣ and ℓ in
the one-point compactification of Rd, denoted Rd ∪ {∞}. By fixing an orientation of ℓ and
following this orientation outwards from the initial point q1, we obtain a linear ordering of
the points of intersection of ℓ with AΣ and the point ∞:

(q1, . . . , qt,∞, qt+1, . . . , qs).

If the corresponding linear order (F1, . . . , Ft, Ft+1, . . . , Fs) of the facets of C is a shelling, we
call it a line shelling of C (induced by AΣ and ℓ). A well-known fact about line shellings
is the following (see, for instance, [76] or [30]): If i ≤ t, then the set of facets of Fi that are
not included in the relative complex Ri associated to Fi by (F1, . . . , Fs) is the collection of
facets Fi realized by facets of σi that are visible from the point qi; that is, the set of all
facets containing a point q that is visible from qi in Hi (as defined in Subsection 3.2). On the
other hand, if i > t, then the set of facets of Fi that are not included in Ri are those facets
realized by facets of σi that are not visible from qi in Hi. These are callled the covisible
facets of Fi.

Line shellings are a well-studied tool in geometric and algebraic combinatorics (see for in-
stance [76]). The result of Bruggesser and Mani [30] states that the boundary complex of any
convex polytope admits a line shelling. Given this result, a positive answer to Question 3.5.1
that gives a stable line shelling for the boundary complex of every polytope would yield an
answer to Problem 3.4.1 in the case of all cubical polytopes (via Theorem 3.4.7). Hence,
it would be of general interest to better understand the geometry of stable line shellings.
Namely, given the boundary complex C of a d-dimensional polytope P , we let LC denote the
collection of all pairs (Σ, ℓ) for which Σ ∈ RC and ℓ ∈ Rd induce a line shelling of C. We
further let Ls

C ⊆ LC denote the space of all pairs that induce stable line shellings of C.

Problem 3.5.1. Let C be the boundary complex of a d-dimensional polytope P . Describe the
space of stable line shellings Ls

C.
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The geometry of Ls
C is tied to the geometry of realization spaces and hyperplane ar-

rangements, both of which have a long history in algebraic and geometric combinatorics. A
description of the space Ls

C would likely bring the study of such ideas closer to the theory of
interlacing polynomials, and in doing so, could lead to a full answer to Problem 3.4.1 in the
case of cubical polytopes. To do so, we need to see that the space Ls

C is nonempty whenever
C is the boundary complex of a cubical polytope. This is true in the simplest case; i.e., when
C is the boundary of the d-cube.

Example 3.5.1 (The boundary of the d-cube). Consider the geometric realization of the
boundary of the d-dimensional cube as the boundary of [0, 1]d ⊂ Rd. Let ℓ ⊂ Rd be a
general line passing through the interior of [0, 1]d. It follows that ℓ intersects each facet-
defining hyperplane of [0, 1]d at a distinct point, and ordering these points with respect to
an orientation of ℓ yields a line shelling (F1, . . . , F2d) of the facets of [0, 1]d. Let Hi denote
the facet-defining hyperplane of [0, 1]d containing the facet Fi for all i ∈ [2d], and consider
the point qi lying in the hyperplane Hi defining the facet Fi for some i ∈ [2d]. Without
loss of generality, this hyperplane is of the form xj = 0 for some j ∈ [d]. By identifying
the affine subspace of Rd defined by the hyperplane xj = 0 with Rd−1, we see that the
induced arrangement Ai := {Hi ∩Hk : k ∈ [2d] \ {i}} lying in the hyperplane Hi is, up to
reindexing, the hyperplane arrangement A[0,1]d−1 . Since qi does not lie in any facet-defining
hyperplane for a facet Fk of [0, 1]d for k ̸= i, it follows that qi lies in an open region of
Rd−1 \{x ∈ Rd−1 : x ∈ H for some H ∈ A[0,1]d−1}. Since the arrangement A[0,1]d−1 consists of
the hyperplanes xj = 0 and xj = 1 for all j ∈ [d− 1], it follows that this region is either the
interior of [0, 1]d−1 or it is all x ∈ Rd−1 satisfying xk < 0 and xk′ > 1 for the facet-defining
hyperplanes xk = 0 and xk′ = 1 of the tangent cone TF ([0, 1]

d−1) of some face F of [0, 1]d−1.
In the former case the set of visible facets of Fi from qi is empty and the set of covisible
facets is the complete set of facets of Fi. In the latter case, the set of visible facets of Fi

from qi is the set of all facets containing the face F , and the set of covisible facets is their
complement. In either case, the relative complex Ri is stable, and hence, so is the line
shelling (F1, . . . , Fs).

When attempting to generalize Example 3.5.1, we see that a stable line shelling of the
boundary complex C of a d-dimensional polytope P should be a line shelling induced by a
hyperplane arrangement AΣ, for Σ ∈ RC, and a line ℓ ∈ Rd for which the points q1, . . . , qs
are all ‘sufficiently close’ to the complex Σ in the following sense: Note that the hyperplane
arrangement AΣ naturally subdivides Rd into a collection of disjoint connected components.
A region of the arrangement AΣ is a connected component of the complement of the hy-
perplanes in AΣ:

Rd \
⋃

H∈AΣ

H.

We let R(HΣ) denote the collection of all regions of the HΣ. Similarly, given any subset
Y ⊂ [s], we can consider the hyperplane arrangement AY

Σ living in the real-Euclidean space
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⋂
i∈Y Hi ⊂ Rd given by

AY
Σ := {Hj ∩Hi : j ∈ [s] \ Y }.

It follows that AΣ subdivides Rd into the disjoint, connected components

comp(AΣ) :=
⋃

Y⊂[s]

R(AY
Σ).

Since C is the boundary complex of a convex polytope, then for each facet Fi of C, there
is a subset of hyperplanes Yi ⊂ AΣ such that for all H ∈ Yi, the intersection H ∩ Hi is a
facet-defining hyperplane in the affine subspace Hi of the realization σi of the facet Fi of
C. Let Ai denote the hyperplane arrangement {H ∩ Hi : H ∈ Yi} ⊂ H. Since qi ∈ Hi, it
follows that qi is contained in a unique region C(i) ∈ R(Ai). The following proposition notes
that a line shelling of C in which the points qi are sufficiently close to Σ with respect to the
(combinatorial) geometry of the hyperplane arrangement AΣ will be stable.

Proposition 3.5.2. Let C be the boundary complex of a d-dimensional polytope P and let
(F1, . . . , Fs) be a line shelling of C induced by AΣ and a line ℓ ∈ Rd. Then (F1, . . . , Fs) is
stable if, for all i ∈ [s], the closure of the region C(i) ∈ R(Ai) containing the point qi also
contains a point of the geometric realization σi of Fi.

Proof. We work directly with the shelling (σ1, . . . , σs) of the geometric realization Σ of C.
Suppose that (σ1, . . . , σs) is a line shelling induced by ℓ such that, for all i ∈ [s], the closure of
the region C(i) ∈ R(Ai) containing the point qi also contains a point of σi. Notice first that,
since Σ is the boundary complex of a convex polytope QΣ, the facet-defining hyperplanes of
σi are given by a subset {H1, . . . , HM} of the hyperplanes in AΣ \ {Hi} in the sense that

Ai = {G1 := Hi ∩H1, . . . , GM := Hi ∩HM}.

Moreover, since Hi ≃ Rd−1, each hyperplane G ⊂ Ai consists of the set of solutions x ∈ Rd−1

to a linear equation ⟨aG, x⟩ = bG for some aG ∈ Rd−1 and bG ∈ R.
Since (σ1, . . . , σs) is a line shelling it is induced by the ordering

(q1, . . . , qt,∞, qt+1, . . . , qs)

of points in Rd ∪ {∞}.
Let vis(qi) denote the set of facet-defining hyperplanes of σi that define facets visible

from qi, and let covis(qi) denote the set of facet-defining hyperplanes of all covisible facets
from qi.

As noted in Subsection 3.2, a point q lying in a facet σ of σi defined by the hyerplane
G ∈ Ai is visible from qi if and only if qi /∈ Tσ(σi), the tangent cone of σi at σ. Hence, q is
visible from qi if and only if ⟨aG, qi⟩ > bG. It follows that the point qi lies in the region C(i) of
Ai consisting of all points x ∈ Hi satisfying ⟨aG, x⟩ > bG for all G ∈ vis(qi) and ⟨aG, x⟩ < bG
for all G ∈ covis(qi). Therefore, the closure of this region is all x ∈ Hi satisfying ⟨aG, x⟩ ≥ bG
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Figure 3.3: Some examples of (stable) line shellings.

for all G ∈ vis(qi) and ⟨aG, x⟩ ≤ bG for all G ∈ covis(qi). From the inequality description of
C(i) we know that the closure of C(i) contains the face σ of σi defined by ⟨aG, x⟩ ≤ bG for all
G ∈ vis(qi). We claim that for all 1 < i < s, the face σ is nonempty.

To see this, recall that we are assuming that the closure of C(i) contains a point q of σi.
Since q is in the closure of C(i) then ⟨aG, q⟩ ≥ bG for all G ∈ vis(qi). On the other hand,
since q is a point in the convex polytope σi, which is defined as the set of solutions x ∈ Rd

to the system of inequalities ⟨aG, x⟩ ≤ bG for G ∈ Ai, then ⟨aG, q⟩ ≤ bG for all G ∈ vis(qi).
Hence, ⟨aG, q⟩ = bG for all G ∈ vis(qi), and so the face σ is nonempty.

Now, if 1 < i ≤ t, since the facets of σi not included in the relative complex Ri is precisely
the set of visible facets from qi, it follows that

Ri = C(σi) \ C(L([σ, σi]
∗)).

On the other hand, if t < i < s, then the set of facets of σi not included in the relative
complex Ri is precisely the set of covisible facets covis(qi), and so it follows that

Ri = C(σi) \ C(A(L(σi)
∗) \ A([σ, σi]

∗)).

Hence, Ri is stable for all 1 < i < s. Finally, when i = 1 or i = s, the point qi, by
definition of a line shelling, lies in the interior of σi. Hence, the set of visible facets from qi
is empty. Therefore, the relative complex R1 is simply the entire complex C(σ1), and the
relative complex Rs is C(σs) \ C(∂σs). Each of these arises as a reciprocal domain for the
face ∅ of σ1 and σs, respectively. Therefore, for all i ∈ [s], the relative complex Ri is stable,
and we conclude that (F1, . . . , Fs) is a stable line shelling of C.

Example 3.5.2. In Figure 3.3, we see three different lines ℓ1, ℓ2, and ℓ3 in R2 that induce
line shellings of the quadrilateral defined by the given arrangement of facet-defining hyper-
planes. The blue quadrilateral is the polytope QΣ with respect to the embedding Σ of the
boundary complex of the quadrilateral. The four unlabeled lines in each figure constitute
the hyperplane arrangement AΣ. Each of these line shellings is stable because it satisfies the
conditions of Proposition 3.5.2. This can also be seen by Proposition 3.3.2 and the fact that
all 2-dimensional polytopes are simplicial.
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These small examples help us to see some of the intricacies of stable line shellings. The
line shellings given by Figure 3.3 (a) and (c) are seen to be stable since each point qi for
i ∈ {1, 2, 3, 4} lies in the closure of a region of the hyperplane arrangement AΣ containing a
face of σi (the facet of QΣ on the line in AΣ containing the point qi). Hence, each point qi
must also lie in a region of Ai whose closure contains a point of σi, and so stability follows
by Proposition 3.5.2. On the other hand, this same reasoning does not apply when deducing
that the line shelling given by Figure 3.3 (b) is stable. Here, the point q4 lies in the closure of
a region of AΣ that does not contain a point of σ4. This is because the point q4 is separated
from σ4 by the hyperplane that defines the facet σ3. However, this line shelling is still stable
by Proposition 3.5.2, since we do not include the hyperplane H3 ∩ H4 in the arrangement
A4.

Figure 3.3 (a) and (c) show that there are line shellings that can be deduced to be stable
by using the fact that each point qi is contained in the closure of a region of AΣ that also
contains a point of Fi. We can call such line shellings strongly stable , since the shelling can
be deduced to be stable via the global geometry of the arrangement AΣ, without restricting
to the induced arrangements Ai. In fact, reflecting on Example 3.5.1, we see that all line
shellings of the boundary complex of the d-dimensional cube are strongly stable.

In general, the authors hope that the boundary complex C of every cubical polytope
admits a stable line shelling induced by some realization Σ ∈ RC and line ℓ ∈ Rd that is
sufficiently close to Σ, in the sense of Proposition 3.5.2.

Conjecture 3.5.3. The boundary complex of any cubical polytope admits a stable line
shelling.

It would also be of interest to know whether or not the boundary complex of every cubical
or simplicial (or otherwise) polytope admits a strongly stable line shelling.



