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ABSTRACT OF THE DISSERTATION

Joint Models and A Study of Missing Data Mechanisms: New Statistical Methods and
Novel Applications

by

Debaleena Sain

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2021

Dr. Esra Kürüm, Chairperson

Motivated by Womens’ Interagency HIV Study (WIHS), we propose an intuitive

time-varying joint model (TV-JM) for longitudinal and time-to-event outcomes. In this

model, conditional on a set of random effects, a joint likelihood is constructed which ac-

counts for the dependence of the two outcomes and correlation among the repeated mea-

surements. We allow all the coefficients in both longitudinal and survival submodels to

vary as smooth functions of time, and hence, this method will allow researchers to explore

the dynamic response-predictor as well as response-response relationships in a longitudinal

data efficiently and accurately. For estimation of the model parameters, we employ an

Expectation-Maximization algorithm. In the E-step of the algorithm, the underlying ran-

dom effects are estimated and in the M-step, we employ local linear regression techniques

to fit the time-varying coefficients. The finite sample performance of the proposed method

is illustrated via extensive simulation studies. The proposed method is demonstrated by

jointly analyzing CD4 cell percentage and time to death outcomes from WIHS.
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In the second part of this dissertation, we study the performance of generalized

varying coefficient models (GVCM) under missing data mechanisms via extensive simulation

studies. This work was motivated by the Midlife in the United States (MIDUS) data, where

significant number of missing observations exist and our main goal is to perform a novel

application of GVCM to provide impactful insights to research on aging. We present the

results of our simulation studies and apply GVCM to analyze data from MIDUS.

Key words and phrases: Expectation-Maximization; Gauss-Hermite quadrature; Local lin-

ear fitting; Varying-coefficient models; Joint models
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Chapter 1

Introduction

In follow-up studies implemented in several applied fields, namely, medicine, epi-

demiology, and sociology, subjects provide two types of outcomes: longitudinal repeated

measurements and time to an event of interest such as time to death or time to a disease.

In these types of studies, the common goal is to investigate the effect of risk factors on

the survival and longitudinal outcomes in addition to identifying the association between

these processes. A typical example is from HIV studies, where the repeated measurements

on biomarkers for disease progression such as CD4 cell counts or the estimated viral load

are collected to predict time to AIDS or death. The traditional approach to analyze these

outcomes would be to fit separate regression models: the longitudinal outcome (CD4 cell

count or viral load) using a mixed effects regression model and the time-to-event outcome

(time to AIDS or death) using a survival model such as the time-dependent Cox model,

where the longitudinal outcome is included as a time-dependent predictor. However, it is

shown that this approach ignores possible dependence among these outcomes and ignores
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the underlying assumption in survival models with time-dependent predictors. More specif-

ically, these models assume that the time-varying predictors are exogenous, that is, their

values at any time point after the failure time are not affected by the occurrence of the

event. However, this assumption does not hold for longitudinal outcomes, which are en-

dogenous time-dependent covariates, that is, the value of the covariate is directly related

to the failure status and thus, this type of predictors requires the survival of the subject

for their existence. As a result, the traditional approach of fitting separate models to each

outcome leads to inefficient estimates (Sweeting and Thompson, 2011; Tsiatis and Davidian,

2004). In order to overcome these challenges, a new class of models, namely, joint modeling

of longitudinal and survival outcomes were introduced.

The major challenge in joint modeling of longitudinal and survival outcomes is

the lack of a natural joint distribution for these types of responses. To overcome this

challenge, shared-parameter models have been proposed. This class of models assumes that

the longitudinal and the time-to-event outcomes are conditionally independent given a set of

underlying latent variables shared by both submodels. In most cases, these latent variables

are included in the form of random effects, which account for the association between the

outcomes and the within subject correlation among the repeated measurements. Since the

outcomes become conditionally independent given the random effects, the joint likelihood

of the two outcomes consists of conditional submodels for each outcome. A frequent choice

of submodel for the longitudinal component is a linear mixed effects model (Laird and

Ware, 1982) and that of the survival component is the Cox hazard model (Cox, 1972).

Early works on joint models were postulated by De Gruttola and Tu (1994), Wulfsohn and
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Tsiatis (1997), Henderson et al. (2000), and Tsiatis and Davidian (2001). De Gruttola and

Tu (1994) used the shared-parameter approach described above, where they linked the two

outcomes by including the same set of random effects in both submodels, whereas Wulfsohn

and Tsiatis (1997) used a set of random effects to model the longitudinal process only and

used this longitudinal trajectory as a predictor in the proportional hazard model. Instead of

using random effects, Henderson et al. (2000) proposed a latent class joint model, where a

latent bivariate random process connects the two submodels. All of these methods assumed

that the underlying unknown shared parameters (or variables) are normally distributed

and used Expectation-Maximization algorithm to estimate the model parameters. Tsiatis

and Davidian (2001), on the other hand, proposed a joint modeling technique, where no

distributional assumptions were imposed on the random effects and estimated the model

parameters via a conditional score approach. Extensions of these joint models include

consideration of multiple longitudinal processes (Rizopoulos and Ghosh, 2011) and multiple

failure times (Elashoff et al., 2008).

In a longitudinal study, the association between the responses (survival and lon-

gitudinal) and the relationships between each response and their corresponding predictors

may change over time. The aforementioned shared-parameter models that employ tradi-

tional longitudinal and survival models cannot capture this dynamic structure of longitu-

dinal data sets. Therefore, Song and Wang (2008) introduced a joint model for multiple

continuous longitudinal processes, where the associations of these processes with the hazard

of the subjects were allowed to be flexible functions of time. They proposed two semipara-

metric estimators, namely, local corrected score and local conditional score, to accurately
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estimate the time-varying associations between the outcomes in their hazard model. Ye

et al. (2015) postulated a time-varying association joint model where the values of the lon-

gitudinal outcome belong to a canonical exponential family, which allowed these values to

be both discrete and continuous. They employed functional principal component analyses

to model the canonical parameter in their longitudinal submodel and hence, this model

cannot investigate the effects of exploratory variables on the longitudinal outcome. How-

ever, Andrinopoulou et al. (2018) proposed models that can be employed to explore the

response-predictor relationships on both submodels and they estimated the time-dependent

association between the true longitudinal biomarker trend and the survival of the subjects

via Bayesian P-splines. This model was extended by Piulachs et al. (2021) for zero-inflated

longitudinal count data.

Although these authors have flexibly modeled the mean longitudinal trajectories

across time, none of these methods allow us to observe the time-varying effects of the risk

factors on the longitudinal biomarker while allowing the association between the outcomes

to be time-varying. In this project, we fulfill this gap in literature by proposing a flexi-

ble and intuitive joint modeling framework, namely, time-varying joint models (TV-JM),

that allows all parameters in both submodels to be flexible time-dependent functions. To

achieve this goal, we introduce time-varying coefficient models to the joint modeling frame-

work. This novel method will allow researchers to uncover complex dynamic patterns of

association between the outcomes and response-predictor relationships, that is, unlike the

aforementioned dynamic joint modeling methods, our approach is not limited to explor-

ing time-varying association between the outcomes. In addition, varying coefficient models
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can enhance the flexibility of ordinary regression models and reduce the modeling bias

by fully capturing the dynamic trends that exist in longitudinal studies (Cleveland et al.,

1991; Hastie and Tibshirani, 1993; Fan and Zhang, 2008). Furthermore, our method can

accommodate time-varying exogenous predictors in the hazard model.

In our proposed approach, we employ the above mentioned shared-parameter

framework, that is, we assume that random effects shared by both outcomes account for the

association between the two outcomes as well as the within subject correlation among the

repeated measurements of the longitudinal process. Treating these random effects as miss-

ing data, we propose an Expectation-Maximization (EM; Dempster et al., 1977) algorithm

to estimate the model parameters. In the E-step of the algorithm, we target the random

effects and compute the conditional expectation of the complete log-likelihood given the

observed data. Since the expected log-likelihood is intractable, we approximate it via a

second-degree Taylor’s expansion around the estimated mean of the random effects. In the

M-step, we apply an iterative Newton-Raphson algorithm to maximize the approximate

conditional expected log-likelihood with respect to the parameters. At this step, for the

estimation of the time-varying regression coefficients, we employ a local linear regression

technique (Fan and Gijbels, 1996). In terms of inference, we study the performance of

model-based standard errors in TV-JM and provide practical guidance.

Our motivating data for this project comes from the Women’s Interagency HIV

Study (WIHS) which started during 1994 and became the largest HIV cohort of women

in the United States till date. This study indicated several alarming trends, for example,

the cases of AIDS among women increased three times (89%) that of men (29%) between
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1990 and 1994. The 1994 rate of AIDS cases among African-American women was twice

that of Hispanic and seventeen times that of Caucasian women. By 1995, HIV infection

had become the third leading cause of death among U.S. women between ages 25 and 44

and the leading cause of death among African-American women in this age group. This

increment in HIV infection among women, especially from the under-represented groups,

needed further research to monitor the progression of HIV, time to AIDS, and survival

after AIDS, particularly among women. For this purpose, WIHS was established and one

of the many objectives of this study was to investigate nutritional, sociodemographic, and

behavioral risk factors that may be associated to the rate of the disease progression and

time to death. It is known from previous HIV studies (Abrams et al., 1994) that the

percentage of CD4+ T cells is a biomarker of HIV progression. The number of these immune

cells declines in HIV infected patients, leaving them vulnerable to opportunistic infections,

which eventually may lead them to acquired immunodeficiency syndrome (AIDS) and even

death. Therefore, it is important to monitor the changes in CD4 with time, conditioned on

potential risk factors. Furthermore, it will be of interest to investigate how these factors

affect the survival of the patients in long run. Since CD4 percentage and time to death

are associated, exploring the changes in this association over years would be of utmost

importance as well. In order to accomplish these goals, marginal models were employed

in literature, where a linear mixed model was used to fit the CD4 measurements, and

the time-to-death outcome was fitted using a Cox model with observed CD4 percentage

as time-dependent predictor (Kalish et al., 1999). As CD4 percentage is an endogenous

variable, that is, the values of this variable are generated from within the subject and the
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survival of the subject is essential in order to obtain these measurements, in other words,

since the relationship between the two outcomes is bidirectional, this approach may result

in inefficient and biased estimates (Tsiatis and Davidian, 2004; Sweeting and Thompson,

2011). In order to avoid these drawbacks of marginal modeling, we propose joint modeling

of CD4 percentage and time to death as the longitudinal and the time-to-event outcomes,

respectively.

In addition to estimating the association and response-predictor relationships, we

aim to explore the dynamic pattern of these features. The existing joint modeling method-

ologies for the analysis of WIHS data may provide us with the information on which factors

are possibly associated with the progression of HIV or death, but fails to fully capture their

dynamic effects on the two outcomes. Our main contribution to statistical literature is

to bring two modeling techniques together, that is, we combine varying coefficient models

with the joint modeling framework. Our joint modeling approach will provide an estimation

framework to obtain both response-predictor and response-response associations efficiently,

and the time-varying coefficients will capture the complex dynamic nature of these relation-

ships. Precisely, the introduction of this new class of joint models, that is, time-varying joint

models, will significantly improve the flexibility of the existing joint model methodologies.

Though the motivation of our model came from the WIHS data, the applicability of these

methods go well beyond the study of HIV/AIDS.

In the second part of this dissertation, we perform a novel application of the

generalized varying coefficient models (GVCM) to investigate the effects of socioeconomic

mobility and major later-life events on the purpose in life during midlife and older adulthood.
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This project was motivated by the Midlife in the United States (MIDUS) study. This data

consists of longitudinal responses from three waves on purpose in life (PIL) scores of English-

speaking adults in the U.S. along with their demographic variables, namely, gender, race,

age, socioeconomic status during childhood and adulthood, and major life events such as

retirement and widowhood. The data has a significant amount of missing observations

(46%) and before application of the GVCM, it is necessary to investigate the performance

of this method under missing data. Therefore, we perform extensive simulation studies to

show that the estimation procedure under GVCM produces accurate and efficient estimates.

Finally, we analyze MIDUS data to explore the time-varying changes in PIL scores based

on social mobility, demographic status, and major life events.

This dissertation is organized as follows. Chapter 2 provides a detailed review

of the statistical concepts that are relevant to the development of our modeling scheme.

In Chapter 3, we introduce our new time-varying joint model (TV-JM) for longitudinal

and time-to-event processes. We describe our estimation procedure based on the EM algo-

rithm and local linear regression techniques, and discuss the practical issues related to the

estimation. We conduct simulation studies to demonstrate the finite sample behavior of

our estimators and we further illustrate the proposed methodology by analyzing the WIHS

data. In Chapter 4, we briefly discuss our motivation behind the analysis of purpose in life

and describe the MIDUS data in details. We present the estimation procedure of general-

ized varying coefficient models (GVCM), and provide a brief literature review on missing

data mechanisms to show how these challenges are overcome by the GVCM. We conduct

simulation studies to demonstrate the performance of GVCM under the missing at random
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mechanism. Finally, we present the analysis results of the MIDUS data. In Chapter 5, we

present our conclusions and describe some future research topics.
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Chapter 2

Literature Review

In this chapter, we briefly review statistical concepts that are relevant to the de-

velopment of our novel methodology, namely, methods for longitudinal and time-to-event

(survival) data, varying-coefficient models (VCMs), and joint modeling techniques for longi-

tudinal and survival outcomes. In Sections 2.1 and 2.2, we review literature on longitudinal

and survival data analyses, respectively. A brief summary on VCMs along with estima-

tion procedures and inference are presented in Section 2.3. Finally, Section 2.4 focuses on

existing methods developed for joint modeling of longitudinal and survival outcomes.

2.1 Longitudinal Data Analysis

Longitudinal data arises mostly in health and medical sciences, where measure-

ments are taken from the same set of subjects repeatedly over time. There are several

challenges in modeling longitudinal data. First, even though the subjects are assumed

to be independent of each other, within subject dependence exists due to the repeated
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measurements on the same subject. Therefore, traditional regression models, where all

the observations are assumed to be independent, cannot be applied to analyze longitudi-

nal data. Additionally, measurement times and number of observations may differ among

subjects either due to the design of the study or subjects dropping out or missing their

scheduled visits during the study.

A useful parametric statistical tool that accounts for the aforementioned challenges

is the linear mixed effects model

Yi = XT
i β + ZT

i ξi + εi,

ξi ∼ N(0,Σξ), (2.1)

εi ∼ N(0, σ2Ini),

where, for the ith subject, i = 1, . . . , n, Yi = (Yi1, . . . , Yini)
T is the response vector, Xi is the

corresponding design matrix for the fixed effects β = (β1, . . . , βp)
T, Zi is the design matrix

for the corresponding random effects ξi = (ξi1, . . . , ξiq)
T, εi is the biological error, and Ini

is an identity matrix of order ni. Note that, in these models, ξi and εi are assumed to be

independent. One advantage of these models is, due to inclusion of the random effects, they

are flexible enough to accommodate different intercepts and slopes for different subjects,

allowing us to observe subject-specific response profiles over time. Another flexibility of this

model is that it can be employed to analyze longitudinal data with irregular measurement

times and number of measurements, that is, subjects can be measured at different time

points and different number of times. In the case that the specified random effects model

is not sufficient to handle the dependence structure among the repeated measurements,

an extension of this model can be considered by assuming εi ∼ N(0,Σi), where Σi is an
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ni × ni covariance matrix, which depends on the ith subject only through its dimension.

In this way, we can specify different correlation structures for different subjects. Several

well-known correlation structures, such as, uniform, exponential, first order autoregressive,

Gaussian, and even an unstructured correlation matrix can be used in this situation.

Estimation of the parameters is often performed via the maximum likelihood es-

timation principles. As the longitudinal observations of the ith subject are marginally

correlated due to the vector of shared random effects ξi, we rely on the assumption that

the repeated measurements for the ith subject are conditionally independent given their

random effects,

f(Yi|ξi,θ) =

ni∏
j=1

f(Yij |ξi,θ).

The marginal density for the ith subject f(Yi,θ) =
∫
f(Yi|ξi,β, σ2)f(ξi,θξ)dξi has a closed

form solution and marginally the response for the ith individual Yi ∼ Nni(X
T
i β,Vi), where

Vi = ZT
i ΣξZi + σ2Ini . The log-likelihood for the full parameter vector θ is given by

`(θ) =
n∑
i=1

log f(Yi,θ) =
n∑
i=1

log

∫
f(Yi|ξi,β, σ2)f(ξi,θξ)dξi, (2.2)

where θ = (βT, σ2,θT
ξ )T, with θξ as a vector containing the parameters from Σξ. If Vi is

known, maximizing (2.2) gives us the maximum likelihood estimates (MLEs) of the fixed

effects, which are same as the generalized least squares estimates obtained via

β̂ =

( n∑
i=1

XiV
−1
i XT

i

)−1 n∑
i=1

XiV
−1
i Yi. (2.3)

In case Vi is unknown, it can be substituted by its estimate V̂i in (2.3), but the maximum

likelihood estimator obtained via maximizing `(θξ, σ
2) produces a biased estimator when

the sample size is small. A restricted maximum likelihood (REML) approach can be imple-

mented to overcome this drawback, where the estimation of Vi is performed using iterative
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algorithms, such as Expectation-Maximization (EM; Dempster et al., 1977) or Newton-

Raphson. The application of these numerical methods to linear mixed effects models can

be found in Laird and Ware (1982) and Lindstrom and Bates (1988), respectively.

Verbeke and Lesaffre (1997) studied the asymptotic behavior of the estimators

given in equation (2.3) and showed that for normally-distributed random effects, the MLEs

of the model parameters are consistent and asymptotically normal with inverse Fisher’s

information as the asymptotic covariance matrix. However, for non-normal random effects,

even though the properties of consistency and asymptotic normality are valid, a sandwich

type correction to the Fisher’s information matrix is required to obtain an appropriate

asymptotic covariance matrix.

A generalization of model (2.1) is the generalized linear mixed effects model

g{E(Yij |ξi)} = XT
ijβ + ZT

ijξi,

where the conditional distribution of Yij given the random effects ξi follows a distribution

f(Yij |ξi;β) from the exponential family, the repeated measurements, Yi1, . . . , Yini , are as-

sumed to be independent given ξi, and ξi = (ξi1, . . . , ξiq)
T is a set of random effects assumed

to follow a Gaussian distribution with zero mean and covariance matrix Σξ. The estimation

of the parameters in these models are performed via the maximum likelihood estimation

techniques. To derive the likelihood function of the parameters, the random effect ξi is

treated as a set of unobserved variables and is integrated out as follows

L(β,θξ; Y) =

n∏
i=1

∫ ni∏
j=1

f(Yij |ξi;β)f(ξi;θξ)dξi,
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where θξ is a vector containing the parameters from Σξ. The maximum likelihood estimates

of all the parameters are obtained by solving the following observed score equations,

Sβ(β,θξ|Y) =

n∑
i=1

ni∑
j=1

Xij

[
Yij − E{µij(ξi)|Yi}

]
= 0,

and Sθξ(β,θξ|Y) =
1

2
Σ−1
ξ

{ n∑
i=1

E(ξiξ
T
i |Yi)

}
Σ−1
ξ −

n

2
Σ−1
ξ = 0,

where µij(ξi) = E(Yij |ξi). If the response follows a Gaussian distribution, the score equa-

tions have closed form solutions, whereas for most non-Gaussian distributions, numerical

methods such as EM algorithm can be adopted. EM algorithm iterates between E-and M-

steps, where the E-step evaluates the expectations in the score equations using the current

values of the parameters, and the M-step solves the score equations to produce the up-

dated parameter estimates. For higher dimensional random effects, due to computational

challenges, using Monte Carlo integration is more reasonable than numerical integration

methods.

The last topic we discuss in this section is generalized linear mixed models for

count data. Assuming that, conditional on the random intercept ξi, the longitudinal count

observations Yi1, . . . , Yini are independent of each other, and follows a Poisson distribution

with

logE(Yij |ξi) = ξi + XT
ijβ + log(tij),

where {tij : i = 1, . . . , n; j = 1 . . . , ni} are the time points when repeated measurements

were taken. Given that Yi· =
∑ni

j=1 Yij , the conditional likelihood of the parameters are

given by

n∏
i=1

 Yi·

Yi1, . . . , Yini

 ni∏
j=1

(
tij expXT

ijβ∑ni
l=1 til expXT

ilβ

)Yij
,
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where the contribution of the ith subject is a multinomial probability with

πij =
tij exp(XT

ijβ)∑ni
l=1 til exp(XT

ilβ)

representing the probability that each of the Yi· events will belong to the jth category, for

j = 1, . . . , ni. The estimates are obtained by the method of maximum likelihood.

2.2 Survival Data Analysis

Time-to-event data is collected in numerous applied fields, such as, sociology

(Turnbull and Weiss, 1978), epidemiology (Lagakos et al., 1988), medicine (Avalos et al.,

1993), and demography (Hyde, 1980). Examples of such data are time to appearance of

tumor, heart attack, death after a transplant, failure of a machine, or recovery from a

disease after treating with certain medications. In most time-to-event studies, inference

becomes challenging due to loss to follow-up and censoring. Loss to follow-up occurs if

information of an active participant in a study is lost after a certain period due to the

sudden withdrawal of the individual from the study. If a subject under investigation does

not experience the event during the pre-specified study period, we say that observation is

“censored”. Censoring can be left, right, or interval depending on the situation. If the event

occurs after the study period ends, that individual is considered to be right censored. For

example, in an animal study, after certain treatments, time to develop a disease of the mice

are recorded. If a mouse relapses due to the disease during the follow-up period, the exact

event-time is known. But if death does not occur during the follow-up period, the mouse

is sacrificed after the specified study period ends, due to budget and time constraints, and

that observation is known to be right censored. Left censoring arises when the event occurs
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before the investigation was started. For example, if a person is asked when was the first

time they started smoking, and the response is that sometime during high school but cannot

remember the exact age, which indicates that the event occurred before the observational

period.

