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Abstract

Assessing and planning for unmeasured confounding in weighted observational studies

by

Daniel W Soriano

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Avi Feller, Co-chair

Professor Samuel Pimentel, Co-chair

The ability to compare similar groups is central to causal inference. If two groups are the
same except that one group received a treatment and the other group did not, we can
attribute the difference in an outcome of interest to the treatment (Cochran, 1965). For this
reason, randomized experiments are often considered to be the “gold standard” for estimating
causal effects: when the treatment is randomly assigned, the treatment and control groups
are comparable on average. In many settings, it might be unethical or otherwise infeasible
for a researcher to randomly assign treatment. In these cases, researchers must rely on
observational data to investigate their causal hypotheses.

Aside from their greater feasibility in many instances, there are a few possible benefits of
observational studies compared to randomized experiments. Observational studies typically
consist of larger, naturally occurring samples that more closely resemble a target population.
However, there is no guarantee that the treatment and control groups are comparable in an
observational study since units can select into a group. For example, in a study evaluating
the effectiveness of a medication on a health outcome of interest, patients that are sicker to
begin with might be more likely to take the treatment, biasing direct comparison of treatment
and control groups. A common strategy to attempt to mitigate this bias is to adjust for
observed covariates so that the adjusted treatment and control groups are comparable in
terms of these covariates.

These methods that attempt to adjust for observed covariates rely on the key assumption
that there are no unmeasured confounders that simultaneously impact the treatment and
outcome, often referred to as ignorability or unconfoundedness. However, this assumption is
not verifiable from observed data and never exactly holds in most real-world settings. Since
we are still interested in studying causal relationships from observational data, the ignor-
ability assumption is at the core of this thesis. First, we develop a framework to evaluate
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how robust causal effect estimates are to violations of the ignorability assumption. Then,
we investigate how to design observational studies to improve robustness to unmeasured
confounding, rather than selecting designs that are optimal under the ignorability assump-
tion. Chapter 1 briefly reviews these topics, and the following chapters detail our proposed
frameworks.

Chapter 2 focuses on assessing the robustness of weighted observational studies to violations
of the ignorability assumption. We develop a sensitivity analysis framework for a broad class
of weighting estimators that allows for specified levels of unmeasured confounding, resulting
in a range of possible effect estimates, rather than a single point estimate. We prove that the
percentile bootstrap procedure can yield valid confidence intervals for causal effects under
our sensitivity analysis framework. We also propose an amplification — a mapping from
a one-dimensional sensitivity analysis to a higher dimensional sensitivity analysis — to en-
hance the interpretability of our sensitivity analysis’s results, aiding researchers in reasoning
about plausible levels of confounding in particular observational studies. We illustrate our
sensitivity analysis procedure through real data examples.

Chapter 3 builds on Chapter 2 by focusing on how to design observational studies such
that they are robust to unmeasured confounding, rather than optimal under ignorability.
Specifically, we introduce a measure called design sensitivity for weighting estimators, which
describes the asymptotic power of a sensitivity analysis. By comparing design sensitivities,
we assess of how different design decisions impact sensitivity to unmeasured confounding.
While sensitivity analysis is conducted post-hoc as a secondary analysis, design sensitivity
enables researchers to plan ahead and optimize for robustness at the design stage. We
illustrate our proposed framework on data evaluating the drivers of support for the 2016
Colombian peace agreement.
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Chapter 1

Weighting, sensitivity analysis, and
design sensitivity for causal inference

Consider an observational study with n units sampled identically and independently from a
population with pre-treatment covariates Xi ∈ Rd, binary treatment indicator Zi ∈ {0, 1},
and outcome Yi ∈ R. We posit the existence of potential outcomes : the outcome had unit
i received the treatment, Yi(1), and the outcome had unit i received the control, Yi(0)
(Neyman, 1923; Rubin, 1974). Assuming stable treatment and no interference between units
(Rubin, 1980b), the observed outcome is Yi = (1 − Zi)Yi(0) + ZiYi(1). The focus of this
thesis is the key identification assumption that the potential outcomes are independent of
the treatment given the pre-treatment covariates. Combined with the assumption that the
treatment assignment is not deterministic conditional onX, these assumptions are commonly
known as strong ignorability (Rosenbaum and Rubin, 1983b).

Assumption 1.1 (Ignorability). Y (0), Y (1) ⊥⊥ Z | X.

Assumption 1.2 (Overlap). The propensity score π(x) ≡ P (Z = 1 | X = x) satisfies
0 < π(x) < 1 for all x ∈ X .

In this chapter, we focus on estimating the Population Average Treatment Effect (PATE):

τ = E[Y (1)− Y (0)] = µ1 − µ0, (1.1)

where µ1 = E[Y (1)] and µ0 = E[Y (0)].

1.1 Weighting

A popular method to estimate treatment effects in observational studies is to weights units
such that the covariate distributions in the treatment and control groups are similar. Rosen-
baum and Rubin (1983b)’s influential work on the central role that the propensity score plays
in observational studies motivates many weighting strategies. The first key result illuminates
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that the propensity score can be used for dimension reduction while still maintaining ignor-
ability. If strong ignorability holds conditional on the pre-treatment covariates X, then the
potential outcomes and treatment are also independent conditional on the propensity score
π(X). Therefore, if X is sufficient to remove confounding between Z and potential outcomes
Y (0), Y (1), then π(X) is as well.

Under Assumptions 1.1 and 1.2, we can non-parametrically identify µ1 using observed
outcomes and propensity scores from treated units:

E
ï
ZY

π(X)

ò
= E
ï
E
ï
ZY

π(X)
| X
òò

= E[Y (1)]. (1.2)

A similar result holds for µ0. This motivates the inverse propensity score weighting (IPW)
estimator

τ̂IPW =
1

n

n∑
i=1

ZiYi

π̂(Xi)
− 1

n

n∑
i=1

(1− Zi)Yi

1− π̂(Xi)
, (1.3)

where π̂(Xi) is an estimate of the propensity score. Since the IPW estimator is not invariant
to location transformations of the outcome and can be unstable when estimated propensity
scores are near 0 or 1, an alternative estimator is the stabilized IPW (SIPW) estimator with
normalized weights

τ̂SIPW =

∑n
i=1

ZiYi

π̂(Xi)∑n
i=1

Zi

π̂(Xi)

−
∑n

i=1
(1−Zi)Yi

1−π̂(Xi)∑n
i=1

1−Zi

1−π̂(Xi)

. (1.4)

IPW estimators are a subset of more general weighting estimators that replace inverse
propensity scores with more general weights:

τ̂W =

∑n
i=1 ŵiZiYi∑n
i=1 ŵiZi

−
∑n

i=1 w̃i (1− Zi)Yi∑n
i=1 w̃i (1− Zi)

. (1.5)

An increasingly popular alternative approach to estimating weights is to solve a constrained
optimization problem to obtain weights that satisfy constraints on covariate balance. Hence,
rather than estimating propensity scores and using them to form weights, this class of bal-
ancing weights estimators directly targets covariate balance. See Ben-Michael et al. (2021)
for a recent review.

1.2 Sensitivity analysis

In randomized experiments, random treatment assignment yields balanced treatment and
control groups on average. On the other hand, researchers employ techniques such as weight-
ing and matching to adjust for observed covariates X in observational studies to form treat-
ment and control groups that are comparable in terms of the observed covariates. Since
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unobserved covariates U are not included in the estimation procedure, there is no guarantee
that the treatment and control groups are comparable in terms of U . Therefore, researchers
typically rely on the ignorability assumption (1.1) to estimate causal effects from observa-
tional studies.

Unfortunately, the ignorability assumption is almost never exactly true in observational
studies, leading to serious concerns about the reliability of their findings. In order to test
how robust a study’s results are to violations of ignorability, researchers can run a sensitivity
analysis. A sensitivity analysis typically relaxes the ignorability assumption, allowing for a
specified magnitude of bias from unmeasured confounding, and examines how the causal
effect estimates change. The sensitivity of an observational study is the degree of violation
of ignorability needed to alter the study’s conclusions. If a large amount of confounding
is needed, then the study is robust, enhancing its reliability. Conversely, a sensitive study
would require only a small deviation from ignorability.

Sensitivity analysis dates back to Cornfield et al. (1959), who conducted a formal sen-
sitivity analysis of an observational study examining the effect of smoking on lung cancer.
They determined that significant bias from unmeasured confounding would be required to
change the conclusion that smoking causes lung cancer. Ding and VanderWeele (2016) build
off of Cornfield et al. (1959)’s framework to deliver stronger conclusions while making no as-
sumptions about the structure of the unmeasured confounder or confounders. Among other
more recent sensitivity analysis frameworks, Rosenbaum (2002)’s sensitivity model stipulates
that two units, j and k, with the same observed covariates, Xj = Xk, must have treatment
odds that differ by at most a multiplier of sensitivity analysis parameter Γ ≥ 1:

1

Γ
≤ πj/ (1− πj)

πk/ (1− πk)
≤ Γ, (1.6)

where πi = Pr (Zi = 1 | Yi(0), Yi(1), Xi, Ui). Γ = 1 represents no unmeasured confounding.
As Γ increases, the sensitivity model allows for larger deviations from ignorability.

Most pertinent to this dissertation is the growing literature on sensitivity analysis for
weighting estimators. We highlight two closely related sensitivity models that relax the
ignorability assumption, the marginal sensitivity model and the variance-based sensitivity
model. For simplicity, consider estimating τatt = E[Y (1) − Y (0) | Z = 1], let w be the
population inverse propensity score weights that condition on X alone, and define the ideal
weights w∗ to be the population-level inverse propensity score weights in (X,U). Originally
introduced by Tan (2006) and later studied by Zhao et al. (2019); Soriano et al. (2021);
Dorn and Guo (2021), the marginal sensitivity model νmsm(Λ, w) constrains the worst-case
error from omitting a confounder, positing that the ratio between any ideal weight w∗ and
corresponding w may not exceed Λ ≥ 1:

νmsm(Λ, w) :=

ß
w∗ : Λ−1 ≤ w∗

w
≤ Λ

™
. (1.7)

The variance-based sensitivity model νvbm(R
2, w) constrains the variance in w∗ not ex-

plained by w (Huang and Pimentel, 2022). More formally, for some R2 ∈ [0, 1), the variance-
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based sensitivity model is defined as follows:

νvbm(R
2, w) :=

ß
w∗ : 1 ≤ var(w∗ | Z = 0)

var(w | Z = 0)
≤ 1

1−R2

™
. (1.8)

We study both sensitivity models in depth in the chapters that follow.

1.3 Design sensitivity

In randomized experiments, a desirable feature of a statistical test is for it to have high
power; i.e., to detect a true treatment effect with high probability. Similarly, we strive
to maximize the power of a sensitivity analysis in observational studies. The power of a
sensitivity analysis is the probability that the sensitivity analysis rejects the null hypothesis
of no treatment effect for a given sensitivity model and value of the sensitivity parameter
under a favorable situation, meaning (1) the study is free of unmeasured bias, and in addition
(2) there is a treatment effect large enough to be of interest.

While it may seem paradoxical to evaluate a sensitivity analysis when no unmeasured
confounding is present, in practice, researchers do not know whether the favorable situation
is true from observable data and must conduct a sensitivity analysis anyway. Therefore, a
natural goal when in the favorable situation is to conclude that treatment appears to have
an effect that is highly insensitive to unmeasured biases.

The need to repeatedly compute power for each value of n and the sensitivity parameter
makes it difficult to learn general principles about the behavior of the power. As n → ∞,
there is a value of the sensitivity parameter such that the power of a sensitivity analysis goes
to 1 for all values of the sensitivity parameter less than that value and to 0 for all greater
than that value. This value is called the design sensitivity.

While sensitivity analysis is conducted post-hoc as a secondary analysis, design sensitiv-
ity enables researchers to plan ahead and tailor studies to improve robustness to unmeasured
confounding. Originally introduced by Rosenbaum (2004), design sensitivity has been stud-
ied extensively for matched studies (Heller et al., 2009; Rosenbaum et al., 2010; Hsu et al.,
2013). Implications include the value of reducing heterogeneity within matched pairs (Rosen-
baum, 2005) and choosing test statistics (Rosenbaum, 2011; Howard and Pimentel, 2021)
and treatment doses (Rosenbaum, 2004) carefully. Chapter 3 focuses on developing design
sensitivity for weighting and exploring its implications for important design choices.
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Chapter 2

Interpretable Sensitivity Analysis for
Balancing Weights

Assessing sensitivity to unmeasured confounding is an important step in observational stud-
ies, which typically estimate effects under the assumption that all confounders are measured.
In this chapter, we develop a sensitivity analysis framework for balancing weights estima-
tors, an increasingly popular approach that solves an optimization problem to obtain weights
that directly minimizes covariate imbalance. In particular, we adapt a sensitivity analysis
framework using the percentile bootstrap for a broad class of balancing weights estimators.
We prove that the percentile bootstrap procedure can, with only minor modifications, yield
valid confidence intervals for causal effects under restrictions on the level of unmeasured con-
founding. We also propose an amplification — a mapping from a one-dimensional sensitivity
analysis to a higher dimensional sensitivity analysis — to allow for interpretable sensitivity
parameters in the balancing weights framework. We illustrate our method through extensive
real data examples.

2.1 Introduction

Observational studies can be an important source of evidence about causal effects across
the medical and social sciences. Observational studies may be feasible in cases where ran-
domized trials are not, or at least substantially less onerous to conduct at scale, but they
raise challenges for analysis that are not present in randomized studies. As one example,
consider evaluating the degree to which diets rich in fish elevate blood mercury relative to
diets containing little fish. High levels of mercury in the blood can pose health risks; for
instance, infants whose mothers had high mercury levels may be at increased risk for ad-
verse neurodevelopmental events (Mahaffey et al., 2004). Consumption of fish or shellfish
has been identified as a major source of mercury in the blood (Björnberg et al., 2003). These
effects could be measured by randomly assigning subjects to high- and low-fish diets over
long periods of time and comparing their blood mercury, but such experiments may be dif-
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ficult to conduct and suffer from problems with compliance. Observational data describing
blood mercury levels for subjects who choose to eat large or small amounts of fish are more
readily available, but direct comparisons between groups are subject to confounding if the
high-fish-diet and low-fish-diet subjects are systematically different in other ways. Similarly,
measuring the impact of job training programs on wages using randomized experiments is ex-
pensive and difficult, but observational studies suffer from substantial confounding (LaLonde,
1986).

In observational studies for both examples just described, some confounding may be
apparent in the form of obvious differences in observed variables between comparison groups,
and analysis often proceeds under a key assumption that all confounders are measured,
sometimes known as ignorability or unconfoundedness. However, this assumption is not
verifiable from observed data, and it is often easy to suggest unmeasured factors that may
contribute at least a limited amount of confounding. For example, in the case of job training
programs, one might wonder if individuals who choose to participate in job training may have
higher intrinsic motivation to succeed than those who choose not to. A sensitivity analysis
seeks to determine the magnitude of unobserved confounding required to alter a study’s
findings. If a large amount of confounding is needed, then the study is robust, enhancing its
reliability. Assessing sensitivity to unmeasured confounding is a critical part of the workflow
for causal inference in observational studies.

In this chapter, we develop a sensitivity analysis framework for balancing weights estima-
tors. Building on classical methods from survey calibration, these estimators find weights
that minimize covariate imbalance between a weighted average of the observed units and
a given distribution, such as by re-weighting control units to have a similar covariate dis-
tribution to the treated units. Balancing weights have become increasingly common within
causal inference, with better finite sample properties than traditional inverse propensity score
weighting (IPW). See Section 2.2 for additional details and Ben-Michael et al. (2021) for a
recent review.

Our proposed sensitivity analysis framework adapts the percentile bootstrap sensitivity
analysis that Zhao et al. (2019) develop for traditional IPW. Specifically, for a given sensitiv-
ity parameter, we compute the upper and lower bounds of our estimator for each bootstrap
sample, and then form a confidence interval using percentiles across bootstrap samples. We
prove that this approach yields valid confidence intervals for our proposed sensitivity analysis
procedure over a broad class of balancing weights estimators.

To make a sensitivity analysis more interpretable, Rosenbaum and Silber (2009) introduce
an amplification of a sensitivity analysis, which is a mapping from each point in a low-
dimensional sensitivity analysis to a set of points in a higher-dimensional sensitivity analysis
that all have the same possible inferences. We propose a new amplification that expresses the
bias from confounding in terms of: (1) the imbalance in an unobserved covariate; and (2) the
strength of the relationship between the outcome and the unobserved covariate. Researchers
can then relate the results of our amplification to estimates from observed covariates. We
demonstrate this approach via a numerical illustration and via several applications.
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2.2 Background, notation, and review

Setup and review of marginal sensitivity model

We consider an observational study setting with independently and identically distributed
data (Yi, Xi, Zi), i ∈ {1, . . . , n}, drawn from some joint distribution P (·) with outcome
Yi ∈ R, covariates Xi ∈ X , and treatment assignment Zi ∈ {0, 1}. We posit the existence of
potential outcomes : the outcome had unit i received the treatment, Yi(1), and the outcome
had unit i received the control, Yi(0) (Neyman, 1923; Rubin, 1974). We assume stable
treatment and no interference between units (Rubin, 1980b), so the observed outcome is
Yi = (1 − Zi)Yi(0) + ZiYi(1). An estimand of interest is the Population Average Treatment
Effect (PATE):

τ = E[Y (1)− Y (0)] = µ1 − µ0, (2.1)

where µ1 = E[Y (1)] and µ0 = E[Y (0)]. To simplify the exposition, we will focus on estimating
µ1; estimating µ0 is symmetric. We consider an alternative estimand, the Population Average
Treatment Effect on the Treated (PATT) in Section 2.5 and Appendix A.3.

A common set of identification assumptions in this setting, known as strong ignorability,
assumes that conditioning on the covariates X sufficiently removes confounding between
treatment Z and the potential outcomes Y (0), Y (1), and that treatment assignment is not
deterministic given X (Rosenbaum and Rubin, 1983b).

Assumption 2.1 (Ignorability). Y (0), Y (1) ⊥⊥ Z | X.

Assumption 2.2 (Overlap). The propensity score π(x) ≡ P (Z = 1 | X = x) satisfies
0 < π(x) < 1 for all x ∈ X .

Under Assumptions 2.1 and 2.2, we can non-parametrically identify µ1, solely with the
outcomes from units receiving treatment,

µ1 = E
ï
ZY

π(X)

ò
. (2.2)

In an observational setting, the researcher does not know the true treatment assignment
mechanism, π(x, y) ≡ P (Z = 1 | X = x, Y (1) = y), which in general can depend on both
the covariates X and the potential outcomes Y (1) and Y (0). A rich literature assesses the
sensitivity of estimates to violations of the ignorability assumption. This approach dates back
at least to Cornfield et al. (1959), who conducted a formal sensitivity analysis of the effect
of smoking on lung cancer. More recent examples of sensitivity analysis include Rosenbaum
and Rubin (1983a), Rosenbaum (2002), VanderWeele and Ding (2017), Franks et al. (2019),
Tudball et al. (2019), Cinelli and Hazlett (2020), Fogarty (2020), Huang (2022), and Huang
and Pimentel (2022). See Hong et al. (2020) for a recent discussion of weighting-based
sensitivity methods.
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We adopt the marginal sensitivity model proposed originally by Tan (2006) and further
developed by Zhao et al. (2019) and Dorn and Guo (2021) for traditional IPW weights.
Following these authors, we split the problem into two parts: sensitivity for the mean of
the treated potential outcomes and sensitivity for the mean of the control potential out-
comes; without loss of generality, we consider the mean for the treated potential outcomes.
Since unbiased estimation of E[Y (1)] requires knowledge only of π(x, y) = P (Z = 1 | X =
x, Y (1) = y) rather than the full propensity score that also conditions on Y (0), we can
rewrite Assumption 2.1 as π(x, y) = π(x). For details on combining sensitivity analyses for
E[Y (1)] and E[Y (0)] into a single sensitivity analysis for the ATE, see Section 5 from Zhao
et al. (2019).

The marginal sensitivity model relaxes the ignorability assumption so that the odds ratio
between the two conditional probabilities π(x) and π(x, y) is bounded.

Assumption 2.3 (Marginal sensitivity model). For Λ ≥ 1, the true propensity score satisfies

π(x, y) ∈ E(Λ) =
{
π(x, y) ∈ (0, 1) : Λ−1 ≤ OR(π(x), π(x, y)) ≤ Λ

}
,

where OR(p1, p2) =
p1/(1−p1)
p2/(1−p2)

is the odds ratio.1

Here, Λ is a sensitivity parameter, quantifying the difference between the true propensity
score π(x, y) and the probability of treatment given X = x, π(x); when Λ = 1, the two
probabilities are equivalent, and Assumption 2.1 holds. If, for example, Λ = 2, Assumption
2.3 constrains the odds ratio between π(x) and π(x, y) to be between 1

2
and 2.

