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Abstract

Software Engineering practices are changing in an age of artificial intelligence. While the core

activities of design, develop, maintain, test and evaluate remain, the methods used in these activities

are evolving. The prevalence of generative programming models has the potential to reconstitute

the duties of a software engineer. Widely adopted models like Copilot and Bard are IDE-based

pair-programming assistants that create code from virtually any input: contextual code, natural

language, specifications, input output pairs, etc. The way developers interact with these models

will redefine some core ideas of software engineering. These models empower virtually anyone, of

varying coding proficiency, to create software. Models with the capacity to code will surely manage

to inherit software design and analysis capabilities [186], albeit for now, with specific training or

prompting.

Naturally, one wonders how language modeling, or more specifically the modeling of source

code and its features, will impact developers. Researchers often conjecture on the varying degree

of influence these methods will have, but certainly, these tools will support developers in new

and existing tasks: code completion, bug and vulnerability detection, code summarization, type

annotation, and more are already prominent use cases. One can envision a world where software

developers delegate portions of their work to machine learning pipelines, such as unit testing and

vulnerability testing of their code; how much of that code they actually write is up for debate

as well. Developers will likely automate portions of their work flow but simultaneously gain new

tasks and responsibilities. These tasks might include passing automatic code reviews that detect

code smells, place code comments automatically, and detect refactorings; maybe using models

from [56], [133], [59]. These capabilities come from modeling source code and its features directly

by distilling down meaningful representations for the task at hand.

This thesis explores learning meaningful representations from code through a variety of ap-

plications for developer supporting tools. The first application is a type-prediction model using

representations learned with masked-language-modeling. While effective, we find that the off-the-

shelf model fails at an aspect of modeling source code, namely the use of local user-defined types.

The next application modifies the model learned representations with one characterized by an

objective function capturing how developers actually use types. Along this body of work, the next
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two chapters present a type inference dataset for the community and a framework for new machine

learning models with a Visual Studio plugin. This thesis concludes with a study of large language

models on single statement bug introduction and proposes avoidance strategies. Finally I present

some future work to improve these models. By reading this thesis, I hope the reader has a few

takeaways:

(1) Machine learning is an essential tool for capturing code and its meta data. Models trained

on code and its features are capable of generalizing and improving old and new processes.

(2) The data that models train on is not perfect, and the resulting models often inherit biases

towards vulnerable and buggy code; researchers must evaluate the risk vs. reward with

broadly trained models.

(3) The objectives optimized for software models may not align with our goals; models that

incorporate human feedback may ultimately align better to our values and understanding

of code.

(4) Large language models are powerful tools for software engineering, but they’re only part of

the picture. Models that learn data and control flow, project and file meta data, local and

global scope semantics, and information associated with code traces, are better informed

on the source code it consumes and produces.

This thesis attempts to quantify the utility of off-the-shelf LLMs like BERT, the misalignment of

LLM representations to human derived representations of coding constructs, and the present risks of

using LLM predictions at face value. Hopefully, in each case, the chapters leave you optimistic that

many of the aforementioned concerns can be minimized, or mitigated with just a bit of ingenuity.
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Chapter 1

Finding Meaningful

Representations of Software

Software permeates all avenues of modern society, including retail, energy, healthcare, space,

automotive, construction and more. Due to the integration of software in our societal fabric, there

is an increasing demand to improve software development. Improvements may focus on the process

of creating software (e.g. rapid prototyping and better programming environments) or the product

with improving reliability and maintainability. With respect to the product, code is often reviewed

by automatic tools developed by software engineering researchers and programmers. Automatic

tools vary in their sophistication from observing patterns in individual statements and declarations,

to complete analysis of programs. The analysis of code can result in simple results such as linting

to leveraging mathematically derived formal methods to prove properties of a program.

Formal methods, are attractive because of the provability of program behavior, facts, and

properties. Static program analysis has led to impactful advancements in the sub-fields of program

verification [244], type checking [30], program minification [49], refactoring [71], and more. The

rigor of formal proofs means that if well-specified guarantees exists in code, and as long as the

proof holds, then the guarantees hold. In the medical, nuclear, aviation, and automotive industries,

such guarantees are useful. Static analysis and formal models ultimately fall short on the chaos

and complexity of real systems. For example, exhaustively testing a simple program that adds
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only two 32-bit inputs would take hundreds of years. Moreover, with the communicative intent of

developers, identifier and function names provide rich semantic clues, i.e age, and can be reasonably

approximated and verified without previously seen distributions of values; age doesn’t exceed 125

years. As we see, the formal approach to program analysis fails to capture many attitudes of the

developer and the code itself. Until the last decade, software analysis largely avoided the text of the

code in favor of various formal representations. The availability of “big-data” in the form of public

software repositories and the recent evolution of machine learning methodologies inspires a greater

analysis of statistical properties of natural code.

The rise of publicly available open-source software in the last decade provides an invaluable

resource of “big-data”. The scale of data is massive with over 128 million repositories on Github in

addition to many other alternative hosting platforms. The repositories are rich with features and

expose not just the code, but meta data about the code including bug-fixes, commits, api changes,

and more. The availability of large scale data suggests that statistical based approaches can be

effective in learning the communicative intent of humans and translate into many “downstream”

applications. We ask, "What statistical properties, analysed over representative code corpora, can

elucidate meaningful representations of software?" and "How can we use them to help developers

produce better code?". We are motivated by the various applications these representations can be

implemented into; we will speak of representations align appropriately to developers’ use of type

inference and applications that are derived from such models.

In recent years, the software engineering community has seen a rapid departure from formal

approaches with 69% (and growing) of publications in SE conference proceedings employing deep

learning techniques [241]. Such research, including the use of machine learning, is often exploiting

software repositories as a form of data. The conventions of popular coding languages and the

semantics and syntax of code make way to the naturalness of code. The naturalness hypothesis

states,

Software is a form of human communication; software corpora have similar

statistical properties to natural language corpora; and these properties can be

exploited to build better software engineering tools. [8]
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Similar to how natural language is complex and expressive, programming languages are complex and

powerful, however, both are largely regular and predictable. This is because developers are writing

code with the intent of communicating clearly what the code should do and using the language as it

is intended to be used. Code specifically requires understanding and problem solving so code exhibits

larger regularity and repetitiveness than natural language due to code reuse [64]. The first empirical

evidence of the naturalness hypothesis was in early works by Hindle et al. [81] where models

designed for natural language were surprisingly effective on code; they also found that models could

represent code with less bits! Following, other works found that the regularity of code could indicate

when code was irregular or likely buggy [180]. Many methods and applications have emerged

from the naturalness hypothesis in tandem with the rapid advance in natural language processing,

computer vision, and other related fields. Such applications range from program analysis and

synthesis, debugging, information retrieval, specification understanding, recommendation systems,

type inference, and more [8]. The rapid application of machine learning to software engineering

isn’t all that surprising given the success on natural language and yet challenges arise.

While code is similar to natural language and includes forms of human communication exploitable

by the naturalness hypothesis, code differs from natural language in ways that inhibit the same

effective application of machine learning methods. Code has a formal syntax and semantics which

allow machines to understand and execute the code when formed properly. Many Natural Language

Processing (NLP) techniques applied to code do not adhere to the formal constraints of code or

require methods to filter solutions with correct local syntax [139,172].

On the other hand, neural networks are effective learners of regular semantics and most formal

syntax [17, 228]. While code can be characterized as significantly less ambiguous than natural

language, ambiguity still exists in parse tree structures, polymorphism, aliasing, and more. This

means often or not, machine learners will have to model code accounting for ambiguity and noise.

For tasks like type inference where variables/function types are dynamically assigned, attempts

to type from static code will result in degrees of ambiguity. Techniques for resolving ambiguity

can include incorporating information from other sources: traces, data flow, control flow, and

common types in frequently included libraries to name a few. Ambiguity can be resolved from

sources “outside” of the typical channels of code. Natural language through comments or functions
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can describe a developers intent or desired goal. Machines can likewise use natural language to

summarize the code into digestible segments for developers and use generated natural comments to

help the developer verify code functionality [87]. Both the generation of code and natural language

requires models to understand ambiguity in one domain (natural language) and transfer into an

unambiguous target language (code) or vice versa. Finally, ambiguity can arise from human error

in practical applications such as type inference with types that were mistakenly not imported; it

is relevant to recommend the most likely type (potentially ambiguous) and the missing import

statement. The duality of natural language and code further complicates the challenge of finding

representation that is suitable for either or both.

Researchers have several ways to represent code with various architectures and learning techniques.

Source code representations can differ greatly by the code semantics we intend to capture; there are

general purpose representations learned from LLMs and specific representations crafted by an (neural)

architects’ understanding of the problem viz. inductive bias. Code in its simplest form, tokens, are

typically used as input to neural networks to learn probabilistic language modeling; additionally input

can be supplemented with ASTs or other code specific features [98,199]. Representations of code can

range from traditional n-grams [82], bag-of-words, single/bidirectional Recurrent Neural Networks

(RNN) [78], Hierarchical Neural Networks (HNNs) [149], Graph Neural Networks (GNNs) [10, 11],

Transformers [62], Hybrids [80], attention-based flow [72] and various tree-based encoding [98,163].

All of these representations extract meaningful features from code for specific purposes e.g. data

flow for type information. We emphasize that extracting meaningful representations of code is part

process in ML (improved machine learning techniques) [222], and part realization of adaptations

that distill valuable code semantics in SE [163].

In this work, we try to improve code representations specifically by including valuable information

that is inherent to code. Derivative representations of code currently exists in graph representations

(hyperedges), attention-based data-flow edges, and AST information. Following this trend, aspects of

code that have yet to be well integrated into static code representations are static/dynamic features

like data value distributions, code traces, code structure, and more. The pursuit of extractable

code features or external data is well worth the effort [72] and should be explored deeper. Regular

features of programming languages change with new versions and often extend beyond the code
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itself; e.g. meta information about projects, patches, code reviews, and more. With a combination

of improved methodologies for distilling machine and human-centric representations of code, we

hope to provide better insights and solutions for developers. In summary, the thesis of this work is

goal-oriented towards better developer-aligned representations of source code. Developer alignment

means that neural networks understand code in a manner that is aligned to developers’ goals.

Developer alignment issues exists even in code completion tools where the code should not introduce

security vulnerabilities and bugs. In this work we see that off the shelf models, including some of the

most complete LLMs like OpenAI’s Codex, have inherited developer misalignment by introducing

single statement bugs quite frequently. This is just one of several scenarios this work discusses.

Outline

In Chapter 2 we provide the reader with AI4SE and ML fundamentals that are the underpinnings

for all the discussed research papers.

Towards the objective of modeling source code effectively for developers, we outline several

completed works at a high level. In Chapter 3, we examine the task of type inference in JavaScrip-

t/TypeScript where variable, function and parameter types are inferred. This is helpful for several

reasons, imagine, a code editor that guides the developer in the proper use of types. The flexibility of

types in JavaScript/TypeScript means there are an innumerable set of types viz. an open-vocabulary

of types. Typing is one particular aspect of code that is rather complex. In JavaScript variables can

assume types dynamically and inferring these types during development often requires summarizing

key language principles such as data-flow. Neural network designers found that explicitly defining

relationships related to the task, while sometimes abstract, often improved model performance.

This led to a growing field of neural networks that derived equally complicated inductive biases

to capture said features [9, 230]. We found that a simple inductive bias actually led to greater

performance through large scale self-supervision; the learned regularities in pre-trained models

could be transferred to type inference! This chapter titled Learning Type Annotation: Is Big Data

Enough? [95] was presented at ESEC/FSE 2021. However, upon greater scrutiny of the models’

performance, we found an aspect of typing that the model is particularly poor at: user-defined

types.
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Chapter 4 builds on the previous chapter by reorienting the model’s learned representations

with the way developers actually use type inference for user-defined types. We use an effective

technique to align class and type declarations where the use of these user-defined types elegantly

bypasses model limitations like the closed-vocabulary dilemma. The technique is widely applicable

to novel types and conceivably any new type definition can be digested by the model and used

in inference. The technique is evaluated with never-before-seen types which demonstrates the

alignment is effective even for newly crafted types! In congruence with our thesis of modeling

source code effectively for developers, we augmented the models’ internal representations to be

more developer aligned, simply put, aligned to the way developers interpret and use types. This

chapter was accepted to Transactions on Software Engineering (TSE) titled Learning to Predict

User-Defined Types and will be featured at ICSE 2023 in the journal first track.

The next two chapters, Chapter 5 and Chapter 6 are research efforts that put forward a model

agnostic dataset for learning type inference and a corresponding framework to host such models.

Prior to these works, type inference models were often trained and evaluated in an adhoc manner.

Comparing two type inference models was often dependent on fleeting factors like project availability

on GitHub. To alleviate this problem, we made a dataset with over 9 million type annotations

with an automatic evaluation script available on the popular CodeXGLUE website. CodeXGLUE is

a leaderboard for code intelligent tasks managed by Microsoft. Part of this contribution was the

dataset and the mining scripts to update the dataset frequently; coding languages are evolving

and the types developers use will change over time. The ManyTypes4TypeScript dataset also

contributes state-of-the-art encoder models like CodeBERT and GraphCodeBERT. This chapter

titled, ManyTypes4TypeScript: A Comprehensive TypeScript Dataset for Sequence-Based Type

Inference was accepted at MSR 2022.

The central theme of the ManyTypes4TypeScript work is that the dataset and benchmark

is model agnostic. Neural network designers are free to adapt to new ML advancements and

apply designs that work well for code. In AI4SE research, models are often benchmarked and left

for engineers to integrate into a product; sometimes gamechanging models like Typilus [11] and

LambdaNet [230] are never used beyond research. To address this, we proposed a framework for

Visual Studio that does the heavy lifting of type inference; the code manipulation. The framework,
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FlexType, finds the location for type inference and parses the AST for sequence-based models.

FlexType uses type inference models to generate predictions and presents the predictions to the

developer. FlexType is an effective framework for both JavaScript and TypeScript. The paper,

FlexType: A Plug-and-Play Framework for Type Inference Models was presented at ASE 2022. The

demo can be viewed here1.

In Chapter 7, we evaluate popular code completion tools including OpenAI’s Codex to see how

often they introduce single statement bugs. Single statement bugs are tricky to find but often easy to

solve. We also know that in a growing age of automatic coding, the AI engine might introduce large

swaths of code that can riddled with bugs. This chapter explores how prone LLM code completions

engines are at introducing these bugs, how pervasive they are, and if there is anything a developer

can do while using the tool to avoid such bugs. Spoiler, there is!

