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ABSTRACT OF THE DISSERTATION 

 
 

The Effects of Molecular and Biochemical Disruptions Posed 
 by Harm-Reduction Tobacco Products on Developing Tissues  

Using Human Pluripotent Stem Cells 
 
 

By 
 
 

Lauren Michelle Walker 
 

Doctor of Philosophy, Graduate Program in Environmental Toxicology 
University of California, Riverside, June 2019 

Dr. Nicole zur Nieden, Chairperson 
 
 
 

 Focus on tobacco-related disease concerns has shifted from cigarettes to other 

forms of tobacco use over the last 20 years. Due to their perception as “safer than a 

cigarette” by the general public, harm-reduction tobacco products (HRTPs) offer an 

appealing alternative for women struggling with nicotine addiction who find themselves 

pregnant. Some studies, however, suggest that HRTPs may increase risk of adverse 

pregnancy outcomes and hinder fetal skeletal development. To date, the mechanistic 

etiology of HRTP embryotoxicity is unreported. This thesis aims to address this knowledge 

gap by answering some of the questions surrounding how HRTPs molecularly and 

biochemically cause changes in the developing skeleton.  

 Early in vivo studies reported herein indicated that HRTP exposure directly targets 

early osteogenesis of the skull following in utero exposure of mouse embryos. To explore 

the molecular etiology of this outcome, the embryonic stem cell test (EST) protocol was 



 viii 
 

adapted to an in vitro model of developmental osteogenesis using human pluripotent stem 

cells (hPSCs). Cultures were concurrently exposed to conventional sidestream cigarette 

smoke (CSC), harm-reduction sidestream cigarette smoke (HSC), or harm-reduction Snus 

smokeless tobacco extract (STE). While conventional and harm-reduction extracts both 

inhibited in vitro osteogenesis, only the HSC and STE harm-reduction extracts did so at 

sub-cytotoxic doses. Furthermore, inhibitory doses increased cellular levels of reactive 

oxygen species and reduced endogenous antioxidant enzyme activity. Molecular analysis 

found that CSC exposure incurred both DNA damage and a concurrent apoptotic response 

that was absent in cultures exposed to either HRTP extract. Biochemical exploration of 

HRTP impact on developing cultures found exclusive activation of survival kinase AKT 

and reduction of stress rescue kinase JNK in STE-exposed cultures. Concurrent treatment 

with an isoform-specific inhibitor of AKT or JNK activator rescued osteogenesis in STE 

cultures, implicating the specific misregulation of these kinases in poor osteogenic 

outcomes. Global proteomic analysis of AKT signaling targets also identified exclusive 

hyperphosphorylation of FOXO transcription factors—required for oxidative stress 

defense and adult bone homeostasis—in STE-treated cultures, marking FOXOs for nuclear 

exclusion. Collectively, our data suggest that HRTPs inhibit normal osteogenesis by 

disrupting the balance between embryonic osteogenesis, survival, and redox equilibrium 

mechanisms. 
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CHAPTER 1 

 

Addressing the global birth defects burden 

 

Introduction 

Each year, over 8 million children are born with a birth defect resulting from genetic 

causes, maternal nutritional deficiency, or maternal exposure to environmental agents (i.e., 

chemical, infectious, pharmaceutical) [1]. Of these children, an estimated 3.3 million under 

the age of 5 die from serious birth defects, with over 300,000 children succumbing within 

the first month of life [2]. Affected infants who survive past childhood and their families 

must continue to manage lifelong physical, mental, auditory, and/or visual disabilities. 

Birth defects may be structural (e.g., cleft palate, heart defects) or functional (e.g., 

behavioral disorders, muscular dystrophy, etc.) in nature [3].  Some structural and 

functional defects can be corrected through surgical and pharmacological intervention, 

respectively. Societal cost of care and medical intervention associated with birth defects, 

however, can be quite burdensome—especially for low- and middle-income families. For 

instance, the cost of care for a child born with fetal alcohol spectrum disorder (FASD) in 

the United States was estimated to be about $23,000 per person annually in addition to 

productivity losses for caregivers of children born with FASD [4], [5]. More broadly, 

domestic hospitalization costs alone for individuals with birth defects was estimated to be 

$23 billion [6]. In this way, long-term disability caused by birth defects can have significant 

impacts on individuals, their families, health-care systems, and communities (Fig. 1.1).  
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Figure 1.1. Percentage of hospital stays in the United States associated with at least one 
birth defect-associated diagnosis by age group for 2013 (Arth, 2017). 
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Birth defects are one of many public health issues that comprise the current global 

health burden. At present, the causes of about 30% of birth defects are somewhat 

understood [7]. Given the body of knowledge on the role of environmental factors and 

adult health [8-11], it follows that the remaining 70% of birth defects may have etiology 

rooted in environmental conditions and can therefore be preventable with appropriate 

precautions. To date, environmental contaminants such as industrial solvents, metals, 

pesticides, and environmental tobacco smoke have all been suggested to disrupt normal 

development [12]. The full extent of developmental toxicity risks, however, remains 

unclear. In 2011, a study found that 98% of drugs approved by the US Food and Drug 

Administration lacked data on whether or not those drugs posed a risk to pregnancy 

outcomes [13]. In addition, the majority of the commercial chemicals registered for use in 

the United States lack comprehensive human toxicity and exposure data [14], which also 

poses a challenge to birth defects prevention. Without sufficient documentation on birth 

defect etiology, global public health policies are unlikely to change. 

 

In Vitro Solutions to Current Challenges in Birth Defects Research 

Traditional approaches to birth defects and developmental biology research utilize 

animal models to study embryonic developmental processes and associated diseases [15].  

The prenatal developmental toxicity test uses pregnant mice, rats, or rabbits to identify 

chemicals that disrupt normal pregnancy and/or development.  This test is also routinely 

used alongside other in vivo methods to establish human exposure guidelines [16-21]. 

Animal models benefit from generally conserved biological principles governing gene 
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expression and tissue morphogenesis. Mouse models, in particular, are regarded as the 

premier system for investigating human organ development as most protein-coding genes 

are shared between the human and laboratory mouse genome [22]. This similarity is best 

evidenced by mutant mouse models that recapitulate human disease phenotypes. For 

instance, null mutations in pancreas specific transcription factor 1a (Ptf1a) result in 

impaired pancreas development in both mice and humans [23-25]. Despite the overall 

success of animal models, traditional developmental animal studies still suffer from their 

expensive and time-consuming nature [26]. Cost and time requirements alone make 

traditional developmental animal model approaches impractical for use in testing all 

commercially used chemicals and pharmaceuticals. As such, the rate at which 

environmental contaminant risks are identified is often slowed. These challenges highlight 

a need for robust, low-cost, and swift screening methods that can detect and prioritize 

chemicals that present developmental toxicity risks. 

 In response to challenges presented by traditional developmental screening 

approaches, several in vivo and in vitro screening approaches have been proposed to 

mitigate challenges posed by traditional methodologies. Each of the in vivo assays—the 

zebrafish embryotoxicity test and the Frog Embryo Teratogenesis Assay (FETAX), and the 

mouse whole embryo culture assay—operate similarly in that each exposes whole animal 

embryos to the chemical(s) of interest for 72-120 hours before the developmental stages of 

specified structures and organs are scored to assess embryotoxic effects [27-30]. In 

contrast, the in vitro limb bud micromass test and mouse embryonic stem cell test (mEST) 

measure the ability of rat limb bud cells and mid brain cells or mouse embryonic stem cells, 
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respectively, to successfully differentiate into directed cell types with concurrent chemical 

exposure [31], [32]. While accuracy data has yet to be reported for the FETAX approach, 

each of the other methods offer prediction accuracy rates of 70% or higher, with the mouse 

whole embryo assay at the highest accuracy rate of 80% [27], [29], [33]. Furthermore, the 

MM test, WEC test, and mEST have been officially validated via independent studies 

coordinated by the European Center for the Validation of Alternative Methods (ECVAM) 

[33]. 

While all of these approaches truncate the completion time for embryotoxicity 

assessments, only the mEST addresses the cost of routine animal use and subsequent 

sacrifices. In lieu of whole animal embryos, the EST uses embryonic stem cells to model 

developmental processes and tissue commitment. Embryonic stem cells (ESCs) are derived 

by isolating cells from the inner cell mass of a preimplantation blastocyst and cultivating 

the isolated cells in vitro [34], [35] (Fig. 1.2). During normal development, the inner cell 

mass (ICM) gives rise to all the cell types of the body but does not contribute to placental 

tissues. Because of this lineage restriction, ICM are regarded as pluripotent instead of 

totipotent [36]. ESCs are also characterized by their ability to “self-renew” or proliferate 

indefinitely without differentiating into more 

specialized cell types [37] (Fig. 1.3). This feature 

allows for prolonged cell stock maintenance and 

thus swift, cost-effective generation of starting 

materials for in vitro embryotoxicity assessments. 

Mouse ESCs (mESCs) can be maintained in in  

Figure 1.2. Blastocyst illustration 
demonstrating the inner cell mass 
(ICM) and trophoectoderm cell 
populations.  

Inner Cell Mass

Trophoectoderm

Blastocoel Cavity

Zona Pellucida
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this pluripotent state of self-renewal by supplementing culture medium with cytokine 

leukemia inhibitory factor (LIF) or by co-culture with murine embryonic fibroblast (MEF) 

feeder layers that provide a source of LIF [38]. When the LIF source is withdrawn from 

mESC culture, mESCs pluripotency is lost as the cells differentiate into distinct cell types. 

mESC differentiation is classically directed through the formation of embryoid body (EB) 

formation [39]. Here, suspensions of mESCs are allowed to form cell aggregates of densely 

packed cells with fluid filled cavities [40-42].  EBs execute polarity and tissue 

regionalization processes that coincide with the sequential activation of genes responsible 

for gastrulation and early embryo patterning processes [43-45]. The mEST takes advantage 

of this capacity to recapitulate the gastrulation process with mESCs in the context of 

embryotoxicity assessments.  

In the original mEST protocol, mouse ESCs are induced to differentiate into 

cardiomyocytes during concurrent chemical exposure and embryotoxic risk is 

quantitatively measured [46]. Here, mouse D3 ESCs are used to recapitulate embryonic 

cardiogenesis as they differentiate into actively contracting cardiomyocytes. 

Differentiation inhibition and cytotoxicity are measured as reductions in formation of 

functional contractile clusters and cell metabolic activity, respectively. The mEST also 

accounts for cytotoxic impacts on maternal tissues via the inclusion of 3T3 fibroblasts in 

the screening protocol. Cytotoxicity in exposed 3T3 cultures is used to identify potential 

maternal toxicity events that could affect the likelihood of embryotoxicity. Half-maximal 

inhibitory doses for differentiation (ID50) and cell viability (IC50) are determined from 

dose-response curves generated from screen endpoints. The values, in turn, are entered into  
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a biostatistical prediction model which was developed for use with the EST protocol to 

classify chemicals under evaluation as non-embryotoxic, weakly embryotoxic, or strongly 

embryotoxic (Fig. 1.4).  

Since its ECVAM validation, the mEST has been employed in embryotoxicity 

screens for a variety of commodities including industrial chemicals [47], [48], 

pharmaceuticals [49], [50], and cosmetics [51]. The mEST has also been used in 

embryotoxicity evaluations for a number of environmental contaminants [52-56]. Though 

the mEST is validated for a cardiomyocyte endpoint, traditional in vivo developmental 

screens evaluate changes in all soft tissues as well as the developing skeleton [16]. Thus, 

there is a need for additional endpoints in the EST protocol in order to more thoroughly 

assess the embryotoxic potential of chemicals. Some progress has been made to address 

these additional needs through the development of defined differentiation protocols. To 

date, protocols have been reported for directing differentiation of mESCs to bone, neural 

tissue, and muscle tissue [57-59]. Thus, the mEST protocol can be adapted to address 

embryotoxicity for chemicals that may additionally or more specifically target tissues other 

than cardiac tissue.  

 

Updating the mEST with Human Pluripotent Stem Cells 

Over the last few decades, most in vitro developmental toxicity testing has been 

predominantly executed using mESCs [33], [50], [60-64]. The first isolation of human 

ESCs (hESCs) from a human blastocyst [65], however, started a dialogue on the possibility 

of incorporating hESCs into developmental testing protocols. While the laboratory mouse 
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Figure 1.4. Overview of the Embryonic Stem Cell Test. Inhibition of differentiation and 
cell viability in differentiating embryonic stem cells (ESCs) is compared with inhibition 
of terminally differentiated fibroblasts in the EST biostatistical model to determine 
embryotoxicity classification. 
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and human genome are largely conserved, variations in gene expression patterns and 

pluripotency maintenance signaling pathways for mouse and human ESCs have been well 

documented [29], [66], [67]. These discrepancies suggest the potential for additional 

variations regarding signaling pathways involved in differentiation processes that may 

have implications for embryotoxicity testing. Differences in metabolism and temporal gene 

regulation in in vivo rodent models have already been documented to sometimes yield 

inaccurate toxicity assessments and failed human clinical trials [68-71]. Furthermore, in 

vivo mouse models have been shown to not always fully replicate human disease [72]. 

In light of the potential challenges posed by mouse models, hESCs have been 

viewed as a means to offer a more biologically relevant approach to in vitro developmental 

modeling and embryotoxicity assessments. Like mESCs, hESCs are pluripotent, capable 

of self-renewal, and can be directed to differentiate into particular cell types [73–75]. While 

hESC stocks were previously more challenging to maintain in culture, recent advances in 

culturing techniques and approaches have made routine hESC culture more accessible [76].  

 Routine use of hESCs in developmental toxicity evaluations, however, has been 

slow despite proposed advantages over mESC-based models. One of the main challenges 

to hESC incorporation into regulatory evaluations has been the ethical and legal debate 

surrounding hESC derivation, which calls for the destruction of the donor embryo [77], 

[78]. In response to these concerns, human induced pluripotent stem cells (hiPSCs) have 

been proposed as “a more ethical alternative” to hESCs as well as an additional route for 

in vitro developmental models and toxicity screens. hiPSCs possess the same defining 

characteristics of hESCs (i.e., self-renewal, pluripotency) but differ in that they are derived 
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from biopsied somatic cells that have been genetically reprogrammed to a pluripotent, 

ESC-like state [79], [80] (Fig. 1.5).  

Because these hiPSCs can be derived from various individuals, these cells also offer 

the additional opportunity to create cell lines of varied genetic and disease backgrounds. In 

this way, hiPSC-based developmental models could also be used to explore the genetic 

interplay between toxicant exposure and outcomes. One caveat of hiPSCs, however, is that 

iPSCs may experience an incomplete reset of DNA methylation patterns during genetic 

reprogramming that may cause lineage bias during later differentiation [81].  High-

efficiency reprogramming protocols and hiPSC stock quality control practices have both 

been suggested to address this challenge [82], [83]. Nevertheless, which human pluripotent 

stem cell type—if either—is more advantageous in a developmental model remains to be 

reported. 

Despite strides made in the area of in vitro developmental toxicity screens over the 

last 20 years, hiPSC- and hESC-based developmental toxicity screens have yet to be 

incorporated into the regulatory framework of embryotoxicity assessments. In vivo species-

species discrepancies in toxicant response are well-documented [84–86], though it remains 

to be seen if mESCs are less sensitive than human pluripotent stem cells. Here, additional 

comparative analysis is required to support claims that human pluripotent stem cells are a 

superior in vitro developmental model system. hPSCs as a Means to Investigate Birth 

Defects in Understudied Tissues Like Bone 

 The capacity for hPSCs to be differentiated into any of the 3 germ layers formed 

during gastrulation also creates a potential avenue for studying processes and pathologies  
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that have been previously difficult to study. One such area is that of skeletal defects and 

pathologies resulting from disruptions that occur during osteogenesis. Osteogenesis refers 

to the process by which bone is formed during embryonic development, adult bone 

homeostasis, or the bone healing process after a fracture event. Depending on the type of 

bone, osteogenesis can occur predominantly through one of two mechanisms: 

intramembranous ossification or endochondral ossification [87]. Intramembranous 

ossification produces the flat bones (i.e., craniofacial skeleton, pelvis). Intramembranous 

ossification occurs by proliferation and direct differentiation of osteoprogenitor cells into 

osteoblast bone cells. Endochondral ossification, conversely, produces the long bones (i.e., 

ribs, spine, humeri, femurs) that make up the axial and appendicular skeleton. During 

endochondral ossification, bone formation is preceded by chondrogenesis processes that 

create a cartilaginous base. Osteoprogenitors eventually replace the cartilaginous base with 

bone cells. With both modes of ossification, bone progenitor cells condense at bone 

formation sites before ultimately differentiating into osteoblasts that secrete and mineralize 

extracellular matrix. These osteoblasts later mature into osteocytes. 

 Bone formation and remodeling through either ossification mechanism is a 

dynamic process that is tightly regulated between bone-building osteoblasts and bone-

absorbing osteoclasts. Osteoblasts are defined by their ability to form a mineralized extra 

cellular matrix (ECM). Differentiation from pluripotent stem cells to osteoblasts is 

regulated by temporal expression of specific genes and proteins. In vitro approaches to 

recapitulate this process using ESCs have identified ascorbic acid, β-glycerophosphate and 

1,25-(OH)2 vitamin D3 as potent inductors of osteogenic differentiation [88]. Studies in 
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our group have found mESC-based osteogenesis to recreate temporal expression patterns 

of osteogenic genes involved in embryonic osteogenesis. During this process, expression 

of alkaline phosphatase (ALPL) is followed by activation of CBFA1, a master regulatory 

transcription factor [89] for osteogenesis that upregulates runt-related transcription factor 

2 (RUNX2) and osteopontin (OPN) expression. As the differentiation progresses, mature 

osteoblast markers bone sialoprotein (BSP) and osteocalcin (OCN) are expressed. These 

developments are followed by expression of osteocyte-affiliated genes CAPG and 

DESTRIN [90]. Given the tightly-regulated and timing dependent nature of osteogenesis, 

it follows that misregulation of any of these key stages during development may lead to 

skeletal birth defects or pathologies [59], [91].  

From a developmental perspective, different gastrulation layers contribute to 

different skeletal tissues. Neural crest cells arising from the ectoderm germ layer lineage 

largely contribute to the craniofacial skeleton, while the mesoderm layer ultimately 

produces the appendicular skeleton (lateral mesoderm) and cranial and axial skeleton 

(paraxial mesoderm) (Fig. 1.6). At present, the precise relationship between disruption of 

osteoblast precursor populations during development and adult skeletal function is not well 

understood. It is recognized, however, that some environmental toxicants can disrupt 

normal bone metabolism, increasing risk of bone fracture and causing osteoporosis [92-

94]. One such environmental toxicant, cigarette smoke, has been associated with a myriad 

of adverse pregnancy incomes [95]—including low bone mass [96] and increased bone 

fracture risk [97] for children exposed in utero. To date, however, very little investigation 

of the molecular mechanism of tobacco-related osteotoxicity in developing tissues has been  
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Figure 1.6. Overview of skeletal bone developmental origins in the early 
embryo. Lateral mesoderm and paraxial mesoderm give rise to the 
appendicular and axial skeleton, respectively. Neural crest cells give rise to 
the craniofacial skeleton, though the paraxial mesoderm contributes to other 
parts of the cranial skeleton. 
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reported. This dearth of information may be attributable in part at least to the costs and 

time associated with traditional in vivo developmental modeling approaches. It follows, 

then, that human pluripotent stem cell (hPSC)-based models of osteogenesis could offer a 

less-expensive and less-time consuming approach to investigating unknown mechanisms 

of embryotoxicants like tobacco in tissues that are challenging to study in vivo.  

Conclusion 

One of the main challenges to reducing the global birth defects burden is the dearth 

of knowledge regarding the precise influence of many environmental toxicants on 

particular developmental processes. Functional defects observed in developmental animal 

studies long been employed to investigate the potential for embryotoxic effects in humans 

[98], though this approach fails to provide a clear mode of action for embryotoxic etiology. 

Use of hESCs or hiPSCs in developmental modeling approaches offers a faster, more cost-

effective avenue to investigate molecular changes and embryotoxic mechanisms at play in 

adverse developmental outcomes. The development of defined differentiation protocols for 

hPSCs allows for the investigation of understudied embryotoxicity mechanisms like the 

impact of tobacco on bone. 
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Aims 

The current global birth defects burden exerts an annual toll of billions of dollars 

in preventable healthcare costs, emotional detriment, and lost economic productivity [5], 

[6]. Enhancing the traditional developmental toxicity tool kit with robust, biologically-

relevant human pluripotent stem cell approaches can help to reduce the bottleneck 

associated with traditional whole animal approaches. Furthermore, human pluripotent stem 

cell-based developmental modeling may offer the opportunity to explore embryotoxicant 

modes of action in a developmentally-relevant system. However, additional research 

support of hPSC-improved sensitivity compared to mESCs as well as the investigatory 

capacity of human pluripotent stem cells with regard to complex environmental 

contaminants remains to be reported. This thesis aims to provide knowledge on the robust 

nature of hPSCs in embryotoxicity assessments and mode of action studies by addressing 

three specific aims:  

 

Specific Aim 1: Determine comparative sensitivity of non-human primate and human 

pluripotent stem cells compared to mESCs (addressed in chapters 2 and 3). 

 

Specific Aim 2: Investigate embryotoxic mechanisms of conventional and harm-reduction 

cigarettes in developmental osteotoxicity screening model using hESCs (addressed in 

chapter 4). 
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Specific Aim 3: Evaluate the biochemical alterations driven by smokeless-tobacco 

exposure and down-stream ramifications on embryonic bone development (addressed in 

chapter 5). 
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CHAPTER 2 

 
Non-human primate and rodent embryonic stem cells are differentially sensitive to 

embryotoxic compounds 

 

Lauren Walker, Laura Baumgartner, Kevin C. Keller, Julia Ast, Susanne Trettner, and 

Nicole I. zur Nieden 

 

Abstract 

Many industrial chemicals and their respective by-products need to be 

comprehensively evaluated for toxicity using reliable and efficient assays. In terms of 

teratogenicity evaluations, the murine-based embryonic stem cell test (EST) offers a 

promising solution to screen for multiple tissue endpoints. However, use of a mouse model 

in the EST can yield only a limited understanding of human development, anatomy, and 

physiology. Non-human primate or human in vitro models have been suggested to be a 

pharmacologically and pathophysiologically desirable alternative to murine in 

vitro models. Here, we comparatively evaluated the sensitivity of embryonic stem cells 

(ESCs) of a non-human primate to skeletal teratogens with mouse ESCs hypothesizing that 

inclusion of non-human primate cells in in vitro tests would increase the reliability of 

safety predictions for humans. 

First, osteogenic capacity was compared between ESCs from the mouse and a New 

World monkey, the common marmoset. Then, cells were treated with compounds that have 

been previously reported to induce bone teratogenicity. Calcification and MTT assays 
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evaluated effects on osteogenesis and cell viability, respectively. Our data indicated that 

marmoset ESCs responded differently than mouse ESCs in such embryotoxicity screens 

with no obvious dependency on chemical or compound classes and thus suggest that 

embryotoxicity screening results could be affected by species-driven response variation. In 

addition, ESCs derived from rhesus monkey, an Old World monkey, and phylogenetically 

closer to humans than the marmoset, were observed to respond differently to test 

compounds than marmoset ESCs. Together these results indicate that there are significant 

differences in the responses of non-human primate and mouse ESC to embryotoxic agents. 

 

Introduction 

In the United States, one in 28 babies carries congenital anomalies [1]. Although 

50% of the causes for such birth defects are unknown, some may be traced back to 

involuntary environmental chemical exposure. There are more than 80,000 cataloged 

chemicals in the United States that may be released into the environment and most of them 

are inappropriately tested for safety. This lack of information is particularly concerning for 

sensitive populations such as pregnant women and children as adequate safety guidelines 

cannot always be confidently recommended. Furthermore, given that the developing fetus 

is especially sensitive to maternal environmental conditions and also that exposure during 

key points of development can lead to unique effects lasting through multiple 

generations [2], the potential embryotoxicity and teratogenicity of industrial compounds is 

of particular concern. 
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With appropriate data, acceptable exposure levels and actual safety of such 

products can be established for individuals that are most vulnerable to chemical exposure. 

Therefore, toxicology programs have been designed to identify toxicities that may 

potentially be encountered in human embryos. Under the worldwide trend for revision of 

chemical legislation, it will be necessary to test a large number of chemicals in a short time, 

which can only be achieved with predictive in vitro assays. 

A step in the direction of animal sacrifice free embryotoxicity screen was taken 

when the classic embryonic stem cell test (EST) was first described [3], [4]. This assay 

relies on embryonic stem cells (ESCs) from the mouse and compares two important aspects 

of prenatal toxicity. First, the EST has revealed the differences in sensitivity of mouse 

embryonic stem cells (ESCs) to chemical entities compared to adult fibroblasts. Second, 

the test determines the ability of a chemical to inhibit the differentiation of the ESCs into 

a differentiated cell type of interest [5], [6].  

Among the many birth defects, the ones that affect musculoskeletal tissues account 

for 5% of all infant deaths. Thus, skeletal toxicity has become a high priority screening 

phenotype and is currently integrated into the animal screens that assess general prenatal 

developmental toxicity (TG414, OECD) [7], [8], [9]. Assessing the inhibition of osteogenic 

differentiation of the ESCs, the EST may also be exploited to serve as predictor for 

developmental osteotoxicity [6], [10], [11], [12], [13], [14]. 

Despite the routine use of rodent models in research, the mouse model as used in 

the EST can only yield a limited understanding of human development, anatomy and 

physiology. Accordingly, human in vitro models are desirable from a pharmacological and 
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pathophysiological standpoint. Indeed, ESCs from humans were established around the 

turn of the century [15]. However, due to ethical considerations, the legality of their use 

varies widely between countries. A solution comes with human induced pluripotent stem 

cells (hiPSCs), which are artificially created from somatic cells, and are therefore not 

ethically challenged, but it is yet unclear how their quality or differentiation potential 

measures up to bona fide hESCs. Therefore, to provide a legal and ethical alternative to 

countries, which have banned hESC research, we test here whether the sensitivity of non-

human primate ESCs to a small set of classical and skeletal embryotoxic agents is similar 

to that of mouse ESCs in order to evaluate whether the inclusion of non-human primate 

cells into the EST would increase the reliability of safety predictions for human use. 

 

Materials and methods 

Murine ESC maintenance 

Murine D3 embryonic stem cells (American Type Culture Collection, Rockville, 

MD, USA) were expanded in high glucose DMEM containing L-glutamine (Corning). 

Media additionally contained 15% batch-tested fetal bovine serum (FBS), 1% non-

essential amino acids (NEAA), 50 U/ml penicillin, 50 µg/ml streptomycin, 0.1 mM 2-

mercaptoethanol (all Invitrogen) and 1000 U LIF/ml (Millipore). Cells were routinely 

passaged every 2–3 days with 0.25% Trypsin-EDTA (Life Technologies). 
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Maintenance culture of non-human primate ESCs 

Embryonic stem cells from the common marmoset (cjes001) were cultured in 

feeder-free conditions as described [16]. Rhesus ESCs (R366.4, WiCell Research Institute) 

were cultured on mouse embryonic fibroblast feeder layers as previously 

described [17], [18]. 

 

Osteogenic differentiation of ESCs 

Murine ESCs were induced to differentiate via aggregation into embryoid 

bodies via hanging drops at 750 cells/drop, in the presence of control differentiation 

medium (CDM, mouse ESC maintenance medium without LIF [19]. Differentiating cells 

were replated on day 5 as a single cell suspension at a concentration of 

50,000 cells/cm2 [20]. Differentiation of marmoset and rhesus ESCs was initiated from 

intact ESC colonies in non-adherent conditions as described [16], [17]. In brief, 

undifferentiated colonies were trypsinized with TrypLE (Invitrogen) into clusters of 20–30 

cells. Approximately 100 such clusters were seeded in CDM to one bacteriological grade 

dish (100 mm diameter). Following 5 days of incubation, cell clusters were transferred onto 

cell culture plates coated with 0.1% gelatin at an approximate density of 10 cell 

clusters/cm2. On day 5 of differentiation, cells from all species received osteogenic 

differentiation medium containing the induction factors β-glycerophosphate (10 mM), 

ascorbic acid (25 µg/ml), and 1α,25-(OH)2 vitamin D3 (5 × 10−8 M) in CDM. 
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Test compounds 

5-fluorouracil, all-trans retinoic acid, penicillin G (all Sigma) were selected as 

control test compounds as the teratogenic potential of each has been well established by 

previous in vivo and in vitro investigations [21]. Stock solutions were made in DMSO and 

diluted to test concentrations in respective cell culture media. Lithium chloride was 

obtained from Fluka and aluminum chloride was obtained from Sigma. Sodium chloride 

(Fisher Scientific), lithium acetate (Aldrich), sodium acetate (Sigma), and aluminum 

hydroxide (Sigma) were included as controls for lithium and aluminum activity. Untreated 

control cultures containing appropriate vehicle were also included. Osteogenic 

differentiation was considered valid if the control solvent yielded osteoblast differentiation 

levels comparable to that of untreated vitamin D3 induced osteogenic cultures. 

