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Abstract

Decades of research in decision making have established that
there are some situations where human judgments cannot be
modelled according to classical probability theory. Yet if we
abandon classical (Bayesian) probability theory as an overar-
ching framework for constructing cognitive models, what do
we replace it with? In this contribution we outline a way to di-
vide the space of possible computational level models of prob-
abilistic judgment into a hierarchy of levels of increasing com-
plexity, with classical Bayesian probability models occupying
the lowest level. Each level has a unique experimental sig-
nature, and we examine which level is best able to describe
human behavior in a particular probabilistic reasoning task.
Keywords: Probabilistic reasoning, disjunction fallacy, quan-
tum theory.

Introduction
2017 marks 35 years since the publication of the volume
“Judgment under Uncertainty: Heuristics and Biases” edited
by Kahneman, Slovic and Tversky (1982), which has since
become a seminal text for those interested in violations of
normative reasoning. The years since have seen a great deal
of research aimed at better understanding the conditions un-
der which human decision makers do or do not make ‘norma-
tive’ decisions, that is, decisions that can be thought of as be-
ing ‘correct’ by some measure. Note that in this contribution,
in common with many other studies, we take the definition of
‘normative’ to be essentially equivalent to compatibility with
classical/Bayesian probability theory. That is, behaving in a
normative way is less about providing judgments that are ‘ac-
curate’ in the sense of reflecting real likelihoods, and rather
about self consistency (Oaksford & Chater, 2009).

Despite the large amount of research that has been done to
understand when and why these deviations from normative
prescription occur, there are some notable gaps in our un-
derstanding of the structure of non-normative judgments. In
part this has been caused by a tendency amongst researchers
to define non-normative judgments by the properties they do
not possess, ie a simple relation to an underlying probability
distribution representing a belief state. This has led to a pecu-
liar splintering of the study of decision making, most visible
in the heuristics programme, where different decision mak-
ing tasks are assumed to be executed with the aid of different
heuristics (eg Gigerenzer et al, 2015). Few have considered
the relationships between heuristics, or whether they reflect
some deeper structure.

A different approach, advocated by some adherents of the
Bayesian cognition program (see Jones & Love, 2011), has
been to deal with violations of normative (Bayesian) prescrip-
tion by including extra variables and relations that, while they
may be framed in a Bayesian way, conflict somewhat with
the spirit of the Bayesian approach. An example is provided
by Bayesian efforts to deal with order effects in probabilis-
tic inference, where, for example, decision makers may judge
p(E|A,B) 6= p(E|B,A). One possible solution is to posit that
decision makers are sensitive also to the order in which ev-
idence is presented, and that the probabilities for judgments
therefore should also be conditioned on the order of presenta-
tion. Formally this saves face for the Bayesian approach, but
it is hard to see how this does anything other than redescribe
the problem. A genuine solution to the problem of order ef-
fects would also need to explain why decision makers possess
this sensitivity, and make testable predictions.

What we want to do in this contribution is approach the
problem from a different angle. Suppose we assume that
there is some sort of computational structure underlying non-
normative behaviour, presumably that can be understood as a
generalisation of the Bayesian approach, and we ask whether
we can constrain the structure of this theory in some way.
Specifically, can we derive predictions that are sensitive only
to some general fact about the structure of the theory and not
to the precise details? If we can do this we can perhaps sketch
out a space of acceptable computational level theories which
can then be investigated in more detail by other means.

This approach is inspired in part by recent work in the field
of quantum cognition (Pothos & Buseyemer, 2013), which
is the attempt to use the formal probability theory derived
from quantum physics to describe human decision making.
The advantage of such an approach, so proponents claim, is
that quantum probability theory is a formal, all encompassing
framework that is nevertheless able to account for deviations
from classical, Bayesian, behaviour. However quantum prob-
ability theory has a very particular structure (see Busemeyer
& Bruza 2012), and it is not obvious that this is either nec-
essary or sufficient to explain human behaviour. The study
reported here can therefore be thought of as an attempt to test
the sufficiency of the quantum approach for explaining cer-
tain types of non-normative behaviours. However it is also
much more general, since we will see that quantum theory
is just one example of a specific class of models sharing the
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same structural properties. In order to avoid getting bogged
down in arguments about the suitability of quantum theory
to describe human decision making, we will avoid making
reference to specific computational models beyond classical
probability theory.