Let T be a non-negative random variable from a homogeneous population denot-

ing the time until occurrence of a specified event for an individual. Four functions, namely,

survival (or reliability) function, hazard (or risk) function, probability density (or proba-

bility mass) function, and mean residual life at time t characterize the distribution of T.

Knowing either of these four functions, uniquely defines the rest of the functions. Life-time

distribution can be discrete or continuous depending on the study. Usually time is consid-

ered to be continuous, but due to rounding in measurement, grouping of event-times into

intervals, or simply because of integral values of life-time, T can take discrete values.

The survival function is defined to be the probability that an individual will ex-

perience the event after time t. In the continuous case, the survival function is defined

as S(t) = P (T > t). This is a monotone non-increasing function, and for right-censored

data, equals to one at the beginning of time and approaches zero as time tends to infinity.

These basic properties do not change with the change in values of any parameters of the

distribution of T. Therefore, this function is not much informative in determining underly-

ing failure patterns, but useful when comparing two or more mortality patterns. Different

techniques are required for analyzing discrete life-time distributions. In this project, we

only consider the continuous case.
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Next, we consider the hazard function. Let ∆t be an arbitrary time interval.

Hazard is considered to be the conditional probability that an individual who has survived

until time t, will die (or experience the event) at the next instant of time. The hazard

function is

h(t) = lim
∆t→0

P [t ≤ T < t+ ∆t|T ≥ t]
∆t

,

where the condition inside the probability, that is, (T ≥ t) indicates that the individual was

alive at least until time t. The expression (t ≤ T < t+ ∆t) implies that the individual was

alive at exact time t but will not survive until (t+ ∆t). The limiting condition on ∆t is to

ensure that the person experiences the event in the next instant of time t, in other words,

failure occurs within an infinitesimal time after t.

Practically, the most common shape of hazard function is increasing in nature,

which is appropriate to describe the hazard associated with natural aging of an individual

or wear and tear of machines, but it can be of any other shapes. For example, a hump

shaped hazard function describes the failure of a patient after some kind of surgery or

organ transplant, when risk is high immediately after the transplant, but starts decreasing

after a certain period of time. In demography, it is a commonly known fact that the

mortality of children under five years is high, it stabilizes as an infant grows up and again

starts increasing after middle age. A bathtub-shaped hazard function is appropriate for

this kind of data. A decreasing hazard function might arise due to some electronic devices

which are likely to fail at the beginning of use but eventually the risk of failure decreases.

It can be shown that hazard function can take different shapes for different parameters of

a distribution. For a Weibull distribution, if the shape parameter is a positive fraction,
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the hazard decreases with time. For shape parameter equal to one, Weibull has a constant

hazard and when shape parameter takes a value greater than one, Weibull hazard increases

with time. All these examples indicate that hazard is much useful than survival in examining

the underlying failure patterns of individuals. The only practical restriction on hazard is it

has to be non-negative. A related quantity in this context is the cumulative hazard H(t),

which is important for verification of goodness-of-fit of a model. The relationship between

the survival function and the cumulative hazard is S(t) = exp[−H(t)].

Time-to-event data can be analyzed using parametric, nonparametric, and semi-

parametric techniques. Parametric inference can have several limitations when it comes

to practical application. For example, exponential distribution has a constant hazard rate

making it too restrictive to use in real life data. Hazard function of log-normal and log-

logistic distributions are hump shaped, that is, the hazard increases up to a certain value

depending on the parameters, and thereafter starts decreasing for large values of t. Hence

the usefulness as life-time distributions of these models is criticized in literature, because

this situation might be implausible for most data. Contrary to this, analyzing time-to-event

data using distributions without assumption of any parameters is an efficient solution to this

problem. Nonparametric methods not only provide the underlying empirical distribution

of the population, from which the data is collected, they also help investigate if any known

parametric model fits the data. For our purpose, we will discuss various nonparametric and

semiparametric approaches existing in literature.

Inference methods in this review are based on the assumption that censoring is non-

informative, in other words, censoring time of an individual provides no further information
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of the likelihood of their survival if they would have continued in the study at a future time

point. Censoring time and event-time are independent of each other and the estimators

are based on right censored data. We assign C to the last visiting time of the individual

to indicate it is a censored time. Data can be represented by a set of random variables

(T, δ), where δ = 0 if a subject is censored. In that case, T takes value C. If the subject

experiences the event during the follow-up period, δ = 1 and T equals T. Therefore, we

can observe only T = min(T,C). Let t1 < t2 < · · · < tD be the time points when the

specified event was experienced by the subjects under study. At time tj , the number of

events occurred is dj . Let rj be the number of individuals who are at risk at time tj , that

is, the individuals who are alive, still continuing under the study (that is, not censored

before tj), and/or experience the event at time tj . The estimate of conditional probability,

that a subject who survived just prior to tj , will experience the event at tj , is given by
dj
rj

.

Nonparametric Inference

The most used nonparametric estimator, known as Product-Limit (PL) estimator,

introduced by Kaplan and Meier (1958) is

Ŝ(t) =


1, if t < t1

∏
tj≤t[1−

dj
rj

], if t1 ≤ t.

The variance of the PL estimator is given by Greenwood’s formula (Greenwood, 1926)

V̂ar[Ŝ(t)] = Ŝ(t)2
∑
tj≤t

dj
rj(rj − dj)

.

As Klein (1991) discussed, though Greenwood’s variance estimator of Ŝ(t) tends to under-

estimate the true variance of Kaplan-Meier estimator for small to moderate sample sizes, it
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comes closest to the true variance of the PL estimator and has a smaller variance in compar-

ison to other variance estimators, except when rj is very small. Kaplan and Meier (1958)

have shown that the PL estimator is the nonparametric maximum likelihood estimator of

survival function. It is also approximately unbiased, consistent, and for fixed time t, has

approximate normal distribution.

Semiparametric Inference

Often researchers are interested in comparing time-to-event data for two or more

groups, for which additional features of subjects might have been recorded. In this model,

the response is a set of variables, that is, the observed time to event along with the event

indicator. The covariates are the (treatment) groups that are of interest and other relevant

explanatory (or predictor) variables that might have effect on life time. For example, demo-

graphic variables, such as age, gender, race, education, income; behavioral variables such

as alcohol consumption, smoking habits, level of physical activities, diet; or physiological

variables such as blood pressure, glucose level, heart rate, may be used as predictors in a re-

gression model because these explain the response variable. These predictors might be fixed

throughout the course of the study, such as gender and race, or may be time-dependent,

such as age and blood pressure. The multiplicative hazard model introduced by Cox (1972),

commonly known as proportional hazard model, with fixed covariates, are commonly used

to model these data.

Let T denote the true time to event. Data is collected from n subjects and is based

on the triplet (Ti, δi,Xi), i = 1, 2, . . . , n, where Ti is the observed event-time (minimum of

the true event-time Ti and the censoring time Ci) for the ith patient, δi is the indicator
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variable which equals to 1 if the event has occurred and 0 if the patient is right-censored,

and Xi = (Xi1, . . . , Xip)
T is the vector of fixed (time-invariant) predictors. If h(t|X) is the

hazard of an individual at time t with vector of predictors X, then a basic model proposed

by Cox (1972) is h(t|X) = h0(t)c(XTβ), where h0(t) is known as the baseline hazard and is

treated nonparametrically. Here, c(XTβ) is a known function and β = (β1, β2, . . . , βp)
T is

a vector of parameters implying that a parametric form is assumed for the covariate effects.

Hence this model is known as semiparametric. Since hazard must be positive, a common

form of c(XTβ) is assumed to be exponential. Hence,

h(t|X) = h0(t) exp(XTβ) = h0(t) exp

(∑p
k=1Xkβk

)
. (2.4)

This model is known as the proportional hazard model because it can be shown that the

ratio of the hazards of two individuals, with covariates X and X∗, at a given time t, yields

a constant equal to exp

[∑p
k=1(Xk −X∗k)βk

]
, and this quantity is known as the relative

risk of experiencing the event for an individual with covariate X over an individual with

covariate X∗, at a given time t.

The response is the set of variables (Ti, δi), for i = 1, 2, . . . , n, dependent on the

predictors (or the independent variables), which include discrete (heart rate), continuous

(age, blood sugar), and categorical (race, gender) variables. The model can be interpreted

as follows. Suppose, we want to know the effect of a treatment on three different races,

namely, Caucasian, African-American, and Hispanic, for which, two binary variables can

be used. Let X1 = 1, if a patient is Caucasian, 0 otherwise; and X2 = 1, if a patient is

African-American, and 0 otherwise. Using equation (2.4), we can interpret that the haz-

ard for a Caucasian patient is h0(t) exp(β1), the hazard for an African-American patient is
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h0(t) exp(β2), and that of a Hispanic patient is h0(t). Hence the relative risk that a Cau-

casian and an African-American patient will experience the event over a Hispanic patient,

at a given time t, is given by exp(β1) and exp(β2), respectively, whereas that of a Caucasian

over an African-American patient is given by exp(β1 − β2). Note that h0(t) need not be

known when comparing the risk of two groups.

For the construction of likelihood of the parameters in the proportional hazard

model, censoring is assumed to be non-informative, that is, the event-time and the censoring

time for the ith subject is independent. Depending on whether ties are present among event-

times or not, various likelihoods of the parameters can be constructed. When there is no tie

among the event-times, we have exactly one individual having event-time tj , that is dj = 1

for all j = 1, 2, . . . , D. We also define a risk set at time tj as R(tj), which contains all

the individuals who are continuing in the study just prior to tj , out of which exactly one

subject will experience the event at time tj . The partial likelihood based on the proportional

hazard model in (2.4) is given by a product of the ratios, taken over all the time points,

where the numerator is the hazard of the subject who experienced the event at tj , and

the denominator consists of the information of hazard on all the subjects exposed to the

event at that time point, that is, subjects belonging to the risk set R(tj). Equating partial

derivatives of the log of the likelihood, with respect to the parameters, to zero, yields the

efficient score equations. Using Newton-Raphson or any other iterative method produces

the maximum likelihood estimates of β. To test the null hypothesis H0 : β = β0, we can

adopt large sample approaches such as Wald’s test, likelihood ratio test, or score test. All

three test statistics asymptotically follow chi-square distribution with p degrees of freedom,
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under the null hypothesis. Wald’s statistic and the likelihood ratio test statistic have similar

rate of convergence, and converges to the limiting chi-square distribution faster than the

score statistic. In presence of ties, three different partial likelihoods can be constructed as

suggested by Cox (1972), Breslow (1974) and Efron (1977). For small number of ties, the

likelihood proposed by Breslow (1974) works well and is similar to Efron’s likelihood. The

likelihood proposed by Cox (1972) assumes a logistic hazard model for discrete event-times.

When there are no ties, all three likelihoods reduce to the partial likelihood discussed above

for no ties. To estimate the cumulative hazard or survival function from Cox’s model, the

baseline hazard must be fitted. For fixed values of β, the complete censored-data likelihood

(Johansen, 1983) can be treated as a function of h0(t) and the value ĥ0(t) for which the

profile likelihood is maximized, can be treated as an estimate of the baseline hazard, at a

given time t.

Comparison of Nonparametric and Semiparametric Methods

Despite being the most frequently used estimator of survival function, the PL

estimator has its limitations. This estimator is based on the assumption of non-informative

censoring. Violation of this assumption may incur bias in estimation. Also, PL estimator is

not well defined for any time point larger than the biggest observed time tmax. If tmax is a

true event, this estimator is well defined and the estimated survival beyond this point is zero.

But if tmax is a censoring time, problem arises in estimation. Assuming Ŝ(t) = 0 beyond

tmax leads us to assume that all the individuals will experience the event immediately after

the study is over, and this causes negative bias in estimation. Approximating Ŝ(t) by

Ŝ(tmax) for all t > tmax implies that an individual will experience the event at infinity, and
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this causes positive bias in estimation. A solution to this problem is to complete the tail

by an exponential or Weibull distribution starting at tmax.

Another limitation of the PL estimator is that it does not allow for the analysis of

the effect of covariates on survival of the individuals. The proportional hazard model can

be used as a solution to this problem under semiparametric framework. When comparison

between groups are of interest over the underlying pattern of hazard, Cox’s model works

the best. For example, at a given time point, if the mortality in the control group is twice as

much as that of the treatment group, knowledge of the hazard distribution for each group

becomes unnecessary, because the proportional hazard model can provide the relative risk of

two groups at a given time without any assumption of the underlying hazard distributions

of the two populations from which the patients in two groups were selected. But one

should be careful about the proportionality assumptions before fitting Cox’s model to the

data. Several graphical checks exist in literature to verify the proportionality assumption

in this hazard model (Andersen, 1982; Klein and Moeschberger, 2005). For example, if a

binary predictor X truly fits the proportional hazard model, the plot of the difference of

the logarithms of the estimated hazards (or cumulative hazards), given X = 1 and X = 0

respectively, versus time t, should yield a line equal to the corresponding coefficient of X

in (2.4). If the proportionality assumption does not hold for a predictor, that variable can

be stratified in a way, so that, different strata have different baseline hazard functions, but

within each stratum, the assumption holds for all the predictors.

Cox’s model assumes the effect of the predictor variables are time-invariant, only

the baseline hazard changes as a function of time. But as mentioned earlier, covariates can
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change its values during the course of the study, affecting the risk of experiencing the event

of the individuals. A few methods were discussed by Klein and Moeschberger (2005). In one

method, instead of using the fixed covariate vector Xi, the covariate information for the ith

individual at time tj is considered to be Xi(tj). Inference can be performed following the

usual methods discussed above for Cox’s model. The problem with this model is that, the

coefficients of the covariates are considered to be fixed over time. Another possible solution

is to use the time-varying covariate as an indicator variable where it changes value from 0

to 1 after the occurrence of an intermediate event. If proportional hazard is not satisfied for

a binary predictor X1, a time-varying predictor X2 = X1.g(t) can be introduced, where g(t)

is a function of time, but often the form of g(t) is unknown, making it difficult to analyze

the effect of time. A piece-wise proportional hazard model (Matthews and Farewell, 1982)

can be considered to find the sudden “change point” of the effect of a covariate, but neither

of these methods allow for the continuous effect of time on survival.

2.3 Varying Coefficient Models (VCM)

In statistical data analysis, when the main interest is in investigating the rela-

tionship between two or more variables, we often employ parametric regression models.

However, despite being popular and widely used in literature, they cannot capture the dy-

namic features of the data. For instance, in longitudinal studies, repeated measurements

on weights of infants (response) born from HIV infected mothers are dependent on mater-

nal vitamin A levels (predictor), where the regression coefficient of the predictor may vary

as a function of time (Hoover et al., 1998). In ecological studies, it is believed that net
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ecosystem exchange of CO2 (response) varies as a nonlinear function of photosynthetically

active radiation (predictor), where the regression coefficients change depending on the tem-

perature (Kürüm et al., 2014). In both of these real-life applications, the aforementioned

parametric regression models would have assumed that these coefficient functions would

be constant/time-invariant and miss the dynamic structure in these studies, which would

have resulted in large modeling bias and incorrect inference. To increase the flexibility of

traditional regression models and to reduce modeling bias, varying coefficient models were

introduced (Cleveland et al., 1991; Hastie and Tibshirani, 1993) as

Y = XTβ(U) + ε, (2.5)

where Y is the response variable, X = (X1, X2, . . . , Xp)
T is the vector of predictors with

the corresponding regression coefficients β(U) = {β1(U), β2(U), . . . , βp(U)}T, which are

assumed to vary as functions of the scalar variable U , and ε is the random error with the

conditional mean 0 and conditional variance σ2(u). Note that, in this section, U will be

referred to as the “covariate”.

The coefficient functions in model (2.5) can be estimated by three different meth-

ods, namely, local polynomials (Hoover et al., 1998), polynomial splines (Huang and Shen,

2004), and smoothing splines (Hastie and Tibshirani, 1993). Polynomial splines and smooth-

ing splines usually require relatively larger number of parameters, whereas local polynomials,

specifically, local linear techniques, can adequately approximate the regression functions lo-

cally around the neighborhood of a point u with only two parameters (Fan and Gijbels,

1996). Therefore, we choose to use local linear fitting technique for estimation of the coef-

ficient functions in this dissertation, where instead of increasing the number of parameters
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globally, we divide the domain of the covariate U in several neighborhoods, and locally solve

linear regression problems in these neighborhoods.

Local polynomial regression is originally a weighted least squares fitting problem,

where the weight Kh(·) = h−1K(·/h), known as kernel, is a real valued and symmetric

function with a smoothing parameter (or bandwidth) h defining the size of the local neigh-

borhood. Several kernel functions, namely, uniform, triangular, quartic, triweight, tricube,

Gaussian, and cosine, are available for estimation. In our method, we use Epanechnikov

kernel, K(x) = 3
4(1−u2), because of its desirable asymptotic properties, such as the smallest

bias and variance (Fan and Gijbels, 1996).

In this local linear estimation technique, we start by approximating the local re-

gression function at each point u, by the local linear regression βk(ui) ≈ βk(u) +β′k(u)(ui−

u) ≡ ak + bk(ui − u), using Taylor’s expansion, for all k = 1, 2, . . . , p, and for ui in the

neighborhood of u, where β′k denotes the first order derivative of βk. This is a special case

of local polynomials, where the degree of the local polynomials are one. We minimize the

least squares function

n∑
i=1

[
Yi −

{
XT
i a + XT

i b(Ui − u)
}]2

Kh(Ui − u)

with respect to the local parameters a = (a1, . . . , ap)
T and b = (b1, . . . , bp)

T to estimate

these coefficient functions. The estimators which minimize this function are given by β̂ =

â = (â1, . . . , âp)
T and β̂

′
= b̂ = (b̂1, . . . , b̂p)

T. β̂(u) is the linear estimator of β(u) and is

asymptotically normally distributed according to the results presented by Zhang and Lee

(2000).
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Theorem 1. Under the conditions provided by Zhang and Lee (2000), we have

Cov−1/2{β̂(u)}
[
β̂(u)− β(u)− bias{β̂(u)}

]
D→ N(0, Ip),

where

bias{β̂(u)} =
1

2
µ2β

′′(u)h2, and Cov{β̂(u)} =
{
nhf(u)E(XXT|U = u)

}−1
ν0σ

2(u),

µκ =
∫
uκK(u)du, νκ =

∫
uκK2(u)du, f(u) is the marginal density of U , X = (X1, . . . ,Xn)T,

and Ip is the identity matrix of order p.

The choice of bandwidth plays a crucial role in the estimation of the coefficient

functions. When a coefficient function is simple and homogeneous in nature, a large and

constant bandwidth is sufficient. However, if the function is complex, that is, with irregular

crests and troughs, a smaller bandwidth becomes essential to accurately approximate and

capture the trends in the coefficient function. A smaller bandwidth helps to reduce the

modeling bias by assigning more weights to the closest neighboring observations around u,

but due to the smaller size of the neighborhood, only a few observations are considered

for the estimation, which may increase the variance of the estimator. On the other hand,

a larger bandwidth implies that the local weights are distributed to more number of data

points. This helps controlling the variance, but may increase the modeling bias due to

inaccurate approximations led by the inclusion of observations which are far away from u.

Hence, we need to find an optimal bandwidth for this bias-variance trade-off. The cross-

validation technique is widely used for the selection of the bandwidth. In this technique,

the ith observation is removed to fit the model to the data, for all i = 1, 2, . . . , n, and

the corresponding residual sum of squares (RSE) is calculated in each step. An optimal
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bandwidth is the one which minimizes the cross-validation score CV (h) =
∑

i(Yi − Ŷ−i)2,

where Ŷ−i is the fitted value with ith observation excluded. This method assumes that

all coefficient functions in the model (2.5) have the same level of smoothness. Zhang and

Lee (2000) proposed a variable bandwidth selection procedure for estimating complicated

coefficient functions having different degrees of smoothness.

A generalization of model (2.5) to a generalized linear regression setting was pro-

posed by Cai et al. (2000). They employed a local maximum likelihood estimation (MLE)

procedure to estimate the varying coefficients in the model

g{m(u,x)} =

p∑
k=1

βk(u)xk,

where m(u,x) is the conditional mean regression function of the response Y given X = x

and U = u. For each given point u, the coefficient function for the ith individual, βk(ui) is

approximated by a local linear regression βk(ui) ≈ ak+bk(ui−u) for ui in the neighborhood

of u, where ak = βk(u) and bk = β′k(u). With a = (a1, . . . , ap)
T and b = (b1, . . . , bp)

T as

the parameters, the local likelihood function,

`(a,b) =
1

n

n∑
i=1

`

(
g−1

[ p∑
k=1

{
ak + bk(Ui − u)

}
Xik

]
, Yi

)
Kh(Ui − u)

is maximized to obtain β̂ = â = (â1, . . . , âp)
T and β̂

′
= b̂ = (b̂1, . . . , b̂p)

T, the MLE of a

and b, respectively. Due to the generalized linear relationship between Y and X, it is not

possible to obtain closed form solutions for â and b̂ for non-Gaussian distributions. An

iterative maximum likelihood technique using Newton-Raphson algorithm can be used to

estimate the parameters, but that is computationally expensive due to the use of cross-

validation as the selection procedure of the bandwidth, the presence of many predictors,
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and most importantly because the likelihood is to be maximized for numerous values of u.

Hence, Cai et al. (2000) proposed a one-step estimator of the parameters using Newton-

Raphson algorithm. Let β̂0 be a given initial estimator of β, and if `′(β) and `′′(β) be

the gradient and hessian of the likelihood `(β) = `(a,b) respectively, then the proposed

one-step estimator is given by

β̂OS = β̂0 − {`′′(β̂0)}−1`′(β̂0).

Cai et al. (2000) derived the following theorem to show the asymptotic normality of the

estimators obtained using the iterative likelihood algorithm.