 

Cytotoxicity assay 

Cellular viability was evaluated with an MTT assay following 14 days of 

osteogenic induction as described [22]. In brief, 0.5 mg/ml MTT solution was added to the 

cultures and cells were incubated at 37 °C for 2 h. Reagent was then aspirated and cells 

were gently rocked in pre-warmed MTT desorb solution (0.7% SDS in 2-propanol) for 

15 min. Absorbance of dissolved blue formazan product was measured 

spectrophotometrically at 570 nm with a 630 nm reference wavelength. Mitochondrial 

activity was normalized to solvent only controls and resulting percentages were graphed 

along the tested concentration range to construct a concentration–response curve. The half-
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maximal inhibitory effect (IC50) for each compound was subsequently 

established via linear interpolation of the curve. 

 

Alizarin Red S staining 

Attached cells were washed with 1X PBS and fixed with 4% paraformaldehyde in 

1× PBS and incubated at 4 °C for 1 h. Residual fixative was quenched via incubation with 

100 mM glycine for 15 min at room temperature. Samples were then washed three times 

in 1× PBS and once in dH2O. Fixed cells were then subjected to a 0.5% Alizarin Red S 

staining solution for 5 min. Following three washes with dH2O, subsequent washes were 

performed with ascending ethanol concentrations (i.e. 70%, 80%, 90%, and 100%). 

Cultures were kept in 100% ethanol for acquisition of images. 

 

Quantification of calcium deposition 

Cells were washed twice in 1× phosphate buffered saline (PBS) and lysed in a 

modified RIPA buffer (1% NP-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl 

sulfate in 1× PBS, pH 7.4). Each plate was incubated for 1 h at 4 °C with shaking to ensure 

complete cell lysis. Ca2+ concentration was measured against a set of standards using an 

Arsenazo III based spectrophotometric assay (Genzyme Diagnostics) at 650 nm as 

described [23]. The protein concentration in each sample was then measured against a set 

of standards using a Lowry spectrophotometric assay (Bio-Rad Laboratories) at 750 nm. 

Ca2+ content in each sample was then normalized to the respective protein concentration 

measured with the Bio-Rad DC protein assay reagent as described [23]. Calcium content 
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was normalized to solvent only controls and concentration-response curves charted. The 

half-maximal inhibitory dose (ID50) for each compound was taken from linear interpolation 

of the curve. 

 

Statistical analysis 

Data significance was decided using a web-based one-way ANOVA and Tukey 

HSD post hoc test (http://faculty.vassar.edu/lowry/anova1u.html) or unpaired Student's t-

test as appropriate. All results are represented as average of five independent 

replicates ± standard deviation. 

 

Results 

Osteogenic differentiation potential of marmoset ESCs 

ESCs from the marmoset, Callithrix jacchus, a New World monkey, have been 

previously derived [18], [24], [25] and been shown to be capable of producing osteoblasts 

that calcify their extracellular matrix [16]. Calcified extracellular matrices had been 

previously described as dark colored light-dense areas [26]. Those dark areas were 

observed in cultures from both mouse and marmoset ESCs via bright field microscopy on 

day 30 of osteogenic differentiation (Fig. 2.1A). Alizarin Red S staining of cultures 

confirmed the presence of calcified extracellular matrix in such dark areas. The overall 

amount of calcification between the marmoset and the mouse cells was comparable (Fig. 

2.1B). 
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Figure 2.1. Osteogenic differentiation ability in mouse and marmoset ESCs. (A) 
Brightfield images and Alizarin Red S staining identifying mineralized calcium. (B) 
Quantification of calcium deposit in osteogenic cultures determined with Arsenazo III, 
n = 3, five technical replicates each ± SD. p-value was established with a Student's t-
test. 
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Differential sensitivity of mouse and marmoset ESCs to lithium derivatives and controls 

Previous literature has suggested that lithium chloride, actively used in psychiatric 

pharmaceuticals, possesses the capacity for inducing skeletal teratogenicity [27]. In 

addition, our own research has suggested that lithium derivatives cause skeletal 

teratogenicity in certain concentration ranges [22]. To test the predictive aptitude of a non-

human primate-based EST for lithium derivatives, mouse and marmoset osteogenic ESC 

cultures were treated with lithium and aluminum compounds. Sodium chloride and lithium 

acetate served as a control for chloride in lithium chloride to ensure that observed effects 

were due to lithium activity. Sodium acetate was included as a control for acetate in lithium 

acetate. 

Lithium chloride treatment of mouse ESC osteogenic cultures did not result in the 

establishment of an ID50 value (Fig. 2.2). Instead, calcification was dose-dependently up-

regulated over control values in the absence of a cytotoxic effect. In contrast to mouse ESC 

cultures, LiCl induced a sharp drop in mitochondrial dehydrogenase activity, which is a 

routinely used and widely accepted test for cytotoxicity [3], [28], [29], in marmoset ESCs 

at a concentration of 100 µg/ml. LiCl-treated osteogenic marmoset ESC cultures also 

demonstrated a dose-dependent decrease in calcification as concentration increased with 

an ID50 at 0.4 ± 0.03 µg/ml, almost two orders of magnitude lower than the IC50. These 

results classify lithium chloride as teratogenic in marmoset, but not in mouse. 

Comparatively, murine osteogenic cultures treated with sodium chloride featured 

consistently elevated calcification levels with a 3-fold increase observed in the lowest 

tested concentration (Fig. 2.2B). No reduction in calcification was observed in any tested  
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concentration. Sodium chloride treated marmoset ESCs, in turn, displayed a half-maximal 

inhibitory dose at 790 ± 256 µg/ml. Sodium chloride-treated murine and marmoset 

osteogenic cultures followed relatively similar patterns of dose-dependent decreases in cell 

viability. In both cases, half maximal viability was approached, but not achieved within the 

test concentration range. The absent cytotoxicity coupled with a relatively high 

ID50 concentration qualified sodium chloride as non-cytotoxic and non-embryotoxic in 

neither species. 

Lithium acetate treatments resulted in a significant reduction in calcification at the 

highest tested concentration, while calcification levels remained above the 50% mark in 

marmoset ESCs for all concentrations tested (Fig. 2.3A and B). No decrease in cellular 

viability was noted upon exposure with this compound. In contrast, sodium acetate 

treatment induced a reduction in calcification at concentrations where viability was still 

around 100% (Fig. 2.3B). Although this effect was noted in both species, marmoset ESCs 

were more sensitive to sodium acetate than mouse ESCs. 

 

Common sensitivity of mouse and marmoset ESCs to aluminum and controls 

In order to further assess response variation between mouse and marmoset ESC 

osteogenic cultures, effects on calcification levels were also investigated in aluminum 

chloride, another compound actively used in certain classes of pharmaceuticals with known 

detrimental effects on the developing skeleton [30], [31], [32]. Cells were treated with 

aluminum hydroxide as a control for the chloride in aluminum chloride. In aluminum 

chloride- and aluminum hydroxide-treated mouse ESC cultures, a dose-dependent decrease  
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in calcification was observed with increasing concentration of the test compound (Fig. 2.4). 

A slightly steeper decrease in calcification was observed in aluminum hydroxide-treated 

cells. The similar response pattern between the aluminum chloride and hydroxide 

compounds infers that the observed teratogenic effect may be due to the presence of 

aluminum at those test concentrations. Comparable dose-dependent decreases in 

calcification were observed in marmoset ESC osteogenic cultures treated with aluminum 

chloride or hydroxide. However, calcification reduction in aluminum chloride-treated 

cultures was not as dramatic compared to osteogenic murine responses. 

The similarity between mouse and marmoset ESC responses to treatment with 

aluminum compounds as summarized in Table 2.1, suggests the potential for response 

overlap between species utilized for in vitro teratogenicity assessments. However, whether 

or not this overlap occurs may depend on the chemical in question. Lithium is chemically 

similar to aluminum and yet did not produce similar responses between mouse and 

marmoset ESC cultures following treatment with lithium compounds (Table 2.1). 

Therefore, observed variations in response may be due to variability in species sensitivity 

to particular compounds. 

 

Differential sensitivity to skeletal teratogens in ESCs from Old and New World monkeys 

Because of their close phylogenetic relationship with humans, primates share a 

large number of traits important in human reproduction. However, the reproductive biology 

of many small primates including Callithrix, is distinct from that of humans and Old World 

monkeys [33]. Because of the closer relationship between humans and Old World 
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Table 2.1. Half-maximal inhibitory concentrations of osteogenic differentiation (ID50) 
and cell viability (IC50) for chloride and aluminum compounds determined with mouse 
and marmoset ESCs. 
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monkeys, we next investigated whether ESCs from the rhesus monkey, Macaca mulatta, 

showed similar responses to compounds as the marmoset ESCs. Rhesus ESCs are generally 

capable of responding to osteogenic triggers with enhanced matrix mineralization [17]. 

In order to compare the responsiveness of mouse, marmoset and rhesus ESCs to 

embryotoxic compounds, the embryotoxic potential of 5-fluorouracil (5-FU) and all-trans 

retinoic acid (atRA) in each species were compared against murine ESCs using the skeletal  

 EST protocol [34]. Both compounds were previously shown to act as strong skeletal 

teratogens in the mouse, both in vivo and in the EST [3], [6], [14], [35], 

[36], [37], [38], [39]. Penicillin G (PenG) was included as a non-embryotoxic 

compound [21]. Effects on differentiation were assessed via calcium deposition 

quantification assay while cell viability was again measured with the MTT assay. 

In 5-FU-treated cells, similar decreases in cell viability were observed in mouse, 

marmoset and rhesus ESC osteogenic cultures (Fig. 2.5A). However, the mouse ESCs were 

the most sensitive to the cytotoxic effects of this compound, while marmoset and rhesus 

ESCs were equally sensitive. Measured calcification patterns in mouse, marmoset and 

rhesus ESC osteogenic cultures all followed dose-dependent decreases in mineralization 

with increased 5-FU concentration. Compared to the mouse, the marmoset cells were more 

sensitive, but the rhesus cells were less sensitive (Fig. 2.5B and C). However, in both 

primate cells, the ID50was approximately two orders of magnitude lower that the IC50, 

indicating a strong teratogenic effect in both primate cell types. 

Exposure to atRA treatment again caused cytotoxicity at lower concentrations in 

mouse ESC cultures than in both primate cell cultures. However, both mouse and rhesus 
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ESC osteogenic cultures displayed a 2–2.5-fold increase in calcification at lower atRA 

concentrations, followed by a dose-dependent decrease in mineralization as concentration 

of atRA increased (Fig. 2.5A). Calcification levels in atRA-treated marmoset ESC 

osteogenic cultures resembled those of the untreated control at lower concentrations before 

gradually decreasing dose-dependently. Mouse ESC osteogenic cultures demonstrated the 

highest sensitivity as calcification at the highest tested concentration in the mouse ESC 

cultures was significantly lower than mineralization levels observed in marmoset and 

rhesus cultures at those same concentrations (Fig. 2.5B and C). 

According to its role as a non-embryotoxic agent, PenG induced cytotoxicity only 

at high test concentrations, but failed to cause inhibition of calcification in all species (Fig. 

2.5A–C). Results of this assay correctly identified 5-FU and atRA as strongly teratogenic 

compounds across the three species and PenG as non-teratogenic. 

Observed differences in primate cell viability and calcification at higher 

concentrations of 5-FU and atRA compared to the mouse ESC osteogenic cultures suggest 

that both marmoset and rhesus ESCs may be less sensitive than mouse ESCs to particular 

classes of cytotoxic compounds, while they are more sensitive toward embryotoxic effects 

of others, again underlining our results obtained with the lithium and aluminum derivatives. 

Thus, murine-based cytotoxicity and in vitro skeletal embryotoxicity assays may provide 

limited predictivity for extrapolation of results to other species. Though these results 

indicate that both marmoset and rhesus ESC osteogenic cultures are capable of assessing 

cytotoxicity and embryotoxicity, the lack of a defined pattern of variability between  

 



 46 

  

Figure 2.5. Comparison of marmoset and rhesus ESCs for their sensitivity to skeletal 
embryotoxicants. (A) Juxtaposition of cell viability and mineralization measurements taken 
from osteogenic mouse, marmoset and rhesus ESC cultures treated with atRA, 5-FU and 
PenG. *p < 0.05 below untreated vehicle control, one-way ANOVA. (B) Table contrasting 
the resulting IC50 and ID50 values taken from the concentration-response curves. (C) Chart 
depicting the concentration difference between IC50 and ID50 for each species grouped by 
compound. The left cross on each line indicates the respective ID50 value, the right cross 
the IC50 value.  
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primate osteogenic cultures indicates that response of non-human primate ESCs may also 

vary between different compound classifications. 

Discussion 

Since its introduction and subsequent validation, the classic EST has been updated 

to include additional tissue and molecular endpoints. Such revisions have proven to be 

extremely useful in allowing for reductions in assay duration as well as providing 

embryotoxicity responses across tissue types. Skeletal toxicity evaluations in particular 

stand much to gain from recent improvements as musculoskeletal birth defects account for 

5% of all infant deaths. Previous work has demonstrated the capacity of the EST to identify 

inhibitory effects of toxicants on skeletal development based on the relationship between 

compound cytotoxicity as measured by reduction in mitochondrial dehydrogenase activity 

and inhibition of normal differentiation [6], [10]. 

In developmental toxicology, cytotoxicity of a chemical is often established with 

MTT assays and previous versions of stem cell based developmental toxicity assays also 

rely on this read-out measure [4], [40], [41]. However, strictly speaking the MTT assay is 

a measure for the mitochondrial activity of cells and is therefore only an indirect indicator 

of cytotoxicity. This could be of concern as mitochondrial activity in stem cells is different 

than in somatic cells. For instance, stem cells have a low number of mitochondria [42], 

which increases as cells differentiate concurrently with an increase in mitochondrial DNA 

content [43]. Future studies will need to compare different endpoints of cytotoxicity, such 

as apoptosis or proliferative capacity, for their predictivity in vitro, which is beginning to 

be done for other tissue endpoints [44]. 
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One of the main drawbacks of the murine based EST is that it provides a narrow 

mechanistic understanding of human development and response to toxicants. Yet, potential 

human sources of cells are either ethically unaccepted in some countries or have been 

suggested to be of flawed quality. For example, human induced pluripotent stem cells 

(hiPSCs) often exhibit varying differentiation potential, due to altered global methylation 

or transcript number of master regulators, which greatly affects their quality and 

usability [45], [46], [47] and seems dependent on the choice of reprogramming 

factors [48]. As such, a proposed solution has been to update the EST to feature non-human 

primate ESCs as a basis for embryotoxicity assessment. Here, we applied a marmoset ESC-

based EST in order to evaluate the efficacy of non-human primate ESCs in predicting 

potential negative side effects on the developing skeletal system. Our proof-of-concept 

results show that non-human primate ESCs and murine ESCs respond differently in 

embryotoxicity screens. 

Our preliminary comparison screen of murine and non-human primate ESC-based 

EST assessments indicated that non-human primate ESCs were more tolerant toward the 

toxic effects of 5-FU and atRA compared to murine ESCs. Thus, it is possible that EST 

embryotoxicity results could be affected by species-driven response variation. Such 

variations may be attributed to differences in mouse and non-human primate molecular and 

genomic response to test compounds. Similar species-based discrepancies attributed to 

variations in molecular and genomic response have been observed in other studies [49]. 

Discrepancies between the effects of trauma, burns, and exposure to endotoxemia on 

temporal gene response patterns and inflammation signaling pathways were noted between 
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mouse models and human patients. Though responses were similar among human subjects, 

comparison of mouse and human results showed poor correlation of responses between the 

two groups at the molecular and genomic levels. As all compounds function at the 

molecular and/or genomic level, these results call into question the extrapolation efficacy 

of mouse responses as predictors of response in humans [50], [51]. Given the evolutionary 

closeness between humans and non-human primates [52], it is probable that a mechanism 

of variation similar to that seen in the Seok et al. [49] study is operating in this study 

between the murine ESC and marmoset ESC cultures. 

Aluminum chloride assay results in murine and marmoset ESCs both demonstrated 

dose-dependent decreases in calcification. As decreases were observed in both AlCl3- and 

AlOH3-treated cultures, it is probable that Al3+ is responsible for the osteotoxic effects of 

AlCl3 exposure. Recent studies on aluminum osteotoxicity in infants have reported a strong 

connection between pre- and perinatal aluminum overexposure and metabolic bone 

diseases as well as potential long term consequences on bone health and development 

following exposure to aluminum compounds during critical periods of development [30]. 

At the molecular level, aluminum has been suggested to antagonize bone formation through 

activation of the oxidative-stress-mediated c-Jun N-terminal kinase signaling pathway and 

subsequent induction of apoptosis in osteoblasts [53]. 

Overall evaluation of cell viability and calcification assay results indicated that 

lithium chloride and its derivatives possess skeletal teratogenic capacity, though the 

potency of teratogenic effects may vary depending on the other members of the lithium 

compound complex. Treatment of marmoset ESC osteogenic cultures with both lithium 
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chloride and lithium acetate compounds demonstrated noteworthy, but species-specific 

decreases in calcification, which were absent in sodium chloride. In contrast, sodium 

acetate was teratogenic in both species. These results suggest lithium to not be the chief 

skeletal teratogenic component, but rather the combination with the complexed chemical 

that results in the detrimental outcome on differentiating osteoblasts. Additionally, varied 

response to lithium and sodium compound treatment between murine and marmoset ESC 

cultures suggests that species variation in embryotoxic assessments may yield a varied and 

potentially narrow scope of responses to the compounds under investigation. 

Within the cell, lithium chloride has been suggested to operate via inhibition of 

glycogen-synthase-kinase 3beta (GSK3β) to intensify canonical Wnt signaling, which 

ultimately encourages upregulation of genes required for osteogenic differentiation. 

Previous studies have reported dose-dependent bone defects incurred by disruption of the 

canonical Wnt signaling pathway with lithium chloride and support the dose dependent 

effects of lithium chloride treatment on mouse ESC cultures reported here [54], [55]. 

Conversely, marmoset ESCs were much more sensitive to the detrimental effects 

of lithium chloride. Although this may be largely due to increased cytotoxicity of lithium 

chloride at higher concentrations, the differentiation effect occurred at concentrations that 

were two orders of magnitude lower than the cytotoxic effect. Considering that other 

studies have reported variations between mouse and human response at the molecular level, 

it is likely that a similar explanation stands for the observed differences in lithium chloride 

response in this study. Lithium chloride is often included in embryotoxicity screens as a 

control compound in the class of the moderate embryotoxicants [21]. Intriguingly, the 
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classical EST has a low prediction value for the moderate embryotoxicants [56] and it 

stands to reason that this low predictivity in this specific class of teratogens stems at least 

partially from using a less predictive species such as the mouse instead of primate cells. 

Of concern are our findings on the differential sensitivity between marmoset and 

rhesus ESCs that exist even in the small set of chemicals tested here. Although the three 

control chemicals that were tested exhibited predictive effects, with 5-FU and atRA being 

teratogenic and PenG not, the actual half-maximal inhibitory doses varied substantially. It 

is thus evident that there may be significant general differences in the responses of different 

non-human primate cells to drugs and toxicants in a broader screen encompassing more 

chemicals as is typically done with mouse cells [6], [11]. However, our limited results 

already suggest that this existing dose discrepancy may make risk predictions for human 

use and the definition of adverse outcome doses difficult. For the reasons laid out in this 

manuscript, human embryonic stem cells, which are already beginning to be explored for 

such purpose [57], [58], [59], may provide the most accurate information regarding the 

teratogenic potential of chemicals and future studies will need to show whether the 

ethically accepted human induced pluripotent stem cells are also predictive in such assays. 
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CHAPTER 3 

 

Embryonic stem cell test revised: an evaluation of human induced pluripotent stem cells to 

test for cardiac developmental toxicity and comparison of differential embryotoxicity 

 

Lauren M. Walker, Nicole RL Sparks, Veronica Puig-Sanvicens, Beatriz Rodrigues, 

Nicole I. zur Nieden 

 

Abstract 

 Traditional embryotoxicity approaches are challenged by low throughput and 

species-species variation risks. The validated embryonic stem cell test (EST) developed in 

murine embryonic stem cells (mESCs) addressed the former problem over 10 years ago. 

Here, we address biological relevance by updating the EST protocol with human induced 

pluripotent stem cells (hiPSC). hiPSC-EST embryotoxicity screens with 5-flurouracil and 

all-trans retinoic acid inhibited cardiac differentiation at lower concentrations than in the 

mESC-EST, yielding accurate and more sensitive embryotoxicity classifications. The 

hiPSC-EST was also responsive to complex toxicants, represented here by cigarette smoke 

and smokeless Snus tobacco extract. Tobacco treatment inhibited cardiac differentiation at 

sub-cytotoxic doses.  Expression of early cardiac marker Tbx5 yielded toxicity patterns like 

those observed in the full-length hiPSC-EST. Together, the presented findings support the 

use of hiPSCs and early molecular endpoints in the EST as a higher throughput, 
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biologically relevant embryotoxicity screening approach for individual chemicals and 

mixtures. 

 

Introduction  

The mammalian developmental stage is a sensitive and highly-regulated period of 

life. During this time, developing mammalian organisms are subject to many complex 

processes that are critical for proper formation. As such, exposure to some chemicals, 

pharmaceuticals, or other agents during particular pregnancy windows could result in 

adverse developmental outcomes such as growth retardation, structural and/or functional 

abnormalities, and/or embryo lethality. Current regulations require commercially available 

industrial chemicals and pharmaceutical products to be evaluated for developmental 

repercussions [1,2].  For instance, industrial chemicals are subject to in vivo reproductive 

and developmental screening tests as outlined by the Organisation for Economic Co-

operation and Development (OECD) [3-8]. These screening approaches evaluate adverse 

pregnancy outcomes in relation to maternal toxicity to determine the overall embryotoxic 

specificity of the agent, if any. While traditional in vivo screening approaches offer a wealth 

of information regarding the developmental toxicity of an agent, exclusively animal-based 

screens are time-consuming, low throughput, expensive, and require a large number of 

animals to complete statistical evaluations. In recent decades, in vitro screening approaches 

have been sought as higher throughput alternatives to animal-based screens. 

Early iterations of in vitro developmental toxicity assays employed a variety of cell 

and tissue cultures, including primary embryonic cell cultures and whole mammalian 
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embryos to determine general embryotoxicity and specific malformations, respectively [9]. 

Discovering the capacity of mouse blastocyst-derived pluripotent embryonic stem cells 

(ESCs) to be established and maintained in culture [10], however, revolutionized in vitro 

toxicity screening approaches. Given their unspecialized nature, pluripotent ESCs can 

recapitulate key steps of the developmental process in vitro through directed differentiation 

into particular cell types. To date, numerous differentiation protocols using pluripotent 

ESCs have been reported to recapitulate a variety of processes including myogenesis, 

hematopoiesis, and osteogenesis [11-13]. The original embryonic stem cell test (EST) 

capitalizes on this ability by using differentiating mouse ESC cultures to evaluate the 

embryotoxicity of an agent without the requirement for routine animal sacrifice [14].  Here, 

mouse D3 ESCs are differentiated into contracting cardiac muscle cells and simultaneously 

exposed to the agent under evaluation. Differentiation inhibition imparted by the agent is 

determined by a reduction in active contractile clusters and is also compared to the 

cytotoxic impact on the ESCs to determine if an agent is predominantly embryotoxic (i.e., 

birth defect-inducing) or cytotoxic. Effects on ESCs are also compared to differentiated 

3T3 fibroblast cells to determine embryotoxic specificity. Here, 3T3 fibroblasts are 

included to mimic maternal tissues and identify maternal toxicity that could influence 

embryotoxicity outcomes. Results from all three endpoints are ultimately entered into a 

biostatistical prediction model developed by the ZEBET unit of The Federal Institute for 

Risk Assessment (Germany) to determine and rank the embryotoxicity of the agent as non-

embryotoxic, weakly embryotoxic, or strongly embryotoxic [15-16].  
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While the mouse EST prediction model approach was successfully validated by the 

European Center for the Validation of Alternative Methods (ECVAM) for in vitro 

embryotoxicity screens [15-16], it is limited by the possibility of species-species variation 

in response to particular agents. This, in turn, presents the risk of false negative results.  

Our group previously reported an in vitro study that assessed the sensitivity of non-

human primate and mouse-derived ESC lines in determining chemical embryotoxicity 

[17]. Notably, non-human primate ESCs showed differential sensitivity to assorted classes 

of compounds compared to mouse ESCs. Our results highlighted the analytical limitations 

introduced by species variation and highlight the need for robust methods that are as 

biologically relevant as possible to humans. 

The establishment of human pluripotent cell lines offers a biologically relevant 

alternative to the traditional mouse D3 line. Particularly promising are human induced 

pluripotent stem cells (hiPSCs) as such lines can be induced to differentiate like ESCs, 

without the potential ethical or legislative challenges presented by routine use of human 

ESC lines. hiPSCs are already routinely used as in vitro models of human cardiotoxicity 

and disease [18-19], though reported use of hiPSCs in the EST protocol for screening 

potential real-world toxicants is limited.  

In this study, we evaluate the sensitivity of hiPSCs in the EST prediction model 

against the traditional mESC-based EST using the traditional contractile assay and cell 

viability parameters. Moreover, we report the promise of using early molecular markers to 

increase assay throughput without reducing sensitivity and test our hiPSC-EST protocol in 

a proof-of-concept embryotoxicity screen. 
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Materials and Methods  

Culture of human induced pluripotent stem cells (hiPSCs) 

The hiPSC cell line Riv9 was obtained from the Stem Cell Core at the University 

of California, Riverside. hiPSCs were seeded on Matrigel (Corning)-coated tissue culture 

plates and maintained in a pluripotent state in mTeSR® medium (Stem Cell Technologies). 

Cells were cultured under a humidified atmosphere of 5% CO2 at 37⁰C, and passaged for 

maintenance or to seed for experiments approximately every 5 days as previously described 

[20-21]. 

 

Cardiac Differentiation of hiPSCs 

After cells reached 70% confluency (designated day 0), media was changed to 

control differentiation media supplemented with 0.06 mg/ml ascorbic acid (Sigma) to 

induce cardiac differentiation (Puig-Sanvicens et al., 2015). Control differentiation media 

was comprised of: Dulbecco’s modification of Eagle’s medium (DMEM with 4.5 g/L 

glucose, L-glutamine and sodium pyruvate; Corning cellgro) supplemented with 18% FBS 

(PAA), 0.8% penicillin/streptomycin (10,000 units/10,000 units, Gibco), 0.12% non-

essential amino acids (NEAA; Gibco), 0.1 mM β-mercaptoethanol (Gibco). Cultures were 

cultured in differentiation media for 25 days, starting from day 0. 

 

Culture of human foreskin fibroblasts (hFFs) 

Human foreskin fibroblasts were gifted from Dr. Derrick Rancourt (University of 

Calgary). hFFs were seeded onto 0.1% gelatin-coated tissue culture plates and maintained 
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in Dulbecco’s modification of Eagle’s medium (DMEM with 4.5 g/L glucose, L-glutamine 

and sodium pyruvate; Corning cellgro) supplemented with 10% FBS (Atlanta Biologicals) 

and 0.5% penicillin/streptomycin (10,000 units/10,000 units, Gibco). 