The rest of this contribution is structured as follows: In
Section 2 we explain how we can situate different computa-
tional level models of decision making in a hierarchy, and we
show that classical and quantum probability theories belong
to two different levels, each with a unique experimental sig-
nature. In Section 3 we describe an experiment designed to
test which level in the hierarchy is necessary and sufficient to
explain human behaviour in a particular probabilistic reason-
ing task. In Section 4 we conclude and outline some future
directions.

A Hierarchy of Formal Theories
Given two disjoint events, A and B, a key property of classical
probability theory is that the probability of the disjunction,
A∪B is equal to the sum of the probabilities of the individual
events. This can be generalised for an arbitrary number of
disjoint events as,

p(∪iAi) = ∑
i

p(Ai) (1)

This result expresses the property of classical probability
known as linearity (more formally σ-additivity, Kolmogorov,
1933/1950). Classical probability models are therefore exam-
ples of linear models mapping events to probabilities.

In order to allow for the possibility of response errors it is
useful to generalise this notion somewhat. Suppose we con-
sider a more general class of models where, p(A) = f (A)+ε,
where ε is a constant. We will call these models linear if,

f (∪iAi) = ∑
i

f (Ai) (2)

Classical probability theory is obviously a special case of
these linear models. These models can be used to capture the
idea that judgments are noisy, so for example the probability
assigned to the null event is not 0. They can also capture sim-
ple types or response biases, for example an aversion to using
the endpoints on a response scale.

It is important to note that general linear models can violate
some properties of classical probability theory. For example
for two disjoint events A,B we have,

p(A∪B) = f (A∪B)+ε= f (A)+ f (B)+ε= p(A)+ p(B)−ε

(3)
Which is a violation of the classical law for disjoint events.
However it is easy to see that any law of classical probability
that is violated by a general linear model will be violated by
some multiple of ε, and so these sorts of effects are easy to
spot. In particular, consider the quantity,

I2(A,B) = p(A∪B)− p(A)− p(B) =−ε (4)

We call expressions of this form ‘interference’ terms, because
of the analogy with quantum models. In a simple classical
probability theory model this quantity is 0. In a general linear
model this term is no longer zero, but it is instead equal to
some constant which should be the same for all events A,B.
The way to test the general class of linear models is therefore
to examine different sets of events and test whether I2(A,B)
depends on the alternatives under consideration. This gener-
alises the notion of the failure of a simple classical model.

The occurrence of widespread violations of classical prob-
ability rules in decision making experiments, including con-
junction and disjunction fallacies (Tversky & Kahneman,
1983), has lead many to reject linear models as accounts of
the way human decision makers assign probabilities to events.
However few have explored proposals for concrete models
beyond linear ones.

A natural generalisation of linear models is to consider
those which contain a bilinear term. The appropriate gen-
eralisation is to have,

p(A) = g(A,A)+ f (A)+ ε (5)

where f (·) is linear as above, and g(·, ·) is linear in both its
arguments,

g(∪iAi,B) = ∑
i

g(Ai,B), g(A,∪iBi) = ∑
i

g(A,Bi), (6)

If we now consider the probability assigned to the disjunction
A∪B we see,

p(A∪B) =g(A∪B,A∪B)+ f (A∪B)+ ε

=g(A,A)+g(B,B)+g(A,B)+g(B,A)

+ f (A)+ f (B)+ ε

=p(A)+ p(B)+g(A,B)+g(B,A)− ε

(7)

Considering again the quantity I2(A,B) we see,

I2(A,B) =p(A∪B)− p(A)− p(B)

=g(A,B)+g(B,A)− ε
(8)

which is generally non-zero, but also crucially will depend
on A and B, allowing us to distinguish bilinear models from
linear ones.

