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Abstract of the Dissertation

The Metalanguage of Category Theory

Christian Williams

Doctor of Philosophy, Mathematics

University of California, Riverside, September 2023

John Baez, Chairperson

Category theory is known as a language of mathematics. The fundamental concepts of the language

are systematized in a fibrant double category, a two-dimensional structure also known as a bicategory

equipped with proarrows.

We give a new definition of the structure: a bifibrant double category is a “two-sided bifibration”

from a category to itself, with a weak composition and identity. This way of thinking gives a way to

construct the fully three-dimensional category of bifibrant double categories, as follows.

A category forms a bifibrant double category, by forming the union of the arrow double category

with its opposite; we call this the weave double category. Then a two-sided bifibration or matrix

category is a span of categories forming a bimodule of weave double categories. We construct a

three-dimensional category of categories, functors, profunctors, and matrix categories; squares are

transformations, matrix functors, and matrix profunctors, and cubes are matrix transformations. This

structure is a “bifibrant triple category without interchange”, which we call a metalogic.

A bifibrant double category is a pseudomonad in the metalogic of matrix categories. This defines

the objects of a three-dimensional construction: a double functor is a morphism of pseudomonads,

a vertical profunctor is a “vertical monad” between pseudomonads, and a horizontal profunctor is a

bimodule of pseudomonads; a vertical transformation is a morphism of vertical monads, a horizontal

transformation is a morphism of bimodules, and a double profunctor is a bimodule of vertical monads.

A double transformation is a transformation of vertical bimodules. These form the metalogic of

bifibrant double categories.
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Introduction

Category theory is known as a unifying language of mathematics [13]. In recent years, the com-

munity of Applied Category Theory has begun to explore its potential as a unifying language of all

kinds of science [6]. Here, we propose that category theory is the language of thinking.

A “world” is a collection of types of things, and processes between types; these form a category.

A “thought” of the world is a relation of types, and a “process of thinking” is an inference between

relations; these form a category of “thoughts” which depends on pairs in the category of the “world”.

A logic is a two-dimensional structure of relations and inferences, over pairs of types and pro-

cesses: the structure known as an equipment, or framed bicategory [17]. We give a new definition,

via the notion of two-sided bifibration [2.2], and this motivates the name bifibrant double category.

The language of string diagrams [15] is dual to conventional diagrams: types and processes are

colored areas and vertical-pointing “bars”, relations and inferences are “strings” and “beads”.

bif. dbl. cat. dim. logic

object 0 type

tight morphism V process

loose morphism H relation

square 2 inference

In this thesis, we construct the metalanguage of logics. The language of “metalogic” is both

visual and formal, expressed in both three-dimensional string diagrams and the co/descent calculus

of matrix categories. Imagery and syntax are complementary, so intuition and computation can

strengthen each other.

The simplest kind of logic is binary logic: types and processes are sets and functions; relations

and inferences are binary relations and entailments. This is known as the predicate logic of sets.

How do we make logics? This is summarized in a motto:

“a category is a matrix with composition and identity”.

A category is a type of objects, indexing a matrix of morphisms, with the structure of composition and

identity. In [17], Shulman presented the two main ways that we construct universes of categories:
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1. A bifibered monoidal category R → A forms a logic, in which a relation R : A |B is an object R

over A× B; this is a matrix, i.e. two-variable dependent type a : A,b : B ` R(a,b) :V.

2. Monads in a logic, self-relations equipped with composition and identity, form a richer logic.

A monad in a logic of matrices is a category, “enriched in” or “internal to” that logic.

These two constructions define the language of the co/end calculus [14]. Bimodules of monads

are matrices-with-composition; they compose by coend, a coequalizer of a coproduct, and divide by

end, an equalizer of a product. Below are the formulae for composition and transformation.

R ◦ S = Σb R(−,b)× S(b,−)

[P,Q] = Πx, y P (x, y)→ Q(x, y)

This is generalized logic [12]: coend is the “bilinear existential”, and end is the “natural universal”.

As a language of categories is the co/end calculus of a logic, we propose that category theory is logic.

Now, the central insight of our thesis: a logic is a matrix category with composition and identity.

For each pair of types there is a category of relations, and each pair of processes gives a profunctor

of inferences. So relations form a matrix of categories, and inferences form a matrix of profunctors.

We develop the notion of a “matrix of categories”, and its three-dimensional language, as follows.

Chapter 1: Spans of categories.

A span of categories A ← R → B is a equivalent to a matrix of categories R(A,B) and profunctors

~R(a,b), with sequential composition and identity. In the same way, a span of profunctors i ← f → g

is equivalent to a matrix of profunctors i(f, g) :Q(X,Y) |R(A,B) with composition and identity.

We introduce three-dimensional string diagrams: spans of categories are horizontal strings, pro-

functors are vertical bars, and functors are drawn as a closed loop or “bead within a bead”, inter-

preted as a transformation from inner to outer.
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span category span profunctor
~R(a1,b1) ◦ ~R(a2,b2)⇒ ~R(a1a2,b1b2) i(f, g) ◦ ~R(a,b)⇒ i(fa, gb)

We introduce the concept of displayed profunctor 1.2, and show the double category of span cate-

gories A ← R → B to be equivalent to that of displayed categories R :A × B → Cat. The matrices

R(A,B) are the basic data of the co/descent calculus.

Chapter 2: Matrix categories.

A matrix category R :A ‖B is a span of categories, with actions by both arrows and “op-arrows” in

A and B: the weave double category 〈A〉 is the union of the arrow double category and its opposite
−→
A +

←−
A , forming a logic, and R is a bimodule from 〈A〉 to 〈B〉. In the terminology of [20], a matrix

category would be a “two-sided bifibration”.

matrix category matrix category

�A : 〈A〉(A0,A1)×R(A1,B)→ R(A0,B) �B :R(A,B0)× 〈B〉(B0,B1)→ R(A,B1)
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This generalizes from categories to profunctors: the arrow profunctor ~f : ~X | ~A consists of commu-

tative squares f0 · a = x · f1, and parallel composition . The weave vertical profunctor 〈f〉 : 〈A〉 | 〈B〉 is

the union of ~f and its opposite. A matrix profunctor i(f, g) :Q(X,Y) |R(A,B) is a span of profunctors

f ← i→ g, which is a bimodule from 〈f〉 to 〈g〉.

matrix profunctor matrix profunctor

�f : 〈f〉(f0, f1)× i(f1, g)⇒ i(f0, g) �g : i(f, g0)× 〈g〉(g0, g1)⇒ i(f, g1)

Morphisms of matrix categories and matrix profunctors are matrix functors and matrix transfor-

mations. These form a double category MatCat over Cat × Cat. Sequential composition of matrix

profunctors over that of profunctors is defined by a coequalizer, which nullifies the parallel action of

zig-zags reassociating [(f0, g0)] = [(f1, g1)] : 〈f ◦ g〉 and [(k0, l0)] = [(k1, l1)] : 〈k ◦ `〉. (Definition 43)

sequential composite

(m,n) ≡ (f �m� k, g � n� k) : m � n

Moreover, MatCat is a logic, and MatCat → Cat × Cat is a double fibration [4]: sequential

composition of matrix profunctors preserves substitution of transformations (starting at Prop. 46).

Hence we call the structure MatCat→ Cat× Cat a fibered logic.
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We then define parallel composition of matrix categories in Section 2.5. While profunctors com-

pose by quotient, matrix categories compose by codescent object [20], which adjoins an associator

isomorphism for the action by arrows and oparrows of the middle category.

parallel composition

α : (R,b� S) ∼= (R� b, S)

Dually, the category of matrix functors is constructed as a descent object [19]. So composition and

transformation of matrix categories are dual, just as in the co/end calculus (Theorem 55).

R⊗ S = ~ΣB. R(−,B)× S(B,−)

[P,Q] = ~ΠX,Y. P(X,Y)→ Q(X,Y)

However, parallel composition does not preserve sequential composition of matrix profunctors:

because both dimensions are bimodules, both compositions involve colimits which the other cannot

represent. So Cat ← MatCat → Cat is like a triple category without interchange, a structure on

span categories: we define a metalogic to be a fibered logic M → C × C, which forms a 2-weak

category in SpanCat. [Definition 54]
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Chapter 3: The metalogic of logics.

A bifibrant double category, i.e. a logic, is a pseudomonad in MatCat.

logic composition unit

Because a logic is two-dimensional, there are two kinds of relations between logics: a vertical

profunctor consists of processes between logics, and a horizontal profunctor consists of relations

between logics. Two pairs are connected by a double profunctor, which consists of inferences between

relations, along processes.

meta relation meta process meta inference

[horiz. profunctor] [vert. profunctor] [dbl. profunctor]

For horizontal profunctors, parallel composition is a familiar bimodule action. Yet because ver-

tical profunctors are orthogonal, parallel composition defines a monad structure, and so double

profunctors are bimodules thereof.

H-prof. composition V-prof. composition D-prof. composition
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So logics have two kinds of “relations”, and one kind of “function”: a double functor [[A]] :A0 →

A1 maps squares of A0 to squares of A1, preserving relation composition and unit up to coherent

isomorphism. This generalizes to transformations of vertical, horizontal, and double profunctors; all

four are defined by mapping squares in a way that coheres with parallel composition.

double functor preserves composition; double transformation

All together, logics form a metalogic: morphisms are functors, profunctors, and matrix categories;

squares are vertical transformations, horizontal transformations, and double profunctors; and cubes

are double transformations.

Below, the outline: we construct the metalogic of matrix categories, then apply the “horizontal

pseudomonad” construction to form the metalogic of bifibrant double categories; and we give a

metalogical interpretation of this structure.

MatCat H.PsMnd(−) bf.DblCat Logic

0 category (H)-pseudomonad bifibrant double category logic

V profunctor (H)-vertical monad vertical profunctor meta process

H matrix category (H)-pseudobimodule horizontal profunctor meta relation

VH matrix profunctor (H)-vertical bimodule double profunctor meta inference

T functor ps. mnd. morphism double functor flow type

TV transformation v. mnd. morphism vertical transformation flow process

TH matrix functor ps. bim. morphism horizontal transformation flow relation

TVH matrix transformation v. bim. morphism double transformation flow inference
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As a double profunctor consists of inferences between logics, a double transformation is a “flow”

of meta-reasoning, a way to transform one system of reasoning into another.

In this sense, the language of bf.DblCat is the language of metalogic.
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Chapter 1

Spans of categories

Our aim is to define the setting in which we can construct and explore logics. The most basic

infrastructure we need first is spans of categories: a pair of categories of “types” which index a

category of “relations”.

The morphisms of Cat are functors and profunctors; now spans of categories constitute a third

dimension. Some work has considered Span(Cat) as a tricategory [20], but Cat is a double category,

and so Span(Cat) is really a lax triple category, a.k.a. “intercategory” [7]. Profunctors and spans of

profunctors are essential to metalogic, as these give processes and inferences between logics.

In this section, we introduce the three-dimensional visual language of spans of categories. Be-

cause one represents a category of relations connecting a pair of categories of types, we draw a span

of categories as a string in the horizontal dimension.

span transformation [[i]] : i0 ⇒ i1

1



1.1. SPAN CATEGORY

These spans form the new horizontal dimension, while profunctors are vertical, and functors are

transversal, i.e. “out of the page”. Hence the string diagrams of Cat are rotated to form the left and

right faces of a cube, while the middle “horizontal slice” is span categories and span functors (top

and bottom), span profunctors and span transformations (inner to outer).

To understand a span of categories as a dependent type, we show that inverse image along

A ← R → B determines a displayed category, a diagram R∗ :A × B → Cat of categories and

profunctors, with a monad structure for composition of R. This extends to an equivalence of double

categories SpanCat ' DisCat.

1.1 Span Category

Let A and B be categories. A span category from A to B is a category R with functors πRA :R → A

and πRB :R → B; we can denote the span by A← R→ B, orR :A ‖B. Note this data is equivalent to

a functor (πRA , π
R
B ) :R → A×B. The pair A,B are the base categories, and R is the total category;

we may refer to the span simply as R.

We can draw a span category A← R→ B simply as a string.

span category A← R→ B

We can see a span category as a matrix of categories, by inverse image along R → A × B. The

notion of inverse image along a functor R → C has been given by Street in [18]; the resulting map

R :C → Cat is called a normal lax functor. The notion was later developed for use in type theory,

and rebranded as “displayed category” [1].
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1.1. SPAN CATEGORY

Definition 1. A displayed category R :A× B→ Cat gives, for each pair:

objects A :A,B :B a category R(A,B)

morphisms a :A(A0,A1),b :B(B0,B1) a profunctor ~R(a,b) :R(A0,B0) |R(A1,B1)

composable pairs (a1,b1), (a2,b2) a transformation r · r : ~R(a1,b1) ◦ ~R(a2,b2)⇒ ~R(a1a2,b1b2)

objects A :A,B :B an equality R(A,B)(−,−) = ~R(idA, idB)

so that composition is associative and unital, i.e. (r · r) · r = r · (r · r) and idR · r = r = r · idR.

We give the main proposition, and then expound through the visual language of span categories.

Proposition 2. Let A,B be categories, and let A ← R → B be a span of categories. Inverse image

along R → A× B determines a displayed category R :A× B→ Cat. [18]

For each pair of objects A :A,B :B there is a category R(A,B) of objects R :R which map to

(A,B), also known as the “fiber over” (A,B); this may also be denotedRA
B. This is given by pullback

in Cat, of R along the functor which selects the pair (A,B).

R(A,B) R

∗ A× B(A,B)

y

Color syntax now expands to a dependent type system of categories. The above pullback is

depicted by substituting objects A,B in the color of each category A,B. In this way, substitution

determines a matrix of categories. An entry is drawn on the right as a type in Cat, which we color

white as the “ambient” logic, outlined in blue and green to indicate that it is a diagram indexed by

categories A and B.
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1.1. SPAN CATEGORY

category R(A,B)

Now, to consider the morphisms of a span category A ← R → B, we consider the induced span

of profunctors, which we denote ~A← ~R → ~B. Profunctors are drawn as “bars” pointing downward,

and the hom of R is drawn as a bead from the R string to itself along the homs of A and B.

A R B

A R B

~A p ~R ~Bp

span hom-profunctor ~A← ~R→ ~B

Just as for objects the functor R → A× B gives a matrix of categories, for morphisms the trans-

formation ~R ⇒ ~A × ~B determines a matrix of profunctors: for each pair a :A(A0,A1),b :B(B0,B1)

there is a profunctor ~R(a,b) from the category R(A0,B0) to R(A1,B1), also denoted ~Ra
b. This is

given by pullback in Prof of the hom of R along the functor which maps the walking arrow to (a,b).

~R(a,b) ~R R(A0,B0) R(A1,B1)

[0→ 1] ~A× ~B (A0,B0) (A1,B1)(a,b)

~R(a,b)
p

(a,b)

y
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1.1. SPAN CATEGORY

The profunctor ~R(a,b) is represented in color syntax by substituting a pair of morphisms (a,b) into

the hom-profunctors ~A, ~B. This determines a diagram of categories and profunctors ~R : ~A × ~B →

Prof, depicted on the right. Each profunctor is drawn as a blue and green “string of beads”, as its

elements can be understood as two-dimensional morphisms.

profunctor ~R(a,b) :R(A0,B0) |R(A1,B1)

We can now go one level further, to see the morphisms of the span category. Given R0 :R(A0,B0)

and R1 :R(A1,B1) we have ~Ra
b(R0, R1) is the set of morphisms r :R(R0, R1) over (a,b).

set ~Ra
b(R0, R1)

As the string diagram suggests, we can think of the objects of R as relations, i.e. horizontal mor-

phisms, and morphisms of R as inferences, i.e. squares in a double category. Once we define matrix

categories, by adding horizontal composition, this interpretation will be literal.
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1.1. SPAN CATEGORY

This completes the data of a span category, which as we see is two-dimensional; we now consider

its structure of composition and unit, which is three-dimensional. We can draw a cube “head on” to

see the inner source 2-cell and the four side faces; then we can “slice down the middle” to see the

3-cell which connects the source 2-cell to the target 2-cell outside.

A span category has a composition transformation r · r : ~R ◦ ~R ⇒ ~R over composition of A and

B. We draw equalities as dotted lines.

A R B

A R B R R R

A R B

A R B R R

A R B

p

p
p

p

p
p

p
p

~Rp
~Rp

~Rp

We can draw a three-dimensional string diagram in the same way, “head on”, but now we can

see more: because the source and target 2-cells are drawn as “beads”, the target can be depicted as

a large “hollow” bead. We’re looking at the front of a box and “poking a hole” to look inside.

A R B

A R B

A R B

A R B

A R B

p

p
p

p

p
p

p
p

composition span transformation

r · r : ~R ◦ ~R ⇒ ~R
Yet to see the actual 3-morphism, we still need to “slice down the middle”. As we do so, we draw

the middle slice as its “displayed category” equivalent.
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1.1. SPAN CATEGORY

The span transformation r · r : ~R ◦ ~R ⇒ ~R determines a matrix of transformations: for each

composable pair of pairs (a1,b1) :A(A0,A1) × B(B0,B1) and (a2,b2) :A(A1,A2) × B(B1,B2), there

is a transformation r1 · r2 : ~R(a1,b1) ◦ ~R(a2,b2) ⇒ ~R(a1a2,b1b2). This is given by functoriality of

pullback in Prof.

~R ◦ ~R ~R

~R(a1,b1) ◦ ~R(a2,b2) ~R(a1a2,b1b2)

[0→ 1] [0→ 1]

(~A× ~B) ◦ (~A× ~B) A× B

((a1,b1),(a2,b2)) (a1a2,b1b2)

r1·r2

r·r

y y

Again, this is given in color syntax by substituting morphisms (a1,b1) and (a2,b2) into the homs of

A and B. As diagrams become more complex, we may leave types implicit when they can be inferred

in context. We may also use R(a,b) or Ra
b for the hom-profunctors, rather than ~R(a,b).

r1 · r2 :R(a1,b1) ◦ R(a2,b2)⇒ R(a1a2,b1b2)

On the left, we see the “hollow shell” of the cube; then to see the 3-morphism we slice down the

middle: on the right is the span transformation ~R ◦ ~R ⇒ ~R, as a matrix of transformations.

The second structure of a span category R is a unit transformation idR ⇒ ~R. For each pair of

objects, there is an equality unit transformation which identifies the profunctor ~R(idA, idB) with the

hom of R(A,B). So, the identities in R(A,B) become identities in ~R(idA, idB).

7 Contents



1.1. SPAN CATEGORY

idR :RA
B ⇒ RA

B(−,−) = Rid.A
id.B

Finally, this structure satisfies two properties: composition is associative and unital.

For any composable triple r1, r2, r3 we have r1 · (r2 · r3) = (r1 · r2) · r3.

= =

We introduce the coherence principle for three-dimensional string diagrams: in definitions, if

we draw a cube which can be constructed in multiple ways, it means that these constructions are

equal. Hence the above equation of associativity can be drawn as a single cube.
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1.1. SPAN CATEGORY

associativity of span category composition

For any morphism r : ~Ra
b(R0, R1) we have idR0

· r = r = r · idR1
.

= =

= =

9 Contents



1.1. SPAN CATEGORY

In summary, a span of categories A ← R → B is equivalent to a displayed category R :A ×

B → Cat: a matrix of categories R(A,B) and profunctors ~R(a,b), with composition ~R(a1,b1) ◦

~R(a2,b2)⇒ ~R(a1a2,b1b2) which is associative and unital.

The relations of a logic form such a matrix of categories R(A,B); this is why span categories

provide essential infrastructure for metalogic. Once we add the structure of parallel composition, a

span category will be a “metarelation”, i.e. horizontal profunctor, between logics.

1.1.1 Span Functor

Let A0 ← R0 → B0 and A1 ← R1 → B1 be span categories. A span functor from R0 to R1 is a pair

of functors [[A]] :A0 → A1 and [[B]] :B0 → B1, and a functor [[R]] :R0 → R1 such that the two squares

commute, i.e. for any R :R0 over (A,B) we have that [[R]] :R1 lies over ([[A]], [[B]]).

This is equivalent to one commutative square, [[R]] :R0 → R1 over [[A]]× [[B]] :A0×B0 → A1×B1.

A0 R0 B0 R0 R1

A1 R1 B1 A0 × B0 A1 × B1

[[R]]

[[A]]×[[B]]

[[A]] [[R]] [[B]]

Just as a span category forms a matrix of categories, a span functor forms a matrix of functors.

Proposition 3. Let R0 :A0 × B0 → Cat and R1 :A1 × B1 → Cat be displayed categories, and let

[[A]] :A0 → A1 and [[B]] :B0 → B1 be functors. A displayed functor [[R]] :A0 × B0 → ~Cat0 over

[[A]], [[B]] from R0 to R1 gives for each pair:

objects A :A,B :B a functor [[R]](A,B) :R0(A,B)→ R1([[A]], [[B]])

morphisms a :A(A0,A1),b :B(B0,B1) a transformation [[r]](a,b) : ~R0(a,b)⇒ ~R1([[a]], [[b]])

composable pairs (a1,b1), (a2,b2) an equality [[r]](a1a2,b1b2) = [[r]](a1,b1) · [[r]](a2,b2)

objects R :R0(A,B) an equality [[idR]] = id[[R]]
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Proposition 4. Let A0 ← R0 → B0 and A1 ← R1 → B1 be span categories, let [[A]] :A0 → A1 and

[[B]] :B0 → B1 be functors, and let [[R]] :R0 → R1 be a span functor over [[A]], [[B]].

Inverse image along [[R]] determines a displayed functor [[R]] :A0 × B0 → ~Cat0.

Just as a displayed category is a lax functor or “poly-monad”, a displayed functor is also known

as a transformation of lax functors, i.e. a homomorphism of such monads. We now expound the idea.

A functor is a transversal morphism in SpanCat, and it is drawn as a string with a small “bubble”

pointer, filled with the color of its source. A span functor, like a transformation, is drawn as a solid

black bead, to distinguish from the “open” bead of a span profunctor.

A0 R0 B0

A1 R1 B1

[[A]] [[R]] [[B]]

span functor [[R]] :R0 → R1

Inverse image defines a matrix of functors [[R]](A,B) :R0(A,B) → R1([[A]], [[B]]), by functoriality of

pullback.