Theorem 2. Under the conditions provided by Cai et al. (2000), when h = hn → 0, and

nh→∞ as n→∞,

√
nh

[
H
{
β̂(u)− β(u)

}
− h2

2(µ2 − µ2
1)


(µ2

2 − µ1µ3)β′′(u)

(µ3 − µ1µ2)β′′(u)

+ op(h
2)

]
D→ N(0,∆−1Λ∆−1)

Furthermore, for a symmetric kernel function K(·),

√
nh

{
β̂(u)− β(u)− h2µ2

2
β′′(u) + op(h

2)

}
D→ N{0,Σ(u)},

where µκ =
∫
uκK(u)du, νκ =

∫
uκK2(u)du, H = diag(1, h) ⊗ Ip, ⊗ is the Kronecker

product, Ip is the p× p identity matrix, Σ(u) = ν0Γ
−1(u)/f(u) with f(u) as the marginal

density of U , Γ(u) = E
[
ρ(U,X)XXT|U = u

]
, ρ(u,x) = [g1m(u,x)]2Var(Y |U = u,X = x),

g1(·) = g
(1)
0 (·)/g(1)(·), g0(·) is the canonical link,

∆ = fU (u)

 1 µ1

µ1 µ2

⊗ Γ(u), and Λ = fU (u)

ν0 ν1

ν1 ν2

⊗ Γ(u).

They have also proved under the conditions of Theorem 2, if the initial estimator β̂0 satisfies

H(β̂0 − β) = Op
{
h2 + (nh)−1/2

}
, the one-step local MLE β̂OS has the same asymptotic
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distribution as the fully iterative MLE β̂, and hence using the one-step estimator increases

the computational efficiency significantly, without sacrificing asymptotic performance. They

have also proposed a nonparametric maximum likelihood ratio test as a test of significance

of the parameters, as well as to investigate if the coefficient functions are really varying.

The asymptotic normality of the null distribution of their test statistic was established by

a conditional bootstrap method. Please refer to Cai et al. (2000) for further details.

The extension of varying coefficients to a nonlinear setting was proposed by Kürüm

et al. (2014). In their model, the relationship between the response for the ith subject, that

is, Yi, and the corresponding predictors Xi is allowed to be a nonlinear function as follows

Yi = f{Xi,β(Ui)}+ εi, (2.6)

where f(.) is a pre-specified function. Estimation under this framework has challenges.

First, although pre-specified, f(.) can be nonlinear; therefore, closed form solutions for the

local parameters may not exist. Second, using Newton-Raphson algorithm for estimation

may lead to a Hessian matrix that is not positive definite. Hence, in order to overcome

these problems, Kürüm et al. (2014) proposed an iterative local linear search algorithm,

where they minimized the local least squares,

`(a,b) =
n∑
i=1

[
Yi − f

{
Xi,a + b(Ui − u)

}]2

Kh(Ui − u)

with respect to the parameters a and b, to obtain the local estimators â and b̂, respectively.

During the course of the algorithm, they updated the estimates as followsa(κ+1)

b(κ+1)

 = (FT
κWFκ)−1FT

κWYκ,
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where a(κ+1) denotes the (κ + 1)th iteration for estimating a, F = Fκ is an n× 2p matrix

with the ith row as

[
f ′T
{
Xi,a

(κ) + b(κ)(Ui − u)
}
, (Ui − u)f ′T

{
Xi,a

(κ) + b(κ)(Ui − u)
}]
,

W = diag{Kh(U1 − u), . . . ,Kh(Un − u)}, and Yκ = (Y1,κ, . . . , Yn,κ)T with

Yi,κ = Yi − f
{
Xi,a

(κ) + b(κ)(Ui − u)
}

+
{
a(κ) + b(κ)(Ui − u)

}T
f ′
{
Xi,a

(κ) + b(κ)(Ui − u)
}
.

The solution of this iterative linear search algorithm satisfies `(a,b) = 0. Kürüm et al.

(2014) proved the following theorems to present the asymptotic normality of these esti-

mators and to derive the consistent estimator of their asymptotic variances. Let θ(u) =

(a1, . . . , ap, b1, . . . , bp)
T, θ̂(u) = (âT, b̂T)T, c(u) as the marginal density of U ,

Γ1(u) = E

(
f ′
{
X;β(u)

}[
f ′
{
X;β(u)

}]T∣∣∣∣U = u
})

p×p
,

and

Γ2(u) = E

(
σ2(u,X)f ′

{
X;β(u)

}[
f ′
{
X;β(u)

}]T∣∣∣∣U = u
})

p×p
.

Theorem 3(a). Under the regularity conditions by Kürüm et al. (2014), as n→∞,

√
nh

[
H
{
θ̂(u)− θ(u)

}
− h2

2(µ2 − µ2
1)


(µ2

2 − µ1µ3)β′′(u)

(µ3 − µ1µ2)β′′(u)

+ op(h
2)

]
D→ N(0,∆−1Λ∆−1),

where

∆ = c(u)

 1 µ1

µ1 µ2

⊗ Γ1(u) and Λ = c(u)

ν0 ν1

ν1 ν2

⊗ Γ2(u).
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Furthermore, for symmetric K(·), it can be shown that, as n→∞,

√
nh

{
β̂(u)− β(u)− h2µ2

2
β′′(u) + op(h

2)

}
D→ N{0,Σ(u)},

where Σ(u) = ν0Γ
−1
1 (u)Γ2(u)Γ−1

1 (u)/c(u).

Theorem 3(b). Under the regularity conditions (Kürüm et al., 2014), as n→∞,

H(FTWF)−1FTWQWF(FTWF)−1H
P→∆−1Λ∆−1,

where Q = diag(e2
1, . . . , e

2
n) with ei = Yi − f

{
Xi, β̂(Ui)

}
. If the errors are assumed to

be normal, their algorithm is same as Fisher’s scoring algorithm, and hence shares its

convergence properties. The consistent estimator of asymptotic variance of the one-step

estimator is given by

Ĉov{θ̂(u)} = (FTWF)−1FTWQWF(FTWF)−1.

It is shown that this iterative algorithm works well only when all of the coefficient func-

tions have same degree of smoothness. For the coefficient functions with different degrees

of smoothness, they have proposed a two-step local linear estimator and used a bootstrap

confidence interval for inferences. Though the two-step algorithm can increase computa-

tional cost, it gains significant efficiency in the estimation. In addition to these estimators,

Kürüm et al. (2014) suggested a generalized F-test for testing the significance and the vary-

ing nature of the coefficient functions, where they proved that the null distribution of the

generalized likelihood ratio test statistic is chi-square.
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Time-varying Coefficient Models

As we described in Section 2.1, repeated measurements of a response, collected

longitudinally from a set of subjects, result in correlated data within each subject, for

which the response-predictor relationships may change over time. Widely used parametric

models specified in Section 2.1 do not allow the coefficients to vary as functions of time

and ignoring the effect of time may induce large modeling bias. Considering time as the

covariate in a VCM, Hoover et al. (1998) proposed the following model,

Yi(t) = XT
i (t)β(t) + εi(t),

where Yi(t) and Xi(t) = {1, Xi1(t), . . . , Xip(t)}T denote the response and the vector of

predictors at time t, respectively, and the measurement times are denoted as t = tij , for

i = 1, . . . , n and j = 1, 2, . . . , ni. The coefficient functions β(t) = {β0(t), β1(t), . . . , βp(t)}T

are allowed to be smooth nonparametric functions and εi(t) is a zero mean stochastic

process. In this model, the subjects were assumed to be independent, but within subject

correlation is present over time. Hoover et al. (1998) derived two nonparametric estimators,

namely, smoothing spline and a locally weighted polynomial. Let us briefly describe the

smoothing spline method here. This method involves minimizing the objective function

J(β,λ) =
n∑
i=1

ni∑
j=1

[
Yi(tij)−

{ p∑
k=0

Xik(tij)βk(tij)

}]2

+

p∑
k=0

λk

∫
{β′′k(t)}2 dt,

where the first term is a measure of the model bias and the second term penalizes the

roughness of the coefficient functions through the positive-valued smoothing parameters λ =

(λ0, λ1, . . . , λp)
T. Large λk gives excessive penalty resulting in oversmoothed coefficients

and small λk produces undersmoothed coefficients. Therefore, the choice of λ becomes
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very important in practice. For a single predictor, a scatter plot of the data may help to

subjectively decide a value for λ, but for more than one predictors, an automated technique

is required. Hence, Hoover et al. (1998) proposed a cross-validation criterion to select the

smoothing parameter λ. In particular, they suggested a cross-validation technique where the

entire set of observations for a subject is left out at a time rather than a single observation,

since the latter approach is inappropriate when there is intra-subject dependence.

Hoover et al. (1998) also derived kernel estimators for the coefficient functions,

which is a special case of the local polynomials, where the local regression function is ap-

proximated by a polynomial of degree zero, and established their asymptotic properties. In

addition, they proved that smoothing splines become advantageous over local polynomials,

due to the presence of multiple smoothing parameters.

Time-varying coefficient models can be extended to generalized linear settings.

Kürüm et al. (2016) suggested these models, which are the extensions of generalized varying

coefficient model proposed by Cai et al. (2000) to longitudinal settings. The outcome

Yi(t) in their model was a binary time-dependent response, which was assumed to have an

underlying normal latent variable Wi(t) = XT
i (t)β(t) + εi(t) and hence, modeled through

the probit link

P{Yi(t) = 1|Xi(t)} = Φ

{
XT
i (t)β(t)

σ(t)

}
,

where Xi(t) = {Xi1(t), . . . , Xip(t)}T is the vector of predictors with corresponding vector

of time-varying coefficients β(t) = {β1(t), . . . , βp(t)}T, and the random error εi(t) follows a

normal distribution with zero mean and variance σ2(t). With tij as the jth measurement
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time for the ith subject, for i = 1, . . . , n and j = 1, . . . , ni, the authors maximized the

following local log-likelihood

`(a,b) =
1

N

n∑
i=1

ni∑
j=1

`

(
g−1

[ p∑
k=1

{
ak + bk(tij − t0)

}
Xik(tij)

]
, Yi(tij)

)
Kh(tij − t)

with respect to a = (a1, . . . , ap)
T and b = (b1, . . . , bp)

T, where (ak, bk) are such that

βk(tij) ≈ βk(t0) + β′k(t0)(tij − t0) ≡ ak + bk(tij − t0), tij in the neighborhood of size h

around t0, h is the bandwidth of the kernel function, g(·) is the link function, and N is the

total number of observations. They proposed an iterative algorithm where the parameters

are updated as follows:a(κ+1)

b(κ+1)

 =

a(κ)

b(κ)

− {`′′(a,b)}−1`′(a,b),

where {a(κ),b(κ)}T denotes the κth iteration for estimating (a,b)T, and the solution of

this iterative linear algorithm satisfies `(a,b) = 0. Kürüm et al. (2016) also studied the

asymptotic behavior of these estimators and showed that they are asymptotically normally

distributed. Please refer to Kürüm et al. (2016) for further details on this method.

Time-varying coefficients can be used for modeling survival data as well. In survival

analysis, the response for the ith subject is a set of variables (Ti, δi). Here, Ti = min(Ti,Ci)

is the observed event-time outcome with the event indicator δi, where δi = 1 if Ti = Ti

(true event-time), and δi = 0 if Ti = Ci (censoring time). The survival of an individual

may be affected by a set of predictors X(t) = {X1(t), . . . , Xp(t)}T, which may include time-

invariant predictors as well. Note that, the time-varying predictors are exogenous. The

most commonly used model for survival data is Cox’s proportional hazard model, where
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Fan et al. (2006) introduced time-varying coefficients as follows,

h(t|X, U) = h0(t) exp

[
β0{U(t)}+ XT(t)β{U(t)}

]
, (2.7)

where β0{U(t)} and β{U(t)} = [β1{U(t)}, . . . , βp{U(t)}]T are unknown coefficient func-

tions depending on time t through an exposure variable U(·). Note that, when U(t) = t,

model (2.7) becomes time-dependent Cox’s hazard model, where the proportionality as-

sumption no longer holds, unless β(t) is time invariant. However, model (2.7) can still be

used to investigate the extent to which the predictors X(t) interact nonlinearly with the

exposure variable U(t). It is notable that the term β0{U(t)} is not incorporated with the

predictors X(t) because the local intercept for β0(·) cancels out in the local partial likelihood

in (2.8) leading to a different estimator rule for β0.

The estimation for the model (2.7) is performed via maximizing the partial likeli-

hood

L{β0(·),β(·)} =
n∏
i=1

[
exp

{
β0(Ui) + XT

i β(Ui)
}∑

jεR(ti)
exp

{
β0(Uj) + XT

j β(Uj)
}]δi ,

where R(t) = {i : Ti ≥ t} is the risk set at time t. By Taylor’s expansion, the local regression

functions at ui, in the neighborhood of u of size h, are approximated by β1k(ui) ≈ β1k(u) +

β′1k(u)(ui−u) ≡ a1k+b1k(ui−u), for all k = 1, 2, . . . , p, and β0(ui) ≈ β0(u)+β′0(u)(ui−u) ≡

a0 + b0(ui − u). Substituting the approximations in the above likelihood, the partial log-

likelihood for a1 = (a11, . . . , a1p)
T, b1 = (b11, . . . , b1p)

T and b0 can be given by

`(a1,b1, b0) =
1

n

n∑
i=1

Kh(Ui − u)δi ×

(
XT
i a1 + XT

i b1(Ui − u) + b0(Ui − u)

− log

[ ∑
jεR(ti)

exp
{

XT
j a1 + XT

j b1(Uj − u) + b0(Uj − u)
}
Kh(Uj − u)

])
, (2.8)
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where Kh(·) is a the kernel function with bandwidth h. Equation (2.8) can be numerically

solved to find estimates of the parameters using the Newton-Raphson or Fisher’s scoring

algorithms. However, these algorithms are computationally costly and in some applications,

due to very few number of data points around u, the local partial-likelihood estimators might

not exist. Hence, Fan et al. (2006) proposed a one-step local partial likelihood estimator

ζ̂OS = ζ̂0 − {`′′(ζ̂0)}−1`′(ζ̂0),

where ζ̂OS is the one-step estimator and ζ̂0 is a given initial value of ζ = {βT
1 , (β

′
1)T, β′0}T,

respectively.

The asymptotic normality of the maximum partial likelihood estimator can be

given by the Theorem 4. Let ζ̂(u) be the maximum partial likelihood estimator of the

vector containing true coefficient functions ζ(u) = {βT
1 (u),β′1(u)T, β′0(u)}T.

Theorem 4. Under the conditions provided by Fan et al. (2006),

√
nh
[
H
{
ζ̂(u)− ζ(u)

}
− 1

2
h2epζ

′′(u)µ2

] D→ N{0,Σ(τ, u)},

where Σ(τ, u) is the covariance matrix, τ is a finite time point up to which the data points

are used, H is a (2p+ 1) order diagonal matrix, with the first p diagonal elements as 1 and

the remaining (p + 1) elements as h, and ep is another diagonal matrix of order (2p + 1)

with the first p diagonal elements as 1 and the rest (p + 1) elements as 0. The authors

proved that under the conditions of Theorem 4, if H(ζ̂ − ζ) = Op{h2 + (nh)−1/2}, then the

one-step estimator ζ̂OS has the same asymptotic distribution as the maximum local partial

likelihood estimator ζ̂, which means that the one-step estimation technique is as efficient

as the fully iterative algorithm. In addition, Fan et al. (2006) derived consistent estimators

of bias and variance of ζ̂.
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The authors proposed a consistent estimator of baseline hazard h0(t) using the

kernel method. The expression for baseline hazard is given as

ĥ0(t) =

∫
Kh(t− s)dĤ0(s),

whereKh(·) is a the kernel function with bandwidth h and Ĥ0(t) is an estimate of cumulative

hazard function

Ĥ0(t) =
1

n

n∑
i=1

∫ t

0

dNi(s)
1
n

∑n
j=1 I(Tj ≥ s) exp{β̂0(Uj) + XT

j (s)β̂(Uj)}

with Ni(s) = I(Ti ≤ s, δi = 1).

2.4 Joint Models

A number of models have been developed for the joint modeling of longitudinal

and survival outcomes. A commonly used modeling framework is the shared-parameter

models. In this approach, the longitudinal and the time-to-event outcomes are assumed

to be conditionally independent given a set of underlying latent variables shared by both

submodels, which in most cases, are included in the form of random effects. Additionally,

these shared parameters or the random effects account for the within subject correlation

of the longitudinal repeated measurements. Note that the longitudinal measurements are

taken from the subjects intermittently and these observations might contain measurement

errors. Therefore, the shared-parameter models focus on modeling the “true” unobserved

longitudinal process to have complete information on the history of the subjects until the

observed event-time. Tsiatis et al. (1995), and Dafni and Tsiatis (1998) proposed a two-stage

approach, where a separate model is fit to each outcome, to estimate the parameters in the
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shared-parameter models. At the first stage of their estimation procedure, empirical Bayes

estimate of the longitudinal outcome was computed at each event-time by using growth

curve models with random effects. In the second stage, a Cox model, where the estimated

longitudinal values were included as a predictor, was fit via a partial likelihood. However,

Wulfsohn and Tsiatis (1997), Tsiatis and Davidian (2004), and Sweeting and Thompson

(2011) argued that estimation methods, where both outcomes are analyzed jointly, yields

more efficient and accurate estimates than the two-stage approaches.

We describe an improved joint likelihood-based method (Wulfsohn and Tsiatis,

1997; Tsiatis and Davidian, 2004) in this section. Let Yi(t) and mi(t) be the respective

observed and “true” longitudinal response for the ith subject at time t = tij , for i = 1, . . . , n

and j = 1, . . . , ni. To account for the subject-specific time dependence, the longitudinal

submodel at time t for the ith subject is given by a linear mixed effects model

Yi(t) = mi(t) + εi(t),

mi(t) = XT
i (t)β + ZT

i (t)ξi, (2.9)

ξi ∼ N(0,Σξ), and εi(t)
iid∼ N(0, σ2),

where Xi(t) = {Xi1(t), . . . , Xip(t)}T is the design matrix for the fixed effects β = (β1, . . . , βp)
T

at time t, and Zi(t) = {Zi1(t), . . . , Ziq(t)}T is the design matrix for the subject-specific ran-

dom effects ξi = (ξ1, . . . , ξq)
T. The random effects ξi and the measurement errors εi are

assumed to be independent of each other.

Let Mi(t) = {mi(s), 0 ≤ s < t} be the history of the true unobserved longitudinal

process mi(t) up to time point t, Ti = min(Ti,Ci) be the observed event outcome of the

ith individual, with an indicator δi, where δi = 1 if Ti = Ti (event-time), and δi = 0 if
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Ti = Ci (censoring time). Then the survival submodel for the ith subject is given by the

proportional hazard model

hi{t|Mi(t),Wi} = h0(t) exp{γmi(t) + WT
i η}, (2.10)

where h0(t) is the baseline hazard, Wi is the vector of baseline exposure variables (such

as gender and race), η is the regression parameter vector corresponding to the baseline

variables, and γ is the measure of extent to which the true longitudinal process has an

impact on the event-time. Model (2.10) implies that the relative risk of two subjects i and

i∗ for an event at time t depends only on the current value of their time-dependent marker

mi(t) and mi∗(t). However, this is not true for the survival function

Si(t|Mi(t),Wi) = P{Ti > t|Mi(t),Wi} = exp

[
−
∫ t

0
h0(s) exp

{
γmi(s) + WT

i η
}
ds

]
,

because it depends on the entire history of that patient until time t. This feature is one

of the important things to be considered as the survival function is a part of the joint

likelihood. To specify model (2.10) fully, discussion of choice of the baseline hazard h0(t) is

important. In standard survival analysis, this term is left unspecified to avoid bias induced

by misspecification of its distribution, but within joint modeling framework, this choice

leads to underestimation of the standard errors of the model parameters (Hsieh et al.,

2006). Therefore, “flexible parametric” models, namely, piece-wise constant and regression

spline approaches can be adopted (Rizopoulos, 2012).

Based on the assumption that the vector of the time-independent random effects

ξi underlies both longitudinal and survival processes, and thus accounts for the association

between these outcomes as well as the within subject correlation of the repeated measure-

ments, the observed (incomplete) likelihood f(Yi, Ti, δi;θ) is obtained by integrating out
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the unknown random effects ξi from the complete data likelihood as follows

f(Yi, Ti, δi;θ) =

∫
f(Yi, Ti, δi, ξi;θ)dξi

=

∫
f(Yi, Ti, δi|ξi;θ)f(ξi;θ)dξi

=

∫
f(Yi|ξi;θ)f(ξi;θ)f(Ti, δi|ξi;θ)dξi

=

∫  ni∏
j=1

f
{
Yi(tij)|ξi;θ

} f(ξi;θ)f(Ti, δi|ξi;θ)dξi,

where θ = (θT
y ,θ

T
s ,θ

T
ξ )T is the full parameter vector, with θy, θs, and θξ denoting the pa-

rameters from the longitudinal submodel, time-to-event submodel, and the elements from

the covariance matrix of the subject-specific unique random-effects, respectively. Addition-

ally, it is assumed that given the observed history, censoring (loss to follow-up) and visiting

(time of collection of longitudinal measurements) are independent of the true event-times

and future longitudinal responses. These assumptions practically imply that even though

the time of visit or withdrawal of a subject from a study depends on their past history, it

does not depend on any latent characteristics related to the prognosis.

The parameters can be estimated by maximizing the observed log-likelihood func-

tion `(θ) =
∑n

i=1 log f(Yi, Ti, δi;θ) with respect to θ, using standard maximizing techniques

such as Expectation-Maximization (EM) (Dempster et al., 1977) or Newton-Raphson (NR)

algorithm. Though the EM algorithm has slow convergence rate near the maximum, the

score function corresponding to the log-likelihood is a key factor required for both EM and

NR algorithms. The score function can be written as

S(θ) =
n∑
i=1

∫
A(θ, ξi)f(ξi|Yi, Ti, δi;θ)dξi, (2.11)
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where A(θ, ξi) = ∂{log f(Yi|ξi;θ) + log f(ξi;θ) + log f(Ti, δi|ξi;θ)}/∂θT denotes the com-

plete data score vector. Rizopoulos et al. (2009) observed that if the score equations in (2.11)

are solved with respect to θ, with f(ξi|Yi, Ti, δi;θ) fixed at the previous iterated value of θ,

then this corresponds to an EM algorithm, whereas if the score equations are solved with

respect to θ, considering f(ξi|Yi, Ti, δi;θ) as a function of θ, then this corresponds to direct

maximization of the likelihood. The EM algorithm involves approximation of integrals in

order to estimate the random effects. Higher number of random effects increases the dimen-

sion of the integration in the E-step. Rizopoulos et al. (2009) proposed fully exponential

Laplace approximations to obtain the integrals to increase computational efficiency in joint

models. However, they observed that in the low-dimensional scenario, the Gauss-Hermite

quadrature rule was faster than the Laplace method and resulted in equivalent estimates.