Although we will not prove this here, the class of bilinear
models includes quantum theory as a special case (Sorkin,
1994). However clearly this framework is more general than
any specific model.

Once we have made the choice to step beyond linear mod-
els, a whole world of possibilities is opened up. Why stop
at bilinear models? Why not consider a model containing a
trilinear a function h(A,B,C)? The answer is that such mod-
els are possible, and in the same way that the quantity Eq.(8)
provides us with a way to test between linear and bilinear
models, a generalisation of this lets us distinguish between
bilinear models and more complicated theories.
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This rule comes from exploring what happens when we
have three possible disjoint events A,B,C. Because g(A,B) is
bilinear it is straightforward, if tedious, to show,

p(A∪B∪C) =p(A∪B)+ p(B∪C)+ p(A∪C)

− p(A)− p(B)− p(C)+ ε
(9)

So if we define an analogue of I2(A,B) for three events,
I3(A,B,C), then we have,

I3(A,B,C) =p(A∪B∪C)− p(A∪B)− p(B∪C)− p(A∪C)

+ p(A)+ p(B)+ p(C)

= ε

(10)

so this three way interference term is constant for all events
A,B,C if the underlying model is bilinear. This does not hold
in higher order theories, such as ones based on a trilinear
function (Sorkin, 1994). Therefore this provides a test of bi-
linear models versus more complex theories. Note also that
this relation holds trivially for a linear model.

Although we will not show it here, it is straightforward to
prove by induction that at every level in this hierarchy of pos-
sible model types there is a corresponding interference term
In(A,B,C...) which is constant for any model at that level or
below (Sorkin, 1994). In other words we can make a very
general statement; The experimental signature of a level n
model (ie a model based on a ‘n-linear’ function) is that a)
The quantity In(A,B,C...) depends on the events A,B, ..., but
b) the quantity In+1(A,B,C...) is constant.

We know from previous work that any theory that can cap-
ture human behavior, in particular disjunction fallacies, must
be at least level two. The question is whether a level two
theory is also sufficient, that is, whether there are particu-
lar effects in human decision making that arise when consid-
ering three alternatives. We will provide experimental evi-
dence below that a level two theory is sufficient to explain
behavior in a particular decision making task, however we
can also motivate sufficiency on general grounds. Looking
at the structure of Eq(8) for a bilinear theory, we see that the
important terms involve the general function g(·, ·) evaluated
on two different events, A,B. This framework is a computa-
tional level account, but presumably such a term must arise
from a process level account wherein the two events A,B are
processed in parallel. In contrast a linear theory only ever in-
volves functions with a single argument, and thus would not
require a process level account with simultaneous consider-
ation of multiple events. This strongly suggests that there is
a specific sense in which a bilinear model requires a more
complex underlying process to instantiate it. By analogy, the
analagous term in a level n model will involve a function of n
arguments, and, presumably, would require a process model
in which n events are considered in parallel.

If a higher order computational theory requires a more
complex underlying process to produce it, then we can ar-
gue on general grounds that it is unlikely that human deci-
sion making is described by a theory of very high order. Of

course, this argument does not tell us whether to expect a bi-
linear, trilinear etc model, only that a lower level is likely to
be preferred over a very high one. The question of exactly
what level is needed is an empirical one, which we shall now
examine.

Experiment
We want to test the hypothesis that a bilinear model is nec-
essary and sufficient to capture non-normative effects in hu-
man probabilistic reasoning. To do this we need to find sets
of at least three disjoint alternatives such that are robust two
way disjunction fallacies, in the sense that the interference
term I2(A,B) depends on the events A,B. Our approach will
be to set up three scenarios, each with three disjoint events,
and show that the term I2(A,B) can be manipulated by in-
troducing joint causes for some of the events. This will prove
that a cognitive model capturing these judgments must be at
least bilinear. We will then examine the higher order inter-
ference term I3(A,B,C) in each scenario to check that a bi-
linear model is sufficient. The joint causes we will introduce
will either cause the three events to be grouped into two nat-
ural sets, with one element shared between sets, or into one
set with one singleton event. There are therefore two differ-
ent ways of presenting each scenario, so we run each as a
between participants condition.