R0 R1

R0(A,B) R1([[A]], [[B]])

∗ ∗

A0 × B0 A1 × B1

[[R]]

[[A]]×[[B]]

(A,B)

y

([[A]],[[B]])

[[R]](A,B)

y

Each functor is determined in color syntax by substituting a pair of objects A,B into the base cate-

gories A0,B0 of the source span category R0.
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functor [[R]](A,B) :R0(A,B)→ R1([[A]], [[B]])

In the same way for morphisms, the span functor induces a transformation of span profunctors. As

span profunctors are two-dimensional, this transformation is three-dimensional, depicted below on

the right. To distinguish this transformation in the diagram, we may designate it in white space

between the span functor and the hom of the target span category.

A1 R1 B1

A0 R0 B0

A0 R0 B0

A1 R1 B1

p p pp p
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Inverse image determines a matrix of transformations [[r]](a,b) : ~R0(a,b)⇒ ~R1([[a]], [[b]]), by func-

toriality of pullback in Prof.

~R0
~R1

~R0(a,b) ~R1([[a]], [[b]])

[0→ 1] [0→ 1]

~A0 × ~B0
~A1 × ~B1

(a,b) ([[a]],[[b]])

([[a]],[[b]])

y

[[r]]

y

[[r]](a,b)

Again, this is represented in color syntax by substitution.

transformation [[R]](a,b) :R0(a,b)⇒ R1([[a]], [[b]])

This completes the structure of a span functor [[R]] :R0 → R1; lastly, this structure has the

property that it preserves the composition and unit transformations of the span categories R0,R1.
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= =
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1.2. SPAN PROFUNCTOR

= =

So, a span functor [[R]] :R0 → R1 over functors [[A]] :A0 → A1 and [[B]] :B0 → B1 is equivalent to

a matrix of functors [[R]](A,B) :R0(A,B) → R1([[A]], [[B]]) and transformations [[r]](a,b) : ~R0(a,b) ⇒

~R1([[a]], [[b]]), which preserves the composition and unit of R0 and R1.

1.2 Span Profunctor

Recall that the collage of a profunctor forms a category, simply by making elements into morphisms.

This justifies the interpretation of these elements simply as morphisms between categories. So now, a

span of profunctors can be understood to consist of “morphisms between span categories”.

We introduce a new concept, displayed profuntor, given by inverse image along a transformation;

a displayed profunctor is a relation of displayed categories, completing the equivalence between the

logic of span categories and that of displayed categories.
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Definition 5. Let X ← Q → Y and A ← R → B be spans of categories. A span profunctor from

Q to R is a pair of profunctors f :X |A and g :Y |B, and a profunctor i :Q |R with transforma-

tions πif : i ⇒ f(πQX , π
R
A ) and πig : i ⇒ g(πQY , π

R
B ), denoted i(f, g) :Q(X,Y) |R(A,B), with elements

i : i(f, g)(Q,R) ≡ ifg(Q,R).

Note this data is equivalent to a transformation (πif , π
i
g) : i⇒ (f × g)(πQX × π

Q
Y , π

R
A × πRB ).

X Q Y Q R

A R B X× Y A× B

ip

f×g
p

if p gp
Above, we found that inverse image along a functorR → A×B determines a displayed category,

a map R :A × B → Cat with composition and unit. Now, we show that inverse image along a

transformation i⇒ f × g determines a displayed profunctor: a bimodule of displayed categories.

Proposition 6. Let X ← Q → Y and A ← R → B be span categories, giving displayed categories

Q :X× Y→ Cat and R :A× B→ Cat. Let i(f, g) be a span profunctor from Q to R.

Inverse image along the transformation i⇒ f ×g determines a displayed profunctor i : f ×g →

Prof from displayed category Q to displayed category R, which gives for each pair:

elements f : f(X,A), g : g(Y,B) a profunctor i(f, g) :Q(X,A) |R(Y,B)

composable pairs (x, f), (y, g) a transformation q · i : ~Q(x, y) ◦ i(f, g)⇒ i(xf, yg)

composable pairs (f, a), (g,b) a transformation i · r : i(f, g) ◦ ~R(a,b)⇒ i(fa, gb)

with associativity (q · i) · r = q · (i · r)

and unitality id.Q · i = i = i · id.R .

Just as a displayed category is a map R :A×B→ Cat with a “monad” structure for composition,

i.e. a “lax functor”, a displayed profunctor is a bimodule of such monads. One of the few references

for this concept is given by Paré [16]. We now expound the concept, continuing to expand the visual

language of SpanCat.

Generalizing the hom of a span category, a span profunctor can be drawn as a bead which

connects the string of one span category to another, along the profunctors f and g drawn as bars

pointing downward.
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span profunctor i(f, g) :Q |R

Inverse image along the transformation i ⇒ f × g determines a matrix of profunctors: for each

f : f(X,A) and g : g(Y,B) there is a profunctor i(f, g) from category Q(X,Y) to category R(A,B).

This is given by pullback in Prof of i → f × g along the transformation which maps the walking

arrow to the pair (f, g) : f × g.

i(f, g) i

[0→ 1] f × g(f,g)

y

This pullback is represented in color syntax by substitution of a pair f, g onto the “bars” of the

profunctors f, g. The resulting profunctor i(f, g) :Q(X,Y) |R(A,B) is a relation in the logic of Cat,

drawn on the right.

profunctor i(f, g) :Q(X,Y) |R(A,B)

So the above is the data of a span profunctor, which is two-dimensional. Now we explicate its

structure, sequential composition, which is three-dimensional.
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A span profunctor i :Q |R has a precompose action ~Q ◦ i → i, and a postcompose action by

i ◦ R → i. Below, these are given in conventional diagrams, and then string diagrams.

X Q Y

X Q Y

X Q Y

A R B

A R B

~X p

f p

~Q ~Yp

gp

f p gp
i

precompose action ~Q ◦ i⇒ i

X Q Y

X Q Y

A R B

A R B

A R B

f p gpi

~A p ~Bp~R

f p gp

postcompose action i ◦ ~R ⇒ i
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Precomposition byQ is a matrix of transformations (indexed by composable pairs) compQ : ~Q(x, y)◦

i(f, g)⇒ i(xf, yg). This is given by the functoriality of pullback in Prof.

~Q ◦ i i

~Q(x, y) ◦ i(f, g) i(xf, yg)

[0→ 1] [0→ 1]

(~X× ~Y) ◦ (f × g) f × g

((x,y),(f,g))

y

(xf,yg)

y

So, substitution in the string diagram for composition determines a transformation in Cat.

q · i : ~Q(x, y) ◦ i(f, g)⇒ i(xf, yg)

Postcomposition by ~R is a matrix of transformations compR : i(f, g) ◦ ~R(a,b)⇒ i(fa, gb).

i ◦ ~R i

i(f, g) ◦ ~R(a,b) i(fa, gb)

[0→ 1] [0→ 1]

(f × g) ◦ (~A× ~B) f × g

((f,g),(a,b)) (fa,gb)

y y
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1.2. SPAN PROFUNCTOR

i · r : i(f, g) ◦ ~R(a,b)⇒ i(fa, gb)

Hence the structure of a span profunctor i :Q |R, precomposition by ~Q and postcomposition by

~R, is given by matrices of transformations ~Q(x, y)◦ i(f, g)⇒ i(xf, yg) and i(f, g)◦ ~R(a,b)⇒ i(fa, gb).

To complete the exposition, this structure satisfies the property of associativity.

~Q(x, y) ◦ i(f, g) ◦ ~R(a,b) ~Q(x, y) ◦ i(fa, gb)

i(xf, yg) ◦ ~R(a,b) i(xfa, ygb)

By the “coherence principle” of string diagrams, introduced for span categories, associativity can

be depicted simply by drawing the cube Q ◦ i ◦ R → i. This expresses that the cube is “coherent” or

well-defined, i.e. the two transformations ~Q ◦ i ◦ ~R → i are equal.
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1.2. SPAN PROFUNCTOR

=

Q(x, y) · (i(f, g) · R(a,b)) (Q(x, y) · i(f, g)) · R(a,b)

Finally, composition is unital.

= =

= =

idQ · i i i · idR

In summary, just as a span category can be understood as a matrix of categories, a span pro-

functor can be understood as a matrix of profunctors i(f, g) :Q(X,Y) |R(A,B), with actions for

sequential composition q · i : ~Q(x, y) ◦ i(f, g) ⇒ i(xf, yg) and i · r : i(f, g) ◦ ~R(a,b) ⇒ i(fa, gb), which

are associative.
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This concept is precisely what was needed to complete the framework for metalogic: the infer-

ences of a logic, form a matrix of profunctors. Once we add parallel composition, span profunctors

will form “metainferences”, i.e. double profunctors, between logics. Metalogic is the language of

metainferences and their transformations.

1.2.1 Span Transformation

To complete the double category of span categories, we define transformations of span profunctors.

Just as a span profunctor can be understood as giving morphisms between span categories, a span

transformation is simply a functor of such morphisms.

Definition 7. Let Q0 :X0 ‖Y0,R0 :A0 ‖B0,Q1 :X1 ‖Y1,R1 :A1 ‖B1 be span categories.

Let [[Q]] :Q0 → Q1 and [[R]] :R0 → R1 be span functors over ([[X]], [[Y]]) and ([[A]], [[B]]).

Let i0(f1, g1) :Q0 |R0, i1(f1, g1) :Q1 |R1 be span profunctors.

A span transformation [[i]] : i0 ⇒ i1 is a pair of transformations [[f ]] : f0 ⇒ f1 over ([[X]], [[A]]) and

[[g]] : g0 ⇒ g1 over ([[Y]], [[B]]), and a transformation [[i]] : i0 ⇒ i1 over ([[Q]], [[R]]), such that the two

squares commute.

X1 Q1 Y1

X0 Q0 Y0

A0 R0 B0

A1 R1 B1

f0

p

i0 g0

p

[[X]] [[Q]] [[Y]]

[[A]] [[R]] [[B]]

f1

p g1p[[i]]

i1

[[g]][[f]]
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Note this is equivalent to one commutative square of transformations, [[i]] : i0 → i1 over [[f ]]× [[g]].

Q0 R0

X0 × Y0 A0 × B0 i0 i1

X1 × Y1 A1 × B1 f0 × g0 f1 × g1

Q1 R1

[[X]]×[[Y]] [[A]]×[[B]]

f0×g0
p

f1×g1p

i0p

[[Q]] [[R]]

i1
p

[[f]]×[[g]]

[[i]]

[[f]]×[[g]][[i]]

Just as a span profunctor is equivalent to a matrix of profunctors, a span transformation is a

matrix of transformations.

Definition 8. A displayed transformation [[i]] : f × g → ~Cat1 gives for each pair

morphisms f : f(X,A), g : g(Y,B) a transformation [[i]](f, g) : i0(f, g)⇒ i1([[f]], [[g]])

preserving composition.

We now expound the idea, completing the visual language of SpanCat.

A span transformation is a cube: the inner face is the source span profunctor i0, and the outer

face is the target span profunctor i1. The left and right faces are transformations [[f]] : f0 ⇒ f1 and

[[g]] : g0 → g1, and the top and bottom faces are span functors [[Q]] :Q0 → Q1 and [[R]] :R0 → R1.
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Substitution determines a matrix of transformations, again by functoriality of pullback.

i0 i1

i0(f, g) i1([[f]], [[g]])

[0→ 1] [0→ 1]

f0 × g0 f1 × g1[[f]]×[[g]]

[[i]]

(f,g) ([[f]],[[g]])

y y

i(f,g)

This is represented in color syntax by substituting elements f : f0, g : g0 into the profunctors of the

source span profunctor i0.

So, the data of a span transformation is three-dimensional. Then it just has one property: the

transformation is natural with respect to the actions of i0 and i1.
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= =

= =
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1.3. THE DOUBLE CATEGORY OF SPAN CATEGORIES

1.3 The double category of span categories

Span categories are the objects of a double category SpanCat; its relations are span profunctors,

whose composition is spans of profunctor composition. Understanding span profunctors to contain

inferences, this composition is sequential composition of inference.

Definition 9. Let m(f, k) :R(X,A) | S(Y,B) and n(g, l) :S(Y,B) | T (Z,C) be span profunctors. The

sequential composite (m ◦ n)(f ◦ g, k ◦ `) :R(X,A) | T (Z,C) is the span of profunctor composites.

X R A X R A

Y S B

Z T C Z T C

f p

g p

m k

p
l

pn

f◦g p m◦n k◦`p

An element of f ◦g is an indexed pair Y.(f, g) : f(X,Y)×g(Y,Z), and of k ◦ ` is B.(k, l) : k(A,B)×

`(B,C). Then an element of m ◦ n over ((f, g), (k, l)) is a pair S.(m,n) :mf
k(R,S) × ng

l (S, T ), quo-

tiented by the relation of associativity: for any s :S(S0, S1) we have S0.(m, s · n) = S1.(m · s, n).

Composition of span profunctors is functorial, i.e. the composite of span transformationsm :m0 ⇒

m1 and n :n0 ⇒ n1 maps (m,n) :m0(f, k)(R,S)×n0(g, l)(S, T ) to (m,n) :m1(f, k)(R,S)×n1(g, l)(S, T ).

This defines horizontal composition of the double category of span categories.

Proposition 10. Span categories and span functors, span profunctors and span transformations

form a double category SpanCat.

In the same way, displayed categories form a double category.

Proposition 11. Displayed categories and displayed functors, displayed profunctors and displayed

transformations form a double category DisCat.

Proof. Sequential composition of displayed profunctors is defined: given m : f × k → Prof and

n : g×l→ Prof, the composite (m◦n) : (f ◦g)×(k◦l)→ Prof is (m◦n)((f, g), (k, l)) = m(f, k)×n(g, l).

This is functorial, defining parallel composition of the double category DisCat.
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Hence to summarize the exposition of the section, we have an equivalence of double categories.

Theorem 12. The double category of span categories is equivalent to that of displayed categories.

SpanCat ' DisCat

1.4 Parallel composition

Span categories have sequential composition. In the next section, we define “matrix category” as a

span category with parallel composition actions; and similarly for “matrix profunctors”. So, we first

need to define parallel composition of span categories, and span profunctors.

Definition 13. Let R :A ‖B and S :B ‖C be span categories. The parallel composite R ∗ S :A ‖C

is a span category defined by composition of spans in Cat. This means that an object of R ∗ S over

A :A,C :C is a pair R :R(A,B), S :S(B,C) for some B :B. Hence the composite is equivalent to the

matrix of categories

(R ∗ S)(A,C) = ΣB :B. R(A,B)× S(B,C)

and similarly for morphisms.

( ~R ∗ ~S)(a, c) = Σb :B. ~R(a,b)× ~S(b, c)

Composition and unit of R ◦ S are given by that of R and S; this structure is associative and unital.

In the same way, we define parallel composition of span profunctors.

Definition 14. Let i(d, f) :O(U,X) | P(V,Y) andm(f, k) :R(X,A) | S(Y,B) be span profunctors. The

parallel composite (i ∗m)(d, k) : (Q ∗ S)(U,A) | (R ∗ T )(V,B) is the span composite in Prof.

U O X R A

V P Y S B

d

p f k

pi m
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This means that an element of i ∗m over d : d(U,V), k : k(A,B) is a pair i : i(d, f) and m :m(f, k) for

some f : f(X,Y). This can be understood as pairs of horizontally composable squares.

U X A

V Y B

Op Rp

d f k

P
p

S
p

i m

Hence the composite is equivalent to the following matrix of profunctors.

(i ∗m)(d, k) = Σf : f(X,Y). i(d, f)×m(f, k)

Parallel composition is functorial with respect to span functors and span transformations.

Because we only need to define composition in order to define matrix categories, we do not

continue to define the whole three-dimensional structure of SpanCat. It is an intercategory [7],

meaning that parallel composition is only lax functorial with respect to sequential composition, i.e.

for the diagram

U O X R A

V P Y S B

W Q Z T C

d

p i f m k

p

e p j g n `

p

there is a noninvertible transformation (i ∗m) ◦ (j ∗ n)⇒ (i ◦ j) ∗ (m ◦ n).
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Chapter 2

Matrix categories

A logic is a category of types and processes, indexing a matrix category of relations and inferences.

Section 2.1. To define matrix category, we first determine how a category forms a logic. Existing

literature has defined two-sided fibrations as bimodules of arrow double categories [20]; yet these

are not logics, because they lack conjoints. So in the first section, we define the logic of the weave

double category to be the coproduct of the arrow double category with its opposite.

Section 2.2 Then, we define matrix categories to be bimodules of weave double categories. The

“weave construction” extends to profunctors, giving the notion of matrix profunctor [2.3]. These

form a double category MatCat, which is fibered over Cat× Cat [2.4].

Section 2.5. Last, we define parallel composition of matrix categories, making MatCat a kind of

three-dimensional category which we call a “metalogic”.
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2.1 Fibrations and bifibrations

A category is seen as a 1-dimensional structure of objects and morphisms; yet reasoning in a category

consists of 2-dimensional equalities between composites of morphisms. Every category forms a

double category, in fact three double categories, whose squares are commutative squares.

Two are known: the arrow double category
−→
A and its opposite

←−
A ; modules are fibrations and

opfibrations. Yet
−→
A and

←−
A are not logics; so we define the weave double category 〈A〉 to be the union

−→
A +

←−
A . It is a logic, and its modules are bifibrations.

2.1.1 Arrow double category

Definition 15. Let A be a category. The arrow double category
−→
A is as follows: the base category

is A; a loose morphism is a morphism of A, and a square is a commutative square. Composition is

vertical composition of squares, and for each morphism there is an identity square.

We denote (vertical) processes by a, and (horizontal) relations by â.

A0
0 A1

0

A0
1 A1

1

â1
0

â1
1

a0 a1

(a0, a1) :
−→
A (â1

0 → â1
1)

Horizontal composition is that of morphisms and squares, and horizontal units are identities.

A0
0 A1

0 A2
0 A0 A0

A0
1 A1

1 A2
1 A1 A1

a0 a1 a2

â1
0 â2

0

â1
1 â2

1

a a
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arrow category composition arrow category unit

By inducing an arrow double category, a category can act on span categories. If an object of

R :A ‖B is to be a relation from an A-type to a B-type, then such relations should vary over processes

of A and B — this is a module of arrow double categories.

Definition 16. Let A and B be categories.

A fibered category over A is a left module of the arrow double category
−→
A . This is a span

category R :A ‖ 1, with a span functor � :
−→
A ∗ R → R, and coherent isomorphisms for associativity

and unitality. The action, called substitution, is a matrix of functors

â�R :
−→
A (A0,A1)×R(A1)→ R(A0)

which is contravariant in A. It is also known as “pullback”, and often denoted by a∗(R1).

An opfibered category over B is a right module of the arrow double category
−→
B . This is a span

category R : 1 ‖B, with a span functor � :R ∗
−→
B → R, and coherent isomorphisms for associativity

and unitality. The action, called image, is a matrix of functors

R� b̂ :R(B0)×
−→
B (B0,B1)→ R(B1)

which is covariant in B. It is also known as “pushforward”, and often denoted by b!(R0).
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In string diagrams, with terminal category 1 as white space, the actions are drawn as follows.

substitution image
−→
A (A0,A1)×R(A1)→ R(A0) R(B0)×

−→
B (B0,B1)→ R(B1)

Arrow double categories are special, because every process has a companion: there are two

squares which “bend” the process up or down into a relation.

Definition 17. Let A be a category, with
−→
A the arrow double category. Each morphism a :A(A0,A1)

induces two squares: the cartesian square ε.a and the opcartesian square η.a, drawn below.

A0 A1 A0 A0

A1 A1 A0 A1

a

a a

a

ε.a η.a

Fibered and opfibered categories are usually defined in terms of cartesian and opcartesian mor-

phisms [9, Ch. 1,9]. These morphisms are given by the actions of squares in the arrow double

category, as follows.
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Proposition 18. In a fibered category R over A, a morphism r :R0 → R1 over a :A(A0,A1) is

equivalent to η.a ◦ r :R0 → a � R1 over id.A0, by factoring through the cartesian morphism ε.a ◦

id.R1 : a�R1 → R1.

A0 A0 1

A0 A1 1

A1 A1 1

a

R0p

R1
pa

a

R1
p

rη.a

ε.a

This gives a contravariant representation of morphisms over a.

~R(a)(R0, R1) ∼= R(R0, a�R1)

In an opfibered category R over B, a morphism r :R0 → R1 over b :B(B0,B1) is equivalent

to a morphism r ◦ ε.b :R0 � b → R1 over id.B1, by factoring through the opcartesian morphism

id.R0 ◦ η.b :R0 → R0 � b.

1 B0 B0

1 B0 B1

1 B1 B1

R0p

R1
p

b

b

b

R0p

r

η.b

ε.b

This gives a covariant representation of morphisms over b.

~R(b)(R0, R1) ∼= R(R0 � b,R1)
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However, there is a limitation to the arrow double category: it is not a logic, because there are

no backwards-pointing arrows to be conjoints. This may at first seem like a technicality — surely all

equational reasoning of A can be expressed in
−→
A , right? Actually, no.

By introducing a second dimension, we distinguish between morphisms as processes and as rela-

tions. Based on how processes act on relations, there are four basic kinds of equations.

• •

• •

a0

a1a0

a1

natural

a0 · a1 = a0 · a1

• •

• •

a0

a1a0

a1

factorization

a0 = a0 · a1 · a1

• •

• •

a0

a1a0

a1

composition

a0 · a0 · a1 = a1

• •

• •

a0

a1a0

a1

conatural

a0 · a0 = a1 · a1

Of course, each of the above equations can be expressed as a “natural” commutative square in an

arrow double category. However, there is an obstruction to reasoning about sequential composition.

Associativity has two forms, “forward” and “backward”: suppose that two pairs (a0
1, a

0
2) and

(a1
1, a

1
2) are equal in the composite profunctor A ◦ A; then there is a “zig-zag” connecting the pair:

a sequence of morphisms â :A(Ai,Ai+1) or ǎ :A(Ai+1,Ai), so that the squares commute. The two

unary cases are below.

• •

A0 A1

• •

a0
1

a0
2

a1
1

a1
2

â

forward associativity

a0
1 · â = a1

1

a0
2 = â · a1

2

• •

A0 A1

• •

a0
1

a0
2

a1
1

a1
2

ǎ

backward associativity

a0
1 = a1

1 · ǎ

ǎ · a0
2 = a1

2
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Forward associativity, on the left, is the composite of two “natural” squares, which can be ex-

pressed in the arrow double category. Backwards associativity, on the right, is the composite of a

“factorization” and a “composition” — this cannot be expressed in the arrow double category.

Hence we identify the following limitation.

Proposition 19. Let A be a category. In the arrow double category
−→
A , factorization and composition

squares do not compose in sequence; so backward associativity cannot be expressed.

This leads to an obstruction, when defining sequential composition of profunctors between “two-

sided fibrations”, i.e. bimodules of arrow double categories — the author learned this the hard way.