Again following Zhao et al. (2019), we will consider an equivalent characterization of the
set E(Λ) in terms of the log odds ratio h(x, y) = logOR(π(x), π(x, y)):

H(Λ) = {h : X × R→ R : ∥h∥∞ ≤ log Λ} , (2.3)

where ∥h∥∞ = supx∈X ,y∈R |h(x, y)| is the supremum norm. Rearranging the definition of

h(x, y) to be log π(x,y)
1−π(x,y)

= log π(x)
1−π(x)

−h (x, y) and applying the inverse logit transformation,
we can write the true propensity score under a particular sensitivity model h as

π(h)(x, y) =

ï
1 +

Å
1

π(x)
− 1

ã
eh(x,y)

ò−1

. (2.4)

Zhao et al. (2019) refer to π(h)(x, y) as the shifted propensity score. Then, for a particular
h ∈ H(Λ), we can write the shifted estimand as

µ
(h)
1 = E

ï
Z

π(h)(X, Y (1))

ò−1

E
ï

ZY

π(h)(X, Y (1))

ò
. (2.5)

1Zhao et al. (2019) introduce an extension to the marginal sensitivity model that they call the parametric
marginal sensitivity model. The parametric marginal sensitivity model replaces π(x) with the best parametric
approximation to π(x), πβ(x), and compares π(x, y) to πβ(x) so that the sensitivity analysis addresses both
model misspecification and unobserved confounding.
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Under the marginal sensitivity model in Assumption 2.3, we then have a non-parametric
partial identification bound, infh∈H(Λ) µ

(h)
1 ≤ µ1 ≤ suph∈H(Λ) µ

(h)
1 .

The bound just given depends on population quantities that must be estimated, and in
practice it is important to take sampling uncertainty into account. Zhao et al. (2019) use
the percentile bootstrap to build confidence intervals that cover this partial identification
set, under the assumption that the weights are constructed using IPW.

We go beyond Zhao et al. (2019)’s work in two important ways. In Section 2.3, we show
that the percentile bootstrap strategy for constructing confidence intervals is valid for the
broader class of balancing weights, not just IPW. This requires a different proof strategy
than the one based on Z-estimation used by Zhao et al. (2019) in order to handle balancing
weights estimators that achieve approximate (rather than exact) balance on covariates, such
as the stable balancing weights of Zubizarreta (2015). In Section 2.4 we then introduce an
amplification that allows us to better interpret and calibrate marginal sensitivity analyses.

Weighting estimators under strong ignorability

We estimate µ1 via a weighted average of treated units’ outcomes using weights γ̂(X),

µ̂1 =
n∑

i=1

Ziγ̂(Xi)
n∑

i=1

Ziγ̂(Xi)
Yi. (2.6)

Under strong ignorability (Assumptions 2.1 and 2.2), traditional Inverse Propensity Score
Weighting (IPW) first models the propensity score, π̂(x), directly and then sets weights to
be γ̂(Xi) =

1
π̂(Xi)

. Thus, µ̂1 is a plug-in version of Equation (2.2). This approach can perform

poorly in moderate to high dimensions or when there is poor overlap and either π(x) or π̂(x)
is near 0 or 1 (Kang et al., 2007).

Balancing weights, by contrast, directly optimize for covariate balance; recent proposals
include Hainmueller (2012); Zubizarreta (2015); Athey et al. (2018); Wang and Zubizarreta
(2019); Hirshberg et al. (2019); Tan (2020) and have a long history in survey calibration
for non-response (Deville and Särndal, 1992; Deville et al., 1993). See Chattopadhyay et al.
(2020) and Ben-Michael et al. (2021) for recent reviews.

Most balancing weights estimators attempt to control the imbalance between the weighted
treated sample and the full sample in some transformation of the covariates ϕ : X → Rd.
For example, Zubizarreta (2015) proposes stable balancing weights (SBW) that find weights
γ̂(X) that solve

min
γ(X)∈Rn1

∫
Zγ(X)2 dPn

subject to

∥∥∥∥∫ Zγ(X)ϕ(X)− ϕ(X) dPn

∥∥∥∥
∞
≤ λ γ(X) ≥ 0,

(2.7)

where Pn is the empirical distribution corresponding to a sample of size n from joint distribu-
tion P (·). These are the weights of minimum variance that guarantee approximate balance:
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that the worst imbalance in ϕ, the transformed covariates, is less than some hyper-parameter
λ. There are many other choices of both the penalty on the weights and the measure of im-
balance.2 For instance, in low dimensions, setting λ = 0 guarantees exact balance on the
covariates ϕ(Xi). Here we focus on the more common case in which achieving exact balance
is infeasible; in that case, the particular choice of penalty function is less important.

The balancing weights procedure is connected to the modeled IPW approach above
through the Lagrangian dual formulation of optimization problem (2.7). The imbalance
in the d transformations of the covariates induces a set of Lagrange multipliers β ∈ Rd, and
the Lagrangian dual is

min
β∈Rd

∫
Z [β · ϕ(X)]2+ − β · ϕ(X) dPn︸ ︷︷ ︸

balancing loss

+ λ∥β∥1︸ ︷︷ ︸
regularization

, (2.8)

where [x]+ = max{0, x}. The weights are recovered from the dual solution as γ̂(Xi) =î
β̂ · ϕ(Xi)

ó
+
. As Zhao (2019) and Wang and Zubizarreta (2019) show, this is a regularized

M -estimator of the propensity score when it is of the form 1
π(x)

= [β∗ · ϕ(x)]+ for some true β∗.

Therefore, we can view β∗ · ϕ(x) as a natural parameter for the propensity score; different
penalty functions will induce different link functions, see Wang and Zubizarreta (2019).
Similarly, different measures of balance will induce different forms of regularization on the
propensity score parameters. In the succeeding sections, we will use this dual connection to
show that the percentile bootstrap sensitivity procedure proposed by Zhao et al. (2019) for
traditional IPW estimators in the marginal sensitivity model is valid with balancing weights
estimators.

2.3 Sensitivity analysis for balancing weights

estimators

We now outline our procedure for extending the percentile bootstrap sensitivity analysis to
balancing weights. We introduce the shifted balancing weights estimator, detail the boot-
strap sampling procedure, and describe how to efficiently compute the confidence intervals.
Key to constructing the confidence intervals for the partial identification set will be to con-
struct intervals for each sensitivity model h in the collection of sensitivity models H(Λ) in
Equation (2.3). Each h represents a particular deviation from ignorability that remains in the
set defined by the marginal sensitivity model. We show that the percentile bootstrap yields
valid confidence intervals for each sensitivity model in H(Λ), resulting in a valid interval for
the partial identification set. While the procedure for constructing confidence intervals given
the weights computed in each bootstrap sample is the same as that in Zhao et al. (2019),

2Other possibilities include soft balance penalties rather than hard constraints (e.g. Ben-Michael et al.,
2020; Keele et al., 2020) and non-parametric measures of balance (e.g. Hirshberg et al., 2019).
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our result allows for the weights to be constructed by more general methods. We provide
guidance for interpreting our sensitivity analysis procedure in Section 2.4.

To construct the confidence intervals, we first consider the case where we know the log
odds function h(x, y) ∈ H(Λ). With h, we can shift the balancing weights estimator for the

shifted estimand µ
(h)
1 as

µ̂
(h)
1 =

(∑
Zi=1

γ̂(h)(Xi, Yi(1))

)−1 ∑
Zi=1

γ̂(h)(Xi, Yi(1))Yi, (2.9)

where γ̂(h)(Xi, Yi(1)) = 1+(γ̂(Xi)−1)eh(Xi,Yi(1)) for i ∈ {i : Zi = 1} are the shifted balancing
weights. Note that there is no requirement for the shifted balancing weights to balance the
transformed covariates ϕ. We then take B bootstrap samples of size n without conditioning
on treatment assignment — so the number of units in the treatment and control groups may
vary from sample to sample — and re-estimate the weights in each sample by solving the
balancing weights optimization problem (2.7) using the bootstrapped data.

Then, for every h ∈ H(Λ), we can construct a confidence interval for µ
(h)
1 using the

percentile bootstrap as î
L(h), U (h)

ó
=
î
Qα

2

Ä
µ̂
∗(h)
1,b

ä
, Q1−α

2

Ä
µ̂
∗(h)
1,b

äó
. (2.10)

Qα(µ̂
∗(h)
1,b ) is the α-percentile of µ̂

∗(h)
1,b in the bootstrap distribution made up of the B bootstrap

samples and µ̂
∗(h)
1,b is the shifted balancing weights estimator (2.9) using bootstrap sample

b ∈ {1, . . . , B}. Note, the ∗ in µ̂
∗(h)
1,b indicates that it is an estimate from bootstrap data

and b is used as an index for the B bootstrap samples. The following theorem states that
[L(h), U (h)] is an asymptotically valid confidence interval for µ

(h)
1 with at least (1−α)-coverage

under high-level assumptions in Appendix A.1 on how well the balancing weights estimate
the propensity scores.

Theorem 2.1. Under Assumption A.1 in Appendix A.1, for every h ∈ H(Λ),

lim sup
n→∞

P0(µ
(h)
1 < L(h)) ≤ α

2

and

lim sup
n→∞

P0(µ
(h)
1 > U (h)) ≤ α

2
,

where P0 denotes the probability under the joint distribution of the data P (·). The probabil-
ity statements apply under both the conditions on the inverse probabilities and the outcomes
in Assumption A.1 and the marginal sensitivity model (2.3).
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Since each of the confidence intervals [L(h), U (h)] are valid, we can use the Union Method to
combine them into a single valid confidence interval [Lunion, Uunion] for µ1 under Assumption
2.3, where

Lunion = inf
h∈H(Λ)

L(h), Uunion = sup
h∈H(Λ)

U (h). (2.11)

Finding [Lunion, Uunion] would require conducting a grid search over the space of log-odds
functions H(Λ) and computing percentile bootstrap confidence intervals at each point; this
is computationally infeasible. Instead, we can obtain a confidence interval [L,U ] for µ1 by
using generalized minimax and maximin inequalities as

[L,U ] =

ñ
Qα

2

Å
inf

h∈H(Λ)
µ̂
∗(h)
1,b

ã
, Q1−α

2

Ç
sup

h∈H(Λ)

µ̂
∗(h)
1,b

åô
. (2.12)

Zhao et al. (2019) show that this interval will be conservative, in the sense of being too wide,
since L ≤ Lunion and U ≥ Uunion. In fact, Dorn and Guo (2021) show this can be overly
conservative; see Sections 2.5 and 2.6 for further discussion.

The extrema of the point estimates can be solved efficiently using Proposition 2 from
Zhao et al. (2019) by the following linear fractional programming problem:

min /max
r∈Rn1

µ̂
(h)
1 =

n∑
i=1

Zi (1 + ri [γ̂(Xi)− 1])Yi

n∑
i=1

Zi (1 + ri [γ̂(Xi)− 1])

subject to ri ∈ [Λ−1,Λ], for all i ∈ {1, . . . , n} ,

(2.13)

where ri = OR{π(Xi), π(Xi, Yi(1))} are the decision variables. The procedure to obtain
confidence interval [L,U ] is then:

Step 1. Obtain B bootstrap samples of the data of size n without conditioning on treatment
assignment.

Step 2. For each bootstrap sample b = 1, . . . , B, re-estimate the weights and compute the
extrema inf

h∈H(Λ)
µ̂
∗(h)
1,b and sup

h∈H(Λ)

µ̂
∗(h)
1,b under the collection of sensitivity modelsH(Λ) by solving

(2.13).

Step 3. Obtain valid confidence intervals for sensitivity analysis:

L = Qα
2

Å
inf

h∈H(Λ)
µ̂
∗(h)
1,b

ã
, U = Q1−α

2

Ç
sup

h∈H(Λ)

µ̂
∗(h)
1,b

å
. (2.14)

Replacing γ̂(Xi) in Equation (2.13) with the inverse of propensity scores estimated by a
generalized linear model recovers the procedure from Zhao et al. (2019). As in Zhao et al.
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(2019), the added computational cost for additional values of Λ is minimal since they do not
require a researcher to draw additional bootstrap samples nor re-estimate the weights.

Finally, a researcher must compute a sensitivity value for a given study; see Rosenbaum
(2002) for extensive discussion. Suppose the confidence interval for PATE under ignorability
(Λ = 1) does not contain zero, indicating a statistically significant effect. As Λ increases,
allowing for stronger violations of ignorability, the confidence interval will widen and even-
tually cross zero. Of particular interest then is the minimum value of Λ for which the
confidence interval contains zero; we denote this value as Λ∗.3 Thus, we can interpret Λ∗

as a necessary difference in the odds ratio between the probability of treatment with and
without conditioning on the treated potential outcome for which we no longer observe a
significant treatment effect. This represents the degree of confounding required to change a
study’s causal conclusions, with larger values of Λ∗ representing more robust estimates.

Sensitivity analysis may also be useful in cases where the confidence interval under Λ = 1
is very small and includes zero, indicating no large effect in any direction or bioequivalence
in the sense discussed by Brown et al. (1995). In this setting, a researcher may obtain a
sensitivity value Λ∗ by defining a minimal effect size ι > 0 of practical interest and repeating
the sensitivity analysis for larger and larger values of Λ until the confidence interval includes
either −ι or ι, revealing the degree of confounding needed to mask a practically important
effect. For examples of such sensitivity analyses, see Pimentel et al. (2015); Pimentel and
Kelz (2020).

2.4 Amplifying, interpreting, and calibrating

sensitivity parameters

In this section, we provide guidance for interpreting the main sensitivity parameter Λ∗ by
“amplifying” the sensitivity analyses into a constraint on the product of: (1) the level of
remaining imbalance in confounders after weighting; and (2) the strength of the relationship
between the confounders and the treated potential outcome.

In order for a confounder to bias causal effect estimates, it must be associated with
both the treatment and the outcome. An “amplification” enhances a sensitivity analysis’s
interpretability by allowing a researcher to instead interpret the results of the sensitivity
analysis in terms of two parameters: one controlling the confounder’s relationship with
the treatment and the other controlling its relationship with the outcome (Rosenbaum and
Silber, 2009). Under the marginal sensitivity model in Assumption 2.3, the parameter Λ
controls how far the propensity score conditioned on only observed covariates π(x) can be
from an oracle propensity score that includes the treated potential outcome π(x, y). This
odds ratio bound can be difficult to reason about in applied analyses. To aid interpretation,

3Similar to the robustness value with q = 1 from Cinelli and Hazlett (2020), researchers can also consider
the minimum value of Λ for which the point estimate interval contains zero. The point estimate interval can
be computed by solving (2.13) using the full observed data for a particular value of Λ.
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we propose an amplification that expresses the results of our procedure in terms of the
imbalance in confounders and the strength of the relationship between the confounders and
the treated potential outcome.

For our amplification, we will use U ∈ R to represent a latent unmeasured confounding
variable, standardized to have mean zero and variance 1.4 We then consider a working model
for the conditional expectation of the treated potential outcome, decomposing it into a term
involving the observed covariates X and a linear term for the unmeasured confounder U :

E[Y (1) | X = x, U = u] = f(x) + βu · u. (2.15)

This model merely serves as a guide to interpretation, rather than being a true relationship
that we are assuming in the primary causal analysis, and is in fact general. As one extreme
case, we can consider a situation in which f(x) = E[Y (1)] and the unmeasured confounder U

is a standardized version of the treated potential outcome itself, U = Y (1)−E[Y (1)]
sd(Y (1))

; in this case

βu is simply equal to the standard deviation of Y (1). More generally, if some of the variation
in Y (1) can be explained by observed covariates and by pure additive noise uncorrelated
with treatment, βu describes the amount of additional systematic variation contributed by
unobserved confounders. Specifically, βu is the difference in expected Y (1) associated with
a one-standard-deviation difference in U while holding covariates fixed. If one is concerned
about multiple unobserved confounders, one may also view U as the one-dimensional function
of these confounders that best explains the variance in Y (1)’s conditional expectation under
model (2.15).

With this model in place, we can decompose the difference between the true expected
value of treated potential outcomes µ1 and the IPW estimand — i.e., the bias — into (i) the
strength of the unmeasured confounder U in predicting Y (1) beyond the observed covariates,
βu, and (ii) the imbalance in U , δu:

E[Y (1)]− E
ï
ZY

π(X)

ò
= βu ·

Å
E [U ]− E

ï
ZU

π(X)

òã
︸ ︷︷ ︸

δu

.

Note that here we have used the property that E[f(X)] = E[Zf(X)/π(X)] for all functions
f .

Now, we can use the partial identification of µ1 under the marginal sensitivity model in
Assumption 2.3 to find upper and lower bounds for this product under the sensitivity value
Λ∗,

inf
h∈H(Λ∗)

µ
(h)
1 − E

ï
ZY

π(X)

ò
≤ βu · δu ≤ sup

h∈H(Λ∗)

µ
(h)
1 − E

ï
ZY

π(X)

ò
.

These are population-level bounds for the highest and lowest possible bias βu·δu. To construct
finite-sample versions of these bounds, we bound the bias as the maximum of the absolute

4Dorn and Guo (2021) similarly consider a general unobserved confounder U , of which U = Y (1) is a
special case.
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values of the highest and lowest possible differences in the estimated values,

|βu · δu| ≤ max

®∣∣∣∣ inf
h∈H(Λ∗)

µ̂
(h)
1 − µ̂1

∣∣∣∣ ,
∣∣∣∣∣ sup
h∈H(Λ∗)

µ̂
(h)
1 − µ̂1

∣∣∣∣∣
´
. (2.16)

Recall that µ̂1 (2.6) is a weighted average of treated units’ outcomes using weights γ̂ (X).
The constrained relationship between the βu and δu allows us to reason about potential

unobserved confounders. To understand this relationship, we compute a curve that maps
the value of the bias to different combinations of δu and βu for enhanced interpretation. For
example, (δu, βu) = (1.5, 2) and (δu, βu) = (1, 3) are both consistent with a bias of 3. Reading
off this curve allows the researchers to see that for an unmeasured confounder with any given
strength in predicting the treated potential outcome beyond the observed covariates, there
must be at least some level of imbalance after weighting to induce bias. To explain a given
amount of unmeasured confounding bias, an unmeasured confounder strongly predictive of
potential outcomes (after controlling for observed covariates) need only be mildly imbalanced
after weighting. Conversely, an unmeasured confounder with weak predictive strength must
be highly imbalanced even after the observed covariates are approximately balanced by the
estimated weights. In Section 2.5, we illustrate our sensitivity analysis procedure and how
our amplification can produce more interpretable results.

2.5 Numerical examples

We now illustrate the sensitivity analysis and amplification procedures using two real data
examples. We consider the situation in which a researcher uses balancing weights to estimate
the Population Average Treatment Effect on the Treated (PATT) of a treatment on an
outcome of interest; see Appendix A.3 for an overview of the PATT in our setting. Based on
domain knowledge, the researcher believes that the set of observed covariates includes most
factors associated with the treatment assignment and the outcome, while leaving open the
possibility that there remain relevant unobserved covariates.

To start, we compute Λ∗, which represents the confounding required to alter a study’s
causal conclusions. In order to compute Λ∗, we compute confidence intervals for a grid of
values of Λ, starting with Λ = 1 and then considering larger values of Λ. If the confidence
interval corresponding to Λ = 1 contains zero, then the effect estimate is not significant, even
under ignorability. If the confidence interval for Λ = 1 does not contain zero, increasing the
value of Λ causes the confidence intervals to widen and eventually cross zero for some value
of Λ. We set Λ∗ equal to the minimum value of Λ for which the confidence interval includes
zero. Since the the percentile bootstrap procedure induces randomness, this value of Λ∗ is
computed with Monte Carlo error.

We fix the bias equal to the maximum absolute value of the upper and lower bounds on
the bias in Equation (2.16). This value is the maximum absolute value of bias possible under
the balancing weights sensitivity model with Λ = Λ∗ and is therefore a level of bias required
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to overturn the study’s causal conclusion. We create contour plots with curves that map the
particular value of bias to varying values of δu and βu, allowing the bias to be alternatively
interpreted in terms of two sensitivity analysis parameters. Veitch and Zaveri (2020) use the
term “Austen plot” to describe similar plots. We include standardized observed covariates on
the contour plots, which serve as guides for reasoning about potential unobserved covariates.
Our proposed calibration process using observed covariates is intended to provide a broad
sense of plausible parameter values, rather than an attempt to obtain precise estimates as
a part of a formal benchmarking exercise. See Section 2.6 for further discussion. Blue
points correspond to observed covariates with imbalance prior to weighting, while red points
represent post-weighting imbalance. In the PATT setting, the imbalance prior to weighting

in a standardized covariate X can be computed as 1
n∑

i=1
Zi

n∑
i=1

ZiXi − 1
n∑

i=1
(1−Zi)

n∑
i=1

(1 − Zi)Xi,

while the post-weighting imbalance is 1
n∑

i=1
Zi

n∑
i=1

ZiXi −
n∑

i=1

(1−Zi)γ̂(Xi)
n∑

i=1
(1−Zi)γ̂(Xi)

Xi. We view the post-

weighting imbalance corresponding to the red points as a best-case scenario for potential
unobserved covariates — in general, we expect to achieve better balance in terms of the
observed covariates that we directly target than unobserved covariates. Conversely, the pre-
weighting imbalance represented by the blue points may be more in line with our expectations
for unobserved covariates.

LaLonde job training experiment

We re-examine data analyzed by LaLonde (1986) from the National Supported Work Demon-
stration Program (NSW), a randomized job training program. Specifically, we use the subset
of data from Dehejia and Wahba (1999) to form a treatment group and observational data
from the Current Population Survey–Social Security Administration file (CPS1) to form a
control group. We consider estimating the effect of the job training program on 1978 real
earnings. The covariates for each individual include their age, years of education, race, mar-
ital status, whether or not they graduated high school, and earnings and employment status
in 1974 and 1975. In total, there are 185 treated units and 15,992 control units.

First, we use stable balancing weights in Equation (2.7) to estimate ÷PATT = $1, 165
(estimated with ϕ(x) = x and λ = 0.05), which is in line with Wang and Zubizarreta
(2019)’s estimate using slightly different approximate balancing weights. We then compute
Λ∗ = 1.01, which indicates that even a slight difference between the estimated and oracle
weights can render the PATT estimate statistically insignificant. Figure 2.1a shows how
the range of point estimates and the 95% confidence interval widen as Λ increases, with
the confidence interval including zero for Λ∗. The range of point estimates is obtained by
computing the extrema of the point estimates for a particular Λ.