Methods
We recruited 300 participants, equally split into two between
participants counterbalancing conditions. Recruitment was
through Amazon Mechanical Turk, restricting geographical
location to North America. Participants required approxi-
mately 20 minutes to complete the task and they were com-
pensated $1 for their time.

Both conditions consisted of three scenarios and each sce-
nario described a hospital ward in a fictional town, special-
izing in a particular type of ailment. For example partici-
pants were told of a cancer ward, treating only patients of
three types, those with lung cancer, stomach cancer, or throat
cancer. For each scenario, participants were given some in-
formation creating a common cause between ailment pairs.
For example, in one case participants were told that throat
and lung cancers are caused by smoking, but throat and stom-
ach cancers by alcoholism. Some rationale was provided to
justify each association between ailments. All relations were
constructed to look semi-plausible (the authors independently
assessed this), but we did not aim for medical accuracy. The
between participants condition implemented a counterbalanc-
ing manipulation, that presented the same scenarios but var-
ied the common causes.

Participants went through each scenario in a blocked for-
mat presentation, so that, for example, no information about
a subsequent scenario would be presented prior to finishing
all questions relevant to the current scenario (scenario order
was randomized). The block for each scenario had analogous
format. Participants were first presented with the informa-
tion about the hospital ward, the ailments treated there, and
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the causal relations. Subsequently participants went through
four or five multiple choice questions testing knowledge of
the causal relations. The questions were meant to be straight-
forward and answerable on the basis of simple understanding
of the presented information. Participants received corrective
feedback, specifically if they responded incorrectly they were
told so and asked to try again until they answered correctly
(there were more than two alternatives for each question).

Once the training part was over, participants were told that
they would be asked to make judgments about the propor-
tion of various categories of patients at the fictional hospital.
With each question, the text describing the hospital ward and
the causal dependencies was included so that participants did
not have to memorize anything, just understand the informa-
tion provided. Each of the questions was prompted with the
statement that each patient was brought to the hospital ward
for only a single type of ailment (e.g., a single cancer type
or a single fracture, depending on the scenario). Then, par-
ticipants were asked to indicate on a 0 (None of them), to
100 (All of them) slider the proportion of patients likely to
be admitted for ailment A in some questions, A or B in other
questions, and A or B or C in another question; note, each
combination of possibilities was shown only once. The triple
disjunction was implemented as a catch question, since the
total number of patients was fixed at 100. An additional three
catch questions were included, where participants were just
told to select a particular response, as a check that they were
paying attention.

After participants finished responding to the questions for
the three scenarios they were given a version of the the Cogni-
tive Reflection Test (Frederick, 2005). The CRT is designed
to discriminate between participants adopting either a more
intuitive or a more deliberative thinking style (Toplak et al.,
2011). The CRT has previously been shown to correlate well
with measures of non-normativity in probabilistic judgments
such as conjunction fallacies (Yearsley et al, 2016).

Aside on the physical analogue of this experiment It may
be useful for those familiar with interference in physics to
outline the analogy between this phenomena and ‘interfer-
ence’ effects in human probabilistic decision making. This
might help to motivate some of the experimental design, but
this subsection can be safely skipped by any reader who
wishes.