We could accept this limitation and still use these concepts to construct logics, but it would be

more complex than necessary. Rather, we understand the problem to be that arrow double categories

are not logics, and we instead determine the logic which a category does form.

2.1.2 Weave double category

Every category A defines a logic, called the weave double category 〈A〉. It is the union of
−→
A and

←−
A ,

the arrow double category and its opposite.

In the logic of 〈A〉, a relation is a zig-zag in A: an alternating sequence of arrows in
−→
A and

oparrows in
←−
A ; and an inference is a weave: a composite of squares in

−→
A , opsquares in

←−
A , and

unit isomorphisms — the units of
−→
A and

←−
A are “united” by adjoining isomorphisms between each

identity arrow and oparrow.

Definition 20. Let A be a category, with arrow double category
−→
A .

The op-arrow double category
←−
A is the horizontal opposite:

←−
A (A0,A1) ≡

−→
A (A1,A0).

We denote an arrow by â :
−→
A (A0,A1), and an op-arrow by ǎ :

←−
A (A1,A0). We use a for objects of

−→
A +

←−
A . A square of

−→
A is a square, and a square of

←−
A is an opsquare.

Definition 21. Define DblA to be the 2-category of double categories on A, double functors over

id.A, and identity-component transformations, a.k.a. icons [11].
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Given double categories A0 and A1 on A, and double functors f, g :A0 → A1 over id.A, an icon

γ : f ⇒ g gives for each a0 :A0 a 2-morphism γ(a0) : f(a0)⇒ g(a0), subject to naturality.

A A0 A A0 A1

A A1 A A0 A1

gf

f(a0)
p

g(a0)
p

γ γ(a0)

Definition 22. Let A be a category. Define the weave double category 〈A〉 to be the 2-coproduct

of the arrow and oparrow double categories in DblA.

〈A〉 ≡
−→
A +

←−
A

So for every double category A← A→ A there is the following natural equivalence.

DblA(〈A〉,A) ' DblA(
−→
A ,A)×DblA(

←−
A ,A)

We show the weave double category consists of the following loose morphisms and squares.

A zig-zag of A-morphisms is a nonempty sequence of morphisms (A0, a1, . . . , ak,Ak) alternating

with each ai either an arrow âi :
−→
A (Ai−1,Ai) or an op-arrow ǎi :

←−
A (Ai−1,Ai).

A0 A1 A2 · · · Ak−2 Ak−1 Ak
â1 ǎ2 âk−1 ǎk

We may abbreviate a zig-zag by 〈a1, . . . , ak〉 or simply by 〈ak〉.

A weave of zig-zags w : 〈ak〉 → 〈a`〉 is a composite of squares, opsquares, and unit isomorphisms.

Proposition 23. The weave double category 〈A〉 is equivalent to the free strict semi-double category,

i.e. associative double category without introducing a unit, on the following presentation.

Generators. Squares of
−→
A , opsquares of

←−
A , and for each object A :A a unit isomorphism

îd.A ∼= ǐd.A .

Equations. Interchange, square and opsquare composition, vertical and horizontal associativity,

and mixed-unitor naturality: the details are given in the proof.
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Proof. Let w(A) be given by the following presentation.

Generators. Squares of
−→
A and opsquares of

←−
A

A0
0 A0

1 A0
0 A0

1

A1
0 A1

1 A1
0 A1

1

â0

â1

a0

ǎ0

a1a0

ǎ1

a1

and for each object A :A an isomorphism of the identity arrow and the identity op-arrow.

A A

A A

îd.A

ǐd.A

∼=

Generated from these squares, w(A) consists of all vertical and horizontal composites thereof, subject

to interchange and the following equations.

Equations.

- For each vertical-composable pair of
−→
A , the vertical composite in w(A) equals that of

−→
A .

- For each vertical-composable pair of
←−
A , the vertical composite in w(A) equals that of

←−
A .

A0
0 A0

1 A0
0 A0

1

A1
0 A1

1

A2
0 A2

1 A2
0 A2

1

â0

â1

â2

a1
0 a1

1

a2
0 a2

1

a1
0a2

0 a1
1a2

1

â0

â2

≡

A0
0 A0

1 A0
0 A0

1

A1
0 A1

1

A2
0 A2

1 A2
0 A2

1

ǎ0

ǎ1

ǎ2

a1
0 a1

1

a2
0 a2

1

a1
0a2

0 a1
1a2

1

ǎ0

ǎ2

≡

So vertical composition of w(A) is unital, by inheriting the vertical units of
−→
A and

←−
A .

- For each vertical-composable triple of w(A), vertical composition is associative.

- For each horizontal-composable pair of
−→
A , the horizontal composite in w(A) equals that of

−→
A .

- For each horizontal-composable pair of
←−
A , the horizontal composite in w(A) equals that of

←−
A .
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A0
0 A0

1 A0
2

A1
0 A1

1 A1
2

A0
0 A0

2

A1
0 A1

2

â0
1

â1
1

â0
2

â1
2

a0 a1 a2

â0
1â0

2

â1
1â1

2

a0 a2

≡

A0
0 A0

1 A0
2

A1
0 A1

1 A1
2

A0
0 A0

2

A1
0 A1

2

ǎ0
1

ǎ1
1

ǎ0
2

ǎ1
2

a0 a1 a2

ǎ0
1ǎ0

2

ǎ1
1ǎ1

2

a0 a2

≡

- For each horizontal-composable triple in w(A), horizontal composition is strictly associative.

- For each arrow and each op-arrow, naturality equations for the “mixed unitor” isomorphisms

η̌(â) : â = â ◦ îd.A1
∼= â ◦ ǐd.A1 and η̂(ǎ) : ǎ = ǎ ◦ ǐd.A1

∼= ǎ ◦ îd.A1: the following equations hold for

right unitor naturality; and similarly for left unitor naturality.

A0
0 A0

1 A0
0 A0

1

A0
0 A0

1 A0
1

A0
0 A0

1 A0
1

A1
0 A1

1 A1
1

A1
0 A1

1 A1
1

A1
0 A1

1 A1
0 A1

1

â0
1 ǐd.A0

1

â1
1

a1
0 a1

1

ǐd.A1
1

a1
1

â0
1

â0
1 îd.A0

1

â1
1 îd.A0

1

â1
1

â0
1

a1
0 a1

1

â1
1

∼=

∼=

≡

A0
0 A0

1 A0
0 A0

1

A0
0 A0

1 A0
1

A0
0 A0

1 A0
1

A1
0 A1

1 A1
1

A1
0 A1

1 A1
1

A1
0 A1

1 A1
0 A1

1

ǎ0
1 îd.A0

1

ǎ1
1

a1
0 a1

1

îd.A1
1

a1
1

ǎ0
1

ǎ0
1 ǐd.A0

1

ǎ1
1 ǐd.A0

1

ǎ1
1

a1
0 a1

1

ǎ0
1

ǎ1
1

∼=

∼=

≡

We show that w(A) is a coproduct of
−→
A and

←−
A in DblA.

First, w(A) is a double category: the horizontal unit of A can be chosen to be either îd.A or ǐd.A.

Either choice gives a unitor isomorphism for “mixed” composition of an arrow and an op-arrow, and

an equality for same-type composition. Below are the choices of right unitor; the left is analogous.

η̌(â) : â = â ◦ îd.A1
∼= â ◦ ǐd.A1 η̂(ǎ) : ǎ = ǎ ◦ ǐd.A1

∼= ǎ ◦ îd.A1

and or and

η̌(ǎ) : ǎ = ǎ ◦ ǐd.A1 η̂(â) : â = â ◦ îd.A1
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The naturality of each unitor has been imposed by fiat. The coherence with composition, i.e. triangle

identity, follows from associativity of horizontal composition in w(A).

A0
0 A0

1 A0
2 A0

0 A0
1 A0

2

A0
0 A0

1 A0
1 A0

2 = A0
0 A0

1 A0
1 A0

2

A0
0 A0

1 A0
1 A0

2 A0
0 A0

1 A0
1 A0

2

îd.A0
1â0

1 â0
2

ǐd.A0
1â0

1 â0
2

â0
2â0

1 â0
1 â0

2

â0
1 îd.A0

1 â0
2

ǐd.A0
1â0

1 â0
2

∼= ∼=

Hence w(A) is a double category.

The inclusions i0 :
−→
A → w(A) and i1 :

←−
A → w(A) preserve horizontal composition strictly, and

one preserves the horizontal unit strictly while the other does up to the isomorphism îd.A ∼= ǐd.A;

the coherence of the latter is automatic by strict composition preservation of i0 and i1 and strict

unitality of
−→
A and

←−
A . Hence i0 and i1 are (pseudo) double functors.

We demonstrate the universal property of these inclusions.

Let A be a double category on A, and f :
−→
A → A, g :

←−
A → A be (pseudo) double functors from

the arrow and oparrow double categories. We define the copairing 〈f, g〉 :w(A)→ A.

−→
A w(A)

←−
A

−→
A A

←−
A

i0 i1

〈f,g〉

f g

Because w(A) is freely generated on a presentation, it suffices to define 〈f, g〉 on generators, verify it

is well-defined with respect to the equations, and then give coherent isomorphisms for composition

and unit preservation.

For each square in
−→
A and each opsquare in

←−
A , the copairing maps by f and g, respectively.

A0
0 A0

1 A0
0 A0

1

A1
0 A1

1 A1
0 A1

1
f(â1)
p

a0

f(â0)
p

a1

g(ǎ0)
p

g(ǎ1)
p

a0 a1f(a0,a1) g(a0,a1)
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Because f and g are double functors, there are isomorphisms ηf :UA
∼= f(îd.A) and ηg :UA

∼=

g(ǐd.A); hence the copairing maps the unit isomorphism îd.A ∼= ǐd.A to η−1
f · ηg.

A A A A

7→ A A

A A A A

îd.A

ǐd.A

f(îd.A)
p

UA

g(ǐd.A)
p

∼=

∼=

∼=

So in general, 〈f, g〉 :w(A)→ A maps composites of these generators to composites of their images.

Because w(A) is strictly associative and A may not be, the copairing involves a choice of composition

order, i.e. either left- or right-association.

〈f, g〉(〈ak〉) = 〈f, g〉(a1) ◦ (〈f, g〉(a2) ◦ (〈f, g〉(a3) ◦ · · · ))

or

〈f, g〉(〈ak〉) = ((· · · 〈f, g〉(ak−2)) ◦ 〈f, g〉(ak−1)) ◦ 〈f, g〉(ak)

We verify the mapping is well-defined, and is a double functor which gives a factorization in DblA.

Because f and g preserve vertical composition in
−→
A and

←−
A , the copairing 〈f, g〉 respects those

equations. Horizontal composition f and g preserve up to isomorphism, whose naturality ensures

that 〈f, g〉 is well-defined on horizontal composites.

A0
0 A0

2 A0
0 A0

2

A0
0 A0

1 A0
2

A1
0 A1

1 A1
2

A1
0 A1

2 A1
0 A1

2

f(â0
1)
p

f(â0
2)
p

f(â1
1)
p

f(â0
1â0

2)
p

a0 a2a1

f(â1
2)
p

f(â1
1â1

2)
p

f(â0
1â0

2)
p

a0 a2

f(â1
1â1

2)

∼=

∼=

=

Next, 〈f, g〉 is well-defined for vertical associativity, because it strictly preserves vertical compo-

sition; and for horizontal associativity, because it maps any horizontal composite to either the left-

associated or right-associated composite of the images. Lastly, 〈f, g〉 is well-defined for the equations

of unitor naturality, by the naturality of the unit preservation of f and g and of the unitor of A.
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A0
0 A0

1 A0
0 A0

1

A0
0 A0

1 A0
1

A0
0 A0

1 A0
1

A0
0 A0

1 A0
1

A1
0 A1

1 A1
1

A1
0 A1

1 A1
1

A1
0 A1

1 A1
1

A1
0 A1

1 A1
0 A1

1

f(â0
1)
p

g(ǐd.A0
1)

p

f(â1
1)

a1
0 a1

1

g(ǐd.A1
1)

p

a1
1

f(â0
1)
p

f(â0
1)
p

f(îd.A0
1)

p

f(â1
1) f(îd.A0

1)
p

f(â1
1)

U
A1
1p

U
A0
1p

f(â0
1)
p

f(â1
1)
p

f(â0
1)
p

a1
0 a1

1

f(â1
1)
p

∼=

∼=

∼=

∼=

=

∼=

∼=

Hence 〈f, g〉 is a well-defined mapping of squares; to prove it is a double functor, it remains to give

the coherent isomorphisms for composition and unit preservation.

Because 〈f, g〉 maps horizontal composites either left-associated or right-associated, it preserves

composition up to the associator α of A, and the composition isomorphisms µf and µg: the isomor-

phism µ〈f,g〉 is defined casewise as a horizontal composite of these, based on the types of the middle

pair of components in each composable pair of zig-zags.

A0 A1 A2 A0 A1 A2

A0 A2 A0 A2
f(â1â2)

p

f(â1)
p

f(â2)
p

g(ǎ1ǎ2)
p

g(ǎ1)
p

g(ǎ2)
p

µf µg

A0 A1 A3 A0 A1 A3

A0 A2 A3 A0 A2 A3

f(â1)
p

g(ǎ2)◦f(â3)
p

f(â1)◦g(ǎ2)
p

f(â3)
p

α

g(ǎ1)
p

f(â2)◦g(ǎ3)
p

g(ǎ1)◦f(â2)
p

g(ǎ3)

α
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The associativity coherence of µf and µg, together with the pentagon identity of α, provide the

associativity coherence of µ〈f,g〉.

For unit preservation, f and g provide the isomorphisms

ηf :UA
∼= f(îd.A) = 〈f, g〉(îd.A) and ηg :UA

∼= g(ǐd.A) = 〈f, g〉(ǐd.A),

so for either choice of unit, the coherence of ηf or ηg entails the coherence for η〈f,g〉.

So the copairing is a double functor 〈f, g〉 :w(A) → A, which by construction gives a strict

factorization of f and g through the inclusions of
−→
A and

←−
A .

Now, it remains to verify the two-dimensional universal property. Let h, k :w(A) → A be a pair

of double functors, and let γ0 :h(i0)⇒ k(i0) and γ1 :h(i1)⇒ k(i1) be icons, as given below.

−→
A w(A)

←−
A

−→
A A

←−
A

i0 i1

h

h(i0)

k(i1)k(i0)

h(i1)

k

γ0 γ1

〈γ0,γ1〉

Each icon is a natural family of 2-cells γ0(â) :h(â) ⇒ k(â) and γ1 :h(ǎ) ⇒ k(ǎ). Just as for double

functors, we define the copairing for each arrow and op-arrow:

〈γ0, γ1〉(â) = γ0(â) and 〈γ0, γ1〉(ǎ) = γ1(ǎ).

In general, 〈γ0, γ1〉(〈an〉) is the horizontal composite of the unary images, conjugated by µh and µk.

A0 An

A0 A1 · · · An−1 An

A0 A1 · · · An−1 An

A0 An

h(a1)
p

k(a1)
p

h(an)
p

k(an)
p

p p

p p

h(〈an〉)p

k(〈an〉)
p

〈γ0,γ1〉(a1) 〈γ0,γ1〉(an)

µ−1
h

µk

The naturality of γ0 and γ1, and that of µh and µk, provide the naturality of the copairing 〈γ0, γ1〉.

This defines a factorization 〈γ0, γ1〉(i0) = γ0 :h(i0)⇒ k(i0) and 〈γ0, γ1〉(i1) = γ1 :h(i1)⇒ k(i1).
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Last, we verify that this factorization is unique. Let δ :h ⇒ k be a transformation such that

δ(i0) = γ0 and δ(i1) = γ1. Then δ(â) = γ0(â) and δ(ǎ) = γ1(ǎ). Yet because w(A) is generated by

arrows and op-arrows, this characterizes the transformation; hence we have δ = 〈γ0, γ1〉.

Thus w(A) is a coproduct, i.e. w(A) '
−→
A +

←−
A ≡ 〈A〉; and so the weave double category can be

constructed from a presentation of squares, opsquares, and unit isomorphisms.

The weave double category contains all equational reasoning of A, in that it contains the four

kinds of squares and their composites: the sequential composite of a factorization and a composition

square is below.

A0
0 A0

1 A0
0 A0

1 A0
1 A0

1

= A1
1 A1

1

A1
0 A1

1 A1
0 A1

0 A1
1 A1

1

A1
0 A1

0

A2
0 A2

1 A2
0 A2

0 A2
0 A2

1

â0

a1
1

ǎ1

a0
1

a0
2

â2

a1
2

â0

a1
1

a1

ǎ1

a1

a0
2

a2

a0
1

a1
1

a0
2

a1
2

a1
1

a0
2

The arrows and oparrows of 〈A〉 are companions and conjoints.

Proposition 24. 〈A〉 is a bifibrant double category, i.e. a logic.

By coproduct, actions by the weave double category 〈A〉 are equivalent to pairs of actions by the

arrow and oparrow double categories
−→
A and

←−
A : so left modules are right modules are bifibrations.

To show this by universal property, we have to determine how R forms a double category over

A that represents actions on R. The key is to see that an action � :
−→
A (A0,A1)×R(A0)→ R(A1) is

equivalent to a displayed transformation of the following form.

So, we define the double category as the universal comma square.
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−→
A

A A

Cat

R(A0) R(A1)

RR

�

dom cod

−�â

−→
A

R.R

A A

Cat

RR

dom cod

To define sequential composition of R.R, the displayed category R :A → Cat must be a pseud-

ofunctor, i.e. the composition transformation R(a1) ◦ R(a2) ⇒ R(a1a2) must be invertible. This is

known as an exponentiable category [18], a generalization of fibered and opfibered category.

Definition 25. Let R be an exponentiable category over A. The fiber-hom double category A ←

R.R → A is the collage of the comma object of the displayed category R :A→ Cat along itself.

A0
0 A0

1

R(A0
0) R(A0

1)

R(A1
0) R(A1

1)

A1
0 A1

1

f0

R(a0) p

f1

R(a1)p

f0p

f1
p

a0 a1ϕ

The base category is A; a loose morphism over (A0,A1) is a functor f :R(A0) → R(A1), and a

square over (a0, a1) is a transformation ϕ(f0, f1) :R(a0)⇒ R(a1). Parallel composition is sequential

composition in Cat.

Sequential composition is parallel composition of Cat, conjugated by composition isomorphisms

of R. Composing in sequence and parallel, the middle isomorphisms cancel, giving interchange.
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R(A0
0) R(A0

0) R(A0
1) R(A0

1)

R(A1
0) R(A1

1)

R(A2
0) R(A2

0) R(A2
1) R(A2

1)

f0

R(a1
0) p

f1

R(a1
1)p

R(a2
0) p R(a2

1)p
f2

R(a1
0a2

0) p R(a1
1a2

1)p
ϕ1

ϕ2

∼= ∼=

Proposition 26. Let R → A be an exponentiable category over A. A right action on R by a double

category A over A is equivalent to a double functor A→ R.R .

A left action A ∗ R → R is equivalent to a double functor Aop → R.R.

Proof. Let A : DblA, and � :R ∗A→ R be a module action. Then mapping

A :A to −�A :R(A0)→ R(A1) and

α :A(A,A′) to −� α :R(a0)⇒ R(a1)

defines a double functor A → R.R: the associator (R � A1) � A2
∼= R � (A1 ◦ A2) defines the

composition isomorphism, and the unitor R ∼= R� UA defines the unit isomorphism; the coherence

equations correspond.

Theorem 27. 〈A〉-modules are equivalent to bifibrations.

Proof. By coproduct, we have the following equivalence.

DblA(
←−
A +

−→
A ,R.R) ' DblA(

−→
A ,R.R)×DblA(

←−
A ,R.R)

This means that a right action by 〈A〉 is equivalent to a pair of right actions by
←−
A and

−→
A ; these give

R the structures of a fibration and opfibration.

In the next section, we define matrix categories as bimodules of weave double categories. These

form a double category over that of categories; so we have to determine how the “weave construc-

tion” applies to categories and functors, profunctors and transformations.

First, how does the notion of “arrow category” generalize to profunctors?
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Definition 28. Let f :X |A be a profunctor. The arrow profunctor of f is the profunctor of arrow

categories
−→
f :
−→
X |
−→
A consisting of commutative squares; it forms a span profunctor f ←

−→
f → f .

−→
f (x̂, â) = {(f0 : f(X0,A0), f1 : f(X1,A1)) | a · f0 = f1 · x}

Dually, the oparrow profunctor of f is the profunctor of oparrow categories
←−
f :
←−
X |
←−
A .

←−
f (x̌, ǎ) = {f0 : f(X0,A0), f1 : f(X1,A1) | x · f0 = f1 · a}

X0 X1 X0 X1

−→
f

←−
f

A0 A1 A0 A1

x̂

â

f0 f1

x̌

ǎ

f0 f1

Note the only difference between the arrow and oparrow profunctors is which morphism acts on

which element of f , i.e. “natural” squares versus “conatural” opsquares.

Just as commutative squares of a category compose in parallel, commutative squares of a pro-

functor compose in parallel. This defines a “vertical profunctor” from one arrow double category to

another; see Chapter 3.

Proposition 29. Let f :X |A be a profunctor. The arrow profunctor f ←
−→
f → f is a monad in

Span(Prof). Composition
−→
f ∗
−→
f ⇒

−→
f is that of commutative squares, and the unit is given by that

of X and A.

X0 X1 X2 X X

f1 f2 id.f

A0 A1 A2 A A

f0 f1 f2

x̂1 x̂2

â1 â2

îd.X

f f

îd.A

Dually, the oparrow profunctor is a monad in Span(Prof).

In string diagrams, the arrow profunctor is drawn as follows, and the oparrow profunctor is dual.
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arrow profunctor composition unit

Now in the same way, a profunctor of categories forms a “weave profunctor” of double categories.

Definition 30. Let f :X |A be a profunctor. Define the weave vertical profunctor between weave

double categories 〈f〉 : 〈X〉 | 〈A〉 to be the coproduct of
−→
f and

←−
f in the 2-category of monads on f .

Hence 〈f〉 is constructed from a presentation, in the same way as the weave double category 〈A〉.

Generators. Squares of
−→
f and opsquares of

←−
f ; and for each with identity domain or codomain,

a vertical composite with the unit isomorphism.

X X X X X0 X1 X0 X1

X X X X A A A A

A0 A1 A0 A1 A A A A

îd.X

f0 f1

â

ǐd.X

ǎ

ǐd.X

f0 f1

îd.X x̂

f0 f1

îd.A

ǐd.A

x̌

ǐd.A

f0 f1

îd.A

∼= ∼=

∼= ∼=

- For each vertical-composable pair of an element of 〈f〉 and a square in 〈X〉, a vertical composite.