Figure 2.1b shows the contour plot for the LaLonde data, which adds concrete detail to
our interpretation of Λ∗. The black contour line, representing all combinations of βu and
δu for which Λ∗ = 1.01, lies below all of the blue points, suggesting that an unobserved
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(a) Point estimate and confidence intervals. (b) Contour plot illustrating amplification of
the sensitivity analysis with comparison to ob-
served variables.

Figure 2.1: Sensitivity analysis results with the LaLonde data
(a): Solid intervals are point estimate intervals and dotted intervals are 95% confidence in-
tervals.
(b): Each location in the plot represents a possible unobserved confounder with parameters
(δu, βu) in the amplification. The contour line gives all such pairs that result in Λ equal to the
observed sensitivity threshold Λ∗ = 1.01. Plotted points represent observed covariates, with
y-coordinates given by absolute multiple regression coefficients in an ordinary least-squares
regression of the outcome on standardized covariates among the control group, equivalent
to βu if the covariate in question were the only omitted confounder, and with x-coordinates
given by treated-control differences in standardized covariates both before weighting (these
points are blue) and after weighting (these points are red). The red shaded region groups
locations associated with unobserved confounders no stronger than the observed covariates
after weighting, in the sense that some convex combination of post-weighting covariate lo-
cations is at least as far from the origin.



CHAPTER 2. INTERPRETABLE SENSITIVITY ANALYSIS FOR BALANCING
WEIGHTS 18

confounder similar even to one of the very weakest observed confounders would be sufficient
to reverse the study results. Furthermore, the black contour line intersects the shaded red
region containing post-weighting imbalance, suggesting that even closely-balanced variables
like those explicitly accounted for in the weighting algorithm could be sufficient to explain
the observed effect. All of this strongly substantiates the idea that our study result could be
due to very mild unobserved confounding and should not be trusted as a reliable qualitative
statement about the true impact of this job training program. In fact, since several red points
lie above the contour line, our finding may even be plausibly explained by residual imbalance
in these observed covariates after weighting, whether or not unobserved confounders are
present.

Note that visual comparisons of the curve with the blue points and the red region should
never be taken at face value as binary statements about whether a study is robust to un-
measured confounding. Instead, one must always account for the context of the individual
variables involved. For instance, the intersection of the curve with the red region occurs
only in the upper region of the plot, because two of the variables, real earnings in 1974
and 1975 (both time-lagged versions of the study outcome), are highly correlated with the
outcomes. It is not necessarily plausible that an unobserved confounder would exhibit such
high outcome correlation, so intersection with the red region is perhaps less worrying than in
a setting where all the observed variables are general demographic measures less directly tied
to the observed outcome. In addition, it is important to include all potentially important
observed covariates on the plot lest the red shaded region appear misleadingly small.

Fish consumption and blood mercury levels

We now examine data analyzed by Zhao et al. (2018) and Zhao et al. (2019) from the National
Health and Nutrition Examination Survey (NHANES) 2013-2014 containing information
about fish consumption and blood mercury levels. We evaluate the sensitivity of estimating
the effect of fish consumption on blood mercury levels using balancing weights. There are 234
treated units (consumption of greater than 12 servings of fish or shellfish in the past month)
and 873 control units (zero or one servings). The outcome of interest is log2(total blood
mercury), measured in micrograms per liter; the covariates include gender, age, income,
whether income is missing and imputed, race/ethnicity, education, smoking history, and the
number of cigarettes smoked in the previous month.

To start, the stable balancing weights (2.7) estimate of the PATT is an increase of 2.1
in log2(total blood mercury), estimated with ϕ(x) = x and λ = 0.05; Λ∗ is approximately
equal to 5.5 for the fish consumption data. We display the sensitivity analysis results for
multiple values of Λ in Figure 2.2a. We observe that the confidence interval corresponding
to no confounding (Λ = 1) is far from zero and that the confidence interval for Λ∗ = 5.5 just
begins to cross zero.

The contour plot (Figure 2.2b) for the fish data indicates that the causal effect estimate is
robust to all but extremely strong unobserved confounders. Here the bias curve is far above
the intersection of the dotted lines that represents the maximum strength and pre-weighting
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(a) Point estimate and confidence intervals. (b) Contour plot illustrating amplification of
the sensitivity analysis, with comparison to ob-
served variables.

Figure 2.2: Sensitivity analysis results with the fish diet data
(a): Solid intervals are point estimate intervals and dotted intervals are 95% confidence in-
tervals.
(b): Each location in the plot represents a possible unobserved confounder with parameters
(δu, βu) in the amplification. The contour line gives all such pairs that result in Λ equal to the
observed sensitivity threshold Λ∗ = 5.5. Plotted points represent observed covariates, with
y-coordinates given by absolute multiple regression coefficients in an ordinary least-squares
regression of the outcome on standardized covariates among the control group, equivalent
to βu if the covariate in question were the only omitted confounder, and with x-coordinates
given by treated-control differences in standardized covariates both before weighting (these
points are blue) and after weighting (these points are red). The red shaded region groups
locations associated with unobserved confounders no stronger than the observed covariates
after weighting, in the sense that some convex combination of post-weighting covariate lo-
cations is at least as far from the origin.
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imbalance among the observed covariates. Thus, confounding significantly stronger than the
observed covariates would be required to alter the causal conclusion. In particular, consider
the most imbalanced pre-treatment confounder, income. The large vertical gap between the
associated blue dot (and indeed any of the blue dots) and the contour line suggests that an
unobserved confounder sufficient to alter the study’s conclusion would not only have to be as
imbalanced as income prior to treatment, but would simultaneously have to be a full order of
magnitude more predictive of blood mercury than any other variable measured in the study.
In fact, in order to change the study’s conclusion, an unmeasured confounder as imbalanced
as income would have to have an approximately 29 times higher βu than income. While the
contour plot itself cannot rule out the possibility that such an unmeasured confounder might
exist, it imposes stringent requirements for alternative theories behind the apparent causal
effect.

The LaLonde data results in Figure 2.1 and the fish consumption data results in Figure 2.2
illustrate two extremes for possible outcomes of the sensitivity analysis. In our experience,
more intermediate results frequently arise also; for example, the contour line might pass
above some observed covariates but below others. In this case especially, it is important
to remember that sensitivity analysis is not designed to provide a binary judgment about
whether a study’s effect is real or not; instead, the contour plot gives a sense for the types of
unobserved confounder that might be problematic and the types that can be safely ignored.

Finally, in Figure 2.3 we compare the results of our sensitivity analysis in the fish con-
sumption data to the results of the approaches described by Zhao et al. (2019) and Dorn
and Guo (2021). As discussed above, Zhao et al. (2019) use IPW weights and otherwise
conduct the sensitivity analysis in an identical manner. Dorn and Guo (2021) also use IPW
weights but alter the sensitivity analysis by adding a constraint to the population version of
the maximization problem in (2.13) that enforces balance on certain conditional quantiles of
the observed outcomes. This is designed to ensure that that true propensity scores implied
by the sensitivity model balance the observed data properly in large samples (the set of
shifted balancing weights over which we take extrema need not do so). Figure 2.3 gives the
expanded confidence intervals for the ATT from each approach at three values of Λ. All
three approaches are qualitatively similar in each case. However, our approach based on
stabilized balancing weights outperforms Zhao et al. (2019)’s IPW approach at each Λ-value
investigated, achieving strictly shorter intervals. This suggests that the ability of balanc-
ing weights to achieve more precise inference than IPW in moderate samples, previously
documented for settings with no unobserved confounding (Ben-Michael et al., 2021), seems
to extend to sensitivity analysis as well. The approach of Dorn and Guo (2021) achieves
narrower intervals than either of the other approaches; however, we note that Dorn and
Guo (2021)’s added constraint relies on quantile regression and hence requires the outcome
to be continuous, unlike the other two approaches. Additionally, the authors find that the
quantile balancing confidence intervals can result in under-coverage when the quantiles are
correctly specified, which could suggest a setting in which our proposed sensitivity analysis
procedure’s wider intervals could be advantageous. As such the combination of stabilized
balancing weights and sensitivity analysis appears to offer an attractive mix of generality
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Figure 2.3: Comparison of confidence interval width after sensitivity analysis for three ap-
proaches in the fish consumption example. We compare the intervals constructed using
stabilized weights followed by our proposed sensitivity analysis (labeled “bal”) against those
obtained by fitting IPW weights and conducting sensitivity analysis as described in Zhao
et al. (2019) (“zsb” in the plot), and against those obtained by IPW and the approach of
Dorn and Guo (2021) (“dg”), at several values of Λ. The Dorn & Guo bounds could not
be computed at Λ = 7.39 due to numerical problems encountered in fitting the required
quantile regression. All three approaches give similar results, but the balancing weights ap-
proach consistently outperforms Zhao et al. (2019)’s approach, while Dorn and Guo (2021)’s
approach in turn produces narrower intervals than the stabilized weights approach for all
values Λ > 1 investigated. Note that the results reported here for the Zhao et al. (2019)
approach differ slightly from the results reported for their analysis of this dataset because
we focus on the ATT rather than the ATE.
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and precision compared to existing competitors.

2.6 Discussion

Balancing weights estimation is a popular approach for estimating treatment effects by
weighting units to balance covariates. In this chapter, we develop a framework for as-
sessing the sensitivity of these estimators to unmeasured confounding. We then propose
an amplification for enhanced interpretation and illustrate our method through real data
examples.

We briefly outline potential directions for future work. First, as discussed in Section 2.5,
Dorn and Guo (2021) show that the intervals obtained from solving the linear programming
problem (2.13) can be overly conservative, and resolve this issue by adding constraints that
require balance on certain conditional quantiles of the outcome. It seems likely that such
constraints would offer benefits for balancing weights estimators as well. We leave a thorough
investigation to future work.

Second, we could extend our framework to include augmented balancing weights estima-
tors, which use an outcome model to correct for bias due to inexact balance. Additionally,
we could extend our sensitivity analysis framework to balancing weights in panel data set-
tings. For example, we could adapt this framework to variants of the synthetic control
method (Abadie and Gardeazabal, 2003; Ben-Michael et al., 2018), extending proposals for
sensitivity analysis from Firpo and Possebom (2018).

Additionally, Cinelli and Hazlett (2020) point out that informal benchmarking proce-
dures can be misleading if used to perform an exact calibration of sensitivity analysis pa-
rameters based on observed data. The authors argue that this occurs because the estimates
of the observed covariates’ relationships with the outcomes may be impacted by unmeasured
confounding. They propose a formal benchmarking procedure to bound the strength of un-
measured confounders based on observed covariates. Adapting Cinelli and Hazlett (2020)’s
formal benchmarking procedure to our setting could be a topic of future research.

Finally, we could use our framework to provide guidance in the design stage of balancing
weights estimators. When estimating treatment effects using balancing weights, researchers
must make decisions including the specific dispersion function of the weights, the particular
imbalance measure, and, in many cases, an acceptable level of imbalance. We could extend
our sensitivity analysis procedure to help make these decisions to improve robustness and
power in the presence of unmeasured confounding. For example, we could provide insight
into the trade-off between achieving better (marginal) balance on a few covariates or worse
balance on a richer set of covariates.
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Chapter 3

Design Sensitivity and Its
Implications for Weighted
Observational Studies

Sensitivity to unmeasured confounding is not typically a primary consideration in designing
treated-control comparisons in observational studies. We introduce a framework allowing
researchers to optimize robustness to omitted variable bias at the design stage using a mea-
sure called design sensitivity. Design sensitivity, which describes the asymptotic power of
a sensitivity analysis, allows transparent assessment of the impact of different estimation
strategies on sensitivity. We apply this general framework to two commonly-used sensitivity
models, the marginal sensitivity model and the variance-based sensitivity model. By com-
paring design sensitivities, we interrogate how key features of weighted designs, including
choices about trimming of weights and model augmentation, impact robustness to unmea-
sured confounding, and how these impacts may differ for the two different sensitivity models.
We illustrate the proposed framework on a study examining drivers of support for the 2016
Colombian peace agreement.

3.1 Introduction

Increasingly, observational studies are being used to answer causal questions in the social
and biomedical sciences. Estimating causal effects in observational settings often requires
an assumption that unmeasured confounding is absent. In practice, this assumption is not
testable and often untenable. Recent literature has introduced sensitivity analyses to assess
the potential impact of an unobserved confounder on a study’s results (Zhao et al., 2019;
Soriano et al., 2021; Jin et al., 2022; Ishikawa and He, 2023). However, sensitivity analysis
remains underutilized in practice, and sensitivity to unmeasured confounding is not typically
a primary consideration in designing the treated-control comparison.

Given that findings from observational studies cannot be viewed as reliable unless a sen-
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sitivity analysis demonstrates some robustness to unmeasured confounding, it seems natural
to approach the design of an observational study with unmeasured confounding in mind. We
introduce a measure called design sensitivity for weighted observational studies. It describes
the asymptotic power of a sensitivity analysis and can be computed prior to carrying out a
study. Computing and comparing design sensitivities across possible weighted designs allows
researchers to optimize for robustness to unmeasured confounding rather than treating sensi-
tivity analysis as a post hoc secondary analysis. Under our framework, design sensitivity can
be constructed for a wide variety of sensitivity models with only mild regularity conditions
required.

We illustrate design sensitivity in two common sensitivity models: the marginal sensi-
tivity model and the variance-based sensitivity model. By comparing design sensitivities,
we interrogate how key features of weighted designs impact robustness to unmeasured con-
founding, and how these impacts can differ for the different sensitivity models.

3.2 Background

Set-Up, Notation, and Assumptions

We consider an observational study of n units sampled identically and independently from
an infinite population. Define Z as a treatment indicator, where Z = 1 if a unit is in
the treatment group, and 0 otherwise. Furthermore, define Y (1) and Y (0) as the potential
outcomes under treatment and control, respectively. Throughout, we will make the stable
unit treatment value assumption (SUTVA)–i.e., no interference or spillovers, such that the
observed outcomes Yi can be written as Y = Y (1) · Z + Y (0) · (1− Z) (Rubin, 1980a).

In randomized trials, researchers determine the probability of assignment to treatment
or control for each individual, but in observational studies, propensities for treatment may
co-vary with unobserved potential outcomes. To permit unbiased estimation of treatment
effects, researchers must measure all background covariates describing common variation in
treatment and potential outcomes, as formalized in the following assumption.

Assumption 3.1 (Conditional Ignorability of Treatment Assignment). For some vector of

pre-treatment covariates ‹X ∈ ‹X :
Y (1), Y (0) ⊥⊥ Z | ‹X.

This assumption, also known as selection on observables, requires that given pre-treatment
covariates ‹X, treatment is ‘as-if’ random. In addition to conditional ignorability, treatment
effect estimation generally requires overlap, meaning that all units have a non-zero proba-
bility of being treated.

Assumption 3.2 (Overlap). For all units i ∈ 1, ..., n and any x ∈ ‹X , 0 < Pr(Z = 1 | ‹X =
x) < 1.
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Our estimand of interest is the average treatment effect across the treated (i.e., ATT):

τ := E [Y (1)− Y (0) | Z = 1] ,

where the expectation is taken with respect to the population. The proposed framework can
be extended for settings in which researchers are interested in the average treatment effect
(ATE), as well as other common missingness settings such as external validity and survey
non-response (Huang, 2022; Hartman and Huang, 2022).

A common approach to estimating the ATT is by using weighted estimators:

τ̂W :=
1∑n

i=1 Zi

n∑
i=1

YiZi −
∑n

i=1 ŵiYi(1− Zi)∑n
i=1 ŵi(1− Zi)

. (3.1)

The weights ŵi are chosen so that the re-weighted distribution of pre-treatment covariates‹X across the control units matches the distribution of ‹X across the treated units; for exam-
ple, the population-level inverse propensity score weights guarantee this. Weights must be
estimated. A common approach is to fit a propensity score model to estimate a unit’s prob-
ability of treatment given the pre-treatment covariates and use the fitted values to construct
estimated inverse weights. An alternative approach uses balancing weights, which solve an
optimization problem that selects weights to balance sample moments, thereby bypassing a
need to estimate a propensity model. For examples of such balancing weights and additional
methods and theory, see Hainmueller (2012); Zubizarreta (2015); Ben-Michael et al. (2021).
As shown by Chattopadhyay and Zubizarreta (2021), certain regression estimators can also
be represented in the form of weighting estimators if weights are allowed to take on negative
values. We note that the theoretical framework introduced in Section 3.3 can be easily ex-
tended to accommodate negative weights, though we focus on more familiar positive-weights
settings for ease of exposition.

When the full set of covariates ‹X in Assumption 3.1 are observed and the weights are
correctly specified, the weighted estimator is consistent and unbiased for the ATT. However,
in practice, it is impossible to know whether or not all confounders have been measured.
Omitted confounders lead to biased estimates. In what follows, we consider the setting in
which the full vector of covariates is defined as ‹X := {X,U}, where X ∈ X is observed and
measured across all units, but U ∈ U is unobserved. As such, the estimated weights ŵi are
functions of X alone. We assume that the estimated weights ŵ converge in probability to
the population weights w := Pr(Z = 1 | X)/Pr(Z = 0 | X) that condition on X alone,
and define τW as the large-sample probability limit of τ̂W . We define the ideal weights
w∗ := Pr(Z = 1 | X,U)/Pr(Z = 0 | X,U) as the population-level inverse propensity score
weights in (X,U). Were researchers to use the ideal weights w∗, they would consistently
recover the ATT.

We note that the framework just presented accommodates balancing weights that con-
verge asymptotically to inverse propensity score weights (Ben-Michael et al., 2021). Re-
searchers may also relax the assumption of correct specification in settings where specifica-
tion concerns can be formulated as an omitted variable problem (Huang, 2022; Hartman and
Huang, 2022).
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Review: Sensitivity Analyses for Weighted Estimators

Sensitivity analyses allow researchers to assess their study findings’ robustness to varying
degrees of violation of underlying assumptions. We define a sensitivity model as a set of
ideal weight vectors w∗ over which we are interested in conducting a worst-case analysis.

Typically a sensitivity model consists of all w∗ within a local neighborhood of the popu-
lation weights w based on X alone, where the neighborhood is described by a specified error
structure and indexed by a parameter that can be chosen to make the neighborhood larger
or smaller.

The ideal weights w∗ give a mapping w∗(x, u) from ‹X to a real-valued weight. Formally
a sensitivity model ν(Γ, w) is a set of such mappings {w∗(x, u) : fν(w

∗(X,U), w(X)) ≤ Γ},
where the function fν measures dissimilarity between two probability distributions (in this
case, the distributions induced by the random covariate vector X under w(X) and w∗(X,U)).
Γ ∈ R is a parameter constraining the overall dissimilarity allowed. Larger Γ values allow
for larger deviations from w and hence more unobserved confounding. For any particular
choice of ν and Γ, we define the interval of possible values for the true ATT:

[
Lν(Γ,w), Uν(Γ,w)

]
:=

ñ
inf

w̃∈ν(Γ,w)
τ(w̃), sup

w̃∈ν(Γ,w)

τ(w̃)

ô
. (3.2)

Following Zhao et al. (2019), we will refer to interval (3.2) as the partially identified region.
When assessing whether unobserved confounding is sufficiently strong to overturn a re-

search conclusion, there are two sources of error for which we must account. The interval[
Lν(Γ,w), Uν(Γ,w)

]
describes the first source of error, the bias arising from the omitted con-

founders. With an infinite number of samples from the population, this interval would be
known and would represent the only source of error. However, in practice, we work with
estimated weights ŵ instead of the population weights w, which produce a noisy approxima-

tion
î
L̂ν(Γ,w), Ûν(Γ,w)

ó
to the partially identified region and the resulting sampling variability

provides another source of error. Therefore, it is typically necessary to construct a bias-

aware confidence interval CIν(Γ,w)(α) ⊇
î
L̂ν(Γ,w), Ûν(Γ,w)

ó
that contains any true parameter

τ(w̃) ∈
[
Lν(Γ,w), Uν(Γ,w)

]
with probability at least 1− α.

For a study with a nominally significant result, a sensitivity analysis is conducted by
searching over values of Γ, repeating the test for the hardest-to-reject value of w∗ in ν(Γ, w),
and finding the largest value Γ∗ for which it is still possible to reject the null. If Γ∗ is
small, then the initial finding is sensitive to a small amount of unobserved confounding. If
Γ∗ is large, only a strong unobserved confounder could explain the results under a true null
hypothesis.

Many different approaches to constructing sensitivity models using different specifications
of fν have been proposed, including restricting various Lp-norms of the ratio w∗/w and its
image under convex functions (e.g., Zhao et al., 2019; Zhang and Zhao, 2022; Huang, 2022;
Jin et al., 2022). Given the rich and developing literature on different sensitivity models, one
key contribution of our proposed method is the flexibility to be applied to any sensitivity
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model that meets a set of relatively weak regularity conditions. However, for illustrative
purposes, we will discuss two common sensitivity models: the variance-based sensitivity
model of Huang and Pimentel (2022) and the marginal sensitivity model of Tan (2006) and
Zhao et al. (2019).

