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Abstract 

Molecular mechanisms governing the balance between alveolar proliferation 

and differentiation in the mammary gland. 

Julien Menendez 

The goal of my thesis work was to resolve the molecular mechanisms governing 

mammary gland alveologenesis during pregnancy. Alveologenesis is the essential 

process by which alveolar progenitor cells undergo rapid expansion during early 

pregnancy and subsequent differentiation into mature milk-producing alveolar cells 

during late pregnancy, generating a functional mammary gland capable of providing 

nourishment for offspring. How the mammary gland maintains a balance between 

massive proliferation and functional differentiation, however, remains unclear. Here, 

we show that the mammary gland couples proliferation with differentiation by means 

of endoreplication, the cellular process of replicating DNA in the absence of cell 

division to generate a polyploid cell. Through pharmacological inhibition and 

transgenic loss-of-function studies, we show that the DNA damage response to 

replication stress is activated during the rapid proliferation of early pregnancy. This, 

in turn, results in early mitotic arrest through WEE1-mediated CDK1 inhibition and 

subsequent endoreplication during early lactation, generating a population of 

terminally differentiated polyploid alveolar cells that are essential for efficient milk 

production. Furthermore, Notch signaling has long been known to be essential for 

maintenance of the alveolar progenitor population, and it must be attenuated to 

achieve alveologenesis. Despite the importance of Notch signaling, however, the 

mechanisms that regulate Notch activity to ensure proper alveolar proliferation and 



 ix 

differentiation during pregnancy are not well understood. Through transgenic loss-of-

function and 3D organoid studies, our preliminary data suggest ROBO2 functions 

from the luminal epithelial compartment to promote expression of the Notch ligand 

JAG1 in the basal epithelial compartment, potentially through the direct inhibition of 

ROBO1 in basal cells. This, in turn, induces the Notch activity of alveolar progenitor 

cells in a juxtacrine manner, maintaining them in the progenitor state to inhibit their 

differentiation. Moreover, our preliminary data also suggest NOTCH1 activation 

inhibits the DNA damage response to replication stress and alveolar endoreplication 

through the interaction of its intracellular domain with the DNA damage response 

kinase ATR. Taken together, the results of my thesis work elucidate multiple 

molecular mechanisms by which the mammary gland achieves a balance between 

the rapid proliferation of alveolar progenitor cells and their functional differentiation 

into mature milk-producing alveolar cells during late pregnancy and lactation.
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1 

Chapter 1: Physiological DNA Damage Promotes Functional Polyploidization 

of Mammary Gland Alveolar Cells During Lactation. 

 

Introduction 
 

1. Homeostasis control in developing tissues. 

Developing tissues undergo phases of rapid cell proliferation. In order to achieve 

proper tissue size, function and homeostasis, cell proliferation must be arrested at a 

certain point, as uncontrolled proliferation can lead to loss of tissue integrity or 

carcinogenesis. For this reason, there exist fundamental mechanisms of limiting cell 

proliferation: senescence, apoptosis and terminal differentiation. Senescence refers 

to an irreversible arrest of proliferation and the secretion of numerous biological 

factors, such as proinflammatory cytokines, growth factors and protease, which alter 

the tissue microenvironment. While senescence is implicated in promoting tissue 

remodeling during development (Muñoz-Espín et al., 2013; Storer et al., 2013), the 

accompanying alterations in microenvironment have also been associated with tumor 

progression, age-related degenerative pathologies, type 2 diabetes, and the 

induction of senescence in neighboring cells through paracrine signaling (Acosta et 

al., 2013; Baker et al., 2011; Coppé et al., 2008; Krtolica, Parrinello, Lockett, 

Desprez, & Campisi, 2001; Laberge, Awad, Campisi, & Desprez, 2012; D. Liu & 

Hornsby, 2007; Minamino et al., 2009; Sone & Kagawa, 2005). Apoptosis or 

programmed-cell death, on the other hand, is the selective and controlled physical 

elimination of unnecessary or undesirable cells, and it plays a vital role in shaping 
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overall tissue size and organization during embryogenesis, post-natal development 

and homeostasis (Glücksmann, 1951; Jacobsen, Weil, & Raff, 1996; Kerr, Wyllie, & 

Currie, 1972; D. Macias et al., 1997; Monier et al., 2015; Nakao, Shinoda, Nakai, 

Murase, & Uyemura, 2002; Pampfer & Donnay, 1999). By their very nature, 

senescence and apoptosis would be deleterious to tissues that must undergo rapid 

expansion to accomplish a specialized function, such as the prodigious proliferation 

that occurs in the mammary gland (MG) in response to pregnancy. To circumvent 

these adverse effects, cells have evolved a different mechanism; they undergo 

terminal differentiation, the process by which a stem or progenitor cell becomes more 

specialized, losing the capacity to proliferate in the process due to highly structured 

alterations in gene expression (Chen & Dent, 2014; De La Serna, Ohkawa, & 

Imbalzano, 2006). The molecular mechanisms that couple proliferation with terminal 

differentiation during development, however, remain largely unknown, yet they must 

depend on the strict regulation of the cell cycle (Buttitta & Edgar, 2007). 

 

2. The mitotic cell cycle. 

Proliferation occurs through the mitotic cell cycle. This cycle comprises a series of 

cellular processes contributing to the duplication of a cell’s genomic DNA and its 

division, producing two identical daughter cells. It consists of four well defined 

phases: G1 (gap 1), S (DNA synthesis), G2 (gap 2) and M (mitosis). The G1 phase 

primarily entails cell growth, replication of organelles, and synthesis of RNA and 

proteins required by the DNA replication machinery in the subsequent phase. During 

the S phase, this machinery is put to use, faithfully duplicating genomic DNA to 
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generate an identical copy for each daughter cell. The G2 phase, much like G1, is a 

period of cell growth, replication of organelles, and synthesis of RNA and proteins 

required for mitosis, with the addition of the replenishment of energy stores and 

dismantling of the cytoskeleton in order to provide further resources for division. 

Together, the G1, S and G2 phases are known as interphase. The M phase can be 

subdivided into two major processes: karyokinesis and cytokinesis. During 

karyokinesis, the nuclear envelope breaks down and the duplicated genomic DNA is 

condensed into pairs of homologous chromatids, termed chromosomes, which are 

pulled apart toward opposite poles of the cell by the mitotic spindle assembly. At 

each pole, the nuclear envelope then reforms and the chromatids decondense, 

producing a single cell with two complete nuclei. During the final phases of 

karyokinesis, cytokinesis is concurrently performed, in which a contractile ring 

composed of actin and myosin forms perpendicular to the axis of the spindle and 

pinches the cell into two, dividing the cytoplasmic components. The end result of the 

mitotic cell cycle is the generation of two identical daughter cells, each with a 

complete set of chromosomes and organelles, and each capable of beginning the 

cycle again at G1. If further proliferation is unfavorable, a cell can alternatively adopt 

a quiescent state known as G0, in which it will reside until receiving the appropriate 

signals stimulating its re-entry into the cell cycle (Bruce et al., 2015). One-way 

passage through the cell cycle and timely progression from one phase to the next is 

ensured by a complex regulatory network that is conserved in most eukaryotes. 
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2.1 Cyclins and cyclin-dependent kinases (CDKs). 

The colossal task of replicating billions of DNA base pairs with high fidelity and 

equally distributing them into two daughter cells requires a plethora of highly 

specialized proteins, the activity of which must be strictly regulated. Perhaps the 

most fundamental and well characterized of such proteins are cyclin-dependent 

kinases (CDKs), serine/threonine kinases that phosphorylate various substrates to 

induce changes in their enzymatic activity or interaction with other proteins. Of the 

twenty CDKs identified in humans, only four are considered to be directly involved in 

the cell cycle, CDKs 1, 2, 4 and 6, functioning as the core machinery by which cell 

cycle phase-specific gene expression and protein modifications are modulated (Cao 

et al., 2014; Wood & Endicott, 2018; Zabihi, Lotfi, Yousefi, & Bashash, 2022). CDKs 

were named for their functional dependence on cyclin proteins, which induce their 

enzymatic activity through direct interaction. Of the twenty-nine cyclins identified in 

humans, ten are known to regulate the cell cycle through CDKs 1, 2, 4 and 6. These 

cyclins are classified into four sub-groups: D-, E-, A and B-cyclins (Cao et al., 2014; 

Wood & Endicott, 2018; Zabihi et al., 2022). The amount of each CDK is relatively 

stable throughout the cell cycle, so proper progression through and transition 

between cell cycle phases relies on the precise coordination of these cyclins through 

well-timed synthesis and degradation. 

 

2.2 Cyclin-CDK regulation of the cell cycle. 

Off all cyclins, D-cyclins are unique in the sense that they serve as the link between 

the extracellular environment and the cell cycle apparatus. In response to 
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extracellular mitogenic stimuli, such as growth factors, cytokines and extracellular 

matrix components, cells in early G1 upregulate their expression of D-cyclins (Klein 

& Assoian, 2008). D-cyclins assemble into CDK4- and CDK6-containing complexes, 

which perform the initial phosphorylation of retinoblastoma-associated (RB) pocket 

proteins (Sanidas et al., 2019; Topacio et al., 2019). This causes conformational 

changes that partially disrupt the repressor complexes they form with E2F 

transcription factors, inducing modest expression of G1/S genes including E- and A-

cyclins (Fischer & Müller, 2017; Sanidas et al., 2019; Schade, Oser, Nicholson, & 

Decaprio, 2019). Resulting E-cyclins associate with CDK2, and Cyclin D-CDK4/6 

complexes sequester the CDK inhibitor (CKI) p27Kip1 away from Cyclin E-CDK2 

complexes, resulting in their activation (Abukhdeir & Park, 2008; Fischer & Müller, 

2017; Planas-Silva & Weinberg, 1997). Cyclin E-CDK2 complexes then hyper-

phosphorylates RBs, inducing the complete disassociation of their repressor 

complexes and a positive-feedback loop that triggers passage through the restriction 

point and commitment to the G1/S transition (Fischer & Müller, 2017; Sanidas et al., 

2019). Through E2F activation and direct phosphorylation, Cyclin E-CDK2 activity 

contributes to numerous processes that are essential for S phase initiation and 

progression, such as assembly of the pre-initiation complex and histone biosynthesis 

(Fagundes & Teixeira, 2021; Tanaka & Araki, 2010; Woo & Poon, 2003). Cyclin E-

CDK2 also promotes its own degradation by the SCF ubiquitin ligase complex 

through autophosphorylation, as well as expression of A-cyclins, which bind CDK2 in 

the absence of Cyclin E (Nakayama, Hatakeyama, & Nakayama, 2001; Schulze et 

al., 1995; Welcker et al., 2003; Zerfass-Thome et al., 1997). Eventually, a threshold 
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is reached, at which point Cyclin A replaces Cyclin E to form the Cyclin A-CDK2 

complex, which is required for completion of the S phase and prevents re-replication 

through the inhibition of further replication complex assembly (Coverley, Pelizon, 

Trewick, & Laskey, 2000; Petersen, 1999). At the end of S phase, CDK1 displaces 

CDK2 to form the Cyclin A-CDK1 complex, marking entry into G2 (Limas & Cook, 

2019). While the function of this complex during G2 is still not well understood, it has 

been implicated in the G2/M transition through promotion of Cyclin B-CDK1 complex 

activation (Gong & Ferrell, 2010; Hégarat et al., 2020; Vigneron et al., 2018). Cyclin 

B-CDK1 then orchestrates M phase progression through phosphorylation of 

substrates involved in processes such as mitotic spindle assembly, chromosome 

condensation and nuclear envelope breakdown (Ding et al., 2020). One of these 

substrates is the anaphase-promoting complex (APC/C), an E3 ubiquitin ligase that 

induces the degradation of Cyclins A and B and promotes the completion of mitosis 

and cytokinesis (Fujimitsu, Grimaldi, & Yamano, 2016; M. Li & Zhang, 2009). 

 

2.3 CDK inhibitors (CKIs). 

In addition to regulation by their cyclin partners, the activity of CDKs is also 

modulated by two families of CDK inhibitor proteins (CKIs). The INK4 family of CKIs 

includes p16INK4A, p15INK4B, p18INK4C and p19INK4D. These proteins are potent inhibitors 

of CDK4 and CDK6, competing with Cyclin D for association with CDK4/6 to prevent 

progression of the cell cycle past the G1 restriction point (Cánepa et al., 2007; 

Jeffrey, Tong, & Pavletich, 2000; Sherr & Roberts, 1999). The Cip/Kip family of CKIs, 

including p21Cip1, p27Kip1 and p57Kip2, has a broader range of control over the cell 



 
 
 
 
 

7 

cycle, interacting with all the involved cyclin-CDK complexes (Besson, Dowdy, & 

Roberts, 2008). p21Cip1 is a major transcriptional target of p53 and induces cell cycle 

arrest at the G1/S and G2/M transitions in response to a myriad of stressors, such as 

DNA damage, membrane damage and oxidative stress (Amani et al., 2021; el-Deiry 

et al., 1993; Gartel & Tyner, 1999). p27Kip1, on the other hand, is primarily active in 

G0 and G1, and is rapidly downregulated upon mitogenic stimulation and entry into 

the cell cycle (Amani et al., 2021; Besson et al., 2006). p57Kip2 is the most recently 

identified and least characterized CIP/KIP inhibitor. It has been shown to play a 

unique role during embryogenesis and be the only CKI required for embryonic 

development (M. H. Lee, Reynisdóttir, & Massagué, 1995; Matsuoka et al., 1995; 

Yan, Frisén, Lee, Massagué, & Barbacid, 1997). Furthermore, the activity of CDK2 

and CDK1 is also determined by the balance of WEE1, CDC25 and 14-3-3 proteins. 

WEE1 is a kinase that phosphorylates CDK2 and CDK1 to inhibit their activity, while 

CDC25 is a family of phosphatases that activate CDK2 and CDK1 through removal 

of these phosphate groups (H. L. Smith, Southgate, Tweddle, & Curtin, 2020). 14-3-3 

proteins activate WEE1 and sequester CDC25 proteins through direct interaction, 

further inhibiting CDK2 and CDK1 activity (Gardino & Yaffe, 2011). When 

considering the massive proliferation during tissue development, it is evident that 

interplay between cyclins, CDKs and CKIs is essential to ensure proper progression 

of the cell cycle and maintain genome stability. 