In the classic two slit interference experiment a particle can
arrive at a given point via one of two paths. In quantum theory
because of the wave-like nature of particles two things hap-
pen: 1) The particle in some sense (which we don’t intend
to make precise here) takes ‘both’ paths, and 2) The phase
of the particle’s wave-function depends on the details of the
paths taken. By choosing the paths in a particular way we can
cause the two paths to interfere in either a constructive way
(so that the total probability of arriving at a point is greater
than the sum of the probabilities to follow either path) or a
destructive way (so that the total probability of arriving at a
point is less than the sum of the probabilities to follow either

path.)
The analogy in decision making is that a disjunction A∪B

of two disjoint events can happen in one of two ways. By
manipulating the information we give about the events, for
example by introducing a possible common cause, we can,
empirically, cause the disjunction to be judged more likely
than the sum of the probabilities for the individual events.
This is the analogue of constructive interference in the physi-
cal set up. This helps us understand why the key experimental
manipulation is essentially the stories we tell about the rela-
tionship between the different ailments. A pictorial represen-
tation is given in Fig 1.

Of course, this analogy is not meant to constitute a formal
theory of quantum cognition, but such a theory can be for-
mulated (Busemeyer & Bruza, 2011; Yearsley & Busemeyer,
2016).

Figure 1: Sketch of the analogy between the physical experiment
and the decision making one. a) In a physical interference experi-
ment, a quantum state can take one of three possible paths to a de-
tector, and the different alternatives interfere. b) In our experiment,
a patient ends up in a hospital ward due to one of three ailments.
c) A pictorial representation of the different ailments for Condition
1. In Scenario 1 the three ailments were Lung, Throat and Stom-
ach cancers. Lung and Throat cancers were linked (smoking), and
Throat and Stomach cancers were linked (alcoholism). In Scenario 2
the three ailments were auto accidents, alcohol poisoning, and falls.
Auto accidents and alcohol poisoning were linked (young people)
and falls (old people) was a singleton. For Scenario 3 the ailments
were fractures to wrists, ankles, or lower legs. Wrist and ankle frac-
tures were given a common cause (everyday falls) and angle and
lower leg fractures likewise (playing sports).

Results
There are two critical tests to perform; firstly we must check
that the two way interference terms I2(A,B) vary depend-
ing on the events in each scenario and condition. Second,
we must examine three way interference I3(A,B,C) for each
scenario and condition. In this contribution, we only re-
port Bayesian statistical tests that were performed using JASP
(JASP team, 2016). In particular we report Bayes factors for
the alternative versus the null hypothesis, so that values > 1
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indicate evidence for the alternative hypothesis.
Recall that the two way interference term I2(A,B) =

p(A∪ B)− p(A)− p(B). To check the behaviour of these
terms we perform a Bayesian RM ANOVA, with scenario and
event pair as the repeated measures, and the counterbalancing
condition as a between subjects factor. We omit the CRT from
this analysis to save space, but there are no interesting effects
of CRT. The analysis of effects is shown in Table 1.

Table 1: Analysis of effects for Bayesian Repeated Measures
ANOVA of two way interference terms

Effect p(incl) p(incl|data) BFInclusion
Scenario 0.737 1.000 2.44×104

Condition 0.737 0.999 2.49×102

Pair 0.737 1.000 “∞”
Scenario*Condition 0.316 0.998 1.37×103

Scenario*Pair 0.316 1.000 2.11×104

Condition*Pair 0.316 0.998 1.35×103

Scenario*Condition*Pair 0.053 0.998 1.12×104

Recall that if the best description of this situation is via a
linear model, ie if non-normative effects are either absent, or
due only to response error, then we expect to see no effect of
scenario, condition or pair. In contrast JASP actually returns
a BF of inclusion for the pair variable of ∞, indicating an
extremely large effect of pair. The other variables, and all
the interaction terms, all have large Bayes factors. The large
Bayes factors for the interaction terms are unsurprising given
the experimental design - the difference between the same
scenario in a different condition and a different scenario in
the same condition is really a matter of convention.

This analysis shows that a model beyond a linear one is
needed to explain these data. Now we perform the analogous
test for I3(A,B,C) to check if a bilinear model is sufficient.