Example: The Variance-based Sensitivity Model

The variance-based sensitivity model νvbm(R
2, w) constrains the variance in w∗ not explained

by w (Huang and Pimentel, 2022). More formally, for some R2 ∈ [0, 1), the variance-based
sensitivity model is defined as follows:

νvbm(R
2, w) :=

ß
w∗ : 1 ≤ var(w∗ | Z = 0)

var(w | Z = 0)
≤ 1

1−R2

™
. (3.3)

The optimal bias bound for a set νvbm(R
2, w) is defined as:

maxw̃∈νvbm(R2,w)Bias(τ̂W | w̃)

=
»

1− cor(w, Y | Z = 0)2

 
R2

1−R2
var(Y | Z = 0)var(w | Z = 0). (3.4)

For a fixed R2 value, researchers can estimate the other quantities in Equation (3.4) using
observed sample analogues. The optimal bias bound then defines the range of potential point
estimates

[
Lνvbm(R2,w), Uνvbm(R2,w)

]
as:ï

τW − max
w̃∈νvbm(R2,w)

Bias(τW | w̃), τW + max
w̃∈νvbm(R2,w)

Bias(τW | w̃)
ò
,

where the maximum bias is directly calculated using Equation (3.4). In essence, the variance-
based sensitivity model constrains a weighted L2 distance between the ideal weights w∗ and
the weights w (Huang and Pimentel, 2022), so it is especially relevant in settings in which
researchers are comfortable reasoning about the average degree of unobserved confounding
across subjects. A percentile bootstrap approach proposed originally in Zhao et al. (2019) is
used in concert with the bias bound to account for sampling variability, creating confidence
intervals for the ATT that remain valid even in the presence of confounding under the
sensitivity model.

Example: The Marginal Sensitivity Model

The marginal sensitivity model νmsm(Λ, w) constrains the worst-case error from omitting a
confounder, positing that the ratio between any ideal weight w∗ and corresponding w may
not exceed Λ ≥ 1 (Tan, 2006; Zhao et al., 2019).

νmsm(Λ, w) :=

ß
w∗ : Λ−1 ≤ w∗

w
≤ Λ

™
. (3.5)
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The extrema [Lνmsm(Λ,w), Uνmsm(Λ,w)] can be computed using linear programming (Zhao et al.,
2019). In contrast to the variance-based sensitivity model, the marginal sensitivity model
is most useful when the researcher is comfortable reasoning about the maximal degree of
confounding for any given subject. The percentile bootstrap approach of Zhao et al. (2019)
is again used to account for sampling variability. Dorn and Guo (2021) introduced alternative
approaches to obtain sharp limiting sets of point estimates under the marginal sensitivity
model; for further discussion of the implications of this work in our context, see Section 3.6.

From Sensitivity Analysis to Design Sensitivity

Sensitivity analyses provide valuable information and recent innovations have improved their
interpretability and utility (Ding and VanderWeele, 2016; Cinelli and Hazlett, 2020; Soriano
et al., 2021). However, they are underutilized in practice (VanderWeele and Ding, 2017; Ha-
zlett and Parente, 2023). One fundamental drawback is that sensitivity analysis is conducted
post-hoc, as a secondary analysis. If an estimated result is found to be easily overturned by a
relatively weak confounder, there is little that the researcher can do. Returning to the anal-
ysis and altering the estimation approach to mitigate sensitivity to an omitted confounder
after conducting sensitivity analysis may introduce bias; this practice violates the ‘design
principle,’ which forbids consultation of in-sample outcomes during study design (Rubin,
2007).

We now provide a design tool, design sensitivity for weighted estimators, that enables re-
searchers to plan ahead and tailor studies to improve robustness to unmeasured confounding.
In brief, design sensitivity characterizes the power of a sensitivity analysis in large samples.
Comparing design sensitivities across different estimation approaches and study specifica-
tions provides insight into the implications of those choices for robustness to unmeasured
bias, much as power calculations provide insight into design choices’ impacts on precision in
randomized studies. Design sensitivity in this formal sense was introduced by Rosenbaum
(2004) and has been explored extensively for matched studies (Heller et al., 2009; Rosenbaum
et al., 2010; Hsu et al., 2013). Implications include the value of reducing heterogeneity within
matched pairs (Rosenbaum, 2005) and choosing test statistics (Rosenbaum, 2011; Howard
and Pimentel, 2021) and treatment doses (Rosenbaum, 2004) carefully. We construct design
sensitivity for weighting estimators and explore its implications for important design choices
about which types of weights to construct and whether to incorporate outcome modeling
into the analysis.

3.3 Design Sensitivity for Weighted Estimators

Power of a Sensitivity Analysis and Design Sensitivity

Design sensitivity is closely related to familiar notions of statistical power. The power of
a test is the probability of rejecting a null hypothesis when a specific alternative is instead
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true; the alternative is typically chosen to reflect a “favorable” situation in which the effect of
interest is present and important identifying assumptions are met (Rosenbaum, 2010, §15).
The power of a sensitivity analysis, for a null hypothesis of no treatment effect, a given
sensitivity model ν(Γ, w), and a value Γ0 of the sensitivity parameter, is the probability
that CIν(Γ0,w) excludes zero under a favorable situation, meaning (1) the study is free of
unmeasured bias, and in addition (2) a null hypothesis of no treatment effect is false, with
potential outcomes generated by a specific stochastic model. While it may seem paradoxical
to evaluate a sensitivity analysis when no unmeasured confounding is present, in practice,
researchers do not know whether unmeasured confounding is present and must conduct
a sensitivity analysis anyway. Power helps determine when true effects can be detected,
even when the test allows for some confounding. Power depends on the potential outcome
distribution; as a result, researchers must specify a hypothesized model for the potential
outcomes and treatment effects in order to compute power in advance of data analysis.
When outcome data is available from a planning sample, it can be used to calibrate the
hypothetical outcome distribution (see Appendix B.2).

We now provide a convenient normal approximation to the power of a sensitivity anal-
ysis. Throughout the chapter, we will assume without loss of generality that the specified
alternative has a positive treatment effect (τ > 0).

Theorem 3.1 (Power of a Sensitivity Analysis). Let τ̂W be a standard weighted estimator
(i.e., Equation (3.1)), and for a sensitivity model ν(Γ, w) let τν(Γ,w) := infw̃∈ν(Γ,w) τ(w̃) and
ξν(Γ,w) := τW−τν(Γ,w). Finally, let kα := 1−Φ(α). Then, under standard regularity conditions
(see Assumption B.1), the power of a sensitivity analysis is given as follows:

Pr

Å√
n(τ̂W − ξν(Γ,w))

σν(Γ,w)

≥ kα

ã
= Pr

Å√
n(τ̂W − τW )

σW

≥
kασν(Γ,w) +

√
n(ξν(Γ,w) − τW )

σW

ã
≃ 1− Φ

Å
kασν(Γ,w) +

√
n(ξν(Γ,w) − τW )

σW

ã
, (3.6)

where σW and σν(Γ,w) represent the variance of τW and τν(Γ,w) respectively.

The ≃ symbol indicates asymptotic equivalence, meaning that the quantities on the two
sides converge to the same limit as n → ∞. Expression (3.6) reveals helpful patterns for
large n. The numerator of the fractional term includes a variance term that is stable across
sample sizes, as well as a bias term that grows with n and will dominate the formula in large
samples. The sign of the bias term ξν(Γ,w) − τW is thus highly consequential, determining
whether asymptotic power will be very large or very small. For a given distribution of weights
w, increasing Γ eventually leads to a shift from a high-power to a low-power regime. Design
sensitivity characterizes this important phase transition.

Theorem 3.2 (Design Sensitivity). For a sensitivity model ν(Γ, w) where σν(Γ,w) <∞ and

a given favorable situation, let the design sensitivity be any value Γ̃ such that the following
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two conditions hold, where βν(Γ,w) is the power of the sensitivity analysis:

βν(Γ,w) −→ 1 ∀ Γ < Γ̃ and βν(Γ,w) −→ 0 ∀ Γ > Γ̃.

Then Γ̃ is given by solving the estimating equation ξν(Γ,w) − τW = 0 for Γ.

The theorem is a direct consequence of Equation (3.6). In short, the design sensitivity
delineates the maximum amount of unobserved confounding under which the effect can still
be detected given a sufficiently large sample. It is often a more useful quantity than the
power, which must typically be calculated separately for many values of Γ (since a single
compelling value of Γ cannot often be identified in advance); design sensitivity does not
require either a Γ-value or sample size to be specified. Through the ξν(Γ,w) and τW terms,
design sensitivity depends on the weights selected by the researcher, and evaluating design
sensitivities provides a natural basis on which to compare different design specifications. As
will be shown, analytical solutions for the design sensitivity in specific sensitivity models
also highlight general principles about the factors that most influence a study’s robustness
to unobserved confounding.

Design Sensitivity in the Variance-based Sensitivity Model

In the variance-based sensitivity model, the bias term ξνvbm(R2,w) defined in Theorem 3.1
is equal to the optimal bias bound from Equation (3.4). This follows immediately from
the fact that ξν(Γ,w) is generally defined as the difference between the estimates τW and
the minimum value (i.e., Lν(Γ,w)). As such, ξνvbm(R2,w) := τW − Lνvbm(R2,w) = τW −

(
τW −

maxw̃∈νvbm(R2,w) Bias(τW | w̃)
)
= maxw̃∈νvbm(R2,w) Bias(τW | w̃). Using Equation (3.4), we

derive a closed form for the design sensitivity R̃2.

Theorem 3.3 (Design Sensitivity for Variance-Based Models). Define R̃2 as

R̃2 :=
a2

1 + a2
where a2 =

1

1− cor(w, Y | Z = 0)2
· τ 2W
var(w | Z = 0) · var(Y | Z = 0)

,

where covariances and variances are computed under the favorable situation. Then, under
mild regularity conditions (Assumption B.1), R̃2 is the design sensitivity, i.e.

Pr
(
0 /∈

[
Lνvbm(R2,w), Uνvbm(R2,w)

])
→ 1 as n→∞ for R2 < R̃2

and Pr
(
0 /∈

[
Lνvbm(R2,w), Uνvbm(R2,w)

])
→ 0 as n→∞ for R2 > R̃2.

Theorem 3.3 highlights the drivers of design sensitivity of the variance-based sensitivity
model. In particular, the variance of the estimated weights (i.e., var(w | Z = 0)), the variance
of the outcomes (i.e., var(Y | Z = 0)), the correlation between the estimated weights and
the outcomes (i.e., cor(w, Y | Z = 0)), and the effect size will affect the size of the design
sensitivity.
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Theorem 3.3 suggests that design decisions that reduce the variance in the estimated
weights or the variance in the outcomes, or increase the association between the weights and
the outcomes, can help increase the design sensitivity, and by extension, improve robustness
to unobserved confounding. Examples of such decisions include trimming and augmentation.
It is important to note that not all of these design choices guarantee an improvement in design
sensitivity because they may affect all three of the components highlighted above. The
specific impact of each decision requires numerical assessment, and Section 3.4 uses design
sensitivity calculations to determine when we expect improvements to design sensitivity
under each design choice.

Design Sensitivity in the Marginal Sensitivity Model

In the marginal sensitivity model, unlike the variance-based sensitivity model, design sensi-
tivity does not have a closed form. We characterize it via an estimating equation.

Theorem 3.4 (Design Sensitivity for the Marginal Sensitivity Model). Define Λ̃ as any
solution to the following estimating equation (where Fy|x represents the population cdf of y
given x under the favorable situation):

E[wY (0) | Z = 0] + τ

= sup
θ∈[0,1]

ΛE [wY (0)Gθ(Y (0)) | Z = 0] + 1
Λ
E [wY (0)(1−Gθ(Y (0))) | Z = 0]

ΛE [wGθ(Y (0)) | Z = 0] + 1
Λ
E [w(1−Gθ(Y (0))) | Z = 0]

,

where Gθ(Y (0)) = 1{Y (0) ≥ F−1
Y (0)|Z=0(1− θ)}.

Then under mild regularity assumptions Λ̃ is the design sensitivity, i.e.

Pr
(
0 /∈

[
Lνmsm(Λ,w), Uνmsm(Λ,w)

])
→ 1 as n→∞ for Λ < Λ̃

and Pr
(
0 /∈

[
Lνmsm(Λ,w), Uνmsm(Λ,w)

])
→ 0 as n→∞ for Λ > Λ̃.

The design sensitivity under the set of marginal sensitivity models is a function of the
joint cumulative density function of the weights and the control outcomes, and depends
on an optimal cutoff θ that determines the maximum bias that can occur for a fixed Λ.
As shown by Zhao et al. (2019), the worst-case setting for the marginal sensitivity model
requires observations with the smallest Y (0) values to have the smallest weights possible
under the model (scaling observed weights by Λ−1), while setting the observations with
largest Y (0) to have the largest weights possible (scaling observed weights by Λ). θ represents
the population version of the cutoff in the ordering at which small weights are replaced by
large weights. The optimal value of θ depends on Λ, w and the alternative distribution for
the outcomes (conditional on covariates) specified as part of defining the favorable situation.
Results similar to Theorem 3.4 hold for trimmed and augmented weighting estimators (see
Appendix B.1).

Because Theorem 3.4 does not give a closed expression for Λ̃, we examine the drivers of
design sensitivity for the marginal sensitivity model using numerical simulations.
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Example 3.1 (Drivers of Design Sensitivity). Define the treatment assignment process and
the outcome model as follows:

P (Z = 1 | X) ∝ exp(βπX)

1 + exp(βπX)
, Y = βyX + τZ + u,

where X
iid∼ N(µx, σ

2
x) and u

iid∼ N(0, σ2
y). We sample from this process under different choices

for parameters {βπ, βy, τ, σy} and estimate design sensitivity under both the variance-based
sensitivity model and the marginal sensitivity model (see Appendix B.3 for full details).
In contrast to the variance-based sensitivity model, design sensitivity under the marginal
sensitivity model is primarily driven by the effect size and the variance in the outcomes.
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Figure 3.1: Magnitude of the design sensitivities for both MSM and VBM varying different
aspects of the data generating process.

In the following section, we show how two specific design choices — augmentation of
weighting designs with outcome models and trimming of estimated weights — influence
design sensitivity, providing new perspective on the advantages they bring.

3.4 Design Choices that Impact Design Sensitivity

Augmentation using Outcome Models

Consider an augmented weighted estimator of the following form:

τ̂augW =
1∑n

i=1 Zi

n∑
i=1

ZiYi −

(∑n
i=1wi(1− Zi)(Yi − ĝ(Xi))∑n

i=1 wi(1− Zi)
+

1∑n
i=1 Zi

n∑
i=1

Ziĝ(Xi)

)
,
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where ĝ(Xi) represents an estimated outcome model. The augmented weighted estimator is
doubly robust: as long as either the outcome model (i.e., ĝ), or the treatment assignment
model (i.e., ŵi) is correctly specified, the augmented weighted estimator will consistently
estimate the ATT (Tan, 2007; Bang and Robins, 2005; Kang et al., 2007). However, doubly
robust estimation does not eliminate concerns about omitted variable bias. More specifically,
if there is an omitted confounder that is relevant to both the treatment and outcome, then
neither the outcome model nor the treatment assignment model will be correctly specified.
Compounding these concerns, when one (or both) of the models is misspecified, the finite-
sample performance of augmented weighted estimators may be inferior to standard weighted
(or regression) estimators (Kang et al., 2007).

Our key result helps resolve these questions by demonstrating that augmentation can
improve robustness to unobserved confounding in large samples even when the outcome
model is misspecified, suggesting a clear advantage to augmented estimation distinct from
double robustness.

Theorem 3.5 (Impact of Augmentation on Design Sensitivity).
Let e := Y − ĝ(X) be the population residual from an arbitrary, fixed outcome model g used
to augment a weighted estimate. Then, for the variance-based sensitivity model, the design
sensitivity from an augmented weighted estimator will be greater than the design sensitivity
for a standard weighted estimator if the following holds:

var(e | Z = 0) ≤ 1− cor(w, Y | Z = 0)2

1− cor(w, e | Z = 0)2
· var(Y | Z = 0). (3.7)

While Theorem 3.5 assumes a fixed outcome model g, we may relax the assumption of
a fixed outcome model by extending the Z-estimation framework, introduced in Appendix
B.1 (Zhao et al., 2019).

If the correlation between the estimated weights and the outcomes and the correlation
between the estimated weights and the residuals are roughly similar (i.e., cor(w, Y | Z = 0) ≈
cor(w, e | Z = 0)), then Equation (3.7) simplifies to a simple comparison between the variance
across the residuals and the variance of the outcomes (i.e., var(e | Z = 0) ≤ var(Y | Z = 0)).

Theorem 3.5 highlights that the degree of improved robustness from augmentation de-
pends directly on how much variation the estimated outcome model is able to explain in the
outcomes across the control group. In other words, if var(e | Z = 0) is relatively small, then
we expect a larger improvement in design sensitivity from augmentation. Importantly, the
gains to design sensitivity from augmentation are not dependent on any additional speci-
fication assumptions. Even if the outcome model is misspecified, if it successfully explains
variance in the control outcomes (while maintaining similar outcome-weight correlations),
then augmentation will improve the robustness of estimated effects.

Similar results hold for the marginal sensitivity model, although we cannot obtain closed-
form criteria (see Appendix B.1 for more discussion). This is consistent with the results
from Example 3.1, in which the design sensitivity of the marginal sensitivity model varied
systematically with the variation in the outcomes. Highly variable outcomes lead to more
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extreme outcome values and worse worst-case bounds as in the matching context described
by Rosenbaum (2005), so stabilizing outcomes improves robustness by limiting the extremity
of worst-case settings.

Trimming

Another design decision that commonly arises in practice is trimming, or exclusion of units
with extreme weights. Trimming implicitly redefines the estimand of interest to exclude
units with extreme propensity scores, which can be helpful in cases in which researchers
are worried about potential overlap or positivity violations. Under trimming, we consider a
modified estimand:

τtrim := E(Y (1)− Y (0) | Z = 1, X ∈ A), (3.8)

where A := {x ∈ X | a ≤ P (Z = 1 | x) ≤ 1− a}—i.e., the set of covariate values for which
the probability of treatment, conditional on the observed covariates, is strictly bounded away
from 0 and 1 (Crump et al., 2009). Equation (3.8) defines the estimand as a function of
conditional probabilities in the observable covariates X. When researchers wish to consider
trimming with respect to an oracle set A∗, which also conditions on the omitted variable, the
underlying procedure for estimating the bounds for both sensitivity models must be changed
to account for trimming with respect to the ideal weights w∗ instead of w. We defer the
details of such a procedure for future work.

In practice, in the context of ATT estimation, we focus on trimming large weights by
choosing a cutoff m for the weights w. The following theorem shows that for any degree of
trimming, the relative improvement to design sensitivity for the variance-based sensitivity
model depends on how successfully trimming reduces the variance of the weights compared
to the reduction in the variance of Y and the change in the correlation between weights and
outcomes. Design sensitivity for the marginal sensitivity model under trimming is described
in Appendix B.1.

Theorem 3.6 (Impact of Trimming Weights on Design Sensitivity). Let m be a cutoff
above which weights are trimmed. Assume that the trimmed weights have mean 1 and that
the treatment effect is constant. Then, for the variance-based sensitivity model, the design
sensitivity from a trimmed estimator will be greater than the standard weighted estimator
if the following holds:

var(w | w < m,Z = 0)

var(w | Z = 0)︸ ︷︷ ︸
(a)Variance reduction in w

≤ 1− cor(w, Y | Z = 0)2

1− cor(w, Y | w < m,Z = 0)2︸ ︷︷ ︸
(b) Change in relationship between w and Y

· var(Y | Z = 0)

var(Y | w < m,Z = 0)︸ ︷︷ ︸
(c) Variance reduction in Y

. (3.9)

Unlike augmentation, in which design sensitivity is improved so long as researchers are
able to estimate an outcome model that explains some variation in the outcome, trim-
ming provides weaker guarantees on improvements to design sensitivity. More specifically,
Equation (3.9) provides a bound on the necessary variance reduction in the weights to
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improve design sensitivity. By construction, the variance of the trimmed weights (i.e.,
var(w | w < m,Z = 0)) will be no greater than the variance of the untrimmed weights
(i.e., var(w | Z = 0)). If the right-hand side of Equation (3.9) were greater than or equal to
1, then this bound would be trivially met.

The magnitude of the bound depends on the correlation between the weights and the
outcome. For intuition, consider the scenario in which the weights and the outcomes are
highly correlated. Removing extreme weights will also remove extreme outcomes, such that
the post-trimming outcome variance will be smaller than the initial variance. As a result,
we expect var(Y | w < m,Z = 0) to be less than var(Y | Z = 0), thereby increasing term
(c) in Equation (3.9). In cases when the weights are completely unrelated to the outcome,
we expect var(Y | Z = 0) ≈ var(Y | w < m,Z = 0). In that case, Equation (3.9)-(c) will be
approximately equal to 1.

An added complexity is that the bound is also dependent on potential changes in the
linear relationship between w and Y (i.e., Equation (3.9)-(b)). As a result, if extreme values
in the weights correspond to large values of the outcome Y , then by trimming, we may reduce
the correlation between w and Y . In practice, cor(w, Y | Z = 0) tends to be relatively low;
as a result, we expect changes in the relationship between w and Y from trimming to be
relatively small.

Theorem 3.6 assumed a constant treatment effect to simplify the criteria in Equation
3.9. Notably, this assumption is not necessary for the existence of design sensitivity for
the trimmed estimator (see Appendix B.1 for more discussion). However, the existence of
treatment effect heterogeneity introduces additional complexity for evaluating the impact of
trimming on design sensitivity. If weights and treatment effects are positively correlated,
trimming large weights will tend to exclude the subjects with the largest treatment effects.
As such, trimming would reduce the treatment effect size and therefore also reduce design
sensitivity. Conversely, trimming can increase the effect size and improve design sensitivity
when the weights and treatment effect are negatively correlated. For more discussion of the
connection between treatment effect heterogeneity and design sensitivity, see Rosenbaum
(2007).