 

Immunocytochemistry 

hiPSC-derived cardiomyocytes were washed with sterile commercially available 

1x PBS (Gibco), and fixed with 4% paraformaldehyde (Sigma) 4°C for 30 minutes. Fixed 

cultures were then washed three times with 1x PBS for 5 min. Cell membranes were 

permeabilized with 0.1% Triton X-100 in 1x PBS (Fisher Scientific) for 15 min at room 

temperature before being washed three more times with 1x PBS for 5 min. Cultures were 

incubated in a blocking solution of 10% fetal bovine serum (PAA) and 0.5% bovine serum 

albumin (Fisher Scientific, BP1600-100) in 1x PBS for 1 h at room temperature. Primary 

antibodies against mouse anti-Myosin Heavy Chain (MHC, abcam, ab15, 1:500) and/or 

rabbit anti-Troponin I (Trop I, Santa Cruz, sc-15368, 1:200) were added directly to the 

blocking buffer solution following the initial blocking period and allowed to incubate 

overnight at 4°C. Cultures were washed with 1x PBS three times for 5 min prior to 

secondary antibody incubation. Cells were incubated with 20 µg/ml DAPI (4’-6-

Diamidino-2- Phenylindole, Sigma, D9542), anti-mouse 546 conjugated florescent 

antibody (ThermoFisher, A10036) and/or anti-rabbit 488 conjugated fluorescent antibodies 

(ThermoFisher, A21206) for 2 h at room temperature. Cells were washed three times in 1x 

PBS to remove background from non-specific secondary antibody binding prior to imaging 

on a Nikon Eclipse Ti inverted fluorescence microscope. 
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Preparation of 5-fluorouracil, retinoic acid, and penicillin G solutions 

5-flurorouracil (5-FU), all-trans retinoic acid (atRA), and penicillin G (PenG) were 

selected from a subset of chemicals used in the original EST validation study [22-23]. 5-

FU and atRA were selected as positive test compounds due to their established 

embryotoxic potential while PenG was used as a negative control. All chemicals were 

purchased from Sigma. Stock solutions were prepared in DMSO and filtered through a 0.2 

micron Acrodisc® PSF Syringe Filter (Pall Corporation, Port Washington, NY), aliquoted 

into sterile microcentrifuge tubes and stored at -20°C until use. Test chemicals were serially 

diluted to final concentrations in differentiation media. atRA concentrations (µg/ml): 100, 

1, 10-2, 10-3, 10-6, and 10-8. 5-FU concentrations (µg/ml): 10-2, 10-3, 10-4, 10-5, and 10-6. 

PenG concentrations (µg/ml): 600, 700, 800, 900, 1000. Cardiogenic cultures were treated 

with designated chemicals through day 25 of differentiation and hFF cultures were treated 

with each compound for a 25-day duration period. Compounds were replenished with each 

media change. 

 

Preparation of Marlboro Red tobacco smoke extract 

A University of Kentucky smoking machine was used to produce smoke extract 

solutions from commercially available conventional Marlboro Red 100 brand cigarettes as 

previously described [24-25]. The smoking machine took a 2.2 second puff of mainstream 

(MS) smoke every minute. Smoke solution concentrations were made in puff equivalents 

(PE), which are the number of cigarette puffs dissolved in 1 ml of medium. MS smoke 
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solutions were produced by pulling 30 puffs of MS smoke through 10 ml of DMEM. 

Resulting 3 PE smoke extracts were filtered through a 0.2 micron Acrodisc® PSF Syringe 

Filter (Pall Corporation, Port Washington, NY), aliquoted into sterile microcentrifuge 

tubes, and stored at -80°C until use. Serial dilutions were performed in differentiation 

medium to reach desired final exposure concentrations: 1 PE, 0.3 PE, 0.1 PE, 0.03 PE, 0.01 

PE, 0.003 PE, and 0.001 PE.  Cardiogenic cultures were treated with smoke solutions 

through 25 days of differentiation. Smoke solutions were replenished with each media 

change. 

 

Preparation of Camel Snus smokeless tobacco extract 

A 10% (w/v) Camel Snus extract was prepared as previously described [25]. Ten 

grams of Snus was added to 85 ml of DMEM and allowed to incubate at 37°C for 2 hours. 

This initial extract solution was centrifuged for 10 min at 4500×g. Supernatant from the 

first round of centrifugation was then centrifuged again at 13,000×g for 1 hour. The 

resulting supernatant was collected and pH adjusted to 7.4. 15 ml of FBS was added to the 

pH-adjusted Snus extract to produce a 10% stock solution of Snus tobacco extract (STE).  

The stock solution was then sterile-filtered with a 0.22 µm vacuum filter system. STE was 

aliquoted into sterile microcentrifuge tubes and stored at -80°C until use. Serial dilutions 

were performed in differentiation medium to reach desired final exposure concentrations 

of 0.001%, 0.01%, 0.1%, 1%, 3%, and 5%. Cardiogenic cultures were treated with STE 

through 25 days of differentiation. STE was replenished with each media change. 

 



 65 

Cardiac viability assay 

Cardiomyocyte survival following concurrent exposure to each compound was 

evaluated by -[4,5-dimethylthiazol-2-yl]-2,5-diphenylterazolium bromide (MTT) assay. 

On day 25 of differentiation, cells were incubated with MTT (5 mg/ml) for 2 h at 37°C. 

MTT supernatant was removed and replaced with a desorb solution of 0.7% SDS in 2-

propanol. The absorbance of the solution was measured at 570 nm in an iMark™ 

microplate reader (Bio-Rad) with 655 nm as a reference wavelength. Here, mitochondrial 

dehydrogenase activity on the MTT in solution is directly proportional to a blue-purple 

product that is detected at 570 nm. Hence, a decrease in absorbance is interpreted as a direct 

measurement of any reduction in the number of viable cells [17, 25-27]. 

 

Cardiac contractile assay 

Contractile cardiac clusters and individual contractile, or “beating”, cells were 

counted and recorded on days 15, 20, and 25 of differentiation as previously described [28].  

Individual beating cells and beating cell clusters were cumulatively quantified between 

measurement time points. Untreated control cells served as a baseline for normal 

contractile incidence for each differentiation. Changes in beating incidence between 

treatment groups and days were reported as a percentage of beating incidence in solvent 

controls. 

 

Real-time Quantitative PCR (qPCR) 
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RNA was extracted using the protocol from NucleoSpin RNA II kit (Macherey 

Nagel). Quantification of RNA was determined by NanoDrop® 1000 spectrophotometer 

(Thermo Scientific) at 260 nm. 25 ng of total RNA was used as a template for cDNA 

synthesis with a mastermix including 5 µL 5x reaction buffer, 1.25 µL 10mM dNTPs, 1.25 

µL 400 U/µL RNase inhibitor, 0.1 µL 200 U/µL reverse transcriptase, 0.1 µL 3 µg/µL 

random primer, and 1.5 µL DEPC H2O for a total of 25 µL per reaction. 25 ng cDNA 

transcripts were used for quantitative polymerase chain reaction (qPCR) SYBR green 

technology on the MyiQ cycler (Bio-Rad). The reactions were setup for 10 minutes of 

denaturing at 94°C (initial), followed by 40 cycles of denaturing at 94°C, and annealing at 

60°C each 45 seconds. The n-fold expression in target samples was calculated with the 

ΔΔCT method by standardizing Ct values to GAPDH expression [29]. Primer sequences 

for human GAPDH were 5’-GAGTCAACGGATTTGGTCGT-3’ and 5’-

TTGATTTTGGAGGGATCTCG-3’. Target genes were cardiogenic markers TBX5 and 

MEF2c. Primer sequences for human TBX5 were 5’- CTGGACACCCCTAAACTGGA-3’ 

and 5’- TCCCACAGAGCTGAACTCCT-3’ and primer sequences for human MEF2c 

were 5’- CCATTGGACTCACCAGACCT-3’ and 5’- AGCACACACACACACTGCAA-

3’ [30]. 

 

Statistical Analysis 

Half-maximal inhibitory compound doses of differentiation (ID50) and cytotoxicity 

(IC50) were determined from concentration-response curves. ID50 and IC50 values were used 

to classify chemical embryotoxicity via a biostatistical prediction model developed 



 67 

specifically and reported previously for the EST protocol [14-16]. The lowest 

concentrations at which cardiac contractile function or cell viability registered below that 

of the untreated control were also identified with one-way analysis of variance (ANOVA) 

statistical analysis and a subsequent post hoc test as appropriate. P-values below 0.05 were 

considered significant. 

 

Results 

hiPSCs efficiently differentiate into cardiomyocytes 

Prior to testing the efficacy of the hiPSC-based EST, Riv9 hiPSC cultures were 

evaluated for their cardiac differentiation potential and efficiency following a 25-day 

differentiation protocol (Fig. 3.1A). Successful differentiation into cardiomyocytes was 

visually confirmed with the generation of active contractile clusters on days 20 and 25 of 

differentiation. The cardiac identity of these clusters was confirmed molecularly via mature 

cardiomyocyte markers. Immunocytochemistry stains of differentiated cell cultures on day 

25 revealed positive staining for myosin heavy chain (MHC) and Troponin I (Trop I) in 

contractile clusters (Fig. 3.1B). Moreover, RT-PCR analysis of cardiac-specific 

transcription factors at differentiation day 10 showed a significant upregulation of TBX5 

and MEF2c in hiPSC cultures induced to a cardiac cell fate (Fig. 3.1C). Together, these 

results indicated that Riv9 hiPSCs successfully and efficiently differentiate into 

cardiomyocytes under the appropriate culture conditions. 
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Figure. 3.1. hiPSCs consistently and robustly differentiated into cardiomyocytes. 
Differentiated cardiomyocytes were assessed for cardiomyocyte-specific markers and 
gene expression. A) Schematic protocol for cardiomyocyte differentiation and 
embryotoxicity screen. B) Immunocytochemistry stains of differentiated cultures 
confirmed cardiomyocyte identity via myosin heavy chain (MHC) and Troponin I (Trop 
I). C) Differentiated cardiomyocytes expressed cardiac-specific genes TBX5 and MEF2c 
as measured by qPCR. hiPSC, human induced pluripotent stem cell; MHC, myosin heavy 
chain; Trop I, Troponin I. 
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The hiPSC-based EST is more sensitive to embryotoxic compounds than the mESC-based 

EST  

To evaluate the sensitivity of hiPSCs in the validated EST protocol, cardiogenic 

differentiation was induced in hiPSC cultures with concurrent treatment of one of the 

following compounds of known toxicity or nontoxicity in humans: PenG (non-toxic), 5-

FU (cytotoxic) and atRA (embryotoxic). Over the course of the differentiation, hiPSC-

derived cardiomyocytes were then subjected to visual quantitation of active contractile 

cells and clusters on days 15, 20, and 25. At the conclusion of the differentiation, cultures 

were also evaluated for changes in cell viability. 

While no actively contracting cells or clusters were observed on day 15 of 

differentiation for any treatment group, differences in contraction incidence were readily 

observed between days 20 and 25 of differentiation for 5-FU- and atRA-treated cultures 

compared to the untreated control. 5-FU exposure negatively impacted the formation of 

contractile structures at concentrations above 1 x 10-6 µg/ml (Fig. 3.2A) by day 20 and 

returned a half-maximal inhibitory dose (ID50) for differentiation of 2.7 x10-6 µg/ml on day 

25 (Fig. 3.2B). atRA-treated cells failed to form contractile clusters or cells at 

concentrations above 1 x 10-3 µg/ml (Fig. 3.2A), and exhibited significantly reduced 

contractile activity in doses above 1 x 10-8 µg/ml (Fig. 3.2B). The resulting ID50 value for 

atRA on day 25 was 1.65 x 10-7 µg/ml. Treatment with PenG did not inhibit the formation 

of contractile structures (Fig. 3.2A) and did not negatively impact contractile activity at 

most of the tested concentrations (Fig. 3.2B). Dips in contractile incidence were observed 

at 800 µg/ml and 900 µg/ml doses, though these reductions were not statistically  
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Figure. 3.2. Treatment with embryotoxicants 5-FU and atRA impeded cardiomyocyte 
differentiation. hiPSCs were treated with different concentrations of 5-FU, atRA, or 
PenG and evaluated for differentiation inhibition by visually scoring the number of 
actively contracting cardiomyocyte clusters. A) Contractile cardiomyocyte clusters. B) 
Contractile cardiomyocyte cluster screens for 5-FU, atRA, and PenG. Each data point 
represents the mean of three independent experiments ± standard deviation. *P<0.05 = 
the lowest concentration significantly below the untreated control group as determined 
by One-Way ANOVA. hiPSC, human induced pluripotent stem cell; 5-FU, 5-
fluorouracil; atRA, all-trans retinoic acid; PenG, penicillin G. 
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significant. Furthermore, contractile activity at 700 µg/ml and 1000 µg/ml were similar 

despite the difference in dosage which suggests that the dips seen at 800 µg/ml and 900 

µg/ml are likely anomalies. Because dosages above 1000 µg/ml are not physiologically 

relevant, validated EST protocol does not test compounds above a dose of 1000 µg/ml. As 

follows, an ID50 value was not determined for PenG. 

 Cell viability assessments did not find reduced cell survival in PenG-treated 

cultures at the conclusion of differentiation (Fig. 3.3A). 5-FU treatment, however, 

produced significant reductions in cell viability at concentrations above 1 x 10-6 µg/ml (Fig. 

3.3A) and returned a half-maximal inhibitory concentration for cell viability (IC50) of 4.7 

x10-5 µg/ml. Because 5-FU-driven reductions in cell viability were observed around the 

same doses at which contractile activity was inhibited, these results together suggest that 

the inhibitory impact of 5-FU primarily driven by cytotoxic activity rather than teratogenic. 

atRA-treated cultures only displaced reductions in cell viability at the highest tested 

concentrations of 1 and 100 µg/ml (Fig. 3.3A). Unlike 5-FU, atRA-driven inhibition of 

differentiation occurred at much lower concentrations than where cytotoxicity was 

observed. This outcome indicates that atRA operates predominantly through a teratogenic 

mechanism that inhibits differentiation without conveying outright cytotoxicity. The IC50 

value for atRA was 3 µg/ml. 

 The impact of the tested compounds in differentiating hiPSCs was also compared 

against treatment of differentiated hFF cells to determine embryotoxic specificity. Both 5-

FU- and atRA-treated hFF cells demonstrated a dose-dependent reduction in cell viability. 

Significant reductions were observed for 5-FU and atRA above concentrations of 1 x 10-4  
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Figure 3.3. 5-FU and atRA treatment reduced hiPSC-cardiomyocyte and hFF viability 
in a dose-dependent manner as assessed via MTT assay. A) hiPSC viability screens for 
5-FU, atRA, and PenG, n=3 ± SD. *P<0.05 = the lowest concentration significantly 
below the untreated hiPSC control group as determined by One-Way ANOVA. B) hFF 
viability screens for 5-FU, atRA, and PenG, n=3 ± SD. *P<0.05 = the lowest 
concentration significantly below the untreated hFF control group as determined by 
One-Way ANOVA. hiPSC, human induced pluripotent stem cell; MTT, mitochondrial 
dehydrogenase activity assay; 5-FU, 5-fluorouracil; atRA, all-trans retinoic acid; PenG, 
penicillin G; hFF, human foreskin fibroblast. 

0

25

50

75

100

125

0.000001 0.001 1 M
ito

ch
on

dr
ia

  
de

hy
dr

og
en

as
e

A
ct

iv
ity

 i
n 

ca
rd

ia
c 

hi
PS

C
s

[%
 s

ol
ve

nt
 c

on
tro

l]

Concentration atRA
[µg/ml]

M
ito

ch
on

dr
ia

l 
de

hy
dr

og
en

as
e

ac
tiv

ity
 i

n 
ca

rd
ia

c 
hi

PS
C

s
[%

 s
ol

ve
nt

 c
on

tro
l]

Concentration 5-FU
[µg/ml]

M
ito

ch
on

dr
ia

l 
de

hy
dr

og
en

as
e

ac
tiv

ity
 i

n 
ca

rd
ia

c 
hi

PS
C

s
[%

 s
ol

ve
nt

 c
on

tro
l]

Concentration PenG
[µg/ml]

M
ito

ch
on

dr
ia

l 
de

hy
dr

og
en

as
e

ac
tiv

ity
 i

n 
H

FF
[%

 s
ol

ve
nt

 c
on

tro
l]

M
ito

ch
on

dr
ia

l 
de

hy
dr

og
en

as
e 

ac
tiv

ity
 i

n 
H

FF
[%

 s
ol

ve
nt

 c
on

tro
l]

M
ito

ch
on

dr
ia

l 
de

hy
dr

og
en

as
e 

ac
tiv

ity
 i

n 
H

FF
[%

 s
ol

ve
nt

 c
on

tro
l]

0

25

50

75

100

125

0.000001 0.001 1
Concentration atRA

[µg/ml]
Concentration 5-FU

[µg/ml]
Concentration PenG

[µg/ml]

0

25

50

75

100

125

150

1 100
0

25

50

75

100

125

1E-08 0.0001 1

A

B

0

25

50

75

100

125

150

1 10 100 1000

*

* *

*
*

*

0

25

50

75

100

125

150

1E-08 0.0001 1

*
*

*



 73 

µg/ml and 0.01 µg/ml, respectively. Dosing hFF cultures with 5-FU returned an IC50 value 

of 4 x 10-4 µg/ml, which was larger than the IC50 value produced by hiPSC-cardiomyocyte 

evaluations. Observed differential outcomes in hFF and hiPSC-cardiomyocyte cultures 

exposed to 5-FU support the notion that developing cells (as represented by hiPSC-

cardiomyocytes) are more sensitive to cytotoxicants than terminally differentiated cells. 

hFF cells treated with atRA experienced significant cell death at the highest tested 

concentration of 1 µg/ml. atRA-dosed hFFs produced an IC50 value of 0.045 µg/ml, which 

was lower than the IC50 value found in the hiPSC-cardiomyocyte assessment. Here, hFFs 

may possess differences in cellular metabolic functions that may encourage a slightly 

higher sensitivity to the cytotoxic impact of atRA. PenG-treated hFF cultures did not 

display a reduction in cell viability at any tested concentration.  

To classify compounds under evaluation, the validated EST applies a 

biostatistically based prediction model to classify compounds as non-embryotoxic, weakly 

embryotoxic, or strongly embryotoxic based on differentiation and cell viability assay 

outcomes. The prediction model uses a series of equations to perform a linear discriminant 

analysis using determined IC50 and ID50 values determined from dose-response curves [31]. 

Using this model with the results of the hiPSC-EST resulted in the accurate classification 

of PenG as non-embryotoxic and 5-FU and atRA as embryotoxic (Table 3.1). More 

specifically, 5-FU was classified as strongly embryotoxic while atRA was classified as 

weakly embryotoxic. Comparing our findings to that of the mESC-based EST [32] (Table 

3.1) revealed the hiPSC-based EST to be a more sensitive method of identifying 

compounds that inhibit differentiation, based on the chemicals tested. Notably, the mESC-   
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Cell Type Toxicity 
Parameter Penicillin G 5-Flurouracil all-trans

Retinoic acid

mESCs1

ID50 (µg/ml) > 1000 5.5 x 10-2 3.1 x 10-4

IC50 (µg/ml) > 1000 4.7 x 10-2 1.25 x 10-3

3T3 IC50 (µg/ml) 695 0.25 13.5

hiPSCs

ID50 (µg/ml) > 1000 2.7 x 10-6 1.65 x 10-7

IC50 (µg/ml) > 1000 4.7 x 10-5 3

hFF IC50 (µg/ml) > 1000 4 x 10-4 4.5 x 10-2

mESC Biostatistical
Embryotoxicity Classification

Not
embryotoxic

Weakly 
embryotoxic

Weakly 
embryotoxic

hiPSC (Day 25) Biostatistical
Embryotoxicity Classification

Not
embryotoxic

Strongly 
embryotoxic

Weakly 
embryotoxic

Table 3.1. Comparison of mESC- and hiPSC-EST IC50 and ID50 values and 
embryotoxicity classifications. mESC-EST conclusions were pulled from previously 
published data [32]. Inhibition of differentiation (ID50) was determined from dose-
response curves as 50% inhibition of functional cardiomyocytes in the control. 
Inhibition of cell viability (IC50) was determined from dose-response curves as 50% 
inhibition of viable cells in control cultures. hiPSC-EST correctly classified all-trans 
retinoic acid and 5-flurouracil as embryotoxic. mESC, murine embryonic stem cell; 
hiPSC, human induced pluripotent stem cell; EST, embryonic stem cell test. 
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EST classified both 5-FU and atRA as weakly embryotoxic. Higher ID50 values and 3T3 

mouse fibroblast IC50 values observed in the mESC-EST suggest some resistance to the 

toxic effects of both chemicals in mESC and 3T3 cultures, respectively. While hiPSC-

derived cardiomyocytes were more susceptible to 5-FU-driven cytotoxicity compared to 

mESC-derived cardiomyocytes, mESC-derived cardiomyocytes were more sensitive to 

atRA-driven cytotoxicity. hFF response was also found to be more sensitive than 3T3 cell 

viability outcomes, with lower IC50 values yielded from 5-FU and atRA treatment.  

Compared to the mESC-based EST, the hiPSC-based EST showed a higher 

capacity to discern between a strong embryotoxicant (due to the strong cytotoxic nature of 

5-FU) and a weak embryotoxicant (due to the differentiation inhibition in the absence of a 

strong cytotoxic response).  

 

hiPSC-EST models embryotoxicity of environmental toxicant mixtures 

Given their well-reported embryotoxicity, 5-FU and atRA were selectively tested 

in aforementioned comparison studies between the mESC-based and hiPSC-based EST 

assays. To test how well the hiPSC-based EST evaluated real-world embryotoxicants, the 

assay was used to classify two different types of tobacco products: conventional cigarette 

smoke (Marlboro Red 100) and Snus smokeless tobacco (Camel Snus). Tobacco was 

selected as a model embryotoxicant as maternal smoking has previously been linked to a 

suite of negative effects on fetal development including low birth weight, congenital heart 

defects, and negative impact on bone growth and bone mass [33]. Frequently advertised as 
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a harm-reducing alternative to cigarettes, Snus smokeless tobacco has also been linked to 

impaired embryonic development following use during pregnancy [33-36].  

 Contractile assays found dose-dependent reductions in the formation of active 

contractile clusters and structures for both Marlboro Red 100 mainstream (MS) smoke (Fig. 

3.4A) and Camel Snus (Fig. 3.4B) extract. Contractile assay dose-response curves returned 

ID50 values for 0.014 puff equivalent (PE) and 0.0054% w/v Camel Snus Extract. The 

viability of differentiating hiPSCs during concurrent tobacco exposure was not negatively 

impacted by either product in the tested concentration ranges. Viability of hFF cultures 

exposed to Marlboro Red 100 MS smoke and Camel Snus extract was reduced in a dose-

dependent manner. An IC50 value for Marlboro Red exposed hFF cultures was not 

determined within the dose range under evaluation, but was expected to occur at a dose 

above 0.1 PE. Camel Snus hFF exposure returned an IC50 value of 0.022% extract. Because 

hiPSCs failed to develop cardiomyocyte structures at sub-cytotoxic concentrations (Table 

3.2) with regard to both hiPSC and hFF MTT outcomes, these results collectively suggest 

that both products have embryotoxic characteristics.   

 

hiPSC-EST yields accurate early toxicity classifications based on TBX5 mRNA expression 

One of the main critiques of traditional whole animal developmental toxicity assays 

is the length of time it takes to complete toxicity evaluations. With the average gestation 

period for laboratory mice ranging from 18.5 to 21 days, the process of collection and 

evaluating pups is encumbered by slow throughput and variability due to subjective scoring 

methods.  As such, a shorter, quantifiable, and accurate in vitro embryotoxicity assessment  
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Toxicity Parameter Marlboro Red 100 MS 
(PE)

Camel Snus 
(%)

hiPSC  IC50 >0.1 >1%

hiPSC ID50 0.014 ± 0.0047 0.0054%

hFF IC50 >0.1 0.022 %

Table 3.2. List of IC50 and ID50 values determined from concentration-response 
curves for mainstream cigarette smoke and Snus smokeless tobacco. hiPSC, 
human induced pluripotent stem cell; hFF, human foreskin fibroblast. 
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approach could improve throughput without sacrificing accuracy. Given the accurate 

predictions of our full length hiPSC-based EST, we next investigated if our approach could 

be modified with an earlier, qPCR-based endpoint to determine differentiation inhibition. 

Here we selected two cardiogenesis-specific transcription factors, TBX5 and MEF2c [37- 

39], to determine if the adverse differentiation outcomes on day 25 of differentiation would 

be detectable as changes in TBX5 and MEF2c expression on day 10 of differentiation. 

Similar to the pattern observed in the contractile cluster assay, 5-FU-treated 

cultures demonstrated a dose-dependent reduction in TBX5 mRNA expression with an ID50 

value of 5 x 10-4 µg/ml (Fig. 3.4). However, d10 TBX5 mRNA expression was more 

dramatically reduced at concentrations above 1 x 10-4 µg/ml, compared to the lower dose 

of 1 x 10-6 µg/ml observed in the contractile assay. It is possible, however, that our d10 

analysis timepoint captured the beginnings of the full apoptotic response that were able to 

be fully manifested and observed in cultures on d25 of differentiation. It follows, then, that  

embryotoxicants would be the most detectable at d10 of differentiation in stronger 

concentrations with middle range doses producing a more moderate response.  

Cells exposed to atRA also showed a dose-dependent downregulation of TBX5 

mRNA expression. In these cultures, tested concentrations above 1 x 10-6 µg/ml featured 

significantly downregulated TBX5 and produced an ID50 value of 1.5 x 10-3 µg/ml (Fig. 

3.5). atRA treatment at 1 x 10-6 and 10-8 µg/ml yielded a significant upregulation in TBX5 

mRNA expression. This upregulation correlates with the almost 2-fold increase in 

contractile cluster incidence seen in cultures treated with 1 x 10-8 µg/ml atRA (Fig. 3.2B). 

As retinoic acid is a well-reported regulator of TBX5 expression in developing tissues, it is 
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possible that exposure of differentiating hiPSCs to low levels of atRA exposure may have 

encouraged TBX5 mRNA expression [99], while atRA exposure above a particular 

threshold elicited an embryotoxic response. While the response pattern in TBX5 mRNA 

expression mirrored that which was observed in the contractile assay, differentiation 

inhibition was more readily detected at mid- and high range concentrations compared to 

the lower concentrations seen with the contractile assay. Here, as with the 5-FU-treated 

cultures, it is possible that the early inhibitory impact of atRA at d10 of differentiation is 

readily observed via qPCR in middle and high concentration ranges. Lower ranges, 

however, may be better detected at a later timepoint. Treatment with the negative control 

PenG did not significantly impact TBX5 mRNA expression (Fig. 3.5).  

In contrast to expression patterns observed with TBX5 mRNA, MEF2c mRNA 

expression yielded inconsistent responses to compound treatment. No reductions in MEF2c 

mRNA expression were observed for any 5-FU-treated group compared to the untreated 

control (Fig. 3.5) and thus no ID50 value could be determined.   In cells dosed with atRA, 

however, MEF2c mRNA transcripts were dose-dependently downregulated in 

differentiating cardiomyocytes (Fig. 3.5). Here, a steady decline in MEF2c mRNA 

expression was observed at doses above 1 x 10-3 µg/ml with a final ID50 of 4 x10-2 µg/ml. 

MEF2c mRNA expression in cells dosed with PenG remained largely unchanged from that 

of the untreated control, though slight upregulation was observed at 800 and 900 µg/ml. 

Given the lack of altered MEF2c mRNA expression in cultures exposed to cytotoxic 5-FU 

compared to atRA, it is likely that MEF2c is an inconsistent indicator of early  

 



 81 

 

 
   

m
R

N
A

[%
 s

ol
ve

nt
 c

on
tro

l]

0

100

200

300

400

0.0000010.0001 0.01 1
0

50

100

150

200

250

1 10 100 1000
Concentration atRA

[µg/ml]
Concentration PenG

[µg/ml]

0

50

100

150

200

250

0.000001 0.0001 0.01
Concentration 5-FU

[µg/ml]

TBX5 MEF2c

** *

10-210-310-410-510-6 110-210-410-6102 103

Figure 3.5. Treatment with embryotoxicants 5-FU and atRA impeded cardiomyocyte 
differentiation as measured by day 10 TBX5 gene expression in hiPSCs. hiPSCs were 
treated with different concentrations of 5-FU, atRA, or PenG and evaluated for TBX5 
or MEF2c expression via qPCR. Inhibition of differentiation (ID50) was determined 
from dose-response curves as 50% reduction of gene expression in the control. hiPSC, 
human induced pluripotent stem cell; 5-FU, 5-fluorouracil; atRA, all-trans retinoic acid; 
PenG, penicillin G. 
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differentiation inhibition in cardiomyocytes. In contrast, TBX5 mRNA expression patterns 

suggest that TBX5 may be a better candidate for early differentiation inhibition assessment. 

To compare the relative sensitivity of qPCR-based embryotoxicity classifications 

versus contractile assay-based classifications, the ID50 values generated from 5-FU and 

atRA TBX5 mRNA dose-response curves were compared against the ID50 values from the  

contractile assay curves in the EST biostatistical model. Despite the slight reduction in 

sensitivity observed in the qPCR approach, both methods produced the same 

embryotoxicity classifications for 5-FU, atRA, and PenG of strongly embryotoxic, weakly 

embryotoxic, and non-embryotoxic, respectively (Table 3.3). 