- For each vertical-composable pair of an element of 〈f〉 and a square in 〈A〉, a vertical composite.

- For each horizontal-composable pair of elements of 〈f〉, a horizontal composite.

Equations.

- For each vertical-composable pair of
−→
X and

−→
f , the vertical composite in 〈f〉 equals that of

−→
f .

- For each vertical-composable pair of
←−
X and

←−
f , the vertical composite in 〈f〉 equals that of

←−
f .

- For each vertical-composable pair of
−→
f and

−→
A , the vertical composite in 〈f〉 equals that of

−→
f .
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- For each vertical-composable pair of
←−
f and

←−
A , the vertical composite in 〈f〉 equals that of

←−
f .

X0
0 X0

1 X0
0 X0

1 X0
0 X0

1 X0
0 X0

1

X1
0 X1

1 X1
0 X1

1

A0 A1 A0 A1 A0 A1 A0 A1

x̂0
1

x̂1
1

x0 x1

f0 f1

â â

x̂0
1

x0·f0 x1·f1

x̌0
1

x̌1
1

ǎ

x0

f0

x1

f1

x0·f0 x1·f1

x̌0
1

ǎ

≡ ≡

X0 X1 X0 X1 X0 X1 X0 X1

A0
0 A0

1 A0
0 A0

1

A1
0 A1

1 A1
0 A1

1 A1
0 A1

1 A1
0 A1

1

x̂ x̂

f0 f1

â0
1

a0 a1

â1
1 â1

1

f0·a0 f1·a1

x̌ x̌

f0 f1

a0 a1

f0·a0 f1·a1

ǎ1
1 ǎ1

1

≡ ≡

So vertical composition of 〈f〉 is unital, by inheriting the vertical units of
−→
f and

←−
f .

- Vertical composition by the inverse of a unit isomorphism is the inverse of vertical composition

by the unit isomorphism.

- For each vertical-composable triple, vertical composition is associative.

- For each horizontal-composable pair of
−→
f , the horizontal composite in 〈f〉 equals that of

−→
f .

- For each horizontal-composable pair of
←−
f , the horizontal composite in 〈f〉 equals that of

←−
f .

X0 X1 X2 X0 X1 X2

A0 A1 A2 A0 A1 A2

X0 X2 X0 X2

A0 A2 A0 A2

f0 f1 f2

x̂1 x̂2

â1 â2

x̂1x̂2

â1â2

f0 f2

f0 f1 f2

x̌1 x̌2

ǎ1 ǎ2

x̌1x̌2

ǎ1ǎ2

f0 f2

≡ ≡

- For each horizontal-composable triple of 〈f〉, horizontal composition is associative.

- For each horizontal-composable pair of vertical-composable pairs in 〈f〉, the interchange law.
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- The unit isomorphisms are natural with respect to identity squares and opsquares of 〈f〉.

X X X0 X1 X X X X

X X A A X X A A

A A A A A A A A

îd.X

f f

îd.A

ǐd.X

ǐd.A

ǐd.X

f f

îd.X îd.X

f f

îd.A

ǐd.A

ǐd.X

ǐd.A

f f

îd.A

≡ ≡

∼=∼=

∼= ∼=

Then 〈f〉 is a vertical profunctor from 〈X〉 to 〈A〉, essentially by definition, as follows.

The vertical actions of 〈X〉 on 〈f〉 and 〈A〉 on 〈f〉 is defined in generating 〈f〉; and they are

associative and unital, with the vertical unit of a zig-zag being the horizontal composite of vertical

identities.

X0 Xk

A0 A1 · · · A`−1 A`

A0 A1 · · · A`−1 A`

〈xk〉

f0 fi

a1 a`

a1 a`

Horizontal composition is defined in generating 〈f〉, and it satisfies associativity and interchange.

The unitors of 〈X〉 and 〈A〉 are natural with respect to elements of 〈f〉, by the naturality of the unit

isomorphisms with respect to identities of 〈f〉.

X0 Xk−1 Xk X0 Xk

X0 Xk−1 Xk Xk

X0 Xk−1 Xk Xk

A0 A`−1 A` A`

A0 A`−1 A` A`

A0 A`−1 A` A0 A`

〈xk−1〉 x̂k

〈xk−1〉 x̂k îd.Xk

ǐd.Xkx̂k〈xk−1〉

f0 fi−1 fi fi

〈a`−1〉 â` ǐd.A`

îd.A`〈a`−1〉 â`

〈a`−1〉 â`

〈xk〉

〈a`〉

f0 fi

∼=

∼=

=

This completes the definition of the weave vertical profunctor 〈f〉 : 〈X〉 | 〈A〉.
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Finally, we extend the “weave construction” to functors and transformations. We denote each by

double brackets, [[X]] :X0 → X1, with application [[X]](X0) ≡ [[X0]].

Definition 31. Let [[A]] :A0 → A1 be a functor; this induces an arrow double functor [[
−→
A ]] :
−→
A0 →

−→
A1

and an oparrow double functor [[
←−
A ]] :
←−
A0 →

←−
A1.

Define the weave double functor 〈[[A]]〉 : 〈A0〉 → 〈A1〉 to be their coproduct. Hence 〈[[A]]〉 maps

squares to squares, opsquares to opsquares, and unit isomorphisms to unit isomorphisms.

Definition 32. Let X0,X1,A0,A1 be categories, and let [[X]] :X0 → X1 and [[A]] :A0 → A1 be functors.

Let f0 :X0 |A0, f1 :X1 |A1 be profunctors, and [[f ]] : f0 ⇒ f1 a transformation over ([[X]], [[A]]).

X0 A0

X1 A1

f0p

f1
p

[[X]] [[A]][[f ]]

Then [[f ]] gives a transformation of squares
−→
[[f ]] :
−→
f0 ⇒

−→
f1 and opsquares

←−
[[f ]] :
←−
f0 ⇒

←−
f1.

[[X0]] [[X1]] [[X0]] [[X1]]

[[A0]] [[A1]] [[A0]] [[A1]]

[[x̂]]

[[â]]

[[f0]] [[f1]]

[[x̌]]

[[ǎ]]

[[f0]] [[f1]]

Each square commutes by naturality: if x·f1 = f0·a, then we have [[x]]·[[f1]] = [[x·f1]] = [[f0·a]] = [[f0]]·[[a]].

The weave vertical transformation 〈[[f ]]〉 : 〈f0〉(〈X0〉, 〈A0〉) ⇒ 〈f1〉(〈X1〉, 〈A1〉) is the coproduct

of these transformations, defined by mapping squares and opsquares of X and f and A.

This defines the “weave construction” by a mapping of squares from Cat to bf.DblCat: bifibrant

double categories and double functors, vertical profunctors and transformations; see Def. 58.

So the question is, does 〈−〉 form a double functor? i.e. how does it interact with profunctor

composition? Here we find that the associativity quotient of f ◦ g introduces significant complexity

to the construction.

50 Contents



2.1. FIBRATIONS AND BIFIBRATIONS

The complexity of weaves and composition

Let f :X |Y and g :Y |Z be profunctors. The composite f ◦ g :X |Z consists of pairs (f, g) quotiented

by associativity: (f, y · g) = (f · y, g), i.e. equivalence classes of “pairs up to associativity” [(f, g)].

Yet two pairs (f0, g0) and (f1, g1) may be equivalent via many distinct zig-zags, while in the

composite we have only that [(f0, g0)] = [(f1, g1)], with no specific zig-zag. This means that all

structures defined on f ◦ g, i.e. actions of a matrix profunctor, must be independent of any choice of

pair and any choice of zig-zag.

Fortunately, the associativity quotient can be clearly characterized in the weave of the composite,

〈f ◦ g〉: the inner actions by zig-zags in Y are precisely the identity squares.

X X

Y0 · · · · · · Y1

Z Z

f0

g0

f1

g1

id.[(f,g)]

Hence to define sequential composition of matrix profunctors, we must quotient by the action of

these zig-zags, to make these identity squares act as the identity; see Def. 43.

So, is 〈−〉 a double functor? The answer is no. Above, there are many distinct representations of

each identity square, so there is no transformation 〈f ◦ g〉 ⇒ 〈f〉 ◦ 〈g〉. Yet the other direction is also

obstructed, as the following composites of weaves cannot be expressed as squares in 〈f ◦ g〉.

X0 X1 X2 X3 X0 X1

Y0 Y1 Y1 Y2 Y0 Y2

Y0 Y2 Y0 Y1 Y1 Y2

Z0 Z1 Z0 Z1 Z2 Z3

ŷ1 ŷ2

ŷ1ŷ2

ẑ

x̂1 x̌2 x̂3

f0 f1 f2 f3

g0 g1

x̂

ŷ1ŷ2

ŷ1 ŷ2

g0

ẑ1 ž2

g1 g2

ẑ3

g3

f0 f1

∼= ∼=

Proposition 33. Mapping a category A to the weave double category 〈A〉 defines a span functor

from Cat to bf.DblCat, which is neither a lax nor colax double functor.
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2.2 Matrix categories

We are now ready to define the primary concepts which underlie a logic.

We simplify the presentation of structures and coherences in two ways.

(1) We denote a transformation by its components, e.g. the associator of a matrix category is

(a�R)� b ∼= a� (R� b).

(2) We use the symbol x ⇒ y to denote that the two transformations from x to y, inferrable from

context, are equal; e.g. the two ways to reassociate four elements are equal.

((a1 � a2)� a3)�R⇒ a1 � (a2 � (a3 �R))

Additionally, we elide the associators and unitors of SpanCat; they can be inferred.

Definition 34. Let A and B be categories, with weave double categories 〈A〉 and 〈B〉.

A matrix category or two-sided bifibration R :A ‖B is a span category A ← R → B which

forms a bimodule from 〈A〉 to 〈B〉.

Hence a matrix category R :A ‖B is a span category, with a pair of span functors for actions

A 〈A〉 ∗ R B A R ∗ 〈B〉 B

A R B A R B

�A �B

and three invertible span transformations for associativity

〈A〉 ∗ R ∗ 〈B〉 〈A〉 ∗ R

R ∗ 〈B〉 R

〈A〉∗�B

�A∗〈B〉

�B

�AαR
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〈A〉 ∗ 〈A〉 ∗ R 〈A〉 ∗ R R ∗ 〈B〉 ∗ 〈B〉 R ∗ 〈B〉

〈A〉 ∗ R R R ∗ 〈B〉 R

◦∗R

〈A〉∗� �

�

R∗◦

�∗〈B〉 �

�

αA αB

and two invertible span transformations for unitality

R R R R

〈A〉 ∗ R R R ∗B R

id.A∗R

�

υA R∗id.B

�

υB

so that the following transformations are well-defined, for associativity

〈A〉 ∗ 〈A〉 ∗ 〈A〉 ∗ R R 〈A〉 ∗ R ∗ 〈B〉 ∗ 〈B〉 R

〈A〉 ∗ 〈A〉 ∗ R ∗ 〈B〉 R R ∗ 〈B〉 ∗ 〈B〉 ∗ 〈B〉 R

(〈ak〉◦〈a`〉◦〈am〉)�R

〈ak〉�(〈a`〉�(〈am〉�R))

〈ak〉�(R�(〈b`〉◦〈bm〉))

((〈ak〉�R)�〈b`〉)�〈bm〉

(〈ak〉◦〈a`〉)�(R�〈bm〉)

(〈ak〉�(〈a`〉�R))�〈bm〉

R�(〈bk〉◦〈b`〉◦〈bm〉)

((R�〈bk〉)�〈b`〉)�〈bm〉

and for unitality.

〈A〉 ∗ R 〈A〉 ∗ R R ∗ 〈B〉 R ∗ 〈B〉
(〈ak〉◦id.Ak)�R

〈ak〉�(id.Ak�R)

R�(id.B0◦〈bk〉)

(R�id.B0)�〈bk〉

The objects and morphisms of a matrix category are the loose morphisms and squares of a bifi-

brant double category, i.e. relations and inferences of a logic, via the collage; see Prop. 35.

A0 B0

A1 B1

a

R0p

b

R1
p

r

The actions by 〈A〉 and 〈B〉 define parallel composition of this double category, as we soon expound.

53 Contents



2.2. MATRIX CATEGORIES

Because a weave double category is a coproduct, an action by 〈A〉 defines a pair of actions by
−→
A

and
←−
A , and a bimodule structure defines four actions. These are drawn as follows.

−→
A -substitution

−→
B -image

←−
A -image

←−
B -substitution

Combining these pairwise, there are four distinct bimodule structures, which we name as follows.

−→
A ,
−→
B -bimodule

−→
A ,
←−
B -bimodule

←−
A ,
−→
B -bimodule

←−
A ,
←−
B -bimodule

companion fibration opfibration conjoint
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Each action defines parallel composition by squares in
−→
A and

←−
B or opsquares in

←−
A and

←−
B .

A0
0 A0

1 B0
0 A0

1 B0
0 B0

1

A1
0 A1

1 B1
0 A1

1 B1
0 B1

1

A0
0 A0

1 B0
0 A0

1 B0
0 B0

1

A1
0 A1

1 B1
0 A1

1 A1
1 B1

1

â0
1

â1
1

a0 a1

R0p

R1
p

b0

R0p

R1
p

a1 b0

b̂0
1

b1

b̂1
1

ǎ0
1

a0 a1

R0p

b0

ǎ1
1

R1
p

R0p

R1
p

a1 b0

b̌0
1

b̌1
1

b1

r r

r r

We draw a zig-zag as an arrow pointing in both directions, and denote the action as follows.

A0
0 A0

k B0
0 A0

k B0
0 B0

k

A1
0 A1

k B1
0 A1

k B1
0 B1

k

〈ak〉

〈a`〉

a0 ak

R0p

R1
p

b0

R0p

R1
p

ak b0

〈bk〉

〈b〉`

bkwA r wBr

wA � r :R(〈ak〉 �R0, 〈a`〉 �R1) r � wB :R(R0 � 〈bk〉, R1 � 〈b`〉)

left action by 〈A〉 right action by 〈B〉
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Yet apart from functoriality, which involves weaves in A and B, the action is a structure on

objects; and an action by zig-zags is equivalent to a pair of actions by arrows and oparrows. Hence

for many definitions, particularly the coherence isomorphisms, we may simplify action notation to

a�R and R� b.

We now proceed to draw the coherences of these actions in string diagrams, and show that they

define the parallel composition of a bifibrant double category.

The actions of a matrix category satisfy the following coherence. First, each action is a span

functor, i.e. it preserves the sequential composition of the span categories 〈A〉,R, 〈B〉.

Composing in 〈A〉 and R, then acting by 〈A〉, is equal to acting by 〈A〉 then composing in R.

Composing in R and 〈B〉 then acting by 〈B〉 is equal to acting by 〈B〉 then composing in R.

Hence the following two composite squares are well-defined.

A0
0 A0

k B0
0 A0

k B0
0 B0

k

A1
0 A1

` B1
0 A1

k B1
0 B1

`

A2
0 A2

m B2
0 A2

k B2
0 B2

m

〈ak〉

a1
0 a1

i

R0p

R1
p

b1
0

〈am〉 R2
p

〈a`〉

a2
0 a2

j b2
0

R0p

R1
p

R2
p

a1
i

a2
j

b1
0

b2
0

〈bk〉

〈b`〉

〈bm〉

b1
i

b2
j

r1w1
A

w2
A

r2

w1
B

w2
B

r1

r2

By the coherence principle, these equations can be expressed by drawing simultaneous sequential

and parallel composition. Note that this is the “interchange law” for double categories.
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left interchange right interchange

(w1
A · w2

A)� (r1 · r2) = (w1
A � r1) · (w2

A � r2) (r1 · r2)� (w1
B · w2

B) = (r1 � w1
B) · (r2 � w2

B)

Next to unpack is the three-dimensional structure. The actions are associative and unital up to

coherent isomorphism: there are three “associators” for AAR, ARB, and RBB, and two “unitors”

for idAR and RidB.

Three-dimensional string diagrams effectively depict the coherence of these isomorphisms. First,

each is natural with respect to the morphisms of 〈A〉, R, and 〈B〉.

The center associator is an invertible span transformation (〈A〉 � R) � 〈B〉 ∼= 〈A〉 � (R � 〈B〉).

This can be drawn as a cube, with source on top and target on bottom, connected by the homs of

〈A〉, R, and 〈B〉.

center associator

αR : a� (R� b) ∼= (a�R)� b
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By the coherence principle, this cube expresses the naturality of the associator with respect to mor-

phisms of 〈A〉,R, 〈B〉: for every pair of weaves wA : 〈a0
k〉 → 〈a1

m〉 and wB : 〈b0
`〉 → 〈b1

n〉 the following

commutes.
(〈a0

k〉 �R)� 〈b0
`〉 〈a0

k〉 � (R� 〈b0
`〉)

(〈a1
m〉 �R)� 〈b1

n〉 〈a1
m〉 � (R� 〈b1

n〉)

αR

(wA�R)�wB wA�(R�wB)

αR

Continuing with the isomorphisms, there are associators for each composite action

left associator right associator

αA : (a1 ◦ a2)�R ∼= a1 � (a2 �R) αB : R� (b1 ◦ b2) ∼= (R� b1)� b2

and the left and right unitors, which are invertible span transformations.

left unitor right unitor

υA :R ∼= id.A�R υB : R ∼= R� id.B
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Finally, we have the equations that these isomorphisms satisfy.

For each quadruple in 〈A〉∗〈A〉∗〈A〉∗R, 〈A〉∗〈A〉∗R∗〈B〉, 〈A〉∗R∗〈B〉∗〈B〉, andR∗〈B〉∗〈B〉∗〈B〉,

the two ways to reassociate are equal.

associator coherence

(〈ak〉 ◦ 〈a`〉 ◦ 〈am〉)�R R� (〈bk〉 ◦ 〈b`〉 ◦ 〈bm〉)

⇒ 〈ak〉 � (〈a`〉 � (〈am〉 �R)) ⇒ ((R� 〈bk〉)� 〈b`〉)� 〈bm〉

(〈ak〉 ◦ 〈a`〉)� (R� 〈bm〉) 〈ak〉 � (R� (〈b`〉 ◦ 〈bm〉))

⇒ (〈ak〉 � (〈a`〉 �R))� 〈bm〉 ⇒ ((〈ak〉 �R)� 〈b`〉)� 〈bm〉

These equations define the “pentagon equations” of a double category.
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Last, the left unitor coheres with the left associator, and the right unitor coheres with the right

associator.

unitor coherence

(〈ak〉 ◦ id.A)�R⇒ 〈ak〉 � (id.A�R) R� (id.B ◦ 〈bk〉) ⇒ (R� id.B)� 〈bk〉

These equations define the “triangle equations” of a double category.
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We summarize the definition, by dimension: 1 is data, 2 and 3 are structure, and 4 is property.

1. matrix category a span category R :A ‖B

2. precompose action a span functor 〈A〉 � R : 〈A〉 ∗ R → R

postcompose action a span functor R� 〈B〉 :R ∗ 〈B〉 → R

3. associators inv. span trans. αA : (a1 � a2)�R ∼= a1 � (a2 �R)

αR : (a�R)� a ∼= a� (R� b)

αB : (R� b1)� b2
∼= R� (b1 � b2)

unitors inv. span trans. υA :R ∼= id.A�R

υB :R ∼= R� id.B

4. assoc. coherence equations (a1 ◦ a ◦ a3)�R⇒ a1 � (a2 � (a3 �R))

a1 � (R� (b2 ◦ b3)) ⇒ ((a1 �R)� b2)� b3

(a1 ◦ a2)� (R� b3) ⇒ (a1 � (a2 �R))� b3

R� (b1 ◦ b2 ◦ b3) ⇒ ((R� b1)� b2)� b3

unit coherence equations (a ◦ id.A)�R⇒ a� (id.A�R)

R� (id.B ◦ b) ⇒ (R� id.B)� b

To complete the section, we show how matrix category forms a logic.

Proposition 35. Let R :A ‖B be a matrix category, i.e. two-sided bifibration. The collage of R,

defined as follows, is a bifibrant double category. The base category is A + B, and the total category

is 〈A〉+R+ 〈B〉.

A + B 〈A〉+R+ 〈B〉 A + B

Parallel composition is given by the actions of 〈A〉 and 〈B〉 onR, and parallel composition in 〈A〉 and

〈B〉. The associators and unitors are defined by the coherence isomorphisms of R, and those of 〈A〉

and 〈B〉; their equations hold by fiat. The collage is a bifibrant double category, because morphisms

of A and B induce arrows and oparrows, which are companions and conjoints.
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2.2.1 Matrix functor [Descent]

A matrix category is a 2-bimodule, so its actions are associative and unital up to coherent isomor-

phism. In the same way, a matrix functor preserves the actions up to a coherent isomorphism.

Definition 36. Let [[A]] :A0 → A1 and [[B]] :B0 → B1 be functors, denoted [[A]](A0) ≡ [[A0]] :A1.

Let R0 :A0 ‖B0 and R1 :A1 ‖B1 be matrix categories. A matrix functor [[R(A,B)]] from R0 to

R1 is a morphism of 2-bimodules in SpanCat. This is a span functor

A0 R0 B0

A1 R1 B1

[[A]] [[B]][[R]]

with invertible span transformations called the left and right join

〈A0〉 ∗ R0 〈A1〉 ∗ R1 R0 ∗ 〈B0〉 R1 ∗ 〈B1〉

R0 R1 R0 R1

〈[[A]]〉∗[[R]]

[[R]]

�0
A �1

A

[[R]]∗〈[[B]]〉

[[R]]

�0
B �1

B[[�A]] [[�B]]

[[�A]] : [[a0]]� [[R0]] ∼= [[a0 �R0]] [[�B]] : [[R0]]� [[b0]] ∼= [[R0 � b0]]

which together are natural with respect to the center associator:

[[a]]� ([[R]]� [[b]]) ([[a]]� [[R]])� [[b]]

[[a]]� [[R� b]] [[a�R]]� [[b]]

[[a� (R� b)]] [[(a�R)� b]]

αR

[[A]]�A [[�B]]

[[�A]]

αR

[[�A]]�B [[B]]

[[�B]]
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and each is natural with respect to its own associator:

([[a1]] ◦ [[a2]])� [[R]] [[a1]]� ([[a2]]� [[R]]) [[R]]� ([[b1]] ◦ [[b2]]) ([[R]]� [[b1]])� [[b2]]

[[a1 ◦ a2]]� [[R]] [[a1]]� [[a2 �R]] [[R]]� [[b1 ◦ b2]] [[R� b1]]� [[b2]]

[[(a1 ◦ a2)�R]] [[a1 � (a2 �R)]] [[R� (b1 ◦ b2)]] [[(R� b1)� b2]]

αA

αA

[[�A]]�A[[R]]

[[�A]] [[�A]]

[[A]]�A[[�A]]

αB

[[R]]�B[[�B]]

[[�B]]

αB

[[�B]]�B[[B]]

[[�B]]

and each is natural with respect to its own unitor.