In the final chapter of the thesis we discuss the future of these tools and current sub-fields

dedicated to improving them. It is my belief that the field will progress down the path of integrated

LLMs for code development, and key improvements will not be driven by parameter count and sheer

model size. Instead, these models will be improve by developer alignment in a broad set of ways.

Developer alignment means that models will adapt to the developer (maybe personalization), and

fit inference around the code base at hand: code reviews, other developers, product feedback, and

more. Currently, promising directions are done with reinforcement learning on human feedback, and

conditioning through prompting based on desirable and undesirable outcomes [76] (secure versus

insecure code). Other techniques, some not yet discovered, will be better than others and AI4SE

researchers must uncover and evaluated these alignment techniques; frankly, to defend against threat

vectors and unintended consequences. LLMs are wonderful retrieval tools, and must be guided to

our interests, values, and goals.

1https://youtu.be/4dPV05BWA8A
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Chapter 2

Background

In this section, we introduce some key principles and theorems that guide the neural modeling

of software and help find meaningful representations of code. This section starts with language

modeling fundamentals both explicit and implicit. We follow with emerging innovative techniques of

modeling corpora, using context, with and without pre-training. We discuss learning techniques that

go beyond modeling language by aligning and dissociating representations of elements. Finally we

discuss advanced modeling in the context of software engineering as well as the aspects of software

that distinguishes it from natural language text.

2.1 Language Modeling Fundamentals

Language modeling is a fundamental task of natural language processing (NLP). In its simplest

form it consists of modeling the probability of a word following or given a series of other words

called a context. Language models assign a probability or score to either a phrase, sentence, word,

or character depending on the granularity of the modeling objective. A language model that is

representative of the target language should score utterances highly if they were more likely to occur

in the training corpus. A high score should mean the sequence of words or characters is natural

to a native speaker (or writer). The inverse holds true that any unnatural sentences results in a

lower expectation. In order for a language model to properly predict the natural sequence of words,

the language model predictions must be scored in a manner in which they appear naturally. Code

models are analogous to language models in that natural code exhibits regular statistical properties
9



that can be captured by corpus-based language models [82]; in fact code reuse facilitates a higher

global regularity and language keywords lends to a high level of local regularity. A naturalness

survey [8] by Allamanis et al. maps existing sub-fields of applying language modeling to source

code. Language modeling is not mutually exclusive to code or natural language. Domains of causal

modeling (migration, code search/synthesis, code completion, obfuscation, information extraction),

representational modeling (naming, code search, program analysis, typing, traceability, comment

prediction, bug detection, and more), and pattern mining (defect prediction, knowledge base

mining, clone detection, idiom mining, etc) depend on the joint modeling of natural language and

code. In the next section, we discuss the formal definitions for causal modeling which frequently is

at the core of modeling code.

2.1.1 Causal Language Modeling

The basis for causal modeling is to score a fragment of tokens t for a source snippet S such that

the conditional probability yields,

(2.1) P (S) =

N∏
i=1

P (ti|t0, . . . , ti−1)

where N is the length of the code snippet S. Equation 2.1 calculates per-token conditional

probabilities with the chain rule to yield a single probability for the code snippet S. Through the

chain rule, each token’s conditional probability depends on previous tokens. This auto-regressive

process is causal and can be used to model sequences given a particular backwards context. Due

to varying orders of magnitude of probabilities and the production of multiplying probabilities of

arbitrary lengths, the product of probabilities is often represented by a sum of logarithmic values.

The theoretic measure of information is entropy1

(2.2) HM(S) = − 1

|S|
log2pM(S) = − 1

|S|
∑

log2pM(ti|c)

where c represents the aforementioned causal context. Entropy can be explained as the average

number of bits to encode samples of probability distribution P ; perplexity is often an alternative
1Typically cross-entropy and is evaluated between the expected distribution and the distribution learned by the model
viz. Kullback-Leiber divergence.
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measure seen in NLP literature. Notice that in Equation 2.1, the context includes all previous

tokens in the sequence. As corpora get large enough, learning the context given all other tokens is

intractable. In order to make learning feasible there are several effective solutions; we can often

model windows of code as natural language rarely has far reaching references. We highlight that

code does not necessarily follow this assumption as function calls and variables can span entire

lengths of files. However, following the conventions of natural language, we will discuss common

methodologies for making language modeling tractable over large corpora. In the following two

sections, we discuss briefly and summarize explicit and implicit language modeling.

2.2 Explicit Language Models

In this section we will discuss the most common explicit language modeling technique, n-grams.

The intuition of the n-gram model is that we are approximating the history of the prior probabilities

with just the last few words. In a bigram model, we are approximating the conditional probability

of the current word given all other words P (ti|t1:i−1) by using on the conditional probability of only

the previous word P (ti|ti−1). This assumption we are making about the approximating all word

probabilities through the current probabilistic value of the immediate past word is called a Markov

assumption. The bigram is often expanded to larger probabilistic windows of trigram and 4-gram.

In order to estimate n-gram probability one will use maximum likelihood estimation (MLE).

MLE of a n-gram is the probability of the particular token given previous tokens (n-gram) normalized

by the number of (n-1)grams that share the previous tokens. We can think of this as normalizing

the occurrences counts of, say, bigrams by the number of all unigram occurrences of that word [99].

Formally,

(2.3) PM(ti|θ) =
count(ti, D)∑
count(ti, D)

where ti is the first word in the bigram, D is other words in the document. As we can see, the

sum equates to the probability normalized by the unigram probability. The relative frequency of

words are stored in a table and retrieved when counting the maximum likelihood of a sequence.

However a n-gram models come with some caveats.
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The maximum likelihood estimator will often under estimate the probability of unseen words in

the document. Smoothing practices add a non-zero probability to the unseen words to improve the

accuracy of the probability estimation.

(2.4) Pδ(ti|θ) =
count(ti, D) + λ∑
count(ti, D) + λ|V |

Thus, words that are not seen during evaluation have a value λ associated to the count. Typically

λ=1.

Another common practice is to backoff and use less context effectively reducing the size of the

n-gram. While this means less information, it generally means there is an associated probability for

that lesser context n-gram. In order to combine various length n-grams, we can use simple weighting

techniques fitted uniformly or with fitted with a held-out dataset:

(2.5) P (ti|ti−2ti−1) = λ1P (ti) + λ2P (ti|ti−1) + λ3P (ti|ti−2ti−1)

where λs sum to 1. The field of smoothing language models and backing off is very well

studied [99]. With the widespread availability of billion word corpora, neural networks and compute,

the NLP community has put great focus on modeling language implicitly with neural networks.

2.3 Implicit Language Models

Implicit language modeling with neural networks bypasses some of the difficult caveats in explicit

language modeling: storing actual n-gram frequencies and richer representations of words with

high-dimension real valued vectors in contrast to raw frequencies. Rather than relying on n-gram

frequency counts, neural networks can embed words and pass high dimensional embeddings into a

neural network predicting the next word and implicitly model the co-occurrence patterns of large

corpora. Typically the next word is predicted with a dense layer to the language model vocabulary

normalize with a softmax distribution:
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(2.6) PM(ti) = softmax(zi) =
exp(zi)∑k
j=1 exp(zj)

where k is the size of the vocabulary |V |. The output of the softmax is a probability distribution

across all words in the vocabulary. Recall that the KL-divergence is a measure of how the model

probability distribution is different from the second reference probability distribution. We can

calculate the cross-entropy loss and optimize the parameters in the network using gradient-descent

techniques resulting in a minimum where our model has learned the reference probability distribution.

These models have proven to be powerful in language [53] and source code [8,52,146,233]. Recently,

implicit modeling has grown to multi-billion parameter models [200] and are getting larger. In the

next section we will discuss household model architectures, including the transformer architecture

used in all three applications.

2.4 Language Modeling with Neural Networks

2.4.1 Large Corpora Word Vectors

Embedding works like GloVe [165], ELMo [168], Word2Vec [147], and FastText [27] learn

semantic relations of text from large corpora to improve representations fed into neural networks

traditionally initialized with random parameters. Word2Vec shifted the embedding paradigm from

one-hot vectors, count vectors, and tf-idf vectors to vectors where syntactic and semantic relationships

are defined specifically with continuous bag of words (CBOW) and Skip-Gram architectures. GloVe

vectors combined meaningful global and local contexts by constructing ratios of relations between

different combinations of words; in theory mimicking calculations between various n-grams across

the corpora. ELMo embeddings are crafted by language modeling corpora with two biLSTMs and

concatenating each LSTM to form an embedding. FastText breaks down words into n-grams, similar

to subtokenization, so that more words can be expressed in the vocabulary by composition. These

methodologies are effective for randomly initialized neural networks as they provide semantic and

syntatic clues in the input. These embedding techniques have been used with code [12], however,

with the advent of large scale pre-training, we find that transformer-based pre-trained embeddings
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are equally informative for code and appear in the three presented works. In the following sections

we look into two frequent architectures that leverage pre-trained embeddings and the pre-training

process for highly parameterized transformers.

2.4.2 Recurrent Neural Networks

Recurrent Neural Networks or RNNs are generally considered a class of neural networks that

are dependent on the output of the previous computation. Formally they can be represented by the

formulas:

(2.7) ht = RNNenc(xt, ht−1)

(2.8) st = RNNdec(yt, st−1)

where ht is the encoder hidden state at time step t for the input token embedding xt. The decoder

hidden state st is found by combining the previous output st−1 and the input token embedding yt.

They are frequently used for sequence data as their representation encodes the entire sequence.

Due to their recurrent nature and the back-propagation of entropy through long inputs, traditional

RNNs suffer from vanishing [84] and exploding gradients. The ReLU activation function helps

maintain reasonable gradients by bounding the output for better gradient propagation, having

sparse activation, and being scale invariant. Still the ability to model long term sequences with

RNNs was not reachable; LSTMs and GRUs are sophisticated recurrent cells that improve modeling

long sequences. Typically RNNenc and RNNdec are either LSTMs or GRUs.

2.4.3 Long Short-Term Memory

The LSTM cell has an input, output and forget gate that allows the network to decide how much

of the past should be remembered in the hidden state. The forget gate uses the sigmoid function

and looks at the previous state and content input and outputs a 0 to forget and a 1 to remember for

the recurrent cell state. This allows the network to forget the context it had previously seen. The

input gate also uses a sigmoid to determine which values from the input are added to the current
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state. The sigmoid decides which values to let in and the tanh function gives weight to the input.

Formally they are characterized by the following formulas:

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

ĉt = σc(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ ĉt

ht = ot ◦ σh(ct)

with initial values for cell state hidden state is 0. Specifically, xt is the input vector, ft is the

forget gate activation, it is the update gate activation, ot is the output gate activation, ht is the

LSTM output vector, ĉt is the input cell activation, ct is the current cell state, and W , U , and b are

the weight matrices and a bias vector. The controlled manipulation of the networks cells allow the

network to model a diverse set of inputs better and preserve input longer in the cell state.

2.4.4 Gated Recurrent Unit

Like LSTMs, Gated Recurrent Unit networks (GRU) have become a standard in recurrent neural

networks. The GRU solves the vanishing gradient problem of a standard RNN with update and

reset gates that choose what information should be passed to the output; similar to how LSTMs use

Forget and Input gates. The update gate receives a sum of the previous hidden state and input

and decides which information will pass into the final state. The reset gate determines how much

information the model should forget; it accomplishes this by squishing the combined input and

previous hidden state with a sigmoid and recombines the salient values with the hidden state. The

now salient hidden state features are recombined with the input and scaled with a tanh to indicate

what combined input and hidden state values are important. Finally the output is calculated with
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the input, hidden state, and update gate. Formally the equations are as follows with t = 0, h0 = 0

zt = σg(Wzxt + Uzht−1 + bz)

rt = σg(Wrxt + Urht−1 + br)

ĥt = φh(Whxt + Uh(rt � ht−1) + bh)

ht = (1− zt)� ht−1 + zt � ĥt

where xt is the input vector, ht is the output vector, ĥt is a candidate activation vector, zt is the

update gate vector, rt is the reset gate vector, and W , U b are parameter matrices and bias vector.

GRUs are able to store and filter the information using the update and reset gates and can

pass selectively choosen information to pass to future time steps. While GRUs (and LSTMs) help

improve sequential neural modeling with complex cell logic, they are unable to randomly access

input (contextualized input) at each step making long term computations difficult. In the next

section we will discuss the innovation of transformers and the pre-training techniques that followed.

2.4.5 Transformers

Transformers were designed to handle sequential sequences much like RNNs. However trans-

formers do not necessarily process information in order and must be accompanied with a positional

encoding vector to incorporate word sequence. The transformer sees the sequence as a whole and can

identify contexts that confer meaning for that particular word. In the sense that skip-grams identify

relevant immediate contexts for words, in transformers, the words are attempting to determine which

contexts are relevant to themselves with the availability of a global context window. Transformers

seek to elegantly bypass the vanishing gradient problem with attention.

Attention mechanisms were introduced in RNN architectures [18] but found widespread adoption

in Vaswani et al. [222]. When added to RNNs prior to a feed-forward layer, the attention mechanisms

increased performance. Vaswani et al. revealed that attention was powerful on its own and that

recurrent processing was not necessary. Specifically, the attention used in [222] as scaled dot-product

attention. The scaled dot product attention formula is as follows,
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Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V(2.9)

where the transformer learns three weight matrices WQ, WK , WV . WQ the query weights, WK the

key weights, and WV the value weights are multiplied with the input word embedding xi to produce

vectors qi = xiWQ, ki = xiWK , vi = xiWV . The attention weights are calculated using the query

and key values where the attention weight aij is the attention from token i to token j (directional,

square matrices). This allows the attention to be directional and non-symmetric. We can think of

the attention vector as an alignment of tokens projecting in similar directions. The values are then

divided by the square root dimension of the key vectors,
√
dk which improves gradient stability.

The softmax normalizes the values into a vector that sums to 1 and is applied to the transformation

of the input.