Discussion 

Here, we have shown hiPSCs can be induced to produce a robust and consistent cardiac 

differentiation model suitable for embryotoxicity screening as outlined by the original EST 

protocol. Using the EST biostatistical model and chemical agents used in the original EST 

protocol, this hiPSC-based EST model correctly classified the embryotoxicants, 5-FU and 

atRA, as embryotoxic and our negative control, PenG, as non-embryotoxic. Moreover, the 

hiPSC-EST model demonstrated improved sensitivity over the original mESC-based EST 

in determining ID50 values by several magnitudes.  Mixed cytotoxicity sensitivity was 

observed in the hiPSC-EST, however. While hiPSC determined IC50 values indicated 

improved sensitivity for determining 5-FU-driven cytotoxicity, reduced sensitivity in 

cytotoxic assessment was observed for atRA treatment in the hiPSC-EST compared to the 

mESC-based EST. This could be driven by metabolic differences between the cell lines 

used in both studies. While studies comparing the metabolic efficiencies of mouse and 
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human pluripotent stem cells have yet to be reported, differential cytotoxic sensitivity 

between human and mouse has been previously observed in neuroblastoma cell lines 

exposed to organophosphate insecticides [40]. Such differences may be due to variations 

in the activation efficiency or robustness of biochemical processes related to apoptotic or 

necrotic responses. These differences underscore the importance of considering cellular 

vigor when selecting cell lines for toxicity screens and comparisons. However, in our study, 

the reduced cytotoxic sensitivity observed for atRA-treated cultures did not seem to impact 

the correct classification of atRA as a weak embryotoxicant. 

The observed discrepancies in assay sensitivity between the mouse- and human-

EST may be explained by molecular differences between species that influence how cells 

respond to particular agents. This is most readily observed in the case of atRA, which acts 

as a signaling molecule during development and governs critical early embryonic processes 

including axial patterning, proliferation, apoptosis, and cellular differentiation [41]. 

Moreover, excessive or deficient retinoic acid levels during development inhibit normal 

tissue development [42-45]. While retinoic acid signaling is conserved between mammals, 

it is plausible that these mechanisms may have precise, species-specific thresholds at which 

an excess of retinoic acid disrupts differentiation versus provoking cytotoxicity. 5-FU, in 

contrast, is a base analogue that mimics uracil and thymine and can be readily incorporated 

into DNA and RNA. In this way, 5-FU hinders normal nucleoside metabolism and 

consistently causes cytotoxicity and cell death regardless of species. While both chemicals 

are embryotoxic, 5-FU imparts embryotoxicity through cell death while atRA can cause 

embryotoxicity through differentiation inhibition or cell death. Thus, the nature of a  
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Cell Type Toxicity 
Parameter Penicillin G 5-Flurouracil all-trans

Retinoic acid

hiPSCsa

(d25)
ID50 (µg/ml) > 1000 2.7 x 10-6 1.65 x 10-7

IC50 (µg/ml) > 1000 4.7 x 10-5 3

hiPSCs
(d10 Tbx5) ID50 (µg/ml) > 1000 5 x 10-4 1.5 x 10--3

hFF IC50 (µg/ml) > 1000 4 x 10-4 4.5 x 10-2

hiPSC (Day 25 cluster) 
Biostatistical

Embryotoxicity Classification

Not
embryotoxic

Strongly 
embryotoxic

Weakly 
embryotoxic

hiPSC (Day 10 qPCR)
Biostatistical

Embryotoxicity Classification

Not
embryotoxic

Strongly 
embryotoxic

Weakly 
embryotoxic

Table 3.3. List of IC50 and ID50 values and embryotoxicity classifications determined 
from concentration-response curves for contractile and d10 qPCR assay endpoints. 
aData from Table 3.1.  hiPSC, human induced pluripotent stem cell; hFF, human foreskin 
fibroblast.  
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chemical as well as differences in tissue developmental requirements influence the precise 

embryotoxicity classification in the EST.   

Given the correct classification of the test embryotoxicants by the hiPSC-EST, we 

also assessed the ability of our model to determine the embryotoxicity of cigarette smoke 

and Snus tobacco toxicants connected to adverse pregnancy outcomes following prenatal 

maternal exposure (see citations). In the concentration ranges tested, the hiPSC-EST 

successfully identified ID50 values for both Marlboro Red and Camel Snus that were 

considerably lower than where cytotoxicity was observed in hFF-treated cultures. Our 

results harmonize with epidemiological studies that connect maternal tobacco use with 

congenital heart defects [46] and collectively suggest a molecular basis for the 

embryotoxicity of both tobacco products that operates through differentiation inhibition 

rather than cytotoxic effects on differentiating cardiomyocytes. Given this outcome and the 

robustness of our cardiac differentiation, the hiPSC-EST model could plausibly be used for 

molecular follow up analysis to determine root causes of environmental toxicant-elicited 

embryotoxicity observed at the screening phase. Furthermore, considering that cigarette 

smoke is a mixture of over 5000 chemicals [100], our results suggest that the hiPSC-EST 

model is also suitable for assessing embryotoxicity of environmental toxicant mixtures in 

addition to screens of individual toxicants. This feature could prove useful in risk 

assessment applications where the developmental toxicity potential of commercial, 

industrial, and/or environmental chemical moistures is sought. 

 In addition to providing a biologically-relevant platform for developmental toxicity 

screens, the model presented here was able to be modified with the addition of molecular 
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endpoints to shorten the overall screen duration and increase assessment throughput. 

Evaluation of cardiac gene expression at day 10 of differentiation produced higher IC50 

values than that observed in the traditional cardiac contractile assessment at day 25, which 

suggests a reduction in sensitivity with regard to lower dose ranges. This outcome suggests 

that the chemical(s) under study and the test concentration range is critical and should be 

carefully considered when using the qPCR-based hiPSC-EST. This is well-evidenced by 1 

x10-8 µg/ml atRA-dosed cells, which showed elevated TBX5 expression and contractile 

clusters. While atRA exposure can antagonize TBX5 expression [48], it can also work 

together with TBX5 in early tissue development—particularly in developing cardiac tissue 

[49]. Our results therefore show a threshold effect where very low doses of atRA enhanced 

cardiogenesis and mid-to-high concentrations inhibited cardiac differentiation. Similar 

concentration-range responses were obtained for chondrogenic and osteogenic endpoints 

[13].  

The differential response in expression between the two cardiac markers chosen for 

this study, TBX5 and MEF2c, also underscore the importance of carefully selecting tissue 

and timepoint specific markers for assessment in this screening model. Changes in TBX5 

expression patterns mirrored that of the contractile assay dose-response curve, while 

MEF2c expression patterns were not consistent between all of the tested chemicals. While 

MEF2c expression is specifically detectable in differentiating cardiomyocytes at day 10 of 

differentiation, additional studies by our group (not shown) have found that MEF2c 

expression is highest on day 25 of differentiation. Thus, it is possible that before day 25 of 

differentiation, MEF2c expression is not yet at a robust enough level of expression to 
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generate a consistent dose-response curve in actively differentiating cells. It should be 

noted, however, that the qPCR-derived ID50 values still successfully yielded the same 

embryotoxicity classifications for 5-FU, atRA, and PenG as the contractile assay when 

calculated with the EST biostatistical model. 

 

Conclusion  

In summary, we have shown that hiPSCs may be used as a more biologically-

relevant and robust replacement for mESCs in the EST embryotoxicity evaluation protocol. 

The hiPSC-based EST protocol is responsive in embryotoxicity screens using 

environmental embryotoxicants and chemical mixtures such as cigarette smoke and could 

serve as an in vitro model system of developmental disease, thereby reducing the number 

of animals required for developmental studies. Moreover, incorporating early tissue marker 

endpoints as outlined in this protocol also offers an opportunity to reduce the time 

commitments surrounding traditional animal embryotoxicity screens and the in vitro 

contractile assay to increase throughput with an opening for automated assessments and 

reduced culture time.  

  



 88 

References 
1. U.S. Department of Health and Human Services. Guidance for Industry Reproductive and 

Developmental Toxicities — Integrating Study Results to Assess Concerns. 2011. 

2. U.S. Food and Drug Administration Redbook 2000: IV.C.9.b Guidelines for Developmental 
Toxicity Studies. 2000. 

3. OECD. Test No. 414: Prenatal Developmental Toxicity Study. 1981. 

4. OECD. Test No. 415: One-Generation Reproduction Toxicity Study. 1983. 

5. OECD. Test No. 416: Two-Generation Reproduction Toxicity. 1983. 

6. OECD. Test No. 421: Reproduction/Developmental Toxicity Screening Test. 1995. 

7. OECD. Test No. 422: Combined Repeated Dose Toxicity Study with the 
Reproduction/Developmental Toxicity Screening Test. 1996. 

8. OECD. Test No. 443: Extended One-Generation Reproductive Toxicity Study. 2018. 

9. Augustine-Rauch K, Zhang CX, and Panzica-Kelly JM. In vitro developmental toxicology 
assays: A review of the state of the science of rodent and zebrafish whole embryo culture and 
embryonic stem cell assays. Birth Defects Res C Embryo Today Rev. 2010;90, 87–98. 

10. Evans MJ., and Kaufman MH. Establishment in culture of pluripotential cells from mouse 
embryos. Nature. 1981;292, 154. 

11. Barberi T. et al. Derivation of engraftable skeletal myoblasts from human embryonic stem 
cells. Nat Med. 2007;13, 642–648. 

12. Hwang Y, Broxmeyer HE, and Lee MR Generating autologous hematopoietic cells from 
human-induced pluripotent stem cells through ectopic expression of transcription factors. 
Curr Opin Hematol. 2017;24, 283–288. 

13. zur Nieden NI. et al. Induction of chondro-, osteo- and adipogenesis in embryonic stem cells 
by bone morphogenetic protein-2: Effect of cofactors on differentiating lineages. BMC Dev 
Biol. 2005;5, 1. 

14. Spielmann H. et al. The embryonic stem cell test (EST), an in vitro embryotoxicity test using 
two permanent mouse cell lines: 3T3 fibroblasts and embryonic stem cells. Vitro Toxicol. 
1997;119–127. 



 89 

15. Genschow E. et al. The ECVAM international validation study on in vitro embryotoxicity 
tests: results of the definitive phase and evaluation of prediction models. European Centre 
for the Validation of Alternative Methods. ATLA-Altern Lab Anim. 2002;30, 151–176. 

16. Genschow E. et al. Validation of the embryonic stem cell test in the international ECVAM 
validation study on three in vitro embryotoxicity tests. ATLA-Altern Lab Anim. 2004;32, 
209–244. 

17. Walker L. et al. Non-human primate and rodent embryonic stem cells are differentially 
sensitive to embryotoxic compounds. Toxicol Rep. 2014;2, 165-174. 

18. Geng L. et al. Probing flecainide block of INa using human pluripotent stem cell-derived 
ventricular cardiomyocytes adapted to automated patch-clamping and 2D monolayers. 
Toxicol. Lett. 2018;294, 61–72. 

19. da Silva Lara L. et al. Trypanosoma cruzi infection of human induced pluripotent stem cell-
derived cardiomyocytes: an in vitro model for drug screening for Chagas disease. Microbes 
Infect. 2018;20, 312–316. 

20. Sparks NRL. et al. Low Osteogenic Yield in Human Pluripotent Stem Cells Associates with 
Differential Neural Crest Promoter Methylation. Stem Cells. 2018;36, 349-362. 

21. Madrid JV. et al. Human Pluripotent Stem Cells to Assess Developmental Toxicity in the 
Osteogenic Lineage. Methods Mol Biol. 2018;1797, 125-145. 

22. Buesen, R. et al. Embryonic stem cell test remastered: comparison between the validated 
EST and the new molecular FACS-EST for assessing developmental toxicity in vitro. 
Toxicol Sci Off J Soc Toxicol. 2009;108, 389–400.  

23. Spielmann, H. et al. Preliminary results of the ECVAM validation study on three in vitro 
embryotoxicity tests. ATLA Altern Lab Anim. 2001;29, 301–303. 

24. Knoll M and Talbot P. Cigarette smoke inhibits oocyte cumulus complex pick-up by the 
oviduct in vitro independent of ciliary beat frequency. Reprod Toxicol. 1998;12, 57–68. 

25. Knoll M. et al. Ciliary beat frequency of hamster oviducts is decreased in vitro by exposure 
to solutions of mainstream and sidestream cigarette smoke. Biol Reprod. 1995;53, 29–37. 

26. Martinez IKC. et al. Video-based kinetic analysis of calcification in live osteogenic human 
embryonic stem cell cultures reveals the developmentally toxic effect of Snus tobacco 
extract. Toxicol Appl Pharmacol. 2019;363, 111-121. 



 90 

27. zur Nieden NI and Baumgartner L. Assessing developmental osteotoxicity of chlorides in the 
embryonic stem cell. Reprod Toxicol. 2010;30, 277-283. 

28. zur Nieden NI, Davis LA, Rancourt DE. Comparing three novel endpoints for developmental 
osteotoxicity in the embryonic stem cell test. Toxicol Appl Pharmacol. 2010;247, 91-97.  

29. Seiler AEM. et al. Use of murine embryonic stem cells in embryotoxicity assays: the 
embryonic stem cell test. Methods Mol Biol. 2006;329, 371–395. 

30. Livak KJ and Schmittgen TD Analysis of relative gene expression data using real-time 
quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25, 402-408. 

31. Puig-Sanvicens VA, Semino CE, zur Nieden NI. Cardiac differentiation potential of human 
induced pluripotent stem cells in a 3D self-assembling peptide scaffold. Differentiation. 
2015;90, 101-110. 

32. Seiler AEM and Spielmann H. The validated embryonic stem cell test to predict 
embryotoxicity in vitro. Nat  Protoc. 2011;6, 961–978. 

33. zur Nieden NI. et al. Molecular markers in embryonic stem cells. Toxicol In Vitro. 2001;15, 
455-61. 

34. Jones G, Riley M, and Dwyer T. Maternal smoking during pregnancy, growth, and bone 
mass in prepubertal children. J. Bone Miner Res. 1999;14, 146–151. 

35. England LJ. et al. Adverse pregnancy outcomes in snuff users. Am J Obstet Gynecol. 
2003;189, 939–943. 

36. Gupta PC and Sreevidya S. Smokeless tobacco use, birth weight, and gestational age: 
population based, prospective cohort study of 1217 women in Mumbai, India. BMJ. 
2004;328, 1538. 

37. Wikström AK. et al. Effect of Swedish snuff (Snus) on preterm birth. BJOG Int J Obstet 
Gynaecol. 2010; 117, 1005–1010. 

38. Bruneau BG. et al. Chamber-Specific Cardiac Expression of Tbx5 and Heart Defects in Holt–
Oram Syndrome. Dev Biol. 1999;211, 100–108. 

39. Edmondson DG. et al. Mef2 gene expression marks the cardiac and skeletal muscle lineages 
during mouse embryogenesis. Dev Camb Engl. 1994;120, 1251–1263. 



 91 

40. Liberatore CM, Searcy-Schrick RD, and Yutzey KE. Ventricular Expression of tbx5 Inhibits 
Normal Heart Chamber Development. Dev Biol. 2000;223, 169–180. 

41. Veronesi B and Ehrich M. Differential cytotoxic sensitivity in mouse and human cell lines 
exposed to organophosphate insecticides. Toxicol Appl Pharmacol. 1993;120, 240–246. 

42. Sucov HM and Evans RM. Retinoic acid and retinoic acid receptors in development. Mol 
Neurobiol. 1995;10, 169-184. 

43. Wilson JG and Warkany J. Aortic-arch and cardiac anomalies in the offspring of vitamin A 
deficient rats. Am J Anat. 1949;85, 113-155. 

44. Cohlan SQ. Congenital anomalies in the rat produced by excessive intake of vitamin a during 
pregnancy. Pediatrics. 1954;13, 556. 

45. Iulianella A. et al. A molecular basis for retinoic acid-induced axial truncation. Dev Biol. 
1999;205, 33-48. 

46. Chien CY. et al. Maternal vitamin A deficiency during pregnancy affects vascularized islet 
development. J Nutr Biochem. 2016;36,51-59. 

47. Malik S. et al. Maternal smoking and congenital heart defects. Pediatrics. 2008;121, e810-
816. 

48. Talhout R. et al. Hazardous Compounds in Tobacco Smoke. Int J Environ Res Public Health. 
2011;8, 613–628. 

49. Golz S, Lantin C, and Mey J. Retinoic acid-dependent regulation of BMP4 and Tbx5 in the 
embryonic chick retina. Neuroreport. 2004;15, 2751–2755. 

50. De Bono C. et al. T-box genes and retinoic acid signaling regulate the segregation of arterial 
and venous pole progenitor cells in the murine second heart field. Hum Mol Genet. 2018;27, 
3747–3760. 

 

 



 92 

CHAPTER 4 

 

Sidestream smoke extracts from harm-reduction and conventional Camel cigarettes inhibit 

osteogenic differentiation via oxidative stress and differential activation of intrinsic 

apoptotic pathways 

 

Lauren M. Walker, Nicole RL Sparks, Steven R. Sera, Joseph V Madrid, Ivann KC 

Martinez, Michael Hanna, Prue Talbot, Nicole I zur Nieden 

 

Abstract 

Tobacco smoking has been implicated in an array of health-related diseases 

including those that affect adult bone. However, little is known regarding the impact of 

conventional and harm-reduction tobacco products on bone tissue as it develops in the 

embryo. To assess the effects of tobacco products on developing bone in vitro, human 

embryonic stem cells were differentiated into osteoblasts and concomitantly exposed to 

various concentrations of either mainstream or sidestream smoke solutions from Camel 

(conventional) and Camel Blue (harm-reduction) cigarettes. Differentiation inhibition was 

determined by calcium assays on osteogenically differentiating cells and compared to the 

cytotoxicity of the tobacco smoke solution.  

Exposure to mainstream smoke from both Camel and Camel Blue cigarettes caused 

no inhibition of cell viability or calcification of the osteogenic cultures. Sidestream smoke 

from conventional Camel cigarettes concentration-dependently elicited calcification 
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inhibition that was triggered by high levels of mitochondrially-generated oxidative stress, 

loss of mitochondrial membrane potential, and reduced ATP production. Moreover, Camel 

sidestream smoke induced DNA damage and caspase9-dependent apoptosis. Camel Blue 

exposed cells, in contrast, invoked only intermediate levels of reactive oxygen species 

insufficient to activate caspase3/7. In the absence of apoptotic gene activation, damage to 

the mitochondrial phenotype was noted in addition to completely retarded mineralization 

at subtoxic concentrations. Collectively, the presented findings in differentiating 

pluripotent stem cells imply that embryos may exhibit low bone mineral density if exposed 

to certain kinds of environmental smoke during development.  

 

Introduction 

A growing body of evidence has shown that cigarette smoking produces numerous 

adverse health effects, making cigarette use the leading cause of preventable death in the 

world. The most well-known of the adverse health consequences of tobacco use are cancer, 

cardiovascular disease, and respiratory complications. However, cigarette smoking has 

also been shown to have adverse effects on bone tissue. For example, smoking increases 

the occurrence of developing osteopathies, such as osteoporosis [1-3] and Legg-Calve-

Perthes Disease [4] and has been implicated in delayed healing of fractured bones [5-6].  

A recent trial suggested that nicotine replacement therapies to help women quit 

during pregnancy often deliver inadequate nicotine levels (as measured via nicotine 

metabolite content in urine) to aid in smoking cessation [7]. Consequently, smokers who 

become pregnant and are unsuccessful in quitting can expose their children in utero. This 



 94 

is important since tobacco use during pregnancy may also adversely affect pregnancy 

outcomes and impair the health of the unborn [8-10]. Among other environmental factors, 

smoking while pregnant accounts for the high frequencies of congenital anomalies [11-12]. 

Limited research in young adults and immature animals suggests a detrimental effect of 

tobacco on bone during growth by suppressing bone formation [13]. 

Increasing concerns about the health risks associated with tobacco smoke led the 

tobacco industry to create “harm-reduction” products including “light” versions of their 

conventional cigarettes. Smoke from these products typically contain less tar, nicotine, and 

chemical additives than would be found in smoke from conventional products. Because 

users of harm-reduction products often engage in compensatory smoking, the frequency of 

smoking-associated cancer deaths seems equally high in those who use harm-reduction 

products [14]. While the beneficial impact of harm-reduction cigarettes on overall health 

is still being debated, it is even less clear whether the reduction of nicotine and tar content 

in harm-reduction products sufficiently eliminates embryotoxic effects in developing bone.  

Studies to understand adverse effects on embryo health are typically performed 

using rodent models [15-16]. These types of studies require the routine sacrifice of animals, 

are often not cost effective, and may not accurately predict the outcome of human exposure. 

Our group has recently shown that the yield of osteoblasts from in vitro exposed and 

differentiated human embryonic stem cells (hESCs) can predict adverse effects of a 

chemical towards bone development [17]. The purpose of this study was to investigate the 

molecular mechanisms of embryotoxicity exerted on osteogenesis by cigarette smoke. 

Further, this study also sought to evaluate the comparative embryotoxicity of harm-
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reduction cigarette smoke in contrast with conventional cigarettes.  The data revealed that 

sidestream (SS) smoke was more inhibitory to osteogenic differentiation than mainstream 

(MS) smoke in both tested brands. The detrimental effect of SS smoke from conventional 

Camel cigarettes was due to the general cytotoxicity of the smoke solution. In contrast, 

smoke extracts from harm-reduction Camel Blue cigarettes showed differentiation 

inhibition at sub-toxic concentrations in both the MS and the SS preparations. These data 

provide further evidence to suggest that in utero tobacco exposure could have detrimental 

effects on human bone development and that harm-reduction products may not be less 

harmful than conventional products.  

 

Methods 

Cell culture 

Human ESCs (H9), acquired from WiCell (WiCell Research Institute), were 

maintained in mTeSR® medium (Stem Cell Technologies) and kept in the undifferentiated 

state at 37°C in a humid 5% CO2 environment. Pluripotent colonies were passaged every 

5 days by dissociating cells with Accutase® (Innovative Cell Technologies, Inc.) and a cell 

scraper. Cells were replated on Matrigel (BD Biosciences) coated culture plates. Human 

foreskin fibroblasts (hFF) were a kind gift of Dr. Derrick Rancourt (University of Calgary) 

and were maintained in high glucose L-glutamine Dulbecco’s modified Eagle’s medium 

(DMEM, Corning) with 10% fetal bovine serum (FBS, Atlanta Biologicals), 1% non-

essential amino acids (NEAA, Gibco), and 0.5% penicillin/streptomycin (10,000 

units/10,000 units, Gibco).  
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Osteogenic differentiation 

At confluency, pluripotent colonies were induced to undergo osteogenesis with 

control differentiation medium consisting of Dulbecco’s modified Eagle's medium 

(DMEM; Gibco) containing 15% FBS (Atlanta Biologicals), 1% non-essential amino acids 

(NEAA; Gibco), 1:200 penicillin/streptomycin (Gibco), and 0.1 mM β-mercaptoethanol 

(Sigma-Aldrich) for 5 days as described [18]. Starting from the fifth day of culture, control 

differentiation medium was supplemented for the remaining differentiation duration with 

osteogenic factors: 0.1 mM β-glycerophosphate (βGP; Sigma-Aldrich), 50 µg/ml ascorbic 

acid (AA; Sigma-Aldrich), and 1.2x10-7 M 1,25(OH)2 Vitamin D3 (VD3; Calbiochem). 

 

Production of smoke solution 

Commercially available conventional and harm-reduction Camel cigarettes were 

purchased from a local retailer and used to make mainstream (MS) and sidestream (SS) 

smoke solutions with a method described previously in detail [19-20]. Smoke solutions 

were generated using a University of Kentucky smoking machine that took a 2.2 second 

puff of MS every minute. MS smoke solution was generated by pulling 30 puffs of MS 

smoke through 10 ml of DMEM culture medium. During MS smoke production, SS smoke 

solution was produced by collecting the smoke that burned off the end of the cigarette and 

pulling it through 10 ml of DMEM. SS smoke was collected continuously, while MS smoke 

was collected during each puff. Both MS and SS solutions were made at concentrations of 

3 puff equivalents (PE). Immediately after preparation, smoke solutions were filtered 

through a 0.2 µm Acrodisc® PSF Syringe Filter (Pall Corporation, Port Washington, NY), 
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aliquoted into sterile Eppendorf tubes, and stored in a -80°C freezer until used. Desired 

PEs were acquired through serial dilutions, and experiments were performed using either 

MS or SS at indicated concentrations alongside an untreated control. Immediately after 

preparation, smoke solutions were filtered through a 0.2 µm Acrodisc®  PSF Syringe Filter 

(Pall Corporation, Port Washington, NY), aliquoted into sterile Eppendorf tubes, and stored 

in a -80°C freezer until used. Desired PEs were acquired through serial dilutions, and 

experiments were performed using either MS or SS at indicated concentrations alongside 

an untreated control. 

Osteogenic differentiation of hESCs was induced as described above, and cultures 

were treated with smoke solution throughout the 20-day differentiation protocol. Smoke 

solutions were replenished with each media change.  

 

Antioxidant and caspase inhibitor treatment 

To counteract tobacco-induced oxidative stress, three antioxidants were used 

concomitantly with tobacco treatment during days 5-7 of differentiation: ascorbic acid 

(AA; Sigma-Aldrich) [10 µM], dl-α-tocopherol acetate (vitamin E; Supelco, Sigma-

Aldrich) [10 µM], and glutathione reduced ethyl ester (GSHOEt; Sigma-Aldrich) [500 

µM]. The antioxidant medium was replaced with each media change. 

To explore the involvement of caspases 4 and 9 in tobacco-related inhibition of 

osteogenic differentiation, tobacco-treated cultures were simultaneously dosed with 

caspase 4 inhibitor (4i; Promokine) [3 µM] or caspase 9 inhibitor (9i; R&D Systems) [3 

µM] during days 5-7 of differentiation. Inhibitor-supplemented medium was replaced with 
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every media change. 

 

Cell viability assay 

Osteoblast and hFF survival in response to smoke solutions was determined by 3-

[4,5-dimethylthiazol-2-yl]-2,5-diphenylterazolium bromide (MTT) assay. Briefly, cells 

were incubated with MTT (120 mg/ml) at 37°C for 3 h. After the supernatant was removed, 

0.04 mol/l HCl in isopropanol was added to each well, and the optical density of the 

solution was read at 595 nm in an iMark™ microplate reader (Bio-Rad). As the generation 

of the blue product is proportional to the dehydrogenase activity, a decrease in the 

absorbance at 595 nm provided a direct measurement of the number of viable cells [17, 21-

25]. 

 

Calcium assay 

For quantification of calcium in the extracellular matrix, cells were harvested in 

modified radioimmunoprecipitation (RIPA) buffer [26]. Calcium deposition was 

determined based on calcium ions (Ca2+) reacting with Arsenazo III (Genzyme) to form a 

purple Ca-Arsenazo III complex, which was measured at 655 nm. The concentration of 

total calcium in the sample was calculated based on a CaCl2 standard [26]. Calcium content 

was normalized to the total protein content of the sample using the Lowry method [26]. 

 

Superoxide anion detection  

Generation of superoxide anion was determined using a Lumimax Superoxide 
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Anion Detection Kit (Agilent Technologies). H9 cells were trypsinized, washed with 

phosphate-buffered saline (PBS), and resuspended in fresh medium to incubate for 30 

minutes at 37°C. A total of 5 × 105 cells was incubated in superoxide anion assay medium 

including 0.1 mM luminol solution and 125 µM enhancer at room temperature for 30 min. 

The chemiluminescent light emissions of superoxide anion were measured with a 

luminometer (Lucetta™). 

 

MitoSOX assay 

Superoxide formation specially produced by mitochondria was assessed using the 

commercially available MitoSOX Red Mitochondrial Superoxide Indicator dye 

(ThermoFisher M36008). Adherent cells were washed with PBS and incubated with 2.5 

µM MitoSOX in PBS for 10 min in the dark. Cells were then immediately imaged on a 

Nikon Ti fluorescent microscope. MitoSOX positive cells were identified using NIH 

ImageJ analysis software as outlined by Jensen (2013). 

 

MitoTracker staining and mitochondrial analysis 

 Stress-related changes in mitochondrial morphology were visualized and quantified 

using the MitoTracker Deep Red FM fluorescent dye (ThermoFisher).  H9 cells were 

trypsinized, washed with PBS, and resuspended in 200 nM MitoTracker dye prepared in 

fresh medium. Cells were incubated in darkness for 20 minutes at 25°C, washed with PBS, 

and fixed in 4% paraformaldehyde for 15 minutes at room temperature. Fixed cells were 

then washed three times with PBS and permeabilized with 0.1% Triton X- 100 in PBS for 
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15 minutes at room temperature. Cells were washed again and counterstained with 1 µg/ml 

4', 6-diamidino-2-phenylindole (DAPI) in PBS for 30 minutes. Cells were washed three 

more times with PBS and resuspended in PBS supplemented with 2% FBS and 1 mM 

ethylenediaminetetraacetic acid (EDTA). Cell number was quantified and adjusted to a 

concentration of 5 x 105 cells/ml. Cells were spun onto pre-coated Shandon Single 

Cytoslides (ThermoFisher) using a Shandon Cytospin 3 (Shandon). For each treatment, a 

100 µl volume of fixed and stained cellular suspensions was loaded into a cytospin funnel 

and centrifuged at 200 rpm for 5 minutes at low acceleration/deceleration settings. Slides 

were allowed to air-dry overnight before mounting with Fluoro-Gel (Electron Microscopy 

Sciences) imaging. 