Recall the three way interference term for each scenario is
computed as I3(A,B,C) = p(A∪B∪C)− p(A∪B)− p(B∪
C)− p(A∪C)+ p(A)+ p(B)+ p(C). To check the behaviour
of these terms we perform a Bayesian RM ANOVA, with sce-
nario as the repeated measure, and the counterbalancing con-
dition and CRT as between subjects factors. The analysis of
effects is shown in Table 2.

Table 2: Analysis of effects for Bayesian Repeated Measures
ANOVA of three way interference terms

Effect p(incl) p(incl|data) BFInclusion
Scenario 0.737 0.313 0.163
Condition 0.737 0.407 0.245
CRT 0.737 0.141 0.059
Scenario*Condition 0.316 0.299 0.923
Scenario*CRT 0.316 2.92×10−4 6.33×10−4

Condition*CRT 0.316 0.003 0.006
Scenario*Condition*CRT 0.053 2.2×10−7 3.97×10−6

The results are striking; none of the Bayes factors for in-
clusion are greater than 1, indicating that no model contain-
ing any combination of these effects is preferred over a null
model. The conclusion then is that the terms I3(A,B,C)

are constant - they do not vary when we manipulate com-
mon causes implied for the events in the way that the terms
I2(A,B) do. This implies that a bilinear model is sufficient
to explain these effects.

The lack of a significant effect of the CRT is actually re-
assuring; recall that the terms I3(A,B,C) should be constant
regardless of whether a decision maker is using a linear (clas-
sical) or bilinear (quantum) model. The CRT has previously
been associated with the strength of various measures of non-
normativity (Yearsley et al, 2015) and the fact that it is not
predictive here suggests that these effects behave very dif-
ferently from other measures such as the size of conjunction
fallacies.

Conclusions and Future Directions
The empirical finding of so-called probabilistic fallacies in
decision making has led to an intense debate over how much
(if any) of human cognition should be understood in terms of
the principles of classical, Bayesian, probability theory (Tver-
sky & Kahneman, 1983). Those who believe these findings
cast doubt on the applicability of classical probability the-
ory have tended to respond by abandoning all together the
idea of a formal probabilistic framework for decision mak-
ing. Recent advances in applying quantum probability theory
to modelling human decision making (Pothos & Busemeyer,
2013) raise the possibility that all (or most) of human cogni-
tion can be understood in formal probabilistic terms, but the
appropriate approach is not classical probability theory but
quantum probability.

However at least one objection to using quantum probabil-
ity theory (there are many) is that it is unclear how exactly
this expands the space of possible models. Most accounts of
the relationship between quantum and classical models tend
to focus on the issue of incompatibility, but this is notori-
ously hard to make precise. In addition, it is far from clear
that quantum probability theory is the only way to generalise
classical probability to include incompatible events.

What we have tried to do in this paper is to show how we
may take a particular approach to divide up the space of pos-
sible computational level accounts of interference effects in
decision making. The space of models is split into differ-
ent levels, of increasing complexity in the sense of higher
level interference effects. Classical probability theory, and its
generalisations in the form of linear models, occupy the low-
est level of this hierarchy, whereas bilinear models such as
quantum theory sit at the next level up in complexity. Above
these bilinear models are an infinite number of different lev-
els, although we can argue on general grounds that we expect
human behavior to be characterised by a relatively low level
model.

Each level in the hierarchy has a unique experimental sig-
nature, and we used this to show that behavior in a partic-
ular probabilistic reasoning task is consistent with a bilin-
ear theory. Of course, whether all current examples of non-
normative probabilistic reasoning are likewise consistent with
a bilinear model is an open question. This level consists of
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theories where interference between alternatives is computed
pairwise. Quantum theory is situated at this level, however
our approach is not able to distinguish between different mod-
els in a given level. Further work, for example looking at con-
straints obeyed by quantum theory but not other non-classical
probability theories, could address this.