A package named JM, developed by Rizopoulos (2010), can be found in R software repos-

itory, which uses the methods described above for the joint analysis of longitudinal and

time-to-event data.

Although the idea behind general formulation of joint likelihood and estimation

techniques mentioned above are similar, alternative models have been postulated by several

authors in joint models literature. One such joint modeling technique was proposed by

De Gruttola and Tu (1994). They used the same set of random effects to model both

longitudinal and survival responses as follows

Yi(t) = XT
i β + ZT

i ξi + εi(t), (2.12)

Ti = WT
i ζ + λTξi + ri, (2.13)
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where we observe that the longitudinal submodel in (2.12) is similar to (2.9), but the sur-

vival submodel (2.13) is different than (2.10). Here, the true event-time (or a one-to-one

transformation of this variable), denoted by Ti, is linked to the fixed effects ζ through a

design vector Wi, the random effects ξi are connected through a set of unknown param-

eters λ, and ri is a zero-mean normal residual with variance σ2
r . Assuming that the first

measurement time ti1 is fixed at zero for all subjects, and δi = I(Ti < Ci) with Ti as the

true event-time and Ci as the censoring time, the joint likelihood for the ith subject is

L(θ) =
No∑
i=1

log

[ ∫
φ{Yi|ξi;θ}φ(ξi;θ)φ(Ti|ξi;θ)dξi

]

+

Nc∑
i=1

log

[ ∫
φ{Yi|ξi;θ}φ(ξi;θ){1− Φ(Ci|ξi;θ)}dξi

]
,

where θ = (βT, ζT,λT, σ2, σ2
r )

T is the full parameter vector, No and N c are the respective

numbers subjects having true and censored event-times, and Φ(Ci|ξi;θ) =
∫ Ci
−∞ φ(Ti|ξi;θ)dTi

with φ(·) and Φ(·) as the probability density and cumulative distribution functions of a stan-

dard normal distribution, respectively. The authors used Expectation-Maximization (EM)

algorithm to maximize L(θ) to estimate the parameters.

Henderson et al. (2000) took a similar approach as De Gruttola and Tu (1994),

but they used a bivariate latent random process to link the two outcomes instead of random

effects as shared parameters. Assuming that n subjects were followed over the time interval

[0, τ), the longitudinal submodel for the ith subject is given as

Yi(t) = XT
1i(t)β1 +W1i(t) + εi(t),

and the survival submodel is given by

hi(t) = h0(t)Ri(t) exp{XT
2i(t)β2 +W2i(t)},
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where Wi(t) = {W1i(t),W2i(t)} is an unobserved latent zero-mean bivariate Gaussian pro-

cess, {Ri(t) : 0 ≤ t ≤ τ} indicates whether a subject is at risk at time t, and the design

matrices X1i(t) and X2i(t) may include common predictors. This model can be considered as

an extension of a number of specific joint models, for example, specifying W1i(t) = ξi1 +ξi2t

and W2i(t) = γW1i(t), where (ξi1, ξi2) ∼ N(0,Σξ) are the subject-specific random effects,

would reduce this model to the joint models proposed by Tsiatis et al. (1995), Faucett and

Thomas (1996), and Wulfsohn and Tsiatis (1997). Additionally, in absence of significant

association between the two outcomes, this model reduces to two separate marginal mod-

els, a normal linear model with correlated errors for the repeated measurements, and a

proportional hazard model for the event-time.

The joint modeling approaches mentioned above assume that the shared parame-

ters are normally distributed. An alternative approach, known as conditional score method,

was proposed by Tsiatis and Davidian (2001), where no distributional assumptions were im-

posed on the random effects. The idea behind their method is to treat the random effects as

nuisance parameters and condition on appropriate sufficient statistic of the random effects to

obtain unbiased estimating equations of the coefficients in the hazard model. This method

produces consistent and asymptotically normal estimates of the parameters. In one of their

later papers (Tsiatis and Davidian, 2004), they formally discussed the assumptions behind

the joint models, and presented a comparison between the joint likelihood-based versus

the conditional score-based approaches. The authors have shown that the likelihood-based

approaches may yield the most precise inferences, but can be computationally demanding,

whereas the conditional score approach is easier to compute, but loses efficiency in compar-
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ison to the likelihood-based approach, because it does not exploit the full information in

the longitudinal data.

To test the significance of the model parameters, standard asymptotic tests are

available, for example, likelihood ratio test, score test, and Wald test. All of these test

statistics follow chi-square distribution with degrees of freedom equal to the number of

parameters being tested. In large sample, these test statistics are low-order Taylor series

expansion of each other, and are asymptotically equivalent. But for finite sample size,

though the likelihood ratio test is computationally more demanding, it is considered to be

more reliable than the other two.

In longitudinal and time-to-event studies, the predictors are often time-dependent

and the regression coefficients may change over time. Additionally, the association between

the two outcomes may be time-varying. Ordinary joint models such as the aforementioned

random effects models proposed for joint modeling, cannot capture this dynamic structure

of the data. To increase the flexibility of joint models, recent developments in joint modeling

literature allow the associations to vary as flexible functions of time. We refer this class

of joint models as dynamic joint models in this dissertation. Dynamic joint models is a

fairly new research area and some of the earlier works include Song and Wang (2008) and

Ye et al. (2015). Song and Wang (2008) proposed two methods for estimating time-varying

associations between multiple longitudinal processes and the survival outcome. In their

model, let Xik(u) be the kth unobserved longitudinal process for the ith subject at time

u, where i = 1, . . . , n, k = 1, . . . , p, and Yikj be the observed measurement at time tikj , for
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j = 1, . . . , nk. The longitudinal processes are modeled using the linear mixed effect model

Xik(u) = ξT
ikfk(u),

Yikj = Xik(tikj) + εikj ,

where fk(u) = {fk1(u), . . . , fkqk(u)}T is a vector of known functions of u and ξik = {ξik1, . . . ,

ξikqk}T is a vector of corresponding random effects. Note that fk(·) and ξik can be different

for different k, which allows flexible modeling of the time trajectory of each covariate via

polynomial or spline. The random effects ξik may be correlated across k and no distribu-

tional assumption was placed on ξi = (ξT
i1, . . . , ξ

T
ip)

T. For time-independent covariates, ξik

is a scalar and fk(u) = 1. The errors εikj are assumed to be normally distributed with mean

zero and variance σ2
kk that may reflect both biological variation and measurement error.

To describe the survival submodel, they first defined the true event-time as Ti and

the censoring time as Ci. The observed event-time outcome was defined as Ti = min(Ti,Ci)

with an indicator δi = I(Ti ≤ Ci). They proposed a time-varying coefficient hazard model

to describe the relationship between the hazard of failure and the longitudinal processes

hi{u|Xi(u)} = lim
du→0

du−1P{u ≤ Ti < u+ du|Ti ≥ u; ξi,Ci, ti(u), εi(u)}

= h0(u) exp{β(u)TXi(u)},

where the baseline hazard h0(u) was left fully unspecified, ti(u) = (tikj < u; k = 1, . . . , p)

denoted the observation times before u, εi(u) = {εikj : tikj < u, k = 1, . . . , p, j = 1, . . . , nik},

and the estimation was focused on the time-varying coefficients β(u) = {β1(u), . . . , βp(u)}T.

Song and Wang (2008) proposed two approaches for the estimation of the time-

varying regression parameters in the survival submodel, namely, local corrected score esti-
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mator and local conditional score estimator. For both methods, they first locally approxi-

mated the coefficients as β(u) ≈ β(t) + β′(t)(u− t) where u was in the neighborhood of t.

Let b = (bT
0 ,b

T
1 ) = {β(t)T,β′(t)T}T be the local estimator. The corrected score estimator

was given as

ÛCR(b) = (nH)−1
n∑
i=1

∫ L

0
Kh(u− t)×

{
X̂i(u, u− t)

+ Σi(u, u− t)b−
ĜCR,1(b, u, u− t)
ĜCR,0(b, u, u− t)

}
dNi(u) = 0, (2.14)

where L is a fixed time, H = diag(Ip, hIp) with Ip is a p-dimensional identity matrix,

h is the bandwidth of the kernel function Kh(·) = h−1K(·/h), and ĜCR,r(b, u, u − t) =

n−1
∑n

i=1 ĜCR,ri(b, u, u− t) with

ĜCR,ri(b, u, u− t) = Wi(u)X̂⊗ri (u, u− t)× exp{bTX̂i(u, u− t)−
1

2
bTΣi(u, u− t)b},

c⊗r = 1, c, ccT, for r = 0, 1, 2, respectively,

Σi(u, u− t) = Var{X̂i(u, u− t)|ξi, ti(u)},

X̂i(u, u− t) = (1, u− t)T ⊗ X̂i(u),

X̂i(u) = {X̂i1(u), . . . , X̂ip(u)}T is the ordinary least square estimator of Xi(u),

Wi(u) = I(Ti ≥ u, nik(u) ≥ qk),

Ni(u) = I(Ti ≤ u, δi = 1, nik ≥ qk).

The authors have shown that the bias, which arises in a local estimating equation due to

using the ordinary least squares estimator X̂i(u), can be removed by the “corrected” score

function mention in (2.14) and these estimators are consistent and asymptotically normally

distributed.
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The second approach that Song and Wang (2008) proposed was the conditional

score estimator, which “conditions away” the nuisance random effects based on its suf-

ficient statistic. Given ξi, ti(u), and Wi(u) = 1, the conditional distribution of dNi(u)

is given by a Bernoulli distribution having the success probability locally approximated

as h0(u)du exp{bTXi(u, u − t)}. It can be shown that the sufficient statistic for ξi is

Si(b, u, u− t) = X̂i(u, u− t)+Σi(u, u− t)b dNi(u). Conditional on this sufficient statistics,

the local conditional score estimating equation can be presented as

ÛCD(b) = (nH)−1
n∑
i=1

∫ L

0
Kh(u− t)

×
{

Si(b, u, u− t)−
ĜCD,1(b, u, u− t)
ĜCD,0(b, u, u− t)

}
dNi(u) = 0, (2.15)

where ĜCD,r(b, u, u− t) = n−1
∑n

i=1 ĜCD,ri(b, u, u− t) with

ĜCD,ri(b, u, u− t) = Wi(u)S⊗ri (b, u, u− t)× exp{bTSi(b, u, u− t)−
1

2
bTΣi(u, u− t)b}.

The authors have shown that although the corrected score estimator is asymptotically

equivalent to the conditional score estimator, the latter outperforms the former for finite

samples, especially in presence of relatively large measurement error.

The primary focus of the model proposed by Song and Wang (2008) was on the

hazard submodel with time-varying coefficients, where these coefficients quantify the time-

dependent effects of the corresponding longitudinal predictors on hazard of the subjects. In

their method, these longitudinal predictors were limited to be continuous variables only. Ye

et al. (2015) on the other hand, postulated a dynamic joint model for a single longitudinal

outcome, which belongs to the canonical exponential family and thus, the values of this

variable are allowed to be both discrete and continuous. They assumed that the longitudinal
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trajectory is driven by a latent Gaussian process Xi(t), which is essentially the canonical

parameter of the corresponding exponential family, and modelled this latent process by

employing functional principal component analyses (FPCA) as follows,

Xi(t) = µ(t) +ψ(t)Tξi,

where µ(t) is the mean longitudinal trend, ψ(t) is a vector of orthonormal functions (known

as eigenfunctions in FPCA), and ξi is the vector of principal component scores following

zero-mean normal distribution with a diagonal matrix Σξ as covariance matrix, the diagonal

elements being eigenvalues. The authors also assumed that the time-to-event outcome

depends on the longitudinal outcome only through this latent process. They used penalized

B-Splines to estimate µ(t), ψ(t), and the time-dependent association, which were expressed

as linear combinations of the eigenfunctions.

The joint modelling approaches proposed by Song and Wang (2008) and Ye et al.

(2015) did not allow to investigate the effects of exploratory variables on the longitudinal

processes. Andrinopoulou et al. (2018) proposed a dynamic joint model which accommo-

dated exploratory variables in both longitudinal and hazard submodels. The longitudinal

submodel in their joint modeling framework is same as the model specified in (2.9), but

their survival component includes a flexible function to model the association between the

two outcomes. The survival submodel is given by the hazard function

hi{t|Mi(t),Wi} = h0(t) exp
[
WT

i η + f{γ(t),Mi(t)}
]
,

where Wi is a vector of baseline predictors with a corresponding vector of regression coef-

ficients η, and Mi(t) = {mi(s), 0 ≤ s < t} denotes the history of the true unobserved lon-

gitudinal process up to time t. The function f{γ(t),Mi(t)} specifies which features of the
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longitudinal submodel are included in the relative risk model. They suggested some forms of

the function f(·), namely, f{γ(t),Mi(t)} = γ(t)mi(t) and f{γ(t),Mi(t)} = γ(t)
∫ t

0 mi(s)ds.

For modeling the time-varying association γ(t) and the log of the baseline h0(t), they sug-

gested using the P-spline approach to avoid misspecification of number and location of

knots in commonly used smoothing techniques, such as, B-spline. The idea behind P-spline

method is that it gains sufficient smoothness by using a relatively higher number of equally

spaced knots, and it uses a penalty term to avoid over-fitting. The spline models for the

association and the log-baseline hazard are

γ(t) =

L∑
`=1

α`B`(t) and log{h0(t)} =

U∑
u=1

λu,h0Bu(t),

respectively, where α` is a set of parameters which capture the strength of association be-

tween the longitudinal and the event-time outcomes, B`(t) is the `th basis function of a

B-spline, λu,h0 are the spline coefficients for the baseline hazard, and Bu(t) is the uth basis

function of a B-spline. They employed Markov Chain Monte Carlo method to estimate the

spline parameters, and the inference is based on the posterior of the joint model. Under

the assumptions of the shared-parameter models, that is, conditioned on the random ef-

fects, the within subject observations, as well as the two outcomes become independent,

Andrinopoulou et al. (2018) postulated the following posterior density,

f(θ, ξi|Yi, Ti, δi) ∝
ni∏
j=1

f(Yij |ξi,θy)f{Ti, δi|mi(Ti),θs}f(ξi|θy)f(θ),

where θ = (θT
y ,θ

T
s )T is the parameter vector for the longitudinal and the survival outcomes,

respectively. The smoothness of γ(t) and h0(t) are controlled by the prior distributions of the

set of spline coefficients {α` : ` = 1, . . . , L} and {λu,h0 : u = 1, . . . , U}, more specifically, by

51



the hyper-priors of the variances of these spline coefficients. For more details on the choice of

prior, hyper-prior, and penalty matrices, please refer to Andrinopoulou et al. (2018). They

calculated AUC (area under the receiver operative characteristic curve) and PE (prediction

error) in order to measure the performance of their model. AUC can discriminate between

patients who will experience the event versus who will not. PE was computed to measure the

accuracy of their model. They have shown through simulation studies that their dynamic

joint model has higher AUC and lower PE values in comparison to a constant coefficient

joint model.

Piulachs et al. (2021) extended Bayesian dynamic joint models proposed by An-

drinopoulou et al. (2018) to a generalized setting where the longitudinal response was zero-

inflated count data. They used a hierarchical negative-binomial model to fit the longitudinal

process. The time-to-event outcome was left-truncated, and they allowed time-varying ex-

ogenous predictors in their hazard submodel. The time-varying association between the

longitudinal and the event-time outcomes was specified by penalized B-splines. For more

information on dynamic joint-models, please see Suresh et al. (2017), Li and Luo (2017),

Barrett and Su (2017), Hong et al. (2021), and Martins (2021).
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Chapter 3

Time-Varying Joint Models for

Longitudinal and Time-to-Event

Outcomes

In this chapter, we present our time-varying joint modeling (TV-JM) approach.

The model is specified in Section 3.1, the estimation procedure is described in Section 3.2.

In Section 3.3, we discuss practical issues related to the application of our models. The

simulation study and the application on WIHS data are presented in Sections 3.4 and 3.5,

respectively.

3.1 Model Specification:

The joint modeling of longitudinal and survival outcomes involves submodels for

each outcome. Let us start with the longitudinal outcome. In practice, the longitudinal
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response is collected sparsely over time and it may contain measurement error and biological

variability, and thus, the true longitudinal process for a subject may not be observable.

Therefore, we denote Yi(t) as the observed longitudinal response and mi(t) as the true

longitudinal process for the ith subject at time t = tij with i = 1, . . . , n and j = 1, . . . , ni.

For the longitudinal outcome, we propose the following time-varying coefficient model with

the subject-level random effect ξi,

Yi(t) = mi(t) + εi(t),

mi(t) = XT
i (t)β(t) + ξi,

where Xi(t) = {Xi1(t), . . . , Xip(t)}T is the vector of predictors with the corresponding

coefficient vector β(t) = {β1(t), . . . , βp(t)}T. The subject-specific random effect ξi and

the error term εi(t) follow a zero-mean normal distribution with variances σ2
ξ and σ2(t),

respectively. Note that ξi and εi(t) are assumed to be independent of each other.

In the survival submodel of the joint model, for the ith subject, let Wi(t) =

{Wi1(t), . . . ,Wiq(t)}T be the vector of exogenous time-varying risk factors with the corre-

sponding coefficient vector η(t) = {η1(t), . . . , ηq(t)}T and Ti = min(Ti,Ci) be the observed

event-time outcome with the event indicator δi, where δi = 1 if Ti = Ti (true event-time),

and δi = 0 if Ti = Ci (censoring time). The hazard and survival functions are defined as

follows

hi{t|Mi(t),Wi(t)} = h0(t) exp
{
mi(t)γ(t) + WT

i (t)η(t)
}

and (3.1)

Si{t |Mi(t),Wi(t)} = Pr{Ti > t |Mi(t),Wi(t)}

= exp

[
−
∫ t

0
hi{u|Mi(u),Wi(u)}du

]
, (3.2)
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respectively, with h0(t) as the baseline hazard function, Mi(t) = {mi(s), 0 ≤ s < t} as the

history of the true unobserved longitudinal process mi(t) up to time point t, γ(t) denoting

the time-varying regression coefficient that quantifies the effect of the true longitudinal

process on the risk of an event. Note that although we denote the predictors in both

submodels as Xi(t) and Wi(t), they can include time-invariant (baseline) predictors as

well. The definitions of both hazard and survival functions indicate that the failure time

of a subject depends on their longitudinal outcome, that is, the CD4 cell percentage in

the WIHS data (Section 3.5). The hazard function in (3.1) shows that the relative risk

of a person experiencing the event at any time t depends on the value of their CD4 cell

percentage at that time point only, whereas (3.2) implies that the survival of that individual

is dependent on their entire CD4 cell percentage history up to time t.

To define the joint distribution of the longitudinal and survival outcomes, it is

assumed that the random effect ξi underlies both outcomes. More specifically, the ran-

dom effect is considered to account for the association between the two responses and the

within-subject correlation of the longitudinal outcome. Therefore, given the random effect

ξi, not only the two types of responses become independent of each other, all the longitu-

dinal observations for a given individual become independent as well. Therefore, the joint

distribution for the longitudinal and survival outcomes is

f(Yi, Ti, δi, ξi;θ) = f(Yi|ξi;θ)f(ξi;θ)f(Ti, δi|ξi;θ), (3.3)

where Yi = {Yi(ti1), . . . , Yi(tini)}T denotes the longitudinal outcome for the ith subject,

θ = {θT
y (t),θT

s (t), θξ}T is the full parameter vector with θy(t) = {β(t)T, σ2(t)}T, θs(t) =

{θT
h0 , γ(t),η(t)T}T, and θξ = σ2

ξ denoting the parameters for the longitudinal outcome, the
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survival outcome, and the variance of the subject-level random effect, respectively, and θT
h0

denoting the vector of parameters in the baseline hazard function h0(·). The joint density

for the longitudinal outcome and the random effects in (3.3) is defined as

f(Yi|ξi;θ)f(ξi;θ) =

[ ni∏
j=1

f{Yi(tij)|ξi;θy(tij)}
]
f(ξi;θ)

=

[ ni∏
j=1

{2πσ2(tij)}−1/2

]
exp

[
−

ni∑
j=1

{
Yi(tij)−XT

i (tij)β(tij)− ξi
}2

2σ2(tij)

]
×(2πσ2

ξ )
−1/2 exp

{
−ξ2

i /(2σ
2
ξ )
}
.

Furthermore, the density for the observed event-time Ti given the random effect ξi in (3.3)

is given by

f(Ti, δi|ξi;θ) = hi{Ti|Mi(Ti),Wi(Ti);θ}δiSi{Ti|Mi(Ti),Wi(Ti);θ}

=
[
h0(Ti) exp

{
mi(Ti)γ(Ti) + WT

i (Ti)η(Ti)
}]δi

× exp

[
−
∫ Ti

0
hi{u|Mi(u),Wi(u)}du

]
.