The dimensions of the input in which the transformer can attend to can be doesn’t have to

be static. There might be regularities that happen between tokens of different dimensions i.e

channels of information. By defining multiple heads to attend to varying definitions of relevance in

the embeddings, the transformer can focus on simultaneous correlations across the window. The

dimension of WQ, WK , WV is called an attention head and the dimensions are determined by the

number of dimensions divided equally by the number of attention heads. The attention heads have

been demonstrated to point to meaningful correlations like direct objects [46]. Additionally the

attention heads can be computed in parallel as they are later concatenated together for the final

feed-forward layers. Due to the O(n2) computation cost of attention, there is a large field dedicated

to reducing the computational cost for longer sequences [21, 42,43,83,112,128,212,227,238].

Now we look into another growing field of pre-training transformers [31,55,134,175,176,177,246]

which many have been adopted for code [3,62,137,228].

2.4.6 Pre-training Objectives

Language model pre-training has been effective in many natural language tasks [50, 55,85,168,

175] and has been successful in code [62,102,228]. A common theme is that the NLP and code

models are pre-trained to model complex characteristics of token use, syntax and semantics, and how
17



these use vary across various linguistic, and formal (code), contexts. Some embedding approaches,

such as [168], are capable of modeling varying contexts. For some tasks, transformers replaced

RNNs, typically using pre-training input embeddings, due to absolute performance improvements.

Transformers could be pre-trained with the causal language modeling task and seem to grow with

no limit [175] in layers and internal dimensions. BERT [55] introduced a learning objective called

masked language modeling (MLM), where the transformer could model language with both forward

and backward directions. This bidirectional encoding boosts the models performance as it could be

trained end-to-end with the MLM objective and then fine-tuned on a plethora of representation

based tasks. We exploit this this network and the pre-training objective function for language

modeling JavaScript and adjust the model for sequence tagging in TypeScript. In another work we

test variations of widely adopted pre-trained networks for semantic properties using probes. Let’s

dive into the masked-language-model objective.

2.4.7 Masked-Language-Modeling (MLM)

Recall in Equation 2.1 the context for modeling token ti was all previous tokens t0, . . . , ti−1 and

later a context window ti−l, . . . , ti−1 where l is the window length. In both, the context is causal in

that the model cannot predict token ti with any future tokens ti+1, . . . , tn where n = |S| viz. the

length of the sequence. The mask-language-modeling objective trains the model with both forward

and backward context in order for the model to be contextually aware of tokens on either side of

the sequence. This is particularly useful for tasks that are not causal such as token tagging or

sequence classification. With masked-language modeling, in contrast to Peters et al. [168], the MLM

is training deep bidiectional representations rather than shallow concatentations of independently

trained left-to-right and right-to-left LMs. The training procedure follows below.

The MLM objective masks, within the input sequence, a percentage of the tokens at random. The

model’s objective is to use the surrounding context to predict the masked tokens; this is primarily

how the network learns language context. The masked tokens, if sub-tokens, are all masked so that

a single word is entirely masked. If not whole-word-masked, parts of sub-word tokens would make

the prediction task too easy and force the model to bias towards figuring out a singular missing

subtoken with the immediate partial context. The network has a language modeling classification
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head with an output softmax over the vocabulary. In BERT, the tokens are masked 15% of the time

and the language modeling predictions are done over the masked words only. This is in contrast to

auto-encoders that recreate the entire input [223]. After pre-training, the network can be fine-tuned

on a specific task or the embeddings from the hidden state, the context vector, can be used in a

fashion akin to GloVe, ELMo, FastText, and Word2Vec.

While BERT is incredibly useful as an encoder, it cannot be used in a generative fashion like

a language model: it has seen the right context it would be predicting. T5 [177] introduced a

way to use left and right context in an encoder to generate corrupt spans in a sequence with a

transformer-based encoder-decoder. These spans can be generated with traditional tools like beam

search. We use a version of this work when generating function calls in Chapter 5. CodeT5 [228]

has the additive benefit of being pre-trained on large corpora of code thus resulting in a diverse and

often syntactically correct set of predictions. We follow this section with alternative representations

of code, in contrast to simple token representation, that illustrate the ways code differs from text.

We highlight that each of the previously discussed methodologies for representing text do not

consider code specific attributes such as the changing values of words viz. variables. The next

section discusses some advanced code modeling techniques and closes with how code presents several

challenges.

2.5 Advanced Modeling

The differences between text and code has piqued the interest of both machine learning and

software engineering communities. Improving our representations of code for machine learning

models facilitates improved performance universally. Several successful approaches have thrived

by incorporating project and task specific information. Allamanis et al. [9] uses graphs to encode

syntax nodes in the AST and syntax tokens. The work also captures control and data through

the program by connecting hyperedges depicting specific relationships such as last read/write and

dependency information like computed from. [9] demonstrated that long distance dependencies like

return statements, typically difficult with transformers, can be encoded as a hyper edge to the graph

representation. The gated graph neural network is then optimized in a series of message passing

steps. Hellendoorn et al. [80] introduces a hybrid of graphs and transformers with two architectures
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designed to capture the local and global relations in source code. Graph-sandwich models alternate

running RNN token values for nodes in terminals in the graph and then pass those nodes back to

the RNN alternating between graph and token representations. The second hybrid model Graph

Relational Embeddings Attention Transformer uses a graph fundamentally for structural bias but

then passes �eij embeddings through a linear transformation as a bias to the traditional “relative”

position bias term in Shaw et al. [195]. Other methods encode more common structural terms

like ASTs into RNNs [247] and transformers [110,163,199]. In summary, many applications have

benefited from machine learning models that better fit to code properties and permit the flexibility

of defining specific code properties [57,202,221].

2.6 LLMs, Prompting, and RLHF

LLMs

Code assistant tools like OpenAI’s Copilot use large language models [40] pretrained on massive

corpora of open source projects. While excellent in code synthesis tasks, these models are vulnerable

by the code they train on; they can inherit the same vulnerabilities and defects [16, 51,160,245].

Open source code has bugs and vulnerabilities and can even be subject to exploitation by prompt

engineering. The wide adoption of these models has enabled developers to new processes and ideas

while posing significant risks [76]. Studies have shown that developers may not fully understand

the code from LLMs and introduce bugs and vulnerabilities unknowingly. Worse, since they did not

write the code, finding the bugs and vulnerabilities is more challenging and time consuming [219].

Chapter 7 discusses a growing body of work on this subject. For now, the key takeaway is this:

Models that complete the most likely token by optimizing MLM-like functions are unaware of

the greater implications of some completions. Developer aligned general purpose models must

prioritize “implication-free” code; implication free code is free of bugs, vulnerabilities, code smells,

etc. With LLMs exploding in popularity, a large focus is on conditioning these models for better

outcomes by aligning them to human values and positive outcomes like secure code [76]. Some of

these alignment approaches gaining traction are: prompting [201, 226], prefix-tuning [76,124], and

RLHF [19,156,237].
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Prompting and Prefix Tuning

LLM task performance depends greatly on the quality of prompts used to steer the model. The

effort of humans experimenting and engineering effective prompts is called prompt engineering.

At the time of this writing, there are job listings for prompt engineers [174]. Brown et al. [31]

showed back in 2020 that prompt design or “priming” is surprisingly effective at modulating a

LLM in zero shot, one shot and few shot scenarios. Since Brown et al. , Shin et al. [198] proposed

Autoprompt, a search algorithm over the discrete space of words guided to discover an optimal

prompt from training data. Li and Liang et al. [124] proposed prefix tuning, a method that adds

prefix activations prepended to each layer of the encoder stack; then only these parameters are tuned.

Lester et al. [120] demonstrates prompt tuning via continuous vectors is an effective mechanism for

improving performance on specific tasks. Lester finds promising results by freezing the pretrained

network and allowing only k tunable tokens be prepended to the input text. The “soft prompt”

nomenclature comes from the nondiscrete nature of the words they are optimizing. A similar paper

for code was published by Wang et al. [226] where various hard and soft prompting techniques

were tested on code intelligence tasks. Shrivastava et al. [201] use repository level data for prompt

generation to improve 36% over Codex and further trained a model to automatically produce such

effective prompts. For a complete survey on prompting techniques, we refer the reader to the paper

by Liu et al. [131]. Adaptations for code is a very active sub-field.

Reinforcement Learning and human feedback

Some of the earliest work in deep reinforcement learning with human feedback (RLHF) dates

back to 2017 [44,140]. Since then, the sub-field has exploded due to it’s demonstrable impact on

large language models. Since then there have been many notable papers using human feedback for

RL-agents and LMs. Prior to 2022, Ziegler et al. [250] introduced using RL finetuning on language

models and extended early work to pretrained models and KL regularization. Stiennon et al. [205]

used human preferences (ranking) on high quality data and found that a ranking strategy produced

summaries on par with human reference summaries. OpenAI experimented with the RLHF enabled

models recursively for book summarization in a hierarchical fashion [236]. In 2022 alone there was

significant focus on RLHF for LLMs. Bai et al. [19] and Anthropic released a paper on using RL
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with AI Feedback (RLAIF) for harmlessness and helpfulness. Recently ChatGPT and GPT-4 [155]

are using feedback from humans, but amount of RL is unclear from the technical report. In code,

recent works like Chen et al. [39] improve code generation by using natural language feedback and

unit tests. Xia and Zhang [237] use conversational APR with reinforcement learning to improve the

performance of code generation. These lines of work will continue to grow especially as techniques

mature in NLP and matriculate into AI4SE.

It is my hope that the previous section helped familiarize yourself, the reader, with the current

standing of the field. This concludes the background needed to grasp the future chapters. In the first

completed work, we discuss a shift in machine learning towards large scale pretrained transformer

models, and the first to do so in type inference.
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Chapter 3

Application 1a: Type Inference with

Pretrained Models

3.1 Preface

Modern programming languages usually have a type system which determines the way variables,

parameter, function return types should be interpreted. Some languages like Java and C require

the developer to explicitly annotate each variable with its static type; this is often for memory

allocation i.e char, int, float, and double. In many popular programming languages there are no

such requirements and it is up to the run-time interpreter to determine the correctness. Developers

enjoy dynamic typing because it is great for prototyping and simplifies development. However a

lack of type constraints introduces bugs, difficult to solve dynamic run-time errors, and harms

maintainability [65]. Learning to infer these types without a programmer extends the static type

checkers, reduces the “type annotation tax”, and can be used to find existing type errors [65].

Models for type inference must learn semantics of coding, through exploitation of the naturalness

hypothesis, and the programs existing types viz. the existing formal constraints. Recently, inductive

biases have gotten quite complex for code tasks with nuanced graph hyperedges in attempts to gain

an edge in program understanding. In this chapter, we discuss how simple inductive biases and

pretraining perform remarkably better than complex graphs [230] and formal constraints [157] for
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type inference. This chapter is based on the published work Learning Type Inference: Is Big Data

Enough? appearing at the ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE), Visions & Reflections Track which I lead

as the main author with Premkumar Devanbu and Toufique Ahmed serving in an advisory capacity.

3.2 Summary

TypeScript is a widely used optionally-typed language where developers can adopt “pay as you

go” typing: they can add types as desired, and benefit from static typing. The “type annotation

tax” or manual effort required to annotate new or existing TypeScript can be reduced by a variety

of automatic methods. Probabilistic machine-learning (ML) approaches work quite well. ML

approaches use different inductive biases, ranging from simple token sequences to complex graphical

neural network (GNN) models capturing syntax and semantic relations. More sophisticated inductive

biases are hand-engineered to exploit the formal nature of software. Rather than deploying fancy

inductive biases for code, can we just use “big data” to learn natural patterns relevant to typing? We

find evidence suggesting that this is the case. We present TypeBERT, demonstrating that even with

simple token-sequence inductive bias used in BERT-style models and enough data, type-annotation

performance of the most sophisticated models can be surpassed.

3.3 Introduction

Gradual typing [45,203,224] is gaining popularity, in programming languages like Python and

JavaScript. Developers can incrementally type-annotate identifiers to better document, check, and

maintain code [113]. Type annotation promotes error-detection, [66, 158] while enabling more

optimizations, and better IDE support. However, with type declarations existing in various library

packages and project-specific locations, migrating dynamically typed software to gradually-typed

paradigms is a non-trivial task, often requiring considerable human effort.

TypeScript transpiles type-annotated code into JavaScript (JS) which provides the benefits

of typing wherever traditional JS is used [24]. A lot of TypeScript annotated code is available;

this raises the opportunity to train probabilistic type annotators to help with type annotation.

This idea of training a type annotator using data from manually annotated code, has been widely
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applied [78, 142, 183, 230]; except for Raychev et al [183], most use deep-learning methods.

Each probabilistic annotator features a specific choice of representation, viz., inductive bias, that

characterizes what and how they learn. Inductive biases are important, consequential, and well-

studied. But do more complex inductive biases help? Do they perform better?

Recently, in NLP [55] and code [62,102], an alternative paradigm has emerged, to the ongoing

quest for better inductive-biases: let high-capacity models learn representations on their own which

capture the deeper statistical structure of the data, directly from very large dataset, using a form of

self-supervision. In the case of NLP, Devlin et al [55] exploit giga-token textual corpora to construct

a vector representation of token sequence patterns, by learning to reconstruct artificially masked-out

tokens. This approach elegantly bypasses the debates on inductive-bias engineering, and simply

lets high-capacity neural models autonomously learn the statistical structure of the data via simple,

giga-scale self-supervision.

Autonomous representation-learning (aka pre-training) has been used for code. Feng et al.

[62] used pre-training to improve performance on code-natural language bi-modal datasets (e.g.

code with comments) and Kanade et al. [102] used pre-training to help with retrieval-like tasks.

Type annotation is of particular interest: types are a subtle semantic property of code; one might

reasonably expect that complex inductive biases leveraging syntax & semantics would be very helpful.

Prior work has indeed heavily leveraged increasingly sophisticated inductive biases, with better and

better results. But are these really necessary? Can models learn good enough representations on

their own? This motivates our RQs.

RQ1: Does BERT-style pre-training work for type inference, and how does the

performance compare with models that use sophisticated, custom-designed inductive

biases?

Pre-training helps our TypeBERT reach 89.51% accuracy on common (top-100) types compared

to the state-of-the-art LambdaNet (66.9% for the same types). Furthermore, despite the limits of a

closed type vocabulary, TypeBERT does surprisingly well on user defined types. Overall, TypeBERT

achieved an overall accuracy of 71.12% to LambdaNet’s 64.2% across both common and user-defined
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types.

RQ2: Qualitatively, what cues does TypeBERT appear to use for its inferences,

and what inferences does it make?