 



 
 
 
 
 

8 

3. The DNA damage response (DDR). 

DNA is continuously being damaged in a variety of ways, resulting in DNA lesions 

that interfere with DNA replication, transcription and genomic integrity. Sources of 

DNA damage can be exogenous, such as ultraviolet (UV) radiation, infrared (IR) 

radiation and genotoxic chemicals, or endogenous, such as reactive oxygen species 

or replication stress (RS). To ensure homeostasis and safeguard inheritance, cells 

possess an additional network of pathways integrated within the cell cycle to avoid 

the propagation of mutations, known as the DNA damage response (DDR). The DDR 

includes both cell cycle checkpoints, which recognize DNA lesions and activate a 

signaling cascade that arrests the cell cycle, and mechanisms of DNA repair. The 

DDR is mediated by three members of the PI3K-related serine/threonine kinase 

family: DNA-protein kinase complex (DNA-PK), Ataxia-Telangiectasia mutated 

(ATM), and ATM and Rad3-related (ATR). In response to DNA damage, ATM and 

ATR signal transduction activates the G1/S, intra-S or G2/M checkpoints, whereas 

DNA-PK is primarily involved in the nonhomologous end joining (NHEJ) DNA repair 

pathway (Marechal & Zou, 2013). 

 

3.1 The ATR-mediated response to replication stress (RS). 

Unlike ATM and DNA-PK, ATR is the only DDR kinase that is essential for the 

survival of proliferating cells, and its deletion results in early embryonic lethality in 

mice and cell death in human cells (Ronco, Martin, Demange, & Benhida, 2017). 

This is likely due to the fact that, while ATM and DNA-PK primarily respond to 

double-stranded breaks (DSBs), ATR responds to a broad spectrum of DNA damage 
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implicated in intrinsic RS, although there is much overlap and redundancy between 

these two pathways (Zeman & Cimprich, 2014). RS refers to the slowing or stalling of 

replication forks, and can arise due to a variety of obstacle, such as nucleotide 

depletion, DNA lesions, DNA secondary structures, ribonucleotide incorporation and 

collision of the replication and transcription machineries (Zeman & Cimprich, 2014). 

When slowing or stalling of the replication fork occurs, MCM helicase becomes 

uncoupled from the DNA polymerase and continues to unwind double-stranded DNA 

(dsDNA), generating a length of single-stranded DNA (ssDNA) that becomes coated 

by replication protein A (RPA) (Byun, Pacek, Yee, Walter, & Cimprich, 2005; Zeman 

& Cimprich, 2014). The presence of ssDNA-RPA at a junction with dsDNA results in 

the recruitment of numerous protein complexes, including Rad17-RFC2-5, 9-1-1 and 

ATR-interacting protein (ATRIP)-ATR, and the proximity of these complexes 

ultimately allows for the TOPBP1-mediated activation of ATR (Burrows & Elledge, 

2008; Marechal & Zou, 2013; Parrilla-Castellar, Arlander, & Karnitz, 2004; Zou & 

Elledge, 2003). Active ATR, in turn, phosphorylates numerous proteins involved in 

the DDR, initiating a signal cascade. One such protein is the serine/threonine kinase 

CHK1, which phosphorylates WEE1 and CDC25 proteins to induce their activity or 

degradation, respectively, thereby promoting inhibition of CDK2 and CDK1 (Barnum 

& O’Connell, 2014; H. L. Smith et al., 2020). Furthermore, active ATR, through both 

direct phosphorylation and transactivation of CHK1, promotes the stabilization of p53 

and expression of p21Cip1, contributing an additional mechanism of CDK2 and CDK1 

inhibition (Barnum & O’Connell, 2014; Joaquin & Fernandez-Capetillo, 2012). 
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Together, these actions result in the arrest of the cell cycle at the G1/S, intra-S or 

G2/M checkpoints, allowing time for DNA to be properly repaired. 

 

In addition to inducing cell cycle arrest at checkpoints, ATR also functions to 

preserve genome integrity and stimulate DNA repair.  Through direct phosphorylation 

and transactivation of CHK1, ATR prevents the firing of late replication origins and 

promotes the replenishment of nucleotide pools to limit further replication stress. In 

addition, it facilitates the stabilization, recovery and restart of replication forks 

(Saldivar, Cortez, & Cimprich, 2017; Zeman & Cimprich, 2014). Furthermore, ATR 

phosphorylates numerous substrates involved in the recruitment and activity of DNA 

repair machinery. One such substrate is the histone H2A.X, which is phosphorylated 

in a region up to 1-2 megabases around sites of DNA damage(Ciccia & Elledge, 

2010; Ward & Chen, 2001). H2A.X can be phosphorylated by DNA-PK, ATM and 

ATR, exemplifying the overlap between DDR pathways (Clay & Fox, 2021). 

Phosphorylation of H2A.X recruits MDC1, which acts as a protein scaffold, recruiting 

chromatin modifiers that relax heterochromatin and expose the region of DNA 

damage. MDC1 also recruits the MRN complex, which binds and activates ATM to 

further amplify the signal. This results in the accumulation of repair factors to the 

vicinity of DNA damage, such as BRCA1 and 53BP1, which promote homologous 

repair and non-homologous end-joining repair pathways, respectively. While H2AX is 

not required for their localization, it plays a vital role in amplifying and maintaining the 

DDR signal to sufficiently recruit these factors (Ciccia & Elledge, 2010; H. L. Smith et 

al., 2020). Nevertheless, the ATR-mediated response to RS is not always effective at 
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repairing replication forks and DNA damage. If excessive replication fork stalling 

occurs, ssDNA can be subject to nuclease activity, resulting in further DNA lesions 

and RS (Saldivar et al., 2017; Técher, Koundrioukoff, Nicolas, & Debatisse, 2017; 

Zeman & Cimprich, 2014). 

 

3.2 The DDR and cell fate. 

The DNA damage response exists to recognize and repair DNA damage, in order to 

avoid the propagation of mutations that could lead to genomic instability, disruption 

of homeostasis and disease. In response to extensive or irreparable DNA damage, 

however, the DDR is known to promote senescence, apoptosis and differentiation to 

prevent the proliferation of damaged cells. DNA damage-induced senescence is 

mediated by p53 transactivation of p21Cip1, which inhibits CDK activity to induce 

permanent G1 arrest and senescence (Mijit, Caracciolo, Melillo, Amicarelli, & 

Giordano, 2020; Speidel, 2015). p16INK4A is also implicated in maintaining 

senescence by preventing the phosphorylation of RBs by Cyclin D-CDK4/6 

complexes, allowing RBs to recruit chromatin modifiers that silence expression of 

genes that drive cell cycle progression (Mijit et al., 2020; Narita et al., 2003). Differing 

levels of p53 appear to contribute to the decision between senescence or apoptosis, 

with increased p53 expression favoring apoptosis (Clay & Fox, 2021). DNA damage-

induced apoptosis is largely mediated by p53 transactivation of pro-apoptotic factors, 

such as Puma, Noxa and Bax (Speidel, 2015). These factors promote the 

permeabilization of the mitochondrial membrane, allowing the release of proteins that 

activate the caspase signaling cascade into the cytosol (Nakano & Vousden, 2001; 
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Shibue et al., 2006). More recently, the DDR has been shown to elicit the 

differentiation programs of several cell types, including hematopoietic stem cells, B 

lymphocyte precursors, neuronal stem cells, melanocytes and keratinocytes (A. 

Freije et al., 2014; Inomata et al., 2009; T. Li, Zhou, Ju, & Wang, 2016; Santos et al., 

2014; Schneider et al., 2013; Wang et al., 2014; Zanet et al., 2010). Despite the 

importance to genomic integrity and tissue homeostasis, the mechanisms driving 

DDR-induced differentiation remain unclear. 

 

4. Endoreplication as a link between the cell cycle and differentiation. 

Developmentally programmed endoreplication is the process by which a cell 

undergoes DNA replication in the absence of cell division, becoming polyploid, and is 

linked to terminal differentiation. The mechanisms by which endoreplication is 

achieved are diverse and vary between tissues. Endoreplication results in tetraploid 

cells (4C DNA content); however, cells can also undergo further endoreplication and 

become polyploid (>4C DNA content). This can be accomplished either by 

cytokinetic failure or early mitotic arrest (Z. Ullah, Lee, Lilly, & DePamphilis, 2009). 

During endoreplication by cytokinetic failure, a cell progresses through mitosis 

unperturbed, but fails to divide, resulting in a tetraploid binucleated cell. These 

binucleated cells can arise in several ways, such as failure to specify a cleavage 

plane due to insufficient RhoA activation or cleavage furrow ingression failure due to 

improper anchoring of the actomyosin ring (Leone, Musa, & Engel, 2018; Margall-

Ducos, Celton-Morizur, Couton, BréGerie, & Desdouets, 2007). Alternatively, 

endoreplication induced by early mitotic arrest occurs when a cell undergoes DNA 
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replication without progressing through mitosis. This results in a tetraploid, with the 

number of nuclei depending on when mitotic arrest occurred. Endoreplication 

through early mitotic arrest requires inhibition of the Cyclin B/CDK1 complex that 

facilitates progression from the G2 phase to the M phase. This can occur through 

downregulation of Cyclin B, as well as through direct inhibition of CDK1 by CKIs (Tan 

et al., 2002; Zakir Ullah, Kohn, Yagi, Vassilev, & Depamphilis, 2008; Ying Zhang, 

Wang, & Ravid, 1996). 

 

4.1 DDR-induced endoreplication. 

In addition to developmentally programmed endoreplication, the DDR has been 

shown to trigger endoreplication and terminal differentiation in several mammalian 

tissues through DDR-mediated early-mitotic arrest. This has, for the most part, been 

observed in the epidermis, which undergoes developmentally programmed 

endoreplication and is frequently exposed to exogenous sources of DNA damage. It 

was found that, while UV irradiation induces apoptosis of epidermal keratinocytes, 

sub-lethal levels of UV irradiation induce endoreplication and terminal differentiation, 

suggesting there exists a physiological threshold for DNA damage in the epidermis 

(de Pedro, Alonso-Lecue, Sanz-Gómez, Freije, & Gandarillas, 2018). Moreover, 

induction of endoreplication was also observed with oncogenic insults and genotoxic 

drug treatments that induce DNA damage, such as the c-Myc overexpression, Cyclin 

E overexpression, loss of p53 and doxorubicin treatment (A Freije et al., 2012; A. 

Freije et al., 2014; Gandarillas, Davies, & Blanchard, 2000; Rut Molinuevo, Freije, 

Contreras, Sanz, & Gandarillas, 2020). This was confirmed to be driven by the DDR, 
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and the mitotic transcription factor FOXM1 rescued the effect of genotoxic insults on 

endoreplication, suggesting it occurs through early mitotic arrest (Rut Molinuevo et 

al., 2020; R. Molinuevo et al., 2017). Intriguingly, a similar phenomenon was 

observed in keratinocytes of the oral epithelium, suggesting this mechanism may be 

conserved in tissues that are susceptible to genotoxic insult (Sanz-Gómez et al., 

2018). Furthermore, outside of the epidermis, it has also been observed that 

persistent inflammatory stimulus induces the DDR-mediated endoreplication and 

terminal differentiation of macrophage precursors (Herrtwich et al., 2016). While 

examples of DDR-mediated endoreplication and terminal differentiation are few, it is 

important to note that all are in the context of exogenous genotoxic insults, 

oncogenic transformation or chronic inflammatory conditions that promote 

hyperactivation of the cell cycle. 

 

4.2 Endoreplication during pregnancy. 

 Beyond embryogenesis, the most dramatic period of development, in both rate and 

scale, within the lifetime of an organism occurs during pregnancy. In order to foster 

the development of offspring, a mother must undergo rapid expansion of numerous 

specialized tissues in a manner that limits disruption of homeostasis and promotion 

of disease. This requirement for rapid tissue growth necessitates a strict balance 

between proliferation and differentiation. Accordingly, developmentally programmed 

endoreplication occurs in several mammalian tissues during pregnancy. In the 

placenta, trophectoderm cells undergo endoreplication and differentiate into 

trophoblast giant cells, which penetrate the uterus and promote blastocyst 
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implantation (Gardner & Davies, 1993; Hemberger, Hanna, & Dean, 2020; 

MacAuley, Cross, & Werb, 1998). Subsequently, in the uterus, stromal cells of the 

endometrium endoreplicate and differentiate into decidual cells, which further 

facilitate blastocyst implantation and vascularization (Ansell, Barlow, & McLaren, 

1974; Kirk & Clingan, 1980; SACHS & SHELESNYAK, 1955). Another example of 

pregnancy-induced endoreplication is liver growth that occurs through hepatocyte 

hypertrophy (Milona et al., 2010). Finally, in the mammary gland (MG), alveolar cells 

undergo endoreplication at the onset of lactation (Banerjee & Wagner, 1972; 

Banerjee, Wagner, & Kinder, 1971; Rios et al., 2016; G. H. Smith & Vonderhaar, 

1981). While these phenomena have long been observed and considered necessary 

adaptations for pregnancy-induced tissue development, the molecular mechanisms 

driving these endoreplication events remain poorly understood. Given the rapid 

expansion that occurs in tissues during pregnancy, however, it is tempting to 

speculate that intrinsic replication stress may be a source of DNA damage driving 

these endoreplication events. 

 

4.3 The mammary gland (MG): an endoreplicative tissue. 

The MG plays an essential role in the survival of mammalian species by producing 

milk required for the nourishment of offspring. It comprises a branched tubuloalveolar 

epithelium, embedded within the stroma-rich fat pad of the breast, that is bi-layered 

in structure, consisting of an inner layer of luminal cells and an outer layer of 

myoepithelial or basal cells. The MG is a unique organ in the sense that the vast 

majority of its development occurs postnatally in response to hormonal cues. While a 
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rudimentary ductal tree, termed an anlage, is formed at the nipple during 

embryogenesis, it remains morphogenetically static until puberty. With the onset of 

puberty, the epithelium branches out into the fat-pad of the breast, generating an 

expansive ductal network through successive elongation and bifurcation events 

(Biswas, Banerjee, Baker, Kuo, & Chowdhury, 2022; H. Macias & Hinck, 2012). 

Additionally, with each estrous or menstrual cycle, the MG flows and ebbs, 

undergoing growth and differentiation of pseudo-alveoli in preparation for pregnancy, 

followed by the regression of these pseudo-alveoli and remodeling if pregnancy does 

not occur (Biswas et al., 2022). In the event of pregnancy, the mammary gland 

undergoes a profound transformation known as alveologenesis, in which luminal 

alveolar progenitors proliferate and subsequently differentiate into polyploid alveolar 

cells that completely occupy the fat-pad and secrete milk during lactation (Banerjee 

& Wagner, 1972; Banerjee et al., 1971; Ho, Guilbaud, Blow, Sale, & Watson, 2016; 

H. Macias & Hinck, 2012; Rios et al., 2016; G. H. Smith & Vonderhaar, 1981; 

Watson, 2022). This polyploidization of the MG is conserved across mammalian 

species, including mice and humans, and it is required for efficient milk production 

(Banerjee & Wagner, 1972; Banerjee et al., 1971; Rios et al., 2016; G. H. Smith & 

Vonderhaar, 1981). Once breastfeeding is complete, in a process known as 

involution, massive cell death clears these milk-producing polyploid cells and tissue 

remodeling brings the epithelium back to a pre-pregnancy-like state (Biswas et al., 

2022; Kreuzaler et al., 2011; H. Macias & Hinck, 2012; Rios et al., 2016; Watson, 

2022). Considering the potential for multiple pregnancies, endoreplication, by 

coupling proliferation with terminal differentiation, presents a developmental 
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advantage for cell survival and tissue function. MG alveolar endoreplication has been 

suggested to require Aurora A kinase upregulation and cytokinesis failure (Rios et 

al., 2016). Although the role of Aurora A during the G2/M transition and mitotic 

spindle assembly has been extensively studied, whether it is directly implicated in 

cytokinesis remains unclear (Reboutier, Benaud, & Prigent, 2015). Therefore, the 

mechanisms regulating the transition from a proliferative mitotic cell cycle to an 

endocycle in the MG have yet to be elucidated. For my thesis work, I investigated the 

role of the DDR in mammary alveolar endoreplication during lactation. 