Z-stack images were taken for each slide using a Leica DMi8 fluorescent confocal 

microscope and max projected to flatten out each image. Resultant images were pre-

processed in ImageJ (NIH) to prepare for mitochondrial morphological analysis. The 

MitoTracker Deep Red channel was first separated from the nuclear DAPI channel to allow 

for specific analysis of the mitochondria.  Images were further processed using the 

Mitochondrial Network Analysis (MiNA) ImageJ plug-in to prepare images for evaluation 

of mitochondrial networks within individual cells. The MiNA plug-in is freely available at 

https://github.com/ScienceToolkit/MiNA. Using the default MiNA settings, images were 

subjected to a 2-pixel gaussian blur, rendering through the Enhance Local Contrast median 

filter, and a final processing through an unsharp mask tool to yield a “skeleton” or tracing 

of the mitochondrial networks in a given cell. Mitochondrial networks were evaluated 

using the MiNA analysis method as outlined by Valente et al., 2017. The mitochondrial 
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network length, number of branches, and area of mitochondrial footprint were measured 

from the skeletons to quantify tobacco-related changes to mitochondrial networks.   

 

Caspase 3/7 stain 

 For determination of activated caspases 3/7, cells were incubated for 1 hour in a 1X 

caspase 3/7 reagent conjugated to carboxyfluorescein fluorochrome (Guava Technologies, 

US). The fluorescent signal was detected in cells where the reagent is covalently bound to 

the activated caspases, any unbound reagent was washed away with 1X apoptosis buffer 

provided by the manufacturer. Cells were observed and imaged on a Nikon Ti fluorescent 

microscope. 

 

Apoptosis RT2 profiler qPCR array 

The correlation between tobacco exposure and apoptosis was examined based on 

expression changes of 84 apoptosis-associated genes using a Qiagen human Apoptosis RT2 

Profiler Array. For this, hESCs were differentiated into osteoblasts as described above with 

concomitant exposure to either solvent, non-effective, or effective doses (50% inhibition 

of calcification) of tobacco smoke solutions/extracts as determined from the concentration 

response curves shown in Fig. 4.1. RNA was isolated using the NucleoSpin RNA kit 

(Macherey-Nagel) and examined for RNA integrity using the Agilent 2100 Bioanalyzer. 

Only samples with an RNA integrity number of >8 were used for further processing. Five 

hundred nanograms of RNA were input into a cDNA reaction as described before [18]. 

qPCR reactions were set up using iQ SYBR Green Supermix (Bio-Rad) and 12.5 ng of 



 102 

cDNA per array well and cycled in a Bio-Rad iQ5 qPCR machine. Data were uploaded to 

the Qiagen Data Analysis Center at www.SABiosciences.com/pcrarraydataanalysis.php 

for analysis.  

 

Real-time quantitative PCR (qPCR) 

Changes in cellular stress-related gene expression related to DNA damage, growth 

arrest, and apoptosis were assessed using real-time quantitative PCR (qPCR) 

measurements of GADD45α, GADD45β, and GADD45γ isoform expression. RNA was 

extracted from cells and subsequently purified using the NucleoSpin RNA kit (Macherey-

Nagel) protocol. Isolated RNA was quantified using a NanoDrop® 1000 

spectrophotometer (Thermo Scientific) at 260nm. Synthesis of cDNA was performed using 

25ng of total RNA as a template and a cDNA mastermix as described before [18]. 

Quantitative  PCR analysis utilized resultant 25ng cDNA transcripts and iQ SYBR Green 

Supermix (Bio-Rad) on the CFX Connect thermocycler (Bio-Rad). Reactions were 

programmed for 5 minutes of initial denaturing at 94°C, followed by 40 cycles of 

denaturing at 94°C for 45 seconds and annealing at 60°C for 45 seconds. The ΔΔCT 

method [29] was used to calculate n-fold expression in target gene expression by 

normalizing target CT values to their respective GAPDH expression values. Primer 

sequences for human GADD45α were 5'-TTACTCAAGCAGTTACTCCCTACA-3' and 

5'-CCTTCTTCATTTTCACCTCTTTCCA-3', for GADD45β they were 5'-

ATGACATCGCCCTGCAAATC-3' and 5'-GTGACCAGGAGACAATGCAG-3', and for 

GADD45γ they were 5'-CGCGCTGCAGATCCATTTTA-3' and 5'-
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GGGGTTCGAAATGAGGATGC-3'. Primer sequences for human GAPDH were 5’-

GAGTCAACGGATTTGGTCGT-3’ and 5’-TTGATTTTGGAGGGATCTCG-3’ 

 

Comet assay and analysis  

Comet assay slides were prepared prior to cell collection by coating clean frosted 

microscope slides (Fisher Scientific) with 1% normal melting agarose (NMA, Sigma) in 

PBS. A volume of 75 µl of melted NMA was pipetted directly to the surface of each slide 

and immediately covered with a coverslip. The NMA layer was allowed to solidify at 25°C 

for 10 minutes prior to coverslip removal. Slides were stored at -20°C until use. Cells were 

trypsinized, washed with PBS, counted and resuspended in PBS supplemented with 2% 

FBS. A cell suspension of 200,000 cells per ml in 0.1% low melting point agarose (LMA, 

Fisher Bioreagents) was prepared immediately prior to distributing cells onto slides for the 

assay. NMA-coated slides were allowed to come to room temperature before coating with 

the LMA-cell mixture. The cell-LMA solution was pipetted directly onto each slide in a 

volume of 75 µL and immediately covered with a coverslip. The LMA-cell layer was 

allowed to solidify at 25°C for 10 minutes prior to coverslip removal. An additional 5-

minute solidification period at 25°C was observed after the coverslip was removed. The 

slides were then placed in a slide tray and the cells were lysed in comet assay lysis buffer 

(1.2 M NaCl, 100 mM Na2EDTA, 0.1% sodium lauryl sarcosinate, 0.26 M NaOH, pH >13) 

for 1 hour at 25°C. Next, lysis buffer was aspirated off the slides and replaced with 

electrophoresis solution (0.03 M NaOH, 2 mM Na2EDTA, pH~12.3) for 20 min at 4°C. 

Slides were transferred to an electrophoresis box and subjected to electrophoresis for 20 
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min at 1V/cm and 4°C. Slides were rinsed in ddH2O for 1 minute, then immersed in 70% 

ethanol for 5 minutes. Slides were air-dried overnight and stained with 1 µg/ml 4', 6-

diamidino-2-phenylindole (DAPI) in PBS for 30 minutes. Slides were rinsed with PBS and 

air dried prior to imaging on a Nikon Ti Eclipse fluorescent microscope. Three slides per 

treatment group were prepared and scored visually. Fifty cells per slide were scored. 

Fluorouracil (5-FU; Sigma-Aldrich) treated cells were evaluated as a positive control. To 

ensure accuracy of comet parameter measurements, DAPI signal intensity was subjected 

to a color threshold in ImageJ (commands used: Image > Adjust > Color Threshold). 

Comet score was determined by the presence of a comet tail as well as the relative length 

of the comet tail and % of DNA in the comet tail (if present). Comet tail length was 

manually quantified in ImageJ by measuring the distance spanned by comet tails (if 

present) from the edge of the cell nucleus to the furthest end of the comet tail.  

 

Western blotting 

Prior to lysing, cells were pretreated for 30 min with 1mM sodium orthovanadate 

to inhibit protein tyrosine phosphatases. Cells were then lysed with RIPA buffer (pH 7.4 

150 mM NaCl, 2 mM EDTA, 50 mM Tris-HCl pH 7.4, 1% NP-40, 0.5% sodium 

deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 1 mM sodium orthovanadate, 1 mM 

sodium fluoride, 1 mM phenylmethylsulfonyl fluoride (PMSF), and 1:100 Halt Protease 

Inhibitor Cocktail (ThermoFisher) to collect whole-cell protein lysates. A modified Lowry 

protein assay (Bio-Rad DC™ protein assay) was used to determine protein concentration 

in fresh lysates. For western blot analysis, equal amounts of protein per treatment group 
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were loaded into a 6%-10% SDS/polyacrylamide gel and separated by electrophoresis prior 

to electrophoretic transfer to a polyvinylidene difluoride (PDVF) membrane. Membranes 

were immediately blocked in 5% bovine serum albumin (BSA) in tris-buffered saline with 

tween 20 (TBS-T) for 30 minutes at room temperature on an orbital shaker. Membranes 

were incubated with one of the following primary antibodies for 2 hours at room 

temperature with shaking: mouse anti-caspase 8 (CST 9746S), mouse anti-caspase 9 (CST 

9508S), rabbit anti-phospho-caspase 9 (Tyr153) (abcam ab79202), rabbit anti-c-Abl (CST 

2862S), rabbit anti-phospho-c-Abl (Tyr245) (CST 2868S), rabbit anti-phospho-c-Abl 

(Tyr412) (CST 247C7S), rabbit anti-caspase 4 (ab22687) mouse anti-actin (CST 3700S). 

Membranes were subsequently incubated for 1 hour at room temperature with horseradish 

peroxidase-conjugated anti-rabbit (CST 7074S) or anti-mouse (CST 7076S) secondary 

antibody was used to detect antigens of interest. Bands were visualized using 

chemiluminescence substrate (SuperSignal West Pico PLUS Chemiluminescent Substrate, 

ThermoFisher) and the Bio-Rad ChemiDoc MP System imager. 

 

Live/Dead assay 

Healthy live and apoptotic cell populations were quantified in different treatment 

groups using the LIVE/DEAD Viability/Cytotoxicity Kit (ThermoFisher L3224). H9 cells 

were trypsinized, washed with PBS, and resuspended in fresh medium containing 0.1 µM 

calcein AM and 8 µM ethidium homodimer-1 (EthD-1). Cells were incubated away from 

light for 20 minutes at 25°C, washed with PBS, and centrifuge-strained to encourage a 

single-cell suspension (Fisher Scientific, 08-771-23). Cells were resuspended in ice-cold 
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PBS supplemented with 2% FBS and immediately analyzed on a FACSCalibur Flow 

Cytometer (BD Biosciences). Fluorescence was detected at excitation/emission at λ = 

494/517 nm and 517/617 nm. Cytometer gating was set using unstained untreated samples 

and adjusting forward scatter and side-scatter light. For each sample, 10,000 events were 

recorded. 

 

Mitochondrial membrane potential 

 Changes in mitochondrial membrane potential were assessed using the 

commercially available JC-1 Dye (ThermoFisher T3168). Cells were trypsinized, washed 

with PBS, and resuspended in fresh medium containing 5 µM JC-1. Cells were incubated 

for 20 minutes at 25°C, washed with PBS, and centrifuge-strained to break up cells into a 

single-cell suspension (Fisher Scientific, 08-771-23). Cells were subsequently resuspended 

in ice-cold PBS supplemented with 2% FBS and immediately analyzed on a FACSCalibur 

Flow Cytometer (BD Biosciences). Fluorescence was detected at excitation/emission at λ 

= 488⁄530 nm and 488⁄585 nm. Cytometer gating was set using unstained untreated samples 

and adjusting forward scatter and side-scatter light. For each sample, 10,000 events were 

recorded. 

 

ATP:AMP assays 

 ATP and AMP levels were quantified via an ATP Determination Kit (ThermoFisher 

A22066) and an AMP ELISA (Kamiya Biomedical Company KT-52769), respectively. 

For both assessments, cells were washed with PBS, trypsinized, and resuspended in PBS.  
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In the ATP assay, a cell suspension for each treatment group was counted and 

readjusted to a final concentration of 12.5 × 106 cells/ml. For each reading, 10 µl of ATP 

standard or sample was combined with 90 µl of the ATP reaction solution provided by the 

ATP Determination Kit immediately before to recording the reaction luminescence output 

using a Lucetta luminometer (Lonza). Relative ng amounts of ATP in each treatment group 

were determined from an ATP standard curve. For AMP determination, each cell 

suspension was adjusted to a final concentration of 1.25 × 106 cells/ml. PBS-suspended 

cells were prepared for ELISA analysis by freeze-thawing three times with gentle mixing 

between freezing followed by centrifugation at 1,000 x g for 15 minutes at 4°C. Cell lysates 

were assessed according to the manufacturer’s ELISA protocol and final optical density 

was measured at 450 nm using an iMark microplate reader (Bio-Rad). Relative ng amounts 

of AMP were determined using a standard curve constructed from an AMP standard. 

 

Statistical analysis 

The lowest concentrations at which calcification or cell viability dropped below the 

untreated control were identified with one-way analysis of variance (ANOVA) followed 

by a paired student’s t-test. Half-maximal inhibitory doses of cytotoxicity (IC50) and 

differentiation (ID50) were taken from concentration-response curves and used to classify 

chemical embryotoxicity via an embryotoxicity biostatistical prediction model [30]. Other 

assays were also assessed with one-way analysis of variance (ANOVA) followed by a 

paired student’s t-test (GraphPad QuickCalcs). For all conducted tests, P-values below 0.05 

were considered significant.  
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Results 

The potency of mainstream (MS) and sidesteam (SS) smoke extracts of 

conventional and harm-reduction Camel cigarettes to induce differentiation defects in 

hESCs undergoing differentiation into osteoblasts was compared to assess the hazardous 

effects of smoking on developing bone tissue.  

 

MS smoke from conventional Camel cigarettes is neither cytotoxic nor teratogenic to 

differentiating osteogenic cultures 

First, MS smoke of conventional Camel cigarettes was tested to determine its 

effects on cell survival as measured by an MTT assay after 20 days of culture [25].  At that 

time these cultures express marker genes and proteins of osteoblasts [18]. No adverse 

effects on mitochondrial dehydrogenase activity were found (Fig. 4.1A). As osteoblasts 

emerge from hESC cultures, they begin to form nodules made of calcified extracellular 

matrix [18]. This process is unique to bone forming cells. This functional characteristic of 

bone was assayed via the quantification of calcium ions deposited into the matrix [25]. 

Conventional MS Camel tobacco smoke solution did not affect calcification, as assessed 

using Arsenazo III, a reagent for measuring calcium contents in samples [23, 26] (Fig. 

4.1A). These results suggest that MS Camel smoke extract has no observable effects on 

viability or functional calcification of osteogenic cultures at any of the concentrations 

tested. The half-maximal concentrations for cytotoxicity (IC50 MTT hESCs and IC50 MTT 

hFF) and differentiation inhibition (ID50 Calcium hESCs) obtained from the concentration-

response curves were then evaluated in a biostatistical model (Fig 4.1E) [30] which 
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revealed that MS Camel smoke extract was non-embryotoxic.  

 

SS from conventional Camel cigarettes demonstrates harmful effects on human osteoblast 

differentiation 

SS, the major component of secondhand smoke, was next investigated using the 

previously described method and concentrations. In contrast to the MS smoke solution, 

Camel SS smoke solution caused excessive cell death and a measurable lack of 

calcification at 0.3 PE (Fig. 4.1B). The biostatistical model classified Camel SS smoke 

extract as strongly embryotoxic (Fig. 4.1E).  

 

Harm-reduced Camel Blue cigarette smoke extract is harmful to differentiating osteoblasts 

at subtoxic concentrations 

To evaluate whether cigarettes that contain fewer carcinogens also cause less harm 

in differentiating hESCs, smoke extracts from Camel Blue cigarettes were screened using 

five concentrations. While cell viability was not inhibited in the tested range, calcification 

of the hESC-derived osteoblasts was severely inhibited at 1PE (Fig. 4.1C). The 

biostatistical model categorized MS Camel Blue smoke as weakly embryotoxic (Fig. 4.1E).  

As with the conventional Camel smoke extract, the SS smoke from Camel Blue 

cigarettes was more detrimental to differentiating osteoblasts than the MS smoke. Camel 

Blue SS smoke ablated calcification starting at 0.1 PE, one dose lower than for the 

conventional Camel SS. Notably, the absence of calcification occurred in the absence of 

changes in cell viability up to a dose of 0.3 PE (Fig. 4.1D). While the biostatistical model 
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Figure 4.1. SS smoke inhibited osteogenesis and cell viability. Human ESCs were 
treated with different concentrations of MS and SS smoke solution concurrently with 
osteogenesis. Cultures were assessed for on calcium deposition and cell viability using 
Arsenazo III and MTT assay, respectively. (A) Camel MS smoke solution. (B) Camel 
SS smoke solution. (C) Camel Blue MS smoke solution. (D) Camel Blue SS smoke 
solution. Each graphed point is the average of three independent experiments ± standard 
deviation. ΔP<0.05 represents the lowest concentration that is significantly below the 
untreated control in the calcium assay, as determined by one-way ANOVA. *P<0.05 
represents the lowest concentration significantly below the untreated control in the 
hESC MTT assay as determined by one-way ANOVA. §P<0.05 represents the lowest 
concentration that is significantly below the untreated control in the hFF MTT assay as 
determined by one-way ANOVA. (E) List of IC50 and ID50 values determined from 
concentration-response curves for all tobacco products grouped by mainstream and 
sidestream smoke and embryotoxicity classifications as calculated according to 
Genschow et al. (2000). hFF, human foreskin fibroblast; hESC, human embryonic stem 
cell; MS, mainstream; MTT, mitochondrial dehydrogenase activity assay; SS, 
sidestream. 
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also categorized Camel Blue SS smoke extract as strongly embryotoxic (Fig. 1E), it is of 

note that the embryotoxic effect was caused at subtoxic concentrations suggesting that this 

particular harm-reduction product inhibited differentiation producing developmentally 

toxic effects independent of cytotoxicity. 

 

Embryotoxicity of SS smoke is associated with oxidative stress 

Cytotoxicity in cells and tissues is commonly ascribed to oxidative stress, which 

arises as a consequence of chemical or environmental insult. Classically, oxidative stress 

is defined as the “imbalance of reducing and oxidizing equivalents where the latter 

predominates” [31]. In such cases, increased production of reactive oxygen species (ROS) 

contributes to a loss of tissue function [32-35]. Indeed, different human teratogens have 

recently been described to cause oxidative stress [36-38]. 

Due to this existing relationship between developmental inhibition and oxidative 

stress, we investigated the level of superoxide anion (•O2-) generated upon exposure to 

Camel and Camel Blue smoke extracts. An effective dose, determined from the 

concentration-response curve as the concentration that reduced calcification to 50%, and a 

non-effective dose (no effect) were compared to non-treated control cultures. MS Camel 

and MS Camel Blue showed no statistical difference in •O2- content, while the Camel SS 

revealed a 2.4-fold increase in the effective dose over the non-effective dose (Fig. 4.2A). 

In contrast, the Camel Blue SS effective dose evoked elevated •O2- content in the range 

between 1.6- and 1.9-fold. Further evaluation of the potential source of the •O2- uncovered 

elevated mitochondrial oxidative stress in the Camel SS, but not in Camel Blue (Fig. 4.2B).  
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In an effort to link oxidative stress-mediated embryotoxicity to altered gene 

regulation, we next performed a Qiagen RT2 Apoptosis Profiler qPCR array (Fig. 4.2C). A 

clustergram generated from all de-regulated genes across all treatment groups indicated a 

close relationship between the solvent controls, all non-effective doses, and the effective 

dose of Camel Blue SS smoke solution suggesting that there was very little gene de-

regulation observed (Appendix Fig. 1.4.1). In contrast, global apoptotic gene regulation 

was significantly different in the effective dose of Camel SS. Specifically—and as expected 

based on the elevated •O2- levels measured in the effective doses—genes involved in ROS 

signaling were increasingly expressed in the effective dose of Camel SS and to a lesser 

extent in the effective dose of Camel Blue SS. These same genes were mainly unaltered in 

the non-effective doses (Fig. 4.2D, Appendix Fig. 1.4.2). Calcification in both effective 

doses was rescued by the addition of antioxidants during tobacco treatment, causally 

relating oxidative stress to the osteogenic defect (Fig. 4.2E). 

 

Conventional Camel, but not the harm-reduction Camel Blue smoke extract elicits 

apoptotic gene expression and activates executioner caspases 

The high •O2- levels found in Camel SS effective doses cultures occurred in the 

presence of up-regulated caspase 8 mRNA (Fig. 4.3A) as well as higher levels of total and 

cleaved caspase 8 protein expression (Fig. 4.3B). Although caspase 9 mRNA was also 

elevated in Camel SS effective doses, Western blot could not detect increased total or 

cleaved Caspase 9 (Fig. 4.3B). However, when we probed with an antibody against the 

caspase 9 specifically phosphorylated at Y153, a well-established activation mark [39], it  
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Figure. 4.2. Differentiation inhibition caused by harm-reduction tobacco exposure 
occurred through generation of intermediate levels of reactive oxygen species. (A) 
Superoxide anion content measured upon reaction of the cells with luminol and charted 
as percent of the untreated cultures; n=3±SD. (B) Cells were exposed for seven days, 
incubated with MitoSOX, photographed and positive cells counted. Only Camel 
exposure elicited a significant increase specifically in mitochondrial oxidative stress. 
(C) Heat map of apoptotic genes de-regulated in tobacco exposed hESCs as measured 
with the RT2 qPCR array for apoptosis (D) Apoptosis qPCR array revealed upregulation 
of genes associated with ROS signaling. E) Calcium deposit was quantified from 
cultures exposed for 20 days with and without concomitant addition of antioxidants. 
Effective doses of tobacco smoke solutions and extracts reduced calcification, which 
was rescued with antioxidant treatment; n=3±SD. *P<0.05, one-way ANOVA followed 
by student’s t-test versus untreated cultures. AA, ascorbic acid; ED, effective dose; 
GSHOEt, glutathione reduced ethyl ester; MS, mainstream; NED, non-effective dose; 
RLU, relative light unit; SS, sidestream; UT, untreated; VitE, Vitamin E. 
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Figure. 4.3. Camel Blue SS elicits a weaker apoptosis response than Camel SS. (A) RT2 
qPCR array for apoptosis identified distinct expression patterns of various caspase 
isoforms between Camel and Camel Blue SS smoke exposed cells. n=3±SD. *P<0.05, 
One-Way ANOVA versus untreated cultures. (B) Western blots revealed the differential 
activation of caspases associated with extrinsic and intrinsic apoptotic pathways. (C) 
Accordingly, the executioner caspases 3/7 were highly activated in cells exposed to 
Camel, but only mildly when exposed to Camel Blue. Antioxidant treatment inhibited 
this activation. Insets show brightfield images of the same field of view. Bar = 100 µM. 
(C’) The ratio of Bcl2 to Bax mRNA expression suggested an antiapoptotic response in 
Camel Blue SS cultures. (D) Inhibition of these caspases rescues calcification in cells 
treated with effective doses of tobacco products; n=5±SD. *P<0.05, One-Way ANOVA 
versus untreated cultures. (E) Some proapoptotic genes were found upregulated in both 
Camel and Camel Blue SS cultures. n=5±SD. *P<0.05, One-Way ANOVA versus 
untreated cultures. (F) LIVE/DEAD assay reveals cell death in cells exposed to 
conventional smoke extracts only. AA, ascorbic acid; ED, effective dose; NED, non-
effective dose; SS, sidestream; UT, untreated. 
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was higher in Camel SS effective doses than in any other treatment group. Concomitantly, 

downstream executioner caspases 3 and 7 were found to be highly activated in Camel SS 

(Fig. 4.3C).  

In contrast, the intermediate intracellular •O2- levels released upon exposure to 

Camel Blue SS were found to occur in the absence of apoptosis. Caspase 8 activation was 

milder in Camel Blue SS than in Camel SS (Fig. 4.3A, B) and caspase 9 was only slightly 

elevated at the mRNA level (Fig. 4.3A). This lower activation of upstream caspase 

activation may have been responsible for marginal activation signals observed in the 

caspase3/7 stain (Fig. 4.3C). Conversely, caspase 4 showed higher mRNA expression in 

Camel Blue SS (Fig. 4.3A, 4.3C). Inhibition of caspase 9 in Camel SS effective doses and 

inhibition of caspase 4 in Camel Blue SS effective doses rescued calcification, providing 

an isoform-specific causal link between caspase activation and differentiation inhibition 

for both Camel products.     

Changes in mRNA expression were also observed for other apoptosis-related genes 

(Fig. 4.3D). Significant upregulation of mRNA expression for pro-apoptotic factors XIAP 

and BAX were observed in both effective doses. Anti-apoptotic genes BCL2L10, BCL2A1, 

and BCL2 were also upregulated in both Camel SS and Camel Blue SS effective doses. 

However, the anti-apoptotic genes BCL2L10 and BCL2A1 were highest in the SS Camel 

non-effective dose—potentially explaining the survival noted in those cultures. Similarly, 

despite the activation of multiple apoptotic genes, the ratio between BCL2 and BAX was 

most beneficial for survival in the effect dose of SS Camel Blue (Fig. 4.3C’). 

While Camel SS and Camel Blue SS both cause cellular injury and pro-apoptotic 



 119 

responses at the mRNA level, the type of molecular responses that may drive the cellular 

injury inflicted may also drive the differential molecular responses observed in cells treated 

with either tobacco extract. In line with this notion, a Live/Dead assay revealed Camel SS 

effective dose cultures to possess the highest percentage of dead cells but a similar number 

of injured cells as the Camel Blue SS exposed cultures (Fig. 4.3F). 

 

Conventional Camel, but not the harm-reduction Camel Blue smoke extracts elicit a DNA 

damage response 

The noted severity of apoptosis in the Camel SS effective dose may not only be 

founded in the different expression levels of pro- and anti-apoptotic genes, but could also 

be caused by an upregulation in genes associated with genotoxic response. Indeed, the cell 

cycle arrest and DNA damage genes GADD45α, GADD45β, and GADD45γ mRNA were 

significantly upregulated exclusively in cells treated with a Camel SS effective dose (Fig. 

4.4A). Furthermore, mRNA for the DNA-damage response kinase ABL1 was only 

upregulated in the Camel SS effective dose and was notably the highest upregulated gene 

observed (Fig. 4.4B). Western blot analysis confirmed greater ABL1 phosphorylation at 

Y412 and Y245 (Fig. 4.4C), residues that contribute to full kinase activation in the event 

of DNA damage and subsequent DNA repair response [40, 41]. Additional mRNA markers 

related to cellular stress, including BIRC5, CIDEA, CIDEB, were also examined. Rarely 

expressed in adult tissues, BIRC5 (also known as survivin) is reported to control apoptosis 

patterns in early embryos and is implicated in normal tissue development [42, 43]. BIRC5 

mRNA levels were conspicuously upregulated for Camel SS and Camel Blue SS effective  
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Figure. 4.4. Reduced viability in hESCs exposed to conventional Camel extract is due 
to DNA damage. (A) RT2 qPCR array for apoptosis found upregulation of genes 
associated with DNA damage response in Camel SS smoke exposed cells. n=3±SD. 
*P<0.05, One-Way ANOVA versus untreated cultures. (B) ABL1 mRNA expression 
was upregulated in the Camel SS effective dose. n=3±SD. *P<0.05, One-Way ANOVA 
versus untreated cultures. (C) Western blots confirmed ABL1 activation in Camel SS 
effective doses at the protein level. (D) Comet assays confirm DNA damage in response 
to Camel exposure, which was absent in Camel Blue exposed cells and cells treated with 
antioxidant. n=3±SD. *P<0.05, One-way ANOVA followed by paired student’s t-test 
versus untreated cultures. AA, ascorbic acid; 9i, caspase 9 inhibitor; ED, effective dose; 
NED, non-effective dose; SS, sidestream; UT, untreated. 
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doses, suggesting adverse molecular misregulation by both treatments. CIDEB mRNA was 

upregulated in both Camel SS and Camel Blue SS effective doses while CIDEA mRNA 

was only upregulated in Camel SS treated cultures. 

Milder intracellular •O2- levels and lack of apoptotic response in Camel Blue SS 

effective dose treated cultures corresponded with low or non-significant changes in 

GADD45α, GADD45β, GADD45γ despite upregulation of their upstream regulator TP53 

(Fig. 4.4A). ABL1 mRNA expression levels were also unchanged in Camel Blue SS treated 

cells (Fig. 4.4B). Cells exposed to the Camel Blue SS effective dose also showed lower 

protein levels of ABL1 both overall and in its activated phospho forms (Fig. 4.4C), 

suggesting the absence of a DNA damage response. 

Confirmatory assessment for DNA lesions was then performed using a Comet 

Assay. Camel SS effective dose exposed cells demonstrated a significantly higher 

proportion of the severely damaged comet phenotype and larger DNA lesion tails (Fig. 