In practice, researchers may utilize Theorem 3.3 and Theorem 3.4 to estimate the design
sensitivity under different trimming criteria. While Theorem 3.6 is formulated with respect
to a trimmed estimator that directly omits units with extreme weights, the results easily
extend in cases when researchers use a smooth trimmed estimator instead (see Appendix
B.1 for details). By computing design sensitivity, researchers can directly assess whether
or not trimming can help improve robustness to omitted variable bias, and whether or not
these potential gains to robustness are worth the trade-off of using a different estimand of
interest. For example, if researchers estimate the design sensitivity under trimming and find
that for a small effect size, trimming a small portion of extreme weights results in a large
improvement in design sensitivity, it may be helpful to perform trimming. In contrast, if
researchers find that only at a large effect size or only by trimming large number of weights
would trimming help with design sensitivity, it would not be worth performing trimming
and altering the estimand of interest.
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3.5 Empirical Application: Colombia FARC Peace

Agreement

Background and Context

To illustrate design sensitivity, we re-analyze a study from Hazlett and Parente (2023).
After decades of fighting, the Colombian government under President Juan Santos reached
a historic peace deal with the Revolutionary Armed Forces of Colombia (FARC). However,
in a 2016 referendum, the public narrowly voted to reject the peace deal. The FARC peace
deal remains an important case study in understanding drivers of support for peace.

Following Hazlett and Parente (2023), we examine two prevalent hypotheses for drivers of
support for peace: (1) exposure to violence, and (2) presidential support. We define the out-
come of interest as the proportion of individuals at the municipality level who voted in favor
of the peace deal. For exposure to violence, treatment is defined by whether any recorded
deaths attributed to FARC occurred in a municipality. For presidential support, treatment
is defined as whether or not President Santos won the popular vote in the municipality in the
second round of presidential elections (which would have implied that he won that particular
region). We estimate inverse propensity score weights by fitting a logistic regression using
the available pre-treatment covariate data. This includes variables such as past incidents of
FARC-related deaths, GDP per capita for a specific municipality, and the number of people
who live in each municipality.

We vary the possible treatment effects and estimate the resulting design sensitivities.
Figure 3.2 displays the results. Because we are examining the percentage of individuals
who vote in favor of the peace deal in a municipality as the outcome, the range of possible
treatment effects is restricted by the fact that the average treatment outcome cannot be
outside the range 0 - 100%. In practice, researchers can estimate design sensitivity by
calibrating to a chosen outcome distribution. For illustrative purposes, we calibrate the
estimated design sensitivities using the true outcome distribution. However, the results
can be estimated for any arbitrary distribution for the outcome. See Appendix B.2 for
recommendations for using a planning sample to calibrate outcome distributions.

Illustration on the Variance-Based Sensitivity Models

To examine the potential impact of augmentation, we vary the amount of variation that
can be explained in the control outcomes by a hypothetical outcome model and estimate
the updated design sensitivity. Consistent with Theorem 3.5, we see that as the amount
of variation explained in the outcomes increases, the amount of improvement in design
sensitivity also increases. Notably, even in cases when the outcome model can explain 50%
of the variation in the control outcomes, there is a relatively limited impact on the design
sensitivity for the variance-based model.

To assess the impact of trimming, we estimate the design sensitivity of the weighted
estimator, trimming at thresholds of 0.9 and 0.8 (trimming observations with estimated
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Figure 3.2: Design sensitivities under augmentation and trimming for (a) the variance-based
model and (b) the marginal sensitivity model.

propensity scores greater than these values). This improves the design sensitivity uniformly
across all effect sizes. Trimming a small number of extreme weights results in large improve-
ments in the design sensitivity, even for a relatively low effect size. For example, for the
hypothesis of exposure to violence, trimming weights that correspond to propensity scores
greater than 0.9 would result in excluding 3 observations, out of 1,123 total observations
(i.e., 0.26% of control units). For an effect size of 10, this would correspond to an increase
in the design sensitivity from R̃2 = 0.01 to R̃2 = 0.11. This implies that assuming an effect
size of 10, without trimming, we could only identify a true effect if the imbalance from an
omitted confounder explained less than 1% of the variation in the ideal weights. However,
after trimming, we would be able to identify a true effect even accounting for a possible
confounder that is up to 10 times more imbalanced.

Importantly, neither design choice (i.e., augmenting and trimming) appear to hurt design
sensitivity for the variance-based sensitivity models in this setting. However, from estimating
the design sensitivities, it is clear that there are substantial gains to robustness from trimming
a few observations from the study. In contrast, while fitting a predictive outcome model can
help improve design sensitivity, these improvements are more marginal.

Illustration on the Marginal Sensitivity Model

We now illustrate design sensitivity on the marginal sensitivity model. We see a large
improvement in the design sensitivity for the marginal sensitivity model from augmentation
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across all effect sizes. This is likely because the marginal sensitivity model is more susceptible
to extreme values in the outcome. By augmenting the weighted estimator, we are able to
reduce extreme values in the outcome. Even an outcome model that can explain 10% of
the variation in the control outcomes can result in a substantial improvement in the design
sensitivity of the marginal sensitivity model. (See Figure 3.2-(b) for illustration.)

In contrast to the variance-based sensitivity models, we see that for for the marginal sen-
sitivity models, at small effect sizes, trimming does not affect the design sensitivity. However,
for large effect sizes (i.e., τ > 25), trimming actually results in a slight reduction in the design
sensitivity. As such, in settings where researchers are concerned about robustness to a worst-
case error, design sensitivity would suggest that researchers should not perform trimming,
and fitting a predictive outcome model would be most helpful at improving robustness.

Remark on the Choice of Sensitivity Model and Interpretation

While design sensitivity is useful for deciding which weighting approaches we expect to be
most robust given a particular mode of sensitivity analysis, we do not view it as partic-
ularly helpful for choosing among different sensitivity models. Design sensitivities for the
marginal and variance-based models are parameterized very differently and are not directly
comparable. As such, throughout the chapter and analysis, we have restricted attention
to maximizing the design sensitivity for a fixed set of sensitivity models. We refer read-
ers to Huang and Pimentel (2022) for more discussion about comparing the performance
of different sensitivity models, as well as Rosenbaum (2015) for discussion on comparisons
of different sensitivity models below the design sensitivity threshold. In general, we recom-
mend that practitioners decide a priori which sensitivity model best captures the type of
unobserved confounder that concerns them most from a substantive perspective and pursue
design sensitivity under that model.

The interpretation of design sensitivity magnitude depends on the underlying sensitivity
model. As such, determining whether a design sensitivity is large or small requires researchers
to reason about whether the amount of confounding represented by Γ̃ is plausible. We
recommend the use of existing tools for sensitivity analysis such as formal benchmarking
(Huang and Pimentel, 2022; Huang, 2022) and amplification (Soriano et al., 2021) to help
with interpretation.

3.6 Conclusion

In this chapter, we introduced design sensitivity for weighted estimators. This asymptotic
measure of robustness allows researchers to consider how certain design choices in their ob-
servational studies can affect sensitivity to omitted confounders at the design stage. Design
sensitivity can be estimated for a general set of sensitivity models that meet a relatively
weak set of regularity conditions. We derive the design sensitivities for two commonly used
sensitivity models: the variance-based sensitivity model, which constrains an average error
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from omitting a confounder, and the marginal sensitivity model, which constrains a worst-
case error from omitting a confounder. We show that trimming and augmentation—two
common design choices that researchers make in practice—can influence design sensitivity.
Thus, beyond the standard discussions of variance reduction for trimming and double robust-
ness for augmentation, these decisions can also impact robustness to omitted confounders.
We illustrate our framework in a study of the 2016 Colombian peace agreement, for which
trimming drastically improves design sensitivity under the variance-based sensitivity model,
and augmentation improves design sensitivity under the marginal sensitivity model.

Several lines of future work follow naturally. While we provide explicit calculations for
two commonly used sensitivity models, the framework introduced applies more generally. An
interesting avenue of future work could compare how design sensitivities across a wider array
of different sensitivity models respond to design choices. Future work could also examine
design sensitivity with respect to other design choices, including the choice between ATT,
ATE, and quantile effect estimands (Greifer and Stuart, 2021).

The idea of “sharp” sensitivity analysis (Dorn and Guo, 2021), or sensitivity analysis that
asymptotically recovers exactly the set of true effect estimates without any conservatism, is
somewhat related to design sensitivity. Both approaches aim to make the estimated intervals
[L̂ν(Γ,w), Ûν(Γ,w)] as small as possible in large samples. However, Dorn and Guo emphasize
changing the sensitivity analysis method itself by incorporating additional constraints, in
contrast to our focus on changing other aspects of the design while holding the sensitivity
analysis fixed. As such, design sensitivity is not well suited to guiding user choice between
sharp and non-sharp sensitivity analysis methods. However, Theorems 3.1-3.2 should apply
to sharp sensitivity analysis such that power and design sensitivity formulas could be derived.
Based on findings in Dorn and Guo (2021), we anticipate that design sensitivity may behave
differently for their sharp sensitivity analysis approach than for methods like the marginal
sensitivity analysis of Zhao et al. (2019) which has been proven not to be sharp. For example,
we expect that the width of sharp limiting sets may not be affected by the variance of the
study outcomes, in which case augmentation might no longer provide any benefit to design
sensitivity. We leave such questions to be taken up by future authors.

Finally, design sensitivity is defined in the context of the asymptotic limiting distri-
butions. This formulation allows us to disentangle uncertainty from sampling error from
uncertainty from omitted confounding. However, it may not provide clear guidance in small-
sample settings or in settings where several designs exhibit similar design sensitivities. In the
context of matching, Rosenbaum (2015) computes Bahadur efficiencies of sensitivity analyses
as a way to compare robustness of different design specifications with more granularity than
design sensitivity can provide. Future work should explore the potential of this approach for
weighting estimators.
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Appendix A

Supplementary materials for Chapter
2

A.1 Proofs

Proof of Theorem 2.1

Proof. We prove that, after centering, the difference between the mean computed from es-
timating and evaluating the inverse probability function γ on bootstrap data and the mean
computed from using the true function γ and evaluating on actual data is of order n−1/2.

For simplicity, we consider estimating the population mean from an independent and
identically distributed random sample with missing outcome data. For unit i, let Yi be the
outcome, Xi be a vector of observed covariates, and Zi be a response indicator, where Zi = 1
if we observe unit i’s outcome and Zi = 0 otherwise. In addition, let γP (X) = 1/πP (X) be
the population weight associated with the unit with covariateX. We consider using estimator

µ̂(h) = 1
n

n∑
i=1

γ̂(h)(Xi, Yi)ZiYi to estimate µ(h) = E[Y ] = E[E[Y |X, Y ]] = E[E[ ZY

π
(h)
P (X,Y )

|X, Y ]] =

E[ ZY

π
(h)
P (X,Y )

] = E[γ(h)
P (X, Y )ZY ] (by the law of iterated expectations) from observed data

Oi = (Xi, Zi, YiZi)
n
i=1 drawn from joint distribution P (·). Theorem 2.1 applies for any known

deviation from ignorability represented by the log odds ratio h(x, y) = logOR(π(x), π(x, y)).
Without loss of generality, we use h(x, y) = 0 and suppress the dependency of µ̂(h) and µ(h)

on h(x, y) for notational simplicity.
We sample split to make the proof and arguments simpler and more transparent (see

Klaassen, 1987). The proof can equivalently be done without sample splitting, but we sample
split to avoid the associated complexities. We split the data into two equally sized samples,
i = 1, . . . ,m and i = m + 1, . . . , n. For both samples, we take an iid bootstrap sample
of size m from the respective empirical distribution to obtain data O∗

i = (X∗
i , Z

∗
i , Y

∗
i Z

∗
i )

m
i=1

and O∗
i = (X∗

i , Z
∗
i , Y

∗
i Z

∗
i )

n
i=m+1. Let γ̂∗ denote an estimate of γ using bootstrap data. We

estimate γ̂∗(X) in one bootstrap sample and evaluate in the other bootstrap sample. We
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then switch roles and take a weighted average of the two estimates proportional to
∑m

i=1 Z
∗
i

in both bootstrap samples to obtain an efficient estimate. This sample splitting approach
with reversing roles and averaging yields the same estimate as without sample splitting to
order o(n−1/2). We demonstrate this through simulation (see Appendix A.2). We examine
the case where we evaluate on the bootstrap sample from the second half of the data and
estimate γ̂∗(X) from the bootstrap sample from the first half.

We make the following mild assumptions on how γ̂ is constructed:

Assumption A.1. Consider function γ̃ : X m × {0, 1}m → R+. As an example, consider
the function corresponding to the stable balancing weights optimization problem (2.7). Let
γ̂∗
n(x) = γ̃P ∗

m
(X∗

1 , . . . , X
∗
m, Z

∗
1 , . . . , Z

∗
m, x) and γ̂n(x) = γ̃Pm(X1, . . . , Xm, Z1, . . . , Zm, x), where

P ∗
m and Pm are the empirical distributions for the bootstrap sample from the first half of the

data and the actual first half of the data, respectively, be such that:

1. γ̃ is uniformly bounded in m and x.

2. E1

ñÅ
sup
x

∣∣∣γ̂∗
n(x)− γ̂n(x)

∣∣∣ã2ô = op(1).

3. sup
x

∣∣∣γ̂n(x)− γP (x)
∣∣∣ = op(1).

1

4. E [γ̂n(X)ZY ]− E [γP (X)ZY ] = o(n−1/2).

5. Y has a finite second moment: E[Y 2] ≤M , where M is a constant.

Assumption A.1.4 assumes that the bias of µ̂ for estimating µ is of order o(n−1/2). The
assumptions for Theorem 3 in Wang and Zubizarreta (2019) and Theorem 2 in Hirshberg
et al. (2019) are possible conditions under which our set of assumptions hold. These are
representative of typical assumptions in this setting where the estimator is assumed to be
a function of d covariates with assumptions on the number of components of an orthogonal
expansion. There are various alternative assumptions, all of which boil down to requiring
that γP (·) can be characterized by a low-dimensional structure.

In conjunction with Assumptions A.1.2 and A.1.3, Assumption A.1.4 can be implausible
with high-dimensional covariates or when the covariate distribution can be specified only by
a high-dimensional parametric model which requires estimation. This caution is independent
of the method used to estimate γP (X). We provide an example to illustrate the issues that
can arise in high-dimensional settings. Suppose X has dimension p and that γ̂n(X) uses
Nadaraya-Watson type kernel density estimation for γP (X). Further, assume that γP (·) has
bounded partial derivatives of order≤ s. Then, it is well known that if γ̂n(X) has bandwidths

h1 = · · · = hp = h, then E [γ̂n(X)|X] = γP (X) + O(hs) and E
î
|γ̂n(X)− E [γ̂n(X)|X]|2

ó
=

Ω((nhp)−1). In order to have nhp →∞ and nh2s → 0, we must have:

1Wang and Zubizarreta (2019)’s Theorem 2 proves that Assumption A.1.3 holds for weights estimated
by SBW (2.7).
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1. h→ 0 slower than n− 1
p and

2. h→ 0 faster than n− 1
2s .

This is possible only if s ≥ p/2. In fact, more sophisticated heuristics yield replacement
of 1

2s
by 1

4s
. Intuitively, if p is large, this assumption is unrealistic in any case. It implies

that γP (·) has a Taylor expansion to order s with Ω(ps) bounded coefficients, which means
p

p
2 for s ≥ p/2. For p = 100, this yields 10050! This example illustrates that there is

reason to be skeptical of the plausibility of Assumption A.1.4 in high-dimensional settings.
Additional research into propensity score estimation with high-dimensional covariates would
seem important.

These assumptions together imply that γ̂∗
n is consistently uniform for γ. Assumption A.1

verifies

E1

[(
sup
x

∣∣∣γ̂∗
n(x)− γP (x)

∣∣∣Ym+1Zm+1

)2]
=E1

[(
sup
x

∣∣∣γ̂∗
n(x)− γP (x)

∣∣∣)2]E1

[
Y 2
m+1Z

2
m+1

]
=o(1),

where E1 denotes the conditional expectation given the first sample. Note, the conditions in
Assumption A.1 are stronger than needed and could be relaxed.

We proceed conditional on the first sample Oi = (Xi, Zi, YiZi)
m
i=1 and the first bootstrap

sample O∗
i = (X∗

i , Z
∗
i , Y

∗
i Z

∗
i )

m
i=1. Therefore, γ̂∗

n is a completely known function. Let E∗

denote the conditional expectation of the second bootstrap sample given the actual second
sample.

Since

E∗
[ 1
m

2m∑
i=m+1

γ̂∗
n(X

∗
i )Z

∗
i Y

∗
i

]
=

1

m

2m∑
i=m+1

γ̂∗
n(Xi)ZiYi,

then, by Theorem 2.1 from Bickel and Freedman (1981),

1

m

2m∑
i=m+1

γ̂∗
n(X

∗
i )Z

∗
i Y

∗
i −

1

m

2m∑
i=m+1

γ̂∗
n(Xi)ZiYi (A.1)

and
1

m

2m∑
i=m+1

(
γ̂∗
n(Xi)ZiYi − E1

[
γ̂∗
n(Xm+1)Zm+1Ym+1

])
(A.2)
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have the same limiting distribution. Since (A.1) and (A.2) have the same limiting distribu-
tion, instead of showing

1

m

2m∑
i=m+1

γ̂∗
n(X

∗
i )Z

∗
i Y

∗
i − E∗

[ 1
m

2m∑
i=m+1

γ̂∗
n(X

∗
i )Z

∗
i Y

∗
i

]
=

1

m

2m∑
i=m+1

γP (Xi)ZiYi − E1

[
γP (Xm+1)Zm+1Ym+1

]
+ op(n

−1/2)

(A.3)

to show that the bootstrap can be validly applied, it suffices to show that the difference
between the mean with the true γ and the mean with γ̂∗

n estimated on the bootstrap data is
of order n−1/2. Therefore, we show

1

m

2m∑
i=m+1

γ̂∗
n(Xi)ZiYi − E1

[
γ̂∗
n(Xm+1)Zm+1Ym+1

]
=

1

m

2m∑
i=m+1

γP (Xi)ZiYi − E1

[
γP (Xm+1)Zm+1Ym+1

]
+ op(n

−1/2).

(A.4)

We have now reduced the problem to showing that the true function γ can be replaced
with γ̂∗

n. In order to show this, we use properties of γ̂∗
n from Assumption A.1. First, we let

∆(Xi, Yi, Zi) = (γ̂∗
n(Xi)− γP (Xi))ZiYi − E1

[
(γ̂∗

n(Xm+1)− γP (Xm+1))Zm+1Ym+1

]
.

Note that the difference between the terms on the left and right hand sides of (A.4) is

equal to 1
m

2m∑
i=m+1

∆(Xi, Yi, Zi). Additionally, note that E1

[
∆(Xi, Yi, Zi)

]
= 0. Therefore,

E1

[( 1

m

2m∑
i=m+1

∆(Xi, Yi, Zi)
)2]

=
1

m
E1

[
∆(Xm+1, Ym+1, Zm+1)

2
]
.
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Since m = Ω(n), by Assumption A.1,

E1

[
∆(Xm+1, Ym+1, Zm+1)

2
]

=E1

î
([γ̂∗

n(Xm+1)− γP (Xm+1)]Zm+1Ym+1)
2
ó

− 2E1

{[
γ̂∗
n(Xm+1)− γP (Xm+1)

]
Zm+1Ym+1E1

[[
γ̂∗
n(Xm+1)− γP (Xm+1)

]
Zm+1Ym+1

]}
+ E1

{
E1

[[
γ̂∗
n(Xm+1)− γP (Xm+1)

]
Zm+1Ym+1

]2}
=E1

[([
γ̂∗
n(Xm+1)− γP (Xm+1)

]
Zm+1Ym+1

)2]
− E1

[[
γ̂∗
n(Xm+1)− γP (Xm+1)

]
Zm+1Ym+1

]2
≤E1

[([
γ̂∗
n(Xm+1)− γP (Xm+1)

]
Zm+1Ym+1

)2]
≤M · E1

î
(γ̂∗

n(Xm+1)− γP (Xm+1))
2
ó

=op(1).

Therefore, (A.4) follows. □
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A.2 Simulation for sample splitting

We conduct simulations to demonstrate the validity of the sample splitting technique that
we use to prove Theorem 2.1 in Appendix A.1. We show that the bootstrap distributions for
the balancing weights estimates of µ0 with and without sample splitting are quite similar.

The setup of the simulations is as follows. We draw 10,000 iid samples where covariatesX1

and X2 are drawn from standard normal distributions, treatment indicator Zi is a bernoulli
random variable with probability = 0.5 + 0.07X1i + 0.07X2i + ϵi, where ϵi ∼ N (0, 0.032),
and Yi = 0.2Zi + 0.5X1i + 0.5X2i + δi, where δi ∼ N (0, 0.22). We run 1,000 simulations and
estimate µ0 with and without sample splitting using weights obtained by entropy balancing
with exact balance from Hainmueller (2012). We observe in Figure A.1 that the bootstrap
distributions of the estimates with and without sample splitting are comparable.

Figure A.1: Bootstrap distributions of estimates of µ0 with the full data and with sample
splitting
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A.3 Average treatment effect on the treated

In many settings, researchers are interested in estimating the Population Average Treatment
Effect on the Treated (PATT):

τT = E[Y (1)− Y (0)|Z = 1] = µ11 − µ01, (A.5)

where µ11 = E[Y (1)|Z = 1] and µ01 = E[Y (0)|Z = 1]. Since µ11 is identifiable from observed
data, we primarily focus on estimating µ01.