 

Objectives  

- Characterize the alveolar polyploid population of the MG. 

- Determine whether DNA damage plays a role in regulating mammary alveolar 

endoreplication. 

- Determine whether RS is a source of DNA damage during alveologenesis. 

- Determine the molecular mechanisms by which the cell cycle is arrested 

during alveolar endoreplication. 
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Results 
 

Endoreplication results in a heterogeneous alveolar population during 

lactation. 

Mammary alveolar cells have previously been shown to undergo endoreplication 

during lactation, a process essential for efficient milk production (Banerjee & 

Wagner, 1972; Banerjee et al., 1971; Rios et al., 2016; G. H. Smith & Vonderhaar, 

1981). How these cells become committed to endoreplication and the outcome of 

this endoreplication (in terms of DNA content and number of nuclei) remains unclear. 

It has previously been shown that a significant percentage of alveolar cells become 

tetraploid (4C) and binucleated during lactation (Ho et al., 2016; Rios et al., 2016). 

Through IHC staining and in situ 3D DNA content analysis of tissue sections from 

lactation day (LD) 5 MGs, we further detect polyploid (> 4C) mononucleated alveolar 

cells and binucleated cells containing polyploid nuclei (Figure 1.1a). Additionally, we 

detect the rare occurrence of multinucleated cells (Figure 1.1b, arrows). To better 

understand the heterogeneity of the alveolar population, we performed FACS DNA 

content analysis of the Cytokeratin-8 positive (CK8+) luminal cell population from 

MGs of nulliparous, pregnancy day (PD) 17.5, LD2 and LD5 mice (Figure 1.2a-e). As 

previously reported (Rios et al., 2016), we observe a substantial increase in the 

proportion of tetraploid cells during lactation (Figure 1.2d, e). In addition, we identify 

a novel polyploid subpopulation that arises at the end of pregnancy and expands 

during lactation (Figure 1.2c-e). Through visualization of the FACS-purified CK8+ 

population from LD5 MGs, we find ~35% of tetraploid cells are mononucleate, with 

the remaining ~65% binucleate, whereas polyploid cells are observed to be both 
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mononucleate and binucleated in a ~ 50/50 ratio (Figure 1.2f, g). Together, these 

results demonstrate mammary alveolar cells are heterogeneous during lactation with 

respect to DNA content and nuclei number. 

 

 



 
 
 
 
 

20 

 



 
 
 
 
 

21 

To further investigate the role of endoreplication during alveologenesis, we took 

advantage of the HC11 murine mammary cell line as an in vitro lactation model. This 

cell line resembles the MG in that it undergoes differentiation into milk-producing 

secretory cells when cultured in the presence of the lactogenic hormones 

dexamethasone, insulin, and prolactin (DIP, Figure 1.3a). As previously published 

(Sornapudi et al., 2018), we find ~80% of differentiated HC11 cells undergo G0/G1 

arrest, presenting 2C DNA content (Figure 1.3b, c). In addition, we identify a 

population of polyploid HC11 cells that increases during differentiation (Figure 1.3b, 

c). This observation suggests HC11 cells undergo endoreplication during 

differentiation, in accordance with the role of endoreplication in milk production. To 

further investigate this, we treated undifferentiated HC11 cells at 80% confluence 

with blebbistatin (Blebbi, 30uM), a myosin II inhibitor that prevents cytokinesis and 

induces endoreplication through cytokinesis failure (Straight et al., 2003). FACS DNA 

content analysis 6 hours post-treatment shows blebbistatin efficiently induces mitotic 

arrest in HC11 cells, increasing the proportion of tetraploid cells (Figure 1.4a). By 

differentiation day 3 (DIP3), cells escape the mitotic arrest imposed by blebbistatin 

and undergo further endoreplication, becoming polyploid (Figure 1.4b). Increased 

polyploidy is accompanied by an increase in the formation of milk-containing domes, 

and increased expression of the milk proteins b-Casein (Csn2) and Periplin-2 

(PLIN2), detected by RT-qPCR and ICC respectively (Figure 1.4c-f). Together, these 

data demonstrate HC11 cells endoreplicate when cell division is blocked, resulting in 

increased milk production. They are, therefore, a suitable in vitro model to investigate 

endoreplication during alveolar differentiation. 



 
 
 
 
 

22 

 



 
 
 
 
 

23 



 
 
 
 
 

24 

 



 
 
 
 
 

25 

CDK1 inhibition drives endoreplication of alveolar cells through an early 

mitotic arrest. 

Through visualization of FACS-purified subpopulations, we observe that a large 

proportion of polyploid HC11 cells were mononucleate at DIP3 (Figure 1.5a). While 

cytokinetic failure has been suggested to generate binucleated alveolar cells in vivo 

(Rios et al., 2016), the presence of mononucleate polyploid cells both in vitro and in 

vivo indicates an early mitotic arrest at the G2/M transition is also a contributing 

factor. Endoreplication through early mitotic arrest requires the inactivation of the 

mitotic regulator CDK1 (Z. Ullah, Lee, & Depamphilis, 2009). In addition, there must 

be a transition in the activity of CDK/CYCLIN complexes. CYCLIN B must be 

downregulated to facilitate CDK1 inactivation and G2/M arrest, while the activity of 

the CDK2/CYCLIN E complex must persist to allow for DNA replication (Øvrebø & 

Edgar, 2018). Accordingly, we find, during lactogenic differentiation of HC11 cells, 

CYCLIN B expression is lost while CYCLIN E expression is maintained (Figure 1.5b). 

To investigate if CDK1 inactivation is sufficient to induce endoreplication during 

lactogenic differentiation, we treated undifferentiated HC11 at 80% confluence with 

the CDK1 inhibitor Ro-3306 (5uM). FACS DNA content analysis 6 hours after 

treatment with Ro-3306 shows CDK1 inhibition efficiently induces mitotic arrest, as 

detected by the accumulation of tetraploid cells (Figure 1.6a, b). By DIP3, cells 

escape the mitotic arrest imposed by Ro-3306 and undergo further endoreplication, 

becoming polyploid (Figure 1.6c, d). Accordingly, CSN2 expression increases, as 

detected by RT-qPCR and WB (Figure 1.6e, f). These results show CDK1 inhibition 

and early mitotic arrest are sufficient to drive endoreplication during lactogenic 
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differentiation in HC11 cells, resulting in increased milk production. Through 

visualization of FACS-purified subpopulations, we observe CDK1 inhibition 

generates mono-, bi- and multinucleated polyploid cells (Figure 1.6g). In contrast, 

treatment with blebbistatin predominantly generates bi- and multinucleated cells 

(Figure 1.6g). This shows that the heterogeneity of the MG observed in vivo is 

recapitulated by CDK1 inhibition, but not by the cytokinesis failure induced by 

blebbistatin. Altogether, these results suggest early mitotic arrest imposed by CDK1 

inhibition is involved in alveolar endoreplication. 
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DNA damage during alveologenesis increases mammary alveolar 

endoreplication. 

Developmentally programmed endoreplication occurs in different mammalian tissues 

not only during pregnancy (Ansell et al., 1974; Banerjee & Wagner, 1972; Banerjee 

et al., 1971; Gardner & Davies, 1993; Hemberger et al., 2020; Kirk & Clingan, 1980; 

MacAuley et al., 1998; Milona et al., 2010; Rios et al., 2016; SACHS & 

SHELESNYAK, 1955; G. H. Smith & Vonderhaar, 1981), but also during 

organogenesis and tissue regeneration in response to injury (de Pedro et al., 2018; 

Diril et al., 2012; Herrtwich et al., 2016; Lazzeri et al., 2018; Miyaoka et al., 2012; 

Sanz-Gómez et al., 2018; Senyo et al., 2013). In addition, DNA damage induced by 

genotoxic stress has been shown to induce endoreplication and terminal 

differentiation through the activation of the G2/M cell cycle checkpoint in various 

mammalian tissues (de Pedro et al., 2018; A. Freije et al., 2014; R. Molinuevo et al., 

2017; Sanz-Gómez et al., 2018). In the MG, DNA damage occurs in alveolar cells 

during pregnancy (Xu et al., 2019), however, whether it plays a physiological role 

during alveologenesis remains unknown. To determine the extent of DNA damage 

during alveologenesis and lactation, we investigated the phosphorylation of histone 

H2A.X at Serine-139 (gH2AX), a site that is rapidly phosphorylated in the presence of 

DNA strand breaks (Fernandez-Capetillo, Lee, Nussenzweig, & Nussenzweig, 2004). 

We find gH2AX is present in CK8+ luminal cells throughout alveologenesis, with the 

peak occurring at PD10.5 (Figure 1.7a-c). In HC11 cells, gH2AX is highest in 

undifferentiated cells that are actively proliferating and lower in confluent cells during 

competency and priming (Figure 1.8a, b). However, we detect an increase in gH2AX 
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when HC11 cells underwent differentiation (Figure 1.8a, b), and phalloidin staining 

shows that gH2AX accumulates in cells forming milk domes (Figure 1.8c). These 

results suggest DNA damage plays a role in lactogenic differentiation and 

endoreplication. To investigate, HC11 cells were treated with doxorubicin (50nM), 

which induces DNA damage by inhibiting topoisomerase II during DNA replication. 

Accordingly, doxorubicin results in an increase of gH2AX 24h post-treatment (Figure 

1.9a, b). FACS DNA content analysis shows the proportion of tetraploid cells 

increases after 24h of doxorubicin treatment, indicating the G2/M checkpoint was 

activated (Figure 1.9c, d). By DIP3, an increase in polyploidization is also detected 

(Figure 1.9e, f). Visualization of the FACS-purified population illustrates that DNA 

damage-induced endoreplication generated both mono- and binucleated polyploid 

cells, recapitulating the heterogeneity observed in the MG (Figure 1.9g). 

Polyploidization is accompanied by an increase of CSN2 detected by WB (Figure 

1.9h).  
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To examine the in vivo consequences of damaging DNA during pregnancy, we 

performed contralateral intraductal injection (IDI) of doxorubicin or DMSO-containing 

vehicle into MGs at PD12.5 to extend the period of DNA damage that peaks at PD10 

(Figure 1.7b and Figure 1.10a). We observe increased gH2AX in CK8+ luminal cells 

24h post-injection with doxorubicin (Figure 1.10b, c), demonstrating doxorubicin was 

effectively delivered into the MG epithelium. FACS DNA content analysis of 

doxorubicin-injected MGs at PD17.5 shows an increase in the proportion of 4C and > 

4C luminal populations (14.86% and 47.1% increase in the overall population, 

respectively), while the 2C population decreases (5.23% decrease in the overall 

population; Figure 1.10d-f). This increase in endoreplication is accompanied by an 

increase in milk production, as detected by RT-qPCR for the expression of Csn2 

(Figure 1.10g). Collectively, these results indicate DNA damage regulates alveolar 

endoreplication through the activation of the G2/M checkpoint and, consequently, 

milk production. 
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Replication stress results in activation of the DNA damage response and 

endoreplication during alveologenesis.  

To ensure genomic stability and safeguard inheritance, cells possess a DNA damage 

response (DDR) that monitors genomic integrity throughout the cell cycle. During 

normal development, cell proliferation frequently results in activation of the DDR due 

to replication stress (Miermont et al., 2019; Zeman & Cimprich, 2014). Given the 

tremendous amount of proliferation that occurs during early alveologenesis, we 

hypothesized that replication stress may be the source of DNA damage driving 

endoreplication of mammary alveolar cells. The response to DNA damage by 

replication stress is mediated by the kinase ATR, which is activated by 

phosphorylation at Threonine-1989 (pATR) (Nam et al., 2011). By IHC staining, we 

find, similarly to gH2AX (Figure 1.7a-c), that ATR is activated at PD10.5 when 

proliferation is at its peak (Richert, Schwertfeger, Ryder, & Anderson, 2000) (Figure 

1.11a-c). However, while gH2AX decreases afterwards, pATR persists until the end 

of pregnancy, when polyploidization begins (Figure 1.11a-c). To investigate the role 

of replication stress in alveolar endoreplication, we induced it in HC11 cells through 

over-expression of CYCLIN E (CCNE1) prior to lactogenic differentiation (Figure 

1.12a). CYCLIN E is an oncogene that accelerates DNA replication during the S 

phase of the cell cycle and results in DNA damage due to replication stress (Bester 

et al., 2011; Jones et al., 2013). FACS analysis shows CCNE1 increases DNA 

replication, as measured by BrdU incorporation in HC11 cells (Figure 1.12b). In 

accordance with DNA damage accumulation due to replication stress, gH2AX and 

pATR also increase (Figure 1.12c-f). Additionally, FACS DNA content analysis 
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shows CCNE1 increases endoreplication by DIP3, as well as CSN2 detected by WB 

(Figure 1.12g-i). To investigate the effect of inducing replication stress in vivo we 

performed contralateral IDI of Hydroxyurea (Hu) or PBS vehicle into MGs at PD8.5 

and PD12.5 to encompass the peak of proliferation at PD10.5 (Richert et al., 2000) 

(Figure 1.13a), and detect increased gH2AX and pATR in the CK8+ population at 

PD13.5 by IHC staining (Figure 1.13b-d). FACS analysis of DNA content in CK8+ 

cells reveals an increase in the 4C and > 4C populations by LD5 (2% and 48% 

increase in the overall population, respectively), while the 2C population decreases 

(5.5% decrease in the overall population; Figure 1.13e-g). This increase in 

endoreplication is accompanied by an increase in Csn2 expression as detected by 

RT-qPCR (Figure 1.14a). Because we observe areas of high and low milk staining in 

a ~1cm2 section of LD2 MG tissue, we imaged the entire section, quantified milk 

staining contained within each alveolus and calculated the average integrated 

density among alveoli in the whole section. We observe a ~15% increase in milk in 

HU-injected MGs (Figure 1.14b-d). These results suggest DNA damage produced by 

replication stress is sufficient to drive endoreplication during lactation. 
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Previous studies have shown supplementation of nucleosides (Nucs) can relieve 

replication stress in cultured cells (Bester et al., 2011; Halliwell et al., 2020). To 

investigate if nucleosides reduce replication stress in vivo, we performed 

contralateral IDI of nucleosides or PBS vehicle into MGs at PD8.5 and PD12.5 again 

to encompass the peak of proliferation (Figure 1.15a), and observe decreased 

gH2AX and pATR in the CK8+ population at PD13.5 by IHC staining (Figure 1.15b-

d). FACS analysis of DNA content in CK8+ luminal cells also reveals a decrease in 

the 4C population at LD2 (22.15% decrease in the overall population), and both the 

4C and > 4C populations by LD5 (6.05% and 14.79% decrease in the overall 

population, respectively; Figure 1.15e-j). Accordingly, the 2C population increases at 

both LD2 and LD5 (9% and 49% increase in the overall population, respectively; 

Figure 1.15e-j). These results suggest nucleoside IDI relieves replication stress 

during pregnancy and inhibits the activation of G2/M checkpoint at LD2, resulting in 

decreased endoreplication by LD5. This decrease in endoreplication is accompanied 

by a decrease in Csn2 expression and a 21% decrease in milk production, detected 

by RT-qPCR and IHC, respectively (Figure 1.16a-d). Altogether, these findings 

strongly suggest replication stress during early alveologenesis causes DNA damage 

and leads to prolonged DDR. This, in turn, triggers the activation of the G2/M 

checkpoint and endoreplication of alveolar cells at the onset of lactation. 
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The DNA Damage Response regulates endoreplication via WEE1. 