TypeBERT seems to use multiple features for type inferences. Like TypeWriter [171], it appears

to leverage names of identifiers; like LambdaNet etc. [183,230] it appears to use data and control-

flow information. Using these cues, TypeBERT predicts types with specificity, i.e. tf.Tensor

rather than Tensor. Overall, our qualitative analysis suggests that TypeBERT implicitly learns

complex inductive biases like data/control flow, even without explicit graph representations.

Our models and datasets are publicly available1.

3.4 Related Work

LambdaNet [230] (like other recent works) used sophisticated inductive biases [10,11,68] to

achieve state-of-the-art (SOTA) type inference, improving substantially upon earlier approaches like

Hellendoorn [78] and Malik et al. [142]. LambdaNet uses graph neural networks (GNN) to model

abstract dependency graphs, derived by analysis of the code. Typilus [11] also uses GNNs, but

includes vector embeddings to allow an open type vocabulary (for Python). Pradel [171] combines

a probabilistic guessing component with a typechecker that verifies the proposed annotations.

OPTTyper [157] achieves performance close to LambdaNet, by optimizing formal type constraints

that are first “slackened” into numerical constraints; however OPTTyper is limited to the top 100

most frequent types ignoring the challenge of annotating user defined types.

Related to this work are highly parametrized pre-trained transformer models like CodeBert [62]

and PLBART [3]. These models have successfully achieved SOTA on code-related tasks by pre-

training on large code corpora and fine-tuning on the specific tasks. CodeBert’s effectiveness suggests

that self-supervised pre-training followed by fine-tuning may also work for type inference. Our

approach differs in that our pre-training is mono-lingual; we don’t use any natural language, and is

1https://github.com/TypeBERT/TypeBERT
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pretrained on a type-free dialect (JavaScript) of the target language (TypeScript). Our goal was

also to evaluate if pre-training could learn representations powerful enough for type inference.

3.5 TypeBERT

TypeBERT uses pre-training to learn JavaScript syntax and semantics by modeling token

co-occurrences.

3.5.1 Pre-Training TypeBERT

Pre-Training Corpus

TypeBERT is pre-trained on a large corpus of JavaScript. We collected the most-starred 25,000

Github JavaScript projects, using the GraphQL2. To avoid bias, we remove duplicate snippets using

Allamanis’s method [7]. We remove non-code related entities like block comments and copyright

blocks. The corpus is tokenized with a SentencePiece model [117] with a vocabulary of 16k subto-

kens. Tokenizing with Byte Pair Encoding (BPE) [193] or with a unigram language model like

SentencePiece [116] is a common approach to manage large code vocabularies [103].

Architecture

TypeBERT uses the same architecture as BERTlarge [55]. TypeBERT has 24 layers of encoder with

model dimension of 1024 and 16 attention heads ( 340M parameters). Finally, we add an output

classification layer for the type inference task (after pre-training).

Noise functions

Pre-training is self-supervised; the task is reconstructing noised-up text sequences. By training on

this task, the model learns prevalent syntactic and semantic forms. TypeBERT follows BERT [55]

where “noising" consists of randomly masking, replacing, or retaining sub-tokens. We uniformly

sample (sub)tokens with a 15% probability and perform noising. Noising operations are weighted

thus: 80% are masked, 10% are replaced with a random token, 10% are left alone. We allow up to

20 noise operations per token sequence. The noise function performs whole-word masking (viz., all

2https://graphql.org
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subtokens of a particular word are all masked if one subtoken is selected) so as to not provide too

easy hints to the model. TypeBERT is jointly pre-trained with a next sentence prediction (NSP)

task which is to predict if a code sequence b follows another code sequence a. For this, we select

in-order or random pairs (in equal proportion) and train the model to label them correctly.

Input/Output Format

The input format for the pre-training step is two concatenated, randomly sampled, code sequences

with a separator token [CLS ], a1, a2, . . . ,an , [SEP], b1, b2, . . . , bn, [SEP]. Sometimes the a and b

code sequences are contiguous, sometimes not; the NSP task is to distinguish these cases. For the

random masking, any ai or bi may be noised. The [CLS ] token’s embedding is used as an aggregated

sequence representation for tasks at the sequence level. As in BERT [55] the two sequences are

separated by a [SEP] token.

Optimization

We train TypeBERT on 6 Nvidia Titan RTX GPUs for 200K steps. We use Adam with polynomial

weight decay starting at 5e-5 and 10K warm-up. We use a dropout of 0.1 on hidden and attention

layers. Pre-training takes about 160 hours (6.33 days) and was done using a modified version of

Tensorflow’s Model Garden. This pre-training is a one-time cost, followed by on-task fine-tuning.

3.5.2 Fine-Tuning TypeBERT

Type Inference Dataset

We collected 20,860 most-starred Github TypeScript projects (Table 3.1). This code contains

human-annotated types within variable, parameter, function and method declarations. These types

range from frequent types like int and string to library and user-defined types like tf.Tensor

and CoffeeFlavor. We use LambdaNet’s type parser to process type annotations, gathering both

human annotated and compiler-inferred types. Following LambdaNet [230] and OPTTyper, we

only use the human annotated locations for evaluation but include the compiler-inferred types in

training data. Furthermore, as in prior work, we ignore locations with the uninformative “any” type.

Of LambdaNet’s full 300 project dataset, 275 could be found on Github. From these, we sample 60
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Table 3.1. Type Annotation Datasets

Dataset Projects Files

TypeBERT 20,860 1,473,418
LambdaNet | OPTTyper 275 91,228

∗ LambdaNet / OptTyper parsed projects and files
for comparison.

projects for testing, and just add the other 215 to our training set. This results in a total of 20,384

projects for training, 416 for validation (2%) and 60 projects for test. We report results on these 60

projects from the original LambdaNet/OPTTyper dataset.

Type Inference

We add a dense, softmax layer for the most frequent 40k TypeScript types and the UNK type for

all types greater than rank 40k. The type vocabulary is closed, and restricted to these 40,001

types. TypeBERT does not handle a open vocabulary, but UNK occurs <8% in the test set see

Figure 3.1. TypeBERT is fine-tuned on our data set consisting of > 2 million type annotations. We

use de-duplication [7] to avoid risk of leakage from training to test.

3.6 Evaluation Metrics

We report Top 1 Accuracy (Exact Match) and Top 5 Accuracy (correct prediction in top 5

guesses) for several subsets of types exactly as with previous works.

User-Defined Types

User-defined types are type labels corresponding to class, enum, or type interface, where the type

was defined within the same project scope (as in [230]). A class defined within the project would

be considered a user-defined type; an imported library would not.

Top 100 Types

Top 100 types are highly frequent types (such as int and string) that are not user-defined, and
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Table 3.2. Accuracy Comparison across Various Sets of Types.

Model Top 1 Acc % Top 5 Acc %
User Def Other Top 100 Overall User Def Other Top 100 Overall

LambdaNet [230] 53.4 N/R 66.9 64.2 77.7 N/R 86.2 84.5
OPTTyper [157] N/R N/R 76 N/R N/R N/R N/R N/R

TypeBERT 41.40 50.49 89.51 71.12 55.02 70.34 98.51 81.88
∗ UNK (OOV) annotations are always counted incorrect for TypeBERT. Overall includes User Def
and Top 100 and reported directly from [230] and [157]. N/R → Not Reported in the original paper.
Allamanis [7] deduplication method applied on train and test sets for TypeBERT results.

are within the top 100 ranks [157,230].

Other Types

Other types are types occurrences that do not occur within the top 100 most frequent types and are

not user defined. Examples would be library functions like tf.Tensor4D. This set of locations were

ignored in previous works [157,230] and are not included in their reported results. We consider

them, and report it separately.

Overall

We calculate an overall weighted average of user-defined type occurrences and top 100; this is

calculated exactly as in [230], and is strictly comparable (See Table 4.3).

Unknown (OOV)

Unknown types are type occurrences which are types with rank > 40,000. We score occurrences of

UNK (<8%) as incorrect predictions. UNK locations are comprised of a mixture of user-defined and

other non user-defined types. Counting UNK occurrences as wrong for user definition, other, and

overall is conservative but appropriate.

3.7 Results

RQ1: Comparing TypeBERT’s type inference accuracy to SOTA.
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Figure 3.1. Frequency of types in bins. Types that exceed the Top 40,000 are
marked UNK and scored incorrect in metrics.
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Figure 3.2. Recall vs. Precision of TypeBERT on test data subject to probability
thresholds reflecting the models confidence.
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Figure 3.3. Qualitative evaluation of TypeBERT and LambdaNet.

Table 4.3 shows results on the test set of projects in LambdaNet/OPTTyper dataset. LambdaNet

[230] serves as our baseline because it is evaluated on both the top-100 most frequent types and on

user-defined types. Its use of a sophisticated graph inductive bias makes it a good contrast for our
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pre-training/fine-tuning approach, with a very simple token-sequence basis. TypeBERT betters

LambdaNet on the top-100 (89.51% Top 1 vs 66.9%), despite the disadvantage of a much simpler

inductive bias. This suggests that large scale pre-training helps TypeBERT autonomously learn

nuanced, rich contextual representations that rival LambdaNet’s complex hand-engineered hyper-

edges. LambdaNet’s does excel on user defined types; still, TypeBERT (even without any mechanism

for user definitions) achieves a higher Top 1 overall accuracy (71.3% vs 64.2%). TypeBERT’s Top 5

accuracy on the top 100 types (98.5%), compared to LambdaNet’s (86.2%) is significantly better

demonstrating more relevant predictions across a set of five recommendations; for developers this

means more relevant choices to choose from.

While TypeBERT demonstrates high Top 1 and Top 5 accuracy, it also performs well with

high confidence. Figure 3.2 shows the trade-off in precision and recall when varying the confidence

threshold. Precision exceeds 92.72% with a threshold of 90% with a recall of 58%. At a threshold

of 99%, precision exceeds 98% with a recall rate of 38%. TypeBERT could add ca. 22,000 of the

ca. 58,000 annotations across the 60 test projects with very high precision. TypeBERT is quite

fast: on a single Nvidia Titan RTX can perform type inference on 16,384 locations in a batch of

64 sequences of length 256 in just 1.28s or .02s per sequence. LambdaNet, we note, requires a

dependency hypergraph: computing which correctly is limited by missing dependencies, libraries,

and type definitions; thus it cannot perform accurately at such locations. This is not a problem for

TypeBERT. It’s important to note that TypeBERT performs creditably on "Other" types, (50.5%

for Top 1, 70.3% Top 5); this category is not dealt with by LambdaNet. Finally, we note that

OPTTyper works only for for top-100 types, and we improve upon it as well.

TypeBERT improves Top-1 and overall performance 22.61% and 7.1% respectively over Lamb-

daNet.

RQ2: Qualitative analysis of TypeBERT.

What evidence does TypeBERT use to make type predictions?

We examine this with an example. Figure 3.3 shows a function signature (top), with correct

annotations; inferences from TypeBERT and LambdaNet below (correct inferences shown in

yellow ). This file imports tfjs-core with import * as tf. Thus syntactically correct types
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from @tensorflow/tfjs-core must have a prefix of “tf.”. TypeBERT recognizes this context

and correctly infers Tensor4D with the appropriate prefix i.e tf.Tensor4D. TypeBERT maintains

consistency in this example and types variable x as tf.Tensor4D; the same type and appropriate

prefix. As another example, to infer boolean type for withRelu, TypeBERT appears to take

cues from the return statement; to get array type for strides, it appears to be using the call to

convLayer within conv. These control and data-flow oriented semantic cues are being learned

implicitly from lexical sequences. LambdaNet fails to infer the return value type and cannot provide

type recommendations for 4 other locations; this is likely the result of types existing outside of

LambdaNet’s prediction space both top 100 and its pointer mechanism.

TypeBERT shows consistency across types in the same context, extracts clues from surrounding

context, and demonstrates some data-flow oriented semantic clues.

What kinds of inferences does TypeBERT make?

A characteristic of TypeBERT’s top-k type guesses for an annotation are lexical and semantic

similarities (Figure 3.3). This is due to the contextual usage of similar types i.e tf.Tensor4D and

tf.Tensor2D and an alignment of meaning representation i.e array and Set. While TypeBERT

seems highly confident when it is correct, the other alternatives tend to be relevant, and sometimes

even partially-correct e.g. Array (.39%) and Boolean (.0095%) for array and boolean.

Finally, TypeBERT is strongly confident when the answer is outside its closed vocabulary

(UNK). This confident UNK prediction has value: in future work, we hope to use open vocabulary

mechanisms such as pointer networks or metric similarity functions to search for a better answer in

such cases. This example (Figure 3.3) is typical; most often, TypeBERT’s offers correct inferences

with high confidence and with highly similar alternatives.

TypeBERT recommends types of meaning indicating that partially-correct types are often used in

the same context.

3.8 Conclusion

We present a “big-data" alternative to the type inference problem: we use a pre-trained BERT-

style model rather than custom-engineering a complex, specialized inductive bias and training dataset.
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TypeBERT uses the simplest inductive bias: considering code as a sequence of tokens. The lack of

input structure is overcome by increased learning capacity of the BERT-style approach. TypeBERT

leverages pre-training on 25,000 JavaScript projects, and fine-tuning on 20,800 TypeScript projects.

We find that TypeBERT is competitive with SOTA approaches which use much fancier inductive

biases. It infers the exact type in common locations almost 90% of the time beating the SOTA

models by a significant margin. Additionally, TypeBERT’s Top 1 accuracy overall is better than the

the SOTA, at 71.12%. Our findings suggest that TypeBERT implicitly learns the statistics of the

semantic relationships, relevant to typing, that are made explicit in the graph-based static analysis

products (e.g., those used by LambdaNet). It is intriguing to contemplate that generic, automated

methods can utilize additional model capacity to “learn" to do some sort of static analysis.
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Chapter 4

Application 1b: User-Defined Types

with Multi-Task Learning

4.1 Preface

The widespread tendency to neologism in code vocabulary (thanks to the prolific invention of new,

locally-specific identifiers) compared to natural language is a non-trivial challenge in adopting state-

of-the-art neural models to code related tasks. In representing source code input, probabilistic [116],

frequency [193], and combinations of both [117] subword tokenization has ameliorated the exploding

vocabulary issue [103]; additionally some have been proven to be more optimal [29]. Types, however,

are introduced, like other code variables are, at the developers discretion. This newly introduced

vocabulary may be different from that of natural language. This poses a problem for discrete type

distributions.