3.2 Estimation and Inference

In this section, we propose an estimation procedure based on the Expectation-

Maximization (EM) algorithm (Dempster et al., 1977), in which, the subject-level random

effects are treated as missing data. The proposed EM algorithm iterates between two-

steps: in the E-step, we estimate the random effects ξ = (ξ1, . . . , ξn)T and in the M-

step, we maximize the conditional expectation of the complete likelihood to estimate θ =

{θT
y (t),θT

s (t), θξ}T. The complete joint log-likelihood `(ξ,θ) is defined by

`(ξ,θ) =
n∑
i=1

`i(ξi,θ) =
n∑
i=1

logLi(ξi,θ) =
n∑
i=1

log f(Yi, Ti, δi, ξi;θ),

56



where Li(ξi,θ) denotes the likelihood contribution of the ith subject and the log-likelihood

`i(ξi,θ) is given by

`i(ξi,θ) = log f(Yi, Ti, δi, ξi;θ)

= log f(Yi|ξi;θ) + log f(ξi;θ) + log f(Ti, δi|ξi;θ)

= −1

2

ni∑
j=1

[{
Yi(tij)−mi(tij)

}2

σ2(tij)
+ log{2πσ2(tij)}

]
− ξ2

i

2σ2
ξ

− 1

2
log(2πσ2

ξ )

+δi
{

log h0(Ti) +mi(Ti)γ(Ti) + WT
i (Ti)η(Ti)

}
−
∫ Ti

0
h0(u) exp

{
mi(u)γ(u) + WT

i (u)η(u)
}
du

with mi(·) = XT
i (·)β(·) + ξi. The incomplete log-likelihood is defined as

`(θ) =
n∑
i=1

Li(θ) =
n∑
i=1

log

{∫
Li(ξi,θ)dξi

}
. (3.4)

The estimation steps of the proposed approximate EM algorithm are described as

follows.

1. The initial values for all the parameters θ0 = {θ0T
y (t),θ0T

s (t), θ0
ξ}T are selected by

fitting separate models to each outcome. A linear mixed effects (LME) and Cox

models are used to model the longitudinal and survival outcomes, respectively.

2. (E-step) In the rth iteration, the estimates of the posterior mean and variance of

the subject-level random effects ξi are obtained via Gauss-Hermite quadrature ap-

proximations, leading to the approximated conditional expectation of the complete

log-likelihood.

3. (M-step) The incomplete log-likelihood is maximized to obtain closed form solu-

tions for the current estimate of θξ (θξ = σ2
ξ ). The approximated expected com-

plete log-likelihood is maximized to obtain the rest of the current estimates θ\σ =
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{θT
y (t),θT

s (t)}T via a Newton-Raphson algorithm. Note that for the time-varying pa-

rameters in θ\σ, that is, {β(t)T, γ(t),η(t)T}T, we employ local linear fitting techniques

(Fan and Gijbels, 1996).

4. The algorithm iterates between steps 2-3 until the difference between two consecutive

incomplete log-likelihood values are less than a predefined tolerance level ε.

3.2.1 E-step and the Gauss-Hermite Quadrature Approximation

The posterior mean and the variance of the random effect which are denoted by

ξi0 and υi0, respectively, are defined as

ξi0 =

∫
ξiLi(ξi,θ)dξi∫
Li(ξi,θ)dξi

and υi0 =

∫
(ξi − ξi0)2Li(ξi,θ)dξi∫

Li(ξi,θ)dξi
. (3.5)

For approximating the integrals in (3.5), numerical integration methods such as Gauss-

Hermite quadrature or Laplace approximation should be adopted. As the Laplace approx-

imation is an asymptotic method and requires large number of observations within each

individual, under our circumstances, that is, with only one random effect (integration of

order one) and a small number of observations within each subject, the Gauss-Hermite

quadrature performs better than the Laplace approximation (Rizopoulos et al., 2009). A

brief description of the Gauss-Hermite quadrature method and its application in our model

is presented in Appendix A.

Once the posterior mean and the variance of the random effect ξi are estimated,

we can proceed to approximating the conditional expectation of the complete joint log-

likelihood in the E-step, that is,
∑n

i=1E
[
`i{ξi,θ}

∣∣Yi, Ti, δi,Xi(t),Wi(t),θ
∗], where θ∗ =

{θ∗Ty (t),θ∗Ts (t), θ∗ξ}T denotes the current parameter estimates with θ∗y(t) = {β∗T(t), σ2∗(t)}T,
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θ∗s(t) = {θ∗Th0 , γ
∗(t),η∗(t)T}T, and θ∗ξ = σ2∗

ξ . Since the closed form of the conditional expec-

tation
∑n

i=1E
[
`i{ξi,θ}

∣∣Yi, Ti, δi,Xi(t),Wi(t),θ
∗] is challenging to derive, a second-degree

Taylor’s expansion around ξ∗i0 is employed to approximate the expected log-likelihood

n∑
i=1

[
`i(ξ

∗
i0,θ

∗) + `′i{ξ∗i0,θ∗}E(ξi − ξ∗i0)− 1

2
E
{

Σ∗i (ξi − ξ∗i0)2
}]
,

where ξ∗i0 denotes the estimated posterior mean of ξi based on the current parameter es-

timates, `′i(ξ
∗
i0,θ

∗) = ∂`i(ξi,θ)/∂ξi|ξi=ξ∗i0,θ=θ∗ , and Σ∗i = −∂2`i(ξi,θ)/∂ξ2
i |ξi=ξ∗i0,θ=θ∗ . Note

that E(ξi − ξ∗i0) = 0 and Σ∗i (ξi − ξ∗i0)2 follows a Chi-Square distribution with degrees of

freedom 1 since the posterior variance υi0 = Σ∗−1
i . Therefore, the expected log-likelihood

can be approximated as follows,

n∑
i=1

E [`i{ξi,θ}] ≈
n∑
i=1

`i(ξ
∗
i0,θ

∗)− n

2
(3.6)

=
n∑
i=1

(
− 1

2

ni∑
j=1

[{
Yi(tij)−m∗i (tij)

}2

σ2∗(tij)
+ log{2πσ2∗(tij)}

]
− ξ∗2i0

2σ2∗
ξ

−1

2
log(2πσ2∗

ξ ) + δi
{

log h∗0(Ti) +m∗i (Ti)γ
∗(Ti) + WT

i (Ti)η
∗(Ti)

}
−
∫ Ti

0
h∗0(u) exp

{
m∗i (u)γ∗(u) + WT

i (u)η∗(u)
}
du

)
− n

2
,

where m∗i (·) = XT
i (·)β∗(·) + ξ∗i0.

3.2.2 M-step

In this step, for estimation of the random effect variance σ2
ξ , we directly maximize

the incomplete log-likelihood `(θ) in (3.4) and set the following score function to zero

V (σ2
ξ ) =

∂`(θ)

∂σ2
ξ

=

n∑
i=1

∂

∂σ2
ξ

log

{∫
Li(ξi,θ)dξi

}
=

n∑
i=1

∫ (
ξ2
i

2σ4
ξ

− 1

2σ2
ξ

)
F(ξi)dξi,
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where F(ξi) = Li(ξi,θ)/
∫
Li(ξi,θ)dξi is the posterior density of ξi. This leads to the

following estimate of σ2
ξ at the current iteration

σ̂2∗
ξ = n−1

n∑
i=1

{
(ξ∗i0)2 + υ∗i0

}
,

where ξ∗i0 and υ∗i0 are the estimates of the posterior mean and variance, respectively, at the

current stage of the EM-iteration. For inference, the likelihood-based standard error (SE)

for σ̂2
ξ is equal to the square root of {−Hξ(σ̂

2
ξ )}−1, where Hξ(σ

2
ξ ) = ∂2`(θ)

/
(∂σ2

ξ )
2 is the

hessian and σ̂2
ξ is the estimate of the random effect variance at the last EM iteration.

The rest of the parameters, that is, θy(t) = {β(t)T, σ2(t)}T and θs(t) = {θT
h0 , γ(t),

η(t)T}T do not have closed form solutions; therefore, cannot be estimated via maximizing

the incomplete likelihood. We first focus on estimating the time-varying coefficient functions

α(t) = {β(t)T, γ(t),η(t)T}T by employing the local linear regression method (Fan and

Gijbels, 1996). We locally approximate the regression coefficient functions in a neighborhood

of a fixed point t0 using Taylor’s approximation,

α(t) ≈ α(t0) +α′(t0)(t− t0) ≡ α0 +α1(t− t0),

where α0 = (βT
0 , γ0,η

T
0 )T and α1 = (βT

1 , γ1,η
T
1 )T with β0 = (β01, . . . , β0p)

T, β1 =

(β11, . . . , β1p)
T, η0 = (η01, . . . , η0q)

T, and η1 = (η11, . . . , η1q)
T. We maximize the following

approximated expected local log-likelihood
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n∑
i=1

{
− 1

2

ni∑
j=1

[{
Yi(tij)−m∗il(tij)

}2

σ2∗(tij)
+ log{2πσ2∗(tij)}+

ξ∗2i0
σ2∗
ξ

(3.7)

+ log(2πσ2∗
ξ )

]
Kh1(tij − t0)

+

(
δi

[
log h∗0(Ti) +m∗il(Ti)

{
γ∗0 + γ∗1(Ti − t0)

}
+ WT

i (Ti)
{
η∗0 + η∗1(Ti − t0)

}]
−
∫ Ti

0
h∗0(u) exp

[
m∗il(u)

{
γ∗0 + γ∗1(u− t0)

}
+ WT

i (u)
{
η∗0 + η∗1(u− t0)

}]
du

)
× Kh2(Ti − t0)

}
− n

2
,

with respect to (α0,α1), where for any c, the estimates at the current EM-iteration is de-

noted by c∗, m∗il(z) = XT
i (z){β∗0+β∗1(z−t0)}+ξ∗i0, andKh1(·) andKh2(·) are kernel functions

for the longitudinal and the survival components respectively, with Kh(·) = h−1K (·/h) and

bandwidth h. We use a Newton-Raphson (NR) algorithm to maximize (3.7) and obtain

(α̂T
0 , α̂

T
1 )T. Let {α(it)

0 ,α
(it)
1 } be the estimate of (α0,α1) at the current iteration of the NR

algorithm and we update (αT
0 ,α

T
1 )T according to

α
(it+1)
0

α
(it+1)
1

 =


α

(it)
0

α
(it)
1

− [`′′{α(it)
0 ,α

(it)
1 }]

−1`′{α(it)
0 ,α

(it)
1 },

where `′{α(it)
0 ,α

(it)
1 } and `′′{α(it)

0 ,α
(it)
1 } are the score function and Hessian of the approxi-

mated expected local log-likelihood (3.7) with respect to (αT
0 ,α

T
1 )T, respectively, evaluated

at the current estimates {α(it)
0 ,α

(it)
1 }. The likelihood-based SEs at time point t0 are obtained

via the square root of the diagonal elements of {−H(t0)}−1, where H(t0) = `′′(α̂0, α̂1) is

the hessian matrix evaluated at (α̂T
0 , α̂

T
1 )T which are the estimates of the local parameters

at the last iteration of the EM algorithm.
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Next, we estimate the time-invariant parameter θh0 using a Newton-Raphson al-

gorithm, in which, we maximize the approximated expected log-likelihood in (3.6). The

updated estimator is obtained by θ
(r+1)
h0

= θ
(r)
h0
− {H(r)

h0
}−1V

(r)
h0

, where r is the current

iteration of the Newton-Raphson algorithm, V
(r)
h0

and H
(r)
h0

are the score function and the

Hessian matrix of the approximated expected log-likelihood (3.6) with respect to θh0 , re-

spectively, evaluated at the current estimates θ
(r)
h0

. The likelihood-based SEs for θ̂h0 are

equal to the square root of the diagonal elements of negative H−1
h0

, where Hh0 contains

hessian values from the last EM iteration.

Note that, the likelihood-based SEs of the estimators are expected to be biased

in estimating the true SEs since the variability in the estimation of the random effects

are not taken into account in the EM algorithm (Hsieh et al., 2006; Kass and Steffey,

1989). Therefore, we examine the extent of this bias in the likelihood-based SEs in the

simulation studies. Furthermore, we propose bootstrap estimates of SEs and investigate

their performance in simulation studies.

Once the regression coefficients and the baseline hazard parameters are estimated,

we conclude the M-step of the current EM-iteration by using the kernel estimator to obtain

σ̂2(·) at the fixed point t0

σ̂2∗(t0) =

∑n
i=1

∑ni
j=1 e

∗2
i (tij)Kh1(tij − t0)∑n

i=1

∑ni
j=1Kh1(tij − t0)

, (3.8)

where e∗i (tij) = Yi(tij)−{XT
i (tij)β

∗(tij) + ξ∗i0} is the residual for the jth longitudinal mea-

surement of the ith subject at the current EM-iteration with i = 1, . . . , n and j = 1, . . . , ni.

The explicit expressions for all the derivatives of the expected (local) log-likelihood and the

incomplete log-likelihood along with further details of the M-step of the EM-algorithm are
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provided in Appendix B, where the survival integrations in each of those equations were

approximated using Simpson’s one third rule.

In summary, at the M-step, we proposed the following steps to obtain the estimates

of θ(t) = {β(t)T, σ2(t),θT
h0 , γ(t),η(t)T, σ2

ξ}T at the current iteration.

1. We estimated the random effect variance σ2
ξ by maximizing the incomplete log-

likelihood `(θ) specified in (3.4).

2. We employed NR algorithm to maximize the local log-likelihood in (3.7) to estimate

the local parameters (αT
0 ,α

T
1 )T = (βT

0 , γ0,η
T
0 ,β

T
1 , γ1,η

T
1 )T.

3. The baseline hazard function h0(t) was estimated via the restricted cubic spline ap-

proach. In particular, we maximized the global log-likelihood in (3.6) with respect to

the spline coefficients ϕ = {ϕ1, . . . , ϕK}T (defined in Section 3.3) using NR optimiza-

tion.

4. We estimated the error variance σ2(t) using the kernel estimator presented in (3.8).

3.3 Practical Issues

For the practical application of our approach, we need to address four important

issues. The first one is the choice of the baseline hazard function h0(t). In our modeling

framework, we opted for a restricted cubic spline as it presents a flexible model for the

baseline hazard. In addition, this approach provides a smooth approximation of the function

with a small number of knots. The baseline hazard function in this approach is given by

h0(t) = exp

{
K−2∑
κ=1

ϕκωκ(t) + ϕK−1t+ ϕK

}
,
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where ωκ(t) = (t − ϑκ)3
+ −

(t−ϑK−1)3+(ϑK−ϑκ)

(ϑK−ϑK−1) +
(t−ϑK)3+(ϑK−1−ϑκ)

(ϑK−ϑK−1) , for κ = 1, . . . , (K − 2),

and (z)+ = max(0, z). The knots ϑ1, . . . , ϑK are time points which satisfy 0 < ϑ1 < · · · <

ϑK < max(Ti). The spline coefficients ϕ = {ϕ1, . . . , ϕK}T construct the baseline hazard

parameter θh0 in this case. To balance between the bias and the variance, choosing the

optimal number of knots is crucial. Keeping the total number of parameters in the survival

sub-component of the joint model between 1/20th and 1/10th of the number of true events

provides satisfactory estimates (Rizopoulos, 2012). To allow enough data-points within

each interval and to assign more flexibility in the region of greater density, the knots can be

placed on equispaced quantiles of the true event-times (Harrell Jr., 2001; Rizopoulos, 2012).

The second practical issue is the choice of bandwidth for the kernel functions. We

recommend a form of cross-validation proposed by Fan and Zhang (2008) and Kürüm et al.

(2018) to choose h1 and h2 simultaneously. In this approach, we leave out a single subject

at a time rather than a single observation as the latter approach is inappropriate when

there is within-subject dependence (Hoover et al., 1998). After removing the ith subject,

we estimate θ(·) based on the remaining subjects. After doing this for each subject, we

calculate the cross-validation score as follows

CV (h1, h2) = −
n∑
i=1

Li{θ̂(−i)(t)},

where Li{θ̂(−i)(t)} is the observed (incomplete) data log-likelihood specified in (3.4) evalu-

ated at θ̂(−i)(t) which is the leave-i-estimate of θ(t). The pair (h1, h2) with the minimum

CV (h1, h2) is chosen as the optimum bandwidth combination.

The third issue is choosing the kernel function. We used Epanechnikov kernel

(Epanechnikov, 1969), given by K(t) = 0.75(1− t2) with |t| ≤ 1, for both longitudinal and

64



survival components because it minimizes the asymptotic mean-squared error of the local

linear estimators (Fan and Gijbels, 1996).

The final practical issue is choosing the initial values of the parameters. The

estimates obtained by fitting an ordinary LME model were chosen as initial values for β(t) at

all time points t and the random effect variance σ2
ξ . Similarly, the initial estimates at all time

points for the coefficients γ(t) and η(t) in the survival submodel were obtained by fitting an

ordinary Cox model using Yi(tini) and Wi(tini) as the respective predictors. For the initial

estimate of the vector of the baseline hazard parameter θh0 , we used a K dimensional vector

having ϕκ = 0 for κ ∈ {1, . . . , (K − 1)} and ϕK = log
{∑n

i=1 Ti

/∑n
i=1 δi

}
where K is the

number of knots used in the restricted cubic spline function. The knots were placed at

percentiles of the uncensored event-times. We used the sample variance of the residuals

obtained from fitting the LME as the initial estimates for the error variance at each grid-

time. Using these initial values, we first estimated the posterior mean and variance of the

random effects. Then, we used these values to maximize the expected local log-likelihood

in (3.7) at all the grids.

3.4 Simulation Studies

We studied the performance of the proposed TV-JM via two simulation stud-

ies. For each study, the reported results were based on 150 data sets and each data set

consisted of n = 300 subjects. For the ith subject, we generated m = 30 irregular lon-

gitudinal observation times from a standard uniform distribution. In the first simulation

set-up, for each measurement time t, we generated a time-varying predictor Xi(t) from a
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standard normal distribution for the longitudinal submodel, and a time-invariant predic-

tor Wi from a zero-mean normal distribution with variance 3 for the survival submodel.

In the second set-up, we used the same time-varying predictor Xi(t) in both submodels

to assess the performance of our estimation when time-varying exogenous predictors are

included in the survival submodel. The time-varying parameters in (3.3) were defined as

β0(t) = 0.5 sin(3πt), β1(t) = 0.5 cos(3πt), γ(t) = 0.5 cos(2πt), and η(t) = sin(πt)− 0.5. The

random effect ξi for the ith subject was simulated from a normal distribution with zero

mean and σ2
ξ = 1.5.

The longitudinal response Yi(t) was generated from a normal distribution with

mean {β0(t) +Xi(t)β1(t) + ξi} and variance σ2(t) = 0.5 + sin2(1.5πt). The true event-time

Ti was simulated using inverse probability integral transformation (Bender et al., 2005)

with a Weibull baseline hazard h0(t) = λtλ−1 where the shape parameter was λ = 1.5.

In order to restrict our analysis time window between 0 and 1, we specified the censoring

time as Ci = min(1, ui) where ui is a random sample from an exponential distribution

having mean 0.9. The observed event-time was defined as Ti = min(Ti,Ci) with δi = 1 if

Ti < Ci and 0 otherwise. For both simulation set-ups, this led to an average censoring rate

of approximately 55% with approximately 47% and 62% as the respective minimum and

maximum. In practice, since longitudinal information after the observed event is usually

no longer available due to death or dropout, we deleted repeated measurements after the

observed event-time for all subjects. This led to an average of 13 observations per subject

in both set-ups.
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The local parameters were estimated at an equidistant set of grid points {tr : r = 1,

2, . . . , ngrid} between 0 and 1 with ngrid = 200. In our simulation studies, we generated

several pilot data sets, and used a cross-validation bandwidth selector to get an overall

picture about the optimal bandwidths. To save computing time, we fixed the bandwidths

to be close to the optimal ones from the pilot simulation data sets. Specifically, we set

the bandwidths to h1 = 0.025 and h2 = 0.39 for the first scenario (time-invariant survival

predictor) and h1 = 0.02 and h2 = 0.42 for the second scenario (time-varying exogenous

survival predictor). For the estimation of the baseline hazard function via a restricted cubic

spline, we placed four knots at the 5th, 35th, 65th, and 95th percentiles of the uncensored

event-times.

For conducting inference on the model parameters, we calculated standard errors

(SEs) using both likelihood-based and bootstrap-based approaches. The bias and the SEs

from the two scenarios are presented in Tables 3.1 and 3.2, respectively. The “true” stan-

dard deviations of the parameters were assumed to be the sample standard deviation of

their estimates obtained from 150 data sets (denoted as SD). The sample average and the

sample standard deviation of 150 estimated likelihood-based SEs are denoted by SE and

SDSE, respectively. In addition, BootSE and BootSDSE
denote the bootstrap-based SEs and

their sample standard deviations using 100 data sets, each data set having 50 bootstrap

samples. For both time-invariant and time-varying cases, we observe that the estimation

bias of all the coefficients and the random effect variance is relatively small and is less

than the corresponding SD, indicating that our proposed model performs well under both

cases. However, we observe that the likelihood-based SEs underestimate the true SD values
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(the difference between SD and SE is larger than the twice SDSE), whereas the bootstrap-

based standard errors (BootSE) cover the true SDs reasonably well within twice BootSDSE
.

Based on these simulation results, we suggest that using bootstrap estimates of SEs are

more suitable in practice and hence, we applied bootstrap SEs to form confidence intervals

for TV-JM estimates in the WIHS data analysis. The plots of the average estimates of

the regression coefficients, error variance, and the baseline hazard, along with their 95%

bootstrap confidence intervals for the two scenarios are presented in Figures 3.1 and 3.2,

respectively. We observe that the average estimates at each time point are close to the true

values and the true values are covered by the confidence bands. Thus, estimation under

TV-JM captures the dynamic trends of all the parameters efficiently and accurately.