4.4D). Ascorbic acid supplement of Camel SS cultures did not reduce comet severity or 

tail length, suggesting that antioxidant treatment was not efficient enough to prevent 

oxidative DNA damage during the exposure period. Supplementation with caspase 9 

inhibitor did not reduce comet severity either. Given that caspase 9 activity can drive 

downstream induction of apoptosis-mediated DNA fragmentation, this outcome suggests 

that the DNA lesions detected by the Comet Assay are predominantly from DNA damage 

events that occur following Camel SS ED exposure but upstream of caspase 9 activation. 

Camel and Camel Blue damage mitochondria with differential severity 

Observed differential mRNA upregulation patterns between Camel SS and Camel 
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Blue SS suggest that a precise molecular interplay may be responsible for ultimate 

phenotypic outcomes following exposure. As follows, this result also implies that while 

Camel SS and Camel Blue SS actively harm differentiating osteoblasts, both products act 

distinctly upon cellular regulatory mechanisms related to oxidative stress. As such, 

mitochondrial health was also investigated as mitochondrial dysfunction is a well-

documented source of oxidative stress-related genotoxicity and disease states [45]. 

Mitochondrial dysregulation can lead to pathologically high levels of mitochondria-

originating •O2- that can go on to damage the cell. Because high levels of mitochondria-

specific •O2- were observed in Camel SS effective dose cultures, mitochondrial health and 

morphological parameters were additionally evaluated to determine if mitochondrial 

dysfunction was also a factor in tobacco-related inhibition of osteogenic differentiation. 

Generated by proton pumps in mitochondrial Complexes I, III, and IV, 

mitochondrial membrane potential (ΔΨm) is used to make ATP and regarded as the 

essential component of oxidative phosphorylation energy storage [46].  Healthy 

mitochondria are characterized by stably maintained ΔΨm and ATP levels, while ΔΨm 

depolarization or depleted ATP are associated with pathological impacts on mitochondrial 

health and function. Changes in ΔΨm were assessed using the JC-1 Dye, which 

accumulates in the mitochondria and fluoresces green in the event of ΔΨm depolarization 

[46]. Mitochondrial membrane potential was significantly reduced in the Camel SS 

effective doses which suggested a disturbance to mitochondrial function (Fig. 4.5B). In 

contrast, mitochondrial membrane potential in Camel Blue SS effective doses was 

unchanged from the untreated group. Further, comparative analysis of cellular AMP and   
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Figure. 4.5. Deterioration of mitochondrial health in exposed hESCs. (A) qPCR array 
analysis revealed upregulation of genes associated with integral mitochondrial apoptosis 
in both Camel SS and Camel Blue ED. *P<0.05, One-way ANOVA followed by paired 
student’s t-test versus untreated cultures. (B) Mitochondrial membrane potential 
measurements revealed a reduced membrane potential in Camel exposed cells as a sign 
for execution of the intrinsic apoptotic pathway. *P<0.05, One-way ANOVA followed 
by paired student’s t-test versus untreated or NED cultures (C) AMP-to-ATP ratio was 
increased in Camel SS ED, suggesting mitochondrial dysfunction. *P<0.05, One-way 
ANOVA followed by paired student’s t-test versus untreated cultures (D) Mitotracker 
dye analysis revealed increased mitochondrial signal in the Camel Blue SS effective 
dose. *P<0.05, One-way ANOVA followed by paired student’s t-test versus untreated 
cultures. ED, effective dose; NED, non-effective dose; SS, sidestream; UT, untreated. 
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ATP levels revealed the AMP/ATP ratio to be increased in the Camel SS effective dose. 

This outcome signifies a potential underproduction of ATP and further evidence of 

mitochondrial dysfunction in Camel SS treated cells (Fig. 4.5C). 

To additionally explore molecular changes in connection with observed 

mitochondrial dysfunction, the expression of genes associated with mitochondrial intrinsic 

apoptosis was assessed. BAX, BID, and BNIP3 and CYCS were upregulated by the Camel 

SS effective dose, while a mild upregulation was observed in the Camel Blue SS effective 

dose (Fig. 4.5A). Given that the corresponding first three proteins are involved in 

permeabilization of the mitochondrial outer membrane to prepare for cytochrome C release 

[47-50], it follows that mitochondrial membrane potential was depolarized in Camel SS 

cultures versus Camel Blue SS cultures. Together, these results suggest a strong 

mitochondrial-driven apoptotic response in Camel SS cultures. However, the similar HRK 

and AIFM1 expression patterns between both Camel and Camel Blue SS indicate a 

potential issue with mitochondrial function in the Camel Blue SS as well. 

Thus, to assess mitochondrial behavior was further a quantitative measurement of 

mitochondrial number following tobacco exposure was conducted. Under normal 

conditions, mitochondria perpetually fuse and divide to maintain a balanced mitochondrial 

population and overall morphology [51 52]. Mitochondrial number in Camel SS and Camel 

Blue SS effective doses did not deviate from mitochondrial numbers in the untreated. Cells 

treated with Camel Blue SS, conversely, featured a significant increase in total 

mitochondrial “bright spots” (Fig. 4.5D). These spots may be indicative of mitochondrial 

congregation as a result of increased fusion activity. Collectively, these outcomes infer that 
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Camel SS and Camel Blue SS elicited differential responses in mitochondrial behavior. 

Next, altered mitochondrial networks were investigated by measuring 

mitochondrial network branch lengths, branch number per network, and mitochondrial 

footprint. Camel SS showed reduced network interconnection (Fig. 6A), as well as a 

significant increase in mitochondrial branch length, and decrease in overall mitochondrial 

footprint (Fig. 4.6B). Concurrent treatment of Camel SS effective doses with an inhibitor 

to caspase 9, but not caspase 4, restored network morphology (Fig. 4.6A) and rescued 

mitochondrial footprint (Fig. 4.6B).  

Camel Blue SS exposed cells, in contrast, featured variable branch lengths within 

mitochondrial networks that were not significantly different from the untreated cultures 

(Fig. 4.6B), although trends towards decreased branch lengths were detectable. Instead, 

cells exposed to Camel Blue SS demonstrated more highly branched networks and a 

significantly reduced mitochondrial footprint. Simultaneous treatment of Camel Blue SS 

effective doses with caspase 9 inhibitor yielded abnormal mitochondrial network 

morphology comprised of shorter fragmented networks mixed with some filamentous, 

interconnected networks (Fig. 4.6A). Caspase 9 inhibitor treatment did not significantly 

rescue mean branch length or mitochondrial footprint (Fig. 4.6B), suggesting a lack of 

intrinsic mitochondrial apoptosis response. Treatment with caspase 4 inhibitor did, 

however, restore interconnected mitochondrial network morphology (Fig. 4.6A), rescued 

mitochondrial footprint (Fig. 4.6B), and decreased the number of branches per network 

(Fig. 4.6B), suggesting caspase 4 involvement in these mitochondrial behaviors. 

Cellular redox status also appeared to partly influence mitochondrial network  
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Figure 4.6. Tobacco smoke exposure elicits changes in mitochondrial networks. (A) 
MitoTracker and MiNA visualization of mitochondrial networks. (B) Changes to 
mitochondrial networks were assessed via mean branch length, mitochondrial footprint, 
and branches per network. *P<0.05, One-way ANOVA followed by paired student’s t-
test versus untreated cultures, ΔP<0.05, One-Way ANOVA followed by paired student’s 
t-test versus ED. C, Camel; CB, Camel Blue Casp9i, caspase 9 inhibitor; Casp4i caspase 
4 inhibitor; ED, effective dose; NED, non-effective dose; SS, sidestream; UT, untreated. 
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morphology in both Camel SS and Camel Blue SS effective doses. Concurrent treatment 

with antioxidant ascorbic acid rescued branch length and slightly restored mitochondrial 

footprint in Camel SS cultures (Fig. 4.6B). Camel Blue SS effective doses with ascorbic 

acid reestablished interconnected mitochondrial network morphology (Fig. 4.6A) and 

modestly restored the mean branch length range (Fig. 4.6B), supporting an influential 

relationship between cellular redox conditions and mitochondrial morphology. 

Discussion 

Due to the shortage of information on teratogenic effects of tobacco smoke on the 

developing skeleton, hESCs directed through an osteogenic lineage were used to assess the 

potency of tobacco products to inhibit calcification in differentiating osteogenic cultures. 

Based on this endpoint, differential embryotoxicity was observed in cultures treated with 

cigarette smoke solutions from MS and SS smoke of Camel and Camel Blue cigarettes.  

Previous studies found that SS smoke from conventional cigarettes was more potent 

than MS smoke, in very diverse endpoints such as free radical species levels, angiogenesis, 

oviductal function, adverse IVF outcome, sperm motility, and attachment ability of peri-

implantation embryonic cells [56-63] With regard to differentiating osteoblasts, this 

current study finds that conventional MS smoke did not hinder the viability of developing 

osteoblasts or their differentiation. SS smoke, conversely, consistently showed detrimental 

effects on osteogenesis and inhibited both calcification and the survival of the osteogenic 

cultures, adding another item to the growing list of biological events that SS smoke inhibits 

more than MS smoke. 

Since SS smoke is a main component of environmental tobacco exposures, our data 
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is also relevant to pregnant women who may not themselves smoke but expose their fetuses 

to tobacco smoke when they enter a smoking environment. Even in countries with 

extensive tobacco control policies, this is still a relevant concern. For example, in New 

York City, which has a comprehensive tobacco control policy, almost 50% of nonsmoking 

pregnant women had elevated cotinine levels suggesting that their bodies and thus their 

fetuses were exposed to secondhand or thirdhand smoke [64]. As follows, it is likely that 

exposure levels would be exacerbated in countries that do not control tobacco use in public 

places. Therefore, our data may inform policy makers about yet another adverse health 

outcome of secondhand smoke exposure.  

Almost 20 years ago, a prospective mortality study performed by Thun and Heath 

(1997) revealed an increase rather than a decrease in smoking associated health risks over 

a 20-year period after the introduction of low nicotine low tar cigarettes, suggesting that 

harm-reduction products were not truly reducing risk of injury. Indeed, the first in vitro 

data gathered showed that harm-reduction products are just as capable of attributing harm 

as conventional products are [62], in agreement with the findings in the 1997 study. In a 

subsequent in vitro study, Lin and colleagues showed that the ability of hESCs to attach to 

a substratum was severely impaired by exposure to harm-reduction products, while 

conventional products had milder outcomes [66]. Although this was the first study to 

evaluate the health of unspecialized pluripotent stem cells in response to tobacco, it did not 

allow any conclusions as to the potential impairment of differentiation events. Simply 

extending these findings to differentiating cells may not be straightforward, since 

undifferentiated cells exhibit altered metabolic, transcriptional and epigenetic states than 



 131 

differentiated cells [44, 67, 68], which could potentially dictate their responses to toxicants. 

Thus, in the current study, harm-reduction cigarettes were compared to conventional 

cigarettes to determine if these products also confer reduced harm on differentiating 

osteogenic cells. Similar to the previous findings, our data show that harm-reduction 

products are more embryotoxic than conventional products to differentiating osteoblasts, 

as exposure demonstrated differentiation inhibition in developing osteoblasts at sub-

cytotoxic concentrations. 

The fact that harm-reduction products inhibited osteogenesis in vitro more than 

conventional products may be explained by the alteration in chemical composition 

associated with the process of lowering tar and nicotine content. During this process, other 

constituents found in the complex chemical blend of cigarette smoke such as nitrate, 

nitrogen oxide, and tobacco-specific nitrosamines may be enriched [69]. Individually, 

these chemicals can cause adverse health effects in mammalian cells [70-73]. Not only can 

concentrations of such chemicals be higher in harm-reduction cigarettes because of the 

processing required to reduce content of other carcinogens, but smokers also compensate 

for the amount of delivered nicotine by smoking more cigarettes or by inhaling deeper 

while smoking [14]. For these reasons it is likely that concentrations of such harmful 

chemicals are even higher in mothers who have difficulty quitting smoking while pregnant 

and that the harmful effects of those chemicals are compounded in their unborn fetuses.  

While it may be assumed that such chemicals individually trigger signaling 

cascades that are detrimental to development, another potential mechanism of action is that 

they induce mild oxidative stress. As we show here, the embryotoxicity of tobacco 
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products, primarily the harm-reduction kind, seems defined by their ability to create ROS 

at levels that are insufficient to kill the cells. As recently put forth by Hansen and Harris 

(2013), teratogenesis is defined by dysmorphogenetic events that may be preceding 

excessive cell death. While cytotoxicity focuses on the accumulation of ROS, the 

impediment of antioxidant capacities, and consequent cell death, teratogenesis may be the 

result of untimely regulation of critical cellular signaling rather than the result of early cell 

death. Our results outlined here offer support for this notion in that while Camel SS and 

Camel Blue SS effective doses both demonstrated reduced osteogenesis and upregulation 

of pro-apoptotic gene expression, Camel Blue SS effective cultures specifically failed to 

achieve complete caspase cascade activation and cell death as seen in Camel SS effective 

doses. It follows, then, that additional molecular or cellular players may be involved in the 

differential outcomes mediated by different tobacco products.  

Our results also indicated that altered redox states as directed by exposure to either 

Camel or Camel Blue plays an influential role in observed embryotoxic outcomes.  

Antioxidant rescue of calcification suggests that elevated ROS levels may mediate some 

of the observed embryotoxic outcomes in Camel and Camel Blue ED cultures. Disruption 

of normal tissue redox balances has also been reported to interfere with normal biological 

processes that can lead to pathological outcomes including DNA damage [75, 76, 82]. 

Given that evidence of DNA damage was exclusively observed in cultures exposed to 

Camel SS effective doses, our results suggest that elevated ROS causes a DNA damage-

mediated mode of action for embryotoxicity outcomes following Camel but not Camel 

Blue exposure. This notion was further supported by exclusive antioxidant-mediated 
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reduction of DNA damage cell populations in Camel SS effective doses. Given that DNA 

damage is well-reported to activate caspase 9-mediated apoptosis [77-79], it follows that 

concurrent CASP9 mRNA upregulation and posttranslational activation of caspase 9 

protein in Camel SS effective dose cultures support a biochemical basis for intrinsic 

apoptotic responses observed exclusively with Camel exposure. 

During the intrinsic apoptosis process, caspase 9 has been reported to regulate the 

collapse of mitochondrial membrane potential, causing further mitochondrial disruption 

[80, 81]. Aberrant mitochondrial behavior is well-associated with stress responses and a 

variety of pathologies [53, 54] and also reported to follow mitochondrial membrane 

depolarization and precede mitophagy and apoptosis [82, 83].  In accordance with elevated 

caspase 9 activity, our study found concurrent functional and morphophological 

mitochondrial changes exclusively in Camel effective dose cultures that were reversed 

when caspase 9 was inhibited. These data provided further support for the notion that ROS-

mediated DNA damage elicited the caspase 9-driven cytotoxic responses that may be 

responsible for osteogenic inhibition following SS Camel exposure (Fig. 4.7). In contrast, 

mitochondrial morphological changes observed in the absence of altered mitochondrial 

function or DNA damage in Camel Blue effective dose cultures hint at divergent modes of 

embryotoxic action for conventional versus harm-reduction tobacco products.  

In contrast with Camel ED cultures, Camel Blue ED cells demonstrated 

upregulation of caspase 4 mRNA and protein in the absence of caspase 9 activation. 

Notably, caspase 4 has been proposed to function as an endoplasmic reticulum (ER)-stress 

specific caspase [84, 85].  Furthermore, the ER and mitochondria have an important cross- 
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talk relationship that may be of further relevance in the context of development [87-91]. 

Because treatment with caspase 4 inhibitor rescued mitochondrial network morphology, it 

is possible that ER stress is also involved in the differential molecular response of cells 

exposed to the Camel Blue effective dose. Notably, disruption to normal cross-talk between 

the mitochondria and ER has been implicated in early brain development [90, 91] as well 

as metabolic and degenerative diseases [87,88].  Moreover, ER stress can interfere with 

protein folding processes [92], which may be detrimental to osteogenic differentiation as 

new sets of proteins required for differentiation progression may be made incorrectly or 

not at all. Secretion of critical regulatory proteins by osteoblasts could also be adversely 

impacted in this context. Follow up studies, however, are required to confirm ER stress and 

dysfunction in Camel Blue exposed cultures. 

 

Conclusion 

International experts on tobacco policies recently urged the World Health 

Organization to embrace harm-reduction products to promote better health [93]. However, 

based on our data dealing with in vitro osteogenesis, SS smoke from some harm-reduction 

products may not be any safer than SS smoke from conventional products. Our data in 

combination with other studies on harm-reduction products suggest that women should 

abstain from smoking completely rather than switch to these products.  
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Snus smokeless tobacco extract inhibits osteogenic differentiation through manipulation of 

redox signaling pathways and biochemical survival networks 
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Abstract 

In recent years, concerns surrounding tobacco-related health disparities have 

shifted from conventional cigarette smoking to other forms of tobacco use. Harm-reduction 

tobacco products (HRTPs) are marketed as less harmful to users than conventional 

cigarettes. As such, pregnant women struggling with nicotine addiction may turn to HRTPs 

as a perceived safer alternative. Contrarily, some epidemiological and in vivo studies 

implicate HRTPs in adverse pregnancy outcomes though studies on molecular etiology of 

HRTP-mediated embryotoxicity have yet to be reported. Here, we demonstrate that Snus 

exposure, one type of HRTP, directly targets osteogenesis through modulation of redox 

signaling proteins and survival signaling networks. 

Developing mouse embryos exposed in utero to Snus smokeless tobacco extract 

during early gestation demonstrated reduced overall length, skull length, and skull 

mineralization. To explore molecular and biochemical changes in vitro, human embryonic 

stem cells were differentiated into osteoblasts to model early osteogenesis. Concurrent 
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Snus exposure revealed reduced osteoblast differentiation at sub-cytotoxic Snus doses 

concomitant with increased cellular reactive oxygen species and the absence of active 

apoptosis. Notably, osteogenic inhibition of osteogenesis occurred only when 

differentiating cells were exposed to Snus extract during the first week of differentiation. 

Mechanistic analysis found hyperphosphorylation and reduced nuclear levels of 

FOXO1/3a redox signaling transcription factors. Knockdown of FOXO1/3a significantly 

reduced osteogenic output, suggesting a role for FOXO1/3a misregulation in inhibitory 

impacts of Snus. Upstream of FOXO1/3a, survival kinase AKT1 was found to be 

upregulated. Global proteomic analysis of AKT signaling pathway targets found that Snus 

exposure also manipulated important aspects of the AKT signaling network with further 

implications for inhibited protein synthesis. Collectively, our data suggest that Snus can 

interrupt key biochemical events during early osteogenesis that inhibit proper osteoblast 

development. 

 

Introduction 

 In light of biomedical studies demonstrating a myriad of adverse health impacts 

connected to cigarette smoking [1, 2], the tobacco industry has endeavored to create new 

products aimed to reduce tobacco-related harm to users [3, 4]. These so-called “harm-

reduction” tobacco products (HRTPs) are characterized as products that have been 

modified via altered manufacturing processes to remove some of the harmful chemicals 

associated with tobacco use and/or present a method of tobacco use that reduces user 

chemical exposure [5].  
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Smokeless tobacco, one such HRTP, is considered to minimize some of the harmful 

chemical exposures associated with conventional cigarette use. Smokeless tobacco 

includes snuff, dip, chew and Snus products that are sniffed, dipped (that is, placed in the 

mouth and sucked on), or chewed by users [6]. In the absence of combustion, smokeless 

tobacco use reduces exposure to chemicals produced by pyrolysis and incomplete 

combustion reactions such as polycyclic aromatic hydrocarbons (PAHs) like naphthalene 

and benzo[a]pyrene [6, 7]. Within this category, Snus products (also referred to as oral 

moist snuff in Sweden) are unique in that raw cured tobacco is heat-treated for 24-36 hours 

to kill bacteria [8]. This production method is maintained to inhibit microbial metabolism 

of tobacco nitrites into harmful tobacco-specific nitrosamines (TSNAs) [9]. 

Public perception of smokeless tobacco products generally holds smokeless 

tobacco products as safer than smoking a conventional cigarette [10-13]. Studies 

examining health risks of Snus smokeless tobacco compared to conventional cigarettes 

have also found some evidence for modestly reduced user risk for cardiovascular disease, 

mortality, as well as lung, oral, and gastric cancer [8]. With regard to developmental and 

pregnancy risks, however, less information is readily available for risks posed by Snus use. 

Some epidemiological studies suggest that Snus use during pregnancy is likely to inhibit 

normal development and encourage adverse pregnancy outcomes by way of preterm 

delivery, reduced birth weight, neurological effects, and preeclampsia [14, 15]. In vivo 

studies examining the impact of smokeless tobacco on embryonic development have 

reported embryo growth retardation and reduced bone ossification in rats and mice [16, 

17], though it is unclear what type of smokeless tobacco was used for these studies. To 
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date, a mechanistic investigation of Snus-mediated embryotoxicity has yet to be reported. 

Here, we present an investigation of Snus-driven developmental toxicity as well as an 

investigation into the molecular basis for Snus-related embryotoxicity outcomes for the 

first time. 

 

Methods 

Animals 

Animal experiments were conducted in accordance with guidelines for care and use 

of laboratory animals [18] and approved by the Institutional Animal Care and Use 

Committee at the University of California, Riverside (AUP#20180064). Ten female and 

10 male mice on a mixed 129/Sv plus C57BL/6 (Charles River Laboratories) background 

were bred for one generation to produce enough females for experimental purposes. 

Animals were housed in specific pathogen free (SPF) conditions with a 12/12-hour light-

dark cycle, controlled temperature conditions (23 ± 2°C), and relative humidity of 50 ± 

10%. Mice had ad libitum access to food and water. 

 

Animal exposures and tissue collection 

Timed matings with virgin females were performed for Snus extract and negative 

control PBS exposure. Pregnant females were exposed via intravenous tail vein injection 

to 100 µl of 10% Snus extract or PBS on days E6.5 and E8.5 of pregnancy. Snus exposure 

dose was determined according to an analysis of nicotine in Snus content (data not shown) 

that determined a Snus dose with a nicotine level within range of nicotine levels found in 
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the blood of human tobacco users. Maternal weight was measured every other day starting 

on E0.5 of pregnancy and concluding on E17.5 when dams were euthanized. Mice were 

euthanized by carbon dioxide inhalation, in accordance with NIH guidelines. On E17.5, 

pups, placentas, and maternal organs were collected, washed in PBS, and weighed. Pups 

and placentas were also imaged for dimensional measurements. Pups were prepared for 

and subjected to Alizarin Red and Alcian Blue staining of the embryonic mouse skeleton 

and cartilage tissues, respectively, as previously described [19]. 

 

Liver histopathology preparation 

 Dam livers were fixed overnight in 10% neutral buffered formalin. Fixed livers 

were processed using ascending concentrations of 70-100% isopropyl alcohol to dehydrate 

the tissues. Processed livers were embedded in optimal cutting temperature compound 

(OCT compound) and sectioned into 5 µm sections using a cryostat. Sections were 

subsequently mounted and stained with hematoxylin and eosin (H&E) stain. Stained liver 

sections were imaged on a Leica dissection microscope for histological analysis. 

 

Human embryonic stem cell culture 

H9 human embryonic stem cell (hESC) (WiCell Research Institute) cultures were 

maintained in an undifferentiated state through maintenance culture in mTeSR® culture 

medium (Stem Cell Technologies) in incubator conditions set to 37°C, 5% CO2, and 95% 

relative humidity. hESC colonies were passaged every 5 days using Accutase® (Innovative 

Cell Technologies, Inc.) and a cell scraper to gently dissociate colonies without overly 
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dissociating cells. hESCs were then plated on culture plates coated with Matrigel (BD 

Biosciences). 

 

Human embryonic stem cell osteogenic differentiation 

Osteogenic differentiation using hESCs was performed as described previously by 

Sparks et al., 2018. Pluripotent hESCs were grown to approximately 70% confluency 

mTeSR® culture medium (Stem Cell Technologies) prior to osteogenic differentiation 

induction. Osteogenic induction commenced with application of control differentiation 

medium comprised of Dulbecco’s modified Eagle's medium (DMEM; Gibco) plus 15% 

FBS (Atlanta Biologicals), 1% non-essential amino acids (NEAA; Gibco), 1:200 

penicillin/streptomycin (Gibco), and 0.1mM β-mercaptoethanol (Sigma-Aldrich). 

Differentiating cells were cultured in control differentiation medium for 5 days. On the 

fifth day of culture, control differentiation medium was supplemented with osteogenic 

induction factors:  0.1 mM β-glycerophosphate (βGP; Sigma-Aldrich), 50 µg/ml ascorbic 

acid (AA; Sigma-Aldrich), and 1.2x10-7 M 1,25(OH)2 Vitamin D3 (VD3; Calbiochem). 

  

Human foreskin fibroblast cell culture 

Human foreskin fibroblasts (hFFs) were a gift of Dr. Derrick Rancourt (University of 

Calgary). hFFs cultures were in high glucose L-glutamine Dulbecco’s modified Eagle’s 

medium (DMEM, Corning) with 10% fetal bovine serum (FBS, Atlanta Biologicals), 1% 

non-essential amino acids (NEAA, Gibco), and 0.5% penicillin/streptomycin (10,000 

units/10,000 units, Gibco).   
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Mouse embryonic stem cell culture 

D3 mouse embryonic stem cells (mESCs) (ATCC) were maintained in culture 

medium consisting of Dulbecco’s modified Eagle's medium (DMEM; Gibco) 

supplemented with 15% FBS (Atlanta Biologicals), 1% non-essential amino acids (NEAA; 

Gibco), 1:200 penicillin/streptomycin (Gibco), 0.1mM β-mercaptoethanol (Sigma-

Aldrich), and 1000 U/ml Leukemia Inhibitory Factor (LIF) (EMD Millipore). mESCs were 

kept in an incubator set to 37°C, 5% CO2, and 95% relative humidity and passaged every 

48 hours using 0.25% trypsin-EDTA (Invitrogen) as a dissociation agent.  

 

Mouse embryonic stem cell osteogenic differentiation 

Osteogenic differentiation using hESCs was performed as described previously 

[23]. Using 0.25% trypsin-EDTA (Invitrogen), mESCs were made into a single cell 

suspension of 3.75×104 cells/ml in control differentiation medium consisting of 15% FBS 

(Atlanta Biologicals), 1% non-essential amino acids (NEAA; Gibco), 1:200 

penicillin/streptomycin (Gibco), and 0.1mM β-mercaptoethanol (Sigma-Aldrich). Drops of 

20 µL of cell suspension were applied to the underside of a Petri dish cover. Drop plates 

were kept in an incubator at 37°C, 5% CO2, and 95% relative humidity for 3 days to allow 

for passive embryoid body formation. On the third day of culture, embryoid bodies were 

collected and transferred to non-adherent culture dishes filled with control differentiation 

medium. Embryoid bodies were allowed to continue growing and differentiating until day 

5 of differentiation. On day 5, embryoid bodies were collected and dissociated into a single 

cell suspension using 0.25% trypsin-EDTA. Cells were then seeded at 50,000 cells/cm2 in 
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culture dishes filled with control differentiation medium supplemented with osteogenic 

induction factors 10 mM β-glycerophosphate (βGP; Sigma-Aldrich) and 25 µg/L ascorbic 

acid (AA; Sigma-Aldrich), and 5×10−8 M 1,25(OH)2 Vitamin D3 (VD3; Calbiochem). 

 

Creation of shFOXO1/3a mouse embryonic stem cell cell line 

A pSuperior-FOXO1/3a plasmid [20] was linearized using HindIII restriction 

enzyme, gel purified, and transfected into mESCs with Effectene using 1 µg of plasmid. 

Clones were chosen following 72 hours of puromycin selection.  Successful plasmid 

integration was confirmed via PCR for the puromycin gene (forward primer 5′-

TGCAAGAACTCTTCCTCACG-3′, reverse primer 5′-AGGCCTTCCATCTGTTGCT-3′) 

with a 65°C annealing temperature protocol. Approximate percentage of FOXO1/3a 

knockdown was also confirmed via western blot. 

 

Production of Snus smokeless tobacco extract 

For cell culture applications, a 10% (w/v) stock extract of Snus tobacco was made 

by incubating 10 grams of Camel Snus in 85 ml of DMEM with 15% FBS overnight at 

4°C. The extract was then centrifuged 450×g for 10 minutes at room temperature and again 

at 13,000 ×g for 1 hour. Extract supernatant was pH adjusted to 7.4, brought to a final 

volume of 100 ml with DMEM with 15% FBS, and filter sterilized. Snus tobacco extract 

intended for in vivo exposures was made following the same protocol using sterile PBS 

supplemented with 15% FBS in lieu of DMEM. 
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In vitro Snus exposures 

hESC and mESC cultures were treated with Snus tobacco extract throughout the 

entire 20-day osteogenic differentiation protocol with the exception of the timed exposure 

experiment.  