CDK1 inactivation during G2/M arrest can occur through several different inhibitors. 

The Cip and Kip family of CDK inhibitors, composed of P21Cip1, P27Kip1 and P57Kip2, 

is involved in the regulation of endoreplication (Z. Ullah, Lee, & Depamphilis, 2009). 

In addition, the CDK1 inhibitor WEE1 is required for proper DNA replication and for 

the activation of the G2/M checkpoint in response to replication stress (Elbæk, 

Petrosius, & Sørensen, 2020; H. L. Smith et al., 2020). WEE1 also regulates 

endoreplication in plants (Chevalier et al., 2011; Gonzalez, Gevaudant, Hernould, 

Chevalier, & Mouras, 2007; Sun et al., 1999). To determine which of these inhibitors 

may be regulating CDK1 activity during alveologenesis, we analyzed their expression 

during pregnancy and lactation by RT-qPCR. We find expression of Cdkn1a and 

Cdkn1b, which encode for P21Cip1 and P27Kip1, respectively, remain unchanged in 

comparison to their expression in the nulliparous MG (Figure 1.17a). Conversely, 

Wee1 is upregulated during the cell proliferation occurring in early pregnancy, and 

again at LD2, during endoreplication (Figure 1.17b). RT-qPCR of FACS-purified MG 

populations demonstrates Wee1 upregulation during lactation occurs specifically in 

the luminal population (Figure 1.17c). Furthermore, we find Wee1 is upregulated in 

response to IDI of doxorubicin and hydroxyurea into the pregnant MG and 

downregulated in response to IDI of nucleosides (Figure 1.17d), demonstrating a 

direct correlation between Wee1 expression and the extent of endoreplication during 

alveologenesis. Consequently, we investigated the role of WEE1 during alveolar 

endoreplication in vivo by performing contralateral IDI of the WEE1 inhibitor Mk-1775 

or DMSO-containing vehicle into MGs at PD16.5, to capture the beginning of 
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endoreplication occurring by PD17.5 (Figure 1.2e and Figure 1.18a). FACS analysis 

of DNA content in CK8+ luminal cells reveals that injection of Mk-1775 decreases the 

4C population at LD2 (19.4% decrease in the overall population), and both the 4C 

and > 4C populations by LD5 (3.2% and 16.31% decrease in the overall population, 

respectively; Figure 1.18b-g). Accordingly, the 2C population increases at both LD2 

and LD5 (7.7% and 12.4% increase in the overall population, respectively; Figure 

1.18b-g). This decrease in endoreplication is accompanied by a decrease of Csn2 

expression and a 21% decrease in milk production, detected by RT-qPCR and IHC, 

respectively (Figure 1.19a-d).  
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Next, we generated a Wee1 conditional knock-out mouse line and deleted the gene 

specifically in luminal cells. We conditionally deleted this gene utilizing a tamoxifen-

inducible CreER system under the control of the Ck8 promoter, which also carries a 

mTmG reporter. Tamoxifen injections were performed at PD17.5 and LD2 to prevent 

potential deleterious effects caused by Wee1 loss during early alveologenesis. FACS 

analysis of GFP expression from Ck8-CreER/mTmG/Wee1fl/+ MGs at LD5 shows that 

recombination occurs specifically in the CK8+ population (Figure 1.20a, b). As 

expected, we detect decreased Wee1 expression by RT-qPCR (Figure 1.20c). FACS 

analysis of DNA content in CK8+ luminal cells at LD5 reveals a decrease in the 4C 

and >4C populations in the Ck8-CreER/mTmG/Wee1fl/+ MGs, while the 2C 

population increases (Figure 1.20d, e), showing that heterozygous loss of Wee1 is 

sufficient to prevent endoreplication. Accordingly, we detect decreased Csn2 

expression and a 52% decrease in milk production by RT-qPCR and IHC, 

respectively (Figure 1.21a-d). Together, these results demonstrate that WEE1 

mediates the DDR response to replication stress by activating the G2/M checkpoint 

and regulating alveolar endoreplication and milk production (Figure 1.22). 
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Discussion 
 

The MG alveolar population is heterogenous in regard to ploidy and nuclei 

number. 

Functional differentiation of MG alveolar cells is linked to polyploidization (Banerjee & 

Wagner, 1972; Banerjee et al., 1971; Rios et al., 2016; G. H. Smith & Vonderhaar, 

1981). Polyploidization is thought to benefit tissues by (1) amplifying copy number for 

the more efficient production of RNA and proteins and (2) creating large cells that 

improve resistance to mechanical tension (Zanet et al., 2010): both important in the 

MG, which serves to produce milk and contracts in response of oxytocin. In addition, 

it has also been suggested that polyploid cells may be more susceptible for removal 

during involution, once breastfeeding is complete (Kreuzaler et al., 2011; Rios et al., 

2016; Watson, 2022). Previously, the spotlight has primarily been placed on alveolar 

cells that are tetraploid (4C) and binucleated during lactation (Ho et al., 2016; Rios et 

al., 2016). Here, however, we show that MG alveolar cells are heterogenous in 

regard to ploidy and nuclei number (Figure 1.1 and Figure 1.2). This alludes to the 

benefits of polyploidization lying primarily in increased DNA content, regardless 

nuclear morphology. Furthermore, we also show that endoreplication occurs in HC11 

cells in response to lactogenic differentiation and regulates milk production, thus 

identifying a suitable in vitro model that will be of use for further investigation into MG 

alveolar polyploidization. 

 

The DDR to intrinsic RS drives MG alveolar endoreplication. 
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In this study, we show the pathway to polyploidization in the MG via induction of 

differentiation through the DDR is also a response that limits proliferation of 

damaged cells in a context where senescence or apoptosis would be deleterious to 

tissue integrity and function. Our results demonstrate polyploidization in the MG is 

achieved through an early mitotic arrest imposed by activation of the DDR-mediated 

G2/M checkpoint. Although this type of functional endoreplication resulting in cell 

differentiation has been shown to occur in the context of exogenous genotoxic 

insults, oncogenic transformation or chronic inflammatory conditions (de Pedro et al., 

2018; González-Rosa et al., 2018; Herrtwich et al., 2016; Sanz-Gómez et al., 2018), 

we identify an unconventional trigger, in which intrinsic DNA damage, accumulated 

due to RS during the massive proliferation of early pregnancy, drives alveolar 

functional polyploidization at the onset of lactation (Figure 1.22). This suggests DNA 

damage is not only an insult to genomic integrity and a potential source for 

carcinogenesis, but also an inevitable consequence of cell proliferation that can 

determine cell fate. Therefore, by coupling proliferation with terminal differentiation, 

endoreplication through the activation of the G2/M checkpoint presents a 

developmental advantage for cell survival and tissue function. 

 

WEE1 regulates DDR-mediated MG alveolar endoreplication. 

CDK1 inhibition is one of the key drivers of endoreplication, and various CDK1 

inhibitors have been shown to regulate polyploidization in mammalian tissues (Z. 

Ullah, Lee, & Depamphilis, 2009). Our study demonstrates CDK1 activity in the MG 

during alveologenesis is inhibited by WEE1, leading to activation of the G2/M 
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checkpoint in response to DNA damage. Although WEE1 has been shown to 

regulate endoreplication in some plants (Chevalier et al., 2011; Gonzalez et al., 

2007; Sun et al., 1999) and prevents apoptosis during keratinocyte endoreplication 

(de Pedro et al., 2018), here we identify a novel role for it in MG alveolar 

polyploidization. Why tissues achieve polyploidization through different CDK1 

inhibitors, however, remains unclear. In the case of the MG, the role of WEE1 may 

be explained by its dual activities of maintaining genome stability and inhibiting 

CDK1 (Elbæk et al., 2020; H. L. Smith et al., 2020). On one hand, WEE1 safeguards 

DNA replication during proliferation by limiting replication initiation and exhaustion of 

nucleotide pools due to excessive origin firing. On the other hand, WEE1 inhibits 

proliferation by activating the G2/M checkpoint through the inhibitory phosphorylation 

of CDK1. Accordingly, we observed two waves of WEE1 upregulation in the MG: the 

first occurring during early pregnancy and the second at the onset of lactation. This 

suggests WEE1 ensures proper DNA replication during proliferation and induces 

endoreplication of damaged cells during functional differentiation. In agreement with 

the role of WEE1 in ensuring proper DNA replication, it has been shown that loss of 

the KRAB Zinc Finger protein, Roma/Zfp157, results in increased replication stress 

due to WEE1 downregulation (Ho et al., 2016). Increased replication stress in the 

Roma knock-out resulted in increased binucleation, presumably through cytokinesis 

failure (Ho et al., 2016; Rios et al., 2016). This suggests that in the presence of 

genomic instability triggered by the loss of Roma and downregulation of WEE1, 

alveolar cells may undergo endoreplication through a WEE1-independent 
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mechanism, such as cytokinesis failure, to limit uncontrolled proliferation of damaged 

cells. 

 

Endoreplication and lactation insufficiency. 

The molecular pathways that regulate alveolar cell differentiation and efficient milk 

production during lactation, although critical for the survival of mammals, remain 

unresolved. Breastfeeding provides a myriad of long-term advantages to both a 

mother and child (Chowdhury et al., 2015; Victora et al., 2016). Yet lactation 

insufficiency, defined as the inability of a nursing mother to produce the milk 

necessary for an infant’s daily nutritional needs, is a global public health concern. 

Past endeavors to address this issue have primarily focused on manipulation of the 

prolactin pathway to enhance milk production. While some therapeutics have been 

approved, albeit not in the U.S.A., such as the dopamine antagonist domperidone, 

negative side effects prevent their widespread adoption (Sewell, Chang, Chehab, & 

Nguyen, 2017). Our model offers an explanation as to why MGs have a differential 

ability to build a milk supply during pregnancy. Our studies provide mechanistic 

insights into how DNA damage accumulation during massive proliferation couples 

cell generation and organ growth to efficient milk production. We further demonstrate 

that controlling CDK1 activity has the potential to mitigate lactation insufficiency by 

providing a non-hormonal means of targeting milk production. 

 

Future directions. 
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While endoreplication has been suggested to provide several physiological benefits, 

including susceptibility to apoptosis during involution, there is little evidence to 

support this (Kreuzaler et al., 2011; Rios et al., 2016; Watson, 2022; Zanet et al., 

2010). Therefore, the extent to which polyploidy, in comparison to a normal diploid 

state, enhances the efficiency of RNA and protein production, the resistance to 

mechanical tension, and the efficacy of involution in the MG remains unclear. 

Bioinformatic analyses of the transcriptome, proteome and metabolome of the 

alveolar polyploid population will undoubtedly provide valuable insights into these 

potential benefits, and the difficult task of isolating live alveolar cells by their DNA 

content will provide our first step in this direction. Nevertheless, there is a clear 

disadvantage in retaining polypoid cells, as increased ploidy is known to enhance the 

frequency of chromosomal aberrations and promote tumorigenesis (Fujiwara et al., 

2005; Zack et al., 2013). Intriguingly, while Wee1 can be oncogenic in several types 

of cancer, likely due to its role in preventing DNA damage during replication and thus 

reducing the potential for DDR-induced senescence or apoptosis, it acts as a tumor 

suppressor in the mouse MG and its expression is decreased in human tumor 

samples compared to normal breast tissue (Do, Doroshow, & Kummar, 2013; H. L. 

Smith et al., 2020; Vassilopoulos et al., 2015). It is, therefore, tempting to speculate 

that the role of WEE1 in coupling proliferation and terminal differentiation identified in 

this study may confer additional protection against breast cancer, however, further 

long-term investigation into the effect of Wee1 loss on tumorigenesis is needed. 

Moreover, in the broader scope of women’s health, the results of this study beg the 
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question as to whether other tissues that undergo pregnancy-induced 

endoreplication do so in response to the intrinsic RS involved in rapid expansion. 
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Chapter 2: ROBO2 inhibits the differentiation and endoreplication of mammary 

gland alveolar cells. 

 

Introduction 

 

1. SLIT/ROBO signaling. 

Roundabout (Robo) receptors are highly conserved single-pass type-1 membrane 

proteins that belong to the immunoglobulin (Ig) superfamily. Four Robo paralogs 

have been identified in mammals: Robo1, Robo2, Robo3 and Robo4 (Dickson & 

Gilestro, 2006). ROBO1, ROBO2 and ROBO3 receptors share a common structure: 

an extracellular domain (ECD) containing five Ig domains and three fibronectin (FN) 

type-3 domains, a transmembrane helix, and an unstructured intracellular domain 

(ICD) containing two to four proline-rich conserved cytoplasmic (CC) motifs. The 

structure of ROBO4 is slightly different, containing only two extracellular Ig domains. 