54

Chapter 4

Inequalities for f∗-vectors of Lattice
Polytopes

For a d-dimensional lattice polytope P ⊂ Rd and a positive integer n, consider its Ehrhart
polynomial ehrP (t), denoting the number of integer lattice points in tP . Similarly to other
combinatorial polynomials, it is useful to express ehrP (n) in different bases; here we consider
two such bases consisting of binomial coefficients:

ehrP (t) =
d∑

k=0

h∗
k

(
t+ d− k

d

)
=

d∑
k=0

f ∗
k

(
t− 1

k

)
. (4.1)

Note that (h∗
0, h

∗
1, . . . , h

∗
d) is the h∗-vector of P described in Section 2.3, and we call

(f ∗
0 , f

∗
1 , . . . , f

∗
d ) the f ∗-vector of P . Recall that Stanley [69] proved that the h∗-vector of

any lattice polytope is nonnegative (whereas the coefficients of ehrP (n) written in the stan-
dard monomial basis can be negative). Breuer [29] proved that the f ∗-vector of any lattice
polytopal complex is nonnegative (whereas the h∗-vector of a complex can have negative
coefficients); his motivation was that various combinatorially-defined polynomials can be re-
alized as Ehrhart polynomials of complexes and so the nonnegativity of the f ∗-vector yields
a strong constraint for these polynomials.

The f ∗- and h∗-vector can also be defined through the Ehrhart series of P :

Ehr(P ; z) := 1 +
∑
t≥1

ehrP (t) z
t =

∑d
k=0 h

∗
k z

k

(1− z)d+1
= 1 +

d∑
k=0

f ∗
k

(
z

1− z

)k+1

.

It is thus sometimes useful to add the definition f ∗
−1 := 1.

The f ∗- and h∗-vectors share the same relation as f - and h-vectors of polytopes/polyhe-
dral complexes, namely

d∑
k=0

h∗
k z

k =
d+1∑
k=0

f ∗
k−1 z

k(1− z)d−k+1 (4.2)
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Figure 4.1: A (regular) unimodular triangulation of the cube [−1, 1]2.

h∗
k =

k−1∑
j=−1

(−1)k−j−1

(
d− j

k − j − 1

)
f ∗
j (4.3)

f ∗
k =

k+1∑
j=0

(
d− j + 1

k − j + 1

)
h∗
j . (4.4)

The (very special) case that P admits a unimodular triangulation yields the strongest
connection between f ∗/h∗-vectors and f/h-vectors: in this case the f ∗/h∗-vector of P equals
the f/h-vector of the triangulation, respectively.

Example 4.0.1. Let P be the 2-dimensional cube [−1, 1]2. The unimodular triangulation
of P shown in Figure 4.1, has f -vector (f0, f1, f2) = (9, 16, 8), as fi counts its i-dimensional
faces. Equivalently,

f ∗(P ) = (9, 16, 8) ,

and one easily checks that (4.1) yields the familiar Ehrhart polynomial ehrP (t) = (2t+1)2.

Example 4.0.2. The f ∗-vector of a d-dimensional unimodular simplex ∆ equals[(
d+ 1

1

)
,

(
d+ 1

2

)
, . . . ,

(
d+ 1

d+ 1

)]
,

coinciding with the f -vector of ∆ considered as a simplicial complex. If we append this
vector by f ∗

−1 = 1, it gives the only instance of a symmetric f ∗-vector of a lattice polytope
P , since the equality f ∗

−1 = f ∗
d implies that h∗

i = 0 for all 1 ≤ i ≤ d.

There has been much research on (typically linear) constraints for the h∗-vector of a given
lattice polytope (see, e.g., [71, 70]). On the other hand, f ∗-vectors seem to be much less
studied, and the goal of this chapter is to rectify that situation. The motivating question is
how close the f ∗-vector of a given lattice polytope is to being unimodal. The main results of
this chapter are joint work with Matthias Beck, Danai Deligeorgaki, and Jerónimo Valencia,
and are also published in [14]. The results are as follows.
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Theorem 4.0.1. Let d ≥ 2 and let P be a d-dimensional lattice polytope. Then

(a) f ∗
0 < f ∗

1 < · · · < f ∗
⌊ d

2⌋−1
≤ f ∗

⌊ d
2⌋
;

(b) f ∗
⌊ 3d

4 ⌋
> f ∗

⌊ 3d
4 ⌋+1

> · · · > f ∗
d ;

(c) f ∗
k ≤ f ∗

d−1−k for 0 ≤ k ≤ (d−3)
2

.

Examples 4.0.1 and 4.0.2 yield cases of polytopes for which the inequalities f ∗
⌊ 3d

4 ⌋−1
<

f ∗
⌊ 3d

4 ⌋
and f ∗

⌊ d
2⌋

> f ∗
⌊ d

2⌋+1
hold, respectively.

We record the following immediate consequence of Theorem 4.0.1.

Corollary 4.0.2. Let P be a d-dimensional lattice polytope. Then for 0 ≤ k ≤ d,

f ∗
k ≥ min{f ∗

0 , f
∗
d} .

Theorem 4.0.3. The f ∗-vector of a d-dimensional lattice polytope, where 1 ≤ d ≤ 13, is
unimodal. On the other hand, there exists a 15-dimensional lattice simplex with nonunimodal
f ∗-vector.

Even though f ∗-vectors are quite different from f -vectors of polytopes, the above results
resemble striking similarities with existing theorems on f -vectors. Namely, Björner [20,
17, 18] proved that the f -vector of a simplicial d-polytope satisfies all inequalities in The-
orem 4.0.1 (with the ∗s removed, and the last coordinate dropped). In fact, Björner also

showed that in the f -analogue of Theorem 4.0.1(b) the decrease starts from ⌊3(d−1)
4

⌋ − 1
instead of ⌊3d

4
⌋, and that the inequalities in Theorem 4.0.1(a) and (b) cannot be further

extended, by constructing a simplicial polytope with f -vector that peaks at fj, for any

⌊d
2
⌋ ≤ j ≤ ⌊3(d−1)

4
⌋ − 1.

Corollary 4.0.2 compares the entries of the f ∗-vector with the minimum between the
first and the last entry. Note that a similar relation for f -vectors of polytopes was recently
proven by Hinman [45], answering a question of Bárány from the 1990s. (Hinman also proved
a stronger result, namely certain lower bounds for the ratios fk

f0
and fk

fd−1
.)

The f -analogue of Theorem 4.0.3 is again older: Björner [20] showed that the f -vector
of any simplicial d-polytope is unimodal for d ≤ 15 (later improved to d ≤ 19 by Eck-
hoff [34]), and he and Lee [16] produced examples of 20-dimensional simplicial polytopes
with nonunimodal f -vectors.

For a special class of polytopes we can increase the range in Theorem 4.0.1(b). A lattice
polytope P is Gorenstein of index g if

• nP contains no interior lattice points for 1 ≤ n < g,

• gP contains a unique interior lattice point, and
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• ehrP (n− g) equals the number of interior lattice points in nP , for n > g.

This is equivalent to P having degree d+ 1− g and a symmetric h∗-vector (with respect to
its degree).

Theorem 4.0.4. Let P be a d-dimensional Gorenstein polytope of index g. Then

f ∗
k−1 > f ∗

k for 1
2

(
d+ 1 +

⌊
d+1−g

2

⌋)
≤ k ≤ d .

Going even further, for a certain class of polytopes we can prove unimodality of the
f ∗-vector, a consequence of the following refinement of Theorem 4.0.1(b) for polytopes with
degree < d

2
.

Theorem 4.0.5. Let P be a d-dimensional lattice polytope with degree ≤ s. Then

f ∗
k−1 > f ∗

k for ⌈d+s
2
⌉ ≤ k ≤ d ,

unless the degree of P is 0, i.e., P is a unimodular simplex with f ∗-vector as in Example 4.0.2.

This theorem implies that lattice d-polytopes of degree s satisfying s2− s− 1 ≤ d
2
have a

unimodal f ∗-vector (see Proposition 4.1.1 below for details). One family with asymptotically
small degree, compared to the dimension, is given by taking iterated pyramids. Given a
polytope P ⊂ Rd, we denote by Pyr(P ) ⊂ Rd+1 the convex hull of P and the (d+ 1)st unit
vector. It is well known that P and Pyr(P ) have the same h∗-vector (ignoring an extra 0),
and so we conclude:

Corollary 4.0.6. If P is any lattice polytope then Pyrn(P ) has unimodal f ∗-vector for
sufficiently large n.

4.1 Proofs

We start with a few warm-up proofs which only use the fact that h∗-vectors are nonnegative.

Proof of Theorem 4.0.1(a). It follows by (4.4) and the nonnegativity of h∗(P ) that, for 1 ≤
k ≤

⌊
d
2

⌋
,

f ∗
k − f ∗

k−1 =
k+1∑
j=0

((
d+ 1− j

k + 1− j

)
−
(
d+ 1− j

k − j

))
h∗
j ≥ 0.

In fact, f ∗
k − f ∗

k−1 is bounded below by
((

d+1
k+1

)
−
(
d+1
k

))
h∗
0 > 0 for 1 ≤ k <

⌊
d
2

⌋
, since

h∗
0 = 1.
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Proof of Theorem 4.0.1(c). For 0 ≤ k ≤ (d−3)
2

, equation (4.4) gives

f ∗
d−1−k − f ∗

k =
d−k∑
j=0

((
d+ 1− j

d− k − j

)
−
(
d+ 1− j

k + 1− j

))
h∗
j

=
d−1−2k∑
j=0

((
d+ 1− j

k + 1

)
−
(
d+ 1− j

k + 1− j

))
h∗
j +

d−k∑
j=d−2k

((
d+ 1− j

d− k − j

)
−
(
d+ 1− j

k + 1− j

))
h∗
j .

We have
(
d+1−j
k+1

)
−
(
d+1−j
k+1−j

)
≥ 0 since k+1− j ≤ k+1 ≤ d+1−j

2
holds for 0 ≤ j ≤ d− 1− 2k.

Similarly,
(
d+1−j
d−k−j

)
−
(
d+1−j
k+1−j

)
≥ 0 holds because k+1−j ≤ d−k−j ≤ d+1−j

2
for all d−2k ≤ j.

Therefore, it follows by the nonnegativity of h∗-vectors that f ∗
d−1−k − f ∗

k ≥ 0.

Proof of Theorem 4.0.5. Since h∗
j = 0 for j ≥ s+ 1, (4.4) gives

f ∗
k−1 − f ∗

k =
s∑

j=0

((
d+ 1− j

k − j

)
−
(
d+ 1− j

k + 1− j

))
h∗
j =

s∑
j=0

2k − d− j

k + 1− j

(
d+ 1− j

k − j

)
h∗
j .

For d+s
2

≤ k ≤ d, we have k + 1 − j > 0 and 2k − d − j > 0 for all j = 0, ..., s − 1, and
k + 1 − j > 0, 2k − d − j ≥ 0 for j = s. Therefore, the claim follows by the nonnegativity
of h∗-vectors and the positivity of h∗

0.

Proposition 4.1.1. Let P be a d-dimensional lattice polytope that has degree at most s for
some positive s. If d ≥ 2s2−2s−2 then the f ∗-vector of P is unimodal with a (not necessarily
”sharp”) peak at f ∗

p , where ⌊d
2
⌋ ≤ p ≤ ⌈d+s

2
⌉ − 1.

Proof. By Theorems 4.0.1(a) and 4.0.5, it suffices to show that f ∗
⌊ d
2
⌋+i

≥ f ∗
⌊ d
2
⌋+i+1

implies

f ∗
⌊ d
2
⌋+i+1

≥ f ∗
⌊ d
2
⌋+i+2

, i.e., that 2f ∗
⌊ d
2
⌋+1+i

− f ∗
⌊ d
2
⌋+2+i

− f ∗
⌊ d
2
⌋+i

≥ 0 for 0 ≤ i ≤ s
2
− 2.

As h∗
j = 0 for j ≥ s+ 1, by (4.4) we can express 2f ∗

⌊ d
2
⌋+1+i

− f ∗
⌊ d
2
⌋+2+i

− f ∗
⌊ d
2
⌋+i

as the sum

s∑
j=0

(
2

(
d+ 1− j

⌊d
2
⌋+ 2− j + i

)
−
(

d+ 1− j

⌊d
2
⌋+ 3− j + i

)
−
(

d+ 1− j

⌊d
2
⌋+ 1− j + i

))
h∗
j

=
s∑

j=0

(
2
(
⌈d
2
⌉ − i

)
⌊d
2
⌋+ 2− j + i

−
(⌈d

2
⌉ − i)(⌈d

2
⌉ − 1− i)

(⌊d
2
⌋+ 2− j + i)(⌊d

2
⌋+ 3− j + i)

− 1

)(
d+ 1− j

⌊d
2
⌋+ 1− j + i

)
h∗
j .

Since d ≥ max{2s2 − 2s− 2, 0} we have that (⌊d
2
⌋+3− j + i)(⌊d

2
⌋+2− j + i) is positive for

j = 0, ..., s and since h∗
j is nonnegative, it remains to show that

2(⌈d
2
⌉ − i)(⌊d

2
⌋+ 3− j + i)− (⌈d

2
⌉ − i)(⌈d

2
⌉ − 1− i)− (⌊d

2
⌋+ 2− j + i)(⌊d

2
⌋+ 3− j + i)

= d− (2j − 1)(⌈d
2
⌉ − ⌊d

2
⌋) + 4i(⌈d

2
⌉ − ⌊d

2
⌋)− 12i+ 4ij − 4i2 − 6 + 5j − j2 (4.5)

=

{
d− 4i2 + 4ij − 12i− j2 + 5j − 6 if d is even,

d− 4i2 + 4ij − 8i− j2 + 3j − 1 if d is odd,
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is nonnegative for 0 ≤ j ≤ s. Indeed, the conditions j ≤ s and i ≤ s
2
− 2 imply that (4.5) is

bounded below by

d− 4i2 − 12i− j2 − 6 ≥ d− 4( s
2
− 2)2 − 12( s

2
− 2)− s2 − 6 = d− 2s2 + 2s+ 2,

which is nonnegative by assumption.