[[id.A]]� [[R]] [[R]] [[R]]� [[id.B]] [[R]]

[[id.A�R]] [[R]] [[R� id.B]] [[R]]

υA

[[�A]]

υA

υB

[[�B]]

υB
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A matrix functor is visualized as follows.

Dimension 2 is the mapping, a span functor with its induced span transformation.

Dimension 3 is the joins, which slide each action through the mapping.

left join right join

[[〈ak〉]]�1 [[R]] ∼= [[〈ak〉 �0 R]] [[R]]�1 [[〈b`〉]] ∼= [[R�0 〈b`〉]]
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Dimension 4 is the coherence equations, for associators and for unitors.

associator coherence

unitor coherence
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We summarize the concept of matrix functor.

2. matrix functor span functor [[R]]([[A]], [[B]]) :R0(A0,B0)→ R1(A1,B1)

3. left join inv. span trans. [[�A]] : [[a0]]� [[R0]] ∼= [[a0 �R0]]

right join inv. span trans. [[�B]] : [[R0]]� [[b0]] ∼= [[R0 � b0]]

4. left assoc. coherence equation ([[a1]] ◦ [[a2]])� [[R]] ⇒ [[a1 � (a2 �R)]]

center assoc. coherence equation [[a]]� ([[R]]� [[b]]) ⇒ [[(a�R)� b]]

right assoc. coherence equation [[R]]� ([[b1]] ◦ [[b2]]) ⇒ [[(R� b1)� b2]]

left unit coherence equation [[id.A]]� [[R]] ⇒ [[R]]

right unit coherence equation [[R]]� [[id.B]] ⇒ [[R]]

To conclude the section, we derive a formula for the category of matrix functors between a pair of

matrix categories. This is the foundation of the “co/descent calculus” of bifibrant double categories.

The descent formula

In the same way that the set of transformations between profunctors is formed by an end, the

category of matrix functors between matrix categories is formed by a descent object [19].

A transformation of profunctors satisfies a naturality equation, and hence the end which forms

the set of transformations is an equalizer. By contrast, a matrix functor is only “natural” up to

isomorphism: the category of span functors equipped with a pair of joins is formed by the following

iso-inserter.

S(R0,R1) S(〈A0〉 ∗ R0,R1)× S(R0 ∗ 〈B0〉,R1)

Nat(R0,R1)

S(R0,R1) S(〈A0〉 ∗ R0,R1)× S(R0 ∗ 〈B0〉,R1)

( [[a]]�[[R]], [[R]]�[[b]] )

( [[a�R]], [[R�b]] )

iso.ins

iso.ins

( [[�A]], [[�B]] )

Each coherence equation of these joins is then imposed by an equifier.
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First, joining composites is well-defined:

Nat(R0,R1) S((〈A0〉 ∗ 〈A0〉) ∗ R0,R1)

×

Nat(R0,R1)α Nat(R0,R1) S(〈A0〉 ∗ (R0 ∗ 〈B0〉),R1)

×

Nat(R0,R1) S(R0 ∗ (〈B0〉 ∗ 〈B0〉),R1)

([[a1]]◦[[a2]])�[[R]]

[[a1�(a2�R)]]

[[a]]�([[R]]�[[b]])

[[(a�R)�b]]

[[R]]�([[b1]]◦[[b2]])

[[(R�b1)�b2]]

equif

and second, joining units is well-defined.

Nat(R0,R1)α S(R0,R1)

MatCat(R0,R1) Nat(R0,R1)α ×

Nat(R0,R1)α S(R0,R1)

[[id.A]]�[[R]]

[[R]]

[[R]]�[[id.B]]

[[R]]

equif

All together, this constructs the descent object in Cat of the above functors and transformations.

MatCat(R0,R1) S(R0,R1)

S(〈A0〉 ∗ R0,R1)

×

S(R0 ∗ 〈B0〉,R1)

S((〈A0〉 ∗ 〈A0〉) ∗ R0,R1)

×

S(〈A0〉 ∗ (R0 ∗ 〈B0〉),R1)

×

S(R0 ∗ (〈B0〉 ∗ 〈B0〉),R1)

desc

We denote the descent object, an equifier of an iso-inserter, by an “arrow product” notation.

MatCat[R0 → R1] ≡ ~ΠA :A0,B :B0 Cat[R0(A,B)→ R1([[A]], [[B]])]

As we will see, the “descent” construction is dual to that of composition of matrix categories (2.5).
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2.3 Matrix profunctors

Just as a matrix category is a bimodule of weave double categories, a matrix profunctor is a bimodule

of weave vertical profunctors, which is coherent with the bimodule structures of the source and

target matrix categories.

Definition 37. Let X,Y,A,B be categories, and Q :X ‖Y R :A ‖B be matrix categories.

Let f :X |A and g :Y |B be profunctors, giving weave profunctors f ← 〈f〉 → f and g ← 〈g〉 → g.

A matrix profunctor i(f, g) :Q(X,Y) |R(A,B) is a span profunctor which is a bimodule from 〈f〉

to 〈g〉, which coheres with the associators and unitors of Q and R.

Hence a matrix profunctor is a span profunctor

X Q Y

A R B

f p gpi

with two span transformations, precompose action by 〈f〉 and postcompose action by 〈g〉

〈X〉 ∗ Q Q Q ∗ 〈Y〉 Q

〈A〉 ∗ R R R ∗ 〈B〉 R

〈f〉∗i p

�X

�A

ip i∗〈g〉 p

�Y

�B

ip◦f ◦g

which cohere with the associators and unitors of Q and R, as follows.

associator coherence

〈X〉 ∗ Q Q

〈X〉 ∗ Q ∗ 〈Y〉 Q ∗ 〈Y〉

〈A〉 ∗ R ∗ 〈Y〉 R ∗ 〈B〉

〈A〉 ∗ R R

〈f〉∗i∗〈g〉p〈f〉∗i p

i∗〈g〉p ip◦f∗〈g〉〈f〉∗◦g ◦g

◦f

∼=

∼=

x� (Q� y) (x�Q)� y

a� (R� b) (a�R)� b

αQ

αR

[f0,f1]◦(i◦[g0,g1]) ([f0,f1]◦i)◦[g0,g1]
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〈X〉 ∗ Q Q

〈X〉 ∗ 〈X〉 ∗ Q 〈X〉 ∗ Q

〈A〉 ∗ 〈A〉 ∗ R 〈A〉 ∗ R

〈A〉 ∗ R R

〈f〉∗〈f〉∗ip〈f〉∗i p

〈f〉∗ip ip◦∗i〈f〉∗◦f ◦f

◦f

∼=

∼=

(x1 ◦ x2)�Q x1 � (x2 �Q)

(a1 ◦ a2)�R a1 � (a2 �R)

αX

αA

[f0,f1,f2]◦i [f0,f1]◦([f1,f2]◦i)

Q ∗ 〈Y〉 Q

Q ∗ 〈Y〉 ∗ 〈Y〉 Q ∗ 〈Y〉

R ∗ 〈B〉 ∗ 〈B〉 R ∗ 〈B〉

R ∗ 〈B〉 R

i∗〈g〉∗〈g〉pi∗〈g〉 p

i∗〈g〉p ipi∗◦◦g∗〈g〉 ◦g

◦g

∼=

∼=

Q� (y1 ◦ y2) (Q� y1)� y2

R� (b1 ◦ b2) (R� b1)� b2

αY

αB

i◦[g0,g1,g2] (i◦[g0,g1])◦[g1,g2]

unitor coherence

Q Q

Q 〈X〉 ∗ Q

R 〈A〉 ∗ R

R R

i p 〈f〉∗ip ipi p id∗i ◦f

∼=

∼=

id.X�Q Q

id.A�R R

υX

υA

id.f◦i i

Q Q

Q Q ∗ 〈Y〉

R R ∗ 〈B〉

R R

i p i∗〈g〉p ipi p i∗id ◦g

∼=

∼=

Q� id.Y Q

R� id.B R

υY

i◦id.g

υB

i
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To unpack the definition, matrix profunctor elements are seen as squares of a double category.

X Y

A B

Qp

R
p

f gi

matrix profunctor

i(f, g) :Q(X,Y) |R(A,B)

The actions of arrow profunctors 〈f〉 and 〈g〉 on i define parallel composition of squares:

X0 X1 Y0 X1 Y0 Y1

A0 A1 B0 A1 B0 B1

Qp

R
p

f1 g0

x

f0

a

Qp

R
p

f1 g0

y

b

g1i i

precompose action postcompose action

◦f : 〈f〉 ∗ i→ i ◦g : i ∗ 〈g〉 → i

and the associators and unitors of Q and R are natural with respect to these actions. By the coher-

ence principle, each equation can be drawn as a single string diagram.
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center associator coherence

left assoc. coherence right assoc. coherence

left unit coherence right unit coherence
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We summarize the concept of matrix profunctor, ordered by dimension.

2. matrix profunctor a span profunctor i(f, g) :Q(X,Y) |R(A,B)

3. precompose action a span transformation 〈f〉 � i : 〈f〉 ∗ i⇒ i

postcompose action a span transformation i� 〈g〉 : i ∗ 〈g〉 ⇒ i

4. assoc. coherence equations (x1 � x2)�Q⇒ a1 � (a2 �R)

x� (Q� y) ⇒ (a�R)� b

Q� (y1 � y2) ⇒ (R� b1)� b2

unit coherence equations id.X�Q⇒ id.A�R

Q� id.Y ⇒ R� id.B

Note. A matrix profunctor i(f, g) :Q(X,Y) |R(A,B) does not include nor entail any action of the

elements of f or g on Q or R. Visually, this means that in general the “bars” of f and g connecting

X to A and Y to B do not bend; formally it means that the collage is not a bifibrant double category.

It is a special property when such actions do exist.

Last, we verify a key fact about matrix profunctors which is needed for the coherence of the three-

dimensional category of matrix categories [Theorem 54]. A span A ← R → B is exponentiable or

“powerful” if pre- and post-composition by R have right adjoints [18].

Theorem 38. Matrix profunctors are exponentiable.

Proof. We follow the reasoning of Street in [18]. Let i(f, g) :Q(X,Y) |R(A,B) be a matrix profunc-

tor, as defined above. This determines a displayed profunctor i : f × g → Prof with actions

Q(x, y) ◦ i(f, g)⇒ i(xf, yg) and i(f, g) ◦ R(a,b)⇒ i(fa, gb).

These actions are invertible, because Q and R are bifibrations: each i : i(xf, yg) and each i : i(fa, gb)

factor as the following elements of Q(x, y) ◦ i(f, g) and i(f, g) ◦ R(a,b), respectively.
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X0 Y0

X0 X0 Y0 Y0

X1 X0 Y0 Y1

X1 X1 Y1 Y1

A A B B

A B

Qp
x y

f g

R
p

x̌

x

Qp

ŷ

y

f g

Qp

R
p

i

∼=

∼=

X Y

X X Y Y

A0 A0 B0 B0

A0 A1 B1 B0

A1 A1 B1 B1

A1 B1

Qp
f g

a b

R
p

â

a

b̌

b

R
p

R
p

gf

Qp

i

∼=

∼=

These inverses serve to define right adjoints to composition by f ← i → g: given a span profunctor

j(f, h) :S(X,Z) | T (A,C), the right extension [i → j](g, h) : [Q → S](Y,Z) | [R → T ](B,C) consists

of transformations i(−, g)⇒ j(−, h) and actions as follows.

Q(−,Y0) R(−,B)

Q(−,Y0) Q(−,Y1) R(−,B)

S(−,Z0) S(−,Z1) T (−,C)

S(−,Z0) T (−,C)

Q(−,y)
p

i(−,g)
p

S(−,z)
p

j(−,h)
p

i(−,yg)

j(−,zh)
p

∼=

∼=

Q(−,Y) R(−,B1)

Q(−,Y) R(−,B0) R(−,B1)

S(−,Z) T (−,C0) T (−,C1)

S(−,Z) T (−,C1)

i(−,g)
p

R(−,b)
p

j(−,h)
p

T (−,c)
p

i(−,gb)
p

j(−,hc)
p

∼=

∼=

Hence by reasoning exactly analogous to that of Street [18], matrix profunctors are exponentiable.
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2.3.1 Matrix transformation

Just as a matrix profunctor is a bimodule of weave profunctors, which coheres with the associators

of its source and target matrix categories, a matrix transformation is a homomorphism of these

bimodules, which coheres with the joins of the source and target matrix functors.

Definition 39. Let [[X]] :X0 → X1, [[Y]] :Y0 → Y1, [[A]] :A0 → A1, [[B]] :B0 → B1 be functors,

f0 :X0 |A0, f1 :X1 |A1, g0 :Y0 |B0, g1 :Y1 |B1 profunctors, and [[f ]](X,A) : f0 ⇒ f1, [[g]](Y,B) : g0 ⇒

g1 transformations.

Let Q0 :X0 ‖Y0, Q1 :X1 ‖Y1, R0 :A0 ‖B0, R1 :A1 ‖B1 be matrix categories, and [[Q]] :Q0 → Q1,

[[R]] :R0 → R1 be matrix functors. Let i0(f0, g0) :Q0 |R0 and i1(f1, g1) :Q1 |R1 be matrix profunc-

tors.

A matrix transformation [[i]](f, g) : i0 → i1 is a span transformation

f0 i0 g0

f1 i1 g1

[[i]] [[g]][[f ]]

which coheres with the left and right joins of [[Q]] and [[R]].

Q0 Q1

〈X0〉 ∗ Q0 〈X1〉 ∗ Q1

〈A0〉 ∗ R0 〈A1〉 ∗ R1

R0 R1

〈f0〉∗i0p 〈f1〉∗i1p

〈[[X]]〉∗[[Q]]

〈[[A]]〉∗[[R]]

i0

p i1

p〈[[f ]]〉∗[[i]]

∼=

∼=

◦ ◦

[[i]]

[[x]]� [[Q]] [[x�Q]]

[[a]]� [[R]] [[a�R]]

[�X]

[[f�i]][[f]]�[[i]]

[�A]
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Q0 Q1

Q0 ∗ 〈Y0〉 Q1 ∗ 〈Y1〉

R0 ∗ 〈B0〉 R1 ∗ 〈B1〉

R0 R1

[[Q]]∗〈[[Y]]〉

[[R]]∗〈[[B]]〉

i0∗〈g0〉p i1∗〈g1〉p

[[Q]]

[[R]]

i0

p i1

p[[i]]∗〈[[g]]〉
◦ ◦

∼=

∼=

[[i]]

[[Q]]� [[y]] [[Q� y]]

[[R]]� [[b]] [[R� b]]

[�Y]

[[i�g]][[g]]�[[i]]

[�B]
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In string diagrams, a matrix transformation is drawn as:

matrix transformation

and the coherence with the joins of Q and R is drawn as follows.

left join coherence right join coherence

We summarize the concept of matrix transformation.

3. matrix transformation a span transformation [[i]]([[f ]], [[g]]) : i0(f0, g0)⇒ i1(f1, g1)

4. left join coherence equation [[x]]� [[Q]] ⇒ [[a�R]]

right join cohreence equation [[Q]]� [[y]] ⇒ [[R� b]]
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2.4 MatCat over Cat× Cat

Matrix categories and matrix functors, matrix profunctors and matrix transformations form MatCat,

a bifibrant double category which is fibered over Cat× Cat.

Definition 40. Define MatCat to be the category of matrix categories and matrix functors. Com-

position of matrix functors is defined by that of span functors, and that of joins; one can verify this

satisfies the necessary coherence, and that matrix functor composition is associative and unital.

Definition 41. Define MatProf to be the category of matrix profunctors and matrix transformations.

Composition is defined by that of span transformations, and the coherence of the composite follows

from that of its factors. MatProf is equipped with projections to MatCat, giving a span of categories.

MatCat MatProf MatCat

Theorem 42. MatProf is fibered over MatCat×MatCat.

Proof. Let Q0(X0,Y0), R0(A0,B0), Q1(X1,Y1) and R1(A1,B1) be matrix categories.

Let [[Q]]([[X]], [[Y]]) :Q0 → Q1 and [[R]]([[A]], [[B]]) :R0 → R1 be matrix functors.

The matrix functor substitution matrix profunctor i1(f1, g1)([[Q]], [[R]]) :Q0(X0,Y0) |R0(A0,B0)

is defined by substituting functors into profunctors: f1([[X]], [[A]]), i1([[Q]], [[Q]]), g1([[Y]], [[B]]).

X1 Q1 Y1

X0 Q0 Y0 Q0 R0

A0 R0 B0 Q1 R1

A1 R1 B1

i1
f1
g1

(Q,R)f1

p g1pf1(X,A)p g1(Y,B) p

i1
f1
g1

(Q,R)
p

i1
p

Q Rcart cart cart

Hence it consists of elements

i1
f1
g1([[Q]], [[R]])(f1, g1)(Q0, R0) = i1(f1, g1)([[Q0]], [[R0]])

77 Contents



2.4. MATCAT OVER CAT× CAT

which can be understood as squares of the following form.

[[X0]] [[Y0]]

[[A0]] [[B0]]

[[Q0]]
p

[[R0]]
p

f1 g1i1

The substitution i1
f1
g1(Q,R) is a matrix profunctor, because it is a restriction of the matrix pro-

functor i1; its actions by the arrow profunctors of f1 and g1 are inherited, as well as their coherence.

It is equipped with a cartesian morphism to i1, by universal property of pullback.

Hence MatProf is fibered over MatCat×MatCat.

Now to complete the double category, we need only to define horizontal composition: sequential

matrix profunctor composition, in the direction of profunctors, as opposed to span composition.

To compose matrix profunctors m over f and n over g, we have to define an action by 〈f ◦ g〉.

We can use the actions of m and n, because squares of 〈f ◦ g〉 are composites in 〈f〉 ◦ 〈g〉, as follows.

A square of 〈f ◦ g〉 from x̂ : 〈X〉(X0,X1) to ẑ : 〈Z〉(Z0,Z1) is a pair of elements of f ◦ g so that

(f0, g0 · z) = (x · f1, g1). By the definition of equality in f ◦ g, this means there is a zig-zag of arrows

ŷ :
−→
Y (Y0,Y1) or oparrows y̌ :

←−
Y (Y0,Y1) so that each square commutes.

X0 X1 X0 X1

Y0 Y1 Y0 Y1

Z0 Z1 Z0 Z1

x̂

ŷ

ẑ

f0

g0

f1

g1

x̂

f0 f1

g0 g1

ẑ

y̌
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Such a square equals the following sequential composite of a weave in f and a weave in g.

X0 X1 X0 X1

X0 X0 X0 X1

X1 X1

Y0 Yk = Y0 Y0 Yk Yk

Z0 Z0

Z0 Z1 Z1 Z1

Z0 Z1 Z0 Z1

x̂

ẑ

f0 f1

g0 g1

〈yk〉

f0 f0

g0

z

ẑ

g0

g1 g1

〈yk〉

〈id.X〉 x̂

x

f1 f1

〈id.Z〉

x̂

ẑ

∼=

∼=

So a square 〈yk〉 : 〈f ◦ g〉((f0, g0), (f1, g1))(x̂, ẑ) factors as the sequential composite of the following.

υ(x̂) · (f0, f0, . . . , x · f1, f1) : 〈f〉(f0, f1)(x̂, 〈yk〉)

(g0, g0 · z, . . . , g1, g1) · υ(ẑ) : 〈g〉(g0, g1)(〈yk〉, ẑ)

An opsquare 〈yk〉 : 〈f ◦ g〉((f0, g0), (f1, g1))(x̌, ž) factors as the sequential composite of the following.

υ(x̌) · (f0, x · f0, . . . , f1, f1) : 〈f〉(f0, f1)(x̌, 〈yk〉)

(g0, g0, . . . , g1 · z, g1) · υ(ž) : 〈g〉(g0, g1)(〈yk〉, ž).

In general, a weave in f ◦ g is a composite of these squares and opsquares with weaves in X and Z.

For any weave w : 〈f ◦ g〉, denote by w(f) : 〈f〉 the weave in f obtained by factoring each square and

opsquare as above; similarly denote the factor of g by w(g) : 〈g〉.

These provide concise notation for defining the actions of 〈f ◦ g〉.

This ensures the totality of the actions; so in fact, the crux of sequential composition is to ensure

that the actions are well-defined over the identities. Recall from 2.1.2 we noted that the associativity

quotient (f, y · g) ≡ (f · y, g) defines the identity squares of 〈f ◦ g〉.

Elements of f◦g and k◦` are determined only up to associativity, and distinct zig-zags give distinct

actions; so to compose matrix profunctors m(f, k) :R(X,A) | S(Y,B) and n(g, `) :S(Y,B) | T (Z,C),

we need to quotient m ◦ n by the actions of these identity squares in 〈f ◦ g〉 and 〈k ◦ `〉.
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Definition 43. Let m(f, k) :R(X,A) | S(Y,B) and n(g, `) :S(Y,B) | T (Z,C) be matrix profunctors.

The sequential composite matrix profunctor (m �n)(f ◦ g, k ◦ `) :R(X,A) | T (Z,C) is defined to

be the following coequalizer.

R

R 〈X〉 ∗ R ∗ 〈A〉 R R

〈Y〉 ∗ S ∗ 〈B〉 S

T 〈Z〉 ∗ T ∗ 〈C〉 T T

T

m p

n p

�

〈f〉∗m∗〈k〉

�

〈g〉∗n∗〈`〉

�

m�n

id∗R∗id

id∗T ∗id

id.mn.idp

∼=

m◦n p

∼=

�

�

coeq
cart

Hence elements are equivalence classes [S.(m,n)] :m ◦ n, such that for each pair of zig-zags, and

each pair of pairs of weaves, the following are equated.

[S.(m,n)] ≡ [υR · (〈yi〉 � S � 〈bj〉).(wf �m� wk, wg � n� w`) · υ−1
T ]

X A

X X A A

Y0 Y1 B0 B1

Z Z C C

Z C

Rp

Sp

Tp

f1 k0

g1 l0

f0

g0

〈yi〉 〈bj〉

k1

l1

Rp

T
p

m

∼=

n

∼=

wf

wg

wk

w`
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This is a span profunctor f ◦ g ← m � n → k ◦ ` mapping each [S.(m,n)] to [Y1.(f1, g1)]

and [B0.(k0, l0)]; this is well-defined because any other representative lies over equivalent pairs

Y0.(f0, g0) and B1.(k1, l1).