Our procedure for performing sensitivity analysis outlined in Section 2.3 largely still
holds. The primary details that differ for the PATT are as follows. First, for a particular
h ∈ H(Λ), we can write the shifted estimand as

µ
(h)
01 = E

ñ
(1− Z)

π(h)(X, Y (0))

1− π(h)(X, Y (0))

ô−1

E
ñ
(1− Z)

π(h)(X, Y (0))

1− π(h)(X, Y (0))
Y

ô
. (A.6)

The corresponding shifted estimator for µ
(h)
01 is

µ̂
(h)
01 =

(∑
Zi=0

e−h(Xi,Yi(0))γ̂(Xi)

)−1 ∑
Zi=0

e−h(Xi,Yi(0))γ̂(Xi)Yi. (A.7)

We make the following modifications to our amplification described in Section 2.4 for the
ATT. Where U ∈ R represents a latent unmeasured confounding variable, standardized to
have mean zero and variance 1, we consider a working model for the conditional expectation
of the control potential outcome:

E[Y (0) | X = x, U = u, Z = 1] = f(x) + βu0 · u. (A.8)

Then, we define the bias to be the difference between the true expected value of control
potential outcomes for treated units µ01 and the IPW estimand. We decompose the bias
into (i) the strength of the unmeasured confounder U in predicting Y (0) for treated units
beyond the observed covariates, βu0 and (ii) the imbalance in U , δu0:

E[Y (0) | Z = 1]− E
ï

1− Z

P(Z = 1)

π(X)

1− π(X)
Y

ò
= βu0 ·

Å
E [U | Z = 1]− E

ï
1− Z

P(Z = 1)

π(X)

1− π(X)
U

òã
︸ ︷︷ ︸

δu0

.

Next, we derive upper and lower bounds for this product by using the partial identification
of µ01 under the marginal sensitivity model:

inf
h∈H(Λ∗)

µ
(h)
01 −E

ï
1− Z

P(Z = 1)

π(X)

1− π(X)
Y

ò
≤ βu0 ·δu0 ≤ sup

h∈H(Λ∗)

µ
(h)
01 −E

ï
1− Z

P(Z = 1)

π(X)

1− π(X)
Y

ò
.
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Finally, we construct finite-sample versions of these population bounds by bounding the bias
as the maximum of the absolute values of the highest and lowest possible differences in the
estimated values,

|βu0 · δu0| ≤ max

®∣∣∣∣ inf
h∈H(Λ∗)

µ̂
(h)
01 − µ̂01

∣∣∣∣ ,
∣∣∣∣∣ sup
h∈H(Λ∗)

µ̂
(h)
01 − µ̂01

∣∣∣∣∣
´
.
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Appendix B

Supplementary materials for Chapter
3

B.1 Proofs

Theorem 3.1 (Power of a Sensitivity Analysis)

For a general class of sensitivity models ν(Γ, w), define τν(Γ,w) as the minimum value in the
set of possible point estimates (i.e., τν(Γ,w) := infw̃∈ν(Γ,w) τ(w̃)). Define ξν(Γ,w) := τW −τν(Γ,w).
Finally, define kα := 1− Φ(α). Then, the power of a sensitivity analysis is defined as:

Pr

Å√
n(τ̂W − ξν(Γ,w))

σν(Γ,w)

≥ kα

ã
= Pr

Å√
n · (τ̂W − τW )

σW

≥
kα · σν(Γ,w) +

√
n · (ξν(Γ,w) − τW )

σW

ã
≃ 1− Φ

Å
kα · σν(Γ,w) +

√
n · (ξν(Γ,w) − τW )

σW

ã
,

Proof.

Pr

Å√
n(τ̂W − ξν(Γ,w)

σν(Γ,w)

≥ kα

ã
= Pr

Å√
n(τ̂W − ξν(Γ,w))

σW

≥ kα ·
σν(Γ,w)

σW

ã
Adding and subtracting

√
nτW/σW to both sides results in the following:

= Pr

Å√
n · (τ̂W − τW )

σW

≥
kα · σν(Γ,w) +

√
n · (ξν(Γ,w) − τW )

σW

ã
Noting that τ̂W

d→ N(τW , σ2
W ) concludes the proof:

≃ 1− Φ

Å
kα · σν(Γ,w) +

√
n · (ξν(Γ,w) − τW )

σW

ã
□
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Theorem 3.3 (Design Sensitivity for the Variance-Based
Sensitivity Model)

Proof. As an overview of the proof, we will first show that σνvbm(R2,w) <∞. Then, we will in-
voke the results from Theorem 3.1 to solve for the R2 parameter for which ξνvbm(R2,w) is equal
to τW . In order for σνvbm(R2,w) <∞, the endpoints of the range of potential point estimates
under the variance-based sensitivity model must have finite variance. This is a secondary
result, proven in Huang and Pimentel (2022), Theorem 3.2. We assume researchers are
using inverse propensity score weights (for strategies on generalization to other estimation
approaches see Soriano et al. (2021)). The result follows from using a Z-estimation frame-
work, and showing that the vector of parameters θ̂ converge in distribution to a Normal
distribution with finite variance. The original proof is done with respect to a general miss-
ingness indicator. We will provide the set-up for completeness here, written with respect to
the ATT setting.

To begin, we define µw as the expectation of the weights:

µw = E((1− Z)w) ≡ E((1− Z) · (1 + exp(−βX))),

where the second equivalence arises from the assumption that we are using inverse propensity
score weights. Then, we define µ as the average, re-weighted outcome across the control units:

µ =
E((1− Z)Y (1 + exp(−β⊤X)))

µw

.

Define µ2
w = E((1 − Z)w2) and σ2

Y = E((1 − Z)Y 2) as the second moment of the weights

and the outcomes, respectively. Then, we define the vector θ = (µ, µw, β, µ
2
w, µY , µ

2
Y )

⊤ ∈ Θ.
Define the function Q : 0, 1×Rd×R→ Rd+5, where for t = (1− z, x⊤, y) ∈ {0, 1}×Rd×R:

Q(t | θ) =


Q1(t|θ)
Q2(t|θ)
Q3(t|θ)
Q4(t|θ)
Q5(t|θ)
Q6(t|θ)

 :=



Ä
(1− z)− exp(β⊤x)

1+exp(β⊤x)

ä
x

µw − (1− z)
(
1 + exp(−β⊤x)

)
µwµ− (1− z)y

(
1 + exp(−β⊤x)

)
µ2
w − (1− z)

(
1 + exp(−β⊤x)

)2
µy − (1− z)y
µ2
y − (1− z)y2

 (B.1)

Finally, we define Φ(θ) as:

Φ(θ) =

∫
Q(t|θ)dP(t),

where T = (1−Z,X⊤, (1−Z)Y )⊤ ∼ P, where P represents the true distribution generating
the data. It is simple to see that Φ(θ∗) = 0, when θ∗ is equal to the true parameter values.
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Then, the Z-estimates θ̂ satisfy the following estimating equations :

Φn(θ̂) : =
1

n

n∑
i=1

Q(Ti|θ̂) (B.2)

=



(
1
n

∑n
i=1(1− Zi)− exp(β̂⊤Xi)

1+exp(β̂⊤Xi)

)
Xi

µ̂w − 1
n

∑n
i=1(1− Zi)

Ä
1 + exp(−β̂⊤Xi)

ä
µ̂wµ− 1

n

∑n
i=1(1− Zi)Yi

Ä
1 + exp(−β̂⊤Xi)

ä
µ̂2
w − 1

n

∑n
i=1(1− Zi)

Ä
1 + exp(−β̂⊤Xi)

ä2
µ̂y − 1

n

∑n
i=1(1− Zi)Yi

µ̂2
y − 1

n

∑n
i=1((1− Zi)Y

2
i )


= 0 (B.3)

We define Σ := E(Q(t | θ)Q(t | θ)⊤). We invoke the following regularity conditions:

Assumption B.1 (Regularity Conditions). Assume that the parameter space Θ is compact,
and that θ is in the interior of Θ. Furthermore, (Y,X) satisfies the following:

1. E(Y 4) <∞

2. det
Ä
E
Ä

exp(β⊤X)
(1+exp(β⊤X))2

XX⊤
ää

> 0

3. ∀ compact subsets S ⊂ Rd, E(supβ∈S exp(β
⊤X)) <∞

Under these assumptions, we can apply results from Huang and Pimentel (2022, Theorem
3.2) to show that the parameters θ̂ converge in distribution to N(θ, Φ̇−1

0 ΣΦ̇0). In particular,
the first and second regularity conditions are necessary to show that Σ is finite, and the
last regularity condition is necessary for the convergence in distribution. Applying the Delta
method, it follows that σνvbm(R2,w) <∞. These are the same regularity conditions necessary
for standard weighted estimators to converge in distribution to a Normal distribution. We
can think of the standard weighted estimator as a special case, in which R2 = 0, and thus,
we must only consider the first three elements in Q and θ.

Because σνvbm(R2,w) < ∞, the results for the theorem follow almost immediately from
Theorem 3.1. Recall that the design sensitivity is defined as the minimum parameter value
for a set of sensitivity models ν for which ξν(Γ,w) > τW (i.e., when

√
n(ξν(Γ,w)− τW ) = 0). To

solve for the design sensitivity for the variance-based sensitivity model, we begin by noting
that the error term ξνvbm(R2,w) is equal to the maximum bias for a set of sensitivity models.
Following Huang and Pimentel (2022), the maximum asymptotic bias that can occur is given
by:

ξνvbm(R2,w)

:= max
w̃∈νvbm(R2)

Bias(τW | w̃)

=
»

1− cor(w, Y | Z = 0)2 ·

 
R2

1−R2
· var(w | Z = 0) · var(Y | Z = 0).
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To solve for R̃2, we set ξνvbm(R2,w) equal to τW :»
1− cor(w, Y | Z = 0)2 ·

 
R̃2

1− R̃2
· var(w | Z = 0) · var(Y | Z = 0) = τW

R̃2

1− R̃2
=

1

1− cor(w, Y | Z = 0)2
· τ 2W
var(w | Z = 0) | var(Y | Z = 0)

R̃2 =
a2

1 + a2
where a2 =

1

1− cor(w, Y | Z = 0)2
· τ 2W
var(w | Z = 0) · var(Y | Z = 0)

□

Theorem 3.4 (Design Sensitivity for the Marginal Sensitivity
Model)

Proof. For a fixed value of Λ, we reject the null hypothesis that τ = 0 if

lim
n→∞

min
w̃∈νmsm(Λ,w)

τ̂w̃ > 0

⇐⇒ lim
n→∞

[
1∑n

i=1 Zi

n∑
i=1

YiZi − max
w̃∈νmsm(Λ,w)

∑n
i=1 w̃iYi(1− Zi)∑n
i=1 w̃i(1− Zi)

]
> 0

⇐⇒ lim
n→∞

1∑n
i=1 Zi

n∑
i=1

YiZi > lim
n→∞

max
w̃∈νmsm(Λ,w)

∑n
i=1 w̃iYi(1− Zi)∑n
i=1 w̃i(1− Zi)

.

Therefore, we can compute the design sensitivity Λ̃ by finding Λ such that

lim
n→∞

1∑n
i=1 Zi

n∑
i=1

YiZi = lim
n→∞

max
w̃∈νmsm(Λ,w)

∑n
i=1 w̃iYi(1− Zi)∑n
i=1 w̃i(1− Zi)

. (B.4)

The term on the left hand side of the estimating equation (B.4) is the observed data
sample mean of Y (1) and is equal to E [Y (1) | Z = 1] by the law of large numbers. We focus
on showing that the right hand side limit exists and computing its value.

For notational simplicity, let µ̂0(w̃) :=
∑n

i=1 w̃iYi(1−Zi)∑n
i=1 w̃i(1−Zi)

. Without loss of generality, let

the first m units be control units such that Z1 = · · · = Zm = 0, Zm+1 = · · · = Zn = 1,
where 1 ≤ m < n. Additionally, let Y be ordered from largest to smallest such that
Y1 ≥ Y2 ≥ · · · ≥ Ym and let Yi = 0 for i /∈ {1, . . . ,m}. Then, by Proposition 2 from Zhao
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et al. (2019),

max
w̃∈νmsm(Λ,w)

µ̂0(w̃) = max
a∈{0,...,m}

a∑
i=min{a,1}

ΛwiYi +
max{a+1,m}∑

i=min{a+1,m+1}

1
Λ
wiYi

a∑
i=min{a,1}

Λwi +
max{a+1,m}∑

i=min{a+1,m+1}

1
Λ
wi

= max
c∈R

m∑
i=1

Λ1 {Yi ≥ c}wiYi +
m∑
i=1

1
Λ
1 {Yi < c}wiYi

m∑
i=1

Λ1 {Yi ≥ c}wi +
m∑
i=1

1
Λ
1 {Yi < c}wi

.

The following lemma allows us to state the limit of max
w̃∈νmsm(Λ,w)

µ̂0(w̃).

Lemma B.1 (Limit of max
w̃∈νmsm(Λ,w)

µ̂0(w̃)).

Under Assumption 3.2 and E (Y 2
i ) ,E (w2

i ) <∞,

max
w̃∈νmsm(Λ,w)

µ̂0(w̃) = max
c∈R

m∑
i=1

Λ1 {Yi ≥ c}wiYi +
m∑
i=1

1
Λ
1 {Yi < c}wiYi

m∑
i=1

Λ1 {Yi ≥ c}wi +
m∑
i=1

1
Λ
1 {Yi < c}wi

(B.5)

p→ max
c∈R

ΛE [1 {Y (0) ≥ c}wY (0)|Z = 0] + 1
Λ
E [1 {Y (0) < c}wY (0)|Z = 0]

ΛE [1 {Y (0) ≥ c}w|Z = 0] + 1
Λ
E [1 {Y (0) < c}w|Z = 0]

(B.6)

Proof. We break max
w̃∈νmsm(Λ,w)

µ̂0(w̃) into four functions and show that each function converges

uniformly to its corresponding expectation. As a result, max
w̃∈νmsm(Λ,w)

µ̂0(w̃) converges to its

expectation. First, let

max
w̃∈νmsm(Λ,w)

µ̂0(w̃) = max
c∈R

Λg1(c) +
1
Λ
g2(c)

Λg3(c) +
1
Λ
g4(c)

,

where gt(c) =
1
m

m∑
i=1

gt(Yi, wi; c) for t ∈ {1, 2, 3, 4} and

1. g1(Yi, wi; c) = 1 {Yi ≥ c}wiYi

2. g2(Yi, wi; c) = 1 {Yi < c}wiYi

3. g3(Yi, wi; c) = 1 {Yi ≥ c}wi

4. g4(Yi, wi; c) = 1 {Yi < c}wi.
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We show that the class of functions F = {g1(y, w; c) : c ∈ R ∪ {−∞,∞}}, each element
of which maps (Yi, wi) to the real line, is Glivenko-Cantelli and therefore g1(c) converges
uniformly to its expectation, E [1 {Y (0) ≥ c}wY (0)|Z = 0]. A similar result can be shown
for g2(c), g3(c), and g4(c). To clarify our exposition, we focus initially on the case in which
the distribution of Y is continuous.

Let P be the probability distribution from which (Y1, w1), ..., (Ym, wm) is a random sample
and let F be the cdf of Y . Choose any ϵ > 0. By our assumptions and the Cauchy-Schwarz
theorem, E|Yiwi| < ∞; therefore, there exist constants M−

ϵ and M+
ϵ sufficiently large such

that E [|Yiwi|1{Yi < −M−
ϵ }] < ϵ and E [|Yiwi|1{Yi > M+

ϵ }] < ϵ. Define p−ϵ = F (−M−
ϵ ) and

p+ϵ = F (M+
ϵ ), and let ∆−

ϵ = F (0)− p−ϵ and ∆+
ϵ = p+ϵ − F (0). Finally, choose any k ∈ N.

Define functions f−
j = 1

¶
Yi ≥ F−1

Ä
p−ϵ + j∆−

ϵ

k

ä©
wiYi and f+

j = 1

¶
Yi ≥ F−1

Ä
p+ϵ −

j∆+
ϵ

k

ä©
wiYi

for j ∈ {0, . . . , k}. If Yi has only nonnegative (nonpositive) support, the quantities
M−

ϵ , p
−
ϵ ,∆

−
ϵ , f

−
i (M+

ϵ , p
+
ϵ ,∆

+
ϵ , f

+
i ) are unnecessary. In addition, let f = g1(Yi, wi;−∞) =

Yiwi, f = g1(Yi, wi;∞) = 0, and note that f−
k = f+

k = 1{Yi ≥ 0}wiYi. For any two
real-valued functions ℓ(Yi, wi), u(Yi, wi) such that ℓ(Yi, wi), u(Yi, wi) for all (Yi, wi), define
the bracket [ℓ, u] = {f ∈ F : ℓ(Yi, wi) ≤ f(Yi, wi) ≤ u(Yi, wi)} as the set of all functions
contained between them. Then the brackets[

f, f−
0

]
,
[
f−
0 , f

−
1

]
,
[
f−
1 , f

−
2

]
, . . . ,

[
f−
k−1, f

−
k

]
and[

f, f+
0

]
,
[
f+
0 , f

+
1

]
,
[
f+
1 , f

+
2

]
, . . . ,

[
f+
k−1, f

+
k

]
form a coverage of the function class F since every function in F belongs to at least one
bracket.

Now that we have a set of 2(k+1) brackets [ℓ, u] that cover F , we show that they are ϵ-
brackets in the sense that P (u−ℓ) < ϵ for bracket where Pf =

∫
fdP . Let C = E(w2

i ) <∞.

P |f−
0 − f | = E

∣∣1{Yi < M−
ϵ

}
wiYi

∣∣ < ϵ and (B.7)

P |f+
0 − f | = E

∣∣1{Yi > M+
ϵ

}
wiYi

∣∣ < ϵ (B.8)

by our initial choices of M−
ϵ and M+

ϵ . For j = 1, . . . , k,

P |f−
j − f−

j−1| ≤ E
ï
1

ß
Yi ∈

ï
F−1

Å
p−ϵ +

(j − 1)∆−
ϵ

k

ã
, F−1

Å
p−ϵ +

j∆−
ϵ

k

ãã™
wiM

−
ϵ

ò
≤ CM−

ϵ · Pr
Å
Yi ∈

ï
F−1

Å
p−ϵ +

(j − 1)∆−
ϵ

k

ã
, F−1

Å
p−ϵ +

j∆−
ϵ

k

ããã
=

CM−
ϵ ∆

−
ϵ

k
≤ CM−

ϵ

k
. (B.9)
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The second line follow from the Cauchy-Schwarz inequality. Similarly,

P |f+
j − f+

j−1| ≤ E
ï
1

ß
Yi ∈

ï
F−1

Å
p+ϵ −

j∆+
ϵ

k

ã
, F−1

Å
p+ϵ −

(j − 1)∆+
ϵ

k

ãã™
wiM

+
ϵ

ò
≤ CM+

ϵ · Pr
Å
Yi ∈

ï
F−1

Å
p+ϵ −

j∆+
ϵ

k

ã
, F−1

Å
p+ϵ −

(j − 1)∆+
ϵ

k

ããã
=

CM+
ϵ ∆

+
ϵ

k
≤ CM+

ϵ

k
. (B.10)

Since k was chosen arbitrarily, we can select a value large enough such that CM−
ϵ

k
, CM+

ϵ

k
< ϵ.

Therefore, by Theorem 19.4 from Van der Vaart (2000), since the bracketing numbers are
finite for every ϵ > 0, the class of functions F is P -Glivenko-Cantelli. Since F is Glivenko-
Cantelli, by Theorem 19.1 from Van der Vaart (2000), uniform convergence holds.

If the distribution of Y is not continuous, the above argument works until statements
(B.9) and (B.10), which may not hold because the probability that Yi lies in a small region
may still be large if a point probability mass is contained within it. We can modify the
argument to account for such point masses as follows. Consider the set of points Y for
which Yi has a point probability mass greater than or equal to ϵ/2; this set must be finite
in cardinality. Increase M+

ϵ and M−
ϵ so that −M−

ϵ < y < M+
ϵ for all y ∈ Y . Choose any

y0 ∈ Y , and suppose without loss of generality that y0 < 0. We can split any bracket
[f−

j , f
−
j+1] that contains g(Yi, wi; y0) into the following two brackets:[

f−
j , 1 {Yi ≥ y0}wiYi

]
and

[
1 {Yi > y0}wiYi, f−

j+1

]
Since the largest remaining probability point masses are all smaller than ϵ/2, it is now
possible to choose k sufficiently large that each bracket [ℓ, u] satisfies P |u− ℓ| < ϵ.

If Lemma B.1 is not true, then assume that there is some value ϵ for which we can always
find some n such that (B.5) and (B.6) are different by at least ϵ. Since each of the functions
g1(c), g2(c), g3(c), and g4(c) differ from their expectations by at most ϵ1, ϵ2, ϵ3, and ϵ4,
respectively, we can construct a new ϵ which upper bounds the difference between (B.5) and
(B.6). If there is not uniform convergence of (B.5) and (B.6), then the two terms have to be
different by at least ϵ. Therefore, Lemma B.1 follows by contradiction. □

Noting that (B.6) can equivalently be written with indicator functions in terms of the
conditional CDF of Y (0) given Z = 0, Theorem 3.4 follows from Lemma B.1. □

Corollaries to Theorem 3.4 for Trimmed and Augmented Weighting Estimators

Corollary B.1 (Design Sensitivity for the Marginal Sensitivity Model for Trimming).
Define Gθ,m(Y ) as the following function:

Gθ,m(Y ) =

®
1 if Y ≥ F−1

Y |w<m,Z=0(1− θ)

0 if Y < F−1
Y |w<m,Z=0(1− θ)

,
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where Fy|x represents the population c.d.f. of y given x under the favorable situation and m

represents the trimming cutoff. Let Λ̃ be any solution to the following estimating equation:

E[wY (0) | w < m,Z = 0] + τtrim =

sup
θ∈[0,1]

ΛE [wY (0) ·Gθ,m(Y (0)) | w < m,Z = 0] + 1
ΛE [wY (0) · (1−Gθ,m(Y (0))) | w < m,Z = 0]

ΛE [w ·Gθ,m(Y (0)) | w < m,Z = 0] + 1
ΛE [w · (1−Gθ,m(Y (0))) | w < m,Z = 0]

,

where τtrim = E [Y (1)− Y (0) | Z = 1, w < m]. Then Λ̃ is the design sensitivity.