The next proofs use more than just the nonnegativity of h∗-vectors. The first result needs
the following elementary lemma on binomial coefficients.

Lemma 4.1.2. Let j, k, n be positive integers such that k ≤ n+ 1− j. Then∣∣∣∣(nk
)
−
(

n

k − 1

)∣∣∣∣ ≥
∣∣∣∣(n− j

k

)
−
(
n− j

k − 1

)∣∣∣∣
whenever n ̸= 2k − 1.

Proof. It suffices to prove the statement for the cases i) j = 1 and the quantities
(
n
k

)
−
(

n
k−1

)
and

(
n−1
k

)
−
(
n−1
k−1

)
having the same sign, and ii) the point when the signs change, i.e., n = 2k

and j = 2.
To show case i), we simplify∣∣∣∣(nk

)
−
(

n

k − 1

)∣∣∣∣ = (n− 1)!

k!(n− k)!

n

n− k + 1
|n− 2k + 1|

and ∣∣∣∣(n− 1

k

)
−
(
n− 1

k − 1

)∣∣∣∣ =
(n− 1)!

k!(n− k)!
|n− 2k| .

If n ≥ 2k then the inequalities

n

n− (k − 1)
(n− 2k + 1) ≥ n− 2k + 1 > n− 2k

imply that ∣∣∣∣(nk
)
−
(

n

k − 1

)∣∣∣∣ >

∣∣∣∣(n− 1

k

)
−
(
n− 1

k − 1

)∣∣∣∣ . (4.6)

If n ≤ 2k − 2, we have k(−2k + 2 + n) ≤ 0 which is equivalent to

n

n− (k − 1)
(2k − n− 1) ≥ 2k − n

and so again (4.6) holds as a weak inequality.
To show case ii), we compute∣∣∣∣(2kk

)
−
(

2k

k − 1

)∣∣∣∣ =
(2k)!

k!(k + 1)!
=

(2k − 2)!

k!(k − 1)!

2k(2k − 1)

k(k + 1)
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and ∣∣∣∣(2k − 2

k

)
−
(
2k − 2

k − 1

)∣∣∣∣ =
(2k − 2)!

k!(k − 1)!
.

Since 2(2k − 1) ≥ (k + 1) for any positive k, we conclude that∣∣∣∣(2kk
)
−
(

2k

k − 1

)∣∣∣∣ ≥
∣∣∣∣(2k − 2

k

)
−
(
2k − 2

k − 1

)∣∣∣∣ .
Proof of Theorem 4.0.1(b). The inequality f ∗

d−1 > f ∗
d holds by Theorem 4.0.5. Now, let⌊

3d
4

⌋
+ 1 ≤ k < d. By (4.4),

f ∗
k−1 − f ∗

k =
k+1∑
j=0

((
d+ 1− j

k − j

)
−
(
d+ 1− j

k + 1− j

))
h∗
j . (4.7)

The difference
(
d+1−j
k−j

)
−
(
d+1−j
k+1−j

)
is nonnegative whenever k − j ≥ ⌊d+1−j

2
⌋ and negative

otherwise, i.e., the difference is nonnegative whenever j ≤ 2k − d and negative whenever
j > 2k − d. Since 2d− 2k < 2k + 1− d for ⌊3d

4
⌋+ 1 ≤ k, from (4.7) we obtain

f ∗
k−1 − f ∗

k ≥
2d−2k∑
j=0

((
d+ 1− j

k − j

)
−
(
d+ 1− j

k + 1− j

))
h∗
j (4.8)

+
k+1∑

j=2k+1−d

((
d+ 1− j

k − j

)
−
(
d+ 1− j

k + 1− j

))
h∗
j (4.9)

where the differences appearing in (4.8) are nonnegative and the ones in (4.9) are negative.
Our aim is to compare the sums in (4.8) and (4.9) to conclude that f ∗

k−1 − f ∗
k is positive.

Using standard identities for binomial coefficients, the right hand-side of (4.8) equals

2d−2k∑
j=0

(
2d−2k−1∑

l=j

((
d− l

k − l

)
−
(

d− l

k + 1− l

))
+

((
2k − d+ 1

3k − 2d

)
−
(
2k − d+ 1

3k − 2d+ 1

)))
h∗
j

=
2d−2k−1∑

l=0

(((
d− l

k − l

)
−
(

d− l

k + 1− l

)) 2d−2k−1−l∑
j=0

h∗
j

)

+

((
2k − d+ 1

3k − 2d

)
−
(
2k − d+ 1

3k − 2d+ 1

)) 2d−2k∑
j=0

h∗
j ,

hence we conclude that right hand-side of (4.8) is bounded below by

((
d

k

)
−
(

d

k + 1

))
h∗
0 +

((
2k − d+ 1

3k − 2d

)
−
(
2k − d+ 1

3k − 2d+ 1

)) 2d−2k∑
j=0

h∗
j

>

((
2k − d+ 1

3k − 2d

)
−
(
2k − d+ 1

3k − 2d+ 1

)) 2d−2k∑
j=0

h∗
j (4.10)
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since
(
d
k

)
−
(

d
k+1

)
> 0 for

⌊
3d
4

⌋
+ 1 ≤ k < d, and h∗

0 = 1, h∗
j ≥ 0 for j = 1, ..., 2d− 2k − 1.

On the other hand, for the differences appearing in (4.9), using that 2d − 2k < j and
j ≤ k + 1, it follows by Lemma 4.1.2 that∣∣∣∣(d+ 1− (2d− 2k)

d+ 1− k

)
−
(
d+ 1− (2d− 2k)

d− k

)∣∣∣∣ ≥ ∣∣∣∣(d+ 1− j

d+ 1− k

)
−
(
d+ 1− j

d− k

)∣∣∣∣ ,
i.e., ∣∣∣∣(2k − d+ 1

3k − 2d

)
−
(
2k − d+ 1

3k − 2d+ 1

)∣∣∣∣ ≥ ∣∣∣∣(d+ 1− j

k − j

)
−
(
d+ 1− j

k + 1− j

)∣∣∣∣ .
Hence for j ≥ 2k + 1− d,

−
((

2k − d+ 1

3k − 2d

)
−
(
2k − d+ 1

3k − 2d+ 1

))
≤
(
d+ 1− j

k − j

)
−
(
d+ 1− j

k + 1− j

)
.

Since both −
(
d+1−j
k−j

)
+
(
d+1−j
k+1−j

)
and h∗

j are nonnegative for j ≥ 2k + 1− d, the sum in (4.9)
is bounded below by

−
((

2k − d+ 1

3k − 2d

)
−
(
2k − d+ 1

3k − 2d+ 1

)) d∑
j=2k+1−d

h∗
j . (4.11)

Now (4.10) and (4.11) yield

f ∗
k−1 − f ∗

k >

((
2k − d+ 1

3k − 2d

)
−
(
2k − d+ 1

3k − 2d+ 1

))(2d−2k∑
j=0

h∗
j −

d∑
j=2k+1−d

h∗
j

)
.

Hibi [42] showed that the inequality

m+1∑
j=0

h∗
j ≥

d∑
j=d−m

h∗
j (4.12)

holds for m = 0, ..., ⌊d
2
⌋ − 1. Since 2d− 2k− 1 ≤ ⌊d

2
⌋ − 1 for

⌊
3d
4

⌋
+ 1 ≤ k, we can use (4.12)

to finally obtain
f ∗
k−1 − f ∗

k > 0 .

Proof of Theorem 4.0.3. If d = 1 or 2, there is nothing to prove.
If 3 ≤ d ≤ 6, then by Theorem 4.0.1, either

f ∗
0 ≤ · · · ≤ f ∗

⌊ d
2⌋ ≥ f ∗

⌊ 3d
4 ⌋ ≥ · · · ≥ f ∗

d

or
f ∗
0 ≤ · · · ≤ f ∗

⌊ d
2⌋ ≤ f ∗

⌊ 3d
4 ⌋ ≥ · · · ≥ f ∗

d .
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For 7 ≤ d ≤ 13, we will show that if f ∗
i ≥ f ∗

i+1, then f ∗
i+1 ≥ f ∗

i+2, for all
⌊
d
2

⌋
≤ i ≤

⌊
3d
4

⌋
−2.

By Theorem 4.0.1, this will imply the unimodality of (f ∗
0 , f

∗
1 , ..., f

∗
d ).

We will examine each value of d separately.
Suppose that d = 7 and f ∗

3 ≥ f ∗
4 . Then, by (4.4), we compute

2f ∗
4 − f ∗

3 − f ∗
5 = 14h∗

0 +14h∗
1 +10h∗

2 +5h∗
3 + h∗

4 − h∗
5 − h∗

6 > h∗
0 + h∗

1 + h∗
2 + h∗

3 − h∗
5 − h∗

6 − h∗
7,

which is always nonnegative by (4.12). Hence f ∗
4 − f ∗

5 ≥ f ∗
3 − f ∗

4 .
Likewise, for d = 8, (4.12) implies that

2f ∗
5−f ∗

4−f ∗
6 = 6h∗

0+14h∗
1+14h∗

2+10h∗
3+5h∗

4+h∗
5−h∗

6−h∗
7 > h∗

0+h∗
1+h∗

2+h∗
3−h∗

6−h∗
7−h∗

8 ≥ 0.

For d = 9, we similarly get

f ∗
5 − f ∗

6 − 2(f ∗
4 − f ∗

5 ) = 6h∗
0 + 42h∗

1 + 42h∗
2 + 28h∗

3 + 13h∗
4 + 3h∗

5 − h∗
6 − h∗

7 >

h∗
0 + h∗

1 + h∗
2 + h∗

3 + h∗
4 − h∗

6 − h∗
7 − h∗

8 − h∗
9 ≥ 0

by (4.12).
A similar argument works for d = 10. By (4.12),

2f ∗
6 − f ∗

5 − f ∗
7 = 33h∗

0 + 48h∗
1 + 42h∗

2 + 28h∗
3 + 14h∗

4 + 4h∗
5 − h∗

6 − 2h∗
7 − h∗

8 >

2(h∗
0 + h∗

1 + h∗
2 + h∗

3 + h∗
4 + h∗

5 − h∗
6 − h∗

7 − h∗
8 − h∗

9 − h∗
10) ≥ 0.

For d = 11, we need to consider two values: i = 5 and i = 6. The claim follows again by
(4.12), since

f ∗
6 − f ∗

7 − 2(f ∗
5 − f ∗

6 ) = 33h∗
0 + 132h∗

1 + 126h∗
2 + 84h∗

3 + 42h∗
4 + 14h∗

5 + h∗
6 − 2h∗

7 − h∗
8 >

2(h∗
0 + h∗

1 + h∗
2 + h∗

3 + h∗
4 + h∗

5 − h∗
7 − h∗

8 − h∗
9 − h∗

10 − h∗
11) ≥ 0,

and

f ∗
7 − f ∗

8 − 4

5
(f ∗

6 − f ∗
7 ) > 3(h∗

0 + h∗
1 + h∗

2 + h∗
3 + h∗

4 + h∗
5 − h∗

7 − h∗
8 − h∗

9 − h∗
10 − h∗

11) ≥ 0.

For d = 12, there are also two cases: i = 6 and i = 7. Using (4.12), it follows that

f ∗
7 − f ∗

8 − 5

4
(f ∗

6 − f ∗
7 ) >

3(h∗
0 + h∗

1 + h∗
2 + h∗

3 + h∗
4 + h∗

5 + h∗
6 − h∗

7 − h∗
8 − h∗

9 − h∗
10 − h∗

11 − h∗
12) ≥ 0,

and

f ∗
8 − f ∗

9 − 1

2
(f ∗

7 − f ∗
8 ) >

3(h∗
0 + h∗

1 + h∗
2 + h∗

3 + h∗
4 + h∗

5 + h∗
6 − h∗

7 − h∗
8 − h∗

9 − h∗
10 − h∗

11 − h∗
12) ≥ 0.
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For d = 13, we employ a stronger form of (4.12). The expression

f ∗
7 − f ∗

8 − 7

3
(f ∗

6 − f ∗
7 ) ≥

3(h∗
1 + h∗

2 + h∗
3 + h∗

4 + h∗
5 + h∗

6 − h∗
7 − h∗

8 − h∗
9 − h∗

10 − h∗
11 − h∗

12 − h∗
13)

is nonnegative by Theorem (6) in [71].
Similarly, using Theorem (6) in [71] we have

2f ∗
8 − f ∗

7 − f ∗
9 ≥

4(h∗
1 + h∗

2 + h∗
3 + h∗

4 + h∗
5 + h∗

6 − h∗
7 − h∗

8 − h∗
9 − h∗

10 − h∗
11 − h∗

12 − h∗
13) ≥ 0.