We finally want to outline some future directions for re-
search. One important question is how well our findings gen-
eralise when we consider different kinds of relationships be-
tween events. In our scenarios different ailments were related,
if at all, by common causes, for example smoking can cause
both lung and throat cancer. This means that the associated
interference terms I2(A,B) = p(A∪B)− p(A)− p(B), tend
to be positive. It would be useful to show that we can generate
negative interference terms by implying the appropriate rela-
tionships between conditions, and check that our conclusions
still hold. Another future direction would be to extend this
approach to other areas of cognition where quantum models
have been proposed, for example perceptual decision making.

Another future direction is to try and extend this analysis
to models which fall just outside our framework. One such
example is the classical probability plus noise model due to
Costello and Watts (2014). They propose a general linear
model but with an error term which, rather than be a con-
stant, depends on the type of event being considered, eg a
single event, a conjunction or disjunction etc. The idea is that
more complex events are associated with larger error terms,
and they showed this can lead to conjunction fallacies in par-
ticipants responses, even though the underlying belief states
obey classical probability theory. This theory has a slightly
different experimental signature from linear or bilinear mod-
els, but it can still be tested against them in a similar way. The
results of this analysis will be presented elsewhere.

Acknowledgments
JMY was supported by NSF grant SES-1556415. EMP was
supported by Leverhulme Trust grant RPG-2015-311 and IB
by H2020-MSCA-IF-2015 grant 696331.

References
Busemeyer, JR & Bruza, P (2011). Quantum models of cog-

nition and decision. CUP: Cambridge, UK.
Costello, F. & Watts, P. (2014). Surprisingly rational: Prob-

ability theory plus noise explains biases in judgment.
Psychological Review, 121(3):463?480.

Frederick, S (2005). Cognitive reflection and decision mak-
ing. Journal of Economic Perspectives. 19, 25-42.

Gigerenzer, G, Hertwig, R & Pachur, T (eds.) (2015). Heuris-
tics: The foundations of adaptive behavior. (OUP).

JASP Team. (2016). Jasp. Retrieved from https://jasp-
stats.org

Jones, M. & Love, B. C. (2011). Bayesian fundamentalism
or enlightenment? On the explanatory status and theo-
retical contributions of Bayesian models of cognition.
Behavioral and Brain Sciences, 34, 169, 231.

Kahneman, D, Slovic, P & Tversky, A. (eds) (1982). Judg-
ments under uncertainty: Heuristics and biases. (CUP,
UK)

Kolmogorov, AN (1933/1950). Foundations of the theory of
probability. N.Y. Chelsea Publishing Co.

Oaksford, M. & Chater, N. (2009). Prcis of Bayesian ratio-
nality: the probabilistic approach to human reasoning.
Behavioral and Brain Sciences, 32, 69-120.

Pearl, J (1988). Probabilistic reasoning in intelligent systems:
Networks of plausible inference. Morgan Kaufmann.

Pothos, E. M. & Busemeyer, J. R. (2013). Can quantum
probability provide a new direction for cognitive mod-
elling? Behavioral & Brain Sciences, 36, 255-327.

Sorkin, RD (1994). Quantum mechanics as quantum measure
theory. Mod. Phys. Lett. A, 09, 3119.

Toplak, ME, West, RF, Stanovich, KE (2011). The Cogni-
tive Reflection Test as a predictor of performance on
heuristics-and-biases tasks. Memory & Cognition. 39,
1275-1289.

Tversky, A., & Kahneman, D. (1983). Extensional versus in-
tuitive reasoning: The conjuctive fallacy in probability
judgment. Psychological Review, 90, 293-315.

Yearsley, JM & Busemeyer, JR. (2016). Quantum cognition
and decision theories: a tutorial. Journal of Mathemat-
ical Psychology. 74, 99-116.

Yearsley, JM, Trueblood, JS & Pothos, EM (2016). When are
representations of causal events quantum versus clas-
sical? In Papafragou, A., Grodner, D., Mirman, D., &
Trueswell, J.C. (Eds.) (2016). Proceedings of the 38th
Annual Conference of the Cognitive Science Society.
(pp. 2447-2452). Austin, TX: Cognitive Science Soci-
ety.

3577