Parameter Time Bias SD SE (SDSE) BootSE (BootSDSE
)

0.25 -0.010 0.114 0.015 (0.001) 0.105 (0.012)
β0(t) 0.50 -0.042 0.137 0.017 (0.001) 0.117 (0.017)

0.75 -0.052 0.138 0.019 (0.002) 0.125 (0.022)

0.25 0.004 0.075 0.015 (0.001) 0.075 (0.010)
β1(t) 0.50 -0.009 0.084 0.017 (0.002) 0.084 (0.014)

0.75 0.009 0.106 0.019 (0.003) 0.096 (0.022)

0.25 -0.059 0.167 0.066 (0.028) 0.161 (0.070)
γ(t) 0.50 -0.070 0.173 0.066 (0.022) 0.206 (0.062)

0.75 -0.069 0.141 0.111 (0.024) 0.164 (0.034)

0.25 0.074 0.084 0.061 (0.009) 0.094 (0.018)
η(t) 0.50 0.086 0.111 0.069 (0.010) 0.111 (0.022)

0.75 0.102 0.116 0.092 (0.018) 0.137 (0.031)

σ2
ξ — 0.021 0.133 0.118 (0.011) 0.131 (0.019)

Table 3.1: Results for the simulation set-up with time-invariant survival predictor (averaged
over 150 data sets). Given are bias, standard deviation (SD), likelihood-based standard
errors (SE), and bootstrap SE (BootSE). Given in parentheses (SDSE and BootSDSE

) are
standard deviations of the corresponding quantities.
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Figure 3.1: Estimated parameters from the simulation scenario with the time-invariant
survival predictor. The solid and the dashed curves represent the true and the average esti-
mated values of the parameters, respectively. The dotted lines are 95% bootstrap confidence
bands.
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Parameter Time Bias SD SE (SDSE) BootSE (BootSDSE
)

0.25 -0.030 0.111 0.015 (0.001) 0.114 (0.016)
β0(t) 0.50 -0.038 0.133 0.017 (0.002) 0.125 (0.016)

0.75 -0.045 0.131 0.019 (0.002) 0.138 (0.024)

0.25 0.006 0.086 0.015 (0.001) 0.085 (0.014)
β1(t) 0.50 -0.010 0.096 0.017 (0.002) 0.096 (0.018)

0.75 0.010 0.120 0.019 (0.003) 0.114 (0.027)

0.25 -0.068 0.233 0.062 (0.022) 0.225 (0.067)
γ(t) 0.50 -0.080 0.178 0.072 (0.092) 0.218 (0.068)

0.75 -0.040 0.176 0.093 (0.030) 0.213 (0.055)

0.25 -0.063 0.227 0.119 (0.014) 0.263 (0.043)
η(t) 0.50 0.038 0.169 0.107 (0.040) 0.213 (0.034)

0.75 0.086 0.185 0.145 (0.019) 0.235 (0.037)

σ2
ξ — 0.022 0.138 0.118 (0.011) 0.131 (0.020)

Table 3.2: Results for the simulation set-up with the time-varying exogenous survival pre-
dictor (averaged over 150 data sets). Given are bias, standard deviation (SD), likelihood-
based standard errors (SE), and bootstrap SE (BootSE). Given in parentheses (SDSE and
BootSDSE

) are standard deviations of the corresponding quantities.
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Figure 3.2: Estimated parameters from the simulation scenario with the time-varying ex-
ogenous survival predictor. The solid and the dashed curves represent the true and the
estimated mean values of the parameters, respectively. The dotted lines are 95% bootstrap
confidence bands.

3.5 Application to the Women’s Interagency HIV Study

We utilized our proposed time-varying joint model for the analysis of a subset of

Women’s Interagency HIV Study (WIHS) data. The data consists of follow-up information

between 1994 and 2015 on 901 HIV positive and 1280 HIV negative women recruited from

HIV testing sites across ten cities in the U.S.. Participants were scheduled to have semian-

nual interviews where they received physical and oral examinations, gave blood, urine, and
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gynaecological specimens, and also answered a series of questions about their daily activities

such as sexual behaviours, tobacco, drug, and alcohol use.

An important goal of HIV/AIDS research is to investigate the response-predictor

relationships, that is, to monitor how potential exploratory risk factors affect the progression

of the human immunodeficiency virus through the trend of CD4 cell percentage and time

to death of the patients. Additionally, since the presence of association between these

two outcomes is highly likely, it is crucial to inspect this response-response relationship as

well. Furthermore, as the data is longitudinal, both relationships may change over years

since the time of seroconversion. Therefore, we limited our analysis to the 901 HIV positive

subjects. In this subset, the age of the subjects varied between 19 and 73 during recruitment,

55.5%, 19.5%, 18.3%, and 6.7% of the subjects self-identified as African-American non-

Hispanic origin, Caucasian non-Hispanic origin, Latina or Hispanic, and others/mixed race,

respectively, and 86% of the participants were heterosexual. As many participants missed

some of their scheduled visits, the number of measurements and measurement times vary

from subject to subject. The minimum, maximum, and average number of longitudinal

observations per subject were 1, 34, and 15.8, respectively. Out of the 901 subjects, 447 died

during the study which lead to a censoring rate of 50.4%. Based on previous HIV literature

(Zeger and Diggle, 1994; Kürüm et al., 2015), we chose a set of predictors as follows. For the

CD4 percentage, current smoking behavior, current HPV infection status, CES-D depression

score, history of AIDS diagnosis, baseline CD4 percentage, sexual-orientation, and race of

the subjects were selected as predictors. We chose sexual orientation and race for the hazard

submodel. For the ith subject, the true longitudinal trajectory of the percentage of CD4
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cells was modelled as

mi(t) = XT
i (t)ζ1(t) + ZT

i ζ2(t) + ξi,

where Xi(t) = {1, Xi1(t), . . . , Xi4(t)}T was the vector of time-varying predictors with

Xi1(t) = indicator of smoking behavior at time t,

Xi2(t) = indicator of HPV infection status at time t,

Xi3(t) = CES-D depression score at time t, and

Xi4(t) = indicator of AIDS diagnosis at or before time t,

and corresponding vector of coefficients ζ1(t) = {β0(t), β1(t), . . . , β4(t)}T. Here, ξi was the

unknown underlying random intercept. The vector of time-invariant or baseline predictors

was Zi = (Zi1, . . . , Zi5)T, where

Zi1 = baseline CD4 percentage (CD4 at the time of HIV detection),

Zi2 = binary variable denoting if a subject was heterosexual,

and three indicator variables for race, Zi3 = African-American non-Hispanic, Zi4 = His-

panic, and Zi5 = Caucasian non-Hispanic, with corresponding vector of coefficients ζ2(t) =

{β5(t), . . . , β9(t)}T. The hazard submodel was

hi{t|Mi(t),Wi} = h0(t) exp
{
mi(t)γ(t) + WT

i η(t)
}
,

where Wi = (Wi1, . . . ,Wi4)T was a subset of the baseline predictors Zi which included

sexual-orientation (Wi1) and three indicator variables of race (Wi2 = Zi3,Wi3 = Zi4,Wi4 =

Zi5), respectively, with the vector of coefficients η(t) = {η1(t), . . . , η4(t)}T. Considering the

number of years since the first detection of HIV as our underlying time-scale, we estimated
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the time-varying parameters at 200 equally spaced grid points in the interval [0, 18.5] years

with optimal bandwidth selected as (h1 = 8, h2 = 12) using a cross-validation bandwidth

selector. For the estimation of the baseline hazard function, we used a restricted cubic

spline function with K = 5 knots placed at 5th, 27.5th, 50th, 72.5th, 95th percentiles of the

true event-times.

The estimate of the random effect variance from the WIHS data analysis is σ̂2
ξ =

70.66 with 95% bootstrap confidence interval (55.15, 86.17). The rest of the parameters are

time-varying functions and therefore, are presented through Figures 3.3 and 3.4. Figures 3.3

(a)-(i) represent the estimated parameters from the longitudinal submodel, along with their

95% bootstrap confidence bands. Following are the interpretations of the results.

(a) The intercept is significantly negative for the first 5.5 years since HIV diagnosis. It

shows an increasing trend for the first 12 years, stabilizes in between 12th and 15th

years, and declines afterwards.

(b) Although smoking shows a positive effect on CD4 percentage for the first 4.5 years,

it is declining in nature throughout the entire study window, and starts showing a

significantly negative impact on CD4 percentage after 8 years of seroconversion.

(c) Co-infection with HPV has significantly negative impact on CD4 for most of the study

window starting after the first year since HIV diagnosis.

(d) The estimated coefficient function of CES-D depression scores indicates that it has

a significantly negative effect on CD4 percentage between 3 and 13.5 years after the

first HIV diagnosis.
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Figure 3.3: Estimated parameters (solid, dashed, or dotted-dashed curves) of the longitu-
dinal submodel from the WIHS data analysis along with their 95% bootstrap confidence
bands (shaded region).
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(e) Subjects who were diagnosed with AIDS had significantly lower CD4 percentage than

the subjects who did not have AIDS for the first 10.5 years. This difference is de-

creasing with time, and vanishes after 10.5 years of first HIV detection.

(f) Baseline CD4 has significantly positive impact on CD4 percentage for the entire study

period, though this effect is declining until 13 years after the first HIV diagnosis, and

it stabilizes after that.

(g) We found that after 9.5 years since seroconversion, heterosexual subjects start having

higher CD4 percentage in comparison to that of subjects with other sexual orienta-

tions, and this difference increases with time.

(h) In this figure, the solid, dashed, and dotted-dashed curves represent the estimated

coefficients of the subjects from African-American non-Hispanic, Hispanic, and Cau-

casian non-Hispanic origins, respectively. Although we observe that the CD4 trend of

the Caucasian subjects diverges from the trends of the other two races with time, the

difference among the three groups were not significant at any time within the study

period.

(i) We observe that the error variance increases over time.

Figures 3.4 (a)-(d) display the estimated parameters along with their 95% boot-

strap confidence bands from the survival submodel. We interpret the results from these

figures below.
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Figure 3.4: Estimated parameters (solid, dashed, or dotted-dashed curves) of the survival
submodel from the WIHS data analysis along with their 95% bootstrap confidence bands
(shaded region).
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(a) The association between CD4 percentage and time to death is significantly negative

for the entire 18.5 years follow-up time. This implies that a declining CD4 percentage

increases the risk of death in a patient for the entire study window.

(b) Sexual orientation has significant effect on time to death for the first 7 years, where

the heterosexual subjects are at slightly less risk of death in comparison to the other

subjects. Note that, in a Cox hazard model, the negative value of a coefficient indicates

smaller risk of death with higher value of the corresponding predictor.

(c) This figure displays the estimated coefficients of all three races from the survival

submodel, where the solid, dashed, and dotted-dashed curves represent the estimated

effects of the subjects from African-American non-Hispanic, Hispanic, and Caucasian

non-Hispanic origins, respectively. We observe from this plot that the trend of these

three races are approximately the same, but they have slightly smaller risk of death

during the first 3 years since seroconversion in comparison to the subjects who belong

to the other/mixed race category.

(d) The baseline hazard function indicates that at the beginning of the study window,

that is, when a subject was just found to be HIV positive, has very high risk of death.

This risk decreases and eventually becomes very close to zero between 7 and 15 years.

To summarize, in this chapter, we proposed our novel time-varying joint model

(TV-JM) (Section 3.1). We demonstrated the estimation technique via an EM algorithm

(Section 3.2), where in the E-step, the random effects were estimated (Section 3.2.1) and

in the M-step, we applied local linear regression techniques to estimate the time-varying
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coefficients (Section 3.2.2). The practical issues related to the estimation were discussed

(Section 3.3) and extensive simulation studies were conducted to illustrate the finite sam-

ple performance of the TV-JM estimators (Section 3.4). Finally, we applied TV-JM for

the analysis of the WIHS data (Section 3.5). Application of this methodology allows re-

searchers to examine the time-varying association between CD4 percentage and time to

death of HIV positive patients while also uncovering the complex dynamic effects of vari-

ous sociodemographic, behavioral, and pathological exploratory factors on these outcomes.

This may lead to a better understanding of HIV progression at various stages of life and

therefore, leading to insightful contributions to HIV/AIDS research. For example, several

intervention programs can be established for the HIV positive individuals in order to change

their smoking behavior or control their depressive phases, which might help to keep CD4

percentage from dropping below the critical level. This in turn might keep their immunity

against co-infections intact and despite having HIV, might help them to lead a healthier

and longer life.
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Chapter 4

Analysis of the Purpose in Life

Data: A Novel Application of

Generalized Time-Varying

Coefficient Models

4.1 Background

Purpose in life has been established as a major psychological resource linked with

numerous health benefits, adaptive aging, and longevity. Individuals with a strong sense

of purpose in life are likely to have more motivation, future-oriented thoughts, higher self-

control, and they are likely to strive more for life-goals even under adverse environments

and traumatic experiences. The formation of purposefulness is an integral component of
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identity development in early life, particularly during adolescence. Research suggests that

early-life socialization processes shaped by advantaged or disadvantaged origins can either

benefit or obstruct purposeful thinking about future life pursuits. The processes of identity

development and socialization are shaped by socioeconomic status (SES). Despite a growing

body of research on adult SES and purpose in life, we know only a little about the extent

to which early-life SES contributes to social stratification of purpose in midlife and beyond.

As one advances from midlife to old age, sense of purpose tends to diminish, possibly due

to loss of social, familial, and physical roles through life transitions, including retirement,

widowhood, and health problems of oneself and close family members.

Studies that employ longitudinal data only examined a short time span (less than

10 years) and investigated changes in purpose across multiple observations rather than age.

Therefore, additional research is needed to understand the trajectory of purposeful thought

at different stages of life, particularly from midlife to old age when psychological well-being

is expected to decline. How sense of purpose changes in later life for the upwardly mobile

group is an open question which we investigated in this project. We employed the cutting-

edge statistical method, generalized varying-coefficient model (GVCM), which has never been

used to analyze data on healthy aging. Since these models do not pre-specify the response-

predictor relationships, its application helped us to uncover the complex age-varying effects

of social mobility, demographic status, and major life events on purpose in life. More

specifically, with longitudinal data from the Midlife in the United States (MIDUS) study,

we used these models to investigate (1) the age trajectory of purpose during the second

half of the life span (ages 40-80), (2) the role of major life events (such as retirement and
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illness) in explaining the later-life purpose, and (3) how the trajectory of purpose in life

differs across social mobility groups (measured by childhood and adult SES) after midlife.

However, the MIDUS data contains a significant amount of missing values; therefore, we

first investigated the performance of GVCM under missingness mechanisms to ensure that

it leads to accurate and efficient estimates.

This chapter is divided into the following sections. Section 4.2 presents a descrip-

tion of the MIDUS data. Section 4.3 describes the model we used for the analysis. A brief

literature on missing data mechanisms along with how they are handled under the GVCM

framework are discussed in Section 4.4. A simulation study to demonstrate the perfor-

mance of GVCM under missing at random mechanism is presented in Section 4.5. Finally,

in Section 4.6, the analysis results of the MIDUS data are shown.

4.2 Midlife in the United States (MIDUS) Data

The MIDUS data was collected in three waves M1 (1995–1996), M2 (2004–2005),

and M3 (2013–2014). The study targeted non-institutionalized, English-speaking adults

aged between 25 and 74 (during recruitment) in the United States and it consisted of a

two-stage survey: a telephone interview and a self-administered questionnaire. There were

6325 subjects who responded for the survey. Since our goal was to explore the purpose

in life during midlife to older ages only, we considered a subset of the data consisting of

5559 individuals between ages 40 and 80. In our analysis, an observation was considered

incomplete when the outcome (purpose in life) or at least one of the predictors was missing

at that measurement time, but we did not completely ignore that individual if information
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on all other waves were available. After excluding these missing observations, we had 4656

subjects in the final analytic sample.

Participants completed measures of purpose in life (PIL) at M1, M2, and M3,

where they were asked to respond to a three-item purpose sub-scale of Ryff’s Psychological

Well-Being measure (Ryff and Keyes, 1995), that is, how much they agree with the following

three questions on a scale from 1 (strongly disagree) to 7 (strongly agree): “Some people

wander aimlessly through life, but I am not one of them,” “I live life one day at a time and

do not really think about the future,” and “I sometimes feel as if I have done all there is to do

in life”. In order to investigate the role of major later-life events on the PIL score, we formed

six binary variables to capture social, familial, or physical role-related transitions or events.

In particular, retirement was coded based on if respondents retired from their employment;

widowed includes respondents whose last marriage ended with the death of their spouse

and who did not remarry, and self-illness indicates whether respondents have ever been

diagnosed with cancer, stroke, or heart problems. We also created three binary variables

related to worsening health of family members (parents, spouse/partner, and children) based

on questions regarding whether these family members had a chronic disease or disability in

the past 12 months. To explore the effect of social mobility on the PIL score, we constructed

the following five groups based on social class memberships during childhood and adulthood:

stable low (low in childhood/low in adulthood, n=596), downward mobility (high/middle,

high/low, or middle/low, n=1281), stable middle (middle/middle, n=554), upward mobility

(low/middle, low/high, or middle/high, n=1,444), and stable high (high/high, n=781). In

our analysis, we controlled for age (the underlying timescale), gender, race (Caucasian vs.
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others), and attrition status. While men (48%) and women (52%) were almost evenly

distributed, the majority of the sample (94%) was Caucasian. Out of 4,656 respondents in

the final sample, 61% remained in the study throughout all three waves, whereas 39% died

or were lost to follow-up (LFU) following M1 or M2. We created a categorical variable that

reflects five different patterns of attrition: (i) participated in all three waves (n=2834), (ii)

participated in M1 and subsequently LFU (n=414), (iii) participated in M1 and then died

(n=379), (iv) participated in M1, M2, and then LFU (n=629), and (v) participated in M1,

M2, and then died (n=400).

4.3 Generalized Varying-Coefficient Models

As the response, purpose in life (PIL) score, was composed of discrete measures,

we assumed it follows a Poisson distribution; and therefore, employed a generalized time-

varying coefficient model (Cai et al., 2000) to analyze this data set. In this section, we

have briefly described the GVCM model, its likelihood construction, estimation procedure,

inference on the parameters, and practical issues.

Let Yi(tij) be the PIL score of the ith subject measured at jth time point tij ,

for i = 1, . . . , n, j = 1, . . . , ni, and the time-varying predictors at any time t are defined

as Xi(t) = {Xi1(t), . . . , Xip(t)}T. Since GVCM accounts for the within-subject correlation

under independent working correlation structure (discussed in Section 4.4), we treated all

N =
∑n

i=1 ni observations independently. The GVCM model is expressed as

E{Yi(t)|Xi(t)} = g−1{XT
i (t)β(t)},
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where g(·) is the canonical link and β(t) = {β1(t), . . . , βp(t)}T is the vector of coefficient

functions quantifying the time-varying effect of the predictors on the mean PIL scores. Since

the response is assumed to follow a Poisson distribution, we used a log-link to describe the

relationship between the response and the predictors. Hence, the model can be rewritten as

E{Yi(t)|Xi(t)} = exp{XT
i (t)β(t)} and the log-likelihood under this GVCM model is given

by

`(β) =

n∑
i=1

ni∑
j=1

[
− exp

{
XT
i (tij)β(tij)

}
+ Yi(tij)

{
XT
i (tij)β(tij)

}
− log {Yi(tij)!}

]
.

For each given time t0, the coefficient function for the (i, j)th measurement, βκ(tij) was

approximated by a local linear regression βκ(tij) ≈ aκ+bκ(tij−t0) for tij in the neighborhood

of t0, where aκ = βκ(t0) and bκ = β′κ(t0), for κ = 1, . . . , p. With a = (a1, . . . , ap)
T and

b = (b1, . . . , bp)
T as the parameters, the local log-likelihood function

`(a,b) =
n∑
i=1

ni∑
j=1

[
Yi(tij)X

T
i (tij) {a + b(tij − t0)} − Zi(tij)

]
Kh(tij − t0) (4.1)

is maximized to obtain β̂ = â = (â1, . . . , âp)
T and β̂

′
= b̂ = (̂b1, . . . , b̂p)

T, the maximum

likelihood estimates of a and b, respectively, where Zi(t) = exp
[
XT
i (t) {a + b(t− t0)}

]
and

Kh(·) = h−1K(·/h) is a kernel function with bandwidth h. Since no closed-form solution

to the likelihood in (4.1) is available, an iterative maximum likelihood technique via the

Newton-Raphson (NR) algorithm is employed to estimate the parameters as
a(r+1)

b(r+1)

 =


a(r)

b(r)

− [`′′{a(r),b(r)}]−1`′{a(r),b(r)},

where {a(r),b(r)} is the estimate of (a,b) at the rth NR iteration, and `′{a(r),b(r)} and

`′′{a(r),b(r)} are the respective first and second order derivatives of the local log-likelihood
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in (4.1) evaluated at the rth NR iteration. The first order derivatives with respect to the

local parameters are

∂

∂a
`(a,b) =

n∑
i=1

ni∑
j=1

[{
Yi(tij)− Zi(tij)

}
Xi(tij)

]
Kh(tij − t0) and

∂

∂b
`(a,b) =

n∑
i=1

ni∑
j=1

[{
Yi(tij)− Zi(tij)

}
Xi(tij)(tij − t0)

]
Kh(tij − t0),

and the second order derivatives of the local likelihood with respect to the local parameters

are given by

∂2

∂a∂aT
`(a,b) = −

n∑
i=1

ni∑
j=1

{
Zi(tij)Xi(tij)X

T
i (tij)

}
Kh(tij − t0),

∂2

∂b∂bT
`(a,b) = −

n∑
i=1

ni∑
j=1

{
Zi(tij)Xi(tij)X

T
i (tij)(tij − t0)2

}
Kh(tij − t0), and

∂2

∂a∂bT
`(a,b) = −

n∑
i=1

ni∑
j=1

{
Zi(tij)Xi(tij)X

T
i (tij)(tij − t0)

}
Kh(tij − t0).

For inference on the parameters, we first need to estimate the variances of the

estimators. For this purpose, we employed sandwich estimators, which were proposed by

Carroll et al. (1998) under the local estimating equations, and were shown to provide consis-

tent estimates (Huber et al., 1967). Following the notations presented in Cai et al. (2000),

the covariance matrix at time t0 was estimated by

Σ̂(t0) = Γ̂(t0)−1Λ̂(t0)Γ̂(t0)−1,
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where

Γ̂(t0) = −
n∑
i=1

ni∑
j=1

[
q2

{
Sij , Yi(tij)

}
Mi(tij)M

T
i (tij)

]
Kh(tij − t0),

Λ̂(t0) =
n∑
i=1

ni∑
j=1

[
q2

1

{
Sij , Yi(tij)

}
Mi(tij)M

T
i (tij)

]
K2
h(tij − t0),

Mi(tij) =

 Xi(tij)

Xi(tij)(tij − t0)

 ,
q1

{
Sij , Yi(tij)

}
=

∂

∂Sij
`(a,b) = Yi(tij)− Zi(tij),

q2

{
Sij , Yi(tij)

}
=

∂2

∂S2
ij

`(a,b) = −Zi(tij),

with Sij = XT
i (tij) {a + b(tij − t0)} and Zi(tij) = exp(Sij).