To construct a polytope with nonunimodal f ∗-vector, we employ a family of simplices
introduced by Higashitani [44]. Concretely, denote the jth unit vector by ej and let

∆w := conv
{
0, e1, e2, ..., e14, w

}
where

w := (1, 1, . . . , 1︸ ︷︷ ︸
7

, 131, 131, . . . , 131︸ ︷︷ ︸
7

, 132) .

It has h∗-vector
(1, 0, 0, . . . , 0︸ ︷︷ ︸

7

, 131, 0, 0, . . . , 0︸ ︷︷ ︸
7

)

and, via (4.4), f ∗-vector

(16, 120, 560, 1820, 4368, 8008, 11440, 13001,

12488, 11676, 11704, 10990, 7896, 3788, 1064, 132) .

Corollary 4.1.3. Every lattice polytope of degree at most 5 has unimodal f ∗-vector.

Proof. Let P be a d-dimensional lattice polytope of degree at most 5. We know from Theorem
4.0.3 that f ∗ is unimodal when d ≤ 13.

Suppose that d ≥ 14. The proof is similar to the proof of Proposition 4.1.1, but we need
to be a bit more precise with bounds. By Theorems 4.0.1(a) and 4.0.5, it suffices to show
that f ∗

⌊ d
2
⌋+i

≥ f ∗
⌊ d
2
⌋+i+1

implies f ∗
⌊ d
2
⌋+i+1

≥ f ∗
⌊ d
2
⌋+i+2

, for i = 0, ..., ⌈d+5
2
⌉ − ⌊d

2
⌋ − 3. Notice

that ⌈d+5
2
⌉ = ⌊d

2
⌋ + ⌈5

2
⌉, hence i = 0. Arguing as in the proof of Proposition 4.1.1, we can

reduce the proof to showing that the expression in (4.5) in Proposition 4.1.1 is nonnegative
for 0 ≤ j ≤ 5 and i = 0, i.e., that

d− (2j − 1)

(⌈
d

2

⌉
−
⌊
d

2

⌋)
− 6 + j(5− j) ≥ 0 . (4.13)
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For 0 ≤ j ≤ s, we have

d− (2j − 1)

(⌈
d

2

⌉
−
⌊
d

2

⌋)
− 6 + j(5− j) ≥ d− 15 ,

hence (4.13) holds if d ≥ 15. Finally, if d = 14 then (4.13) holds because

d− (2j − 1)

(⌈
d

2

⌉
−
⌊
d

2

⌋)
− 6 + j(5− j) ≥ d− 6 .

Proof of Theorem 4.0.4. Let s := d+1−g. We first consider the case that s is odd; the case
s even will be similar. Since h∗

j = 0 for j > s and h∗
j = h∗

s−j,

f ∗
k−1 − f ∗

k =
s∑

j=0

((
d− j + 1

k − j

)
−
(
d− j + 1

k − j + 1

))
h∗
j

=

⌊ s
2
⌋∑

j=0

((
d− j + 1

k − j

)
−
(
d− j + 1

k − j + 1

))
h∗
j +

s∑
j=⌊ s

2
⌋+1

((
d− j + 1

k − j

)
−
(
d− j + 1

k − j + 1

))
h∗
j

=

⌊ s
2
⌋∑

j=0

((
d− j + 1

k − j

)
−
(
d− j + 1

k − j + 1

)
+

(
d− s+ j + 1

k − s+ j

)
−
(
d− s+ j + 1

k − s+ j + 1

))
h∗
j .

Because we assume k ≥ 1
2
(d+ 1 + ⌊ s

2
⌋),(

d− j + 1

k − j

)
−
(
d− j + 1

k − j + 1

)
> 0

for 0 ≤ j ≤ ⌊ s
2
⌋. The inequality(

d− j + 1

k − j

)
−
(
d− j + 1

k − j + 1

)
+

(
d− s+ j + 1

k − s+ j

)
−
(
d− s+ j + 1

k − s+ j + 1

)
> 0

follows directly if
(
d−s+j+1
k−s+j

)
−
(
d−s+j+1
k−s+j+1

)
≥ 0 or k − s + j + 1 < 0. Otherwise, Lemma 4.1.2

implies that, for the same range of j,(
d− j + 1

k − j

)
−
(
d− j + 1

k − j + 1

)
+

(
d− s+ j + 1

k − s+ j

)
−
(
d− s+ j + 1

k − s+ j + 1

)
≥ 0 .

In fact, the last inequality is strict for k ≥ 1
2
(d+1+⌊ s

2
⌋), as seen in the proof of Lemma 4.1.2.

Finally we use that h∗
j ≥ 0 and h∗

0 = 1 to deduce that f ∗
k−1 − f ∗

k > 0.
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The computations in the case s even is very similar. Now we write

f ∗
k−1 − f ∗

k =
s∑

j=0

((
d− j + 1

k − j

)
−
(
d− j + 1

k − j + 1

))
h∗
j

=

s
2
−1∑

j=0

((
d− j + 1

k − j

)
−
(
d− j + 1

k − j + 1

)
+

(
d− s+ j + 1

k − s+ j

)
−
(
d− s+ j + 1

k − s+ j + 1

))
h∗
j

+

((
d− s

2
+ 1

k − s
2

)
−
(
d− s

2
+ 1

k − s
2
+ 1

))
h∗

s
2

and use the same argumentation as in the case s odd.

4.2 Concluding Remarks

There are many open questions surrounding f ∗-vectors, for example, those inspired by anal-
ogous studies of h∗-vectors. We conclude with a few open questions which are natural
followups to the results presented in this chapter.

The techniques in the proof of Theorem 4.0.3 do not offer much insight in the case of
14-dimensional lattice polytopes as there are candidates for f ∗-vectors with corresponding h∗-
vectors that satisfy all inequalities discussed in [71]. It is unknown though if such polytopes
exist.

Higashitani [44, Theorem 1.1] provided examples of d-dimensional polytopes with nonuni-
modal h∗-vector for all d ≥ 3. Therefore, by Theorem 4.0.3 we have examples of polytopes
that have such a h∗-vector but their f ∗-vector is unimodal. It would be interesting to know
if the opposite can be true, that is, if there exist polytopes with unimodal h∗-vector and
nonunimodal f ∗-vector. By Corollary 4.1.3, such polytopes would need to have degree at
least 6.

Whenever we are able to show that a combinatorial polynomial is unimodal, it is natural
to ask whether the polynomial satisfies stronger properties, such as log concavity or real-
rootedness. It would be interesting if one could extend, e.g., Proposition 4.1.1 along these
lines.

Finally, starting with Stapledon’s work [71], there has been much recent attention to
symmetric decompositions of h- and h∗-polynomials; see, e.g., [7, 9] and, in particular, [25]
where analogous decompositions for f -vectors are discussed. We believe this line of research
is worthy of attention with regards to understanding f ∗-vectors and the inequalities that
hold among their coefficients.
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Chapter 5

Signed Poset Polytopes

5.1 Introduction

In the seminal paper [67], Stanley introduced two geometric incarnations of a given finite
partially ordered set (poset) Π:

Definition 5.1.1. The order polytope of Π is given by

O(Π) :=
{
x ∈ RΠ : 0 ≤ xp ≤ 1 for all p ∈ Π and xa ≤ xb when a ≤Π b

}
.

Definition 5.1.2. The chain polytope of Π is given by

C(Π) := {x ∈ RΠ : xp ≥ 0 for all p ∈ Π and xc1 + · · ·+ xck ≤ 1

for every chain c1 <Π · · · <Π ck}.

There is also a natural unbounded conical analogue of an order polytope:

Definition 5.1.3. The order cone of Π is given by

K(Π) :=
{
x ∈ RΠ : 0 ≤ xp for all p ∈ Π and xa ≤ xb when a ≤Π b

}
.

These polyhedra contain much information of the given poset, e.g., about its filters,
chains, and linear extensions. Conversely, order polytopes (and, to a lesser extent, chain
polytopes) have given a fertile ground in polyhedral and discrete geometry as a class of 0/1-
polytopes with many, sometimes extreme, at other times only conjectured, properties; see,
e.g., [13, Chapter 6].

It is a short step (which we will detail in Section 5.2 below) to think about a given partial
order on [n] := {1, 2, . . . , n} as a certain subset of the type-A root system An := {ei − ej :
1 ≤ i < j ≤ n}, where ej is the jth unit vector in Rn. Here we need the notion of the
positive linear closure of a subset of a root system:

Definition 5.1.4. Let Φ be a root system. For a subset S ⊂ Φ, let S
PLC

be the set of
positive linear combinations of elements in S.
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In [58], Reiner generalised the Coxeter description of a classical poset to type B and
named these objects signed posets.

Definition 5.1.5. Let Bn be the root system {±ei : 1 ≤ i ≤ n}∪{±ei±ej : 1 ≤ i < j ≤ n}.
A signed poset P (on n elements) is a subset P ⊂ Bn satisfying

1. α ∈ P implies −α ̸∈ P ;

2. P
PLC

= P .

Reiner proved several type-B analogues of classical posets results, e.g., on order ide-
als, permutation statistics, and P -partitions. While [58] has given rise to further work in
algebraic combinatorics, the analogous polyhedral constructions seem to not have been in-
troduced/studied. (An exception of sorts is [74], and we indicate its relation to the present
article below.) Our goal is to remedy this situation and explore the geometry of signed
posets. We define order polytopes and order cones for signed posets, modeled after the
Coxeter-group descriptions of these objects for classical posets.

Definition 5.1.6. Let P be a signed poset on [n]. Then

KP := {x ∈ Rn : ⟨α, x⟩ ≥ 0 for all α ∈ P}

and
OP := {x ∈ Rn : ⟨α, x⟩ ≥ 0 for all α ∈ P} ∩ [−1, 1]n.

In Section 5.2 we give detailed connections between (signed) posets, Coxeter groups,
bidirected graphs, permutation statistics, and the resulting polyhedral objects. Section 5.3
contains convex-hull and halfspace description of signed order polytopes, as well as canonical
triangulations. In Section 5.4 we compute the Ehrhart h∗-polynomial of a signed polytope,
encoding the integer-point structure in dilates of the polytope. Analogous to classical posets,
this is related to permutation statistics (now of type B). Section 5.5 gives a characterization
of signed order polytopes that are Gorenstein; as a consequence these polytopes have a
symmetric and unimodal h∗-polynomial. Finally, in Section 5.6 we propose one definition of
a signed chain polytope and study its properties, giving yet another new class of Gorenstein
polytopes.

5.2 Signed Posets, Their Cones, and Their Polytopes

We start by detailing the interpretation of a poset in terms of type-A root systems, as
introduced by Reiner [58].

Proposition 5.2.1. Let f be the following map from the set of posets on [n] to subsets of
An:

f(Π) := {ej − ei : i <Π j}
Then f gives a bijection between partial orders of [n] and subsets P ⊆ An satisfying
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(1) α ∈ P implies −α ̸∈ P ;

(2) P
PLC

= P .

The first property comes from the antisymmetry property of a poset, and the second
from the transitivity property.

Remark 5.2.1. In several works, including [58], the map from posets to subsets of An is
defined as f(Π) = {ei−ej : i <Π j}. We switched the direction of the inequality to make our
upcoming description of order cones consistent with the description of P -partitions found
in [58].

Classically-defined order cones and order polytopes can be reformulated via the Coxeter
group description of the poset. Let Π be a poset and recall that f(Π) = {ej − ei : i <Π j}.
Then

K(Π) =
{
x ∈ RΠ

≥0 : ⟨α, x⟩ ≥ 0 for all α ∈ f(Π)
}

and
O(Π) =

{
x ∈ RΠ

≥0 : ⟨α, x⟩ ≥ 0 for all α ∈ f(Π)
}
∩ [0, 1]Π.

We often visually view signed posets as bi-directed graphs, using the definitions found in
[75].

Definition 5.2.1. Let Γ = (V,E) be a graph. The incidence set I(Γ) of Γ consists of all
pairs (e, v) for v ∈ e.

Definition 5.2.2. A bidirected graph is a graph Γ together with a bidirection σ, which
is defined as any map I(Γ) → {+,−}.

We view a signed poset P on [n] as a bidirected graph with vertex set [n]: the elements
of P are the edges of the bidirected graph, and the bidirection σ is defined so that

• ej corresponds to a loop e on j with σ(e, j) = +,

• −ej corresponds to a loop e on j with σ(e, j) = −,

• ei + ej corresponds to an edge e = ij with σ(e, i) = σ(e, j) = +,

• −ei − ej corresponds to an edge e = ij with σ(e, i) = σ(e, j) = −,

• ei − ej corresponds to an edge e = ij with σ(e, i) = + and σ(e, j) = −, and

• −ei + ej corresponds to an edge e = ij with σ(e, i) = − and σ(e, j) = +.

Example 5.2.1. Below, we list a collection of signed posets on 2 elements:

• P = {e1, e2, e1 + e2}
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• P = {}

• P = {e2}

• P = {e1 + e2,−e1 + e2, e1, e2}

• P = {−e1 + e2}

• P = {−e1 + e2, e1 + e2, e2}

• P = {e2, e1 + e2}

The bidirected graph representations of these signed posets is given in Figure 5.1.

21+ +
+ +

21

21 +

21+ +
+ +

- +

21
+-

21 +
+ +

- +

21 +
+ +

Figure 5.1: A collection of bidirected graph representations of signed posets on 2 elements.