Moreover, m � n is a matrix profunctor from f ◦ g to k ◦ `: as described above, every square and

opsquare in f ◦ g is a composite of a weave in f and a weave in g. Because a weave in f ◦ g is in

general a horizontal and vertical composite of squares and opsquares of f ◦g composed with weaves

in X and Z, we define the action inductively over the structure of a composite weave. Then for the

base generators, the quotient ensures that the action is well-defined.

- The action of a horizontal composite is the horizontal composite of the actions of each factor.

X0 X1 X2 A X0 X1 A

Y0 Y1 Y2 B = Y0 Y1 B

Z0 Z1 Z2 C Z0 Z1 C

p

p

p

p

p p

f2 mf1

g1 g2 n

f1

g1

f2�m

g2�n

- The action of a vertical composite of weaves in X and Z with a weave in f ◦ g is the vertical

composite of the actions of the following factorization by op/cartesian squares.

X0
0 X0

1 X0
1 A

X0
0 X0

1 A X1
0 X1

1 X0
1 A

X1
0 X1

1 X1
0 X1

1 X1
1

Y0 Y1 B = Y0 Y1 Y1 B

Z0
0 Z0

1 Z0
0 Z0

1 Z0
1

Z1
0 Z1

1 C Z0
0 Z0

1 Z1
1 C

Z1
0 Z1

1 Z1
1 C

p

p p

p

p

p

p p

x

z

x η

ε

R

η

εz T

m

f

g

n

f

g

m

n
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- The action by a square or opsquare is the action of its factorization into a weave in f and a

weave in g, on m and n respectively. The case of a square is given as follows, and an opsquare dually.

X0 X1 A

X0 X1 A X0 X0 X0 X1

X1 X1

Y0 Yi B = Y0 Y0 Yi Yi B

Z0 Z0

Z0 Z1 C Z0 Z1 Z1 Z1

Z0 Z1 C

x̂

f0 f1

〈yi〉

g0 g1

ẑ

Rp

k

l

Sp

T
p

x̂

ẑ

ẑ

x̂

f0 f0

g0 g0

g1 g1

x

f1 f1

z

Rp

k

Sp

T
p

l

〈yi〉

m

n

ε

η

m

n

∼=

∼=

This action is well-defined by the quotient. Because squares and opsquares are the base generators

of weaves, this completes the induction. Hence the actions by 〈f ◦ g〉 and 〈k ◦ `〉 are well-defined.

Last, because the actions are defined componentwise, the coherence of m�n with the associators

and unitors of R and T follows from that of m with R and S and that of n with S and T .

x� (R� a) (x�R)� a

y � (S � b) (y � S)� b

z� (T � c) (z� T )� c

αR

αS

αT

yf�(m�bk) (yf�m)�bk

yg�(n�bl) (yg�n)�bl

Hence the sequential composite (m � n)(f ◦ g, k ◦ `) :R(X,A) | T (Z,C) is a matrix profunctor.
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Theorem 44. Matrix categories and matrix functors, matrix profunctors and matrix transformations

form a bifibrant double category, i.e. logic, which we call MatCat.

Proof. Because matrix profunctor composition is defined by coequalizer, it is canonically functorial.

Let [[m]]([[f ]], [[k]]) :m0(f0, k0) ⇒ m1(f1, k1) and [[n]]([[g]], [[`]]) :n0(g0, `0) ⇒ n1(g1, `1) be a sequential-

composable pair of matrix transformations. The composite is defined as follows.

([[m]] � [[n]]) : (m0 � n0)(f0 ◦ g0, k0 ◦ `0) ⇒ (m1 � n1)(f1 ◦ g1, k1 ◦ `1)

[S0.(m0, n0)] 7→ [[[S0]].([[m0]], [[n0]])]

To be a matrix transformation, this composite must cohere with the left and right joins of the

matrix functors [[R]]([[X]], [[A]]) and T ([[Z]], [[C]]); yet just as for matrix profunctors, this follows from

the coherence of [[m]] with respect to [[R]] and [[S]] and that of [[n]] with respect to [[S]] and [[T ]].

[[x]]� [[R]] [[x�R]] [[R]]� [[a]] [[R� a]]

[[y]]� [[S]] [[y � S]] [[S]]� [[b]] [[S � b]]

[[z]]� [[T ]] [[z� T ]] [[T ]]� [[c]] [[T � c]]

[[�X]]

[[�Y]]

[[�Z]]

[[f]]�[[m]]

[[g]]�[[n]]

[[f�m]]

[[g�n]]

[[m]]�[[k]]

[[n]]�[[l]]

[[m�k]]

[[n�l]]

[[�A]]

[[�B]]

[[�C]]

This preserves composition of matrix transformations, by canonical functoriality of coequalizer.

The associator and unitors of MatCat are inherited from SpanCat: the span transformations

(m � n) � p ∼= m � (n � p)

[((m,n), p)] 7→ [(m, (n, p))]

m ∼= R �m R �m ∼= m

m 7→ [(id.R,m)] [(r,m)] 7→ r ·m

m ∼= m � S m � S ∼= m

m 7→ [(m, id.S)] [(m, s)] 7→ m · s

are matrix transformations, and they are well-defined on equivalence classes in the sequential com-

posite because the quotient only reindexes along the base pair of morphisms.

Hence MatCat is a double category.

We now define substitution of functors in matrix categories, and transformations in matrix pro-

functors; hence MatCat is fibered over Cat× Cat, and MatProf is fibered over Prof × Prof.
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MatCat MatProf MatCat

Cat× Cat Prof × Prof Cat× Cat

Definition 45. A double fibration is a category in the 2-category of fibrations. See [4].

Proposition 46. Let Cat be the category of categories and functors, and let MatCat be the category

of matrix categories and matrix functors. The projection MatCat→ Cat× Cat is a fibration.

Proof. Let [[A]] :A0 → A1, [[B]] :B0 → B1 be functors, and let R1 :A1 ‖B1 be a matrix category. We

define the substitution matrix category R1([[A]], [[B]]) :A0 ‖B0 as follows.

1. The span category A0 ← R1([[A]], [[B]])→ B0 is the pullback of R1 along the functors [[A]], [[B]].

So the category over A0 :A0,B0 :B0 is R1([[A0]], [[B0]]), and similarly for morphisms.

A0 R1([[A0]], [[B0]]) B0

A1 R1 B1

[[A]] [[B]]

yy

Hence R1([[A]], [[B]])(a0,b0)(R0
1, R

1
1) consists of squares r1 :R1 over ([[a0]], [[b0]]).

[[A0
0]] [[B0

0]]

[[A1
0]] [[B1

0]]

R0
1p

R1
1

p

[[a0]] [[b0]]r1

2. The actions of A0 and B0 on R1([[A]], [[B]]), span functors

〈A0〉 � − : 〈A0〉 ∗ R1([[A]], [[B]]) → R1([[A]], [[B]])

−� 〈B0〉 : R1([[A]], [[B]]) ∗ 〈B0〉 → R1([[A]], [[B]])

are those induced by pullback: map the arrow or oparrow by the functor, and then act on R1.
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a0 : 〈A0〉(A0
0,A

1
0) R1 :R1([[A1

0]], [[B0
0]]) 7→ [[a0]]�R1 : R1([[A0

0]], [[B0
0]])

R1 :R1([[A1
0]], [[B0

0]]) b0 : 〈B0〉(B0
0,B

1
0) 7→ R1 � [[b0]] : R1([[A1

0]], [[B1
0]])

[[A0
0]] [[A1

0]] [[B0
0]] [[B1

0]]
[[a0]] [[b0]]R1p

3,4. The associators and unitors are inherited from R1, satisfying the necessary coherence.

The substitution matrix category R1([[A]], [[B]]) is equipped with a projection matrix functor to

R1, and this is a cartesian morphism over functors [[A]], [[B]], by universal property of pullback.

In the same way, we define substitution of transformations in a matrix profunctor by pullback.

Theorem 47. MatProf → Prof × Prof is a fibration.

Proof. Let [[X]] :X0 → X1, [[Y]] :Y0 → Y1, [[A]] :A0 → A1, [[B]] :B0 → B1 be functors, and letQ1 :X1 ‖Y1

and R1 :A1 ‖B1 be matrix categories, with Q1([[X]], [[Y]]) :X0 ‖Y0 and R1([[A]], [[B]]) :A0 ‖B0.

Let f0 :X0 |A0, f1 :X1 |A1, g0 :Y0 |B0, g1 :Y1 |B1 be profunctors, and [[f ]] : f0 ⇒ f1 and [[g]] : g0 ⇒

g1 be transformations. For a matrix profunctor i1(f1, g1) :Q1 |R1, define the substitution matrix

profunctor i1([[f ]], [[g]]) :Q1([[X]], [[Y]]) |R1([[A]], [[B]]) from f0 to g0 as follows.

2. The span profunctor f0 ← i1([[f ]], [[g]])→ g0 is the pullback of i1 along transformations [[f ]], [[g]].

f0 i1([[f0]], [[g0]]) g0

f1 i1 g1

[[f ]] [[g]]

yy

So the profunctor over f0 : f0(X0,A0), g0 : g0(Y0,B0) is i1([[f0]], [[g0]]) :Q1([[X0]], [[Y0]]) |R1([[A0]], [[B0]]),

consisting of squares of the following form.

[[X0]] [[Y0]]

[[A0]] [[B0]]

[[f0]] [[g0]]

Q1p

R1
p

i1
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3. The actions by the weave profunctors 〈f0〉 and 〈g0〉 are those induced by pullback.

[[X0
0]] [[X1

0]] [[Y0
0]] [[Y1

0]]

[[A0
0]] [[A1

0]] [[B0
0]] [[B1

0]]
[[a0]] [[b0]]R1

p

[[x0]] Q1p
[[y0]]

[[f00 ]] [[f10 ]] [[g0
0]] [[g1

0]]i1

4. Because the associators and unitors of Q1([[X]], [[Y]]) and R1([[A]], [[B]]) are inherited from Q1

and R1, their coherence with i1([[f ]], [[g]]) is inherited from that of Q1 and R1 with i1.

Theorem 48. MatCat→ Cat× Cat is a double fibration.

Proof. We show that matrix profunctor composition preserves substitution.

Let mi(f, k) :R(X,A) | S(Y,B) and ni(g, `) :S(Y,B) | T (Z,C), for i : {0, 1}, be matrix profunctors.

Let [[m]] :m0 ⇒ m1 and [[n]] :n0 ⇒ n1 be matrix transformations, and form the substitution.

X1 R1 A1

X0 R1([[X]], [[A]]) A0

Y1 Y0 S1([[Y]], [[B]]) B0 B1

Z0 T1([[Z]], [[C]]) C0

Z1 T1 C1

f1([[X]],[[Y]])p

f1

p

g1 p

g1([[Y]],[[Z]])p

k1([[A]],[[B]]) p

k1

p

`1([[B]],[[C]]) p

`1

p

m1([[f ]],[[k]])

n1([[g]],[[`]])

cart

cart

cart

cart

The compositem1([[f ]], [[k]])�n1([[g]], [[`]]) consists of equivalence classes [S1.(m1, n1)] over [([[f0]], [[g0]])]

and [([[k0]], [[l0]])]. By comparison, the substitution (m1 � n1)([[f ]] ◦ [[g]], [[k]] ◦ [[`]]) consists of equiva-

lence classes [S1.(m1, n1)] over pairs [(f1, g1)] and [(k1, l1)] which are equal to pairs [([[f0]], [[g0]])] and

[([[k0]], [[l0]])] by associativity.
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[[X0]] [[X0]] [[A0]] [[A0]]

[[Y0]] Y1 B1 [[B0]]

[[Z0]] [[Z0]] [[C0]] [[C0]]

R1p

S1p

T1p

f1

g1

k1

l1

[[f0]]

[[g0]]

[[k0]]

[[l0]]

m1

n1

Hence the two are isomorphic.

m1([[f ]], [[g]]) � n1([[k]], [[`]]) ∼= (m1 � n1)([[f ]] ◦ [[g]], [[k]] ◦ [[`]])

Thus, sequential composition of matrix profunctors preserves substitution of transformations.

This means that MatCat is a weak category in the 2-category of fibered categories, i.e. a fibered

double category.

MatCat MatProf MatCat

Cat× Cat Prof × Prof Cat× Cat

As Cat and MatCat are bifibrant double categories, we call this structure a fibered logic.
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2.5 Parallel composition [Codescent]

We now define composition of matrix categories: Cat← MatCat→ Cat is a metalogic [Def. 54].

Matrix categories compose in essentially the same way as profunctors; but rather than a coequal-

izer, the composite is a codescent object [20, Sec. 4]: this adjoins to A ← R → B ← S → C a

coherent associator of the inner actions of 〈B〉.

Definition 49. Let R :A ‖B and S :B ‖C be matrix categories. The composite matrix category

R ⊗ S :A ‖C is defined as follows. To the composite span category A ← R ∗ S → C, an associator

isomorphism is adjoined, by forming the iso-coinserter of the inner actions by 〈B〉.

(R ∗ 〈B〉) ∗ S R ∗ S

(R ∗ S)α

R ∗ (〈B〉 ∗ S) R ∗ S

�∗S

ι

∼=

R∗�

ι

αRS

This associator is natural by its universal construction, so for every weave wB : 〈B〉(〈bk〉, 〈b`〉) and

r :R(R0, R1), s :S(S0, S1) the following commutes.

(R0, 〈bk〉 � S0) (R0 � 〈bk〉, S0)

(R1, 〈b`〉 � S1) (R1 � 〈b`〉, S1)

αRS

αRS

(r,wB�s) (r�wB,s)

On the associator, two equations are imposed by coequifier, for reassociating a composite and a unit.

R ∗ 〈B〉 ∗ 〈B〉 ∗ S (R ∗ S)α (R ∗ S)β

B0.(R,b1�(b2�S))

B2.((R�b1)�b2,S)

co.equif

R ∗ S (R ∗ S)β R⊗ S

B.(R,id.B�S)

B.(R�id.B,S)

co.equif
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All together, the parallel composite matrix category R⊗ S :A ‖C is the following codescent object.

R ∗ 〈B〉 ∗ 〈B〉 ∗ S R ∗ 〈B〉 ∗ S R ∗ S R⊗ S

�∗〈B〉∗S

R∗〈B〉∗�

R∗◦∗S

�∗S

R∗�

R∗id∗S
co.desc

We denote the codescent object by the following “arrow sum” notation, dual to 2.2.1.

(R⊗ S)(A,C) ≡ ~ΣB :B. R(A,B)× S(B,C)

So, the parallel composite R⊗S :A ‖C consists of pairs b.(r, s) : B0.(R0, S0)→ B1.(R1, S1), plus

a coherent associator αRS : B0.(R,b� S) ∼= B1.(R� b, S).

The iso-coinserter which constructs the associator is drawn in string diagrams as follows: the

black bead is the colimiting span functor from (R∗S) to (R∗S)α, and the inner face is the associator

isomorphism.

αRS : B0.(R,b� S) ∼= B1.(R� b, S)

Each coequifier on the associator can be drawn as the cube which it makes well-defined.
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associator coherence

(R,b1� (b2�S)) ⇒ ((R� b1)� b2), S)

unitor coherence

(R, id.B� S) ⇒ (R� id.B, S)

Matrix profunctors compose similarly; we need only impose one equation, for naturality of the

adjoined associators.

Definition 50. Let m(f, g) :Q(X,Y) |R(A,B) and n(g, h) :S(Y,Z) | T (B,C) be matrix profunctors.

X Q Y S Z

A R B T C

f p m g n h

p

The composite matrix profunctor m⊗ n :Q⊗ S |R ⊗ T is defined as the following coequalizer.

(R ∗ 〈B〉) ∗ T R ∗ T

∼= R⊗ T R⊗ T

R ∗ (〈B〉 ∗ T ) R ∗ T

(Q ∗ 〈Y〉) ∗ S Q ∗ S

∼= Q⊗ S Q⊗ S

Q ∗ (〈Y〉 ∗ S) Q ∗ S

ι

ι

ι

ι(m∗〈g〉)∗n

m∗(〈g〉∗n)

m∗n

m∗n

ι!(m∗n) m⊗n∼=
co.equ
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The profunctor ι!(m ∗ n) forms all composites of elements g.(m,n) and the morphisms of Q⊗S and

R⊗ T . Then, the coequalizer imposes that the associators are natural with respect to the elements.

So the elements of the composite (m⊗n)(f, h) : (Q⊗S)(X,Z) | (R⊗T )(A,C) are composites of:

morphisms y.(q, s) : (Q⊗ S)(Y0.(Q0, S0),Y1.(Q1, S1))

associators αQS : (Q⊗ S)(Y0.(Q, y � S),Y1.(Q� y, S))

elements g.(m,n) : (m ∗ n)(Y.(Q,S),B.(R, T ))

associators αRT : (R⊗ T )(B0.(R,b� T ),B1.(R� b, T ))

morphisms b.(r, t) : (R⊗ T )(B0.(R0, T0),B1.(R1, T1))

such that for any [g0, g1] : 〈g〉(y,b) and m :m(f, g0), n :n(g1,h) the following commutes.

Y0.(Q, y � S) Y1.(Q� y, S)

B0.(R,b� T ) B1.(R� b, T )

αQS

αRT

g0.(m,[g0,g1]�n) g1.(m�[g0,g1],n)

We denote the composite by the same “arrow sum” notation as for matrix categories.

(m⊗ n)(f,h) ≡ ~Σg : g. m(f, g)× n(g,h)

We now show that parallel composition defines a span of span functors MatCat ∗ MatCat →

MatCat — but not a span of double functors.

Proposition 51. Parallel composition of matrix categories defines a span functor

⊗ : MatCat ∗MatCat→ MatCat.

Proof. As composition is defined by colimit, it is canonically functorial. Let [[R]] :R0(A0,B0) →

R1(A1,B1) and [[S]]([[B]], [[C]]) :S0(B0,C0)→ S1(B1,C1) be matrix functors. The composite

([[R]]⊗ [[S]]) : (R0 ⊗ S0)(A0,C0)→ (R1 ⊗ S1)(A1,C1)
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is defined by applying the functors [[R]] and [[S]] in parallel

([[R]]⊗ [[S]])(B0.(R0, S0)) = [[B0]].([[R0]], [[S0]])

and mapping the “inner associator” of R0 ⊗ S0 to that of R1 ⊗ S1.

([[R]]⊗ [[S]])(α(b0.(R0, S0))) = α([[b0]].([[R0]], [[S0]]))

The joins of this matrix functor are inherited from those of [[R]] and [[S]].

[[a0]]� ([[B0]].([[R0]], [[S0]]))� [[c0]] = [[B0]].([[a0]]� [[R0]], [[S0]]� [[c0]]) ∼= [[B0]].([[a0 �R0]], [[S0 � c0]])

Finally, −⊗− clearly preserves matrix functor composition and identity. Hence it defines a span

functor MatCat ∗MatCat→ MatCat.

Proposition 52. Parallel composition of matrix profunctors defines a span functor

⊗ : MatProf ∗MatProf → MatProf.

Proof. Let m(f, g) :Q(X,Y) |R(A,B) and n(g, h) :S(Y,Z) | T (B,C) be matrix profunctors with sub-

scripts 0, 1.

Let [[m]]([[f ]], [[g]]) :m0(f0, g0) ⇒ m1(f1, g1) and [[n]]([[g]], [[h]]) :n0(g0, h0) ⇒ n1(g1, h1) be matrix

transformations.

X1 Q1 Y1 S1 Z1

X0 Q0 Y0 S0 Z0

A0 R0 B0 T0 C0

A1 R1 B1 T1 C1

f0

p m0 g0 n0 h0

pf1

p h1

p
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Then the composite matrix transformation

([[m]]⊗ [[n]]) : (m0 ⊗ n0)(f0, h0)⇒ (m1 ⊗ n1)(f1, h1)

is defined by applying the transformations [[m]] and [[n]] in parallel.

([[m]]⊗ [[n]])(g0.(f0,h0)) = [[g0]].([[f0]], [[h0]])

The coherence of [[m]]⊗ [[n]] with the joins of [[Q]]⊗ [[S]] and [[R]]⊗ [[T ]] follows from that of [[m]] with

[[Q]] and [[R]], and [[n]] with [[S]] and [[T ]].

Finally, −⊗− clearly preserves matrix transformation composition and identity. Hence it defines

a span functor MatProf ∗MatProf → MatProf.

We have defined parallel composition of matrix categories, and matrix profunctors.

Now: is parallel composition a double functor? The answer is in fact no: parallel composition

does not preserve sequential composition of matrix profunctors — in fact, it is neither lax nor colax.

(i⊗m) � (j ⊗ n) = (i � j)⊗ (m � n)

The reason has to do with the combination of strict and weak colimits: weak-to-strict (lax, left-to-

right above) is not total, while strict-to-weak (colax, right-to-left above) is not well-defined.

Sequential composition is given by coequalizer, while parallel composition is given by codescent

object. The former equates elements, while the latter creates an associator isomorphism.

So the sequence-of-parallel composite (i ⊗ m) � (j ⊗ n) contains composites with associators,

which cannot be expressed as a parallel-of-sequence composite (i � j)⊗ (m � n).
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U X A

V Y0 Y1 B

V Y0 Y1 B

W Z C

Op Rp

P
p y S

p

d f k

Pp y Sp

∼=

e g l

Q
p

T
p

mi

j n

Hence there is no transformation (i⊗m) � (j ⊗ n)⇒ (i � j)⊗ (m � n).

Yet in the other direction, there is a dual obstruction. To define sequential composition, each

associativity zig-zag (yi) : (f0, g0) = (f1, g1) in f � g is given by squares in 〈f〉 and 〈g〉; yet elements

of (i � j) ⊗ (m � n) are “parallel-composable pairs” along an equality (f0, g0) = (f1, g1), without a

specific choice of zig-zag.

U X X A

V Y0 Y1 B

W Z Z C

Op

Pp

Qp

d f0

e g0

f1

g1

Rp

k

Sp

Tp

l

i

j

m

n

So a transformation (i � j)⊗ (m � n)⇒ (i⊗m) � (j � n) would have to be independent of the choice

of zig-zag. Yet there is no canonical choice; there are many distinct zig-zags which reassociate from

(f0, g0) to (f1, g1), and they each give distinct actions on the parallel pairs.