While TypeBERT in Chapter 3, improved existing type benchmarks, it has a fixed categorical

softmax layer. This means it can only select one type from 40,0001 types. A bounded, limited

typeset cannot handle all types. We address this issue with DiverseTyper, a type inference model

capable of modeling local and global user-defined types in addition to TypeBERT’s common types.

This chapter is based on a journal paper featured in Transactions on Software Engineering titled

Learning To Predict User-Defined Types, which I lead as the main author with Premkumar Devanbu
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and Anand Sawant in an advisory capacity. This work has recently been added to the journal first

track at International Conference on Software Engineering (ICSE) 2023.

4.2 Summary

TypeScript permits a wide range of types including developer defined class names and type

interfaces. These developer defined types, termed user-defined types, can be written within the

realm of language naming conventions. The set of user-defined types is boundless and existing

bounded type guessing approaches are an imperfect solution. Existing works either under perform

in user-defined types or ignore user-defined types altogether. This work leverages a BERT-style

pre-trained model, with multi-task learning objectives, to learn how to type user-defined classes and

interfaces. Thus we present DiverseTyper, a solution that explores the diverse set of user-defined

types by uniquely aligning classes and interfaces declarations to the places in which they are used.

DiverseTyper surpasses all existing works including those that model user-defined types.

4.3 Introduction

Gradual typing is gaining popularity particularly in dynamically typed languages like JavaScript

and Python. Typing and type-checking can find common kinds of data-misuse in programs by

checking that variables, expressions, functions and modules are used in a consistent fashion. Type

systems can verify the type safety of the program in different ways: most languages verify types either

statically at compilation time, dynamically at run-time, or some combination of both. Developers

have come to appreciate the benefits of type checking at run-time; benefits include faster prototyping

and more flexible use of variables [74,206]. These advantages come at a cost because the resulting

program has less known type associations prior to running [135]. Running a program with fewer type

verified variables and functions results in an increased probability of uncaught type errors [67,181].

To address these concerns, gradual type systems [30,203] were proposed; they provide developers

an attractive balance between static and dynamic typing. Developers can gradually add type

annotations to a program, as they see fit. TypeScript is a gradually typed version of the JavaScript

programming language that is gaining traction. TypeScript can be used anywhere JavaScript is used
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because the type checker enforces type rules prior to transpiling into JavaScript. Thus, code bases

can still run on the highly popular frameworks JavaScript runs on and enforce some type rules.

Unfortunately this approach also has disadvantages. The optionality of gradually typed languages

is a double-edged sword wherein the convenience of not typing variables and functions may result

in type errors that can be caught prior to deployment if properly labeled [67]. Consequently,

researchers have been determined to develop tools that adequately help developers label types

especially when it can prevents bugs.

The abundance of typed source code (in gradually typed languages) from repository sites like

GitHub1 enables researchers to use machine learning methodologies to infer types in dynamic

languages [78,95,142,157,172,182]. Advancements in neural networks are helpful for software

engineering tasks, including type inference [10,78,95,149]. These approaches adapt machine learning

architectures as best as possible but neglect particular aspects of programming languages that are

consequential to the problem. Type-inference is traditionally framed as a bounded classification

task because of the natural alignment with fixed categorical classification losses in machine learning.

However, types have unbounded vocabulary, as do variable and function names; so it is desirable to

accommodate an open type vocabulary. Thus, modeling types with a bounded classification layer is

overly restrictive; the model’s performance is limited by an upper bound.

We approach type inference with an unbounded vocabulary very much in mind. We fur-

ther hypothesize that user-defined type declarations contain important information that can help

probabilistic machine learning methods to infer type annotations. Our implemented model, Diver-

seTyper, leverages two principles: large-scale pre-training and deep similarity learning.

The first principal idea, pre-training, is the practice of teaching models the form of languages by

enforcing auto-encoding objectives like masked-language modeling [54]. Pre-trained models are ideal

for efficiently encoding programming features like user-defined classes or type interfaces. The second

principal idea, deep similarity learning, is used to align or associate two encodings, for example, a

class declaration and the use of the declaration as a type. Our hypothesis is that such a relationship

can be learned for an unbounded set of user-defined types, thus removing this artificial restriction

that exists in previous methods.

1https://github.com
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Figure 4.1. A type is binned by how often it’s used in code in the dataset (x-axis).
The histogram of bins are scaled by Log10 (y-axis) to see all bins. The ratios between
Other, User-Defined, and Top 100 (color-coded) are linearly scaled for simplicity. For
example, of the types that are used 10 times or less (first column), 77,820 are Other,
and 266,882 are User-defined (22%/78%). On a log10 scale, the total (344,702) is
between 105 and 106.

In addition to user-defined types, it is common to use native and library types. Native types

like number or string and library types like ArrayBuffer do not have declarations, and are very

frequent [11,78,95,149,157,230]. Thus the typing inference task has two seemingly orthogonal

sub-tasks: learning common-types within a bounded vocabulary and aligning user-defined types

to existing class and type declarations. We theorize that each task guides a neural model to learn

divergent type representations which presents a challenge. A model learning a type representation

for common-types in categorical form is equivalent to partitioning or folding embeddings across

a fixed space. Additionally, a model learning a type representation that aligns declarations and

annotations means clustering types into manifolds of separability. So we ask, can the model learn

to selectively pick types that should be partitioned (common-types) versus clustered (user-defined

types). The answer is yes! This is realized with a specially crafted training signal that balances the
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representation learning of common-types and user-defined types. The resulting type inference model,

DiverseTyper, can predict common and library types, while also supporting new types defined

using class and interface declarations. This model is also capable of predicting user-defined and

rare types, even if the type definitions were not seen during training. DiverseTyper is effective

globally across all types but especially in the most difficult user-defined types because it diverges

from previous machine learning (ML) assumptions and aligns with how developers annotate custom

types. This work’s contributions are,

Contributions

(1) A type inference model that adopts large scale pre-training to type-inference of common

and user-defined types. DiverseTyper’s adoption of pre-training helps it align new type

declaration to uses of that declaration.

(2) A novel multi-task uncertainty learning approach that combines type inference classification

(cross entropy) and type similarity (semi-hard triplet loss) where loss scaling is learned

end-to-end.

(3) Improve type inference from state of the art approaches by 8.59% overall by improving

user-defined type inference 30.16%. User-defined type inference is significantly harder than

common-type inference due to its long-tailed distribution.

DiverseTyper can be found at our public GitHub2.

In the following sections we discuss the challenges of user defined types, the underlying intuition

behind our approach, and why the approach of DiverseTyper is positioned better than previously

developed approaches.

4.4 Challenges of User-Defined Types

Software programs introduce new vocabulary at a higher rate than natural language [104], due

to new identifier names, functions, classes, enums, structs, etc. Types also feature large vocabularies,

and thus (like variable, function names, etc) are a challenge for models with finite type vocabularies.

Figure 4.1 shows that most unique types occur less than 10 times, typical of a long-tailed distribution.

The figure shows the proportions of the top-100 types, user-defined types, and other (library) types;

2https://github.com/diversetyper/diversetyper
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Figure 4.2. Code snippet from microsoft/fluentui GitHub repository. Code-
SandboxLanguage is type defined in types.tsx. The type is also imported in
createPackageJson.ts. However, both TypeBERT and LambdaNet fail to prop-
erly annotate the correct user-defined class. DiverseTyper references the type
properly despite the type CodeSandboxLanguage is used only once in all repositories,
viz., rare and infrequent.

it’s clear that most types constituting the long tail are in fact user-defined types. This is because

user-defined types typically occur just within the scope of the project that defines them, and rarely
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Figure 4.3. Code snippet from LeetCode-OpenSource/vscode-leetcode GitHub
repository. The class LeetCodeSolutionProvider is declared in the same file that
the class annotation exists in. Both TypeBERT and LambdaNet do not properly
type this annotation. The user-defined class exceeds the bounded type vocabulary
of TypeBERT so the best annotation it can do is any. LambdaNet seems to
reference other LeetCode classes but annotates the class instance with HTMLElement.
DiverseTyper gets the annotation correct.

exist elsewhere. It’s evident from Figure 4.1 that type inference approaches that model a finite type

vocabulary ignore a lot of types.

Close inspection user-defined type annotations (and their respective declarations) reveals that

the declarations are often co-located in the same file or exist nearby (See Figure 4.2). In the

example of Figure 4.2, representative of many user-defined type annotations, the compiler cannot

deduce the corresponding type CodeSandBoxLanguage because of type ambiguity. This annotation

ultimately resolves to a string and a variety of variables also are of string type. The task of correctly

labeling types becomes challenging when types appear ambiguous to the compiler, say different type

declarations with the same underlying string type. However, developers have a grounded common

sense rooted in their experiences programming and familiarity with the language. A developer

would observe the context around the type and gain familiarity with how the type should typically

be used. The developer would likely see that the variable createPackageJson has an attribute

code and language with a function createDependencies taking a code string, and record object

that includes a CodeSandbox object. The developer would correlate that the words “dependencies”
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and “package” often requires certain keywords like “imports” in the context of JavaScript. Lastly,

any word of “sandbox” would allow the developer to narrow down the correct type even if other

syntactically correct and semantically similar types exist; if ProductionLanguage = ’js’ exists

as another user-defined type, this would be syntactically correct . While no model has the same

abilities to reason logically as a developer would with common sense knowledge, DiverseTyper,

is designed to follow the same clues probabilistically which differs from previous approaches. In

order to demonstrate the effectiveness of this approach over previous approaches and highlight our

contribution across the user-defined type space, we will first discuss how the model encodes a type

declaration, and then uses these powerful encodings to type variables in the main body of the code;

no other approach does this, thus falling short across this diverse domain of types.

4.5 Why Other Typing Models Fall Short

The aim of DiverseTyper is try to reach a performance level closer to that of human developers.

The model’s understanding parallels developers by utilizing deep pretrained embeddings to encode

a user-defined type; the pretraining practice is called Masked-Language-Modeling or MLM. This

pretraining approach processes large swaths of raw source code available on GitHub [3,4,62,72,102]

to learn representations (neural encodings) which capture common usage patterns. The model can

use its neural encoding of source code to determine commonalities with other code tokens. With

pretraining, the model in example Figure 4.2, will be guided to the words “language” and “sandbox”

when guessing CodeSandboxLanguage. The words “language” and “sandbox” occur frequently in

the context of the type CodeSandboxLanguage and not other types, which make these words highly

indicative of this type. DiverseTyper digests any class or interface declaration and stores the

embedding of the class or interface declaration as a type. DiverseTyper’s novelty is that it can

handle class and interface declarations as opposed to previous approaches that rely on learning from

explicit type annotations already present in the code.

There are two popular approaches to recover types: (1) Models such as LambdaNet [230]

will save the names of user-defined types and allow prediction to those names (using a pointer

network). LambdaNet must determine the correct typing on very sparse occurrences of that type;

as shown earlier, user-defined types are less frequent across a global set of projects. There is no
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Table 4.1. Comparison between various learning-based type inference models

Model Model Architecture Type Vocabulary User Definition Mechanism Pre-Trained

DeepTyper [78] biRNN 10,000 � �
NL2Type [142] LSTM 1,000 � �

TypeWriter [172] HNN 1,000 � �
OptTyper [157] LSTM 100 � �

LambdaNet [230] GNN Unbounded � �
Typilus [11] GNN Unbounded � �

Type4Py [149] HNN Unbounded � �
TypeBERT [95] Transformer 40,000 � �
DiverseTyper Transformer Unbounded � �

pretrained embeddings involved so the parameterization of the model comes from sparsely learned

co-occurrences of said infrequent types. (2) Other approaches, like Typilus and Type4Py, also do

not benefit from pretraining and can only reference a user-defined type if appears as a previous

type annotation (not declaration) in its training data. Our intuition is that models like Typilus and

Type4Py cannot type as well as a human developer because it cannot observe new type declarations

and understand nuances between such types without optimizing on them in a one-shot manner.

To accommodate a new class declaration in Typilus and Type4Py, the model must rely either

on previously seen type annotations of the same exact type, rather than directly computing an

embedding from a declaration, and aligning that new embedding to valid type locations; this is

what DiverseTyper does. When DiverseTyper digests class and interface declarations, it can

use the pre-training basis to discriminate types by attributes and methods, thus deeming a type

incompatible or compatible with the annotation location. With the type declarations at the disposal

of the typing model, the model is able to reference a more diverse set of types and an improved

performance is expected.

We are not aware of any existing approach that achieves our levels of performance for such

a diverse set of types. Earlier works like DeepTyper [78] and JSNice [182], use a limited type

vocabulary and focus only on common-types. More recent Python approaches Typilus [11] and

Type4Py [149], expand the type vocabulary to include all types seen in training. This expansion,

to all types seen in training, is an improvement; but even these approaches face a performance

ceiling on new types. A TypeScript approach called LambdaNet [230], expands the typeset to all

visible project types with a scoring mechanism; this approach most in line with our proposal, and
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we do a careful comparison. A more recent approach, TypeBERT, discussed in Chapter 3, does

not increase the type vocabulary, but demonstrates that BERT-style pre-training on JavaScript

corpora boosts type prediction because the model learns token co-occurrence statistics relevant

to typing. TypeBERT, like other fixed type vocabulary models [78, 157, 172, 182], ignores new

types. If developers were to use these tools in practice, the models will underperform on new

types. Since newly defined types are common to projects per Figure 4.1, and are often key to good

software design, our machine learning architecture is better-aligned to modern software development

paradigms. Whenever a developer defines a new, project-specific class or type, DiverseTyper

also encodes these classes and type interfaces with pre-trained vectors. DiverseTyper employs

those representations in the type suggestion process. We explain in the following section how the

pre-trained vectors improve a model’s ability to capture the learnable and relevant features in code,

and the benefits for machine learning based type-inference approaches.

4.6 DiverseTyper

In this section, we first introduce general pre-training for types, the training elements of

DiverseTyper, followed by the inference mechanisms DiverseTyper.

4.6.1 Pre-training For Types

Pre-trained transformer models for code such as CodeBert [62], CuBert [102], PLBart [3],

and TypeBERT [95] achieve state-of-the-art (SOTA) results on code-related tasks by pre-training

on large code corpora followed by fine-tuning weights on a specific task. Pre-training on large

corpora is compute-intensive, which is often performed at large, resource-rich organizations that

can afford the cost of training [22, 191]. Our work amortizes the expensive cost of pre-training

by initializing DiverseTyper core weights with the pre-trained weights from TypeBERT [95].