Example 5.2.2. The left image in Figure 5.2 shows a bidirected graph representing the
signed poset P = {e1+ e2,−e1+ e2, e2}. A discussion in [58, p. 329] states that every signed
poset has a unique minimal representation, i.e., a minimal subset whose positive linear
closure is the whole signed poset. However, finding this minimal representation is not as
straightforward as finding the cover relations of a classical poset. The minimal representation
of P is shown in the right image in Figure 5.2.

Reiner also gave a notion of homomorphism of signed posets in [58]. Before we discuss
this definition, we establish some facts and definitions pertaining to SB

n , mostly following
the notation set in [11].

Definition 5.2.3. A signed permutation on [n] is a bijection ω on {±1,±2, . . . ,±n} such
that ω(−i) = −ω(i) for all i ∈ [n]. We refer to the group of all such bijections as SB

n , the
signed permutation group on [n], where the group operation is composition.
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1 2
+

+_ +

+
1 2
+

+_
+

+

Figure 5.2: The left hand side shows the bidiricted graph representation of P = {−e1 +
e2, e1 + e2, e2}. The right hand side indicates that the unique minimal representation of P
is {−e1 + e2, e1 + e2}. Since e2 =

1
2
(−e1 + e2) +

1
2
(e1 + e2), we see that e2 is in the positive

linear closure of the other two elements, and thus is not in the minimal representation of
P . This is indicated on the right hand side by using a dotted loop instead of a solid loop to
represent e2.

We will later use the notation ω = (π, ϵ) where π ∈ Sn is defined by πi := |ω(i)| and
ϵ ∈ {1,−1}n is defined via ϵi := sign(ω(i)). We will also use the following fact.

Proposition 5.2.2. The set {s1, . . . , sn−1, s0} generates SB
n , where si := [1, . . . , i − 1, i +

1, i, . . . , n] for i ∈ [n− 1] and s0 := [−1, 2, . . . , n]

The elements of SB
n have a natural action on the type-B root system.

Definition 5.2.4. The elements of SB
n have a linear action on Bn generated as follows, where

i, j ∈ [n]. If ω(i) = j, then ωei = ej. If ω(i) = −j, then ωei = −ej.

Definition 5.2.5. Let P1 and P2 be signed posets on [n]. Then P1 and P2 are isomorphic
if there exists ω ∈ SB

n such that ωP1 = P2.

Example 5.2.3. We see from Figure 5.3 that there are many more combinatorial types of
order polytopes in the signed poset setting than in the classical poset setting, even in two
dimensions. The order polytopes shown come from the following signed posets:

(A) P = {e1, e2, e1 + e2}

(B) P = {}

(C) P = {e2}

(D) P = {e1 + e2,−e1 + e2, e1, e2}

(E) P = {−e1 + e2}

(F) P = {−e1 + e2, e1 + e2, e2}

(G) P = {e2, e1 + e2}



CHAPTER 5. SIGNED POSET POLYTOPES 71

The polytope labeled (F) is the order polytope of the signed poset illustrated in Figure 5.2.
Note that the supporting hyperplanes of this polytope are given by x2 = 1 and ⟨α, x⟩ = 0,
where α is an element of the unique minimal representation described in Example 1.6. We
will generalize this observation below‘.

A

B

C

D

E

F

G

Figure 5.3: Some order polytopes for signed posets on two elements.

We note that our geometric constructions play nicely with Reiner’s definition of signed
poset isomorphism.

Definition 5.2.6. Two lattice polytopes Q and Q′ are unimodularly equivalent if there
is an affine lattice isomorphism of the ambient lattices mapping Q′ onto Q.

Proposition 5.2.3. Suppose P and P ′ are isomorphic signed posets on [n]. Then OP and
O′

P are unimodularly equivalent.

Proof. Since P ′ is isomorphic to P , then P ′ = ωP for some ω ∈ SB
n . By Proposition 5.2.2,

it suffices to verify Proposition 5.2.3 for the cases in which ω is equal to the generators
si = [1, . . . , i− 1, i+ 1, i, . . . , n], and s0 = [−1, 2, . . . , n].

Suppose ω = si for i ∈ [n− 1]. Then

OP = {x ∈ Rn : ⟨α, x⟩ ≥ 0 for all α ∈ P} ∩ [−1, 1]n
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and
O′

P = {x ∈ Rn : ⟨siα, x⟩ ≥ 0 for all α ∈ P} ∩ [−1, 1]n.

From this description, we see that the hyperplanes defining O′
P are reflections of the hyper-

planes defining OP about the hyperplane xi = xi+1 (since the cube [−1, 1]n is symmetric
about this hyperplane). This is an affine lattice isomorphism, so OP and O′

P are unimodu-
larly equivalent.

Similarly, for ω = s0, the hyperplanes defining O′
P are reflections of the hyperplanes

defining OP about the hyperplane x1 = 0, which is again an affine lattice isomorphism.

We note that the order cone of a classical poset is always pointed. This is not the case
for order cones of signed posets. This makes it so that one cannot always write down a
rational generating function for the integer point transform of such an order cone. However,
we can construct a pointed cone encoding the same information by homogenizing the order
polytope, defined below following, e.g., [13]. As is the case for classical posets, the order
polytope is related to the order cone of a signed poset as follows:

Definition 5.2.7. Let Q be a polytope in Rn. The homogenization of Q is given by

Hom(Q) :=
{
(x, t) ∈ Rn+1 : t ∈ R≥0, x ∈ tQ

}
.

Proposition 5.2.4. For a signed poset P with n elements, hom(OP ) = KP̂ , where P̂ is
given by P ∪ {en+1 ± ei : 1 ≤ i ≤ n}.

Proof. Both hom(OP ) and KP̂ are given by{
(x, t) ∈ Rn+1 : −t ≤ xi ≤ t for all i ∈ [n] and ⟨α,x⟩ ≤ 0 for all α ∈ P

}
.

We now show that KP (and thus OP ) is full dimensional:

Proposition 5.2.5. Let P be a signed poset on [n]. Then dim(KP ) = n.

Proof. We prove that we can construct a point ϕ : [n] → R in the interior of KP . We argue
inductively on n. The base case n = 1 holds, since the order cone is either the non-negative
ray, the non-positive ray, or R.

Now suppose we have a signed poset P on [n] with n ≥ 2. Let P ′ be the signed poset on
[n − 1] obtained from restricting P to the set {±ei : 1 ≤ i ≤ n − 1} ∪ {±ei ± ej : 1 ≤ i <
j ≤ n− 1}. By our inductive hypothesis, there exists a point ϕ′ : [n− 1] → R in the interior
of K′

P . Our strategy is to show that we can extend ϕ′ to a point ϕ in the interior of KP . We
first let ϕ(i) = ϕ′(i) for 1 ≤ i ≤ n − 1. We now need to show that there exists a choice of
ϕ(n) such that ϕ is in the interior of KP . To make the following equations easier to look at,
let ϕ(n) = x.

The only way in which there is no viable choice for x is if the hyperplanes defining KP

together with the choice of ϕ′ give rise to inequalities of the form a < x < b for some a ≥ b.
We first list the ways that we could get a restriction of the form x > a:
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(i) Suppose en − ej ∈ P where j ̸= n. Then ϕ ∈ K◦
P implies x > ϕ(j).

(ii) Suppose en + ej ∈ P where j ̸= n. Then ϕ ∈ K◦
P implies x > −ϕ(j).

(iii) Suppose en ∈ P . Then ϕ ∈ K◦
P implies x > 0.

We next list the ways that we could get a restriction of the form x < b.

(iv) Suppose −en + ek ∈ P where k ̸= n. Then ϕ ∈ K◦
P implies x < ϕ(k).

(v) Suppose −en − ek ∈ P where k ̸= n. Then ϕ ∈ K◦
P implies x < −ϕ(k).

(vi) Suppose −en ∈ P . Then ϕ ∈ K◦
P implies x < 0.

We now show that in all cases in which we have a restriction of the form x < b and a
restriction of the form x > a, we get that a < b. (And thus, there is a solution for x).

Case 1: We have situations (i) and (iv) above and thus the restriction ϕ(j) < x < ϕ(k). Since
en − ej,−en + ek ∈ P , we know that ek − ej is in P and P ′. Now ϕ′ ∈ K′◦

P implies
ϕ(j) < ϕ(k).

Case 2: We have situations (i) and (v), and thus ϕ(j) < x < −ϕ(k). Since en−ej,−en−ek ∈ P ,
we know that −ej − ek is in both P and P ′. Since ϕ′ was chosen to be in K′◦

P , we have
ϕ(j) < −ϕ(k).

Case 3: We have the situations (i) and (vi) and thus ϕ(j) < x < 0. Since en − ej,−en ∈ P , we
know that −ej ∈ P, P ′ and so ϕ(j) < 0.

Case 4: The arguments for the situations (ii) and (iv), (ii) and (v), (ii) and (vi), (iii) and (iv),
(iii) and (v) are similar as the previous three cases.

Case 5: We have the situations (iii) and (vi). This would imply that en,−en ∈ P , which
violates the asymmetry property of a signed poset.

Thus, in all viable cases it is possible to choose a value of ϕ(n) so that ϕ ∈ KPa
◦.

The map ϕ(x) constructed above can be modified to give a signed permutation in the
Jordan–Hölder set of P , which will be necessary below when we describe triangulations
of KP .

Definition 5.2.8. Let P be a signed poset on [n]. The Jordan–Hölder set JH(P ) of P
is the set of signed permutations ω ∈ SB

n such that ω is order-preserving, that is, ⟨ω, α⟩ ≥ 0
for all α ∈ P , where we think of ω as the point (ω1, . . . , ωn) ∈ Rn.
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Remark 5.2.2. Reiner gives a definition of Jordan–Hölder set in [58] that is in the same
spirit, but slightly different to the one here. He defines the Jordan–Hölder set of a signed
poset P on [n] as the set of all σ ∈ Bn such that α ∈ σB+

n for all α ∈ P . Here, B+
n refers

to the set {ei : 1 ≤ i ≤ n} ∪ {ei ± ej : 1 ≤ i ≤ j ≤ n}, the positive roots of Bn. Our
definition JH(P ) can be rewritten similarly, as the set of all σ ∈ Bn such that α ∈ σS,
where S = {ei : 1 ≤ i ≤ n} ∪ {ei ± ej : 1 ≤ j ≤ i ≤ n} . The difference between our
definition and Reiner’s is analogous to the slight differences in our early definitions discussed
in Remark 5.2.1.

To get from the point ϕ described in the proof of Proposition 5.2.4 to the corresponding
signed permutation ω ∈ JH(P ), do the following: Consider the coordinates of ϕ and deter-
mine which one has the highest absolute value. Replace this one with n or −n, corresponding
to the sign of this coordinate. Repeat with the remaining coordinates, this time replacing
with n − 1 or −(n − 1). Repeat until you have replaced every coordinate. Call this point
p. Then the corresponding signed permutation is the unique element of ω ∈ SB

n such that
(ω(1), . . . , ω(n)) = p.

We now introduce the idea of a naturally labeled signed poset, mimicking a similar notion
for classical posets.

Definition 5.2.9. Let P be a signed poset on [n], and let id ∈ SB
n be the identity element.

We say P is naturally labeled if and only if id ∈ JH(P ).

Proposition 5.2.6. Every signed poset is isomorphic to a naturally labeled signed poset.

Proof. Let P be a signed poset. As a consequence of the proof of Proposition 5.2.5, P has
some linear extension l. Let ω be the unique element of SB

n such that ω restricted to [n]
gives l. Consider ω−1P which, by definition, is isomorphic to P . To show that id is a linear
extension of ω−1P , it suffices to show that ⟨id, ω−1α⟩ ≥ 0 for all α ∈ P .

For any α in the type-B root system and any ω ∈ SB
n , we have ⟨id, ω−1α⟩ = ⟨ω, α⟩. This

can be shown by noting that ⟨id, ω−1ei⟩ = ⟨ω, ei⟩ = ω(i) and then using linearity.
Thus, for any α ∈ P , ⟨id, ω−1α⟩ = ⟨ω, α⟩ ≥ 0, since ω is a linear extension of P .

5.3 Alternative Descriptions of KP and OP

We now discuss a few other descriptions of the order cones and polytopes of signed posets.
Definition 5.1.6 gives a hyperplane description of OP and KP , but this hyperplane description
may be redundant. This is also true for the definition of classical order polytopes and
cones. The following proposition from [67] gives an irredundant representation for the order
polytopes of classical posets.

Proposition 5.3.1 (Stanley [67]). Let Π be a classical poset. Then, an irredundant repre-
sentation of O(Π) is given by
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O(Π) =

x ∈ RΠ :
xa ≤ xb if a⋖ b
xa ≥ 0 if a is a minimal element
xa ≤ 1 if a is a maximal element

 ,

where a⋖Π b means that a ≤Π b is a cover relation in Π.

As hinted in Example 5.2.3, we can give an similar irredundant hyperplane representation
for order polytopes of signed posets. First, we need a few propositions and definitions. The
next proposition from [58] was briefly described earlier in Example 5.2.2.

Proposition 5.3.2 (Reiner [58]). Let P be a signed poset. Then there exists a unique
minimal subset of P , called the minimal representation of P and denoted minrep(P ),
such that

minrep(P )
PLC

= P .