During the timed window Snus exposure experiment, cells were treated with Snus 

tobacco extract during a prescribed window of differentiation: days 0-20, days 0-3, days 3-

5, days 5-7, or days 7-20. Snus tobacco extract was screened at five different concentrations 

to generate a concentration-response curve and determine half-maximal inhibition of 

differentiation (ID50) and cell viability (IC50) concentrations. Culture medium containing 

Snus extract was replenished with each media change.  

 

Cell viability assay 

Cell survival for differentiating osteoblasts and hFFs was assessed via the -[4,5-

dimethylthiazol-2-yl]-2,5-diphenylterazolium bromide (MTT) assay. Cells were incubated 

with MTT for 3 hours at 37°C. Culture media was then removed and 0.04 mol/L HCl in 

isopropanol was added to each well. Optical density was measured at 595 nm in an iMark™ 

microplate reader (Bio-Rad). A decrease in absorbance at 595 nm was interpreted as a 

measurement of reduction in viable cell populations as the previously described [21-23]. 

 

Calcium assay 

Cells were lysed in a modified radioimmunoprecipitation (RIPA) buffer [24]. 

Extracellular matrix calcification was quantified based on the interaction of calcium ions 
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(Ca2+) in cell lysates with Arsenazo III (Genzyme) to form a purple Ca-Arsenazo III 

complex. The concentration of total calcium in the sample was calculated based on solution 

absorbance at 655 nm and a CaCl2 standard [24]. A modified Lowry protein assay (Bio-

Rad DC™ protein assay) was used to normalize total calcium content to total protein 

content in each sample as described by Davis et al., 2011. 

 

Live/Dead assay 

The LIVE/DEAD Viability/Cytotoxicity Kit (ThermoFisher L3224) was used to 

quantify healthy live, apoptotic, and necrotic cell populations in untreated and Snus-

exposed cultures. Cells were dissociated into a single cell suspension using 0.25% trypsin-

EDTA (Invitrogen), washed with PBS, and resuspended in fresh medium containing 0.1 

µM calcein AM and 8 µM ethidium homodimer-1 (EthD-1) assay stains. Cells were then 

incubated in the dark for 20 minutes at 25°C. Freshly stained cells were washed with PBS 

and strained using strain-cap centrifuge tubes (FisherScientific, 08-771-23) to dissociate 

any remaining cell aggregates into a single cell suspension. Cells were resuspended in ice-

cold PBS with 2% FBS and promptly analyzed using a FACScalibur Flow Cytometer (BD 

Biosciences). Fluorescence was detected at excitation/emission at λ = 494/517 nm and 

517/617 nm. Cytometer gating was set using unstained untreated samples and adjusting 

forward scatter and side-scatter light. For each sample, 10,000 events were recorded. 

 

Caspase 3/7 stain 

Executioner caspase 3 and 7 activation was visually assessed via staining with a 
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caspase 3/7 reagent conjugated to carboxyfluorescein fluorochrome (Guava Technologies). 

Live cells were incubated for 1 hour in a solution of 1X caspase 3/7 reagent to allow for 

covalent binding of reagent to activated caspases. Excess, unbound reagent was washed 

away with 1X apoptosis buffer provided by the kit manufacturer. Stained cultures were 

imaged using a Nikon Ti fluorescent microscope. 

 

Superoxide anion detection 

A Lumimax Superoxide Anion Detection Kit (Agilent Technologies) was used to 

measure endogenous superoxide anion levels. Cells were rendered into a single cell 

suspension using 0.25% trypsin-EDTA (Invitrogen), washed with PBS, and resuspended 

in fresh culture medium. Cells were then incubated at 37°C for 30 minutes. This was 

followed by second incubation of 5×105 cells in 190 µL of superoxide anion (SOA) assay 

medium with 5 µL of 4.0 mM luminol solution and 5 µL of 5.0 mM enhancer medium for 

30 minutes at 25°C. Endogenous superoxide anion species were detected as 

chemiluminescent light emissions measured on a luminometer (Lucetta™). 

 

Hydrogen peroxide detection 

Endogenous hydrogen peroxide was measured using dihydrorhodamine 123 

(DHR123; Invitrogen, D23806), a hydrogen peroxide indicator that fluoresces green 

proportional to hydrogen peroxide levels [25-26]. Cells were washed with PBS and 

incubated wtih 1µM of DHR123 in PBS for 30 min at 37°C. Cells were then washed twice 

with PBS and collected in 500µl of ice-cold PBS for flow analysis using a Beckman Coulter 
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flow cytometer. Detection was set at excitation/emission at λ = 485/535 nm and unstained 

control samples were used to set appropriate gating according to forward and side scatter 

light. A total of 10,000 events per sample were recorded. 

 

8-isoprostane assay 

 8-isoprostane levels were measured using an ELISA assay kit from Cayman 

Chemical (516351). Medium from cell cultures was collected and assayed immediately to 

avoid storage-induced sample degradation. For each sample, 50 µl of sample was combined 

with 50 µl of 8-Isoprostane acetylcholinesterase (AChE) Tracer, and 50 µl of 8-Isoprostane 

ELISA Antiserum prior to incubation for 18 hours at 4°C. The ELISA assay plate then 

washed five times with kit wash buffer. Each sample well received 200 µl of Ellman’s 

Reagent and incubated for 90 minutes to facilitate detection. Absorbance was measured at 

405 nm in 2-minute intervals until the blank-subtracted wells reached a minimum of 0.3 

absorbance units. Sample absorbance results were compared to a 8-point standard curve. 

Assay results were normalized to cellular protein content as determined via modified 

Lowry protein assay (Bio-Rad DC™ protein assay). 

 

Superoxide dismutase enzymatic activity assay 

Superoxide dismutase activity was measured using an assay kit from Cayman 

Chemical (706002). Cells were washed with PBS, harvested in 300 µl of RIPA buffer, and 

stored at -20°C until assayed. For each sample, 10 µl of lysate was combined with 200 µl 

of radical detector. Enzymatic activity was initiated with the addition of 20 µl of xanthine 



 157 

oxidase. The solutions were incubated for 20 min at 25°C and absorbance was measured 

at 450 nm. Sample absorbance results were compared to a 7-point superoxide dismutase 

activity standard curve to calculate sample enzyme activity. A modified Lowry protein 

assay (Bio-Rad DC™ protein assay) was subsequently performed to normalize superoxide 

dismutase activity for each sample to respective total protein content. 

 

Antioxidant treatment 

 Three antioxidants were used to counter Snus-induced oxidative stress: ascorbic 

acid (AA; Sigma-Aldrich) [10 µM], dl-α-tocopherol acetate (vitamin E; Supelco, Sigma-

Aldrich) [10 µM], and glutathione reduced ethyl ester (GSHOEt; Sigma-Aldrich) [500 

µM]. Oxidants were added to medium concomitantly with Snus exposure during days 5-7 

of differentiation. Antioxidant-containing medium was replaced with every media change. 

 

Catalase enzymatic activity assay 

Catalase activity was measured using an assay kit from Cayman Chemical 

(707002). Cells were washed with PBS, harvested in 300 µl of RIPA buffer, and stored at 

-20°C until assayed. For each sample, 20 µl of sample, 30 µl of methanol, and 20 µl of 

hydrogen peroxide substrate were combined to initiate the reaction. Sample solutions were 

incubated for 20 minutes at 25°C then subsequently the reactions were terminated with the 

addition of 30 µl of potassium hydroxide. Purpald, a chromogen, was added to 

colorimetrically measure catalase formaldehyde product formation. Finally, 10 µl of 

catalase potassium periodate was added to each sample. After a 5-minute incubation at 
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25°C, sample solution absorbance was measured at 540 nm. Sample absorbance outcomes 

were compared to a 7-point catalase formaldehyde standard curve. A modified Lowry 

protein assay (Bio-Rad DC™ protein assay) was also performed to normalize catalase 

activity for each sample to respective total protein content. 

 

Glutathione peroxidase enzymatic activity assay 

Glutathione peroxidase activity was measuring using an assay kit from Cayman 

Chemical (703102). Cells were washed with PBS, harvested in 300 µl of RIPA buffer, and 

stored at -20°C until assayed. For each sample, 20 µl of sample, 50 µl of assay buffer, 50 

µl of co-substrate mixture, and 50 µl of NADPH were combined. Cumene hydroperoxide 

was added at a volume of 20 µl to initiate the reactions. Absorbance was read at 340 nm 

initially and once every 10-minutes for a total of 5 minutes.  

Sample absorbance outcomes were compared to a 6-point glutathione peroxidase 

activity standard curve. A modified Lowry protein assay (Bio-Rad DC™ protein assay) 

was performed to normalize glutathione peroxidase activity for each sample to respective 

total protein content. 

 

Hydrogen peroxide treatment 

To assess the effects of ROS alone on osteogenic differentiation, cells were treated 

with 0.5 µM hydrogen peroxide. Hydrogen peroxide was added to cell culture medium 

during specified windows of osteogenic differentiation: days 0-3, days 3-5, days 3-7, days 

5-7, and days 7-20. 
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Real-time quantitative (qPCR) 

 Changes in FOXO1 and FOXO3A mRNA gene expression were assessed using 

real-time quantitative PCR (qPCR) analysis. cDNA was synthesized using 25ng of total 

RNA as a template and a cDNA mastermix: 5x reaction buffer, 1.25µl 10mM dNTPs, 

1.25µl 400U/µl RNase inhibitor, 0.1µl 200 U/µl reverse transcriptase, 0.1µl 3µg/µl random 

primer, and 1.5µl DEPC H2O. A total volume of 25µl per cDNA reaction was used. iQ 

SYBR Green Supermix (Bio-Rad) was used to measure relative expression on the CFX 

Connect thermocycler system (Bio-Rad). Reactions were programmed for 5 minutes of 

initial denaturing at 94°C, followed by 40 cycles of denaturing at 94°C for 45 seconds and 

annealing at 60°C for 45 seconds. The ΔΔCT method was used to calculate n-fold 

expression in target gene expression by normalizing target Ct values to their respective 

GAPDH expression values. and 5'-GGGGTTCGAAATGAGGATGC-3'. Primer sequences 

for Primer sequences for human FOXO1 were 5'- TAGCATAAACCTGGGCCCAA-3' and 

5'- ACCCAGCTTGCCCATTACTCT-3', FOXO3A were 5'- 

CGCACCAATTCTAACGCCAG-3' and 5'- CTGCCATATCAGTCAGCCGT-3', human 

GAPDH were 5’-ACAGTCAGCCGCATCTTCTT-3’ and 5’-

ACGACCAAATCCGTTGACTC-3’. 

 

Whole cell protein lysis and western blotting 

Cells were pretreated for 30 minutes with 1mM sodium orthovanadate to inhibit 

protein tyrosine phosphatases. Cells were subsequently lysed with protein RIPA buffer (pH 

7.4 150 mM NaCl, 2 mM EDTA, 50 mM Tris-HCl pH 7.4, 1% NP-40, 0.5% sodium 
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deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 1mM sodium orthovanadate, 1mM 

sodium fluoride, 1mM phenylmethylsulfonyl fluoride (PMSF), 1:100 Halt Protease 

Inhibitor Cocktail (ThermoFisher). Protein concentration was measured via a modified 

Lowry protein assay (Bio-Rad DC™ protein assay). Equal amounts of protein per sample 

were loaded into a 6%-10% SDS/polyacrylamide gel. Proteins were separated by 

electrophoresis then electrophoretically transferred to a polyvinylidene difluoride (PDVF) 

membrane. Membranes were blocked in 5% milk or 5% bovine serum albumin (BSA) (for 

phospho proteins) in tris-buffered saline with tween 20 (TBS-T) for 30 minutes at 25°C on 

an orbital shaker. Membranes were incubated with one of the following antibodies for 2 

hours at 25°C on an orbital shaker: rabbit anti-FOXO3a (abcam, ab70315), rabbit anti-

FOXO1 (abcam, ab61760), rabbit anti-FOXO3 (S253) (CST, 9466), rabbit anti-FOXO1 

(S256) (CST, 9461), rabbit anti-phospho AKT (S473) (CST, 4060), rabbit anti-AKT 

(abcam, ab8805), rabbit anti-phospho AMPKα (T172) (CST, 50081S), rabbit anti-AMPKα 

(abcam, ab32047), rabbit anti-phospho ERK1/2 (T202/Y204) (CST, 9101), rabbit anti-

ERK1/2 (CST, 4695S), rabbit anti-phospho JNK1/2 (T185/Y185) (abcam, ab4821), rabbit 

anti-JNK1/2 (abcam, ab112501), mouse anti-TBP (abcam, ab51841), mouse anti-beta actin 

(CST, 3700) and mouse anti-tubulin (CST, 2146). Membranes were then incubated for 1 

hour at 25°C with horseradish peroxidase-conjugated anti-rabbit (CST 7074S) or anti-

mouse (CST 7076S) secondary antibody. Bands were visualized using chemiluminescence 

substrate (SuperSignal West Pico PLUS Chemiluminescent Substrate, ThermoFisher) and 

the Bio-Rad ChemiDoc MP System imager. 
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Phospho-AKT protein array 

Snus-induced disruption of the AKT and related signaling pathways was assessed 

according to phosphorylation changes at 72 distinct protein phosphorylation sites using an 

AKT Pathway Phospho Antibody Array (PAA137; Full Moon BioSystems) and Antibody 

Array Assay Kit (KAS02; Full Moon Biosystems). Whole cell protein lysates were 

collected as described above with additional mechanical lysis as outlined by the assay kit 

protocol. Protein lysates were purified and RIPA buffer exchanged for array kit labeling 

buffer using exchange columns provided by the assay kit. Protein concentration in each 

sample was measured by modified Lowry protein assay (Bio-Rad DC™ protein assay) and 

150 µg of protein for each sample was biotin-labeled. Array slides were blocked in kit 

blocking buffer for 45 minutes at 25°C on an orbital shaker before subjection to thorough 

rinses in Milli-Q grade water. Biotin-labeled protein lysates were subsequently coupled to 

array slides by incubating protein lysates and array slides in kit coupling buffer for 2 hours 

at 25°C. Array slides were thoroughly rinsed in in Milli-Q grade water and incubated in kit 

detection buffer with 1:1000 0.5 mg/ml Cy3-streptavidin (ThermoFisher) for 20 minutes 

at 25°C. Cy3-streptavidin was introduced to slide to allow streptavidin to bind biotin-

labeled proteins and thus fluorescently label biotin-labeled proteins that have been captured 

on the slide. Slides were rinsed well with Milli-Q grade water and air-dried via 

centrifugation at 1300 x g for 10 minutes. Slides were scanned for imaging and collection 

using a GenePix® Microarray Scanner. For each sample, mean fluorescence intensity for 

each protein was normalized to respective mean actin signal to allow for comparison 

between slides. Normalized signal intensities were used to perform visual heatmap analysis 
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and clustering to using the limma [27], dplyr [28], and gplots [29] packages in RStudio 

0.99.903 [30].  Normalized signal intensities were also subjected to log2 transformation 

for statistical analysis of protein and phosphorylation fold changes between treatment 

groups. Fold changes of greater than  

 

AKT inhibitor treatment 

AKT inhibitor (AbMole, M4988) was used to explore the specific impact of AKT1 

and AKT2 isoforms on osteogenic differentiation. AKT inhibitor (58 nM AKT1; 210 nM 

AKT2) was added to culture medium on days 5-7 of differentiation, with fresh inhibitor 

replaced every 24 hours.  

 

JNK activator treatment 

 JNK1/2 activator treatment was used to investigate the influence of supplemented 

JNK activity with concurrent Snus exposure. JNK activator (0.01 µM; AbMole, M5145) 

was added to culture medium on days 5-7 of differentiation, with fresh inhibitor replaced 

every 24 hours. 

 

Dual-energy X-ray absorptiometry (DXA) Analysis 

Skull bone mineral density and bone mineral content measurements for 13-month-

old mice PBS or Snus exposed mice were acquired from DXA using the UltraFocusDXA 

(Faxtiron®). Mouse in utero exposures were performed as described above. 
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Statistical analysis 

One-way analysis of variance (ANOVA) statistical testing followed by Moses Test 

of Extreme Reactions and Mann-Whitney U tests were used to determine statistical 

differences in in vivo experimental parameters. One-way analysis of variance (ANOVA) 

statistical testing followed by a paired student’s t-test was used to identify the lowest 

concentrations at which in vitro calcification or cell viability dropped below that of the 

untreated control. Differences between exposure outcomes mediated by half-maximal 

inhibitory doses for differentiation (ID50) and cell viability (IC50) were assessed with a one-

way ANOVA followed by an appropriate post hoc test (GraphPad QuickCalcs). For all 

assessments, P-values below 0.05 were considered significant. 

 

Results 

In utero exposure to Snus extract does not elicit maternal toxicity or excessive cytotoxicity 

in exposed pups 

 Before evaluating the effects of in utero exposure on embryonic development, dams 

were assessed for signs of maternal toxicity that could influence adverse outcomes in pups. 

Parameters were selected based on their classic use in in vivo teratology assessments [31]. 

Normal progression of pregnancies was measured by semi-daily evaluation of maternal 

weight gain from E0.5 through termination of the pregnancy at E17.5. PBS- and Snus-

exposed dams demonstrated similar trends in weight gain, with no noted significant 

deviations (Fig. 5.1A). Similarly, no difference in total pregnancy weight gain was 

observed between PBS- and Snus- exposed dams (Fig. 5.1B). Gross necropsy of maternal 
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organs (not shown) did not indicate signs of maternal toxicity in Snus-exposed dams. 

Maternal organ masses respective to body weight were not significantly different between 

PBS- and Snus-exposed mice (Fig. 5.1D, 1E, 1F, 1G). Histopathological assessment of 

dam livers did not find any evidence of maternal liver toxicity (Fig. 5.1D). 

Litter and pup parameters were also assessed for evidence of cytotoxic effects on 

the exposed embryos. Late-stage embryo loss or resorptions were quantified at E17.5. No 

significant differences in resorptions were found between PBS- and Snus-exposed dams 

(Fig. 5.1C). Litter sizes were not significantly different between PBS- and Snus-exposed 

pups, though some Snus-exposed dams did produce smaller litter sizes than those observed 

in PBS dams (Fig. 5.1H). Pup and placental masses were not significantly changed between 

PBS- and Snus-exposed litters (Fig. 5.1I, J). Gross necropsy of fetal placentas (not shown) 

did not show evidence of placental injury.  The ratio of placental mass to respective pup 

mass was not significantly different either (Fig. 5.1K). Collectively, these data suggest that 

in utero Snus extract exposure did not elicit cytotoxic effects on maternal, placental, or 

fetal tissues. 

 

Normal pup morphological development and skull mineralization is disrupted by Snus in 

utero 

PBS- and Snus-exposed pups were visually and quantitatively assessed for changes 

in overall and skeletal morphology. Gross morphological evaluation (Fig. 5.2A) did not 

find any striking alterations in Snus-exposed offspring compared to the PBS group.  Snus-

exposed mice did, however, demonstrate quantitative differences in overall morphology.  
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Figure. 5.1. In utero Snus exposure did not impart maternal toxicity or reduce pup 
viability.  In vivo pregnancies were monitored for signs of maternal toxicity or cytotoxic 
effects on pups. A) Gestational weight gain patterns did not significantly deviate 
between PBS- and Snus- exposed dams. Δp<0.05 represents a significant shift in 
maternal mass on E0.5 for PBS-exposed dams. p*<0.05 represents a significant shift in 
maternal mass on E0.5 for Snus-exposed dams. P-values were determined using One-
way ANOVA. B) PBS- and Snus-exposed dams gained similar amounts of weight over 
the course of pregnancy. C) No difference was observed in the average incidence of late 
stage resorptions (embryo loss) in PBS and Snus exposed litters. D-G) Maternal organ 
masses were also evaluated for signs of maternal toxicity. Liver, kidney, heart, and lung 
masses were not significantly different for Snus-exposed dams. Moreover, liver sections 
from livers of Snus-exposed dams did not show any signs of pathology. Bar = 0.5 mm.  
H) Some Snus-exposed dams produced litters with fewer pups, though no significant 
distance in overall litter size was found. I-K) Pup and placental masses as well as 
placental-to-pup mass ratio were not significantly different between PBS and Snus 
exposed litters. PBS dams n = 10. Snus dams n = 10. PBS pups n = 119. Snus pups n = 
101. 
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Pup height (crown-to-rump) varied significantly between Snus and PBS mice (Fig. 5.2B) 

while pup width (across the widest part of the pup) was significantly increased compared 

to PBS-exposed mice (Fig. 5.2C). Skull length was also affected by Snus exposure, with a 

significant reduction in length compared to PBS-exposed pups (Fig. 5.2F). No difference 

was observed in skull height between both groups (Fig. 5.2E). 

 Histochemical staining of pup skeletons revealed a pattern of increased porosity in 

the parietal bone of the skull (Fig. 5.2D) for Snus-exposed pups. Further, the total 

percentage of mineralized skull area was found to be significantly reduced in Snus-exposed 

pups, compared to PBS-exposed offspring (Fig. 5.2G). Evaluation of Snus-exposed pups 

at approximately 1 year of age suggested long-term persistence of impaired bone function 

(Appendix Fig. 1.5.1). 

 

Human osteoblast differentiation is negatively impacted by Snus at sub-cytotoxic doses 

 The capacity of Snus extract to induce differentiation defects and cytotoxicity was 

also assessed in human embryonic stem cells (hESCs) undergoing osteogenic 

differentiation. Cell survival and osteogenic output were measured on day 20 of 

differentiation, when hESC-derived osteogenic cultures express osteoblast markers [32]. 

While dose-dependent reductions in cell viability and osteogenesis were both observed 

(Fig. 5.3A), osteogenic inhibition occurred in both non-cytotoxic and cytotoxic doses. This 

duality suggests that at mid-range doses Snus extract inhibited osteogenesis without 

concurrently inducing cell death. Dose-dependent reductions in cell viability were also 

observed in hFFs exposed to Snus extract (Fig. 5.3A). Half-maximal concentrations for  
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Figure 5.3. Snus inhibits in vitro osteogenic differentiation at sub-cytotoxic doses. 
Human ESCs were treated with different concentrations of Snus extract as they were 
differentiated into osteoblasts. Cultures were evaluated for differentiation inhibition and 
cell viability via calcium and MTT assays, respectively. A) Snus exposure reduced 
osteogenesis and cell viability in a dose-dependent manner. Differentiation inhibition 
was observed in the absence of cytotoxicity. Using the EST biostatistical model, Snus 
was classified as strongly embryotoxic. B) Snus exposure failed to activate executioner 
caspases 3 and 7, suggesting the absence of active apoptosis concurrent with an 
osteogenic defect. Bar = 100 µm. C) Snus seems to impart a time-dependent effect on 
differentiation inhibition—suggesting additional mechanisms are responsible for 
observed inhibition of Snus-dependent osteotoxicity. Snus inhibition of osteogenesis 
was most potent during early differentiation periods, as later time point exposures did 
not negatively impact osteogenesis.. *, ‡, ΔP<0.05 represents the lowest concentration of 
Snus exposure that features significant reduction in given parameter as compared to the 
untreated control, as determined by One-Way ANOVA. hFF, human foreskin fibroblast; 
hESC, human embryonic stem cell; NED, non-effective dose; ED, effective dose. 
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cytotoxicity (IC50MTT hESCs, IC50 hFF MTT) and differentiation inhibition (ID50 hESCs) 

were obtained from concentration-response curves. Half-maximal concentration input into 

the embryonic stem cell test (EST) biostatistical model [33] classified Snus as strongly 

embryotoxic (Fig. 5.3A). 

Snus effective (ED) and non-effective (NED) doses were also determined from the 

dose-response curve. The effective dose was defined as the dose that reduced calcification 

to 50% (0.1% Snus extract), while the non-effective dose was the lowest Snus dose that 

did not elicit any reduction in calcification (0.001% Snus extract) (Fig. 5.3A). An active 

apoptosis response was absent in both Snus NED and ED treatment groups, as indicated 

by a lack of active executioner caspase 3 and 7 species (Fig. 5.3B). This result followed 

trends observed in the initial dose-response curve and suggested that mechanisms specific 

to osteogenic differentiation were disturbed upon Snus exposure. Further investigation 

revealed that Snus-mediated disruption of osteogenesis was dependent on time-of-

exposure during the differentiation process (Fig. 5.3C).  Targeted early exposures during 

days 0-3 or days 5-7 of differentiation significantly reduced osteogenic outcomes on day 

20 of differentiation exclusively. Notably, late stage Snus exposure during days 7-20 of 

differentiation did not significantly inhibit osteogenic differentiation.  

 

Snus-mediated embryotoxicity occurs concurrently with induction of oxidative stress 

conditions 

 Disease pathogenesis and teratogenic outcomes have been previously ascribed to 

excessive ROS generation [34-39] that causes a state of imbalance between reducing and 
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oxidizing cellular counterparts known as oxidative stress [40]. To investigate if Snus 

exposure encouraged oxidative stress conditions, several ROS species and markers of 

oxidative stress were evaluated. Cellular levels of two ROS species, superoxide anion (•O2-

) and hydrogen peroxide (H2O2), were significantly increased in Snus ED cultures (Fig. 

5.4A). Levels of 8-isoprostane, a well-established biomarker of oxidative stress and 

oxidative lipid damage [41-43], were also significantly increased in Snus ED cultures (Fig. 

5.4A). 

Assessments to investigate causality between ROS and poor osteogenic outcomes 

found evidence for ROS-mediated inhibition of osteogenesis. Dosing differentiating 

osteoblasts with hydrogen peroxide alone during defined windows of osteogenesis 

significantly reduced osteogenic output in all tested time points (Fig. 5.4C). Co-treatment 

of Snus effective dose cultures with antioxidants rescued mineralization in cultures co-

treated with ascorbic acid or glutathione reduced ethyl ester (Fig. 5.4B). Vitamin E did not 

significantly rescue osteogenic output. Together, these data suggest that elevated ROS 

contributes to Snus-mediated osteogenic inhibition. 

Follow up analysis evaluated the activity of endogenous antioxidant enzymes 

responsible for the degradation of superoxide anion and hydrogen peroxide ROS species.  

Superoxide dismutase enzyme species convert superoxide anion into hydrogen peroxide 

and oxygen (O2) molecules. Hydrogen peroxide can be subsequently processed by 

glutathione peroxidase and catalase enzymes into water and O2 [44]. Superoxide dismutase 

and catalase activity was significantly reduced in Snus ED cultures (Fig. 5.4D), suggesting 

Snus-facilitated inhibition of normal activity for these enzymes. Glutathione peroxidase  



 173 

 

 

A

B

M
at

ri
x 

m
in

er
al

iz
at

io
n

[µ
g 

C
a2+

\m
g 

pr
ot

ei
n]

D

E
nz

ym
e 

ac
tiv

ity
 

[n
m

ol
/m

in
/m

L
/m

g]

0

50

100

150

UT ED

*

0
100
200
300
400
500

UTNEED
0
1
2
3
4
5

UTNEED

*

E
nz

ym
e 

ac
tiv

ity
 

[n
m

ol
/m

in
/m

L
/m

g]

E
nz

ym
e 

ac
tiv

ity
 

[n
m

ol
/m

in
/m

L
/m

g]

NED
EDUT

0

100

200

300

400

UT ED

R
L

U
/1

x 
10

6 
ce

lls
O2

·-

*

NED
EDUT

0
10

20
30

40

50

UT ED
H

2O
2

po
si

tiv
e 

ce
lls

 [
%

] H2O2

*

0
50

100
150
200
250
300

UT ED

8-
is

op
. [

pg
] /

pr
ot

ei
n 

[m
g]

*

8-isoprostane

0
5

10
15
20
25
30

U
N

T
0-

3
3-

5
3-

7
5-

7
7-

20

**
*

*
*

0.5 µM H2O2C

NED
EDUT NED

EDUT

M
at

ri
x 

m
in

er
al

iz
at

io
n

[µ
g 

C
a2+

\m
g 

pr
ot

ei
n 

(%
U

T
)]

0
25
50
75

100
125
150

*
*

N
E

U
T

ED
+A

A
ED

+V
itE

ED
+G

SH
-O

EtED U
T

0-
3

3-
5

3-
7

5-
7

7-
20

Time [d]

Superoxide
Dismutase

Glutathione
Peroxidase Catalase

NED
EDUTNED

EDUT

*



 174 

 

 

  

Figure 5.4. Snus exposure elicits oxidative stress. A) Superoxide anion, hydrogen 
peroxide, and 8-isoprostane content was significantly increased in Snus-exposed ED 
cultures. Superoxide anion content was measured via luminol-based reaction and 
reported as RLU output per a defined number of cells. Hydrogen peroxide content was 
measured using dihydrorhodamine 123. 8-isoprostane was measured via ELISA.  
n=3±SD. B) Concurrent treatment of Snus ED cultures with antioxidants ascorbic acid 
and glutathione reduced ethyl ester rescued osteogenic output. C) Exposing 
differentiating osteoblasts to hydrogen peroxide alone inhibited differentiation at any 
stage of osteogenesis. D) Endogenous antioxidant enzyme activity for SOD and catalase 
species were significantly reduced in Snus ED. GPx activity was not significantly 
affected by Snus exposure. n=3±SD.  *P<0.05 represents a significant deviation for a 
given measured parameter compared to the untreated control, as determined by One-
Way ANOVA. AA, ascorbic acid; VitE, vitamin E; GSH-OEt, glutathione reduced ethyl 
ester; RLU, relative light unit; H2O2, hydrogen peroxide; UT, untreated; NED, non-
effective dose; ED, effective dose; O2

·- , superoxide anion. 