Proof. The proof of Corollary B.1 is equivalent to the proof of Theorem 3.4 after removing
units with wi ≥ m. □

Corollary B.2 (Design Sensitivity for the Marginal Sensitivity Model for Augmentation).
Define Λ̃ as any solution to the following estimating equation (where Fy|x represents the
population cdf of y given x under the favorable situation):

E[we | Z = 0] + τ

= sup
θ∈[0,1]

ΛE
î
we1
¶
e ≥ F−1

e|Z=0(1− θ)
©
| Z = 0

ó
+ 1

Λ
E
î
we1
¶
e < F−1

e|Z=0(1− θ)
©
| Z = 0

ó
ΛE
î
w1
¶
e ≥ F−1

e|Z=0(1− θ)
©
| Z = 0

ó
+ 1

Λ
E
î
w1
¶
e < F−1

e|Z=0(1− θ)
©
| Z = 0

ó ,

where e := Y − g(X) are the residuals from an arbitrary outcome model g. Then Λ̃ is the
design sensitivity.

Proof. The proof of Corollary B.2 is equivalent to the proof of Theorem 3.4 after replacing
the outcomes with residuals. □

Theorem 3.5 (Impact of Augmentation on Design Sensitivity)

Define e := Y − g(X) as the residual from an arbitrary outcome model g used to augment
a weighted estimate. Then, for the variance-based sensitivity model, the design sensitivity
from an augmented weighted estimators will be greater than the design sensitivity for a
standard weighted estimator if the following holds:

var(e | Z = 0) ≤ 1− cor(w, Y | Z = 0)2

1− cor(w, e | Z = 0)2
· var(Y | Z = 0)

Proof. To begin, we will first derive the design sensitivity for the variance-based sensitivity
model for augmented weighted estimators. If we treat the model g(X) as fixed, then it is
simple to show that under the same regularity assumptions as the ones invoked in Theorem
3.3 (i.e., Assumption B.1), σaug

ν(R2,w) < ∞. In particular, we can apply the same proof, but
substitute the residuals for the outcomes. The regularity conditions effectively state that
the fourth moment of the residuals must be finite.
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Following Huang (2022) (Theorem 5.1), note that the maximum asymptotic bias that
can occur for an augmented weighted estimator is:

ξaugνvbm(R2,w) : = max
w̃∈νvbm(R2,w)

Bias(τaugW | w̃)

=
»

1− cor(w, e | Z = 0)2 ·

 
R2

1−R2
· var(w | Z = 0) · var(e | Z = 0).

Then, because σaug
ν(R2,w) < ∞, following Theorem 3.3, the design sensitivity can be alge-

braically solved for:

R̃2
aug =

b2

1 + b2
where b2 =

1

1− cor(w, e | Z = 0)2
·

τ 2aug
var(w | Z = 0) · var(e | Z = 0)

To compare R̃2
aug and R̃2, we can re-write R̃2

aug as follows:

R̃2
aug =

b2

1 + b2

=

1
1−cor(w,e|Z=0)2

· τ2aug
var(w|Z=0)·var(e|Z=0)

1 + 1
1−cor(w,e|Z=0)2

· τ2aug
var(w|Z=0)·var(e|Z=0)

=
τ 2aug

(1− cor(w, e | Z = 0))2 · var(w | Z = 0) · var(e | Z = 0) + τ 2aug

Then:

R̃2
aug

R̃2
=

(1− cor(w, Y | Z = 0)2) · var(w | Z = 0) · var(Y | Z = 0) + τ 2W
(1− cor(w, e | Z = 0)2) · var(w | Z = 0) · var(e | Z = 0) + τ 2aug

·
τ 2aug
τ 2W

=
τ 2aug
τ 2W
· (1− cor(w, Y | Z = 0)2) · var(w) · var(Y ) + τ 2W
(1− cor(w, e | Z = 0)2) · var(w) · var(e) + τ 2aug

Because we are in the favorable setting, in which there is no omitted confounding, the
weighted estimator will recover the estimand (i.e., the ATT) consistently (i.e., τ̂W

p→ τW ≡
τ). Similarly, because the augmented weighted estimator is doubly robust, augmenting will

also recover the estimand consistently (i.e., τ̂aug
p→ τaug ≡ τ), regardless of the outcome

model. Thus, τW = τaug. Then, the above is greater than 1 if the following criteria holds:

(1− cor(w, e)2) · var(e | Z = 0) ≤ (1− cor(w, Y | Z = 0)2) · var(Y | Z = 0)

var(e | Z = 0) ≤ 1− cor(w, Y | Z = 0)2

1− cor(w, e | Z = 0)2
· var(Y | Z = 0)

□
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Theorem 3.6 (Impact of Trimming Weights on Design Sensitivity)

Define some cutoff m such that weights above the cutoff are trimmed. Furthermore, assume
the trimmed weights are centered at mean 1 and the projection of the trimmed, ideal weights
are centered on the trimmed, estimated weights. Then, for the variance-based sensitivity
model, if the following holds:

var(w | w < m,Z = 0)

var(w | Z = 0)︸ ︷︷ ︸
(1)Variance reduction in w

≤ 1− cor(w, Y | Z = 0)2

1− cor(w, Y | w < m,Z = 0)2︸ ︷︷ ︸
(2) Change in relationship between w and Y

· var(Y | Z = 0)

var(Y | w < m,Z = 0)︸ ︷︷ ︸
(3)Variance reduction in Y

,

the design sensitivity from a trimmed estimator will be greater than the standard weighted
estimator.

Proof. Like Theorem 3.5, we will begin by deriving the design sensitivity for weighted esti-
mators with trimming, under the variance-based sensitivity model. Furthermore, we have
assumed that the trimmed weights are centered at mean 1: E(w | w < m) = 1. This as-
sumption trivially holds as long as researchers normalize the trimmed weights to be mean
1.

We will begin by deriving the maximum asymptotic bias for a trimmed weighted esti-
mator. To begin, define the cutoff for trimming to be some threshold m, such that any
observations w ≥ m are trimmed. Then, the estimand of interest is thus the average treat-
ment effect, across the treated, subset to units that associated with weights w < m:

τ trim : = E(Y (1)− Y (0) | Z = 1, X ∈ A)
≡ E(Y (1)− Y (0) | Z = 1, w < m)

Notably, the additional condition of w < m is an observable condition, given the observed
covariates X (as the estimated weights are a function of X). The bias for a trimmed weighted
estimator is:∣∣∣Bias(τ̂ trimW )

∣∣∣ = ∣∣E (τ̂ trimW

)
− τ trim

∣∣
By conditional ignorability:

=

∣∣∣∣∣E
(

n∑
i=1

(1− Z)w · 1{w < m}Y

)
− E

(
n∑

i=1

w∗(1− Z) · 1{w < m}Y

)∣∣∣∣∣
= |E(wY | Z = 0, w < m)− E(w∗Y | Z = 0, w < m)|
= |E((w − w∗) · Y | Z = 0, w < m)|
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By construction, E(w | Z = 0, w < m) = E(w∗ | Z = 0, w < m):

= |E((w − w∗) · Y | Z = 0, w < m)− E(w − w∗ | Z = 0, w < m) · E(Y | Z = 0, w < m)|
= |cov(w − w∗, Y | Z = 0, w < m)|

= |cor(w − w∗, Y | Z = 0, w < m)| ·
»

var(w − w∗ | Z = 0, w < m) · var(Y | Z = 0, w < m)

= |cor(w − w∗, Y | Z = 0, w < m)| ·

 
var(w | Z = 0, w < m) · R2

1−R2
var(Y | Z = 0, w < m).

The last line follows from the fact the projection of the trimmed, ideal weights in the observed
covariate space of X are centered on the trimmed, estimated weights. For intuition, first
define an indicator V := 1{w > m}. Then, the trimmed, ideal weights can be written as
w∗ · V . Similarly, the trimmed, estimated weights can be written as w · V . Then, if the
projection of the ideal weights in X are centered on w (a condition that trivially is met when
using inverse propensity score weights), it follows immediately that E(w∗ · V | X) = w · V .
As a result, within the space of w < m, the residual error (i.e., w∗ −w) is orthogonal to the
estimated weights w.

To bound the correlation term, we apply the recursive formula of partial correlation:

−
»

1− cor(w, Y | Z = 0, w < m)2 ≤ cor(w − w∗, Y | Z = 0, w < m)

≤
»

1− cor(w, Y | Z = 0, w < m)2

Then, the maximum asymptotic bias for a trimmed weighted estimator is:

ξtrimσ(R2,w) := max
w̃∈σ(R2)

Bias(τ̂ trimW )

=
»

1− cor(w, Y | Z = 0, w < m)2· 
R2

1−R2
· var(w | Z = 0, w < m) · var(Y | Z = 0, w < m). (B.11)

Solving for the R2 such that ξtrimσ(R2,w) = τW ,

R̃2
trim =

c2

1 + c2
,

where

c2 :=
1

1− cor(w, Y | Z = 0, w < m)2
· τ 2trimW

var(w | w < m,Z = 0) · var(Y | w < m,Z = 0)
.

Then,

R̃2
trim

R̃2
=

(1− cor(w, Y | Z = 0)2) · var(w | Z = 0) · var(Y | Z = 0) + τ2
W

(1− cor(w, Y | Z = 0, w < m)2) · var(w | w < m,Z = 0) · var(Y | w < m,Z = 0) + τ2trim
W

· τ
2trim
W

τ2
W

=
τ2trim
W

τ2
W

(1− cor(w, Y | Z = 0)2) · var(w | Z = 0) · var(Y | Z = 0) + τ2
W

(1− cor(w, Y | Z = 0, w < m)2) · var(w | w < m,Z = 0) · var(Y | w < m,Z = 0) + τ2trim
W
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Let τ trim
W := τW + c:

=
(τW + c)2

τ2
W

(1− cor(w, Y | Z = 0)2) · var(w | Z = 0) · var(Y | Z = 0) + τ2
W

(1− cor(w, Y | Z = 0, w < m)2)var(w | Z = 0, w < m)var(Y | Z = 0, w < m) + (τW + c)2

In order for there to be an improvement in design sensitivity from trimming, the following
must hold:

(τW + c)2

τ 2W
·
(
(1− cor(w, Y | Z = 0)2) · var(w | Z = 0) · var(Y | Z = 0) + τ 2W

)
≥

(1− cor(w, Y | Z = 0, w < m)2) · var(w | Z = 0, w < m) · var(Y | w < m,Z = 0)

+(τW + c)2

Re-arranging:

var(w | Z = 0)

var(w | Z = 0, w < m)
≥ 1− cor(w, Y | Z = 0, w < m)

1− cor(w, Y | Z = 0)2
·
Å

τW
τW + c

ã2
· var(Y | Z = 0, w < m)

var(Y | Z = 0)

Because we are assuming a constant treatment effect, c = 0, which allows us to arrive at
Equation (3.9):

var(w | Z = 0)

var(w | Z = 0, w < m)
≥ 1− cor(w, Y | Z = 0, w < m)

1− cor(w, Y | Z = 0)2
· var(Y | Z = 0, w < m)

var(Y | Z = 0)

The results of Theorem 3.6 may be easily extended in settings when researchers are inter-
ested in a smoothed trimmed estimator. Due to the non-smoothness of trimming, traditional
trimming methods ignore the uncertainty in the design stage from estimating weights and
conduct inference excluding units with extreme estimated weights. Yang and Ding (2018) de-
velop a smooth trimming estimator that weights all units continuously, assigning extremely
small weights to units with large weights instead of removing them, and is asymptotically
linear. Therefore, the bootstrap can be used to construct confidence intervals. Design sen-
sitivity considers the large sample limits of the weights, so design stage uncertainty is not
present. Furthermore, in asymptotic settings, the smoothed and non-smoothed trimmed
estimators are equivalent.

However, in settings when researchers are interested in calculating the power of a sensi-
tivity analysis, in addition to design sensitivity, it can be helpful to consider the smoothed
trimmed estimator. In particular, the (standard) trimmed estimator is non-smooth, and as
a result, will not be amenable to a bootstrap-style procedure to estimating power (Yang and
Ding, 2018). Following Yang and Ding (2018), we define a smoothed trimmed estimator,
denoted as τ̂ smooth

W , which approximates the trimmed estimator arbitrarily well using a tuning
parameter ϵ > 0. Applying Theorem 3.1, the power of a sensitivity analysis for τ̂ smooth

W is as
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follows:

Pr
(√n(τ̂ smooth

W − ξsmooth
ν(Γ,w)

σsmooth
ν(Γ,w)

≥ kα

)
= Pr

Ç√
n · (τ̂ smooth

W − τ trim)

σsmooth
W

≥
kα · σsmooth

ν(Γ,w) +
√
n · (ξsmooth

ν(Γ,w) − τ trim)

σsmooth
W

å
= Pr

Ç√
n · (τ̂ smooth

W − τ trim)

σsmooth
W

≥
kα · σsmooth

ν(Γ,w) +
√
n · (ξtrimν(Γ,w) + δ − τ trim)

σsmooth
W

å
(B.12)

→ 1− Φ

Ç
kα · σsmooth

ν(Γ,w) +
√
n · (ξtrimν(Γ,w) + δ − τ trim)

σsmooth
W

å
,

where δ is a function of ϵ. The expression from Equation (B.12), which introduces the
δ constant follows directly from the fact that we may express the bias for the smoothed
trimming estimator as a function of the bias of a standard (non-smooth) trimmed estimator
and a function of ϵ:

Bias(τ̂ smooth
W ) = E(τ̂ smooth

W )− τ trim

= E(τ̂ smooth
W )− E(τ̂ trimW )︸ ︷︷ ︸

(∗)

+E(τ̂ trimW )− τ trim︸ ︷︷ ︸
≡Bias(τ̂ trimW )

The first term (denoted by (∗)) is equal to δ, which can be made arbitrarily large or small
by tuning ϵ > 0:

E(τ̂ smooth
W )− E(τ̂ trimW )

=E

(
1∑n

i=1(1− Z)wV ′

n∑
i=1

(1− Z)w · V ′Y

)
−

E

(
1∑n

i=1(1− Z)w1{w < m}

n∑
i=1

(1− Z)w · 1{w < m}Y

)
=E(w(V ′ − 1{w < m})Y | Z = 0)

=E(w(V ′ − 1{w < m})Y | Z = 0, w < m)P (w < m | Z = 0)︸ ︷︷ ︸
=0

+

E(w(V ′ − 1{w < m})Y | Z = 0, w ≥ m)P (w ≥ m | Z = 0)

:=ε · E(wY | Z = 0, w ≥ m)P (w ≥ m | Z = 0)

≡δ

As such, the bias bound of the smoothed trimmed estimator can be written as the bias
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bound in Equation (B.11) and an arbitrary constant δ, which is a function of ϵ:

ξsmooth
σ(R2,w) = max

w̃∈ν(Γ,w)
Bias(τ̂ smooth

W )

= max
w̃∈ν(Γ,w)

Bias(τ̂ trimW ) + δ

= ξtrimν(Γ,w) + δ

Therefore, we have shown that as n → ∞, for an arbitrarily small ϵ > 0, the design
sensitivity will be within a δ-neighborhood of the value Γ̃, for which ξtrimν(Γ,w) = τW .

□

B.2 Using a Planning Sample to Estimate Design

Sensitivity

Calibrating Design Sensitivity to Outcome Data with a Planning
Sample

To estimate design sensitivity, researchers must posit an outcome model. One way to cali-
brate their priors to the existing outcome data is to utilize a planning sample. This is done
by holding out part of the sample to use as a ‘planning sample’ (akin to a pilot sample in
experimental studies). The remainder of the sample is then used for the analysis. We will
refer to the holdout sample as the ‘analysis sample.’ We will assume in this section that
researchers are randomly sampling observations from a fixed dataset to construct a planning
sample. However, in cases when researchers have access to auxiliary outcome data (i.e.,
historical datasets), they may utilize these external datasets as the planning sample, and
treat the full observational study as the analysis sample.

We will outline two approaches that researchers may use to estimate design sensitivity
using a planning sample. The first approach proposes drawing a planning sample, and
simply estimating the design sensitivity across the planning sample. Table B.1 outlines in
more detail.

The approach outlined in Table B.1 allows researchers to calibrate the quantities needed
to calculate design sensitivity using a planning sample. However, in settings where the
outcome distribution may be heavy tailed, the planning sample may be unable to capture
the full complexity present in the outcomes, which can result in an over-estimation of design
sensitivity. In particular, this is of concern to the marginal sensitivity models, in which
robustness to unmeasured confounding and the design sensitivity are often characterized by
outliers (Huang and Pimentel, 2022). One alternative way to leverage a planning sample, but
additionally account for more complex variation across the full dataset is by first fitting an
outcome model across the planning sample units, and use this model to simulate outcomes
across the units in the analysis sample. Table B.2 summarizes the procedure.
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Table B.1: Estimating Design Sensitivity using a Planning Sample

Step 1. Fix an effect size τ .

Step 2. Estimate the weights ŵi using the full sample.

Step 3. Across the units in the control group, generate a planning sample by randomly
sampling nplan observations. Denote the set of indices that correspond to the
planning sample as P .

Step 4. If using the variance-based sensitivity model:

a. Calculate the sample variance of the outcomes (i.e., ”var(Yi | i ∈ P)) and
the sample correlation between the outcomes and the estimated weights
(i.e., ”cor(ŵi, Yi | i ∈ P)).

b. Calculate the sample variance of the estimated weights across the full
sample.

If using the marginal sensitivity model:

a. Calculate the weighted average of the control outcomes in the planning
sample:

µ̂plan
0 ←

∑
i:i∈P ŵiYi∑
i:i∈P ŵi

.

b. Generate the average treatment outcome, given a fixed τ :

µ̂1 ← τ +

∑
i:i∈P ŵiYi∑
i:i∈P ŵi

.

Step 5. Using the components generated in Step 4, estimate the design sensitivities
under the variance-based sensitivity model using Theorem 3.3 and the marginal
sensitivity model using Theorem 3.4.

The procedure outlined in Table B.2 allows researchers to flexibly calibrate design sen-
sitivity using a planning sample. The fitted outcome model can be of arbitrary specifica-
tion, and researchers can leverage flexible, black box machine learning models to estimate
Yi(0). To simulate the noise ϵ∗i in Step 5-(b), we currently assume the errors are normally
distributed. However, researchers may relax this assumption and posit any, arbitrary dis-
tribution for the residuals, using the residuals across the planning sample to calibrate the
necessary parameters for the distribution.



APPENDIX B. SUPPLEMENTARY MATERIALS FOR CHAPTER 3 69

Table B.2: Estimating Design Sensitivity using a Planning Sample and Simulated
Outcomes

Step 1. Fix an effect size τ .

Step 2. Estimate the weights ŵi using the full sample.

Step 3. Across the units in the control group, generate a planning sample by randomly
sampling nplan observations. Denote the set of indices that correspond to the
planning sample as P .

Step 4. Across the planning sample P , fit an outcome model ĝP(Xi) for the control
units. Use the residuals from the fitted outcome model to estimate the variance
in the residuals (i.e., unexplained variation in the outcomes, denoted as σ̂2

e,plan).

Step 5. Simulate new data for the units in the analysis sample (i.e., i ̸∈ P) by paramet-
rically sampling residuals from ĝP(Xi):

a. Randomly sample units across the analysis sample, with replacement. We
refer to this as the bootstrap sample, B.

b. For all units in B, estimate the outcome Y ∗
i (0):

Y ∗(0)← ĝP(Xi) + ϵ∗,

where ϵ∗i ∼ N(0, σ̂2
e,plan).

Step 6. Apply Steps 4 and 5 from Table B.1, but using B instead of the planning sample
P .

To illustrate the proposed procedure, we turn to the empirical application. For simplicity,
we will focus on the setting in which researchers are interested in the impact of presiden-
tial support on support for the FARC peace deal. We draw 100 different planning samples
from the data, and use Table B.2 to estimate the design sensitivity for a variety of different
effect sizes across both the variance-based and marginal sensitivity models. Figure B.1 pro-
vides a visualization for the distribution of estimated design sensitivities across the different
planning samples. The estimated design sensitivities using the planning sample are mostly
centered around the oracle design sensitivities, calibrated using the full dataset.

Remark on Sample Boundedness. From Figure B.1, we see that as the effect size in-
creases, the spread of estimated design sensitivities under the marginal sensitivity model from
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Distribution of Design Sensitivities, with 100 Planning Samples
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Figure B.1: Distribution of estimated design sensitivity measures across 100 different plan-
ning samples. Design sensitivities were estimated using the procedure outlined in Table B.2.
The red × points denote the oracle design sensitivities, calibrated using the full dataset.

the planning samples also increases. This is likely because the marginal sensitivity model
is susceptible to sample boundedness. More specifically, Huang and Pimentel (2022) high-
lighted that because of the inherent stabilization within the model, the marginal sensitivity
model can only recover a worst-case bias bound defined by the range of observed control
outcomes. As a result, as the effect size increases towards the sample bounds, Λ → ∞.
Because the range of observed control outcomes depends on the observed data, variation in
the drawn planning sample can drive variation in the estimated design sensitivity for the
marginal sensitivity model. The variance-based sensitivity model is not susceptible to sample
boundedness; as a result, the estimated design sensitivities across different planning samples
remain relatively stable, even as the effect size increases.