Note that the relations in minrep(P ) are analogous to the cover relations of a classical
poset, since both give an irredundant description of the (signed) poset up to transitivity. We
now give a definition for two types of maximal elements of a signed poset.

Definition 5.3.1. Let P be a signed poset on [n]. We say i ∈ [n] is a positive maximal
element of P if and only if every relation adjacent to i is of the form ei or ei±ej, i.e., the ei
portion of the adjacent relations is positive. We denote the set of positive maximal elements
of P as pmax(P ). We say i ∈ [n] is a negative maximal element of P if and only if
every relation adjacent to i is of the form −ei or −ei ± ej, i.e., the ei portion of the adjacent
relations is negative. We denote the set of negative maximal elements of P as nmax(P ).

We can now give an irredundant representation of OP .

Proposition 5.3.3. Let P be a signed poset on [n]. Then an irredundant representation of
OP is given by

OP =

x ∈ Rn :
⟨α, x⟩ ≥ 0 if α ∈ minrep(P )
xi ≤ 1 if i ∈ pmax(P )
xi ≥ −1 if i ∈ nmax(P )

 . (5.1)

Proof. We first show that (5.1) does indeed describe OP . Since (5.1) consists of a subset of
the inequalities listed in Definition 5.1.6, it suffices to show that each inequality in Definition
5.1.6 is implied by the inequalities listed in (5.1). First of all, each inequality of the form
⟨α, x⟩ ≥ 0 for α ∈ P is implied by the inequalities of the form ⟨α, x⟩ ≥ 0 for α ∈ minrep(P )
from the definition of minrep(P ).

We now show that the inequalities −1 ≤ xi ≤ 1 for all i ∈ [n] are implied by the
inequalities listed in the proposition. It suffices to show that for each i ∈ [n], one of the
following holds (to ensure that xi ≤ 1):

(i) i ∈ pmax(P ),
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(ii) −ei ∈ P, since xi ≤ 0 implies xi ≤ 1,

(iii) −ei + ep ∈ P , where p ∈ pmax(P ),

(iv) −ei − en ∈ P , where n ∈ nmax(P ),

and one of the following holds (to ensure that −1 ≤ xi):

(v) i ∈ nmax(P ),

(vi) ei ∈ P, since xi ≥ 0 implies xi ≥ −1,

(vii) ei + ep ∈ P , where p ∈ pmax(P ),

(viii) ei − en ∈ P , where n ∈ nmax(P ).

We show by induction on n that this is always true. It is true for n = 1 since in that
case one of (i) or (ii) must be true, and one of (v) or (vi) must be true.

Now, consider some i ∈ P , and let P ′ be the signed poset on [n]− {i} with all relations
adjacent to i removed (similarly as in the proof of Proposition 5.2.4). We first show that i
satisfies (i), (ii), (iii), or (iv). Assume that i does not satisfy (i) or (ii), with the aim to show
that i satisfies (iii) or (iv). By our assumptions, i must be adjacent to a relation of the form
−ei + ej or −ei − ej.

Case 1: Assume i is adjacent to a relation of the form −ei + ej. We know by our
inductive hypothesis that within P ′, j must satisfy (i), (ii), (iii), or (iv). We go through each
of these subcases.

• Suppose j satisfies (i) and is thus an element of pmax(P ′). We show that j is also an
element of pmax(P ). The only obstruction to this is if −ei − ej or ei − ej are in P .
However, ei − ej cannot be in P since its opposite −ei + ej was already assumed to be
in P . Suppose −ei − ej is in P . Then, by transitivity with −ei + ej, we have that −ei
is in P which is not the case since we assumed i does not satisfy (ii). Thus, j is an
element of pmax(P ), so i satisfies (iii).

• Now suppose j satisfies (ii), so −ej is an element of P ′ and thus P . However, by
transitivity with −ei+ ej, −ei is in P , which again is not possible by our assumptions.

• Now suppose j satisfies (iii). Then −ej+ep is in P ′ and thus P , where p is in pmax(P ′).
We first note that by transitivity, −ei + ep is in P . We now show that p is not only
in pmax(P ′), but also in pmax(P ). The only obstructions to this are if −ei − ep or
ei − ep are in P . Note that ei − ep cannot be in P since we already established that its
opposite, −ei+ep, is in P . We also see that −ei−ep cannot be in P since by transitivity
then −ei would be in P , which we assumed was not the case. Thus, p ∈ pmax(P ) and
so i satisfies (iii).
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• Now suppose j satisfies (iv). Then −ej−en is in P ′ and thus P , for some n in nmax(P ′).
By transitivity, we see that −ei − en is in P . It suffices to show that n is not only in
nmax(P ′) but also in nmax(P ). The only obstructions to this are if −ei+ en or ei+ en
are in P . We see that ei + en cannot be in P because we already established that that
its opposite −ei − en is. If −ei + en is in P , then by transitivity with −ei − en, −ei is
in P , which we assumed was not the case. So n is in nmax(P ) and thus i satisfies (iv).

Case 2: Assume i is a adjacent to a relation of the form −ei − ej. We know by our
inductive hypothesis that within P ′, j must satisfy (v),(vi),(vii), and (viii). We go through
each of these subcases and show that each case implies i satisfies (iii) of (iv).

• Suppose j satisfies (v) and thus is an element of nmax(P ′). We show that j is also an
element of nmax(P ). The only possible obstructions to this are −ei+ej or ei+ej being
in P . We know its impossible for ei + ej to be in P since its opposite is. If −ei + ej
were to be in P , then by transitivity −ei would be in P which we assumed was not
the case much earlier. So j is an element of nmax(P ) and thus i satisfies (iv).

• Suppose j satisfies (vi) and thus ej is in P ′ and thus P . However, by transitivity with
−ei − ej this implies that −ei is in P , which we earlier assumed was not the case.

• Suppose j satisfies (vii) and thus ej + ep is in P , where p ∈ pmax(P ′). By transitivity,
we see that −ei+ ep ∈ P . It suffices to show that p is in pmax(P ). Suppose not. Then
either ei − ep or −ei − ep is in P . We see that ei − ep cannot be in pmax(P ) since its
opposite −ei+ep was already shown to be in P . If −ei−ep is in P, then by transitivity
with −ei + ep we get that −ei is in P , which we assumed much earlier not to be the
case. Thus, p is in pmax(P ) and thus i satisfies (iii).

• Suppose j satisfies (viii) and ej − en is in P , where n is in nmax(P ′). By transitivity,
we know that −ei − en is in P . To show i satisfies (iv), it suffices to show that n is
in nmax(P ). The only obstructions to this are −ei + en or ei + en being in P . We
see that ei + en cannot be in P because we already established that its opposite is.
Suppose that −ei + en is in P . Then by transitivity with −ei − en, we know that −ei
is in P , which we already assumed was not the case. Thus, n must be in nmaxP and
so i satisfies (iv).

Thus, in all cases, (i) must satisfy at least one of (i), (ii), (iii), or (iv). The proof that
the i must satisfy at least one of (v), (vi), (vii), or (viii) is similar.

We have thus shown that the given inequalities in this proposition do describe OP . We
now argue that this set of inequalities is a minimal set describing OP . From the definition
of minrep(P ), we see that we cannot remove any of the hyperplanes of the form ⟨α, x⟩ ≥ 0
without changing OP . Now let i ∈ pmax(P ). All of the adjacent relations to i must be of
the form ei − ej, ei + ej, or ei. So all of restrictions on xi coming from rest of the poset are
of the form xi ≥ xj, xi ≥ −xj and xi ≥ 0. No combination of these can imply xi ≤ 1, so
this inequality is necessary in this description of OP .



CHAPTER 5. SIGNED POSET POLYTOPES 78

In order to describe a convex hull description of OP , we first need the idea of filters. For
classical posets, they are defined as follows, as appears in, e.g., [13].

Definition 5.3.2. Let Π be a classical poset. Then, a filter is a subset F of Π such that for
a ≤Π b, a ∈ F implies b ∈ F .

The filters give a vertex description of KΠ through the following proposition, which again
appeared in [67].

Proposition 5.3.4 (Stanley [67]). The vertex set of O(Π) is the set of all eF , where F is a
filter of Π and eF : Π → {0, 1} is the point in RΠ given by

eF (a) =

{
1 if a ∈ F,
0 otherwise.

Note that the filters are exactly the points x ∈ {0, 1}Π such that ⟨α, x⟩ ≥ 0 for all
α ∈ f(Π). (Recall that f is the map from a classical poset to its corresponding subset of the
type-A root system). This observation allows for a similar definition for signed posets. The
following definition appears in [58].

Definition 5.3.3. Let P be a signed poset on [n]. Then x ∈ {−1, 0, 1}n is a signed filter
of P if ⟨α, x⟩ ≥ 0 for all α ∈ P .

Note that in [58], due to the earlier mentioned difference in convention (up to a sign)
in defining the map from classical posets to subsets of the type-A root system, Reiner calls
these objects signed order ideals instead of signed filters.

We can now give a convex hull description of OP .

Proposition 5.3.5. Let P be a signed poset on [n] and let F be the set of signed filters on
P . Then OP = conv(F ).

Remark 5.3.1. A signed filter may not necessarily be a vertex of OP (in contrast to classical
order polytopes). For example x = (0, . . . , 0) is always a signed filter of OP , but need not
be a vertex (as seen in Figure 5.3).

Before we give the proof of this proposition, we need to discuss a specific unimodular
triangulation of OP for any signed poset. Along the way, we discuss a way of dividing Rn

into cones indexed by elements of the signed permutation group SB
n .

Definition 5.3.4. Consider a signed permutation σ = (π, ϵ) ∈ SB
n . The simplicial cone

associated with σ is

Kσ := {x ∈ Rn : 0 ≤ ϵ1xπ1 ≤ · · · ≤ ϵnxπn} .
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These simplicial cones induce a triangulation on the [−1, 1]n cube, as described in [11,
Proof of Theorem 6.9]. Each maximal face of this triangulation is of the form ∆σ := {x ∈
Rn : 0 ≤ ϵ1xπ1 ≤ · · · ≤ ϵnxπn ≤ 1}. Note that the defining hyperplanes of OP are a
subset of the union of the set of hyperplanes defining the described triangulation of [−1, 1]n.
Thus, restricting this triangulation to OP gives a triangulation of OP . We will refer to this
triangulation as T . Later, we will use the fact the maximal faces T are exactly the set ∆σ,
where σ ∈ JH(P ).

Now, we will use this triangulation to prove Proposition 5.3.5.

Proof. We first observe that conv(F ) ⊆ OP . By definition, all the points in F are in OP ,
and thus the convex hull of F is in OP .

We now show that OP ⊆ conv(F ). Suppose we have some point x ∈ OP . Then, x must
be in one of the full-dimensional simplices of T , i.e., x ∈ ∆ω for some ω ∈ SB

n , and thus
can be written as a convex combination of the vertices of ∆ω. These vertices have entries of
0, 1,−1, and thus are filters of P .

5.4 Computing the h∗-polynomial of OP

In 1962, for a lattice polytope P ⊂ Zd, Eugene Ehrhart introduced and proved polynomiality
of the Ehrhart enumerator ehrP (t) = |tP ∩ Z|, [38]. Note that the tth dilate of P is
tP := {tp ∈ Rn : p ∈ P}.

Theorem 5.4.1. (Ehrhart’s Theorem) For any d-dimensional lattice polytope P ⊆ Rn, the
quantity ehrP (t) = |tP ∩ Zn| agrees with a polynomial of degree d.

This Ehrhart polynomial can be seen as a discrete measure of volume. In general, the
coefficients of the Ehrhart polynomial of a lattice polytope are rational numbers that can be
negative. The generating series Ehr(P ; z) of a d-dimensional lattice polytope can be written
as

Ehr(P ; z) = 1 +
∑
t≥1

ehrP (t)z
t =

h∗
0 + h∗

1z + · · ·+ h∗
d+1z

d

(1− z)d+1
.

The numerator of this expression is called the h∗-polynomial of P and denoted h∗(P ; z).
It can be helpful to view the information encoded by the Ehrhart polynomial in this form.
For example, unlike the Ehrhart polynomial, the coefficients of the h∗-polynomial of a lattice
polytope are always non-negative integers [64]. Thus, one area of research in Ehrhart theory
is to give combinatorial interpretations of these coefficients for specific families of polytopes.
For classical order polytopes, we can describe the h∗-polynomial in terms of permutation
statistics in the following way, as outlined, e.g, in [13, Chapter 5]. The Jordan–Hölder set of
a classical poset is defined similarly as for a signed poset.

Definition 5.4.1. Let Π be a classical poset on [n]. The Jordan-Hölder Set Π the set
of permutations ω ∈ Sn that are order-preserving, that is, ⟨α, ω⟩ ≥ 0 for all α ∈ f(Π),
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where f is the map described in Proposition 5.2.1 and where we think of ω as the point
(ω1, . . . , ωn) ∈ Rn.

Definition 5.4.2. Let ω = ω1ω2 . . . ωn ∈ Sn. A descent is a position i such that ωi > ωi+1.
The descent set of ω is Des(ω) := {i : i is a descent of ω}, and the descent statistic of
ω is des(ω) := |Des(ω)|.

See, for example, [62, Section 3.12] for a more complete discussion of permutation statis-
tics and other equivalent definitions of the classical Jordan–Hölder set, relating for linear
extensions of posets.