Thus, parallel composition is neither lax nor colax with respect to sequential composition; there

is simply no interchange transformation between the two operations. Recall also that that the weave

construction 〈−〉 is not lax nor colax 2.1.2. So while Cat and MatCat are double categories, parallel

composition of Cat← MatCat→ Cat is a structure on span categories.

We define a metalogic to be a fibered logic C←M→ C with the structure of a “2-weak category”

in the tricategory of span categories. The structure is a “triple category without interchange”, and

its weakness of parallel composition and unit is like that of a tricategory [8].
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Lastly, what ensures that this weak parallel composition has coherent associator and unitors?

Matrix categories and matrix profunctors are each exponentiable, meaning composition has a right

adjoint, and hence preserves the colimits which define parallel composition.

It is known that two-sided fibrations are exponentiable [20], and so matrix categories are as well.

We showed in Theorem 38 that matrix profunctors are exponentiable.

Definition 53. A metalogic is a logic C and a fibered logic M → C × C, with the structure of a

2-weak category in the tricategory of span categories.

Theorem 54. MatCat→ Cat× Cat forms a metalogic.

Proof. As we showed, MatCat is a fibered span of logics

C MC C

P MP P

C MC C

equipped with span functors, for composition and identity

MC ∗h MC MC C MC

MP ∗h MP MP P MP

MC ∗h MC MC C MC

⊗

⊗

⊗

〈−〉

〈−〉

〈−〉

with invertible span transformations for associativity,

MC0 ∗h MC0 MC0 ∗h MC0 ∗h MC0 MC0 ∗h MC0

MC0 MC1 MC0

MC0∗⊗ ⊗∗MC0

⊗ α ⊗

α :R⊗ (S ⊗ T ) ∼= (R⊗ S)⊗ T

and span transformations for left and right unitality
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MC0 MC0 MC0 ∗h MC0

MC0 MC1 MC0

〈−〉∗MC0

⊗λ◦

λ◦ = R.(id.A, R) :R → 〈A〉 ⊗ R

MC0 MC0 MC0 ∗h MC0

MC0 MC1 MC0

MC0∗〈−〉

⊗ρ◦

ρ◦ = R.(R, id.B) :R → R⊗ 〈B〉

MC0 ∗h MC0 MC0 MC0

MC0 MC1 MC0

λ•

〈−〉∗MC0

⊗

λ• = �A : 〈A〉 ⊗ R → R

MC0 ∗h MC0 MC0 MC0

MC0 MC1 MC0

ρ•

MC0∗〈−〉

⊗

ρ• = �B :R⊗ 〈B〉 → R

so that (λ◦, λ•) and (ρ◦, ρ•) form adjoint equivalences.

MC0 MC0 MC1 ∗t MC1

MC1 MP1 MC1

(λ◦,λ•)

·ηλid

R R

〈A〉 ⊗ R
λ◦ λ•

ηλ

ηλ = υA :R ∼= id.A�R

MC0 MC0 MC1 ∗t MC1

MC1 MP1 MC1

(ρ◦,ρ•)

·ηρid

R R

R⊗ 〈B〉
ρ◦ ρ•

ηρ

ηρ = υB :R ∼= R� id.B

MC1 ∗t MC1 MC0 MC0

MC1 MP1 MC1

(λ•,λ◦)

· ελ

R

〈A〉 ⊗ R 〈A〉 ⊗ R

λ• λ◦

ελ

ελ = αA : (id.A0, a�R) ∼= (a, R)

MC1 ∗t MC1 MC0 MC0

MC1 MP1 MC1

(ρ•,ρ◦)

· ερ

R

R⊗ 〈B〉 R ⊗ 〈B〉

ρ• ρ◦

ερ

ερ = αB : (R� b, id.B1) ∼= (R,b)
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Similarly, for each matrix profunctor there are span transformations

MP0 MP0 MP0 ∗h MP0

MP0 MP1 MP0

〈−〉∗MP0

⊗λ◦

λ◦ = i.(id.f, i) : i⇒ 〈f〉 ⊗ i

MP0 MP0 MP0 ∗h MP0

MP0 MP1 MP0

MP0∗〈−〉

⊗ρ◦

ρ◦ = i.(i, id.g) : i⇒ i⊗ 〈g〉

MP0 ∗h MP0 MP0 MP0

MP0 MP1 MP0

〈−〉∗MP0

⊗ λ•

λ• = �f : i⊗ 〈f〉 ⇒ i

MP0 ∗h MP0 MP0 MP0

MP0 MP1 MP0

MP0∗〈−〉

⊗ ρ•

ρ• = �g : i⊗ 〈g〉 ⇒ i

so that the unitor isomorphisms cohere with these transformations, as in a modification:

MC0 MC0 MC0 MP0 MC0 MC0 MC0

MC1 ∗t MC1 MP1 ∗t MP1 MC1 ∗t MC1

MC1 MP1 MC1 MP1 MC1 MP1 MC1

MC1 MP1 ∗v MP1 ∗v MP1 MC1

MC1 MP1 MC1

(λ◦Q,λ
•
Q)

·

(λ◦i ,λ
•
i ) (λ◦R,λ

•
R)

ελ

··

ηλid id

�

=

MC0 MP0 MC0

MC1 MP1 MC1

id id id

and this is given by the naturality of the unitors with respect to matrix profunctor elements.
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Q R

Q 〈X〉 ⊗ Q 〈A〉 ⊗ R R

Q R

ip

〈f〉⊗i
p

i
p

∼= ∼=

λi

λ•i

id.X�Q Q

id.A�R R

υX

υA

id.f◦i i

Q R

Q Q⊗ 〈Y〉 R ⊗ 〈B〉 R

Q R

ip

i⊗〈g〉
p

i
p

∼= ∼=

ρ•i

ρi

Q� id.Y Q

R� id.B R

υY

i◦id.g

υB

i

The analogous coherence holds for the right unitor ρ.

The “pentagon identity” for reassociating a composite is replaced by a “pentagonator”.

Q⊗ ((R⊗ S)⊗ T ) (Q⊗ (R⊗ S))⊗ T

Q⊗ (R⊗ (S ⊗ T )) ((Q⊗R)⊗ S)⊗ T

(Q⊗R)⊗ (S ⊗ T )

π

In our case, this isomorphism is an equality, because the associator simply moves parentheses. Hence

it satisfies the coherence equation, which can be found in the definition of tricategory [8].

Last, the unitors respect parallel composition by the “triangulator” invertible transformation:

MC0 MC0 ∗h MC0 MC1 ∗t MC1 ∗t MC1

MC1 MP1 MC1

⊗ (ρ◦⊗id,α,id⊗λ•)

id τ ·
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which is given by the unitor

R⊗ S R⊗ S

R⊗ (〈B〉 ⊗ S) (R⊗ 〈B〉)⊗ S

R⊗ρ◦

α

λ•⊗Sτ

τ = υB : (R,S) ∼= (R� id.B, S)

and which coheres with matrix profunctors, as in a modification.

Q⊗ S Q⊗ S

(Q⊗ 〈Y〉)⊗ S Q⊗ (〈Y〉 ⊗ S)

(R⊗ 〈B〉)⊗ T R⊗ (〈B〉 ⊗ T )

R⊗ T R⊗ T

m⊗n p

ρ◦⊗S

α

Q⊗λ•

ρ◦⊗T

α

R⊗λ•

(m⊗〈g〉)⊗n m⊗(〈g〉⊗n) m⊗np

τ

τ−1

ρ◦⊗n
α

m⊗λ•

=

Q⊗ S Q⊗ S

R⊗ T R⊗ T

m⊗n p m⊗np

For its coherence, the two ways to transform the top composite to the associator are equal:

R⊗ (S ⊗ (〈C〉 ⊗ T )) R⊗ ((S ⊗ 〈C〉)⊗ T )

R⊗ (S ⊗ T ) R⊗ (S ⊗ T )

(R⊗ S)⊗ T

meaning that applying the triangulator commutes with reassociating.
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This holds by the naturality of the unitor with respect to the associator.

(R, (S, T )) ((R,S � id.C), T ) (R, (S � id.C, T ))

(R, (S, T )) ((R,S), T ) (R, (S, T ))

(τRS ,T )

λ◦T ·αC·ρ•S ·αS
α

(R,τST )

α−1
α

The analogous coherence holds for applying the triangulator on the other side of the associator.

This completes the exposition of Cat← MatCat→ Cat as a metalogic.
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Our final result is the duality of composition-by-codescent (2.5) and hom-by-descent (2.2.1).

Theorem 55. For every pair of matrix categoriesR :A ‖B and S :B ‖C and matrix category T :A ‖C,

there is a natural equivalence of categories of matrix functors.

MatCat(R⊗ S, T ) ' MatCat(R, [S, T ])

Proof. The composite R ⊗ S is a coequifier of an iso-coinserter, while the hom [(R ⊗ S), T ] is an

equifier of an iso-inserter. These are constructed pointwise in Cat; the first coordinate of Cat(−,−)

converts 2-colimits into 2-limits, while the second preserves 2-limits [10]. The Fubini equivalence is

given in [3].

Hence we have the following equivalence.

MatCat(R⊗ S, T ) = ~ΠA,C Cat((R⊗ S)(A,C), T (A,C))

= ~ΠA,C Cat(~ΣB R(A,B)× S(B,C), T (A,C))

' ~ΠA,C ~ΠB Cat(R(A,B)× S(B,C), T (A,C))

' ~ΠA,B,C Cat(R(A,B), [S(B,C)→ T (A,C)])

' ~ΠA,B Cat(R(A,B), ~ΠC [S(B,C)→ T (A,C)])

= MatCat(R, [S, T ])
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Chapter 3

The metalogic of logics

Now we can define a logic, or bifibrant double category: a matrix category A :A ‖A with composition

◦ :A⊗A→ A and unit id :A→ A, with coherent associator and unitors — a pseudomonad in MatCat.

Since we have developed all the necessary infrastructure, we can define the whole “multiverse” of

logics. Because a logic is two-dimensional, there are two kinds of relations between logics: a vertical

profunctor consists of processes between logics, and a horizontal profunctor consists of relations

between logics. Two pairs are connected by a double profunctor, which consists of inferences between

relations, along processes.

meta relation meta process meta inference

[horiz. profunctor] [vert. profunctor] [dbl. profunctor]

Because MatCat consists of categories and profunctors, the above profunctors already have se-

quential composition; so we only need to add the structure of parallel composition. For horizontal

profunctors, this is a familiar bimodule action. But as vertical profunctors are orthogonal, parallel

composition defines a monad structure, and double profunctors are bimodules thereof.
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H-prof. composition V-prof. composition D-prof. composition

So logics have two kinds of “relations”, and one kind of “function”: a double functor [[A]] :A0 →

A1 maps squares of A0 to squares of A1, preserving relation composition and unit up to coherent

isomorphism. This generalizes to transformations of vertical, horizontal, and double profunctors; all

four are defined by mapping squares in a way that coheres with parallel composition.

double functor preserves composition; double transformation

All together, logics form a metalogic: the three kinds of 1-morphism are profunctor, matrix

category, and functor; the three kinds of 2-morphism are double profunctor, vertical transformation,

and horizontal transformation; and the 3-morphism is a double transformation.

MatCat H.PsMnd(−) bf.DblCat Logic

0 category (H)-pseudomonad bifibrant double category logic

V profunctor (H)-vertical monad vertical profunctor meta process

H matrix category (H)-pseudobimodule horizontal profunctor meta relation

VH matrix profunctor (H)-vertical bimodule double profunctor meta inference

T functor ps. mnd. morphism double functor flow type

TV transformation v. mnd. morphism vertical transformation flow process

TH matrix functor ps. bim. morphism horizontal transformation flow relation

TVH matrix transformation v. bim. morphism double transformation flow inference
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We construct the double category bf.DblCat of bifibrant double categories and double functors,

vertical profunctors and vertical transformations.

We construct the double category bf.DblProf of horizontal profunctors and horizontal transfor-

mations, double profunctors and double transformations.

Finally, we define parallel composition of horizontal profunctors. As for matrix categories in 2.5,

the composite is constructed by a codescent object, which adjoins a coherent associator for the middle

action. We show that this defines the structure of a metalogic.
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3.1. LOGIC [BIFIBRANT DOUBLE CATEGORY]

3.1 Logic [Bifibrant double category]

Definition 56. A logic A, a.k.a. bifibrant double category, is a pseudomonad in MatCat.

Hence a logic is a category A with a matrix category A :A ‖A

A A A

A A A

pp p

with matrix functors ◦ :A⊗ A→ A for composition and id :A→ A for unit

A A⊗ A A A A A

A A A A A A

◦ id

and invertible matrix transformations for associativity and unit

A⊗ A⊗ A A⊗ A A A⊗ A

A⊗ A A A⊗ A A

◦⊗A

A⊗◦ ◦

◦

α

A⊗id

◦id⊗A

◦

λ

ρ

which satisfy the associator and unitor coherence.

A⊗ A⊗ A⊗ A A A A

A1◦(A2◦(A3◦A4))

((A1◦A2)◦A3)◦A4

A1◦(id◦A2)

(A1◦id)◦A2
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bifibrant double category composition unit
matrix category matrix functor matrix functor

A :A ‖A ◦ :A⊗ A→ A id :A→ A

left unitor associator right unitor
matrix transformation matrix transformation matrix transformation

λ :A ∼= id ◦ A α : (A ◦ A) ◦ A ∼= A ◦ (A ◦ A) ρ :A ∼= A ◦ id

associator coherence unitor coherence

((A0 ◦A1) ◦A2) ◦A3 ⇒ A0 ◦ (A1 ◦ (A2 ◦A3)) (A1 ◦ id) ◦A2 ⇒ A1 ◦ (id ◦A2)
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3.2 Relations [Double profunctor]
Definition 57. Let X,A be bifibrant double categories. A vertical profunctor f :X |A, i.e. meta

process, is a vertical monad between pseudomonads in MatCat.

Hence it is a profunctor f :X |A and a matrix profunctor f(f, f) :X(X,X) |A(A,A)

X X X

A A A

f p fpf

with matrix transformations ◦ : f ∗ f ⇒ f for composition and id : f ⇒ f for unit

f f ⊗ f f f f f

f f f f f f

◦ id

which cohere with the associators and unitors of X and A.

X⊗ X X

X⊗ X⊗ X X⊗ X

A⊗ A⊗ A A⊗ A

A⊗ A A

f⊗f⊗fp f⊗f p fpf⊗f p ◦⊗f

∼=

∼=

◦f⊗◦

◦

X X

X X⊗ X X X⊗ X

A A⊗ A A A⊗ A

A A

◦

fp

◦

f⊗fp

id⊗X

f p

id⊗A

f p f⊗fp

X⊗id

A⊗id

◦

◦

fpid⊗f ◦

∼=

∼=

f⊗id

∼=

∼=

◦
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vertical profunctor composition unit
matrix profunctor matrix transformation matrix transformation

f(f, f) :X(X,X) |A(A,A) ◦ : f ∗ f → f id : f → f

left unit coherence assoc coherence right unit coherence
id.X ◦ X ⇒ id.A ◦ A (X ◦ X) ◦ X ⇒ A ◦ (A ◦ A) X ◦ id.X ⇒ A ◦ id.A
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Definition 58. Let A and B be bifibrant double categories. A horizontal profunctor R :A ‖B, i.e.

meta relation, is a matrix category which forms a bimodule of pseudomonads.

Hence it is a matrix category R :A ‖B, with action matrix functors A⊗R → R and R⊗ B→ R,

and invertible matrix transformations for associators and unitors

A⊗ A⊗R A⊗R A⊗R⊗ B R⊗ B R⊗ B⊗ B R⊗ B

A⊗R R A⊗R R R⊗ B R

A⊗◦

◦⊗R

◦

◦

◦⊗B

A⊗◦

◦

◦ R⊗◦

◦⊗B

◦

◦αA αR αB

(A1 ◦A2) ◦R ∼= A1 ◦ (A2 ◦R) A ◦ (R ◦B) ∼= (A ◦R) ◦B R ◦ (B1 ◦B2) ∼= (R ◦B1) ◦B2

R

A⊗R R

R⊗id

◦

λ

υA :R ∼= id.A ◦R

R

R⊗ B R

R⊗id

◦

ρ

υB :R ∼= R ◦ id.B

satisfying the associator coherence

A⊗ A⊗ A⊗R R A⊗R⊗ B⊗ B R

A⊗ A⊗R⊗ B R R⊗ B⊗ B⊗ B R

A◦(A◦(A◦R))

((A◦A)◦A)◦R

A◦(R◦(B◦B))

((A◦R)◦B)◦B

(A◦A)◦(R◦B)

(A◦(A◦R))◦B

R◦(B◦(B◦B))

((R◦B)◦B)◦B

and unitor coherence.

A⊗R R R⊗ B R

A◦(id◦R)

(A◦id)◦R

R◦(id◦B)

(R◦id)◦B
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horizontal profunctor left composition right composition
matrix category matrix functor matrix functor
R :A ‖B ◦ :A ∗ R → R ◦ :R ∗ B→ R

left associator center associator right associator
matrix transformation matrix transformation matrix transformation

αA : (A ◦ A) ◦ R ∼= A ◦ (A ◦ R) αR :A ◦ (R ◦ B) ∼= (A ◦ R) ◦ B αB :R ◦ (B ◦ B) ∼= (R ◦ B) ◦ B

left unitor right unitor
λ :R ∼= A ◦ R ρ :R ∼= R ◦ B
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A-assoc coherence AAB-assoc coherence

((A ◦ A) ◦ A) ◦ R⇒ A ◦ (A ◦ (A ◦ R)) (A ◦ A) ◦ (R ◦ B) ⇒ (A ◦ (A ◦ R)) ◦ B

ABB-assoc coherence B-assoc coherence

A ◦ (R ◦ (B ◦ B)) ⇒ ((A ◦ R) ◦ B) ◦ B R ◦ (B ◦ (B ◦ B)) ⇒ ((R ◦ B) ◦ B) ◦ B

A-unit coherence B-unit coherence

(A ◦ id) ◦ R⇒ A ◦ (id ◦ R) R ◦ (id ◦ B) ⇒ (R ◦ id) ◦ B
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Definition 59. Let X,Y,A,B be bifibrant double categories, let Q :X ‖Y and R :A ‖B be horizontal

profunctors, and let f :X |A and g :Y |B be vertical profunctors.

A double profunctor, i.e. meta inference, i(f, g) :Q(X,Y) |R(A,B) is a matrix profunctor which

forms a “vertical bimodule” of weak bimodules. Hence it is equipped with action matrix transforma-

tions ◦ : f ⊗ i⇒ i and ◦ : i⊗ g ⇒ i which cohere with the associators of X,Y,A,B

X⊗Q Q

X⊗Q⊗ Y Q⊗ Y

A⊗R⊗ B R⊗ B

A⊗R R

f⊗i⊗g p i⊗gp ipf⊗i p ◦⊗g f⊗◦ ◦

∼=

∼=

◦

X⊗Q Q

X⊗ X⊗Q X⊗Q

A⊗ A⊗R A⊗R

A⊗R R

f⊗f⊗i p f⊗ip ipf⊗i p ◦⊗i f⊗◦ ◦

∼=

∼=

◦

Q⊗ Y Q

Q⊗ Y⊗ Y Q⊗ Y

R⊗ B⊗ B R⊗ B

R⊗ B R

i⊗g⊗g p i⊗gp ipi⊗g p ◦⊗g i⊗◦ ◦

∼=

∼=

◦
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and cohere with the unitors of X,Y,A,B.

Q R

X⊗Q A⊗R

Q R

ip

f⊗ip

i
p

id⊗i

◦

∼= ∼=

Q R

Q⊗ Y R⊗ B

Q R

ip

i⊗gp

i
p

i⊗id

◦

∼= ∼=
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double profunctor left composition right composition
matrix profunctor matrix transformation matrix transformation

i(f, g) :Q(X,Y) |R(A,B) ◦ : f ⊗ i→ i ◦ : i⊗ g → i

l-assoc coherence c-assoc coherence r-assoc coherence
(X ◦ X) ◦ Q⇒ A ◦ (A ◦ R) (X ◦ Q) ◦ Y ⇒ A ◦ (R ◦ B) (Q ◦ Y) ◦ Y ⇒ R ◦ (B ◦ B)

l-unit coherence r-unit coherence

id.X ◦ Q⇒ id.A ◦ R Q ◦ id.Y ⇒ R ◦ id.B
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3.3 Morphisms [Double transformation]
Definition 60. Let A0,A1 be bifibrant double categories. A double functor, i.e. flow type, is a

morphism of pseudomonads. Hence it is a matrix functor [[A]] :A0 → A1 with invertible matrix

transformations called the join and unit

A0 ⊗ A0 A1 ⊗ A1 A0 A1

A0 A1 A0 A1

[[A]]⊗[[A]]

◦ ◦

[[A]]

[[A]]

id id

[[A]]

[[◦]] [[id]]

which cohere with the associators of A0,A1

A0 ⊗ A0 A1 ⊗ A1

A0 ⊗ A0 ⊗ A0 A1 ⊗ A1 ⊗ A1

A0 ⊗ A0 A1 ⊗ A1

A0 A1

∼= ∼=[[◦]]⊗[[A]]

[[A]]⊗[[◦]]

[[◦]]

[[◦]]

and the unitors of A0,A1.

A0 A1

A0 ⊗ A0 A1 ⊗ A1

A0 A1

[[A]]

id⊗A0 id⊗A1

[[A]]⊗[[A]]

◦ ◦

[[A]]

[[id]]⊗[[A]]

[[◦]]

∼= ∼=
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A0 A1

A0 ⊗ A0 A1 ⊗ A1

A0 A1

[[A]]

A0⊗id A1⊗id

[[A]]⊗[[A]]

◦ ◦

[[A]]

[[A]]⊗[[id]]

[[◦]]

∼= ∼=

double functor join unit
[[A]] :A0 → A1 [[◦]] : [[A]] ◦ [[A]] ∼= [[A ◦ A]] [[id]] : id.[[A]] ∼= [[id.A]]

left unit coherence associator coherence right unit coherence
id ◦ [[A]] ⇒ [[id ◦ A]] ([[A]] ◦ [[A]]) ◦ [[A]] ⇒ [[A ◦ (A ◦ A)]] [[A]] ◦ id ⇒ [[A ◦ id]]
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Definition 61. Let X0,X1,A0,A1 be bifibrant double categories, let [[X]] :X0 → X1 and [[A]] :A0 → A1

be double functors, and let f0 :X0 |A0 and f1 :X1 |A1 be vertical profunctors.