Both approaches proposed in the following subsection provide researchers with a way
to estimate design sensitivity using a planning sample. We have also illustrated that the
design sensitivities estimated from a planning sample are similar to the design sensitivities
estimated using the full dataset. However, that what is arguably most important in practice
is that the relative estimates of design sensitivity from different design choices, such as using
trimmed weights or an augmented weighted estimator, stably inform the optimal design
choice. See Section B.2 for more details.
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Estimating Design Sensitivity for Augmentation, without Prior
Specification of Outcome Model

We consider two settings for which researchers may estimate design sensitivity for augmen-
tation. First, we consider the setting in which researchers are assessing whether or not
they should fit an outcome model to begin with to perform augmentation. To estimate the
impact of augmentation on design sensitivity without a prior specification of an outcome
model, researchers can instead construct a proxy outcome model that explains a fixed r2 of
the variation in the outcomes. They can then estimate the design sensitivity. If they find
that an extremely high r2 value is needed—i.e., they must explain a large percentage of
the variation in the outcomes—for improvements in design sensitivity, this can be infeasible
to do in practice, and choose to not augment their estimation. Table B.3 summarizes the
procedure.

To make this more concrete, we can consider the empirical application. Assume first that
researchers are interested in optimizing for robustness with respect to an average error (i.e.,
the variance-based sensitivity model). From Figure 3.2, we see that even if researchers were to
estimate an outcome model that could explain 50% of the variation, the design sensitivity for
the variance-based sensitivity model would only improve slightly. In contrast, if researchers
are worried about potential, worst-case confounding (i.e., the marginal sensitivity model), we
see that if they were to augment the weighted estimator with an outcome model that could
explain even only 25% of the variation in the outcomes, the design sensitivity would improve
substantially, especially in cases where the treatment effect might be relatively small.

In the second setting, researchers already have estimated an outcome model of interest
a priori. Then, design sensitivity can be estimated in the same manner as in the standard
case. However, instead of calibrating to the outcome distribution, researchers must calibrate
design sensitivity to the underlying residuals.

It is worth noting that design sensitivity is usually not hurt from augmenting with an
outcome model. However, employing a proxy outcome model first can help researchers deter-
mine if it is worth fitting a complex outcome model, and also better assess practical trade-offs,
like whether to gather more covariate data that could feasibly help explain variation in the
outcomes.

Using a Planning Sample to Improve Power in the Colombian
Peace Agreement Study

Heller et al. (2009) propose randomly splitting the data in an observational study into a plan-
ning sample and an analysis sample to inform design decisions. We consider using a similar
strategy for weighted observational studies to select between traditional inverse propensity
score (IPW), trimmed, and augmented weighting estimators and illustrate that sample split-
ting can improve power for the FARC example. Table B.4 shows our best estimates of the
design sensitivities for the FARC example with the presidential support treatment from fol-
lowing the steps outlined in Table B.1 with τ = 22 and using the full sample for planning.
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Table B.3: Estimating Design Sensitivity for Augmentation using a Proxy Out-
come Model

Step 1. Set some r2, which represents the variation explained in the outcome model.

Step 2. Draw a planning sample.

Step 3. Estimate a model m̂ across the planning sample to generate outcomes.

Step 4. Generate an outcome across the rest of the sample not in the planning sample.
Add noise to each prediction to guarantee that the outcomes are the same
variance as the outcomes in the planning sample. Denote this as Ỹ .

Step 5. Construct a proxy outcome model g∗ that can explain r2 of the outcomes.

1. Generate a scaled version of the outcomes:

Z∗ := (Y ∗ − E(Y ∗))/sd(Y ∗)

2. Create a proxy covariate X∗ that is correlated with the generated out-
comes:

X∗ :=
√
r2 · Z∗ +

√
1− r2 · v,

where v is a standard normal random variable.

3. Estimate a linear model with the proxy covariate on the outcomes

Y ∗ ∼ X∗

4. From the linear model fit in the previous step, use the fitted values Ŷ ∗ and
the residuals e∗.

Step 6. Estimate the design sensitivity.

For the variance-based sensitivity model, the estimated design sensitivities are similar for the
standard and augmented weighting estimators, while trimming leads to a significant improve-
ment in design sensitivity. For the marginal sensitivity model, augmentation and trimming
perform similarly in terms of design sensitivity, with both outperforming weighting alone.

In practice, we cannot use the full data to estimate the design sensitivities, as this would
violate the design principle. Instead, we may use a planning sample to help calibrate our
estimates of design sensitivity to the observed data. However, using a planning sample comes
at a cost; in particular, if we hold out part of the data to use as a planning sample, we cannot
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Table B.4: Design sensitivity estimated using full FARC data

VBM MSM

Treatment R̃2 R̃2
aug R̃2

trim Λ̃ Λ̃aug Λ̃trim

Presidential Support 0.63 0.63 0.76 6.46 7.09 7.13

use these observations in our analysis (i.e., we restrict ourselves to a smaller sample size).
To estimate power, we randomly split the data into planning and analysis samples and

use the planning sample to estimate design sensitivities for each method and both sensitivity
models according to the steps outlined in Table B.1. We then conduct sensitivity analyses
for the variance-based and marginal sensitivity models under particular values of R2 and
Λ, respectively, using the selected estimation strategies and record whether or not the null
hypothesis of no treatment effect is rejected at a 5% significance level. We repeat this process
for 1,000 random splits of the data, estimating power as the proportion of random splits for
which we reject.

We estimate the power for each combination of estimator and sensitivity model when
using 10% of the FARC data with the presidential support treatment for the planning sample
and the remaining 90% for the analysis sample. The results are available in Table B.5. For
the marginal sensitivity model with Λ = 4 and the variance-based sensitivity model with
R2 = 0.25, the sensitivity analysis for each estimator rejects the null hypothesis of no effect.
Additionally, implementing the method selected using the planning sample achieves near or
equal to 100% power in both scenarios. Conversely, the power is near zero for each estimator
with Λ = 6, rendering the choice of estimator moot. The repeated sample splits with Λ = 5
for the marginal sensitivity model and R2 = 0.35 and 0.67 for the variance-based model
highlight the potential gains in power from using a planning sample to make design decisions.
For the former sensitivity model, the augmented weighting estimator greatly outperforms
the two alternative estimators. Implementing the method selected by the sample splitting
approach yields 68% power, far higher than would be achieved by using the IPW or trimmed
weighting estimator. For R2 = 0.35 and R2 = 0.67, using a planning sample leads us to
select the trimmed estimator for each sample split, maximizing power. We repeat the same
exercise using 20% of the data for the planning sample.
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Estimated power for analysis sample using FARC data

Reject? 10% of Data for Planning 20% of Data for Planning

Full Sample Analysis Sample Chosen Analysis Sample Chosen
IPW Trim Aug. IPW Trim Aug. Method IPW Trim Aug. Method

Marginal Sensitivity Model

Λ = 4 1 1 1 0.97 1.00 1.00 0.99 0.84 1.00 1.00 0.93
Λ = 5 0 0 1 0.10 0.28 0.86 0.68 0.18 0.40 0.73 0.51
Λ = 6 0 0 0 0.01 0.00 0.02 0.02 0.03 0.02 0.06 0.04

Variance-based Sensitivity Model

R2 = .25 1 1 1 0.81 1.00 0.85 1.00 0.67 1.00 0.73 1.00
R2 = .35 0 1 0 0.18 1.00 0.27 1.00 0.22 1.00 0.28 1.00
R2 = .67 0 0 0 0.00 0.79 0.00 0.79 0.00 0.96 0.00 0.96

Table B.5: For values under full sample, 1 represents rejection of the null hypothesis of no
effect at a 95% significance level for the corresponding estimator and sensitivity parameter
value using the full FARC data, while 0 represents failure to reject. Under analysis sample,
we display the proportion of rejections across repeated splits of the data as estimated power.
Chosen method is the estimated power using the method selected using the planning sample.
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B.3 Detailed Simulation Results

Simulation Parameters

The simulation setup is under a favorable situation defined as:

1. The study is free of unmeasured bias. In the case of the marginal sensitivity model, the
marginal sensitivity model is satisfied with Λ = 1. In the case of the variance-based
sensitivity model, R2 = 0. Equivalently, for both sensitivity models w∗

i = wi.

2. The null hypothesis of no treatment effect is false, and a specific alternative is true.
In our case, the alternative we consider is that the data is generated by a stochastic
model with a treatment effect as follows:

P (Zi = 1 | Xi) ∝
exp(βπXi)

1 + exp(βπXi)
, Yi = βyXi + τZi + ui, (B.13)

where Xi
iid∼ N(µx, σ

2
x), and ui

iid∼ N(0, σ2
y).

We vary the different parameters, {βπ, βy, τ, σy}. We vary τ to control the effect size, βπ

for the variance in the weights, and βy and σy to alter the variance in the outcomes. The
correlation between the weights and the outcome depends on βπ, βy, and σy. The base
parameters are set as follows: τ = 1, µx = 0, σx = 1, βy = 1, σy = 1, βπ = 1. For now, we
will assume a constant treatment effect τ for all units i. However, we relax this assumption
in Section B.3 and allow for heterogeneous treatment effects.

Drivers of Design Sensitivity

To simulate the drivers of design sensitivity for each sensitivity model, we modify {βπ, βy, τ, σy}
such that one element of the data generating process changes, while holding the others
constant. We are essentially estimating the derivative of the design sensitivity, with respect
to the effect size, the variance in the estimated weights, the variance in the outcomes, and the
correlation between the estimated weights and the outcome. Simulation results are presented
in both Table B.6 and Figure 3.1.

Treatment Effect Heterogeneity

To allow for treatment effect heterogeneity, we modify the data generating process under the
favorable situation (B.13) so that it allows for the individual treatment effect for unit i to
depend on its covariate value Xi:

Yi = βyXi + τiZi + ui, τi = τ0 + βτXi. (B.14)

In this setup, βτ controls the degree of treatment effect heterogeneity. As βτ increases
in magnitude, the individual treatment effects depend more on the covariate values, while
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βτ = 0 recovers the constant effects case. When βτ and βπ are the same sign, the weights
and individual treatment effects are positively correlated; otherwise, they are negatively
correlated.

As discussed in Section 3.4, the impact of trimming on design sensitivity can depend
on the correlation between the weights and the treatment effects. For positive correlation,
trimming units with large weights also removes units with larger treatment effects, reducing
the ATT and thus the design sensitivity. The reverse is true when the weights and effect
sizes are negatively correlated.

The simulations presented in Table B.7 examine the impact of trimming on design sen-
sitivity for varying levels of treatment effect heterogeneity. In the constant effects case with
βτ = 0, trimming improves design sensitivity for both the variance-based and marginal sen-
sitivity models. As βτ decreases, trimming increases the treatment effect and thus increases
the design sensitivity compared to trimming with constant effects. Conversely, the treatment
effect and design sensitivity decrease as βτ increases, eventually causing trimming to hurt
design sensitivity compared to not trimming at all. Higher levels of effect heterogeneity are
required for trimming to hurt design sensitivity for the variance-based sensitivity model than
the marginal sensitivity model.

Assessing Augmentation under Model Misspecification

Theorem 3.5 establishes the conditions under which outcome model augmentation improves
design sensitivity compared to a standard weighted estimator for the variance-based sensitiv-
ity model. We now evaluate the impact of model specification on design sensitivity through
simulation. The results are displayed in Table B.8. In line with the data generating process
in the favorable situation (B.13), the outcome Y is modelled as a linear function of X for
the correctly specified case. We also consider several model misspecifications, with each

misspecified model replacing X with W . We consider a noise model with Wi
iid∼ N (0, 1),

Wi = X3
i for misspecification 1, Wi = exp {Xi/2} for misspecification 2, and Wi = log (X4

i )
for misspecification 3.

The correctly specified model yields the largest improvements in design sensitivity com-
pared to weighting alone for both sensitivity models. The improvement in design sensitivity
stems from the reduction in the variance of the outcome from augmentation, which can be
seen by comparing the variance of Y to the variance of the residual e, where the residual e
plays the role of a pseudo outcome for the augmented weighted estimator. The design sen-
sitivities are unchanged for the noise model; however, it is not advisable to implement this
model in practice since it could lead to less precise estimates in a finite-sample. While per-
forming augmentation with the first two misspecified models does not help design sensitivity
as much as with the correctly specified model, both models result in higher design sensitivities
than the standard weighted estimator, highlighting that even misspecified outcome models
could lead to improvements. On the other hand, the third misspecified model yields lower
design sensitivity values for the marginal sensitivity model and only minor improvements for



APPENDIX B. SUPPLEMENTARY MATERIALS FOR CHAPTER 3 77

the variance-based sensitivity model.
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Table B.6: Drivers of design sensitivity

Simulation Parameters

τ βy βπ σy var(Y | Z = 0) var(w | Z = 0) cor(w, Y | Z = 0) Λ̃ R̃2

Effect Size

0.25 1 1 1 1.83 1.28 0.54 1.27 0.04
0.50 1 1 1 1.82 1.30 0.54 1.59 0.13
0.75 1 1 1 1.83 1.35 0.53 2.01 0.24
1.00 1 1 1 1.82 1.29 0.54 2.55 0.37
1.25 1 1 1 1.83 1.26 0.54 3.27 0.49
1.50 1 1 1 1.83 1.30 0.54 4.16 0.57
1.75 1 1 1 1.83 1.29 0.54 5.35 0.64
2.00 1 1 1 1.83 1.35 0.53 7.02 0.70

Variance in Outcomes

1.00 0.5 1 0.5 0.46 1.31 0.54 6.89 0.70
1.00 1.0 1 1.0 1.83 1.30 0.54 2.53 0.37
1.00 1.5 1 1.5 4.11 1.31 0.53 1.86 0.20
1.00 2.0 1 2.0 7.33 1.29 0.54 1.58 0.13
1.00 2.5 1 2.5 11.42 1.29 0.54 1.45 0.09

Variance in Weights

1.00 0.80 0.50 1.11 1.84 0.27 0.54 2.55 0.74
1.00 0.88 0.75 1.07 1.83 0.66 0.54 2.56 0.54
1.00 1.00 1.00 1.00 1.83 1.32 0.53 2.53 0.37
1.00 1.17 1.25 0.88 1.82 2.30 0.54 2.54 0.25
1.00 1.40 1.50 0.65 1.83 4.30 0.53 2.50 0.15
1.00 1.64 1.75 0.14 1.83 6.52 0.54 2.60 0.11

Correlation between Weights and Outcomes

1.00 -1.4 1 0.46 1.83 1.29 -0.75 2.56 0.49
1.00 -1.2 1 0.80 1.83 1.31 -0.64 2.56 0.41
1.00 -1.0 1 1.00 1.82 1.32 -0.53 2.55 0.37
1.00 -0.8 1 1.14 1.83 1.26 -0.43 2.55 0.34
1.00 -0.6 1 1.24 1.83 1.27 -0.32 2.55 0.32
1.00 -0.4 1 1.30 1.83 1.27 -0.21 2.56 0.31
1.00 -0.2 1 1.34 1.83 1.31 -0.11 2.56 0.30
1.00 0.0 1 1.35 1.83 1.29 0.00 2.56 0.30
1.00 0.2 1 1.34 1.83 1.32 0.11 2.56 0.29
1.00 0.4 1 1.30 1.83 1.27 0.22 2.56 0.31
1.00 0.6 1 1.24 1.83 1.30 0.32 2.55 0.32
1.00 0.8 1 1.14 1.83 1.29 0.43 2.56 0.34
1.00 1.0 1 1.00 1.83 1.31 0.53 2.52 0.36
1.00 1.2 1 0.80 1.82 1.28 0.64 2.57 0.42
1.00 1.4 1 0.46 1.83 1.31 0.75 2.53 0.49
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Impact of trimming on design sensitivity for varying treatment effect
heterogeneity

βτ Trimmed ATT Λ̃ Λ̃trim Change R̃2 R̃2
trim Change

-1.5 2.64 6.10 15.34 9.24 0.42 0.73 0.31
-1.0 2.49 6.55 12.86 6.31 0.44 0.71 0.27
-0.5 2.36 6.38 10.80 4.42 0.44 0.69 0.24
0.0 2.23 6.22 9.19 2.97 0.43 0.66 0.23
0.5 2.10 6.55 8.01 1.46 0.44 0.63 0.19
1.0 1.96 6.24 6.82 0.58 0.44 0.60 0.16
1.5 1.83 6.27 5.89 -0.38 0.43 0.57 0.14
2.0 1.70 6.06 5.08 -0.98 0.43 0.53 0.10
3.0 1.43 6.47 3.81 -2.66 0.44 0.44 -0.00
4.0 1.17 6.16 2.97 -3.19 0.44 0.35 -0.09

Table B.7: We vary the amount of treatment effect heterogeneity and assess the impact of
trimming on design sensitivity. For the simulation, we set the average treatment effect to be
equal to 2.23, var(Y | Z = 0) = 2.48, var(Y | Z = 0, w < m) = 2.4, cor(w, Y | Z = 0) = 0.5,
cor(w, Y | Z = 0, w < m) = 0.6.
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Impact of augmentation on design sensitivity under outcome model misspecification

Standard IPW Augmented IPW

σ2
y cor(w, Y | Z = 0) var(Y | Z = 0) cor(e, Y | Z = 0) var(e | Z = 0) Λ̃ Λ̃aug Change R̃2 R̃2

aug Change

Outcome Model Type: Correct

0.50 0.70 1.08 -0.00 0.25 6.60 87.64 81.04 0.76 0.87 0.12
1.00 0.54 1.84 0.00 1.01 4.15 7.18 3.03 0.57 0.63 0.06
1.50 0.42 3.08 0.00 2.25 2.97 3.59 0.62 0.41 0.44 0.03
2.00 0.33 4.84 0.00 4.01 2.37 2.58 0.21 0.28 0.30 0.01
3.00 0.23 9.81 -0.00 8.97 1.83 1.88 0.05 0.16 0.16 0.00

Outcome Model Type: Noise

0.50 0.70 1.08 0.70 1.08 6.50 6.50 0.00 0.76 0.76 0.00
1.00 0.54 1.83 0.54 1.83 4.18 4.18 0.00 0.58 0.58 0.00
1.50 0.41 3.08 0.41 3.08 2.94 2.94 0.00 0.40 0.40 -0.00
2.00 0.33 4.84 0.33 4.84 2.36 2.36 0.00 0.28 0.28 -0.00
3.00 0.23 9.79 0.23 9.79 1.84 1.84 0.00 0.16 0.16 0.00

Outcome Model Type: Misspecification 1

0.50 0.69 1.08 0.46 0.61 6.46 22.90 16.44 0.75 0.78 0.03
1.00 0.54 1.83 0.31 1.37 4.17 5.62 1.45 0.57 0.59 0.01
1.50 0.41 3.09 0.23 2.62 2.95 3.28 0.33 0.40 0.41 0.01
2.00 0.33 4.82 0.17 4.35 2.36 2.49 0.13 0.28 0.29 0.01
3.00 0.23 9.82 0.12 9.34 1.83 1.86 0.03 0.16 0.16 0.00

Outcome Model Type: Misspecification 2

0.50 0.69 1.08 -0.15 0.34 6.43 45.31 38.88 0.75 0.84 0.09
1.00 0.54 1.83 -0.08 1.08 4.12 6.27 2.15 0.57 0.62 0.05
1.50 0.41 3.10 -0.06 2.35 2.98 3.41 0.43 0.40 0.43 0.02
2.00 0.33 4.84 -0.04 4.09 2.36 2.53 0.17 0.29 0.30 0.01
3.00 0.23 9.86 -0.03 9.12 1.84 1.87 0.03 0.16 0.16 0.00

Outcome Model Type: Misspecification 3

0.50 0.70 1.08 0.74 0.96 6.62 4.67 -1.95 0.76 0.80 0.04
1.00 0.53 1.83 0.55 1.71 4.15 3.50 -0.65 0.56 0.59 0.02
1.50 0.42 3.08 0.42 2.96 2.96 2.74 -0.22 0.40 0.41 0.01
2.00 0.33 4.83 0.34 4.71 2.37 2.28 -0.09 0.28 0.29 0.01
3.00 0.23 9.80 0.23 9.68 1.84 1.82 -0.02 0.16 0.16 0.00

Table B.8: For the correctly specified outcome model, we model the control potential outcome Y (0) as a linear function of X. For other outcome

models, we replace X with W , where Wi
iid∼ N(0, 1) for the noise model, Wi = X3

i for misspecification 1, Wi = exp {Xi/2} for misspecification 2, and
Wi = log

(
X4

i

)
for misspecification 3.


	Contents
	List of Figures
	List of Tables
	Weighting, sensitivity analysis, and design sensitivity for causal inference
	Weighting
	Sensitivity analysis
	Design sensitivity

	Interpretable Sensitivity Analysis for Balancing Weights
	Introduction
	Background, notation, and review
	Sensitivity analysis for balancing weights estimators
	Amplifying, interpreting, and calibrating sensitivity parameters
	Numerical examples
	Discussion

	Design Sensitivity and Its Implications for Weighted Observational Studies
	Introduction
	Background
	Design Sensitivity for Weighted Estimators
	Design Choices that Impact Design Sensitivity
	Empirical Application: Colombia FARC Peace Agreement
	Conclusion

	Bibliography
	Supplementary materials for Chapter 2
	Proofs
	Simulation for sample splitting
	Average treatment effect on the treated

	Supplementary materials for Chapter 3
	Proofs
	Using a Planning Sample to Estimate Design Sensitivity
	Detailed Simulation Results