One practical issue for GVCM is to choose an optimal bandwidth h, which is

crucial for the bias-variance trade-off. We followed a leave-one-subject-out cross-validation

technique (Hoover et al., 1998) to find the optimum bandwidth. The cross-validation score

is given as

CV (h) =
n∑
i=1

ni∑
j=1

{
Yi(tij)− Ŷ−i(tij)

}2
,

where Yi(t) denotes the observed value of the response for the ith subject at time t and

Ŷ−i(t) is the fitted value of this response with subject i excluded. The cross-validation score

was calculated for a set of different values of h and the value that lead to the minimum

score was chosen to be the optimal bandwidth.
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4.4 Missing Data Mechanisms

In the MIDUS data set, we considered 5559 respondents between ages 40 and 80

who had information on 16048 repeated measurements. Among these participants, 3531

(63.5%) provided complete information at the first wave, 3043 (54.7%) at the second wave,

and 2077 (37.4%) at the third wave, making only 8651 out of 16048 (54%) measurements

complete (or 46% incomplete). In longitudinal experiments, missing data of this kind is very

common due to dropouts or irregular visits of the subjects. Understanding and handling

the missing data mechanism with the appropriate statistical method is crucial for obtaining

accurate and efficient estimates. In this section, we briefly discuss various missing data

mechanisms, the challenges they create in statistical analysis, and how they are handled by

GVCM.

There are three types of missing data mechanisms, namely, missing completely at

random (MCAR), missing at random (MAR), and missing not at random (MNAR). When

the underlying reason for missing data is independent of the response, the mechanism is

known as MCAR. MAR and MNAR scenarios arise when missing data are dependent on

observed and missing (or unobserved) outcomes, respectively. MCAR and MAR are usually

identified as ignorable missingness, whereas MNAR is known as non-ignorable and it requires

to be modelled appropriately during the data analysis. When the underlying missingness

mechanism is assumed to be ignorable, that is, MCAR or MAR, it is common to analyze the

data using the subjects with complete information only (complete-case analysis). In addi-

tion to being computationally fairly straightforward to implement, under the complete-case

scenario, the maximum likelihood estimation employed for normally-distributed outcomes
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is shown to produce consistent estimates (Verbeke and Molenberghs, 1997). However, for

non-normal outcomes, as no unified likelihood-based approach exists, generalized estimating

equations (GEE) are employed. The advantages of GEE approach are that it can handle

unbalanced designs and it takes into account the within-subject dependence via specifying a

working correlation matrix, which approximates the true underlying correlation matrix for

the response variable and is an important component of the estimation. However, the GEE

approach produces consistent estimators only when the underlying missingness mechanism

is assumed to be MCAR. When the missingness mechanism is MAR, the consistency of

the GEE estimators depends on the specification of the working correlation matrix, more

specifically, it either has to closely follow the true structure or working independence struc-

ture should be used (Fitzmaurice et al., 2008). Therefore, due to convenience, for data

with MAR mechanism, Salazar et al. (2016) suggested assigning the independent correla-

tion structure to the working correlation matrix instead of searching for the true correlation

structure. Lin and Carroll (2000) showed that the efficiency of GEE estimators is still valid

under the working independence assumption, in particular, the authors showed that inde-

pendent correlation structure provides the smallest variance under local estimation without

affecting the bias of the estimators. Additionally, Kauermann (2000) proposed a locally

weighted version of GEE with an independent working correlation matrix, which is referred

as weighted generalized estimating equations (WGEE), to model an ordinal longitudinal

response. They proved that the desirable properties of GEE estimators, that is, efficiency

and consistency are still valid under the WGEE approach.
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As indicated in Section 4.3, our analysis of purpose in life score is performed via

the generalized varying-coefficient models (GVCM), where our estimation is based on the

local linear techniques. The local linear estimation techniques are in the same spirit as the

WGEE approach since they also involve a weight matrix, which is computed using a kernel

function (Carroll et al., 1998), and in addition, we also assume the working independence

correlation structure. In order to demonstrate that the benefits of using WGEE extend to

the estimation under GVCM for data sets with MAR missingness mechanism, we conducted

simulation studies. The results are presented in Section 4.5 and they are consistent with

the literature described above.

4.5 Simulation Studies

For validation of our analysis method for the MIDUS data, that is, to demonstrate

that GVCM leads to accurate and efficient estimates under MAR, we performed simulation

studies with two different cases: time-invariant categorical and time-varying continuous

predictors. For each of these cases, we provided comparison between results obtained from

complete data (that is, no missing observations) and MAR scenarios. We generated 400

data sets for each of the simulation set-ups and presented the bias and the standard errors of

the estimates in Tables 4.1 and 4.2. The mean estimates along with their confidence bands

obtained using sandwich standard errors (SEs) (referred as sandwich confidence bands from

here onward), and the true coefficient functions are presented in Figures 4.1 and 4.2.
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4.5.1 Categorical Predictors

We designed this case with time-invariant categorical predictors in order to make

our simulation comparable to the MIDUS data. For each of the 400 data sets, we considered

n = 400 subjects. Since we had a large number of participants with only less than or equal

to three longitudinal time points in the MIDUS data, we generated ni = 3 irregular mea-

surement times from the standard uniform distribution for i = 1, . . . , n. The first predictor

Xi1 was generated from a Bernoulli distribution with probability 0.55. The second predic-

tor was generated from a multinomial distribution with the vector of success probabilities

(0.33, 0.33, 0.34). Due to this predictor variable having three categories, we introduced two

indicator variables Xi2 (which equals to 1 if the random sample from the above distribution

was (0, 1, 0) and equals to 0 otherwise) and Xi3 (equals to 1 if the sample was (0, 0, 1),

and 0 otherwise), respectively. The response variable Yi(t) was generated from a GVCM

E{Yi(t)|Xi} = exp {β0(t) + β1(t)Xi1 + β2(t)Xi2 + β3(t)Xi3} , (4.2)

where Xi = {1, Xi1, Xi2, Xi3}T, β0(t) = 0.5 + sin(2.25t), β1(t) = 0.5 + 2t(1 − t), β2(t) =

cos(1.5πt), and β3(t) = − sin(πt)2. We generated the Poisson-distributed response using

Gaussian copulas in order to impose the appropriate association among the repeated mea-

surements. In particular, we simulated the response as follows:

(i) We constructed the correlation matrix of order ni = 3 for the ith individual by

applying the correlation function ρ(t, u) = 2−|t−u|, where t and u are two different

time points.
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(ii) The corresponding Cholesky roots were calculated to impose the correlation structure

on a random sample from an ni-variate N(0, I) distribution resulting in a vector, say,

{Wi(ti1), . . . ,Wi(tini)}
T, where I is an ni-dimensional identity matrix.

(iii) We applied probability integral transformation (PIT) to obtain

U = {Ui(ti1), . . . , Ui(tini)}
T =

[
Φ−1{Wi(ti1)}, . . . ,Φ−1{Wi(tini)}

]T
with each element of U following standard uniform distribution and Φ−1(·) was the

inverse cumulative distribution function (CDF) of a standard normal distribution.

(iv) We applied inverse PIT on U to generate the response

{Yi(ti1), . . . , Yi(tini)}T =
[
F−1{Ui(ti1)}, . . . , F−1{Ui(tini)}

]T
,

where F−1(·) is the inverse CDF corresponding to the Poisson distribution with mean

E{Yi(t)|Xi} specified in (4.2) for each i = 1, 2, . . . , n.

We performed the following steps on the complete data set to obtain the data with MAR

mechanism, which resulted in approximately 40% missingness.

(a) For each of the (i, j)th observation, where i = 1 . . . , n and j = 1, . . . , ni, we randomly

generated an observation b from a Bernoulli distribution with success probability

pij = exp{0.2Xi1+0.8Xi2+0.1Xi3}
1+exp{0.2Xi1+0.8Xi2+0.1Xi3} .

(b) If b = 0, we considered the corresponding measurement as a missing value and deleted

it from the data set, otherwise we retained all information on that observation.

For each of the above scenarios, the coefficient functions were locally estimated on equally

spaced 200 grid points within the time interval [0, 1]. We used Epanechnikov kernel, given

92



by K(t) = 0.75(1− t2) with |t| ≤ 1, because it is shown to minimize the asymptotic mean-

squared error of the local linear estimators (Fan and Gijbels, 1996). Estimates obtained by

fitting a generalized linear model were treated as initial values of the regression coefficient

functions in the Newton-Raphson (NR) iteration step during maximization of the local log-

likelihood. For comparison purposes, we used the same bandwidth h for both complete (no

missing observations) and MAR scenarios. To save time, we generated some pilot data sets

and performed cross-validation on the complete data sets. We chose a value of h which was

close to the optimal value obtained by fitting the pilot data. Specifically, we used h = 0.075

to fit all 400 data sets under the categorical predictor case.

The bias and the standard errors at three time points, namely, 0.3, 0.5, and 0.7,

are presented in Table 4.1. Similar to the results in Figure 4.1, we observe that the bias

is relatively small. For each time point, the standard deviation of the estimates across the

400 data sets are assumed to be the “true” standard deviation (denoted by SD) of the

estimator at that time. A sandwich variance estimator (Carroll et al., 1998), presented in

Section 4.3, is used for the estimation of the standard errors. The sample average and the

sample standard deviation of the 400 estimated standard errors, denoted by SE and SDSE,

respectively, in Table 4.1, summarize the performance of the sandwich estimator under

complete and MAR scenarios. From Table 4.1, we observe that the SDs as well as the SEs

are slightly larger in MAR cases than that in the complete data case, which is expected due

to 40% less observations in the MAR scenario. However, since all the SDs are within the

interval SE±2SDSE, we can conclude that our estimators perform well under both complete
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and MAR scenarios. Another point to note is that the SEs slightly underestimate the SDs,

which is expected for sandwich estimators (Kürüm et al., 2016).

(a) Complete Data Scenario

(b) Missing at Random Scenario

Figure 4.1: Results from our simulation study with time-invariant categorical predictors.
Each row shows four plots for a given scenario. Each plot includes the true function (solid),
the estimated varying-coefficient function (dashed), and the pointwise 95% sandwich confi-
dence band (dotted).
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Scenario Time Bias SD SE (SDSE) Bias SD SE (SDSE)

β0(t) β1(t)
0.3 -0.006 0.093 0.084 (0.011) -0.001 0.092 0.081 (0.009)

Complete 0.5 -0.035 0.090 0.080 (0.011) 0.006 0.087 0.084 (0.009)
0.7 -0.043 0.097 0.076 (0.011) 0.004 0.096 0.079 (0.009)

0.3 -0.006 0.123 0.112 (0.018) -0.001 0.122 0.104 (0.014)
MAR 0.5 -0.041 0.125 0.108 (0.018) 0.016 0.111 0.110 (0.015)

0.7 -0.045 0.125 0.103 (0.020) 0.008 0.121 0.106 (0.016)

β2(t) β3(t)
0.3 -0.029 0.094 0.080 (0.008) -0.015 0.102 0.098 (0.011)

Complete 0.5 -0.001 0.098 0.084 (0.010) -0.003 0.099 0.092 (0.012)
0.7 -0.073 0.094 0.088 (0.010) 0.035 0.108 0.082 (0.009)

0.3 -0.031 0.114 0.101 (0.015) -0.010 0.134 0.130 (0.020)
MAR 0.5 -0.004 0.130 0.104 (0.016) -0.002 0.137 0.123 (0.020)

0.7 -0.074 0.121 0.109 (0.015) 0.040 0.149 0.110 (0.019)

Table 4.1: Bias and standard errors for the time-invariant categorical predictors in complete
case and MAR scenarios.

4.5.2 Continuous Predictors

In this case, we considered two time-varying continuous predictors. For the ith

subject, we randomly generated ni = 5 irregular longitudinal time points from a standard

uniform distribution, where i = 1, . . . , n, with n = 200. For each time point, two predictors

Xi1(t) and Xi2(t) were simulated independently from two Gaussian distributions with re-

spective means 1 and 0, and standard deviations 0.25 and 0.1. The response variable Yi(t)

was generated from a GVCM

E{Yi(t)|Xi(t)} = exp {β0(t) + β1(t)Xi1(t) + β2(t)Xi2} , (4.3)

where Xi(t) = {1, Xi1(t), Xi2(t)}T, β0(t) = 1 + sin(2πt), β1(t) = 1 − sin(2πt), and β2(t) =

cos(2πt). We applied the same correlation function and Gaussian copula technique dis-

cussed in Section 4.5.1 to generate the longitudinal outcome Yi(t) from a Poisson distribu-
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tion having mean (4.3). The following steps performed on the complete data resulted in

approximately 40% missingness.

(i) For the jth observation of the ith subject, i = 1, . . . , n and j = 1, . . . , ni, we randomly

generated an observation b from a Bernoulli distribution with success probability

pij =
exp{0.4Xi1(tij)+0.5Xi2(tij)}

1+exp{0.4Xi1(tij)+0.5Xi2(tij)} .

(ii) If b = 0, we considered the corresponding measurement as a missing value and deleted

it from the data set, otherwise we retained all information on that measurement time.

Similar to the previous simulation set-up, we estimated the coefficients on 200 equally spaced

grids within the time interval [0,1] and used Epanechnikov kernel. The bandwidth selected

for fitting the models under both complete and MAR scenarios was h = 0.12.

The bias and the standard errors of the estimates are calculated in the same fashion

described in Section 4.5.1 and presented in Table 4.2. Both Figure 4.2 and Table 4.2 indicate

that the bias is relatively small and the shape of the regression functions are captured

accurately. Similar to the categorical predictor case (Section 4.5.1), we observe that SDs

are underestimated by the sandwich SEs, and are slightly higher in the MAR scenario in

comparison to the complete data scenario. However, since the interval SE±2SDSE covers the

true SDs and the estimates have relatively small bias, we can conclude that GVCM performs

well under both complete and MAR scenarios with continuous time-varying predictors.
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(a) Complete Data Scenario

(b) Missing at Random Scenario

Figure 4.2: Results from our simulation study with time-varying continuous predictors.
Each row shows three plots for a given scenario. Each plot includes the true function (solid),
the estimated varying-coefficient function (dashed), and the pointwise 95% confidence band
(dotted).
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Case Time Bias SD SE (SDSE) Bias SD SE (SDSE)

β0(t) β1(t)
0.3 0.069 0.121 0.105 (0.013) -0.087 0.112 0.101 (0.012)

Complete 0.5 -0.001 0.125 0.109 (0.013) -0.006 0.111 0.099 (0.013)
0.7 -0.036 0.119 0.110 (0.014) 0.018 0.100 0.096 (0.014)

0.3 0.076 0.155 0.137 (0.021) -0.091 0.146 0.130 (0.020)
MAR 0.5 0.000 0.157 0.141 (0.020) -0.007 0.140 0.128 (0.020)

0.7 -0.036 0.158 0.143 (0.021) 0.023 0.135 0.123 (0.021)

β2(t)
0.3 -0.034 0.274 0.253 (0.031)

Complete 0.5 -0.063 0.264 0.250 (0.029)
0.7 0.008 0.261 0.238 (0.030)
0.3 -0.049 0.351 0.326 (0.050)

MAR 0.5 -0.062 0.329 0.320 (0.048)
0.7 -0.001 0.329 0.304 (0.049)

Table 4.2: Bias and standard error for the time-varying continuous predictors in complete
and MAR scenarios.

4.6 Analysis of the MIDUS Data

In this section, we present the results of the analysis of the Midlife in the United

States (MIDUS) data (detailed description given in Section 4.2). The data consists of

purpose in life (PIL) scores and age of the participants from three measurement times

along with their social mobility groups (stable low, stable high, stable middle, downward,

and upward), race, gender, attrition status, and six major later-life events: retirement,

widowhood, chronic self-illness, and illness of children, spouse/partner, and parents. There

was about 46% missing observations in the data. In Section 4.5, we have demonstrated

that GVCM can produce accurate and efficient estimates under the MAR scenario. Under

the assumption that the missingness in the MIDUS data is MAR, we employed GVCM on

4656 respondents to explore: (1) how purposefulness changes in midlife through old age

98



(specifically, between ages 40 and 80), (2) the role of later-life events in change in purpose

over time, and (3) the disparity in purpose across different social mobility groups. The

local estimation was done at 200 equally spaced grids between ages [40, 80] and the optimal

bandwidth was 10.5.

In our analysis, we fitted the following GVCM assuming the PIL scores follow a

Poisson distribution

E{Yi(t)|Xi(t),Wi} = exp{XT
i (t)β(t) + WT

i α(t)},

where XT
i (t) = {1, Xi1(t), . . . , Xi10(t)} and WT

i = (Wi1, . . . ,Wi6) with corresponding re-

gression coefficients β(t) = {β0(t), β1(t), . . . , β10(t)}T and α(t) = {α1(t), . . . , α6(t)}T, re-

spectively. The vector of predictors Xi(t) consisted of binary variables for each social

mobility group (stable low as the reference group) and six major life events. The predictors

included in Wi were the control variables, that is, gender (male as the reference group),

race (Caucasian as the reference group) and attrition status (binary variable for each group,

that is, LFU after M1, died after M1, LFU after M2, and died after M2; participation in all

three waves were used as the reference group). The overall reference group in our analysis

was the group with all categorical predictors set to zero, that is, Caucasian men from stable

low income group who participated in all three waves, who were not retired or widowed,

and did not have any chronic illness of self and close family-members. To investigate our

first goal, that is, to understand the age trajectory of PIL from midlife and beyond, we
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present Figure 4.3. This figure represents the estimated average PIL trend across ages of

the reference group. We observe that the PIL increases until age 57 and then decreases

sharply between ages 57 and 80.

Figure 4.3: Estimated average trajectory of PIL scores as a function of age. The solid curve
displays the mean PIL scores across ages for the reference group and the shaded region
represents the 95% sandwich confidence band.

Figures 4.4 (a) and (b) present the estimated exponentiated coefficients along with

the 95% confidence bands of the control variables gender and race, respectively. In these

figures, as the confidence bands for both gender and race cover the straight line going

through one, we conclude that these factors have no significant effect on PIL scores at any

time point.
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Figure 4.4: Estimated time-varying coefficients (solid) along with pointwise 95% sandwich
confidence bands (shaded region) for the control variables gender and race.

To investigate our second goal, that is, how major later-life events influence the

sense of purpose, we display the estimated coefficients of the six life events in Figures 4.5

(a)-(f). Figure 4.5 (d) shows a slight negative impact of serious self-illness during early

midlife (between ages 44 to 50), and also between ages 70 and 75. Figure 4.5 (e) indicates

that widowhood has a significantly negative impact on PIL scores between ages 57 and 80.

According to Figures 4.5 (a)-(c), and (f), the rest of the life events do not have any effect

on the purposeful thoughts during midlife to older adulthood.
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Figure 4.5: Estimated coefficient functions (solid) of later-life events, that is, sickness of
self and close family members, widowhood, and retirement, along with their corresponding
95% confidence bands (shaded region).
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To explore the effect of social mobility on PIL scores, that is, our third goal, we

show the estimated time-varying coefficients in Figures 4.6 (a)-(d). The reference group

consisted of the consistently socioeconomically disadvantaged participants, that is, individ-

uals in the stable low social class. Since the straight line going through one was not covered

by the confidence bands of the stable high, upward, stable middle, and downward groups,

we can conclude from these figures that all of these social mobility groups have significantly

higher PIL than the stable low socioeconomic class.

Figure 4.6: Estimated coefficients of the social mobility groups (solid) and the 95% confi-
dence bands (shaded regions).

In order to further explore the relationships among the social mobility groups, we

display the fitted PIL values for each of the five groups in Figures 4.7 (a) and (b). From

Figure 4.7 (a), which includes the fitted PIL scores along with their sandwich confidence

bands, we observe that subjects in the stable low group, that is, subjects who were born

in the lower income group and remained in the same for their entire adulthood, have sig-

nificantly lower purposefulness than the downward mobile group between ages 40 and 55.

Additionally, their sense of purpose is significantly smaller than the rest of the three groups

(stable middle, upward, and stable high) for almost the entire study window, specifically

103



between ages 40 and 75. Participants who consistently belonged to the advantaged or high

social class (stable high group) display the highest sense of purpose throughout midlife to

older adulthood. Their average PIL scores are significantly higher than the upwardly mo-

bile groups between ages 42 and 65, these are higher than the stable middle group between

ages 40 and 72, and the scores are larger than the downward mobile group between ages 40

and 76. The stable middle social class does not have significantly different purposefulness

than the downward mobile group, but has slightly significant lower average scores than the

upward group between ages 51 and 61. The downward group has much smaller sense of

purpose than the upwardly mobile social class between ages 40 and 69. To understand

the hierarchy and detect age-specific gradients among the social mobility groups clearly, we

present Figure 4.7 (b) with only the fitted PIL scores. In this figure, we observe that the

trend of PIL scores for the consistently disadvantaged group (stable low) increases sharply

between ages 40 and 60, but declines after age 60. Contrary to this observation, all other

groups show an overall declining trend in PIL scores throughout entire middle and old ages.

The upward moving group has average PIL scores closer to the stable high group throughout

midlife and early old ages, but the average score declines sharply after age 70. The stable

middle group has mean PIL scores less than the upward group and higher than the down-

ward mobile group. In summary, even if the sense of purpose significantly differs among

the social mobility groups during midlife through early older ages, the disparity eventually

diminishes with time, and the overlapping confidence bands in Figure 4.7 (a) indicate no

difference after age 75.
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Figure 4.7: (a) Estimated PIL scores of all social mobility groups with their 95% confidence
bands (shaded regions) showing the significance in difference among the groups. (b) Esti-
mated PIL scores of all social mobility groups to display the hierarchy among the groups.