Despite their common structure, Robo transcripts can undergo alternative splicing to 

produce different protein isoforms (Bisiak & Mccarthy, 2019; Blockus & Chédotal, 

2016; Tong, Jun, Nie, Hao, & Fan, 2019). The resulting proteins can also be post-

translationally modified or proteolytically cleaved, allowing their ICDs to translocate 

to the nucleus (Barak et al., 2014; Coleman, Labrador, Chance, & Bashaw, 2010; 

Seki et al., 2010). Furthermore, ROBO receptors have been shown to form 

homophilic interactions that regulate their activity (Timothy A Evans, Santiago, 

Arbeille, & Bashaw, 2015; Hivert, Liu, Chuang, Doherty, & Sundaresan, 2002; Ordan 

& Volk, 2015; Zakrys et al., 2014). The Robo family can thus generate a wide array 
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of proteins with diverse functions. SLITs are highly conserved secreted glycoproteins 

and the main ligands for ROBO receptors, although it is contended that they may not 

interact with ROBO3 and ROBO4 directly (Chédotal; Morlot et al., 2007; Sheldon et 

al., 2009; Zelina et al., 2014). There are three Slit paralogs identified in vertebrates: 

Slit1, Slit2 and Slit3. SLIT proteins also share a common structure, containing four N-

terminal leucine-rich repeat (LRR) domains, six epidermal growth factor-like (EGF-

like) repeats, a laminin G-like domain, followed by three more EGF-like repeats and 

a C-terminal cysteine-rich knot. Like their receptors, SLIT ligands have also been 

shown to form homophilic interactions (Howitt, Clout, & Hohenester, 2004; Seiradake 

et al., 2009). Additionally, SLIT proteins can be proteolytically cleaved between the 

fifth and sixth EGF-like domains to generate a long N-terminal fragment (SLIT-N) and 

a short C-terminal fragment (SLIT-C), each with different properties (Bisiak & 

Mccarthy, 2019; Tong et al., 2019). Only full-length SLITs or Slit-Ns are capable of 

binding ROBO receptors, while SLIT-Cs have been shown to have functional 

interactions with other proteins PlexinA1 and Dystroglycan (Ba-Charvet et al., 2001; 

Delloye-Bourgeois et al., 2015; Wright et al., 2012).  

 

1.1 SLIT/ROBO interaction. 

ROBO receptors possess no autocatalytic or enzymatic activity; rather, their 

activation results in the recruitment of adapter proteins and signaling effectors to the 

CC motifs, which act as scaffolding elements (Tong et al., 2019). Over time, 

structural mechanisms contributing to this process have been gleaned from studies 

of ROBO1 and ROBO2 receptors, which share the highest degree of homology 
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amongst the ROBO family. Initial experiments demonstrated that ROBO activation is 

induced through the binding of SLITs, via their second LRR (LRR2) domain, with the 

first Ig (IG1) domain of ROBO receptors (Howard, Reichert, & Evans, 2021; Howitt et 

al., 2004; Z. Liu et al., 2004; Morlot et al., 2007). Heparan sulfate proteoglycans 

(HSPGs) were also observed to bind both ROBO receptors and SLIT ligands and 

shown to enhance the affinity and stability of their interaction (Fukuhara, Howitt, 

Hussain, & Hohenester, 2008; Hussain et al., 2006). Genetic studies employing 

chimeric ROBO receptors demonstrated that the functional diversity between 

receptors is imparted by modest structural differences in their ECDs, rather than 

different affinities for SLIT ligands, and suggested ROBO activity and function may 

be largely determined by multimerization (Timothy A. Evans & Bashaw, 2010). It was 

subsequently shown that that induced dimerization of their ICDs can stimulate their 

activity (Zakrys et al., 2014). Recent X-ray crystallography studies have provided 

new insights into how the interaction of ROBO receptors with each other and SLIT 

ligands may regulate their activation. Structures of both ROBO1 and ROBO2 

extracellular components suggest that the Ig4 domain serves as a conserved module 

for dimerization and is required for activity (Aleksandrova et al., 2018; Barak et al., 

2019; Yom-Tov et al., 2017). Moreover, it has been suggested that the Ig4 domain 

confers a means of auto-inhibition, as the dimerization interface appears hidden in 

the compact monomeric state of ROBO receptors, and that homophilic trans 

interactions mediated by the Ig5 domain may serve to further confine Ig4 and 

enhance this inhibition. It has also been proposed that binding of SLITs to the Ig1 

domains of ROBO receptors would disrupt the trans interaction mediated by Ig5, thus 
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relieving them of their imposed confinement and allowing for dimerization in cis and 

subsequent activation. Alternatively, if there is no trans inhibition, SLIT dimers may 

also serve to bring ROBO receptors in close enough proximity that they overcome 

their auto-inhibition, dimerize and become activated (Barak et al., 2019). While X-ray 

crystallography has provided valuable insights into the structure of SLIT/ROBO 

extracellular interactions, it nevertheless remains unclear how this modulates the 

recruitment of downstream effectors to ROBO ICDs. 

 

1.2 SLIT/ROBO signaling during development. 

SLIT/ROBO signaling was first discovered for its role in neuronal axon guidance 

through genetic screens of commissural midline crossing defects in Drosophila 

(Brose et al., 1999; T. Kidd, Bland, & Goodman, 1999; Thomas Kidd et al., 1998; 

Simpson, Kidd, Bland, & Goodman, 2000; Tear, Seeger, & Goodman, 1993). Since 

its discovery, SLIT/ROBO signaling has been shown to be involved in the 

development of numerous other tissues. During organogenesis, SLIT/ROBO 

signaling has been observed to be critical for the proper development of the kidneys, 

lungs and heart (Domyan et al., 2013; Grieshammer et al., 2004; Mommersteeg et 

al., 2013). Moreover, SLIT/ROBO signaling has been shown to regulate stem and 

progenitor cell dynamics. In the nervous system, SLIT/ROBO signaling regulates the 

balance between self-renewal of ventricular zone progenitors and the generation of 

intermediate progenitors and neurons (Borrell et al., 2012). A similar role for 

SLIT/ROBO signaling in cell fate specification was identified in the intestine, in which 

ROBO2 regulates the generation of enteroendocrine cells by intestinal stem cells 
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(Biteau & Jasper, 2014). In the hematopoietic system, on the other hand, 

SLIT/ROBO signaling assists the localization and engraftment of stem cells to their 

niches in the bone marrow (Smith-Berdan et al., 2011). Furthermore, SLIT/ROBO 

signaling also has contrasting functions in vasculature, having been observed to both 

promote angiogenesis through chemotaxis, cell motility and proliferation, as well as 

inhibit angiogenesis through modulation of growth factor signaling (S. Li et al., 2015; 

Marlow et al., 2010; Nieminen et al., 2015; Rama et al., 2015; Sheldon et al., 2009; 

B. Zhang et al., 2009). It has been suggested that these contrasting functions are 

determined by the ratio of ROBO1 and ROBO4 in endothelial cells, as well as the 

cooperation between SLIT2 and Ephrin-A1 (Dunaway et al., 2011; Enomoto et al., 

2016). As a likely consequence of its roles in stem/progenitor dynamics, chemotaxis, 

cell motility, and angiogenesis, SLIT/ROBO signaling has also been implicated in the 

tumorigenesis, metastasis and vascularization of several types of cancers (M. S. 

Ballard & Hinck, 2012; Gara et al., 2015; Jiang et al., 2019). 

 

1.3 SLIT/ROBO signaling in the MG. 

SLIT/ROBO signaling has been demonstrated to play a variety of roles during the 

development of the MG. The first was identified in branching morphogenesis during 

pubertal development. SLIT2/ROBO1 signaling, in cooperation with NTN1, was 

shown to mediate adhesive contacts between basal and luminal epithelial layers, 

maintaining the tubular bi-layered structure while allowing cell movement and 

reorganization (Strickland, Shin, Plump, Tessier-Lavigne, & Hinck, 2006). 

Subsequently, it was shown that SLIT2/ROBO1 signaling also inhibits lateral branch 
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formation by controlling the proliferation of the basal compartment through the 

inhibition of b-catenin nuclear translocation and transcription of Wnt signaling effector 

genes (H. Macias et al., 2011). SLIT/ROBO signaling was also found to regulate 

stem and progenitor cell dynamics in the MG. Similar to ROBO1, ROBO2 inhibits the 

nuclear translocation of b-catenin in basal progenitor cells in response to SLITs, 

albeit with a different outcome. In contrast to promoting proliferation through Wnt 

effectors, signaling through ROBO2 promotes senescence of basal progenitors by 

inhibiting b-catenin-mediated repression of p16INK4A expression (Harburg et al., 

2014). Furthermore, SLIT2/ROBO1 signaling governs the self-renewal of basal 

progenitor cells by limiting the expression of INSC, a key member of the spindle 

orientation machinery, thus promoting asymmetric cell divisions and maintaining a 

homeostatic amount of progenitor cells (S. Ballard, Mimmi et al., 2015). Recently, a 

novel role for SLIT/ROBO signaling during pregnancy was identified. It was 

demonstrated that the ROBO1-mediated inhibition of b-catenin nuclear localization 

limits the expression of the NOTCH ligand Jagged1 (JAG1) in basal cells. In the 

absence of ROBO1, however, increased JAG1 signals in a juxtacrine manner to 

induce NOTCH activity in neighboring alveolar progenitor cells, promoting their self-

renewal while inhibiting their differentiation into milk-producing alveolar cells 

(Cazares et al., 2021). Intriguingly, while loss of Robo1 promotes the NOTCH activity 

of alveolar progenitors in MG, loss of both Robo1 and Robo2 in ventricular zone 

progenitors of the brain was observed to inhibit NOTCH activity, suggesting a 

potential interplay between the two receptors may govern this pathway (Borrell et al., 

2012). 
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2. NOTCH signaling. 

The NOTCH signaling pathway is a highly conserved hallmark pathway deeply 

involved in the embryonic and post-natal development of many tissues, as well as 

their homeostasis. Signaling through this pathway typically occurs in a juxtacrine 

manner, initiated by the close spatial association of a signal-receiving cell with a 

NOTCH receptor expressed on its surface and a signal-sending cell with a ligand 

expressed on its surface (Zhou et al., 2022). There are four Notch paralogs identified 

in mammals: Notch1, Notch2, Notch3 and Notch4. Notch genes are peculiar in that 

they are transcribed and translated to produce NOTCH precursor proteins. These 

proteins are then glycosylated and proteolytically cleaved at a conserved site to 

produce heterodimers, which serve as the functional receptors. NOTCH receptors 

are single-pass type-1 transmembrane proteins and share a common structure: an 

ECD containing 29 to 36 tandem EGF-like repeats and a negative regulatory region 

(NRR), a transmembrane helix, and an ICD containing an RBPJ-association module 

(RAM) domain, seven ankyrin (ANK) repeats flanked by nuclear localization signal 

(NLS) domains and a C-terminal PEST domain. There are five canonical NOTCH 

ligands identified in mammals: Delta-like Ligand 1 (DLL1), DLL3, DLL4, JAG1 and 

JAG2, which present both redundant and unique functions (Gordon, Arnett, & 

Blacklow, 2008; Zhou et al., 2022). Like ROBO receptors, NOTCH receptors do not 

possess any auto-catalytic or enzymatic activity. Upon ligand binding, NOTCH 

receptors undergo proteolytic cleavage by ADAM proteases at the dimerization 

interface, releasing their ECD. Subsequently, the ICD is cleaved by g-Secretase, 
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releasing from the transmembrane helix (Gordon et al., 2008; Kopan, 2012; Zhou et 

al., 2022). Once released, NOTCH ICDs can remain in the cytoplasm and engage in 

crosstalk with a variety of other signaling pathways or they can translocate to the 

nucleus, where they associate with various transcription factors, such as RBPJ, to 

regulate the expression of downstream signaling effectors. Through its downstream 

effectors, NOTCH activity regulates an abundance of biological processes, many of 

which in a tissue-specific or cell-specific manner (Zhou et al., 2022). 

 

2.1 NOTCH signaling in the MG. 

NOTCH signaling is critical to MG development, particularly due to its roles in 

regulating progenitor cell dynamics. In fact, NOTCH4, originally called Int3, was 

discovered in the MG as a proto-oncogene frequently activated through insertional 

mutagenesis of the mouse mammary tumor virus upstream of the DNA sequence 

encoding the ICD (D Gallahan & Callahan, 1987). This constitutively active mutant 

form impairs the functional development and differentiation of the MG and promotes 

tumorigenesis, an effect shown to be mediated by the ICD (Daniel Gallahan & 

Callahan, 1997; D. Gallahan et al., 1996; Jhappan et al., 1992; G. H. Smith et al., 

1995; Uyttendaele, Soriano, Montesano, & Kitajewski, 1998). NOTCH4 was thus 

proposed to play an important role in regulating the self-renewal and proliferation of 

mammary stem cells. Later characterization of Notch4 KO mice, however, revealed 

no MG phenotype, and Notch4 expression was hardly detected throughout MG 

development, suggesting the proto-oncogenic form does not have a significant role 

(Krebs et al., 2000; Raafat et al., 2011). 
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Nevertheless, similar roles in regulating stem and progenitor cell dynamics have 

been observed for the other NOTCH receptors since then. In recent years, it has 

been demonstrated that, while the MG possesses bipotent stem cells during 

embryonic development, the vast majority of post-natal development is facilitated by 

long-lived, lineage-restricted progenitor populations (Van Keymeulen et al., 2017; 

Van Keymeulen et al., 2011; Wuidart et al., 2016). Notch1-3 have been shown to 

drive of the specification of lineage-restricted luminal progenitors. Indeed, Notch1-3 

are highly expressed in the luminal compartment and reach their peak expression 

during pregnancy, while notch inhibitors, such as Numb, are expressed in the 

myoepithelial compartment (Bouras et al., 2008; Raafat et al., 2011; Raouf et al., 

2008; Y. Zhang et al., 2016). Functional studies employing loss- or gain-of-Notch 

receptors and Notch signaling components in mice confirmed the role of Notch 

signaling in maintaining the balance between myoepithelial and luminal populations, 

with the absence of Notch signaling leading to accumulation of the myoepithelial 

lineage and increased Notch signaling leading to expansion of the luminal lineage 

(Bouras et al., 2008; Buono et al., 2006; Hu et al., 2006; Raouf et al., 2008; Santoro, 

Vlachou, Carminati, Pelicci, & Mapelli, 2016; Yalcin-Ozuysal et al., 2010; Y. Zhang et 

al., 2016). Furthermore, lineage-tracing studies have confirmed the contribution of 

Notch1-3 expressing cells to luminal lineages and have shown that Notch activity 

drives bipotent stem cells towards the luminal progenitor fate by late embryogenesis 

(Lafkas et al., 2013; Lilja et al., 2018; Rodilla et al., 2015; Šale, Lafkas, & Artavanis-

Tsakonas, 2013). Interestingly, Notch signaling not only drives bipotent stem cells 
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toward a luminal progenitor fate, but maintains this fate through the inhibition of 

terminal differentiation, which may serve to explain the effect of increased Notch 

signaling on tumorigenesis (Bouras et al., 2008; Buono et al., 2006; Dontu et al., 

2004; Hu et al., 2006; Kiaris et al., 2004; Raouf et al., 2008; Y. Zhang et al., 2016). It 

has been further shown that the prolactin-induced expression of the transcription 

factor ELF5 during mid-pregnancy drives the differentiation of these progenitors into 

mature alveolar cells through the inhibition of Notch signaling (Chakrabarti et al., 

2012; Cordero et al., 2016; Harris et al., 2006; H. J. Lee et al., 2013; Oakes et al., 

2008). Recently, it was also demonstrated that, upon ablation of luminal cells, Notch 

signaling is reactivated in myoepithelial progenitors to repopulate the luminal lineage, 

providing further confirmation of its role in the context of injury and regeneration 

(Centonze et al., 2020). Despite the importance of Notch signaling in specifying and 

maintaining the luminal-restricted progenitor population, the mechanisms that 

regulate Notch activity to ensure proper MG development during puberty and 

pregnancy are not well understood. ROBO1, through restricting the expression of 

JAG1 in basal cells, was identified as one such mechanism by which Notch signaling 

is curtailed to allow for proper alveolar differentiation (Cazares et al., 2021). Here, I 

propose an opposing role for ROBO2, in which it inhibits alveolar differentiation and 

endoreplication through the promotion of Notch signaling. 