The pre-trained model takes in a sequence and outputs a contextual vector for each input token.

The code token’s context determines the vector. The complete body of a class or type declaration

provides rich information such as attributes and internal functions. This rich information can guide

a type inference model to link the uses of the class or interface to its declaration; this approach is

novel in this work.
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Figure 4.4. Overview of DiverseTyper. Training: DiverseTyper is trained end-
to-end with two tasks Task1 and Task 2. Task 1: a classification layer is trained
with a cross-entropy loss on the target types. Task 2: An alignment of user-defined
types and the use of types with a triplet loss. A red dot indicates a type annotation
that is incorrectly positioned closest to a different type. The model learns to correct
this and incrementally shift the embedding to the nearest same labeled type. Type
declarations, coexist in the same type space with normal type uses. Inference:
DiverseTyper: A deep transformer, outputs a context embedding (yellow circle)
which is projected into a common type guess (Task 1) and a user-defined type
embedding (orange circle) corresponding to a user defined type-space (Task 2). To
convert the user-defined type embedding to a type, a k nearest neighbor (kNN)
search returns the nearest neighboring types. Arbiter: An independently trained
multi-layered perceptron (MLP) decides which type prediction is better between the
common type and the user-defined type.

To take advantage of these useful representations, DiverseTyper is initialized with the

published TypeBERT weights, input width (256), and sub-tokenized input vocabulary trained

with SentencePiece [117]. Tokenizing the code, with Byte Pair Encoding (BPE) [194] or unigram

language modeling [117] is common to manage large input code vocabularies [104]. Tokenizing

is not used in the type vocabulary because the model needs to output valid types. With the

pre-trained weights and tokenized input inherited from TypeBERT [95], we are ready to define

training procedure for DiverseTyper.
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4.6.2 Training

The DiverseTyper approach leverages several key components. The first component is the

context vector provided by the BERT-style model pre-trained on code (yellow circle in Figure 4.4.

For instance, for a particular sequence of code s, each tth source token st, has a context vector ht

existing in Rd where d is a dimension determined by the neural model architecture. This context

vector, ht, is the vector we propose is capable of representing common-types and user-defined types,

when fine-tuned under the proper loss function and training procedure.

The second component is the loss function which is required in order to transform the

aforementioned context vector. The loss function determines what the model learns and how

efficiently it is learned; typically this is comprised with (sub) losses focused on the optimization of a

particular objective. To learn common-types, the model defines a categorical learning signal where

it learns to associate each token with a common type. For simplicity, we term this signal as Task

1. To learn user-defined types, the model uses a deep similarity learning signal we call Task 2.

Task 2 transforms the context vector into a new user-defined type vector (orange circle Figure 4.4),

termed hs, which can be used to compare new declarations with individual uses of these declarations.

The aforementioned transformation into a user-defined type vector, hs, requires DiverseTyper

to use additional hidden layers shown in Task 2 of Figure 4.4. We add additional layers to allow

the context vector, ht, to contort into a new representation that might differ greatly from Task

1, but be more suitable for Task 2; these layers introduce additional degrees of freedom that can

be trained using the above mentioned loss function. As previously mentioned, a representation

might become more or less suitable for one task over the other during the training procedure which

means the model should turn up or down the amount of feedback from each task. With two losses

of varying degrees of importance at a particular moment in training, the model must judiciously

combine the losses in a manner that reflects the model’s confidence in them. Another term for this

is uncertainty.

While there exists many weighing strategies [70], we find using the inverse variance of a loss is a

suitable weighing term, i.e., 1
variance viz. 1

uncertainty . When the uncertainty is high, the model will

weigh the signal less and vice versa when the uncertainty is low. The next sections will describe
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these three components in detail. We first describe the two losses and consequentially how we weigh

them with uncertainty.

Task 1: Classifying common-types. The first task is based on the model’s ability to classify

commonly occurring types; these types are often self-evident through simple expressions containing

string manipulation or mathematical operations. At a high level, the machine learning model is

given a sequence s and returns embeddings for each token st. The embedding is used as input to the

classifier to produce types for each token, given the token can assume a type. With a type associated

to each variable, parameter, and function code token, the model can check the predicted type with

the ground truth and learn a distribution that matches the ground truth distribution. This is a

popular, yet effective way to classify a large bulk of type annotations but is poor in predicting a

large breadth of types. In the next paragraphs we discuss the details of the common type classifier

and motivate an alternative for user-defined types.

In order to learn the ground truth type distribution, machine learning models, like Diverse-

Typer, require a loss or feedback from the various tasks they are trying to solve. To get a loss

value for Task 1, DiverseTyper must calculate the following for each type annotation. Per source

token st and a corresponding type annotation τ , DiverseTyper passes the hidden state ht (yellow

circle in Figure 4.4) to a classification layer (Task 1 in Figure 4.4). This classification layer is

defined as a probability distribution formed from the linear combination of the hidden state ht and

a learned type representation rτ . The linear combination produces logits or log-odds that can be

mapped to a probability distribution with the softmax equation (seen in Figure 4.5). This leads to

a probability associated with each type. In machine learning terminology, this is defined below,

(4.1) Pst(τ) =
exp(hTt rτ + bτ )∑T
τ ′ exp(hTt rτ ′ + bτ ′)

where Pst(τ) ∈ (0, 1) and τ is ∈ T , which is the finite set of known types. Equation 4.1 is a classic

equation in machine learning for predicting probabilities from a finite set of classes. During training,

these probabilities are often incorrect and must be adjusted to the underlying true probability. This

is accomplished with the types’ true labels.

With the probability across common types, we seek to maximize the expected probability Pst(τ)

over the training set by minimizing the corresponding loss Lclass. We use a standard classification
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(cross-entropy) loss:

(4.2) Lclass(st, τ) = −
T∑
τ ′

yst log(Pst(τ))

where yst is the ground truth type for the source code token st. By optimizing this signal, the model

can learn to adjust it’s internal parameters for common types according to their true distribution in

code. Figure 4.5, illustrates how Equation 4.1 normalizes a neural network output to probabilities.

Figure 4.5. The softmax equation, Equation 4.1, forces model outputs into proba-
bilities. Left: Raw values from the network regarding the log likelihood of a category.
Right: Equation 4.1 forces the distribution into a probability distribution with a
cumulative sum of 1.

However, infrequent and user-defined types are not represented by the model’s fixed type set

(shown in the red block of Task 1 in Figure 4.4), and cannot be learned as previously described. To

reiterate, this is because the model’s output is finite. We address this issue with Task 2, capable of

learning infrequent and user-defined types (blue block in Figure 4.4).

Task 2: Learning User-Defined Types. Probabilistic type inference approaches perform best

when a sample of type annotations are reflective of the population. This is very difficult for user-

defined types, like class declarations and type interfaces, which typically occur infrequently within

the scope of a single project. This is a major reason why data driven approaches fail on user-defined

types. On the contrary, if this problem is mapped into a matching task from declarations to uses

of those type, then there are examples in practically every project. Despite class declarations

and corresponding uses being different code entities, according to the contextual embedding, we
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can establish an alignment task and adjust those distant embeddings to be translated into nearby

embeddings. Thus, DiverseTyper can leverage rare types into many good training examples of

matching across thousands of projects irrespective of the sparsity of individual types across the

entire corpora. In the following paragraphs, we examine how the aforementioned similarity is defined

and learned by DiverseTyper.

To learn infrequent and user-defined types, the model uses deep similarity learning [73] to

associate type declarations with the respective annotation. In machine learning, we can define

similarity in many arbitrary ways as similarity is a subjective measure. We use a loss that compares

embeddings to other embeddings with respect to the embeddings’ labels (again could be subjectively

assigned). If two embeddings correspond to the same item, according to the label, and the distance

between the embeddings is large, then the similarity would be low when it should be high; this can

be corrected with the model producing better embeddings. To elucidate a more formal concept of

similarity, we first introduce the notion of a triplet, the fundamental building block to Task 2.

Similarity for types is a relative measure defined by grouping same and different types. For a

particular type xt, the model finds a type x+t with the same label, and different type x−t . Together

these three elements define a triplet as (xt, x
+
t , x

−
t ). A distinct property of a triplet is that there is

a notion of similarity between the reference point or anchor xt, the positive point x+t , and negative

point x−t . In Task 2 of Figure 4.4, the black points are same labeled types with the anchor being

the focal point of the circle. The red dots are negative points where the label is different than

the anchor. The red points should be moved closer to the center of the correct point through the

optimization of a training loss. In Figure 4.4 the negative examples have arrows to demonstrate the

direction the model is moving the points in order to correct the prediction.

To use the triplet (xt, x
+
t , x

−
t ) for learning user-defined types, DiverseTyper randomly con-

structs triplets from embeddings it produces (orange circle in Figure 4.4). In Task 2 of Figure 4.4, the

types anchor and positive will be annotations that are both the same, i.e. GraphQlClient and another

annotation of GraphQlClient, with a negative annotation of a different label, i.e, GraphQlClien-

tOptions. The novelty of DiverseTyper is that the declarations, i.e, class GraphQlClient()

{...} are valid positive annotations, despite the differing pretrained embeddings indicating they
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are different entities; we override this model assumption by dictating a new notion of similarity;

how a developer interprets these code entities.

By selecting our triplet in this manner, indiscriminate of declaration and annotation, Diverse-

Typer learns an optimal representation of user-defined types and has the capability of using any

declaration for type inference irregardless of if the model has seen it before. The unique combination

of pre-trained vectors with type clustering is what makes our model perform so well for never before

seen types.

More formally the goal is a final representation where the same labeled types and differently

labeled types are separated by a margin or distance m. Using the aforementioned notation, anchor,

positive (+), and negative (-) to represent the labels of similarity and hs for the embedding of an ith

type location,

(4.3)
∥∥hsi − h+si

∥∥+m <
∥∥hsi − h−si

∥∥

∀{hsi , h
+
si , h

−
si} ∈ T where T is the set of all possible triplets in the mini-batch, or iteration of training.

The notation hsi , h+si , h
−
si , are the same anchor, positive, and negative versions (as used above) but

referring to the embedding hs (orange circle in Figure 4.4). The embeddings are considered positives

and negatives by their respective type label; the same type is positive and the different type label

is a negative. With all three representations, hsi , h+si , h
−
si , the triplet loss for a mini-batch with B

examples is defined as

Ltriplet(hs, h
+
s , h

−
s ) =

B∑
i

[∥∥hsi − h+si
∥∥−

∥∥hsi − h−si
∥∥+m

]
+

This formula simply means, that the model incurs a loss when the distance between the anchor and

negative point (different labels) is less than the distance between the anchor and positive point

(same labels); a violation of the type space. The margin is added so that the loss occurs even if the

negative point is within the extra boundary. Ltriplet, (Equation 4.6.2) rewards an embedding h+si

that is closer to the anchor hsi and penalizes h−si that exists within the margin m. Equation 4.6.2

calculates the loss across all possible triplets T in the mini-batch B. Calculating the loss across all

points is less ideal, computationally, as many points easily result in a 0 loss, i.e, they are correctly

situated. Realistically, only a few triplets provide a valuable loss; namely ones where the similarity
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Figure 4.6. Illustration of triplet loss with semi-hard negatives. The center is
an anchor type surrounded by the same types (black dots) and exist within d+max

where d is the L2 distance between points. The distance d+max defines a neighborhood
shown with the visualization of a circle. Differently labeled types (red dots) can exist
within d+max (hard negative), d+max +m (semi-hard negative), and greater than the
neighborhood d− (easy negatives). By optimizing the triplet loss in the left circle,
the model adjusts the embeddings so a lower loss occurs. This is accomplished by
moving + points (the same types) closer to the center and moving − points (different
types) away, further than the margin (dotted boundary). The final result (right
circle) is the optimized type space where ∀ − points, d− > d+max +m.

notion is violated and the loss significant. To adjust for the mentioned inefficiency, we use a triplet

mining technique called semi-hard negative mining [192] that helps find the most valuable triplets

and optimize those.

Figure 4.6 demonstrates the selection of semi-hard negatives denoted in the red margin. The

green circle in Figure 4.6 is a converged similarity representation where training is complete.

Practically, until perfect convergence occurs between all types, there will always occur a decreasing

loss.

Subsequent of above, we find that LTriplet converges faster than LClass due to the relative

simplicity of aligning embeddings, but has an increased variance that reduces the effectiveness of

LClass. This trade off means excellent performance of user-defined types with some degradation of

the common classifier. We can counter this effect quite significantly by judiciously combining the

errors from the loss functions such that each loss is optimized as best as possible. We explore this is

the following section.
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Table 4.2. Building an Arbiter for Metric and Probability Type-spaces

Method User Defembedding kNNSimilarity � kNNUser Def Class ClassLabels Attention Data % Accuracy %
Sort 0% 90.92

Neural Network � 10% 82.76
Neural Network � � 10% 83.43
Neural Network � � � � � 10% 91.67
Neural Network � � � � � � 10% 91.72
Neural Network � � � � 10% 91.96
Neural Network � � � � � 10% 91.20
Neural Network � � � � 50% 94.14
Neural Network � � � � � 50% 93.54
The highest performing arbiter has a configuration consisting of a neural network with inputs of user-defined type labels
and similarity scores, common-type labels and probability scores, and 50% of the training data.

An Optimal Balance of Losses. As described above, the model learns different losses Task 1 and

Task 2: common types for Task 1, and user-defined types for Task 2. In practice, deep multi-task

learning models have claimed improvements in performance by sharing representations, in our case,

the pre-trained vector in yellow in Figure 4.4 between both tasks [108]. The ideal contribution

from each task is not known a priori and typically requires searching for a good weighing strategy.

In lieu of searching for the perfect strategy with trial and error techniques, like a grid-search, an

alternative learnable weighing technique can be used; the model can learn the best weighing scheme

as it trains (learning to learn as the model is learning). The learnable weighing technique can be

described as learning to estimate the uncertainty of the loss [108] from the two typing tasks. A

recent empirical survey [70] for optimal multi-task weighing strategies demonstrated that uncertainty

losses [108,126] performed best. We follow Kendall et al. [108] approach of combining a discrete

output (categorical) and continuous output (similarity). The combined loss follows,

(4.4) L =
1

σ2
Class

LClass +
1

2σ2
Triplet

LTriplet + logσClass + logσTriplet

where σ represents the standard deviation. σ2
Class and σ2

Triplet represent the cumulative learned

variance (uncertainty) per task. For learning stability, the model learns logσ2 rather than regressing

on σ2. For more details on this, please refer to Kendall et al. [108].