A vertical transformation, i.e. flow process, [[f ]]([[X]], [[A]]) : f0(X0,A0) ⇒ f1(X1,A1) is a trans-

formation of vertical modules.

Hence it is a transformation [[f ]] : f
0
⇒ f

1
and a matrix transformation [[f ]] : f0 ⇒ f1

f
0

f0 f
0

f
1

f1 f
1

[[f ]][[f ]] [[f ]]

which coheres with the joins of [[X]] and [[A]].

X0 X1

X0 ∗ X0 X1 ∗ X1

A0 ∗ A0 A1 ∗ A1

A0 A1

f0∗f0 pf0
p f1

pf1∗f1p

µ

◦ ◦

µ

[[f ]]∗[[f ]]

[[f ]]

and the units of [[X]] and [[A]].

X0 X1

X0 X1

A0 A1

A0 A1

f
0 pf0

p f1

pf
1p

η

id

η

[[f ]]

id[[f ]]
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vertical transformation join coherence unit coherence
[[f ]] : f0 ⇒ f1 [[X]] ◦ [[X]] ⇒ [[A ◦ A]] id.[[X]] ⇒ [[id.A]]
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Definition 62. Let A0,B0,A1,B1 be bifibrant double categories, let [[A]] :A0 → A1 and [[B]] :B0 → B1

be double functors, and let R0 :A0 ‖B0 and R1 :A1 ‖B1 be horizontal profunctors.

A horizontal transformation, i.e. flow relation, [[R]]([[A]], [[B]]) :R0(A0,B0) → R1(A1,B1) is a

transformation of weak bimodules. Hence it is a matrix functor [[R]] :R0 → R1 with invertible matrix

transformations called left and right join

A0 ⊗R0 A1 ⊗R1

R0 R1

[[A]]⊗[[R]]

◦0A

[[R]]

◦1A[[◦A]]

[[◦A]] : [[A0]] ◦1 [[R0]] ∼= [[A0 ◦0 R0]]

R0 ⊗ B0 R1 ⊗ B1

R0 R1

[[R]]⊗[[B]]

◦0B

[[R]]

◦1B[[◦B]]

[[◦B]] : [[R0]] ◦1 [[B0]] ∼= [[R0 ◦0 B0]]

which coheres with the joins of [[A]] and [[B]], along the associators of R0 and R1

A0 ⊗R0 A1 ⊗R1

A0 ⊗ A0 ⊗R0 A1 ⊗ A1 ⊗R1

A0 ⊗R0 A1 ⊗R1

R0 R1

[[◦A]]

[[◦A]]⊗[[R]]

[[A]]⊗[[◦A]] [[◦A]]∼= ∼=

A0 ⊗R0 A1 ⊗R1

A0 ⊗R0 ⊗ B0 A1 ⊗R1 ⊗ B1

R0 ⊗ B0 R1 ⊗ B1

R0 R1

[[◦B]]

[[◦A]]⊗[[B]]

[[A]]⊗[[◦B]] [[◦A]]∼= ∼=
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R0 ⊗ B0 R1 ⊗ B1

R0 ⊗ B0 ⊗ B0 R1 ⊗ B1 ⊗ B1

R0 ⊗ B0 R1 ⊗ B1

R0 R1

[[◦B]]

[[◦B]]⊗[[B]]

[[R]]⊗[[◦B]] [[◦B]]∼= ∼=

and the units of [[A]] and [[B]].

R0 R1

A0 ⊗R0 A1 ⊗R1

R0 R1

[[R]]

[[A]]⊗[[R]]

[[R]]

∼= ∼=

[[id]]⊗[[R]]

[[◦A]]

R0 R1

R0 ⊗ B0 R1 ⊗ B1

R0 R1

[[R]]

[[R]]⊗[[B]]

[[R]]

∼= ∼=

[[R]]⊗[[id]]

[[◦B]]
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horizontal transformation
matrix functor

[[R]]([[A]], [[B]]) :R0(A0,B0)→ R1(A1,B1)

left join right join
matrix transformation matrix transformation

[[◦A]] : [[A]] ◦ [[R]] ∼= [[A ◦ R]] [[◦B]] : [[R]] ◦ [[B]] ∼= [[R ◦ B]]
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center assoc. coherence
equality

[[A]] ◦ ([[R]] ◦ [[B]]) ⇒ [[(A ◦R) ◦B]]

left assoc. coherence right assoc coherence
equality equality

([[A1]] ◦ [[A2]]) ◦ [[R]] ⇒ [[A1 ◦ (A2 ◦R)]] [[R]] ◦ ([[B1]] ◦ [[B2]]) ⇒ [[(R ◦B1) ◦B2]]

left unit coherence right unit coherence
equality equality

id.[[A]] ◦ [[R]] ⇒ [[id.A ◦R]] [[R]] ◦ id.[[B]] ⇒ [[R ◦ id.B]]
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Definition 63. Let i0(f0, g0) :Q0(X0,Y0) |R0(A0,B0) and i1(f1, g1) :Q1(X1,Y1) |R1(A1,B1) be ma-

trix profunctors. Let [[X]] :X0 → X1 etc. be double functors, [[f ]] : f0 ⇒ f1, [[g]] : g0 ⇒ g1 be vertical

transformations, and [[Q]]([[X]], [[Y]]) :Q0 → Q1, [[R]]([[A]], [[B]]) :R0 → R1 be horizontal transforma-

tions.

A double transformation, i.e. flow inference or simply flow, [[i]]([[f ]], [[g]]) : i0(f0, g0)⇒ i1(f1, g1)

is a transformation of vertical bimodules of weak bimodules. Hence it is a matrix transformation

f0 i0 g0

f1 i1 g1

[[f ]] [[g]][[i]]

which coheres with the left and right joins of the horizontal transformations.

Q0 Q1

X0 ⊗Q0 X1 ⊗Q1

A0 ⊗R0 A1 ⊗R1

R0 R1

f0⊗i0p f1⊗i1p

[[X]]⊗[[Q]]

[[A]]⊗[[R]]

[[Q]]

[[R]]

i0

p i1

p

[[◦A]]

[[◦X]]

[[f ]]⊗[[i]]◦0 ◦1

[[i]]

[[X]] ◦ [[Q]] [[X ◦Q]]

[[A]] ◦ [[R]] [[A ◦R]]

[[f ]]◦[[i]]

[[◦X]]

[[◦A]]

[[f◦i]]

Q0 Q1

Q0 ⊗ Y0 Q1 ⊗ Y1

R0 ⊗ B0 R1 ⊗ B1

R0 R1

i0⊗g0p i1⊗g1p

[[Q]]⊗[[Y]]

[[R]]⊗[[B]]

[[Q]]

[[R]]

i0

p i1

p

[[◦B]]

[[◦Y]]

[[i]]⊗[[g]]◦0 ◦1

[[i]]

[[Q]] ◦ [[Y ]] [[Q ◦ Y ]]

[[R]] ◦ [[B]] [[R ◦B]]

[[i]]◦[[g]]

[[◦Y]]

[[◦B]]

[[i◦g]]
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double transformation
matrix transformation

[[i]]([[f ]], [[g]]) : i0(f0, g0)⇒ i1(f1, g1)

left join coherence right join coherence
equality equality

[[X]] ◦ [[Q]] ⇒ [[A ◦R]] [[Q]] ◦ [[Y ]] ⇒ [[R ◦B]]
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3.4 The metalogic of logics

Proposition 64. Bifibrant double categories and functors, vertical profunctors and transformations

form a double category, which we call bf.DblCat.

Proof. Given double functors [[A]]1 :A0 → A1 and [[A]]2 :A1 → A2, the composite [[[[A]]1]]2 :A0 → A2

is a double functor, with structure given by [[◦]]1 ◦ [[◦]]2 and [[id]]1 ◦ [[id]]2; these satisfy the coherence

by composing equations. Composition of double functors is clearly associative and unital.

A0 ⊗ A0 A1 ⊗ A1 A2 ⊗ A2 A0 A1 A2

A0 A1 A2 A0 A1 A2

[[A0]]⊗[[A0]] [[A1]]⊗[[A1]]

◦

[[A0]]

◦

[[A1]]

◦ id id id

[[A0]] [[A1]]

[[A0]] [[A1]]

[[◦]]1 [[◦]]2 [[id]]1 [[id]]2

Composition of vertical transformations is given in the same way.

X0 X1 X2

X0 ⊗ X0 X1 ⊗ X1 X2 ⊗ X2

A0 ⊗ A0 A1 ⊗ A1 A2 ⊗ A2

A0 A1 A2

f0⊗f0 p f1⊗f1 f2⊗f2p

[[X0]]⊗[[X0]] [[X1]]⊗[[X1]]

[[A0]]⊗[[A0]] [[A1]]⊗[[A1]]

[[X0]] [[X1]]

◦ ◦ ◦

◦

f0
p

◦ ◦

f2

p

[[A0]] [[A1]]

◦ ◦[[f0]]⊗[[f0]] [[f1]]⊗[[f1]]

[[◦]]0 [[◦]]1

[[◦]]0 [[◦]]1

[[f0]]·[[f1]]

So it remains to define sequential composition of vertical profunctors, and verify that it is func-

torial, i.e. preserves composition of vertical transformations.
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Consider the following sequential composite of vertical profunctors.

X X X X X X

Y Y Y

Z Z Z Z Z Z

f

g

f p fp

g p gp

f◦g p f◦g f◦gp

In the same way as for matrix profunctors, the equalities adjoined by the quotient are represented

by squares in Y. The sequential composite matrix profunctor f �g :X |Z is a vertical profunctor, with

composition and unit given by sequentially composing that of f and g.

X⊗ X X X X

Y⊗ Y Y Y Y

Z⊗ Z Z Z Z

f⊗f p
g⊗g p

◦

◦

◦

fp

gp

id

id

id

f p

g p

fp

gp

◦

◦

id

id

Again, these satisfy the coherence simply by composing equations.

Sequential composition of vertical profunctors is functorial: let [[f ]] : f0 ⇒ f1 and [[g]] : g0 ⇒ g1 be

vertical transformations; then ([[f ]] � [[g]]) : (f0 � g0)⇒ (f1 � g1) is defined by sequential composition.
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X0 X1

X0 ⊗ X0 X1 ⊗ X1

Y0 Y0 ⊗ Y0 Y1 ⊗ Y1 Y1

Z0 ⊗ Z0 Z1 ⊗ Z1

Z0 Z1

f0⊗f0 p

g0⊗g0 p

f1⊗f1p
g1⊗g1p

f1

p

g1p

f0

p

g0 p

[[f ]]⊗[[f ]]

[[g]]⊗[[g]]

◦

◦

◦

◦

µ

µ

[[f ]]

[[g]]

This preserves composition of transformations: picture two of the above such cubes, composed

from left to right. So, sequential composition is functorial.

Hence bifibrant double categories and double functors, vertical profunctors and vertical transfor-

mations form a double category bf.DblCat.

Proposition 65. Horizontal profunctors and transformations, double profunctors and transforma-

tions form a double category, which we call bf.DblProf.

Proof. Composition of horizontal transformations [[R]]1 :R0 → R1 and [[R]]2 :R1 → R2 is defined by

that of matrix functors, and that of the joins.

A0 ⊗R0 A1 ⊗R1 A2 ⊗R2

R0 R1 R2

[[A]]1⊗[[R]]1 [[A]]2⊗[[R]]2

◦ ◦ ◦

[[R]]1 [[R]]2

[[◦A]]1 [[◦A]]2

R0 ⊗ B0 R1 ⊗ B1 R2 ⊗ B2

R0 R1 R2

[[R]]1⊗[[B]]1 [[R]]2⊗[[B]]2

◦ ◦ ◦

[[R]]1 [[R]]2

[[◦B]]1 [[◦B]]2

This coheres with the associators, simply by composing equations.

A0 ⊗R0 A1 ⊗R1 A2 ⊗R2

A0 ⊗R0 ⊗ B0 A1 ⊗R1 ⊗ B1 A2 ⊗R2 ⊗ B2

R0 ⊗ B0 R1 ⊗ B1 R2 ⊗ B2

R0 R1 R2

∼=

[[A]]1⊗[[◦B]]1

[[◦A]]1⊗[[B]]1

[[◦B]]1

[[◦A]]1

[[A]]2⊗[[B]]2

∼=

[[B]]2

[[◦A]]2⊗[[B]]2 [[◦A]]2
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Composition of double transformations [[i]]1 · [[i]]2 : i0 ⇒ i2 is defined by that of matrix transfor-

mations, and again this coheres with the joins of [[[[Q]]1]]2 and [[[[R]]1]]2 by composing equations.

Q0 Q1 Q2

X0 ⊗Q0 X1 ⊗Q1 X1 ⊗Q1 X2 ⊗Q2

A0 ⊗R0 A1 ⊗R1 A1 ⊗R1 A2 ⊗R2

R0 R1 R2

f0⊗i0pi0

p f1⊗i1 p

[[◦]]1

[[Q]]1

[[f ]]1⊗[[i]]1

[[R]]1

[[◦1]] [[◦1]]

[[i]]1

[[f ]]2⊗[[i]]2 [[◦2]]

[[i]]2

[[Q]]2

[[R]]2

So it remains to define sequential composition of double profunctors, and verify that it is func-

torial. Just as composition of matrix profunctors is defined by that of span profunctors (Def. 43),

composition of double profunctors is defined by that of matrix profunctors.

X R A X R A

Y S B

Z T C Z T C

m p

n p
f p k

p

g p `

p

f◦g p

m◦np

k◦`p

So the sequential composite double transformation is given by the composite matrix transformation.

R0 S0 T0

R1 S1 T1

m0p n0p

m1p n1p

[[R]] [[S]] [[T ]][[m]] [[n]]

128 Contents



3.4. THE METALOGIC OF LOGICS

The coherence with the joins is given by composing equations.

R0 R1

X0 ⊗R0 X1 ⊗R1

Y0 ⊗ S0 Y1 ⊗ S1

S0 S1

Y0 ⊗ S0 Y1 ⊗ S1

Z0 ⊗ T0 Z1 ⊗ T1

T0 T1

f0⊗m0

pm0

p

n0

p

f1⊗m1

p

n1

p

m1

p

g0⊗n0

p g1⊗n1

p

◦ [[f ]]⊗[[m]] ◦

[[◦X]]

[[◦Z]]

[[m]]

[[n]]

◦ ◦[[g]]⊗[[n]]

[[◦Y]]

[[◦Y]]

Sequential composition of double transformations preserves transformation composition, because

that of matrix transformations does. Thus, horizontal profunctors and transformations, double pro-

functors and transformations form a double category bf.DblProf.

R0 S0

R1 S1m1
p

m0p

[[R]] [[S]][[m]]

Proposition 66. bf.DblCat← bf.DblProf → bf.DblCat is a fibered logic.

Proof. Substitution of double functors in a horizontal profunctor, and vertical transformations in a

double profunctor, are defined in the same way as that of functors in matrix categories and transfor-

mations in matrix profunctors, by pullback. Sequential composition of vertical profunctors preserves

this substitution, in the same way as for matrix profunctors.
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Parallel composition

We now define parallel composition of horizontal profunctors, and show that this forms the meta-

logic of bifibrant double categories.

Composition is defined in the same way as for matrix categories, in Section 2.5: by a codescent

object, which adjoins a coherent associator for the middle action — in fact, all the proofs are es-

sentially the same. The only difference is now B is a general bifibrant double category, rather than

an weave double category 〈B〉, so the action of B is composition by its horizontal morphisms, i.e.

relations.

The construction gives a well-defined composition of a metalogic, because composition along a

matrix category is pullback along a fibration, which preserves colimits [20, Prop 4.3].

Definition 67. Let R :A ‖B and S :B ‖C be horizontal profunctors. The parallel composite R ⊗

S :A ‖C is defined as follows. First, to the composite matrix category R ⊗M § :A ‖C we adjoin for

every horizontal morphism B :B(B0,B1) an associator B0.(R,B ◦S) ∼= B1.(R◦B,S), by forming the

following iso-coinserter.

R⊗M (B⊗M S) R⊗M S

(R⊗ S)α

(R⊗M B)⊗M S R⊗M S

R⊗M◦B

ι

∼=

◦B⊗MS

ι

αRS

This associator is natural by its universal construction, so for every square b :B(B0, B1) and r :R(R0, R1),

s :S(S0, S1) the following commutes.

(R0, B0 ◦ S0) (R0 ◦B0, S0)

(R1, B1 ◦ S1) (R1 ◦B1, S1)

αRS

αRS

(r,b◦s) (r◦b,s)
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Then we form the following coequifier, for reassociating a composite and a unit.

R⊗M B⊗M B⊗M S (R⊗ S)α (R⊗ S)β

B0.(R,B1◦(B2◦S))

B2.((R◦B1)◦B2,S)

co.equif

R⊗M S (R⊗ S)β R⊗ S

B.(R,UB◦S)

B.(R◦UB,S)

co.equif

This defines the parallel composite horizontal profunctor R⊗ S : bf.DblCat(A,C).

The parallel composite consists of pairs of relations and pairs of inferences, plus a new associator.

parallel composite metarelation

This associator is natural, and coherent with parallel composition and identity of B.
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parcomp associator coherence parcomp unitor coherence

Next, we define parallel composition of double profunctors along vertical profunctors.

Definition 68. Let m(f, g) :Q(X,Y) |R(A,B) and n(g, h) :S(Y,Z) : T (B,C) be double profunctors,

composable along the vertical profunctor g :Y |B.

X Q Y S Z

A R B T C

f p m g n h

p

The parallel composite (m ⊗ n)(f, h) : (Q ⊗ S)(X,Z) | (R ⊗ T )(A,C) is defined as the following

coequalizer.

(R⊗M 〈B〉)⊗M T R ⊗M T

∼= R⊗ T R⊗ T

R⊗M (〈B〉 ⊗M T ) R⊗M T

(Q⊗M 〈Y〉)⊗M S Q⊗M S

∼= Q⊗ S Q⊗ S

Q⊗M (〈Y〉 ⊗M S) Q⊗M S

ι

ι

ι

ι(m⊗M〈g〉)⊗Mn

m⊗M(〈g〉⊗Mn)

m⊗Mn

m⊗Mn

ι!(m⊗Mn) m⊗n∼=
co.equ

The profunctor ι!(m⊗Mn) forms all composites of elements g.(m,n) and the morphisms ofQ⊗S and

R⊗ T . Then, the coequalizer imposes that the associators are natural with respect to the elements.
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So the elements of the composite (m⊗n)(f, h) : (Q⊗S)(X,Z) | (R⊗T )(A,C) are composites of:

morphisms y.(q, s) : (Q⊗ S)(Y0.(Q0, S0),Y1.(Q1, S1))

associators αQS : (Q⊗ S)(Y0.(Q,Y ◦ S),Y1.(Q ◦ Y, S))

elements g.(m,n) : (m ◦M n)(Y.(Q,S),B.(R, T ))

associators αRT : (R⊗ T )(B0.(R,B ◦ T ),B1.(R ◦B, T ))

morphisms b.(r, t) : (R⊗ T )(B0.(R0, T0),B1.(R1, T1))

such that for any g : g(g0, g1)(Y,B) and m :m(f, g0), n :n(g1,h) the following commutes.

Y0.(Q,Y ◦ S) Y1.(Q ◦ Y, S)

B0.(R,B ◦ T ) B1.(R ◦B, T )

αQS

αRT

g0.(m,g◦n) g1.(m◦g,n)

We denote the composite by the same “arrow sum” notation as for horizontal profunctors.

(m⊗ n)(f,h) ≡ ~Σg : g. m(f, g)× n(g,h)

The parallel composite matrix profunctor can be drawn as follows.
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Parallel composition of horizontal profunctors and double profunctors is functorial in the same

way as matrix categories and matrix profunctors, by functoriality of colimit.

Yet just as for matrix profunctors, parallel composition does not preserve sequential composition

of horizontal profunctors. So following definition 54, bifibrant double categories form a metalogic.

Theorem 69. Bifibrant double categories form a metalogic.

Morphisms are double functors, vertical profunctors, and horizontal profunctors; squares are

vertical transformations, horizontal transformations, and double profunctors; and cubes are double

transformations.

bf.DblCat← bf.DblProf → bf.DblCat

Proof. Let DC be the category of bifibrant double categories and double functors, and let VP be the

category of vertical profunctors and vertical transformations; so DC← VP→ DC is bf.DblCat.

Let HP be the category of horizontal profunctors and horizontal transformations, and let DP be

the category of double profunctors and double transformations; so HP← DP→ HP is bf.DblProf.

As we showed, these form a fibered span of logics

DC HP DC

VP DP VP

DC HP DC

equipped with span functors for parallel composition and unit:

HP ∗h HP HP DC HP

DP ∗h DP DP VP DP

HP ∗h HP HP DC HP

⊗

⊗

⊗

X.X(−,−)

f.f(−,−)

A.A(−,−)
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with span transformations for left and right unitors, forming adjoint equivalences: for every hori-

zontal profunctorR :A ‖B, its unitors and associators give the following horizontal transformations.

R R

A⊗R
λ◦ λ•

ηλ

ηλ = υA :R ∼= UA ◦R

R R

R⊗ B
ρ◦ ρ•

ηρ

ηρ = υB :R ∼= R ◦ UB

R

A⊗R A⊗R

λ• λ◦

ελ

ελ = αA : (UA0 , A ◦R) ∼= (A,R)

R

R⊗ B R⊗ B

ρ• ρ◦

ερ

ερ = αB : (R ◦B,UB1
) ∼= (R,B)

Just as in MatCat, the naturality of unitors with respect to elements of double profunctors gives

that the above transformations cohere with the unitor transformations for double profunctors, as in

a modification.

Q R

Q X⊗Q A⊗R R

Q R

ip

f⊗ip

i
p

∼= ∼=

λi

λ•i

UX ◦Q Q

UA ◦R R

υX

υA

Uf◦i i

Q R

Q Q⊗ Y R⊗ B R

Q R

ip

i⊗gp

i
p

∼= ∼=

ρ•i

ρi

Q ◦ UY Q

R ◦ UB R

υY

i◦Ug

υB

i

The associator is an isomorphism R⊗ (S ⊗ T ) ∼= (R⊗ S)⊗ T , with equality pentagonator.

The triangulator is given by the unitors, and its coherence follows from the naturality of the

unitors with respect to the associator.

Hence bf.DblCat is a metalogic, whose cubes are drawn as follows.
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X1 Q1 Y1

X0 Q0 Y0

A0 R0 B0

A1 R1 B1

f0

p

i0 g0

p

[[X]] [[Q]] [[Y]]

[[A]] [[R]] [[B]]

f1

p g1p[[i]]

i1

[[g]][[f]]
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