Proposition 5.4.1. Let Π be a naturally labeled poset with Jordan–Hölder set JH(Π) ⊂ Sn.
Then

h∗
OΠ

(z) =
∑

τ∈JH(Π)

zdes(τ).

In this section, we use the triangulation T described in Section 5.3 to give an analogous
description of the h∗-polynomial of OP in terms of statistics on the type-B permutation
group SB

n . We first introduce some background on half-open polytopes and half-open de-
compositions of polytopes. A more complete treatment of this material can be found in [13,
Chapter 5]. We first define what it means for a point to be beyond a face F of a polytope
P in the special case in which F is a facet of P . For more generality, see [13, Chapter 3].

Definition 5.4.3. Let P ⊂ Rn be a full-dimensional polytope, and let F be a facet of P
with defining hyperplane ⟨a, x⟩ = b such that P lies in the half space ⟨a, x⟩ ≤ b. Then p ∈ Rn

is beyond F if ⟨a, p⟩ > b.

This concept of a point being beyond a facet is used to construct half-open polytopes.

Definition 5.4.4. Let P ⊂ Rn be a full-dimensional polytope with facets F1, . . . Fm. Let
q ∈ Rn be generic relative to P , i.e., q does not lie on any facet-defining hyperplane of P .
Then we define

HqP := P \
⋃
i∈I

Fi ,

where I := {i ∈ [m] : q beyond Fi}. We call HqP a half-open polytope .

Applying this construction to a triangulation of P allows us to write P as a disjoint union
of half-open simplices.

Lemma 5.4.2 ([13]). Let P ⊂ Rn be a full-dimensional polytope with dissection P = P1 ∪
P2 ∪ · · · ∪ Pm. If q ∈ P ◦ is generic relative to each Pj, then

P = HqP1 ⊎HqP2 ⊎ · · · ⊎ HqPm
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We can apply these results to the unimodular triangulation T of OP described in the
previous section in order to write OP as a disjoint union of half-open unimodular simplices.
These simplices can be described in terms of the naturally ordered descent statistic of SB

n .
For more information about various statistics (including several definitions of the descent
set) of Bn, see, e.g., [11].

Definition 5.4.5. For σ ∈ SB
n , the naturally ordered descent set of σ is

NatDes(σ) := {i ∈ {0, . . . , n− 1} : σ(i) > σ(i+ 1)},

where we use the convention that σ(0) = 0. The natural descent statistic of σ is
natdes(σ) := |NatDes(σ)|.

Proposition 5.4.3. Let σ = (π, ϵ) ∈ SB
n and p :=

(
1

n+1
, 2
n+1

, . . . , n
n+1

)
. Then

Hp∆σ =

x ∈ RΠ :
0 ≤ ϵ1xπ1 ≤ · · · ≤ ϵnxπn ≤ 1
ϵixπ1 < ϵi+1xπi+1

if i ∈ NatDes(σ)
0 < ϵ1xπ1 if 0 ∈ NatDes(σ)

 .

Proof. We identify the facets of ∆σ that are removed in the half-open polytope Hp∆σ,
starting with the facets of the form ϵixπi

= ϵi+1xπx+1 for i ∈ [n−1]. These facets are removed
when p is beyond the facet, which occurs exactly when ϵipπi

> ϵi+1pπi+1
. Substituting our

expressions for the coordinates of p yields

ϵi
πi

n+ 1
> ϵi+1

πi+1

n+ 1

which simplifies to σ(i) > σ(i + 1). Thus, we see that a facet of ∆σ of the form ϵixπi
=

ϵi+1xπi+1
is removed exactly when i ∈ NatDes(σ).

We now consider the facet given by ϵ1xπ1 = 0. We know that p is beyond this facet
exactly when ϵ1pπ1 < 0. Since all the coordinates of p are positive, this holds exactly when
ϵ1 < 0, which coincides with the cases in which 0 ∈ NatDes(σ).

We finally consider the facet given by ϵnxπn = 1. Since −1 ≤ pi ≤ 1 for any i ∈ [n], we
know that p is never beyond this facet. Thus, this facet is never removed in Hp∆σ.

A classical result (see, e.g., [13]) gives the h∗-polynomials of half-open unimodular sim-
plices.

Lemma 5.4.4. Let Hp∆ be a unimodular half open simplex with k missing facets. Then,
h∗
Hp∆

(z) = zk.

We can now describe the h∗-polynomial of OP for any naturally ordered signed poset P
in terms of descent statistics in a statement analogous to Proposition 5.4.1.

Proposition 5.4.5. Let P be a naturally labeled signed poset on [n] with Jordan–Hölder set
JH(P ) ⊂ Bn. Then

h∗
OP

(z) =
∑

τ∈JH(P )

znatdes(τ).
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Proof. Since P is naturally labeled, we know that p =
(

1
n+1

, . . . , n
n+1

)
is an interior point

of OP . Thus, we can use the triangulation T restricted to OP to decompose OP into a
disjoint union of half-open simplices. Using Lemma 5.4.2 with respect to the point p and
this triangulation, we obtain

OP =
⊎

σ∈JH(P )

Hp∆σ.

From Proposition 5.4.3, we know that Hp∆σ is a unimodular half-open simplex with
natdes(σ) missing facets. From Lemma 5.4.4, we know that the h∗- polynomial of such an
object is znatdes(σ). Since the h∗-polynomials of disjoint half-open polytopes are additive,

h∗
OP

(z) =
∑

τ∈JH(P )

znatdes(τ).

Remark 5.4.1. This result only gives a description of the h∗-polynomial for naturally la-
beled signed posets. However, since unimodularly equivalent polytopes have identical h∗-
polynomials, this encompasses all the unique h∗-polynomials corresponding to signed posets
by Propsitions 5.2.3 and 5.2.6.

5.5 Which Signed Order Polytopes Are Gorenstein?

We now review a classification of Gorenstein order polytopes in the classical case and discuss
how it extends to signed order polytopes.

Definition 5.5.1. A lattice polytope is Gorenstein if there exists a positive integer k such
that (k − 1)P ◦ ∩ Zd = ∅, |kP ◦ ∩ Zd| = 1, and |tP ◦ ∩ Zd| = |(t − k)P ◦ ∩ Zd| for all integers
t > k.

This is equivalent to the polytope having a symmetric h∗-vector. For classical posets, the
following result is well known (see, e.g., [13]):

Proposition 5.5.1. The order polytope of a poset P is Gorenstein if and only if P is graded.

In this section, we will develop an analogue of this result for signed posets; we begin with
a representation of a signed poset on [n] as a classical poset on [2n+1] that satisfies certain
properties, first introduced in [39].

Definition 5.5.2. Let P be a signed poset on [n]. The Fischer represention Ĝ(P ) is a
poset on [−n, n] = {−n,−(n−1), . . . ,−1, 0, 1, . . . , n−1, n} whose relations are the transitive
closure of the following:
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i < j and − j < −i for − ei + ej ∈ P

i < −j and j < −i for − ei − ej ∈ P

−i < j and − j < i for ei + ej ∈ P

i < 0 and 0 < −i for − ei ∈ P

−i < 0 and 0 < i for ei ∈ P .

Figure 5.4 shows an example of the bidirected graph representation and the Fischer
representation of the same signed poset.

1 2+ + +
+

1 2

-1 -2

0

Figure 5.4: The left side shows the bidirected graph representation of P := {e1, e2, e1 + e2}
and the right side shows the Fischer representation of P .

Remark 5.5.1. This definition has all the inequalities reversed from Fischer’s original def-
inition to make this poset more consistent with our definition of signed order polytopes.

The following proposition from [39] classifies exactly when a poset on [−n, n] equals Ĝ(P )
for some signed poset P on [n].

Proposition 5.5.2. A poset [−n, n] is Ĝ(P ) for some signed poset P if and only if

• i < j if and only if −j < −i for all i, j ∈ [−n, n];

• if −i < i then −i < 0 < i for all i ∈ [−n, n].

Next, we establish how we can view the previously defined signed order polytopes through
this lens.

Proposition 5.5.3. Let P be a signed poset on [n]. Define a polytope OĜ(P ) ⊂ Rn via the
following inequalities:



CHAPTER 5. SIGNED POSET POLYTOPES 84

• −1 ≤ xi ≤ 1 for all i ∈ [n];

• −xi ≤ xj for all −i ≤ j, where i, j ∈ [n];

• xi ≤ −xj for all i ≤ −j, where i, j ∈ [n];

• xi ≤ xj for all i ≤ j where i, j ∈ [n];

• xi ≥ 0 for all i ≥ 0 where i ∈ [n];

• xi ≤ 0 for all i ≤ 0 where i ∈ [n].

(Note that some of these inequalities will be equivalent to each other.) Then OP = OĜ(P ).

Proof. Starting with a signed poset P , constructing OP and OĜ(P ) yields polytopes defined
by exactly the same set of inequalities.

We can now give the following analogue to Proposition 5.5.1.

Proposition 5.5.4. Let P be a signed poset on [n]. The h∗ polynomial of P is Gorenstein
if and only if Ĝ(P ) is graded.

Proof. Suppose Ĝ(P ) is graded. We first briefly establish some facts about its maximal
chains. The element 0 must be in one of the maximal chains; consider the part of the
chain 0 < c1 · · · < ck. Because of Proposition 5.5.2, the chain −ck < · · · < −c1 < 0
must also exist in Ĝ(P ), and when extended into a maximal chain must not contain any
other elements below 0, otherwise 0 < c1 · · · < ck could be similarly extended. Thus,
−ck < −ck−1 < · · · − c1 < 0 < c1 < · · · < ck−1 < ck is a maximal chain. Thus, all maximal
chains in Ĝ are of the same even length.

Suppose Ĝ(P ) is graded with maximal chains of length 2k − 2 and rank function ρ :
Ĝ(P ) → N. We show that OP is Gorenstein of degree k. We first verify that (k−1)OP has no
interior points. Consider a maximal chain c−(k−1) ≤ c−(k−2) ≤ · · · ≤ c0 ≤ · · · ≤ ck−2 ≤ ck−1

of Ĝ(P ). In order for a point q to be in the interior of (k − 1)Op, by Proposition 5.5.3 , q
must satisfy −(k − 1) < qc−(k−1)

< qc−(k−2)
< · · · < qc0 < · · · < qck−2

< qck−1
< k − 1. This is

not possible, since there are not 2k − 1 distinct integers between −(k − 1) and (k − 1) .
We now construct a point p ∈ kOP and show that it is the unique interior point of kOP .

If in Ĝ(P ), ρ(i) = ρ(0) for some i ∈ [n], we note that because of the symmetries outlined
in Proposition 5.5.2, it must also be true that ρ(−i) = ρ(0). In this case, we set pi = 0.
Suppose ρ(i) − ρ(0) = ℓ. Then, we assign pi = ℓ. Note that −(k − 1) ≤ ℓ ≤ k − 1, so p
satisfies the strict inequality −(k − 1) < xi < k − 1) for all i ∈ [n]. By construction, the
coordinates of p satisfy the other strict inequalities in kOĜ(P ). Thus p is an interior point of
kOP .

We now show that such an interior point must be unique. As described above, since p is an
interior point of kOP , for every maximal chain in Ĝ(P ), c−(k−1) ≤ c−(k−2) ≤ · · · ≤ c0 ≤ · · · ≤
ck−2 ≤ ck−1, p must satisfy −k < qc−(k−1)

< qc−(k−2)
< · · · < qc0 < · · · < qck−2

< qck−1
< k,
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so each coordinate corresponding to this maximal chain is uniquely determined. Since every
element in a poset is part of a maximal chain, every coordinate of p is uniquely determined.

Finally, for all integers t ≥ k, we establish a bijection between the sets tO◦
P ∩ Zd and

(t− k)P ∩Zd. Let p ∈ (t− k)P ∩Zd and consider ϕ(p) = p+ (ρ(1)− ρ(0), . . . , ρ(n)− ρ(0)).
First, we know that t < ϕ(p)i < t, since t − k ≤ pi ≤ t − k and −k < ρ(i) − ρ(0) < k.
Furthermore, since p satisfies the inequalities of kĜ(P ) and (ρ(1) − ρ(0), . . . , ρ(n) − ρ(0))
satisfy the strict inequalities, their sum ϕ(p) also satisfies the strict inequalities, so ϕ(p) is
indeed an interior point of tOP . We now need to show that ϕ : (t−k)OP → tO◦

P is bijective.
It suffices to show that the map is surjective. Suppose we have a point q ∈ tO◦

P , and consider
q′ = q−(ρ(1)−ρ(0), . . . , ρ(n)−ρ(0)), so that ϕ(q′) = q. Note that since −(t−1) ≤ qi ≤ t−1
and −(k − 1) ≤ ρ(i) − ρ(0) ≤ k − 1 , −(t − k) ≤ q′i ≤ t − k. Now, suppose i ≤ j ∈ Ĝ(P ).
Then, since q is in the relative interior of tOP , qi − ρ(i) ≤ qj − ρ(j), which implies q′i ≤ q′j.
So q′ is indeed in (t− k)OP .