We can interpret Equation 4.4 as a combination of the losses with weights for each one. Higher

σ values will decrease the impact of the loss signal from the corresponding task, and smaller σ values

increase it. Finally, the regularizing terms, logσClass and logσTriplet, penalize the model when the

scale of the σ values are too large. The loss asymptotically goes to zero as both sigmas approach
53



infinity, and while the the model would have a zero loss, it wouldn’t learn either task! In summary,

the loss from Equation 4.4 can be viewed simply as a learned weighted loss with some bias, i.e.,

(4.5) L = ω1LClass + ω2LTriplet + b

A major benefit of a learned weighting strategy, like Equation 4.5, is that the final weights are

automatically determined by the model over the data; this is clearly preferable to hand-engineering

the weights in each problem setting.

The derived (combined) loss, Equation 4.5, allows DiverseTyper to focus on both aspects

of type prediction jointly: the optimization of common type classifications and the clustering of

rare and user-defined types. This work to our knowledge, is the first to apply an effective, general

multi-tasking approach to type prediction; this approach may also benefit other SE settings that

performance on two tasks must be effectively balanced.

In order to use a trained DiverseTyper, we must define its inference methods.

4.6.3 Inference

This section introduces how DiverseTyper makes either: (1) a common type prediction or (2)

a user-defined type prediction. This is done with an arbiter ; which (like a human arbiter) settles

“disputes” between the common-type and user-defined type predictions, as we now explain.

Common Type or User-Defined Type? During inference, DiverseTyper outputs a common-type

guess (purple arrow in Figure 4.4) and a user-defined type embedding (orange arrow in Figure 4.4).

The common-type guessing mechanism is the classification layer that outputs common-types from

the fixed set of types with probabilities per Task 1. The user-defined type guessing mechanism is

the closest neighbor lookup using the user-defined type embedding first defined in Task 2.

The neighborhood lookup is an efficient k-nearest-neighbor (kNN) search algorithm3 across

all training set declarations and uses of those declarations. DiverseTyper adds the testing set

declarations only because the declarations are available at the time the corresponding type can

be predicted; the model has never seen these test declarations before. If the model is successful

at never before seen types, these new declarations will be embedded near relevant usages. Finally,

3https://github.com/spotify/annoy
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the search returns the distance which ∈ (0, 1] with 0 being an exact match. When calculating the

similarity, we can take 1− distance.

We note that the similarity measure is not a probability measure, looks nothing like Figure 4.5,

and thus the two are not comparable unless some mapping is applied. This presents a quandary:

given two incommensurate measures, how would an arbiter resolve a “dispute” when different type

labels are offered by the two? In the following section, we discuss how a special mapping can be

baked into a neural network, automatically picking the best type.

Table 4.3. Multi-Task Type Annotation Datasets

Approach Type Inference Dataset User Definition Dataset
Projects Files Annotations Projects Files Annotations

(Definitions/Usage)
TypeBERT [95] 20,860 1,474,418 12,920,988 � � �

DiverseTyper 20,860 1,474,418 12,920,988 14,309 225,551 3,204,180 (50% / 50%)

DiverseTyper uses two joint learning objectives to learn common-type and user-defined type
associations. We provide no additional type inference data to demonstrate the effectiveness of the
supplemental objective. The true ratio of definitions to usage is 32% / 68% but we over-sample
definitions such that each batch has both a definition and its corresponding use.

Arbiter. The arbiter first obtains a list of common-types and their probabilities from the common-

type guesser. Next, a k nearest neighbors search of user-defined types is performed, returning a

second list of user-defined types and the respective similarities. The arbiter combines unique types

from each, sorts them, and returns Lmixed, a set of mixed types. However, sometimes both type

prediction mechanisms present similar scores, so, how to choose the very best type?

As an initial step, we compare our approach with a baseline “sorting” approach despite the

two different metrics: probability and similarity. This approach consists of combining both sets

and sorting irrespective of type metric. To our surprise, this simple baseline performed better than

expected, with an accuracy of 90.92%. In a later analysis of the type spaces in Section 4.8.2, it

can be inferred that (extremely) low distance points often yield the correct prediction, comfortably

overriding an incorrectly predicted common-type’s probability. Likewise, the probabilistic predictions

are highly confident when correct in the BERT-family models and thus can easily override the

distance of an incorrect user-defined type. The baseline is effective in most cases but there are some
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scenarios where the correct answer is enigmatic. This is where we find performance of a specifically

trained neural network arbiter beats the simple sorting baseline.

We tried several designs for the neural network in Table 4.2. We manipulate the network’s

access to various inputs: the similarity embedding, similarity distance, user-defined type label,

common-type probability, common-type label, attention, and amount of data trained on. From

the above ablations, we find the best performing arbiter uses the top 5 common-type prediction

probabilities and user-defined type similarity scores with the respective type labels. We create a

dataset with the described inputs in Table 4.2. The output label is 0 if the common-type mechanism

gets the answer correct and 1 if the user-defined type mechanism gets the solution correct. The

arbiter’s neural network is trained on a holdout portion of the training data while the remainder is

used to learn the kNN search. The trained model is selected by performance on a validation set

and evaluated on the test set per Table 4.2. The trained model was very good as a binary classifier

picking between the two type predictors (common vs. user-defined type). As seen in Figure 4.7, this

classifier has a strong receiver operating characteristic (ROC) curve with an area under the curve

(AUC) of .93. This ROC and AUC demonstrates that the classifier is effective at arbitrating the two

type recommendation mechanisms. The next section examines the performance of DiverseTyper

with several research questions (RQs).

4.7 Quantitative Evaluation

In this section we present the dataset DiverseTyper is trained and evaluated on, metrics for

type inference evaluation, and our baselines for DiverseTyper.

Then we answer the following research questions:

RQ1: How effective is DiverseTyper compared to baseline approaches?

RQ2: Can DiverseTyper predict user-defined types?

RQ3: How does DiverseTyper perform on previously unseen types?

4.7.1 Dataset

We use the same 20,860 projects collected in TypeBERT [95] for the type inference dataset

and maintain the same data splits between train, test, and validation. This dataset contains
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Figure 4.7. Receiver Operating Characteristic (ROC) curve of the Arbiter. Area
Under the Curve (AUC) is .93 which means it is an excellent classifier.

human-annotated types on variables, parameters, functions and method declarations. Types range

from common-types, e.g., number and string to library and user-defined types like dynamodb and

Point. This dataset does not have the user-defined type declarations but only the annotations. We

supplement this dataset with additional data extracted from the same set of projects that includes

user-defined type declarations across the existing dataset splits in TypeBERT [95]. The purpose of

a project level data split is twofold: (1) so files seen at test time are never seen at training time and

(2) to accurately compare the contribution of training on user-definitions.

To extract user-defined type declarations and the locations of their use, we wrote a code parser

to localize user declarations denoted with keywords interface and class. The parser finds use

of a user-defined type corresponding to the declaration within project scope. The supplemental

user-defined types dataset contains 362,759 (32%) declarations and 1,141,734 (68%) uses across

14,309 projects and 225,551 files. This supplemental dataset is only used in training and is not used

to evaluate the model’s performance. We have released the supplemental dataset in our GitHub

repository.
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To evaluate DiverseTyper, we follow standard evaluation procedure from previous works

[95,157,230] and only use human-annotated types for evaluation. The intuition is that compiler

inferred types are typically easy and saturate performance scores, where as, human annotations

are more difficult and meaningful. Following standard practice we allow the model to train with

both the “easy” compiler inferred types and the “hard” human-annotations. Also in line with other

works, we exclude the wildcard type any in our evaluation. Finally, a key practice is to perform

de-duplication on a dataset [7]. Code duplication between and within training and evaluation sets

has historically existed in previous works, prior to Allamanis [7] demonstrating duplication leads

to artificially elevated evaluation scores. To conclude this section, we provide the breakdown of

Table 4.4. Top Types In Datasets

Type-Inference Dataset User Definition Dataset
Types Count Data % User Defs Count Data %
string 2,103,227 16.19 Node 7,583 .0584
void 1,324,632 10.20 State 6,843 .0527

number 1,213,432 9.34 Props 6,536 .0503
array 915,837 7.05 User 5,798 .0446
object 635,155 4.89 Context 5,367 .0413

Promise 549,219 4.23 Type 3,961 .0305
boolean 514,801 3.96 Player 3,386 .0261

Sum 7,256,303 55.87 39,474 .3039

top types in each dataset. Observe the type breakdown in Table 4.4. User-defined types occur

infrequently while common-types account for >55% of the original type annotations. We believe

the stark distributional difference between common-types and user-defined types necessitates the

separate mechanism for predicting user-defined types. Again, this is because the vast majority

of types are often project-specific, locally defined, and only occur only a handful of times. It is

important to note that DiverseTyper contextualizes user-definitions, so different declarations

with the same name, such as User or State, will be represented by a separate data point. This is

particularly useful for the model because it can condition on small differences in the definition such

as the presence of attributes.
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Table 4.5. Accuracy Comparisons with DiverseTyper Across Binned Types

Model Top 1 Acc % Top 5 Acc %
Top 100 Other User Def Overall Top 100 Other User Def Overall

LambdaNet [230] 66.9 N/R 53.4 64.2 86.2 N/R 77.7 84.5
OPTTyper [157] 76 N/R N/R N/R N/R N/R N/R N/R
TypeBERT [95] 89.51 50.49 41.40 71.12 98.51 70.34 55.02 81.88
DiverseTyperArbiter 83.51 46.92 72.53 79.30 92.94 60.53 81.59 88.59
DiverseTyperArbiterNN 84.78 43.29 71.56 79.71 90.88 53.25 77.18 85.62

Table 4.6. DiverseTyper Ablations

Model Top 1 Acc % Top 5 Acc %
Top 100 Other User Def Overall Top 100 Other User Def Overall

DTbase 82.28 24.69 23.41 59.77 95.76 41.48 36.49 73.10
DTbase + UNK filler 82.46 33.56 46.40 68.67 96.59 59.44 78.69 79.43
DTTypeBERT + U.D. network 89.69 50.49 41.39 71.16 98.57 70.34 55.0 81.86
DTbasee2e + U.D. networke2e+Arbiter 83.51 46.92 72.53 79.30 92.94 60.53 81.59 88.59
DTbasee2e + U.D. networke2e+ ArbiterNN 84.78 43.29 71.56 79.71 90.88 53.25 77.18 85.62

base: DiverseTyper with only common-type classifier (same as TypeBERT) used for evaluation
base + UNK filler: fill UNK predictions with top 1 guess from user-defined type mechanism.
TypeBERT + User-Defined network: initialize DiverseTyper with TypeBERT’s weights. These weights are
not changed.
basee2e + User-Defined networke2e + Arbiter: Use basic (sort) arbiter to pick top 1 type between common-type
and user-defined type mechanism.
basee2e + User-Defined networke2e + ArbiterNN: Use neural network arbiter to pick top 1 type between
common-type and user-defined type mechanism.
∗ e2e: learned jointly with end-to-end training
∗ NN: Neural network

4.7.2 Metrics

We use Top-1 Accuracy (exact match) and Top-5 Accuracy (correct prediction in the top 5

guesses) for subsets of types exactly in line with previous works. The categories are as follows:

Top 100: The most frequent types such as native types int and string and types not considered

user-defined within the top 100 rank [95,157,230].

Other: Types that are common but occur outside of the top 100 and are not user-defined. Examples

would be commonly used library types like ArrayBuffer, Entity, FunctionComponent just to name

a few.
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User Defined: Types that correspond to a class, enum, or type interface where the type is declared

within the same project scope. Examples would be developer specified types that occur quite rarely

if at all in other projects, e.g., KindaShiftView, VRMSpringBone, Iterm2ColorName.

Unknown: In previous works with fixed type vocabularies [78,95,142,157,172] type inference

models would predict UNK if the type exceeded its classification capabilities. TypeBERT [95]

accounted for UNK predictions by counting them against the performance of TypeBERT. This meant

that ∼8% of predictions in the test set were automatically considered incorrect as a function of

its model architecture. DiverseTyper has no type limitations, and never predicts UNK as it can

always defer to the user-defined similarity vector.

4.7.3 Baselines

We compare DiverseTyper to three TypeScript baselines: LambdaNet [230], OptTyper [157],

and TypeBERT [95].

LambdaNet a graph neural network (GNN) approach that links variables and logical constraints

to approximate a type dependency graph. The architecture can predict common-types in the top

100 and user-defined types available in the type-space with a pointer network.

OptTyper performs probabilistic type inference across the top 100 most-frequent types. OptTyper

combines a continuous interpretation of logical constraints derived by static type inference with the

natural constraints learned from deep learning across large code bases.

TypeBERT uses BERT-style pre-training with large scale corpora in addition to a large fine-tuning

dataset to train a type inference model. The implementation is similar to sequence tagging in NLP.

4.7.4 RQ1: Effectiveness of DiverseTyper

We evaluate the effectiveness of DiverseTyper over the type categories in Section 4.7.2. We

also perform ablation analysis by varying different elements of its architecture to understand why

DiverseTyper is effective.

Type Performance

As shown in Table 5.3, we report the top-1 accuracy and top-5 accuracy across type categories
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defined in metrics. DiverseTyper has the strongest Top 1 overall scores at 79.71% accuracy

overall a +8.59% absolute improvement over TypeBERT. DiverseTyper scores the highest Top

5 accuracy overall meaning that DiverseTyper is providing more relevant scores across all of

its predictions. Both DiverseTyper models demonstrate Top-5 scores higher than TypeBERT

and LambdaNet which is notable because LambdaNet uses static analysis and pointer mechanisms

to predict user-defined types. This means that not only does DiverseTyper do a better job at

recognizing user-defined types, but is additionally capable of referencing declarations from its kNN

search even when the declarations are unavailable or missing in the source code.

We observe a trade-off in the top 40,000 types (Top 100 and Others). This might be due to

complications arising from training of Task 1 and Task 2 together. A possible source of this,

is that often developers override library types such as Node, State, User, Context etc. where

the common-type classifier gets disrupted in favor of learning user-defined type declarations. The

aforementioned types are also the most frequent user-defined types as seen back in Table 4.4.

Ablations

Deep learning models are difficult to understand and ablations provide insights to the model’s

learned representations. We vary the architecture in meaningful ways to gain insights to how

different methods affect prediction capability. We organize our ablation results in Table 4.6.