 

Objectives 

- Characterize the expression of Robo2 during alveologenesis. 
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- Determine whether ROBO2 plays a role in regulating alveolar differentiation, and 

the molecular mechanism that may be involved.  
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Results 

 

Robo2 is dynamically expressed during pregnancy and early lactation. 

While our lab has previously characterized the expression of Robo2 in the 

nulliparous MG, the expression of Robo2 during pregnancy and lactation has 

nevertheless remained unclear (Harburg et al., 2014; Strickland et al., 2006). In fact, 

multiple single-cell RNA sequencing (scRNA-seq) datasets from embryonic 

development through menopause suggest there is little to no expression of Robo2 

throughout the lineage trajectories of the MG, with 99.2% of cells having no Robo2 

reads, let alone a specific subpopulation in which it is enriched (Figure 2.1a, b)(Saeki 

et al., 2021; Speir et al., 2021). To further investigate Robo2 expression in the 

context of pregnancy and early lactation, we isolated stromal, basal and luminal 

subpopulations by FACS and analyzed its expression in each subpopulation by RT-

qPCR, normalizing to expression at PD6. In the stromal subpopulation, we find 

Robo2 expression is highest during early pregnancy, maintained at a lower level 

during the remainder of pregnancy, then decreases further as lactation begins 

(Figure 2.1c). In the basal epithelial subpopulation, Robo2 expression follows a 

similar pattern, peaking at PD6 and gradually decreasing with the progression of 

pregnancy and lactation (Figure 2.1d). Of note, in the luminal epithelial 

subpopulation, Robo2 expression follows a unique pattern with two peaks. The first 

occurs during early pregnancy, when Robo2 is upregulated considerably by PD10. 

Expression is then maintained at a lower level for the remainder of pregnancy, only 

to be upregulated again with the onset of lactation (Figure 2.1e). Having observed 
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the pattern of expression within each subpopulation, we next normalized Robo2 

expression in the epithelial subpopulations to that of the stromal cells at each 

timepoint, in order to compare expression between populations. We find that Robo2 

expression is lower in both epithelial subpopulations throughout pregnancy, 

compared to the normalized stromal expression. Intriguingly, with lactation, Robo2 

expression in luminal, but not basal, epithelial cells surpasses that of stromal cells 

substantially (Figure 2.1f). Together, these results show that Robo2 is dynamically 

expressed in all subpopulations during pregnancy and early lactation, and hint at a 

potential function for the protein in the processes of alveologenesis. 
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ROBO2 inhibits alveologenesis and milk production during pregnancy. 

Our lab possesses a Robo2 null mouse line that is a full knockout, thereby deleting 

Robo2 in all tissues. To investigate the role of ROBO2 in the MG epithelium during 

alveologenesis, we contralaterally transplanted fragments of epithelium from WT and 

Robo2 KO MGs into the fat-pads of immunocompromised pre-pubertal mice whose 

endogenous epithelium had been removed. As the mice progressed through pubertal 

development, the fragments underwent branching morphogenesis to produce fully 

formed epithelia. We then performed timed-breeding of the adult mice and harvested 

the MGs at PD15 for subsequent analysis. By whole-mount carmine staining, we 

observe a phenotype in that Robo2 KO outgrowths form a denser network of alveolar 

structures, compared to the contralateral WT control (Figure 2.2a). This was 

confirmed by H&E staining, where we see that Robo2 KO outgrowths occupy a 

~10% larger area of the host fat-pad (Figure 2.2b,c). Furthermore, by IHC staining, 

we find that the number of alveoli and size of Robo2 KO lumens were increased by 

~70% and ~25%, respectively (Figure 2.2d-f). This was accompanied by a ~45% 

increase in milk production (Figure 2.2g). Together, these findings demonstrate that 

Robo2 inhibits alveologenesis and milk production, and that this role is intrinsic to the 

epithelium. 
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ROBO2 functions to inhibit alveolar differentiation from the luminal 

compartment. 

Having determined the role of ROBO2 to be intrinsic to the epithelium, we next 

sought to distinguish whether ROBO2 functions to inhibit alveologenesis from the 

basal compartment, luminal compartment or both compartments. To do so, we 

enriched basal and luminal subpopulations from ActB-eGFP and Robo2 KO MGs 

through enzymatic digestion, 2D culture and subsequent differential trypsinization. 

Enriched populations were then combined and cultured in a 3D extracellular matrix to 

form mosaic organoids in which Robo2 was lost in the basal compartment only, in 

the luminal compartment only, in both compartments and in neither compartment 

(Figure 2.3a). After inducing the organoids to differentiate for 5 days (DIP5) through 

treatment with lactogenic hormones, we find that only loss of Robo2 in the luminal 

compartment resulted in increased organoid size (Figure 2.3b-d). Moreover, by 

brightfield microscopy, we observe many organoids with what appear to be milk-filled 

lumens when Robo2 is lost in both compartments and in the luminal compartment 

alone, whereas we only observe a discreet few in the other two conditions (Figure 

2.3d). It was subsequently confirmed, by RT-qPCR, that loss of Robo2 in both 

compartments and in the luminal compartment alone results in an increase in 

expression of the milk gene Csn2, as well as an increase in expression of the pro-

alveolar differentiation transcription factor Elf5 (Figure 2.3e,f). Curiously, loss of 

Robo2 in both compartments did not yield an increase in organoid size (Figure 2.3d), 

and loss of Robo2 in the basal compartment alone resulted in lesser increases in 

Csn2 and Elf5 expression (Figure 2.3e,f). It is important to note, however, that the 
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process of differential trypsinization only serves to enrich for basal and luminal 

subpopulations, rather than actually purifying them, and the mosaic conditions may 

include some organoids of a different genotypic combination. Nevertheless, the trend 

of these results suggests that ROBO2 may be acting from the luminal compartment 

to inhibit the differentiation of alveolar progenitor cells. 
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ROBO2 inhibits alveolar endoreplication. 

Alveolar cells undergo endoreplication at the onset of lactation, a process usually 

linked with terminal differentiation (refer to Chapter 1). To evaluate the effect of 

ROBO2 on alveolar endoreplication, we knocked down (KD) Robo2 in HC11 cells, a 

murine mammary epithelial cell line that can be induced to differentiate and 

endoreplicate through treatment with lactogenic hormones, using a lentiviral 

construct. We then performed FACS DNA content analysis of HC11 cells at 

timepoints throughout lactogenic differentiation (Figure 2.4a-f). We observe that KD 

of Robo2 results in an increase of the polyploid population in undifferentiated HC11 

cells (Figure 2.4a,b). By the priming phase, Robo2 KD results in an increase in the 

proportions of both the tetraploid and polyploid populations (Figure 2.4c,d), and 

increased polyploidy is maintained into differentiation (Figure 2.4e,f). These results 

suggest that ROBO2 inhibits alveolar endoreplication in vitro. To determine if this 

effect occurs in vivo, we performed FACS DNA content analysis of the CK8+ luminal 

cell population from MGs of a WT and a Robo2 KO mouse at PD18 LD5. 

Accordingly, we observe increased proportions of tetraploid and polyploid cells in the 

Robo2 KO mouse at both timepoints (Figure 2.5a-d). While further biological 

replicates are needed to confirm its function in vivo, these results suggest ROBO2 

inhibits alveolar endoreplication. 
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ROBO2 inhibits the DDR. 

Alveolar endoreplication is driven by the DDR to replication stress that occurs during 

the hyperproliferation of early pregnancy (refer to Chapter 1). To evaluate the 

relationship between ROBO2 and the DDR, we first examined the localization of 

ROBO2 and gH2AX in DIP5 HC11 cells by IHC staining. We observe that the 

presence of milk domes occurs in areas containing cells with higher levels of gH2AX 

and lower levels of ROBO2, suggesting a potential negative relationship between the 

two (Figure 2.6a). To further investigate the effect of ROBO2 on the activation of the 

DDR, we analyzed the presence of pATR, which mediates the DDR to replication 
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stress, in the nuclei of CK8+ alveolar luminal cells in PD10 MGs from WT and Robo2 

KO mice, by IHC staining (Figure 2.6b). We find that loss of Robo2 results in the 

increased presence of pATR, suggesting ROBO2 inhibits alveolar endoreplication 

and differentiation through the suppression of the DDR to replication stress during 

pregnancy (Figure 2.6c). 
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ROBO2 regulates NOTCH activity in the MG. 

ROBO1 was recently shown to inhibit NOTCH activity in alveolar progenitor cells and 

promote their differentiation from the basal compartment, through paracrine 

stimulation via JAG1 (Cazares et al., 2021). To investigate whether ROBO2 inhibits 

alveolar differentiation through regulation of JAG1, we isolated stromal, basal and 

luminal subpopulations from PD10 MGs of WT and Robo2 KO mice and analyzed 

Jag1 expression by RT-qPCR. We find that Jag1 expression is highest in the basal 

subpopulation (Figure 2.7a), and that loss of Robo2 results in decreased expression 

of Jag1 in this subpopulation (Figure 2.7b). Furthermore, we cultured 3D organoids 

from WT and Robo2 KO primary MG epithelial cells and treated them with an 

activating JAG1 peptide throughout the process of growth and differentiation. We find 

by WB that treatment with JAG1 peptide results in decreased expression of the milk 

protein CSN2 in WT cells at DIP5, consistent with the recent observation that 

JAG1/Notch signaling promotes alveolar progenitor renewal at the expense of 

differentiation (Cazares et al., 2021). Additionally, we find the loss of Robo2 results in 

increased expression of CSN2 at DIP5, and treatment of Robo2 KO organoids with 

the JAG1 peptide rescues this effect (Figure 2.7c,d). Together, these data suggest 

ROBO2 inhibits alveolar differentiation through the induction of Jag1 expression in 

the basal compartment. This may occur by ROBO2 inhibiting ROBO1, thereby 

activating b-catenin, which directly binds the promoter of Jag1 to induce its 

expression, in the basal compartment. 
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Interestingly, in addition to its canonical role in mediating transcription, the NOTCH1 

ICD has also been shown to bind all of the DDR kinases and negatively regulate 

ATM activity (M. Adamowicz, d'Adda di Fagagna, & Vermezovic, 2018; Marek 

Adamowicz, Vermezovic, & Fagagna, 2016; Vermezovic et al., 2015). To investigate 

the relationship between NOTCH1 ICD and ATR, and whether NOTCH1 ICD may 

negatively regulate ATR activity as well, we evaluated the nuclear localization of 

NOTCH1 and pATR in 3D WT organoids throughout the differentiation process by 

IHC staining. We observe an initial peak of nuclear pATR in luminal cells on the first 

day of differentiation (DIP1), after which the levels of nuclear NOTCH1 and pATR in 

CK8+ alveolar luminal cells become inversely correlated as differentiation 

progresses (Figure 2.7e). Additionally, we observe an inverse relationship in their 

localization within the nucleus, with nuclear areas of low pATR presence having 

more NOTCH1 than areas of high pATR presence (Figure 2.7f). Taken together, the 

negative relationships observed between NOTCH1 and pATR across differentiation 

and within the nucleus suggest NOTCH1 ICD may be functioning to inhibit the ATR-

mediated DDR to replication stress. Considering our previous studies on the role of 

ROBO1 in regulating alveologenesis, we propose a model in which ROBO2 directly 

binds and inhibits ROBO1 in trans, promoting JAG1 expression in basal cells and the 

juxtacrine induction of Notch activity in luminal alveolar progenitor cells. This, in turn, 

results in the inhibition of alveolar differentiation through canonical Notch signaling, 

as well as the inhibition of alveolar endoreplication through NOTCH1 ICD-mediated 

suppression of the DDR. 
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Discussion 

 

Robo2 is dynamically expressed in all MG subpopulation during 

alveologenesis. 

Our lab has previously characterized the expression of Robo2 in the nulliparous MG, 

as well as identified a phenotype produced by the loss of Robo2 in the nulliparous 

epithelium (Harburg et al., 2014; Strickland et al., 2006). The expression of Robo2 

during pregnancy and lactation, however, remained unclear. Additionally, compiled 

datasets of scRNA-seq reads from across development suggested there is little to no 

expression of Robo2 throughout the lineage trajectories of the MG, and did not 

identify a subpopulation in which it is enriched (Figure 2.1a, b)(Saeki et al., 2021; 

Speir et al., 2021). Here, however, we show by RT-qPCR that Robo2 is expressed in 

all MG subpopulations during pregnancy and early lactation, and that this expression 

is dynamic throughout these processes. This characterization of Robo2 expression 

may provide valuable insights into the potential functions ROBO2 has in each 

subpopulation, as ROBO proteins are known to often function in a cell type-specific 

manner. 

 

ROBO2 functions to inhibit alveolar endoreplication and differentiation. 

While this study is still underway and currently incomplete, preliminary results 

suggest that ROBO2 functions from the luminal compartment to inhibit 

alveologenesis and milk production through the regulation of Jag1 expression in the 

basal compartment. Moreover, we show that ROBO2 also functions to inhibit alveolar 
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endoreplication, a process deeply intertwined with alveolar differentiation (refer to 

Chapter 1). Lastly, the preliminary results of this study also suggest that the 

regulation of these processes by ROBO2 may occur through modulation of Notch 

signaling. ROBO1 was recently shown to promote alveolar differentiation from the 

basal compartment through the suppression of b-catenin-mediated Jag1 expression 

(Cazares et al., 2021; H. Macias et al., 2011). Our data suggest that ROBO2 may 

create an opposing effect from the luminal compartment to promote basal cell Jag1 

expression and inhibit alveolar differentiation, potentially through direct interaction 

and inhibition of ROBO1 (Barak et al., 2019). Considering the previous observation 

that ROBO2 expressed on the surface of basal progenitor cells can inhibit the 

nuclear localization of b-catenin, these data provoke the question as to whether 

ROBO2 functions in a cell type-specific to regulate the fate of both basal and alveolar 

progenitor cells (Harburg et al., 2014). Furthermore, our data also bring to question 

whether ROBO2 inhibition of NOTCH activity also directly mediates the effect of 

ROBO2 on alveolar endoreplication, by reducing the level of nuclear NOTCH1 ICD 

and, in turn, inhibiting ATR activation. If so, this study could lead to the identification 

of a novel molecular mechanism by which NOTCH1 maintains the alveolar 

progenitor population: by inhibiting terminal differentiation through the suppression of 

DDR-induced endoreplication. The proposed functions of ROBO2 in inhibiting 

alveolar differentiation and endoreplication are consistent with the expression pattern 

of Robo2 observed in luminal cells (Figure 2.1e). In this context, Robo2 expression 

peaks during the hyperproliferation of early pregnancy, then is downregulated during 

late pregnancy to allow for differentiation and DDR-mediated endoreplication. Robo2 
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is then upregulated again during lactation to potentially preserve remaining alveolar 

progenitor cells for subsequent pregnancies and suppress the DDR to limit the risk of 

milk-producing polyploid alveolar cells undergoing apoptosis during lactation. It 

remains possible, however, that ROBO2 inhibits alveolar endoreplication by NOTCH-

independent means. This could potentially occur in a similar manner to how ROBO2 

promotes senescence of basal progenitors: by inhibiting b-catenin-mediated 

repression of p16INK4A expression, thus preventing re-initiation of the cell cycle 

through inhibition of Cyclin D-CDK4/6 complexes (Harburg et al., 2014). 