 175 

activity, however, was not significantly altered between either of the groups (Fig. 5.4D). 

 Overall, these results infer that Snus exposure induces molecular or biochemical 

changes that reduce antioxidant enzyme activity and increase ROS levels that could alter 

cellular behavior and differentiation outcomes.  

 

Snus exposure reduces nuclear levels of key redox transcription factors FOXO1 and 

FOXO3A 

 The forkhead box, class O (FOXO) family of transcription factors are well-reported 

mediators of oxidative stress defense and cellular stress response [45, 46]. Given that 

FOXO activates transcription of MnSOD and catalase mRNA expression, FOXO1 and 

FOXO3a mRNA expression and protein content were investigated in Snus-exposed hESC 

cultures. Reduced mRNA expression was observed for both FOXO1 and FOXO3a with 

increasing Snus dose (Fig. 5.5A). Western blot and densitometry analysis revealed that 

Snus ED reduced nuclear levels of both FOXO1 and FOXO3A (Fig. 5.5B), though a more 

dramatic reduction was observed for FOXO3A. To investigate if reduced FOXO1 and 

FOXO3A levels during differentiation alone could impact osteogenic outcomes, 

FOXO1/3a knockdown mESCs were differentiated into osteoblasts against wild-type D3 

mESCs. Generally, differentiations with wild-type cells produced more robust osteogenic 

output compared to differentiated shFOXO1/3a cells (Fig. 5.5C), suggesting an influential 

role for FOXO1 and/or FOXO3a during normal osteogenic differentiation. When 

concurrently exposed to Snus, both wild-type and shFOXO1/3a cultures showed similar 

responses in that Snus ED significantly reduced osteogenic output compared (Fig. 5.5C). 
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Figure 5.5. Snus exposure alters nuclear localization of FOXO1 and FOXO3a 
transcription factors via phosphorylation at S253 and S256 residues in osteogenic hESC 
cultures. A) Snus exposure reduced FOXO1 and FOXO3a mRNA expression in a dose-
dependent manner. B) Nuclear levels of FOXO1 and FOXO3a are reduced in Snus ED 
cultures. C) Knockdown of FOXO1 and FOXO3a reduces osteogenic output. This 
reduction is enhanced with the addition of Snus ED. *P<0.05 represents a significant 
deviation for a given measured parameter compared to the untreated wild-type control, 
as determined by One-Way ANOVA. ΔP<0.05 represents a significant deviation for a 
given measured parameter compared to the untreated shFOXO1/3a control, as 
determined by One-Way ANOVA.  D) FOXO1 and FOXO3a featured enhanced 
phosphorylation of S253 and S256, respectively, in Snus ED. These phosphorylation 
events are responsible for reduced DNA binding of FOXO1 and FOXO3a as mediated 
by AKT activity.  E) Additional anti-nuclear FOXO1 and FOXO3a phosphorylation 
events were assessed via protein array. AKT-mediated T24/32 phosphorylation and 
CK1-driven p322/325 phosphorylation were non-significantly reduced in Snus ED. 
Significant reductions in FOXO1 phosphorylation at AKT-mediated S319 and DYRK1-
mediated S329 were significantly reduced in Snus ED. *P<0.05 represents a significant 
deviation in log2 fold change as compared to the untreated control, as determined by 
One-Way ANOVA. UT, untreated; NLS, nuclear localization signal; NED, non-effective 
dose; ED, effective dose; TUB, Tubulin; WT. wild-type. 
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Changes in cellular redox state have also been reported to influence 

posttranslational modification patterns in FOXOs that can direct FOXO subcellular 

localization and activity [47]. AKT-mediated phosphorylation at nuclear exclusion sites 

S253 and S256 were evaluated for FOXO1 and FOXO3A, respectively, via western blot 

(Fig. 5.5D). Increased phosphorylation was observed at each residue in Snus ED cultures, 

indicating that Snus exposure targets FOXO1 and FOXO3a isoforms for nuclear exclusion 

through AKT. Additional AKT FOXO1 and FOXO3a phosphorylation sites were 

investigated via protein array (Fig. 5.5E). AKT-mediated phosphorylation at FOXO1/3a 

T24/32 residues and FOXO1 S319 were reduced in Snus ED cultures. Nuclear exclusion 

phosphorylation events driven by CK1 on FOXO1/3a S322/325 and DYRK1 on FOXO1 

S329 were also reduced. Given that phosphorylation at S256/3 also obscures the 

FOXO1/3a nuclear localization signal region of FOXO1/3a, observed reductions in other 

FOXO1/3a phosphorylation patterns suggest that AKT phosphorylation at S256/253 may 

the critically misregulated phosphorylation marker in the context of Snus-exposure. 

Collectively, these results suggest that Snus exposure misregulates FOXO1 and 

FOXO3a at the transcriptional and post-translational level. Snus extract appears to 

stimulate nuclear exclusion of FOXO1 and FOXO3a by modulating specific 

phosphorylation by AKT that redirects FOXO subcellular localization. Downstream, this 

misregulation of FOXO1 and FOXO3a could cause poor osteogenic outcomes. 

 

Snus exposure exerts differential effects on key players of PI3K/AKT signaling pathway 

Global misregulation of the AKT signaling pathway by Snus exposure was 
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investigated using a commercially available phospho protein array that featured key 

signaling partners and targets involved in AKT signal propagation and crosstalk. Array 

analysis revealed unique differences in posttranslational phosphorylation modifications 

between untreated, non-effective, and effective doses (Fig. 5.6A, B). Comparing non-

effective and effective doses alone identified 18 unique deviations in AKT-signaling 

related protein profiles in Snus ED cultures (Fig. 5.6C). 

Snus ED cultures demonstrated unique phosphorylation patterns that suggested 

increased IRS1/PI3K signaling events (Fig. 5.6D). Levels of inactivated pIRS1S312 [48] 

were significantly reduced in Snus ED cultures, implying an increase in active IRS1 

proteins upstream of PI3K activation. Snus exposure also significantly increased levels of 

activated pPI3K regulatory subunit p85α/γY467/Y199 protein, supporting implications of 

increased activation of PI3K signaling activities as well [49]. In addition, triple 

phosphorylated pPTENS380/T382/T383 was significantly reduced in Snus ED exposed cells. 

Given that PTEN activity reverses PI3K signaling, this result also suggests Snus-mediated 

increases in PI3K signaling activity. Together, these data provide support for Snus-

mediated alterations of signaling events upstream of AKT that may lead to aberrant AKT 

activation. 

Our results also indicated a potential for differential regulation of downstream 

IRS1/PI3K targets. Conspicuously, levels of phosphorylated PI3K downstream kinase 

pPDK1S241 were significantly reduced in Snus ED cells inferring downstream interference 

with the propagation of the PI3K signaling cascade through the PDK1 signaling arm (Fig. 

5.6D). PDK1 is a well-reported key player in mediating translational machinery through  
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Figure 5.6. Snus exposure disrupts key players in the AKT signaling pathway. A) 
Heatmap visualization showing differential phosphorylation patterns for various protein 
targets involved in AKT signaling as revealed by AKT signaling protein array. B) 
Comparative analysis of pathway target protein phosphorylation and content patterns 
found 29 common elements between Snus NED and ED. Six elements were exclusively 
featured in the NED, while 18 elements included exclusively in the Snus ED group. C)  
AKT1 and AKT2 isoforms were differentially regulated in Snus ED exposed cultures. 
Snus ED exposure significantly upregulated AKT1 activation and significantly reduced 
AKT2 activation. D) An AKT signaling phospho protein array identified several key 
players within the IRS1/PI3K/AKT signaling pathway to be uniquely misregulated upon 
Snus ED exposure. *P<0.05 represents a significant deviation in log2 transformed signal 
fold change as compared to the untreated control, as determined by One-Way ANOVA. 
NED, non-effective dose; ED, effective dose. 
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downstream phosphorylation of S6RP [51, 52] at S235/236 and subsequent activation of 

S6RP. S6RP phosphorylation increases translation of mRNA transcripts with 5' UTR that 

contain an oligopyrimidine tract [53]. In line with the observed PDK1 phosphorylation 

pattern, pS6RPS235 (S6 Ribo. Prot.) was also significantly reduced in Snus ED cultures. 

Collectively, these data suggest that Snus exposure disrupts normal signaling 

patterns within different arms of the IRS1/PI3K signaling pathway that elicit adverse 

effects on normal cellular functions. 

 

Snus-mediated AKT signaling disruption is AKT isoform-specific and associated with 

negative consequences for osteogenic differentiation outcomes 

Evaluation of the AKT signaling phospho protein results also found differential 

activation of AKT1 and AKT2 in Snus ED cultures compared to the untreated control (Fig. 

5.7A). Activated pAKT1S473 was significantly increased in Snus ED cultures. Conversely, 

Snus ED exposure also significantly reduced activated pAKT2S474 levels. Pre-activated 

pAKT1T450 [54] was also significantly upregulated in Snus ED. PI3K has been reported to 

activate AKT1 in a PDK1-independent manner and AKT2 in a PDK2-dependent manner 

[55], suggesting an etiology for the differential AKT isoform activation observed here.  

 Western blot analysis was performed to verify pAKT1S473 upregulation and also 

assess the activation status of other major signaling kinases involved in cellular 

differentiation, stress response, and FOXO regulation (Fig. 5.7B). Increased levels of 

pAKT1S473 were confirmed in Snus ED alongside reduced activation of ERK1/2 and 

JNK1/2 kinases. Levels of active AMPK did not differ between Snus NE and ED groups.  
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Figure 5.7. Snus disruption of AKT signaling pathway may negatively impact 
osteogenesis by augmenting the antagonistic relationship between JNK and AKT. A) 
AKT signaling phospho protein array found AKT1 and AKT2 isoforms to be 
differentially regulated in Snus ED exposed cultures. Snus ED significantly upregulated 
AKT1 activation and significantly reduced AKT2 activation. P<0.05 represents a 
significant reduction in log2 fold change as compared to the untreated control, as 
determined by One-Way ANOVA B) Western blot analysis confirmed increased 
phosphorylation of AKT1 at S473 and also revealed differential activation of JNK1 and 
JNK2 isoforms. JNK1 activation was reduced in Snus ED, but remained unchanged for 
JNK2. ERK activation was reduced in Snus ED cultures.  C) Treatment of Snus ED 
cultures with AKT1 inhibitor and JNK1/2 activator rescued osteogenesis. *P<0.05 
represents a significant reduction in  osteogenesis compared to the untreated control, as 
determined by One-Way ANOVA. ΔP<0.05 represents an increase in osteogenesis 
compared to Snus ED, as determined by One-Way ANOVA. D) AKT and JNK exert 
opposite effects on FOXO subcellular localization. FOXO phosphorylation by AKT 
encourages reduced nuclear binding and increased nuclear export of FOXO via 14-3-3 
protein interactions. JNK, conversely, can reverse this process by facilitating the release 
of FOXOs from 14-3-3 proteins. Thus, Snus upregulation of AKT1 in combination with 
reduced JNK1 activity may ultimately encourage a cellular environment that bars 
FOXO from the nucleus and may have implications for normal osteogenic development.  
UT, untreated; NED, non-effective dose; ED, effective dose. 
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With regard to FOXO regulation, active ERK1/2 is associated with targeting FOXO species 

for poly-ubiquitination and degradation [56], [57]. Considering the reduction in active 

pERK1/2T202/Y204 levels, it is unlikely that reductions in nuclear FOXO1 and FOXO3a may 

also be attributed to ERK activity. Downregulation of ERK1/2 could, however, have other 

negative impacts on normal cellular differentiation [58]. Patterns of pJNK1/2T183/Y185 

activation demonstrated reduced pJNK1Y185 levels in Snus ED.  As active JNK has been 

shown to antagonize AKT-directed nuclear exclusion of FOXO3a [59], reduced activation 

of JNK1 may cause a balance shift in direction of FOXO localization towards nuclear 

exclusion. JNK achieves this by phosphorylating of 14-3-3 proteins that escort and/or 

sequester FOXO out of the nucleus, causing 14-3-3 to release FOXO. Subsequent 

phosphatase removal of AKT phosphorylation modifications on FOXO can subsequently 

allow for full restoration of nuclear FOXO [60]. 

To investigate the impact of excessive AKT on osteogenesis, Snus ED cultures 

were concurrently treated with an inhibitor to block AKT1 or AKT2 activity or an activator 

of JNK1/2. Both inhibition of AKT1 and activation of JNK1/2 exclusively rescued 

osteogenic output in Snus ED cultures (Fig. 5.7C). Collectively, these results support the 

notion of a two-fold impact of biochemical misregulation as mediated by Snus exposure 

(Fig. 5.7D). First, AKT1 activity is upregulated targeting FOXO1 and FOXO3a species for 

nuclear exclusion mediated by phosphorylation events that create binding sites for 14-3-3 

nuclear exclusion proteins [61]. Second, simultaneously reduced levels of active JNK 

creates an environment where cytoplasmically sequestered FOXO1/3a predominates 

within cells and effectively inhibits normal osteogenesis. 
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Discussion 

 Here we have shown for the first time, a comprehensive analysis of the embryotoxic 

impact of Snus exposure on the developing skeleton using a combination of in vivo 

exposures and developing osteoblasts produced by differentiating human embryonic stem 

cells into a osteogenic lineage.  Using these approaches revealed that Snus inhibited normal 

skeletal development by mediating several molecular and biochemical changes in 

developing osteoblasts in the absence of outright cytotoxicity. 

 Previously reported in vivo studies have shown connections between smokeless 

tobacco exposure and adverse osteogenic outcomes, including reduced ossification in fetal 

bones including the skull and long bone tissues [16, 17] and reduced bone nodule formation 

[62]. These studies, however, did not investigate the molecular or biochemical events 

responsible for these outcomes. Our study found similar detrimental effects on skull 

mineralization and morphological development in in utero Snus-exposed offspring and 

differentiating osteoblasts in vitro while extending our investigation into mechanistic 

analyses to reveal Snus-mediated molecular changes that may be responsible for adverse 

osteogenic outcomes. 

 Induction of oxidative stress conditions in developing tissues is a well-reported 

mechanism of chemically-mediated teratogenicity [38, 39]. Here, we provide evidence that 

Snus embryotoxicity is mediated at least in part by generation of sub-cytotoxic levels of 

ROS. Redox driven teratogenesis is characterized by alterations to intracellular 

biochemical events that are critical to normal cell function and development. Such changes, 

in turn, can cause dysmorphogenetic outcomes in developing cells in the absence of 
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outright cell death. Our findings support this concept in that Snus doses showing reduced 

osteoblast mineralization did not possess active pro-apoptotic activation of executioner 

caspases despite increased levels of ROS. Furthermore, antioxidant treatment rescued 

osteogenesis, suggesting that excessive ROS likely plays a role in Snus-reduced osteogenic 

outcomes by manipulating cellular redox sensitive regulatory components or signaling 

pathways. 

 Environmental toxicant interference with key signaling pathways has also been 

reported to have a myriad of adverse effects on early development in a variety of contexts 

[63-66]. Precise activation or inhibition of particular signaling players at key points in the 

development of differentiating tissues can derail correct cell fate decisions. Results from 

this study support such a mode of action for Snus-driven inhibition of normal osteogenesis. 

Snus exposure upregulated activation of key players in the IRS1/PI3K/AKT signaling 

pathway, which showed downstream inhibitory actions on normal FOXO1 and FOXO3A 

subcellular localization. Further, this effect seems to be exacerbated by reduced activation 

of JNK1. Considering that our data also show FOXO1 and FOXO3A to be required for 

robust osteogenic differentiation, it is possible that osteogenic reduction by Snus is 

mediated downstream of AKT signaling through developmentally-relevant inhibition of 

FOXO1/3A function. 

 As FOXO1/3a proteins mediate oxidative stress defense, Snus-driven inhibition of 

FOXO1/3A may be responsible for observed increases in ROS and reduced superoxide 

dismutase and catalase antioxidant enzyme activity. While elevated ROS alone has been 

previously associated with antagonism of signaling pathways, bone loss pathology, and 
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inhibited osteogenesis [67-69], several researchers have also reported that reduced FOXO 

activity in osteoblasts elicits similar outcomes in adult bone tissue [70, 71]. While our 

results support Snus-driven inhibition of FOXO1/3A oxidative stress defense that 

subsequently encourages increased developmentally-harmful levels of ROS, it is unclear if 

FOXO1/3a proteins also influence embryonic osteogenesis, specifically. Thus, further 

study is required to dissect the precise relationship between FOXO1/3a and key events 

during developmental osteogenesis. 

It is also worth noting that misregulation of other developmentally-relevant 

components of the IRS1/PI3K/AKT pathway suggest an additional avenue for adverse 

osteogenic outcomes following Snus exposure. Given that differentiating cells regularly 

require new sets of proteins to facilitate cell fate decisions and changes [75], reduced S6RP 

activity as reported here could also be detrimental for developing osteoblasts. The 

complexity of Snus-altered interplay between members of the IRS1/PI3K/AKT signaling 

pathway demonstrate a need for further study. 

Further exploration of Snus-driven osteogenic inhibition is required to more clearly 

discern which of these disruptive events contributes most to observed adverse osteogenic 

outcomes. 

  

Conclusion 

Smokeless tobacco—both in general and with specific regard to Snus—has been 

hailed as a potential means to reduce mortality and pathology burden from tobacco-related 

diseases [76], [77]. With particular regard to developmental health, however, our data show 
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that Snus smokeless tobacco may not reduce harm to health of the developing embryo. In 

the context of previous studies on smokeless tobacco use and adverse pregnancy outcomes, 

our results indicate that women who are pregnant or planning to become pregnant should 

opt for complete cessation of tobacco for a healthy pregnancy. 
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CONCLUSION 

 
 To reduce the burden of birth defects both domestically and abroad, the role of 

environmental toxicants in developmental and reproductive disruption must be addressed. 

To this end, traditional animal models have been useful but are burdened by low 

throughput, high expense, and the risk of false negative assessments. In vitro cell-based 

assays provide one means to addressing these concerns. In particular, the embryonic stem 

cell test (EST) protocol provides an avenue for faster and less costly evaluations. By 

coupling this approach with human pluripotent stem cells (hPSCs), as this thesis has shown, 

the EST approach can be made more sensitive (than a mouse-based counterpart) and 

provide assessments that are more biologically relevant to humans.  

 hPSCs are a powerful tool for both embryotoxicity screens and modeling 

mechanisms of developmental toxicity. This thesis has shown for the first time a full 

comparison of the mouse embryonic stem cell-based EST (mEST) to a human pluripotent 

stem cell-based EST (hEST). Conclusively, the tested hEST yielded accurate 

embryotoxicity classifications while performing more sensitively than the standard mEST. 

Moreover, the hEST was able to accurately classify “real-world” embryotoxicants in the 

form of two tobacco products. While it is unlikely that in vitro approaches will completely 

replace traditional models in the near future, hPSC-based in vitro assessments provide a 

faster, less costly means to generating data relevant to human health and investigating the 

potential embryotoxicity of a chemical or chemical mixture (as is the case with tobacco 

products). 
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The hEST model is also an effective approach to investigating molecular and 

biochemical mechanisms of chemical embryotoxicity. Here, this thesis has presented the 

investigative and comparative analysis of conventional cigarette and harm-reduction 

tobacco product (HRTP) embryotoxicity. While both types of products inhibited normal 

osteogenic output in differentiating osteoblasts, conventional cigarettes were found to 

impart this outcome by eliciting mitochondrially-mediated apoptosis and DNA damage. 

Molecular and investigation of the HRTPs, however, suggested that harm-reduction 

cigarettes and Snus smokeless tobacco operate predominantly through differentiation 

inhibition mechanisms—instead of outright cytotoxicity mechanisms—to prevent normal 

osteogenesis. In particular, biochemical assessment of Snus-induced molecular changes 

was found to be mediated through specific alterations to developmentally relevant 

signaling pathways. 

Through their special production processes, HRTPs are manufactured to expose users 

to chemical mixtures that are distinct from conventional cigarettes. As such, it can be 

hypothesized that molecular differences observed here between conventional cigarettes 

and HRTPs may lie in the unique composition of HRTPs. Current work in our lab seeks to 

explore the relationship between developmental osteogenic outcomes and some of the 

known chemical components shared by conventional cigarettes and HRTPs. Our earliest 

results have found that some of these chemicals inhibit osteogenic differentiation with 

enhanced potency dependent on whether they are presented alone or in a combination with 

two or three other chemicals. As such, altering the chemical exposure profile between 
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conventional cigarettes and HRTPs may not actually reduce harm in developing osteoblasts 

but rather augment differentiation inhibition potency. 

Results outlined in this thesis also infer that early exposure to Snus during cell 

specification events during osteogenesis can have lasting impacts on developing bone. 

Ongoing studies in our lab are investigating the extent of in vivo long-term impacts 

following developmental in utero exposure. Thus far, we have observed reduced bone 

mineral density in the skulls, ribs, and hips of in utero exposed offspring at 12 months of 

age as well as evidence of adipose metabolic dysfunction (Appendix Fig. 1.5.1-1.5.3). 

These early results suggest that HRTPs may impart an additional injury to health outcomes 

by disrupting key early events in embryonic development. These early results, however, 

only represent part of human exposure conditions for Snus as they are mediated through 

intravenous tail vein injection and feature a chemical profile that is restricted to only the 

aqueously soluble chemical components of Snus. Future follow-up studies, therefore, will 

be designed to verify similar osteotoxic outcomes under conditions that are closer to human 

physiological exposure circumstances. 

In sum, we have successfully determined the comparative sensitivity of human and 

mouse pluripotent stem cells in embryotoxicity evaluations. We also utilized an in vitro 

developmental osteotoxicity screening model with human embryonic stem cells to 

successfully investigate embryotoxic mechanisms in conventional cigarettes and HRTPs. 

These assessments found harm-reduction cigarettes and Snus smokeless tobacco to elicit 

osteotoxic outcomes by differentiation inhibition and modulating cellular behaviors 

involved in key developmental events. The results presented here provide much needed 
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support for the use of hPSCS in mechanistic embryotoxicity assessments. Furthermore, 

findings from the presented studies on HRTPs address the current gaps in knowledge 

regarding HRTP-driven skeletal defects. Together, our results should be useful in 

advancing embryotoxicity screening efforts as well as for efforts to inform global health 

initiatives to reduce birth defects burdens. 
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Chapter 4: Supplemental information 
 
 
  

min avg max

Control 
group

Untreated

Group 1 Camel SS non-effective dose

Group 2 Camel SS effective dose
Group 3 Camel Blue SS non-effective 

dose

Group 4 Camel Blue SS effective dose

Appendix Figure 1.4.1. Heatmap of candidate genes showing their regulation across 
all five treatments.   
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Appendix Figure 1.5.1. Snus-exposed mice demonstrated long-term skeletal 
impairment. (A, C, D) Bone mineral density was significantly reduced in the skulls, 
ribs, and hips of Snus-exposed mice. (B) Skull length was unchanged in Snus-exposed 
mice. (E) Femur bone mineral density did not differ between PBS and Snus-exposed 
mice. (F) Tail length was significantly reduced in Snus-exposed mice.  Given that 
reduced bone mineral density has been associated with higher fat mass and serum lipids 
(29089152, 16400063), it is possible that Snus-exposure misregulates interconnected 
mechanisms that influence adipose tissue metabolism and osteogenesis. (G) Cobb angle 
measurement did not present a significant difference in spinal curvature between PBS 
and Snus mice. BMD, bone mineral density. PBS n = 29. Snus n = 47. *p<0.05, 
represents a significant difference between PBS control mice and Snus-exposed mice.  
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Appendix Figure 1.5.2. 12-month-old in utero exposed mice possess increased adipose 
tissue and liver fat deposition. (A-C) Liver and heart mass were not significantly 
different between PBS and Snus exposed mice. Kidney mass, however, was 
significantly increased in Snus mice. (D-E) White and brown adipose tissue pads were 
significantly larger in Snus mice. (F) Subcutaneous fat, as measured by caliper, was 
significantly increased in Snus mice, compared to PBS mice. (G) Snus mice showed 
significantly increased liver triglyceride levels. (H) Blood glucose was not found to 
differ between PBS and Snus mice. Collectively, these results infer in utero Snus-
exposed mice to possess impaired lipid metabolism and altered lipid deposition patterns. 
PBS n = 29. Snus n = 47. *p<0.05, represents a significant difference between PBS 
control mice and Snus-exposed mice. 
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Appendix Figure 1.5.3. qPCR analysis found significantly reduced expression of LPL 
mRNA in 12-month-old Snus-exposed mice. (A-D) No difference was observed for 
expression of genes associated with lipogenesis (PPARγ2, CEBPA) and fatty acid 
accumulation (LEP, FABP4)  (E) mRNA expression of lipoprotein lipase enzyme (LPL) 
was significantly reduced in Snus-exposed mice. Together these data suggest that 
triglyceride lipolysis not adipogenesis is misregulated in Snus-exposed mice. PBS n = 
4. Snus n = 7. *p<0.05, represents a significant difference between PBS control mice 
and Snus-exposed mice. CEBPA, CCAAT enhancer binding protein alpha; FABP4, 
fatty acid binding protein 4; LEP, leptin; LPL, lipoprotein lipase; PPARγ2, peroxisome 
proliferator activated receptor gamma. 
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Chapter 4: Gene lists 
  

Tobacco Product Genes upregulated

Camel SS NED

BCL2A1, BCL2L10, CASP1, CASP14, LTA, LTBR

Camel SS ED

ABL1, AIFM1, BAX, BCL2, BCL2A1, BCL2L10, BID, BIRC5, 
BNIP3L, CASP8, CASP9, CD27, CD40, CIDEA, CIDEB, 
CRADD, CYCS, DFFA, FASLG, GADD45A, HRK, LTA, 
LTBR, NAIP, TNF, TNFRSF10B, TNFRSF1B, TNFSF10, 
TP53, TP73, TRADD, TRAF2, TRAF3, XIAP

Camel Blue SS 
NED

AIFM1, BSC2L10, BIRC5, LTBR

Camel Blue SS
ED

AIFM1, BAX, BCL2, BCL2A1, BCL2L10, BIRC5, BNIP3L, 
CASP4, CASP5, CASP8, CASP9, Casp14, CD27, CD40, 
CRADD, CYCS, DFFA, FASLG, HRK, IL10, LTA, LTBR, 
TNSFRSF9, TNFRSF10B, TNFRSF1B, TNFSF10, TP53, 
TP73, TRADD, TRAF2, TRAF3, XIAP

Appendix Table 2.4.1. List of genes significantly regulated per treatment group 
compared to time-matched untreated cells as found with qPCR array.    
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Chapter 5: Protein lists 
 

29 common elements in Camel Snus 
NED and Camel Snus ED

Cyclin D1, FAK p53 (pT81), LYN, 14-3-
3ζ/δ, Bax (N-term), Cyclin D1 (pT286),
AKT1S1, p53 (pS20), 14-3-3ζ/δ (pT232),
PTEN, MDM2, Tuberin, PP2Aα, IRS1,
FAK (pS910), Paxillin, BAD (pS91/128),
Gab1, MYT1, p53, PDK1, FAK (pY925),
FAK (pY861), AKT1, AKT1 , eNOS
(pS1177), FOXO1/3/4 (pT24/32),
FOXO1A(pS329)

6 elements included exclusively in 
Camel Snus NED

p53 (pS6), IRS1 (pS612), BAD (pS112),
p53 (pS315), IKKα/β (pS180/181)

18 elements included exclusively in 
Camel Snus ED

p70S6K, AKT (pS473), PI3K p85α/γ
(pY467/Y199), FOXO1 (pS256), p53
(pS46), PDK1 (pS241), PTEN, p70S6K
(pS424), IRS1 (pS312), AKT2 (pS474),
SYK (inter), S6 Ribosomal Protein
(pS235), PFKFB2 (inter), FOXO1
(pS319), PTEN (pS380/T382/T383),
JAK1 (pY1022), GSK3β (pS9),
FOXO1A/3A(pS322/325)

Appendix Table 2.5.1. List of proteins significantly misregulated per treatment group 
on AKT phospho protein array. 