We now suppose that Ĝ(P ) is not graded, and show that OP cannot be Gorenstein. For
OP to be Gorenstein of degree k, the interior points of the cone homOP must be the integer
points of the shifted cone homOP + (p, k), where p is the unique interior point of kOP . Let
2a − 2 be the length of the longest maximal chain in OĜ(P ). Based on an argument above,
we know that there are no interior points in bOP for any nonnegative integer b < a. We now
consider aOP , the first dilate with at least one interior point p. However, since Ĝ(P ) is not
graded, there must be a maximal chain of a length k where k < 2a− 2, c1 < . . . ck. Without
loss of generality, let pc1 = −(a− 1) and pck = a− 1, which is always possible since there are
no elements above ck nor below c1. Since the maximal chain we are considering has length
less than 2a − a, we know that there is some 1 ≤ i ≤ k − 1 such that pci+1

− pci > 1. We
now construct an interior point p′ of (a + 1)OP , where we add 1 to all the coordinates pj
where j ≥ ci in Ĝ(P ) except for pci+1

. Note that (p′, a+1) ∈ homOP is formed from adding
a point that is not compatible with the ordering to (p, a), so (p′, a + 1) is an interior point
of homOP that does not lie in the shifted version. Thus, OP is not Gorenstein.

The following result applies to our situation.

Theorem 5.5.1 (Bruns–Römer [32]). A Gorenstein lattice polytope P with a regular uni-
modular triangulation has a unimodal h∗-vector.

Corollary 5.5.5. Let P be a signed poset on [n]. If Ĝ(P ) is graded, then the h∗ polynomial
of OP is unimodal.

Stembridge [74] extended Reiner’s work with signed posets to any root system. He defines
a generalization of order cones and signed order cones for other root systems, calling these
Coxeter cones.

Definition 5.5.3 ([74]). Let Φ be any root system in Rn, and let Ψ be a subset of Φ. Then
the coxeter cone of Ψ is

∆(Ψ) := {x ∈ Rn : ⟨x, β⟩ ≥ 0 for any β ∈ Ψ}
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Viewing these cones as simplicial complexes and defining a general notion of when these
complexes are graded, he used algebraic methods to give a condition on when the h-vectors
of these cones are symmetric and unimodal.

Theorem 5.5.2 ([74]). If a Coxeter cone is graded, then its h-polynomial is symmetric and
unimodal.

The definition of graded is quite technical; for a full definition see [74].
Proposition 5.5.4 can be seen as an Ehrhart theoretic interpretation of the type-B case of
Theorem 5.5.2, using a geometric proof method as opposed to the algebraic proof method
in [74]. Below, we summarize the connection between Proposition 5.5.4 and Theorem 5.5.2.

We first interpret Theorem 5.5.2 in the Type B case. In Examples 5.2(b) and 6.4(b),
Stembridge notes that his definition of a graded Coxeter cone, when restricted to the type
B case, results in exactly the Coxeter cones of type B corresponding to signed posets with
a graded Fischer representation. Thus, these Coxeter cones result in simplicial complexes
with a symmetric and unimodal h-polynomial.

We then make the transition from the h-polynomial of a type B Coxeter cone to the h∗-
polynomial of OP of the corresponding signed poset P . In Section 4 of [74], Stembridge notes
that the h-polynomial of his type A and B Coxeter cones are identical to the h∗-polynomial
of a certain lattice polytope. His construction in the type B case, described in algebraic
terms, gives the same polytope as OP . Thus we see that Proposition 5.5.4 can be seen as a
special case of the broad algebraic result in [74].

5.6 Chain Polytopes

We note that, in the definition of the chain polytope C(Π), it suffices to have an inequality
for each maximal chain, since the other inequalities are implied by these.

In [67], Stanley establishes some properties of chain polytopes.

Definition 5.6.1. Let Π be a poset. An antichain of Π is a subset I of the elements of Π
such that for any i, j ∈ I, neither i < j nor j < i in Π.

Proposition 5.6.1 (Stanley [67]). The vertices of C(Π) are given by the {0, 1}-indicator
vectors of the antichains of Π.

Theorem 5.6.1 (Stanley [67]). Let Π be a poset on [n].

• C(Π) and O(Π) have the same h∗-polynomial.

• C(Π) and O(Π) are combinatorially equivalent if and only if Π does not contain the
poset shown in Figure 5.5 as a subposet.

In this section, we suggest a definition for signed chain polytopes and examine the prop-
erties of said polytopes. First, we define a chain of a signed poset.
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Figure 5.5: The forbidden poset in Theorem 5.6.1.

Definition 5.6.2. A chain on a signed poset P on [n] is an ordered pair (C, S), where
C = (c1, . . . , cm) ∈ [n]m and S = (s1, . . . , sm−1) ∈ {−1, 1}m−1 such that for each i ∈ [m− 1]
there exists αi ∈ P that satisfy:

• if si = 1, then αi = ±(eci − eci+1
), and if si = −1, then αi = ±(eci + eci+1

);

• αi + αi+1 ∈ P .

We now give one definition of a chain polytope.

Definition 5.6.3. The signed chain polytope CP of a signed poset P on [n] is the inter-
section of inequalities of the form

−1 ≤ xc1 + s1xc2 + s1s2xc3 + · · ·+ s1s2 . . . sm−1xcm ≤ 1

for each chain (C, S) of P .

We also introduce another useful class of polytopes, directly related to Gorenstein poly-
topes.

Definition 5.6.4. A lattice polytope is reflexive if its hyperplane description can be written
as Ax ≤ 1 for an integral matrix A.

There are many equivalent definitions of reflexive polytopes, for example relating to the
duals of polytopes. A reflexive polytope can also be described as a Gorenstein polytope
with Gorenstein index 1. For a full description, see, for example, [76].

Directly from the definitions above, we make the following observation:

Proposition 5.6.2. For any signed poset P , the signed chain polytope CP is reflexive, and
thus Gorenstein.

Proof. From the definition, we can see that CP is defined by a linear system Ax ≤ 1 for an
integral matrix A.
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One consequence of this is that it allows us to associate a Gorenstein polytope with every
classical poset, since every classical poset can be viewed as a signed poset.

Similarly to Proposition 5.6.1, we can give a convex hull description of CP in terms of
antichains of P , defined below.

Definition 5.6.5. Let P be a signed poset on [n]. An element of a = (a1 . . . an) ∈ {−1, 0, 1}n
is an antichain of P if for each element α ∈ P of the form ±ei ± ej or ±ei ∓ ej, ⟨α, a⟩ ̸= 0
unless ai = aj = 0.

Example 5.6.1. Figure 5.6 shows a signed poset, with a chain indicated in blue. This chain
(C, S) = ((1, 2, 3), (1,−1)) is the longest chain in this signed poset.

There are many antichains of this signed poset, one of which is a = (1, 0, 1,−1). It might
seem like since 1 and 3 are related, they shouldn’t both have a nonzero entry in the antichain,
but the way the signs are arranged makes a fit the definition.

1

+

-
-

-3

4 2

- -

-+

Figure 5.6: A bidirected graph representation of a signed poset on 4 elements, with a chain
highlighted in blue.

Proposition 5.6.3. The set of antichains of a signed poset P are exactly the integer points
in CP .

Proof. Suppose a point p ∈ Rn is an integer point of C(P ). Then p must satisfy all the
inequalities specified in Definition 5.6.3; in particular:
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• Suppose α ∈ P is of the form ±ei ± ej. Then, (C, S) = ({i, j}, {−1}) is a signed chain
of P , and p must satisfy the inequalities −1 ≤ pi − pj ≤ 1. Thus, either pi = pj = 0,
pi = ±1 and pj = 0, pi = 0 and pj = ±1, or pi = pj = ±1. In the latter three cases, it
is true that ⟨p, α⟩ ≠ 0.

• Suppose α ∈ P is of the form ±ei ∓ ej. Then, (C, S) = ({i, j}, {1}) is a signed chain
of P , and p must satisfy the inequalities −1 ≤ pi + pj ≤ 1. Thus, either pi = pj = 0,
pi = ±1 and pj = 0, pi = 0 and pj = ±1, or pi = −pj = ±1. In the latter three cases,
it is true that ⟨p, α⟩ ≠ 0.

Thus p satisfies all the properties of being an antichain of P .
Suppose p is not an integer point of C(P ). Then there must be some chain

({c1, . . . , cm}, {s1, . . . , sm−1}) such that

pc1 + s1pc2 + s1s2pc3 + · · ·+ s1s2 . . . sm−1pcm ≤ −2

or
2 ≤ pc1 + s1pc2 + s1s2pc3 + · · ·+ s1s2 . . . sm−1pcm .

This implies that for some i, j ∈ [m], 2 ≤ s1 . . . sipi+s1 . . . sjpj or s1 . . . sipi+s1 . . . sjpj ≤
−2. From this, we can determine that s1 . . . sipi = s1 . . . sjpj = ±1. We have the following
two cases:

• If s1 . . . sj = s1 . . . sj, then pi = pj. We also know that either ei − ej ∈ P or −ei + ej ∈
P from the transitivity of signed posets and the definition of signed chains. Since
⟨p,±ei ∓ ej⟩ = 0, we deduce that p cannot be an antichain of P .

• If s1 . . . sj = −s1 . . . sj, then pi = −pj. We also know that either ei + ej ∈ P or
−ei − ej ∈ P from the transitivity of signed posets and the definition of signed chains.
Since ⟨p,±ei ± ej⟩ = 0, we deduce that p cannot be an antichain of P .

We note that there is no nice analogue for Theorem 5.6.1, since generally CP and OP are
neither combinatorially equivalent nor Ehrhart equivalent. One example of the latter is the
example in which P contains an element of the form ±ei. Observe that OP has no interior
lattice points, since the defining inequality ±xi ≥ 0 prevents the origin from being an interior
point and there are no other posibilities for an interior point of a polytope that is a subset of
[−1, 1]n. From the definition, we can see that CP always has the origin as in interior point.
Thus in this case, these two polytopes cannot have the same Ehrhart polynomial.



90

Chapter 6

Future Work

In this chapter, we give some ideas for future research related to each of the projects described
in this thesis.

6.1 Subdivisions of Shellable Complexes

Since the paper describing this project [46] was released, Athanasiadis [1] answered the ques-
tion posed by Brenti, Mohammadi, and Welker, showing that the boundary complex of any
cubical polytope has a real-rooted h-polynomial. His paper used different techniques than
the ones that we used to prove special cases of this result. We are interested in the following
question: Does the boundary complex of any cubical polytope admit a stable shelling? If so,
we can give an alternative proof of Athanasiadis’s result using the framework developed in
Chapter 3.

Furthering this line of thinking to non-cubical polytopes, we can ask: Are there other
families of polytopes that admit stable shellings, and do real-rootedness results follow? Since
it is known that all polytopes admit a stable shelling, we can also ask: Do all polytopes admit
a stable line shelling?

6.2 Inequalities for f ∗-vectors of Lattice Polytopes

There are many open questions surrounding f ∗-vectors, for example, those inspired by anal-
ogous studies of h∗-vectors. We conclude with a few open questions which are natural
followups to the results presented in this Chapter 4.

The techniques in the proof of Theorem 4.0.3 do not offer much insight in the case of
14-dimensional lattice polytopes as there are candidates for f ∗-vectors with corresponding h∗-
vectors that satisfy all inequalities discussed in [71]. It is unknown though if such polytopes
exist.
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Higashitani [44, Theorem 1.1] provided examples of d-dimensional polytopes with nonuni-
modal h∗-vector for all d ≥ 3. Therefore, by Theorem 4.0.3 we have examples of polytopes
that have such a h∗-vector but their f ∗-vector is unimodal. It would be interesting to know
if the opposite can be true, that is, if there exist polytopes with unimodal h∗-vector and
nonunimodal f ∗-vector. By Corollary 4.1.3, such polytopes would need to have degree at
least 6.

Whenever we are able to show that a combinatorial polynomial is unimodal, it is natural
to ask whether the polynomial satisfies stronger properties, such as log concavity or real-
rootedness. It would be interesting if one could extend, e.g., Proposition 4.1.1 along these
lines.

Finally, starting with Stapledon’s work [71], there has been much recent attention to
symmetric decompositions of h- and h∗-polynomials; see, e.g., [7, 9] and, in particular, [25]
where analogous decompositions for f -vectors are discussed. We believe this line of research
is worthy of attention with regards to understanding f ∗-vectors and the inequalities that
hold among their coefficients.

6.3 Signed Poset Polytopes

At the end of Chapter 5, we noted that for the signed chain polytope definition given, there
is no analogue for Theorem 5.6.1 [67], stating that for a classical poset Π, C(Π) and O(Π)
have the same h∗-polynomial. The definition we give in Chapter 5 has the advantages of
always giving reflexive polytopes and working well with a definition of signed antichains,
but we wonder if there is an alternate definition of signed chain polytopes that gives rise to
an analogue for Thereom 5.6.1. Our current definition does not take roots of the form ±ei
(denoted as loops in the bidirected graph representation) into acount, so perhaps a definition
that does take these into account would be of interest.

It is currently unknown if classical order polytopes always have unimodal h∗-polynomials;
it would be of interest to continue to make headway towards this difficult problem in the
signed order polytope case.
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Acad. Sci. Paris 254 (1962), p. 616.

[38] Eugene Ehrhart. “Sur un problème de géométrie diophantienne linéaire. I. Polyèdres
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