 

Future Directions. 

As previously stated, this study is still underway and currently incomplete. Many of 

the trends observed in the preliminary data must still be confirmed with additional 

biological replicates. At this point in time, we are troubleshooting several difficulties 

encountered with the IHC staining of mosaic organoids. To confirm that ROBO2 is 

functioning to inhibit alveolar differentiation and endoreplication from the luminal 

compartment, we have thus also obtained a Robo2 conditional-KO (cKO) mouse line 

and have crossed it with a CK8-CreER driver line. This cKO model will allow for the 

specific elimination of ROBO2 activity in luminal cells and at a certain time during 

MG development, thus allowing us to better interrogate the functions of ROBO2 

during the processes of differentiation and endoreplication. Furthermore, the diverse 

functions of ROBO receptors are often determined by their homophilic interactions 

with other ROBO receptors, as well as their heterophilic interactions with SLIT 

ligands. Therefore, potential interactions between ROBO2 and other ROBO 
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receptors and/or SLIT ligands must be investigated to determine the molecular 

mechanisms by which ROBO2 regulates alveolar differentiation and endoreplication. 
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Experimental Procedures 
 

Mouse strains 

CD-1 mice were obtained from Charles Rivers. C57BL/6-Wee1<tm1.1 mrl> were 

generated by Taconic. Ck8-CreER/mTmG mice were generously provided by Dr. 

Diwakar R Pattabiraman. These animals were a cross of Tg(Krt8-cre/ERT2)17Blpn/J 

(JAX:017947) and B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato, -EGFP)Luo/J (JAX: 

007676). Genotyping was performed by extracting DNA from ear snips and 

performing an end-point PCR for the given transgene using the primers CreER: 5’-

CAGATGGCGCGGCAACACC-3’ and 5’-GCGCGGTCTGGCAGTAAAAAC-3’; 

mTmG: 5’-AGG GAG CTG CAG TGG AGT AG-3’, 5’-TAG AGC TTG CGG AAC CCT 

TC-3’ and 5’-CTT TAA GCC TGC CCA GAA GA-3’; Wee1: 5-

GCTTCGGAACCTTCCTAATGC-3’ and 5’-TGAAGTCTCACCCTGTCTCG-3. All 

animal procedures were both approved by and conducted in accordance with the 

guidelines set by the University of California, Santa Cruz (UCSC) Institutional Animal 

Care and Use Committee (IACUC).  

 

Animal studies  

Nulliparous analysis was performed using adult (10-12-week-old) female mice. For 

timed pregnancies and lactation analysis, CD-1 pregnant adult females were 

obtained from Charles Rivers. Embryos were examined at the time of mammary 

gland harvesting to confirm pregnancy state. For lactation analysis on the C57BL/6-

Wee1<tm1.1 mrl> mice, adult females were checked for the presence of a vaginal 
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plug indicating that mating occurred. Plugged mice were considered to be PD0.5 on 

the day of the observed plug. All females used in this study were age matched. 

 

Contralateral Intraductal Injections 

Mice were anesthetized with isoflurane (VetOne, 501017) Prior to intraductal 

injections, hair was removed from around the nipples using Nair hair remover. 

Injections into the duct of the nipple were performed with 33G needles (Hamilton, 

7803-05) and a volume of 40 µl per gland. Right inguinal, abdominal and thoracic 

glands were injected with doxorubicin (1.5 µg per gland, Cayman Chemical, 15007), 

nucleosides (40 µl per gland, Millipore-Sigma, ES-008-D) or Mk-1775 (50 µg per 

gland, Cayman Chemical, 21266), and left glands were injected with PBS or DMSO 

(Thermo Scientific, BP231) diluted in PBS.  

 

Tamoxifen Injections 

Tamoxifen (Sigma, T5648) was dissolved in corn oil (Sigma, C8267) at a 

concentration of 20 mg/ml. Mice were anesthetized with isoflurane (VetOne, 

501017).  Intraperitoneal injections of 75 mg/kg bodyweight were performed at 

PD17.5 and LD2 using insulin syringes (Fisher Scientific, 14-826-79).  

 

 

Cell cultures  

The HC11 cell line was obtained from American Type Culture Collection (ATCC) and 

routinely checked for mycoplasma (Mycoplasma PCR kit, ABM, G238). 
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Undifferentiated HC11 cells were cultured in growing medium (RPMI-1640; Thermo 

Fisher Scientific, 72400047), supplemented with 10% FBS, 5 µg/ml insulin (Millipore-

Sigma, I6634), 10 ng/ml epidermal growth factor (EGF; Preprotech, AF-100-15) and 

1× AntiAnti (Thermo Fisher Scientific, 15240112) at 37°C with 5% CO2. Cells were 

grown to confluency and maintained in growing medium for 2 days, until they 

became competent. Competent HC11 cells were primed for differentiation by 

culturing them in priming medium [RPMI-1640 supplemented with 5 µg/ml insulin, 1 

µM dexamethasone (Millipore-Sigma, D4902-1G) and 1× Anti-Anti] for 24 h at 37°C 

with 5% CO2. To induce differentiation, primed HC11 cells were cultured in DIP 

Medium [RPMI-1640, supplemented with 10% FBS, 5 µg/ml insulin, 1 µM 

dexamethasone, 1× anti-anti and 3 µg/ml Prolactin (NHPP, oPRL-21)] at 37°C with 

5% CO2.  

For endoreplication studies, 80% confluent undifferentiated HC11 were treated 

with 30 µM blebbistatin (Millipore-Sigma, B0560), 5 µM Ro-3306 (Sigma Aldrich, 

SML0569), 100 nM doxorubicin (Cayman Chemical, 15007) or corresponding DMSO 

(Thermo Scientific, BP231) control. Drugs were maintained through the 

differentiation process and added with every change of media. 

Undifferentiated HC11 were transfected with the Rc/CMV cyclin E plasmid 

(Addgene, #8963) for CCNE1 overexpression. Briefly, 70% confluent HC11 were 

transfected using Lipofectamine 3000 kit (Thermo Fisher, L3000015) and OPTI-MEM 

(GIBCO, 11058021). 48 h after transfection, HC11 were selected using 50 µg/ml of 

geneticin (Thermo Fisher, 10131035). Geneticin was maintained during HC11 culture 

and differentiation for stable CCNE1 expression. 
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BrdU incorporation analysis 

Undifferentiated HC11 were treated with 10 µM BrdU (Abcam, ab142567) for 2 h at 

37°C with 5% CO2. Cells were washed with 1X DPBS (GIBCO, 14190-250) and 

harvested using 0.05% Trypsin-EDTA (GIBCO, 25300-062). Cell suspension was 

washed with 1X DPBS and centrifuged at 1,000 rpm for 5 min at 4°C. Cell pellet was 

fixed in ice-cold 70% EtOH vortexing vigorously to avoid cell clumps. After fixation 

cells were washed with washing buffer [1X PBS (GIBCO, 14190136) containing 5% 

FBS] and centrifuged at 2,000 rpm for 5 min at 4°C. Cell pellet was treated with 500 

µl of 2 M HCl for 20 min at room temperature. Cells were washed with 2 ml of 0.1 M 

sodium tetraborate (Sigma Aldrich, 221731) and centrifuged at 2,000 rpm for 5 min 

at 4°C. Cells were washed once more with 3 ml of 0.1M sodium tetraborate and one 

last time with 2 ml of washing buffer. Cells were incubated for 1 h at room 

temperature with anti-BrdU (Abcam, ab6326) or corresponding rat IgG (Thermo-

Fisher, 10700) for isotype control. Cells were washed twice with 2 ml of washing 

buffer and incubated for 1 h at room temperature in darkness with FITC anti-Rat 

(Thermo Fisher, A24544). After incubation, cells were washed twice and 

resuspended in 500 µl of 1X PBS. Cells suspensions were filter through a 70 µm cell 

strainer (Falcon, 08-771-2) and analyzed using a BD LSRII cytometer. Populations 

were analyzed using FlowJo. 

 

Western Blotting 
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Whole cell lysates were prepared using 1× NP40 lysis buffer (Thermo Fisher 

Scientific, FNN0021) supplemented with Pierce Protease and Phosphatase inhibitors 

(Thermo Fisher Scientific, A32959). Cells were washed with ice-cold PBS (GIBCO, 

14190136) and lysed direct in buffer and kept at 4°C rocking at 70 rpm for 30 min. 

Lysed cells were collected and centrifuged at 12,000 rpm at 4°C for 15 min. Protein 

concentration was quantified using Qubit 4 fluorometer (Thermo Fisher, Q33238). 

Samples were resolved by SDS page and transferred to polyvinylidene difluoride 

(PVDF, Millipore-Sigma, IPVH00010) for 60 min at 250 mA. Immunoblots were 

blocked for 1 h at room temperature using either 5% non-fat milk or 5% BSA TBST. 

Primary antibodies [anti-GAPDH (SCBT, sc-365062), anti-Actin (SCBT, sc-47778), 

anti- Cyclin B1 (SCBT, sc-245), anti-Cyclin E1 (Millipore-Sigma, SAB4503516) and 

anti-CSN2 (ABclonal, A12749)] were incubated overnight at 4°C in a rocker. HRP-

conjugated secondary antibodies (The Jackson Laboratory) were used for 1 h at 

room temperature. Immunoblots were developed using Clarity ECL (Bio-Rad), 

detected using a Bio-Rad ChemiDoc MP Image, and quantified using ImageJ. 

 

Mammary gland single cell suspension 

Mechanically dissociated inguinal, abdominal, and thoracic mammary fat pads were 

prepared into cell suspension for flow cytometry or fluorescence-activated cell sorting 

(FACS). The lymph node was removed from abdominal glands. Glands were 

chopped using a mechanical tissue chopper and digested for 1 h at 37°C in digestion 

media [RPM1 containing 1%FBS, collagenase IA (Sigma, C9891), hyaluronidase 

(Sigma, H3506) and DNase I (Worthington, LS002007)]. Tissue was washed with 
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washing buffer (1X PBS containing 2% FBS) and centrifuged at 1,000 rpm for 5 min 

at 4°C. Tissue was further digested using pre-warmed 0.25% Trypsin-EDTA (Thermo 

Fisher, 25200056), washed, and digested with 5mg/ml of pre-warmed dispase II 

(Roche, 4942078001). Red blood cells were lysed using Ammonium Chloride 

Solution (Stem Cell Technologies, 07850). Cells were washed, resuspended and 

filter through a 70 µm cell strainer (Falcon, 08-771-2) and processed for downstream 

applications. 

 

Flow cytometry 

For DNA content analysis of the mammary gland CK8+ epithelial population, 

mammary gland cells suspension was obtained as described above. Cells were fixed 

in ice-cold 70% EtOH at a final concentration of 106 cells/ml. During fixation, cells 

were vigorously vortexed for 1 min to avoid the formation of cell aggregates. Cells 

were washed twice with washing buffer [1X PBS containing 5% FBS and 0.5% tween 

20 (Fisher Chemical, BP337500)] and centrifuged at 2,000 rpm for 5 min at 4°C. Cell 

pellet was incubated for 1 h at room temperature with anti-CK8 (Developmental 

Studies Hybridoma Lab, TROMA-1), anti-GFP (Thermo Fisher, A01704) or 

corresponding rat (Thermo-Fisher, 10700) or rabbit (Thermo-Fisher, 10500C) IgG 

isotype controls. Cells were washed twice and incubated for 1h at room temperature 

in darkness with FITC anti-Rat (Thermo Fisher, A24544) or FITC anti-Rabbit 

(Thermo Fisher, A16030) and APC anti-Rat (Jackson ImmunoResearch, 712-136-

153). Cells were washed twice and resuspended in propidium iodide solution [1X 

PBS containing 25 µg/ml of propidium iodide (Thermo Fisher, P3566) and 100 µg/ml 
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of RNase (Thermo Fisher, 12091021)]. For DNA content analysis on HC11, cells 

were washed with 1X DPBS (GIBCO, 14190-250) and harvested using 0.05% 

Trypsin-EDTA (GIBCO, 25300-062). Cell suspension was washed with 1X DPBS 

and centrifuged at 1,000 rpm for 5 min at 4°C. Cell pellet was fixed in ice-cold 70% 

EtOH and then vortexed vigorously to avoid cell aggregates. After fixation, cells were 

washed with washing buffer [1X PBS (GIBCO, 14190136) supplemented with 5% 

FBS] and centrifuged at 2,000 rpm for 5 min at 4°C. The pellet was resuspended in 

propidium iodide solution. Cell suspensions were filtered through a 70 µm cell 

strainer (Falcon, 08-771-2) and analyzed using a BD LSRII cytometer or a BD FACS 

Aria II Cell Sorter. Populations were analyzed using FlowJo. 

 

Visualization of cells sorted based on DNA content. 

Mammary gland CK8+ epithelial cells or HC11 were sorted based on DNA content 

using BD FACS Aria II Cell Sorter. After sorting, cells were stained in suspension 

using Phalloidin-iFluor 488 Reagent (Abcam, ab176753) for 30 min at room 

temperature in darkness. Cells were spined down onto microscopy slides (Fisher, 

12-550-15) using Cytospin 2 (Shandon, 599X52) at 500 rpm for 3 min. Cells were 

mounted using fluoromount-G (Southern Biotech, 0100-01) and visualized using 

Zeiss Axio Imager Microscope. 