To summarize, in this chapter, we demonstrated that generalized varying coeffi-

cient models (Section 4.3) can lead to accurate and efficient estimates in the presence of

MAR mechanism (Section 4.4, Section 4.5) and applied this method for the analysis of

the MIDUS data (Section 4.6). Application of this methodology advances the literature in

several ways. It allows researchers to examine the time-varying effects of various sociodemo-

graphic exploratory factors on the purpose in life scores without imposing any pre-specified

response-predictor relationships. This may lead to better understanding of purpose in life at

various stages of life and therefore, leading to insightful contributions to research on healthy

aging. We found a declining trend in sense of purpose during later life. This is a critical

concern for older individuals because high purposefulness is associated with reduced risk

for health related problems and mortality, possibly because purposeful individuals are more
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likely to seek preventive healthcare services. Our results show that some life events that

deviate from normative life schedules might compromise sense of purpose. For example,

losing a spouse diminished purposeful thoughts throughout the second half of life as this

can result in loss of support, affection, and family-based recreational activities. Moreover,

having serious chronic illnesses slightly lowered the levels of purposefulness in early midlife

when such major health events are unusual in the general population, and during some of

old ages when health conditions are strongly related to social isolation and fear of dying.

Yet, throughout most of our study window, having serious illnesses did not significantly

lower the levels of purpose, which suggests that older adults might be resilient in the face

of health crises. There was no significant impact of having ailing family members on pur-

poseful thought which might be due to two reasons. First, in terms of measurement issues,

the yes/no indicator of each family member’s chronic illness or disability during the limited

period might not fully capture the complexity of health conditions. Second, caring for a

family member might provide unique opportunities to strengthen family bonding and foster

a sense of fulfillment. Our study uniquely contributes to the literature by investigating how

the developmental trajectory of purposefulness from midlife to older ages is associated with

life histories of socioeconomic background. We found that purposeful thought varies across

social mobility groups, particularly before age 60, with the most advantaged group exhibit-

ing the highest level and the most disadvantaged showing the lowest level. This might be

due to the opportunities and accumulating advantages beginning at youth of the persons in

the stable high social class, which act as significant sources of purpose. Meanwhile, those

who grow up in disadvantaged families are often facing higher financial challenges and more
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exposure to negative life events than their higher-status counterparts, which may impede

their ability to strive toward purposeful life pursuits. Although, early-life socioeconomic

circumstances are influential, we found that participants in the upwardly mobile group ex-

hibited significantly higher levels of purpose than the stable low and downward groups.

This indicates that exposure to childhood financial disadvantages might not always be an

obstacle to cultivating purposeful thoughts. However, a steeper decline in the sense of pur-

pose during older ages for this particular group compared to the stable high group indicates

that upward mobility can be an arduous process with potentially negative consequences

for psychological and physical well-being, and individuals in this group might struggle to

maintain high levels of purpose at the end of their lives. Our results may direct researchers

to expand intervention programs that help to foster purposefulness among children and

youths from disadvantaged families.
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Chapter 5

Conclusions and Future Work

Motivated by the Women’s Interagency HIV Study (WIHS) data, we proposed a

time-varying joint model (TV-JM) to fully capture the dynamic patterns present in a lon-

gitudinal data. Our method can accurately estimate both response-predictor and response-

response relationships as flexible functions of time in a joint modeling framework. We

developed an estimation procedure via the Expectation-Maximization algorithm, where in

the E-step, we approximated the underlying random effects, and in the M-step, we used

local linear regression techniques to estimate the time-varying coefficients. We investigated

the finite sample performance of our proposed TV-JM estimators through extensive simu-

lation studies and proposed standard error estimates by using bootstrap techniques. Note

that while our method was motivated by the WIHS data, it can be applied to a range of

follow-up studies which involve longitudinal and event-time responses.

In Chapter 4, we presented a novel application of generalized varying coefficient

models (GVCM) through the analysis of the Midlife in the United States (MIDUS) data.
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Since the data contains approximately 46% missing observations, we did a thorough lit-

erature search and conducted extensive simulation studies to investigate the performance

of GVCM in presence of missing data. Our simulation results agreed with the literature

review that under missing at random mechanism, GVCM accurately captures the time-

varying shapes of the model parameters.

In addition to the work presented in this dissertation, some future research is

needed in time-varying joint modeling of longitudinal and time-to-event responses:

1. In the present work, the longitudinal outcome is assumed to follow a normal distri-

bution. However, in many situations, the repeated measurements may be binary or

count data. A future direction may be extension of this model to a generalized setting

for longitudinal measurements belonging to the canonical exponential family.

2. In this dissertation, we have considered a single longitudinal and a single event-time

outcome. It would be of interest to extend these methods for multiple repeated mea-

sure outcomes or competing risk survival outcomes.

3. In addition to a fully nonparameteric approach, an automated semiparametric method

can be postulated to distinguish between the time-varying versus the time-invariant

coefficients, which might significantly increase the computational efficiency.
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Kürüm, E., Li, R., Shiffman, S., and Yao, W. (2016). Time-varying coefficient models for
joint modeling binary and continuous outcomes in longitudinal data. Statistica Sinica,
26(3).
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Appendix A

Details of the Gauss-Hermite

Quadrature Approximation

Gauss-Hermite quadrature method is employed to approximate integrals of the

form
∫ +∞
−∞ e−z

2
g(z)dz by ∫ +∞

−∞
e−z

2
g(z)dz ≈

m∑
r=1

wrg(zr), (A.1)

where m is the number of quadrature points used and zr are the roots of the Hermite

polynomial

Hm(z) = (−1)mez
2 dm

dzm
e−z

2
,

with the associated weights wr = (2m−1m!
√
π)
/ [
m2{Hm−1(zr)}2

]
and r = 1, . . . ,m.

In our estimation procedure, we use the transformation z2 = ξ2
i

/
2σ2

ξ to obtain

the form (A.1) required for the Gauss-Hermite quadrature method in the E-step of the

Expectation-Maximization (EM) algorithm. In order to estimate the posterior mean and

variance of the subject-specific random effect ξi, we apply the quadrature method on both
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the numerators and denominators in main text equation (3.5). For m = 35, the transformed

integrations and their approximations at the current EM iteration are updated as

∫
Li(ξi,θ

∗)dξi =

∫
exp(−z2)g∗1(z)dz ≈

35∑
r=1

wrg
∗
1(zr), (A.2)

∫
ξiLi(ξi,θ

∗)dξi =

∫
exp(−z2)g∗2(z)dz ≈

35∑
r=1

wrg
∗
2(zr), (A.3)

∫
(ξi − ξi0)2Li(ξi,θ

∗)dξi =

∫
exp(−z2)g∗3(z)dz ≈

35∑
r=1

wrg
∗
3(zr), (A.4)

where

g∗1(z) =
1√
π
g∗0(z)

g∗2(z) = zσ∗ξ
√

2/π g∗0(z)

g∗3(z) =
1√
π

(zσ∗ξ
√

2− ξi0)2 g∗0(z),

with

g∗0(z) =

[ ni∏
j=1

{2πσ2∗(tij)}−1/2

]
exp

[
−

ni∑
j=1

{
Yi(tij)−XT

i (tij)β
∗(tij)− zσ∗ξ

√
2
}2

2σ2∗(tij)

]
×
(
h∗0(Ti) exp

[{
XT
i (Ti)β

∗(Ti) + zσ∗ξ
√

2
}
γ∗(Ti) + WT

i (Ti)η
∗(Ti)

])δi
× exp

(
−
∫ Ti

0
h∗0(u) exp

[
{XT

i (u)β∗(u) + zσ∗ξ
√

2
}
γ∗(u) + WT

i (u)η∗(u)
]
du

)
,

and c∗ denotes the current estimate of any quantity c.

To estimate the posterior mean of ξi, that is, ξi0, approximations in (A.2) and

(A.3) are computed and plugged into the first equation of (3.5) in the main text. The

estimate of the posterior variance υi0 is obtained via first plugging in the estimated ξi0 in

(A.4) and then using the approximations in (A.2) and (A.4) in the second equation of (3.5)

in the main text.
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Appendix B

Details of the Maximization Step

In this section, we present further details on the Newton-Raphson algorithms em-

ployed to estimate the time-varying parameters in α(t) = {β(t)T, γ(t),η(t)T}T and the

parameters of the baseline hazard function. In addition, we present the likelihood-based

standard error formula for the random effect variance.

B.1 Estimation of Time-Varying Parameters

In order to estimate the time-varying parameters (α̂T
0 , α̂

T
1 )T, we employed local

linear fitting techniques, in which, we maximized the expected local log-likelihood in main

text equation (3.7) with respect to α0 = (βT
0 , γ0,η

T
0 )T and α1 = (βT

1 , γ1,η
T
1 )T via a

Newton-Raphson (NR) algorithm. Let {α(it)
0 ,α

(it)
1 } be the estimate of (α0,α1) at the

current iteration of the NR algorithm and we updated (αT
0 ,α

T
1 )T according to

α
(it+1)
0

α
(it+1)
1

 =


α

(it)
0

α
(it)
1

− [`′′{α(it)
0 ,α

(it)
1 }]

−1`′{α(it)
0 ,α

(it)
1 },
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where `′{α(it)
0 ,α

(it)
1 } and `′′{α(it)

0 ,α
(it)
1 } are the score function and Hessian of the approxi-

mated expected local log-likelihood (3.7) with respect to (αT
0 ,α

T
1 )T, respectively, evaluated

at the current estimates {α(it)
0 ,α

(it)
1 }. Let A∗i (z) = m∗il(z){γ∗0 + γ∗1(z − t0)}+ WT

i (z){η∗0 +

η∗1(z − t0)} with m∗il(z) = XT
i (z){β∗0 + β∗1(z − t0)} + ξ∗i0, where for any c, the estimate at

the current iteration is denoted by c∗. The score functions and the hessian at the current

NR iteration are presented below.

Score Functions

∂E{`(α0,α1)}
∂β0

=
n∑
i=1

(
ni∑
j=1

[
{σ2∗(tij)}−1Xi(tij)

{
Yi(tij)−m∗il(tij)

}]
Kh1(tij − t0)

+

[
δiXi(Ti) {γ∗0 + γ∗1(Ti − t0)}

−
∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Xi(u){γ∗0 + γ∗1(u− t0)} du

]
Kh2(Ti − t0)

)
,

∂E{`(α0,α1)}
∂β1

=

n∑
i=1

(
ni∑
j=1

[
{σ2∗(tij)}−1Xi(tij)(tij − t0)

{
Yi(tij)−m∗il(tij)

}]

×Kh1(tij − t0) +

[
δiXi(Ti)(Ti − t0)

{
γ∗0 + γ∗1(Ti − t0)

}
−
∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Xi(u)(u− t0)

{
γ∗0 + γ∗1(u− t0)

}
du

]
×Kh2(Ti − t0)

)
,

∂E{`(α0,α1)}
∂γ0

=

n∑
i=1

(
δim

∗
il(Ti)−

∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
m∗il(u) du

)
Kh2(Ti − t0),
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∂E{`(α0,α1)}
∂γ1

=
n∑
i=1

(
δim

∗
il(Ti)(Ti − t0)

−
∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
m∗il(u)(u− t0) du

)
Kh2(Ti − t0),

∂E{`(α0,α1)}
∂η0

=

n∑
i=1

(
δiWi(Ti)−

∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Wi(u) du

)
Kh2(Ti − t0),

∂E{`(α0,α1)}
∂η1

=
n∑
i=1

(
δiWi(Ti)(Ti − t0)

−
∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
(u− t0)Wi(u) du

)
Kh2(Ti − t0).

Submatrices of the Upper-triangular Hessian Matrix

∂2E{`(α0,α1)}
∂β0∂β

T
0

= −
n∑
i=1

(
ni∑
j=1

{σ2∗(tij)}−1Xi(tij)X
T
i (tij)Kh1(tij − t0)

+

[ ∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Xi(u)XT

i (u)
{
γ∗0 + γ∗1(u− t0)

}2
du

]
×Kh2(Ti − t0)

)
,

∂2E{`(α0,α1)}
∂β1∂β

T
1

= −
n∑
i=1

(
ni∑
j=1

{σ2∗(tij)}−1Xi(tij)X
T
i (tij)(tij − t0)2Kh1(tij − t0)

+

[ ∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Xi(u)XT

i (u)(u− t0)2

×
{
γ∗0 + γ∗1(u− t0)

}2
du

]
Kh2(Ti − t0)

)
,
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∂2E{`(α0,α1)}
∂β0∂β

T
1

= −
n∑
i=1

(
ni∑
j=1

{σ2∗(tij)}−1Xi(tij)X
T
i (tij)(tij − t0)Kh1(tij − t0)

+

[ ∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Xi(u)XT

i (u)(u− t0)

×
{
γ∗0 + γ∗1(u− t0)

}2
du

]
Kh2(Ti − t0)

)
,

∂2E{`(α0,α1)}
∂γ2

0

= −
n∑
i=1

[∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
m∗2il (u) du

]
Kh2(Ti − t0),

∂2E{`(α0,α1)}
∂γ2

1

= −
n∑
i=1

[∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
m∗2il (u)(u− t0)2 du

]
Kh2(Ti − t0),

∂2E{`(α0,α1)}
∂γ0∂γ1

= −
n∑
i=1

[∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
m∗2il (u)(u− t0) du

]
Kh2(Ti − t0),

∂2E{`(α0,α1)}
∂η0∂η

T
0

= −
n∑
i=1

[∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Wi(u)WT

i (u) du

]
Kh2(Ti − t0),

∂2E{`(α0,α1)}
∂η1∂η

T
1

= −
n∑
i=1

[∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Wi(u)WT

i (u)(u− t0)2 du

]
×Kh2(Ti − t0),

∂2E{`(α0,α1)}
∂η0∂η

T
1

= −
n∑
i=1

[∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Wi(u)WT

i (u)(u− t0) du

]
×Kh2(Ti − t0),

121



∂2E{`(α0,α1)}
∂β0∂γ0

=
n∑
i=1

(
δiXi(Ti)−

∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Xi(u)

×
[
1 +m∗il(u)

{
γ∗0 + γ∗1(u− t0)

}]
du

)
Kh2(Ti − t0),

∂2E{`(α0,α1)}
∂β0∂γ1

=

n∑
i=1

(
δiXi(Ti)(Ti − t0)−

∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Xi(u)(u− t0)

×
[
1 +m∗il(u)

{
γ∗0 + γ∗1(u− t0)

}]
du

)
Kh2(Ti − t0),

∂2E{`(α0,α1)}
∂γ0∂β

T
1

=

[
∂2E{`(α0,α1)}

∂β0∂γ1

]T

,

∂2E{`(α0,α1)}
∂β1∂γ1

=

n∑
i=1

(
δiXi(Ti)(Ti − t0)2 −

∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Xi(u)(u− t0)2

×
[
1 +m∗il(u)

{
γ∗0 + γ∗1(u− t0)

}]
du

)
Kh2(Ti − t0),

∂2E{`(α0,α1)}
∂β0∂η

T
0

= −
n∑
i=1

[∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Xi(u)WT

i (u)

×
{
γ∗0 + γ∗1(u− t0)

}
du

]
Kh2(Ti − t0),

∂2E{`(α0,α1)}
∂β0∂η

T
1

= −
n∑
i=1

[∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Xi(u)WT

i (u)(u− t0)

×
{
γ∗0 + γ∗1(u− t0)

}
du

]
Kh2(Ti − t0),

∂2E{`(α0,α1)}
∂η0∂β

T
1

=

[
∂2E{`(α0,α1)}

∂β0∂η
T
1

]T

,
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∂2E{`(α0,α1)}
∂β1∂η

T
1

= −
n∑
i=1

[∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
Xi(u)WT

i (u)(u− t0)2

×
{
γ∗0 + γ∗1(u− t0)

}
du

]
Kh2(Ti − t0),

∂2E{`(α0,α1)}
∂γ0∂ηT

0

= −
n∑
i=1

[∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
m∗il(u)WT

i (u) du

]
Kh2(Ti − t0),

∂2E{`(α0,α1)}
∂γ0∂ηT

1

= −
n∑
i=1

[∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
m∗il(u)WT

i (u)(u− t0) du

]
×Kh2(Ti − t0),

∂2E{`(α0,α1)}
∂η0∂γ1

=

[
∂2E{`(α0,α1)}

∂γ0∂ηT
1

]T

,

∂2E{`(α0,α1)}
∂γ1∂ηT

1

= −
n∑
i=1

[∫ Ti

0
h∗0(u) exp

{
A∗i (u)

}
m∗il(u)WT

i (u)(u− t0)2 du

]
×Kh2(Ti − t0).

B.2 Estimation of the Baseline Hazard Parameter

For the estimation of the baseline hazard parameter θh0 , we maximized the approx-

imated expected log-likelihood in main text equation (3.6) with respect to θh0 . Maximiza-

tion is implemented via a Newton-Raphson algorithm and the updated estimator is obtained

by θ
(r+1)
h0

= θ
(r)
h0
− {H(r)

h0
}−1V

(r)
h0

, where r is the current iteration of the Newton-Raphson

algorithm, V
(r)
h0

and H
(r)
h0

are the score function and the Hessian of the approximated ex-
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pected log-likelihood (3.6) with respect to θh0 . The respective score and the Hessian for

the baseline hazard can be calculated as

∂E{`(ξ,θ)}
∂θh0

=
n∑
i=1

∂

∂θh0

(
δi log h∗0(Ti)

−
∫ Ti

0
h∗0(u) exp{m∗i (u)γ∗(u) + WT

i (u)η∗(u)}du

)
, and

∂2E{`(ξ,θ)}
∂θh0∂θ

T
h0

=

n∑
i=1

∂2

∂θh0∂θ
T
h0

(
δi log h∗0(Ti)

−
∫ Ti

0
h∗0(u) exp{m∗i (u)γ∗(u) + WT

i (u)η∗(u)}du

)
.

In our modeling framework, we employed a restricted cubic spline function to

model the baseline hazard, which is given by

h0(t) = exp

{
K−2∑
κ=1

ϕκωκ(t) + ϕK−1t+ ϕK

}
.

In vector notation, the baseline can be written as h0(t) = exp
{
ϕTω(t)

}
, where ϕT =

{ϕ1, . . . , ϕK} constructs the vector of baseline hazard parameter θh0 , ω(t) = {ω1(t), . . . ,

ωK−2(t), t, 1}T with ωκ(t) = (t − ϑκ)3
+ −

(t−ϑK−1)3+(ϑK−ϑκ)

(ϑK−ϑK−1) +
(t−ϑK)3+(ϑK−1−ϑκ)

(ϑK−ϑK−1) , for κ =

1, . . . , (K − 2), and (z)+ = max(0, z).

We investigated two more approaches to estimate the baseline hazard function:

piecewise constant and linear spline. Note that although these approaches are not as flexible

as the restricted cubic spline, they are more computationally straightforward to implement.

The simplest way to model the baseline hazard function is using a piecewise constant. Under

this approach, the baseline hazard is given by

h0(t) = exp

{ K∑
κ=1

ϕκ.I(ϑκ < t ≤ ϑκ+1)

}
,
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where the time window is divided into K sub-intervals at time points 0 = ϑ1 < ϑ2 < · · · <

ϑK+1, such that, ϑK+1 is larger than the largest observed time and ϕκ is the value of the

baseline hazard in the interval (ϑκ, ϑκ+1]. The exponential in this model ensures that the

baseline hazard is positive at all times. In vector notation, we can write the baseline as

h0(t) = exp
{
ϕTω(t)

}
, where ω(t) = {ω1(t), . . . , ωK(t)}T with ωκ(t) = I(ϕκ < t < ϕκ+1),

for κ = 1, . . . ,K, and ϕ = {ϕ1, . . . , ϕK}T = θh0 .

Another method that can be used to model the log-baseline is given by a linear

spline. The baseline risk here is given by the form

h0(t) = exp

{
ϕ1 + ϕ2t+

K+2∑
κ=3

ϕκ(t− ϑκ−2)+

}
,

where ϕT = {ϕ1, . . . , ϕK+2} is the vector of baseline hazard parameters θh0 , and the internal

knots are given by 0 < ϑ1 < · · · < ϑK < max(Ti). In vector notation, the baseline can be

written as h0(t) = exp
{
ϕTω(t)

}
, where ω(t) = {1, t, (t−ϑ1)+, . . . , (t−ϑK)+}T. Note that,

since we can write all three methods mentioned above using the same vector notation, we

can provide a general form of the score and the hessian for all three cases. With appropriate

specification of ϕ and ω(·) in the corresponding models, the score function and the Hessian

can be presented as follows

∂E{`(ξ,θ)}
∂ϕ

=

n∑
i=1

[
δiω(Ti)−

∫ Ti

0
h∗0(u)ω(u) exp

{
m∗i (u)γ∗(u) + WT

i (u)η∗(u)
}
du

]
,

∂E{`(ξ,θ)}
∂ϕ∂ϕT

= −
n∑
i=1

[∫ Ti

0
h∗0(u)ω(u)ω(u)T exp

{
m∗i (u)γ∗(u) + WT

i (u)η∗(u)
}
du

]
.
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B.3 Likelihood-based Standard Error of the Random Effect

Variance

To compute the likelihood-based standard error for the random effect variance σ2
ξ ,

we calculate the second order derivative of the incomplete local log-likelihood in main text

equation (3.4) and it has a closed form solution as follows

∂2`(θ)

(∂σ2
ξ )

2

∣∣∣∣∣
σ2
ξ=σ̂2

ξ ,θ=θ̂

=

n∑
i=1

∂2

(∂σ2
ξ )

2
log

{∫
Li(ξi,θ)dξi

} ∣∣∣∣∣
σ2
ξ=σ̂2

ξ ,θ=θ̂

=
n

2σ̂4
ξ

−
n∑
i=1

(ξ̂2
i0 + υ̂i0)

σ̂6
ξ

= Hξ(σ̂
2
ξ ),

where ĉ denotes the estimate of c at the last EM iteration. The standard error is given by√
−
{
Hξ(σ̂

2
ξ )
}−1

.
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