 

Immunofluorescence on HC11 cells 

HC11 cells were fixed using ice-cold MeOH for 10 min. After washing with 1X PBS, 

cells were incubated for 1 h at room temperature with primary antibodies [anti-gH2AX 
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(SCBT, sc-517348), anti-pATR (Genetex, GTX128145), anti-PLIN2 (generously 

provided by Jim McManaman)] in a humid incubation chamber. After incubation, cells 

were washed three times using 1X PBS and incubated for 1h at room temperature in 

darkness using corresponding Alexa Fluor AffiniPure secondary antibodies (Jackson 

ImmunoResearch) and Phalloidin-iFluor 488 Reagent (Abcam, ab176753) when 

indicated. Cells were washed three times using 1X PBS and incubated with Hoechst 

33342 (AnaSpec, AS-83218) for 10 min. Cells were mounted using fluoromount-G 

(Southern Biotech, 0100-01) and visualized using Zeiss Axio Imager Microscope. 

Integrated density of PLIN2, nuclear gH2AX and nuclear pATR was quantify using 

ImageJ. 

 

Immunofluorescence of paraffin-embedded tissue 

Mammary gland tissue was fixed in 10% neutral buffered formalin (EMD Millipore, 

MR0458682) at 4°C overnight. Fixation was quenched using 0.2% glycine (Fisher 

Scientific, BP381) in PBS, for 1h at room temperature. Tissue was dehydrated by 

incubating with 70% EtOH (Decon Labs, V1001) overnight, 95% EtOH for 1h, 100% 

EtOH for 1h (x3) and xylenes (Fisher Scientific, X3P) for 1h (x3). Dehydrated tissue 

was soaked in paraffin (VWR, 15159-409) overnight and embedded. Paraffin-

embedded tissue was sectioned at a thickness of 5 µm and mounted on Superfrost 

Plus Microscope Slides (Fisher, 12-550-15). Sectioned tissue was hydrated by 

incubating with xylenes for 5 min (x3), 100% ethanol for 2 min (x2), 95% ethanol for 

1 min, 70% ethanol for 1 min, 50% ethanol for 1 min, and diH2O for 5 min. Antigen 

retrieval was performed using antigen unmasking solution (VectorLabs, H3300-250) 
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in a conventional lab microwave. Sections were incubated with blocking buffer 

containing 10% donkey serum (Equitech-Bio, SD30), 1% BSA (VWR, 97061-422) 

and 0.3% triton (Millipore Sigma, X100) in PBS overnight at 4C. Incubation with 

primary antibodies [anti-CK8 (Developmental Studies Hybridoma Lab, TROMA-1) 

and anti-mouse milk proteins (Accurate Chemical and Scientific, YNRMTM)] was 

performed overnight at 4°C. Sections were washed with 0.3% triton in PBS for 30 

min (x3) at room temperature. Incubation with secondary antibodies [(donkey anti-

Rat 647 (Thermo-Invitrogen; A48272) and donkey anti-Rabbit 488 (Thermo-

Invitrogen; A32790)] was performed for 2 h at room temperature. Sections were 

washed with 0.3% triton in PBS for 30 min (x3) at room temperature and mounted 

using flouromount-G (Southern Biotech, 0100-01). Image acquisition was performed 

using Zeiss Axio Imager Microscope. Macros were generated to quantify lumen milk 

integrated density per alveolus using Image J.  

 

Immunofluorescence and optical clearing of cryosections 

Mammary gland tissue was fixed in 10% neutral buffered formalin (EMD Millipore, 

MR0458682) at 4°C overnight. Fixation was quenched using 0.2% glycine (Fisher 

Scientific, BP381) in PBS, for 1h at room temperature. Tissue was incubated with 

30% sucrose (Fisher Scientific, BP220-212) in PBS at 4°C for 48h and sectioned at a 

thickness of 100 µm. Sections were washed with PBS for 10min (x2) at room 

temperature. Sections were incubated with CUBIC-L(Tainaka et al., 2018) at 37C 

overnight, and washed with 0.3% triton in PBS for 30min (x3). Sections were 

incubated with blocking buffer containing 10% donkey serum (Equitech-Bio, SD30), 
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1% BSA (VWR, 97061-422) and 0.3% triton (Millipore Sigma, X100) in PBS 

overnight at 4°C. Incubation with primary antibodies [anti-gH2AX (Cell Signaling, 

2577S), anti-pATR (Genetex, GTX128145), anti-CK8 (Developmental Studies 

Hybridoma Lab, TROMA-1)] was performed overnight at 4°C. Sections were washed 

with 0.3% triton in PBS for 1h (x3) at room temperature. Incubation with secondary 

antibodies [donkey anti-Rat 488 (Thermo-Invitrogen; A32795) and donkey anti-

Rabbit 647 (Thermo-Invitrogen; A48269)], propidium iodide (Thermo Fisher, P3566) 

and RNase (Thermo Fisher, 12091021) was performed for 6h at room temperature. 

Sections were washed with 0.3% triton in PBS for 1 h (x3) at room temperature and 

mounted on poly-L-lysine (Sigma, P8920) coated chamber slides (Ibidi, 80827). 

Tissues sections were incubated with CUBIC-R(Tainaka et al., 2018) at room 

temperature until cleared (approximately 48h), and imaged using a ZEISS LSM 880 

microscope with Airyscan. Integrated density of nuclear gH2AX and pATR was 

quantified using ImageJ. 

 

3D DNA content in situ 

Mammary gland tissue was fixed in 10% neutral buffered formalin (EMD Millipore, 

MR0458682) at 4°C overnight. Fixation was quenched using 0.2% glycine (Fisher 

Scientific, BP381) in PBS, for 1h at room temperature. Tissue was incubated with 

30% sucrose (Fisher Scientific, BP220-212) in PBS at 4°C for 48h and sectioned at a 

thickness of 200 µm. Sections were washed with PBS for 10 min (x2) at room 

temperature. Sections were incubated with blocking buffer containing 10% donkey 

serum (Equitech-Bio, SD30), 1% BSA (VWR, 97061-422) and 0.3% triton (Millipore 
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Sigma, X100) in PBS overnight at 4°C. Incubation with primary antibody anti-E-

cadherin (Thermo Fisher, 13-1900) was performed overnight at 4°C. Sections were 

washed with 0.3% triton in PBS for 1 h (x3) at room temperature. Incubation with 

secondary antibody donkey anti-Rat 488 (Thermo-Invitrogen; A32795), Phalloidin-

647 (Invitrogen, A30107) and Hoechst 33342 (AnaSpec, AS-83218) was performed 

overnight at 4°C. Sections were washed with 0.3% triton in PBS for 1h (x3) at room 

temperature and mounted on poly-L-lysine (Sigma, P8920) coated chamber slides 

(Ibidi, 80827). Tissue sections were incubated 80% glycerol (Sigma, G9012) in H2O 

at room temperature for 72h, and imaged using a ZEISS LSM 880 microscope with 

Airyscan. Segmentation of nuclei and quantification of DNA integrated density in 3D 

was performed using Cell Profiler. Incomplete nuclei were excluded from analysis. 

Stromal cells were used as a reference for diploid (2C) DNA content. 

 

RNA extraction and RT-qPCR 

For RNA isolation from FACS purified populations, mammary gland cell suspensions 

were blocked using Mouse BD Fc Block™ (BD Biosciences) for 10 min. Cells were 

subsequently resuspended on 1X PBS at a density of 107 cells/ml and stained with 

the following antibodies for 30 min on ice: anti-CD24 PE (Stem Cell Technologies, 

60099PE.1), anti-CD29 PE-Cy7 (BioLegend, 102222), anti-CD45-APC 

(BioLegend,105826), Ter119-APC (BD Biosciences, 561033), CD31-ACP (BD 

Biosciences, 551262). Propidium iodide at a final concentration of 0.5 µg/ml was 

used for the discrimination of dead cells. Stromal, basal and luminal mammary 

populations were sorted using a BD FACS Aria II Cell Sorter. Cells were 
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subsequently lysed in TRIzol reagent (ThermoFisher, 15596018) and phase 

separated according to the manufacturer’s protocol with an additional overnight RNA 

precipitation step in ethanol (H. Macias et al., 2011). The RNA was further purified 

with TURBO DNase (Ambion, AM1906) treatment. For HC11 and whole-gland tissue 

RNA isolation the NucleoSpin RNA extraction kit (Macherey-Nagel, 740955.50) was 

utilized according to the manufacturer’s instructions. Total RNA quality was analyzed 

by agarose gel electrophoresis and quantified using an ND-1000 spectrophotometer 

(NanoDrop). cDNA was prepared from 500-1000 ng of total RNA using iScript cDNA 

synthesis kit (Bio-Rad, 1708841). Quantitative RT-qPCR was performed in triplicates 

using SsoAdvanced Universal SYBR Green Supermix, (Bio-Rad, 1725272). The 

reactions were run in a Bio-Rad CFX’Connect Real-Time System and CFX Manager 

software (Bio-Rad) as follows: 95°C for 2 min followed by 40 cycles of 95°C for 15 s, 

60°C for 30 s and 72°C for 45 s. Results were normalized to Gapdh. Primers used in 

this study are: Csn2: 5’- CCTCTGAGACTGATAGTATT-3’ and 5’-

TGGATGCTGGAGTGAACTTTA-3’; Gapdh: 5’- CATGGCCTTCCGTGTTCCTA-3’ 

and 5’- CCTGCTTCACCACCTTCTTGAT-3’; Cdkn1a: 5’- 

ATCCAGACATTCAGAGCCACAG-3’ and 5’-ACGAAGTCAAAGTTCCACCGT-3’; 

Wee1: 5’- TTGGCTGGCTCTGTTGATGA-3’ and 5’- 

CAGCTAAACTCCCACCATTACAG-3’; Cdkn1b: 5’-AACGTGCGAGTGTCTAACGG-

3’ and 5’- CCCTCTAGGGGTTTGTGATTCT-3’; Elf5: 5’-

TGACCCCCTGATGCCTTGGA-3’ and 5’-TGGAGGCTTGTTCGGCTGTG-3’. 

 

Contralateral Transplantation 
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Foxn1nu athymic nude mice (JAX #002019) were cleared of their endogenous 

inguinal MG epithelium prior to 3 weeks of age via cauterization of the nipple. MG 

epithelium tissue fragments were harvested from WT and Robo2 KO nulliparous 

adult mice and contralaterally transplanted into the inguinal fat-pads of 3 week old 

athymic nude mice. Transplanted tissue was allowed to form outgrowths during 

pubertal development, and timed breeding of mice was performed after they reached 

8 weeks of age. 

 

3D Organoid Culture 

MG tissue was harvested, chopped and placed in low-adhesion dishes with digestion 

media: DMEM/F12 (Thermo-Fisher 11039047) with 1X Anti-Anti, 4 mg/mL Class 3 

Collagenase (Worthington Biochem. LS004206), 4 mg/mL Class 3 Dispase (Roche 

4942078001), 50 mg/mL Geneticin (Thermo-Fisher 10131035) and 5% FBS. 

Chopped tissue was incubated in digestion media 16h at 37°C and 5% CO2. 

Digested epithelial tissue fragments were washed with DPBS, pelleted at 600rcf for 

10min, and the supernatant was aspirated; this was repeated 3-5 times or until no 

more red blood cells were visible on the top of the pellet. Fragments were then 

plated in a dish with maintenance media: DMEM/F12 with 1X Anti-Anti, 5 µg/mL 

insulin, 10 ng/mL EGF and 5% FBS. Fragments were incubated for 24-48hr at 37°C 

and 5% CO2. Resulting 2D cell culture was washed with DPBS and incubated with 

0.05% trypsin-EDTA. After 3-6min, detached basal epithelial cells were collected in a 

tube containing DPBS with 10% FBS. The dish was rinsed with DPBS and fresh 

0.05% trypsin-EDTA was added again. After 7-15min, detached luminal epithelial 
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cells were collected in a tube containing DPBS with 10% FBS. Basal and luminal 

epithelial subpopulations were counted and pelleted, and the supernatant was 

aspirated. Basal epithelial cells were resuspended in 10% Matrigel (Corning 

CB40230C) at 250 cells/µL, and luminal epithelial cells were resuspended in 10% 

Matrigel at 750 cells/µL. Wells of a 24- or 48-well plate were coated with 50% 

Matrigel and incubated at 37°C for 30min until solidified. Cell resuspensions were 

then added to the wells in a 1:1 ratio and incubated at 37°C for 30min until solidified. 

3D embedded cells were incubated with growth media: DMEM/F12 with 1X N-2 

(Thermo-Fisher 17502048), 1X B27 (Thermo-Fisher 12587010), 100 ng/mL Nrg1 

(R&D 5898-NR-050), 42.5 ng/mL R-spondin (PeproTech 120-38), 1nM Rho inhibitor 

Y-27632 (Tocris 1254) and 10 ng/mL EGF. Cells were incubated for 5 days at at 

37°C and 5% CO2, changing media every 2-3 days. The resulting organoids were 

then cultured for 1-5 days with alveologenesis media: DMEM/F12 with 1X N-2, 1X 

B27, 100 ng/mL Nrg1, 42.5 ng/mL R-spondin, 1nM Rho inhibitor Y-27632, 1 µg/mL 

prolactin, 5 µg/mL dexamethasone and 5 µg/mL insulin. After differentiation, the 

alveologenesis media was aspirated and the Matrigel was dissolved with Cell 

Recovery Solution (Fisher CB-40253). The organoids were then washed with DPBS 

and pelleted. 

 

Immunofluorescence of organoids 

Organoids were resuspended in 4% PFA and incubated on ice for 45min. Fixed 

organoids were washed with PBS, pelleted, and the supernatant was removed. The 

organoids were then resuspended in PBS with 0.2% glycine and incubated for 20min 
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at room temperature to quench fixation. Organoids were placed in a 24- or 48-well 

low-adhesion plate and incubated with blocking buffer containing 10% donkey serum 

(Equitech-Bio, SD30), 1% BSA (VWR, 97061-422) and 0.3% triton (Millipore Sigma, 

X100) in PBS overnight at 4C. Organoids were incubated with primary antibodies 

anti-CK8 (Developmental Studies Hybridoma Lab, TROMA-1), anti-pATR (Genetex, 

GTX128145) and anti-NOTCH1 (SCBT sc-373891) overnight at 4°C. Organoids 

were washed with 0.3% triton in PBS for 1hr (x3) at room temperature. Organoids 

were then incubated with secondary antibodies donkey anti-Rat 647 (Thermo-

Invitrogen; A48272), donkey anti-Mouse 594 donkey (Thermo-Fisher A32744), anti-

Rabbit 488 (Thermo-Invitrogen; A32790) and Hoechst overnight at 4°C. Organoids 

were washed with 0.3% triton in PBS for 1hr (x3), and transferred to a poly-L-lysine 

coated coverslip bottom chamber slide for imaging. 

 

Statistical analyses 

No statistical method was used to predetermine sample size. Statistical analysis was 

performed using Prism9 software. Sample size, biological replicates, statistical test, 

and statistical significance are denoted in the figure legends. For the statistical 

analysis of the experiments involving contralateral intraductal injections, paired 

statistical tests were performed.  
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