First we define a base version of DiverseTyper, DTbase, where the model is trained jointly

on the two tasks: Task 1 and Task 2. This model is evaluated with only the common-type

classifier. The purpose of this evaluation is to demonstrate how much accuracy was lost in the

traditional classifier from the jointly learned objectives. We observe that others and user-defined

types perform very poorly. This indicates that the type representation rτ (defined in Task 1 is not

a meaningful type representation of user-defined types anymore. This intuition is confirmed with

the performance of the same model using the user-defined kNN search. The model that employs the

kNN search is denoted basee2e + U.D networke2e + Arbiter. From a training perspective, the

network is equivalent to DTbase and yet performs +50%. This indicates that the user-defined type

representations are moving in favor of the similarity representation. This comparison between the

two models with the same training but different inference mechanisms shows the effectiveness of our

proposed learning approach.
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In order of incremental improvement, we try a model where we use base and only sample from

the user-defined types when the classifier predictions UNK viz. the model does not know the type.

base + UNK filler improves performance but not considerably.

The next ablation is to initialized DiverseTyper with TypeBERT weights and train with only

the user-defined supplemental dataset while holding the TypeBERT weights stationary. This model

has the label TypeBERT + U.D network. We can see that the user-defined types were not

learned by the model and this model has almost the same performance as TypeBERT. We anticipate

that this akin performance is because the final type representations learned in TypeBERT drop

relevant features about user-defined types in the process of partitioning the common-type space.

Interestingly, the performance of this model marginally surpasses TypeBERT indicating the network

learned relevant information pertaining to the Top 100 in the user-defined type dataset.

The final two ablations are our best models where we use the base model, plus the kNN search,

and the arbiter for inference. The first model uses only the sorting arbiter and is labeled basee2e +

U.D networke2e + Arbiter. In this ablation, DiverseTyper is capable of using the information

learned during training to match declarations with annotations. This model performs best in

user-defined type exact-match and top-5 overall. The second of the two best DiverseTyper models

uses the same base model, kNN search, but with a neural network arbiter. This model is denoted

basee2e + U.D networke2e + ArbiterNN and performs the best overall in exact matches. These

models reinforce the hypothesis that the model is capable of taking advantage of user-defined type

matching with declarations with a sizeable performance increase in the overall and user-defined

types category.

DiverseTyper improves overall performance 8.59% over TypeBERT, a 13.38% percent increase

of TypeBERT’s improvement over LambdaNet.

4.7.5 RQ2: Prediction on User-Defined Types

In this section we evaluate DiverseTyper’s capabilities on user-defined types. Observe the

reported user-defined type accuracy in Table 5.3 and Table 4.6. In comparison with other approaches

DiverseTyper performs 31.13% better than TypeBERT across user-defined types with almost the
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Figure 4.8. t-SNE plot of aligned user-defined types and the respective usage.
When a developer defines a new type and requires type inference of this new type,
the usage embedding will be clustered with the definition making type inference of
new user-defined types possible with high accuracy.

same architecture. The performance of DiverseTyper informs us that the user-defined similarity

embedding is substantially more effective for rare and user-defined types than a fixed vocabulary.

The performance improvement can be attributed two characteristics of the user-defined similarity

embeddings. First, Task 2 introduces a representational “slack” by clustering similar representations

rather than strict partitioning of dimensional space. Second, unlike other deep similarity learning

approaches [11,149] that only group similar annotations, DiverseTyper places the class and

interface declarations into the user-defined type-space. By learning the relationship between

declaration and annotation, DiverseTyper makes the user-defined type set generalizable to novel

class and interface declarations.

DiverseTyper improves user-defined type accuracy on LambdaNet by 19.13% and 31.13% over

TypeBERT.
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Table 4.7. DiverseTyper on Never Seen Types

Type Accuracy
Top 1 Acc Top 5 Acc

Top 100 Other User Def Overall Top 100 Other User Def Overall
0% 19.44% 80.56% 100% 0% 19.44% 80.56% 100%

N/A 1.723 54.82 44.50 N/A 3.62 58.48 47.82

9.04% of test set contains types never seen before. Top 100 accounts for 0% of
never seen types. Percents under type categories are proportion of never seen
types. For example, 80.56% of never seen types are user definitions.

4.7.6 RQ3: Performance on Never Seen Types

We test DiverseTyper with the hardest type annotations, i.e., types that have never been

seen before. By evaluating the model on never seen types, we gauge how well DiverseTyper

will do on brand-new types added by developers. Table 4.7 shows that DiverseTyper scores a

commendable 44.50% top-1 accuracy on types it has never seen. DiverseTyper performs even

better for user-defined types, at 54.82% top-1 accuracy. This result is more consequential when we

see that user-defined types occupy about ∼81% of never seen types. This is a promising result for a

deep learning based approach where performance is typically dependent on comprehensive examples

from training data.

DiverseTyper’s user-defined type mechanism successfully annotates never seen types ∼55% of

the time.

4.8 Qualitative Evaluation

Our qualitative evaluation serves to elucidate the inner workings of DiverseTyper and its

user-defined type similarity predictions. In this section we answer the following research question:

RQ4: Can we visually inspect DiverseTyper’s performance over other methods?

RQ5: How does DiverseTyper cluster typical user-defined types?
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4.8.1 RQ4: Inspecting Consequential Annotations

Figure 4.2 is a snippet from a popular Microsoft GitHub repository. We can see that the type

CodeSandboxLanguage is defined with the type keyword indicating it is a user-defined type. It is

defined within a TSX file (TypeScript’s equivalence to JSX) and imported into the main .ts file. The

user-defined type CodeSandboxLanguage is used in the definition of an object createPackageJson.

DiverseTyper recognizes the intra-project type declaration and properly assigns it in the object.

DiverseTyper recommends both lexical similar types such as Language and hints at functionality

preservation with relevant type RemoteDebugLanguage for a sandbox environment. TypeBERT only

recommends lexical similar types such as Language, ILanguage, and LanguageCode. LambdaNet

considers the correct type CodeSandboxLanguage to be Out-Of-Vocabulary (OOV) because it did

not populate in it’s list of possible types.

The outcomes from the three models are not surprising given their advantages and disadvantages.

LambdaNet is restricted to 100 types and the types it discovers within the project. LambdaNet has

failed to discover CodeSandboxLanguage and thus declared it outside of its predictive capability.

TypeBERT has seen contexts, especially in pretraining, where semantically similar notions of

CodeSandboxLanguage occur with types Language and LanguageCode; thus the recommendation.

Even if TypeBERT had an unbounded classification layer, which is not currently possible in machine

learning, it is still less likely that TypeBERT would get a majority of user-defined types correct.

This is because TypeBERT must accurately predict the exact type out of an unbounded list of

types where as DiverseTyper only has to match the correct declaration to the context and use it

correctly.

Figure 4.3 is a code snippet from another popular coding repository containing LeetCode webapp

code. The user-defined type LeetCodeSolutionProvider is defined within the same file as the

class usage. LambdaNet does not have LeetCodeSolutionProvider in its top 5 predictions, but

shows some relevant predictions. We observe in other files within the same project, LambdaNet had

relevant user-defined type predictions, but fails to place them as the top guess for reasons we do not

know; likely a violation of type constraints according to LambdaNet since the type is in the same

file. TypeBERT fails at most user-defined types as they exceed the vocabulary limit and are not

defined in its architecture; this is expected because TypeBERT cannot predict infrequent and rare
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types. DiverseTyper accurately predicts the right type where as TypeBERT and LambdaNet

do not. We observe this similar outcome for other user-defined types in other files within the

same project: LeetCodePreviewProvider, LeetCodeExecutor, LeetCodeStatusBarController,

LeetCodeTreeDataProvider. Most impressively for DiverseTyper, these types are all defined

and used once, demonstrating DiverseTyper’s capability on rare and infrequent types.

DiverseTyper correctly associates rare and infrequent user-defined types within the same file

and across the same project.

4.8.2 RQ5: Typical User-Defined Type Clusters

The neural type embeddings learned by DiverserTyper are information rich due to the

extremely large corpus used for fine-tuning. The visualization of such type embeddings demonstrate

important type relationships learned during this fine-tuning. Embedding visualizations reach many

data exploratory domains [61,111,150]. Commonly, the embedding visualizations are crafted by

transforming the high dimensional data into two dimensions while preserving the overall structure

of the data. The t-SNE algorithm aims to perform dimensionality reduction to lower dimensions

that humans can interpret (2D or 3D), while preserving the structure of the high-dimensional data,

as the model interprets it. Figure 4.8 and Figure 4.9 are created with the t-SNE algorithm [220]. A

visualization of specific embeddings, such as a category of types, can indicate performance across

these embeddings. If the type clusters of the embeddings are indistinguishable, then the kNN search

will likely not return the correct answer as a kNN search is a function of neighboring data points.

An embedding space that is not clustered properly across types is undesirable as the model will fail

to generalize properly.

Originally, the pre-trained embeddings are purely context driven, meaning that similarly oc-

curring contexts amongst variables and function names will appear co-located in embeddings.

DiverseTyper has altered this embedding space to shift context dissimilar sequences, such as type

declarations, in a manner that is useful to typing. While this transformation is the goal, the model

must to maintain relative structure of the embeddings in places that are not directly relevant to

typing. Examples of this include general code syntax and the semantics the model derives from a
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sequence. DiverseTyper must balance maintaining existing code semantics while aligning type

declarations derived from those code semantics; especially to generalize on code snippets. We now

direct the reader to Figure 4.8.

Figure 4.8 is a visualization of the most difficult types to classify, i.e, never seen user-defined

types. To visualize the aforementioned clustering of infrequent user-defined types, we plot all user

defined types in a t-distributed stochastic neighbor embedding (t-SNE) and select points based

on whether the model has seen the type before. Listed in Figure 4.8, are 20 user-defined types

that DiverseTyper has never seen in training and occur extremely infrequently. We can see that

each type, represented by various colors, is grouped into small clusters of like-typed annotations.

This shows that our approach for aligning user-defined types works correctly. In the same figure,

we exam the relatedness of never before seen types with the purpose of maintaining semantic

meaning. In Figure 4.8, left, BaselineOptions and AddUniversalOptions stand out as co-located

and complementary in embedding structure. Upon further inspection of why this might be, it is clear

that the types are related by instantiation, specifically, a subclass from the base class. The learned

complex relationships, such as instantiation, are encouraging for future work because complex type

relationships exist. Some of these complex type relationships include but not limited to union and

inheritance types (outside the scope of this work), and are potentially tractable for this model

architecture. On the right side of Figure 4.8, it can be observed that JSDocImplementsTag is close

to JSDocPropertyTag. Again, with further inspection to how these tags are used in real projects,

we find that both return SymbolDisplayPart related types. We conclude from the visualization

that the model exhibits a basic understanding of how types are used and the complexities within

the defined type behavior even when the types are incredibly sparse.

Naturally, we are curious about DiverseTyper’s capability of clustering common-types with the

user-defined type mechanism despite not being trained to do so. Again, we visualize the clustering

of common-types with a t-SNE plot in Figure 4.9. From Figure 4.9, it can be concluded that

common-types are clustered in a similar fashion to user-defined types, but with less defined margins

or white space between groups. With Task 2 only trained on user-defined types and common-types

learned by a common-type classifier in Task 1, we expect DiverseTyper to completely deprioritize

the learning of common-type similarity, yet surprisingly maintains proper structure. One might ask,
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“Why does common type clustering matter when one can use the common type classifier?”. The

usefulness of common-type clustering is in the case of an arbiter misprediction. If the arbiter picks

the user-defined type mechanism over the common-type classifier, the clustering of common-types

should provide some redundancy. For example, if a common-type matches a real type annotation

from the user-defined search (potentially an infrequent case of overriding a native type), the type

prediction will still be correct.

Figure 4.9. t-SNE plot of commonly used types. DiverseTyper’s inherits a the
strong performance of common-types across its classification layer. Additionally
DiverseTyper demonstrates effective clustering in commonly occurring types. If
a developer overrides a common-type, e.g., string, DiverseTyper has both a
common type guess and user-defined type guess that the arbiter can choose from.

DiverseTyper groups rare user-defined types in a similar fashion to developers with regard to

semantic and syntactic relatedness.
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4.9 Related Work

Pre-Trained Foundational Models

Large scale pre-trained models [54,134,168,175,242] coined foundational models [28], are stacked

transformers [222] with various autoencoding objective functions [47, 177] on large unlabeled data.

Their success in natural language processing (NLP) has warranted its application in other fields

such as computer vision (CV) [123, 207] and software engineering [62, 72, 102]. The extent of

foundational “learning” is hotly debated [23] and examined in a software engineering context [107].

Albeit, the performance improvements from pre-training is undeniable as it has set benchmarks for

many SOTA tasks across various domains.

Multi-Task Learning

Multi-task learning attempts to efficiently learn multiple objectives from a shared representation [35].

Multi-task learning is prevalent in machine learning fields of natural language processing [48], com-

puter vision [115], and speech recognition [89], but is seldom used in software engineering [129,196].

Prior approaches use a naïve weighted sum of losses where the losses are uniformed or manually

weighed. New approaches include dynamically weighing tasks from gradients [132] and uncer-

tainty [108, 126]. The dynamics of multi-task learning is still not very well understood but has

been effective across several applications.

Type Inference

Dynamic type inference techniques [13, 184] and type checkers [1, 2, 24, 179] achieve soundness

by enforcing type constraints. Dynamic type-checking provides the convenience of not requiring

annotations, and/or having to fix compile-time errors; however, dynamic checking may miss coding

errors un-executed parts of programs.

Machine learning can help programmers more conveniently make better use of static type-

checking by suggesting type annotations. This works by learning natural type distributions across

corpora of code [180]. Hellendoorn et al. [78] interpreted type annotation as a tagging task with

DeepTyper. Pradel et al. [172] designed separate sequence models to infer function types in Python
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and validate with a type checker. Wei et al. [230] used insights from [10] to train a GNN from

type dependency graphs. Allamanis et al. [11] proposed a graph based approach to predict types

with similarity learning and parametric type matching. Mir et al. [149] uses an approach akin

to Allamanis with more data and improved results. Jesse et al. [95] uses pre-training to improve

sequence tagging of types. This work extends the previous works by introducing a novel training

approach and a data set for learning user-defined and rare types. Unlike DiverseTyper, existing

approaches do not contextualize and provide new associations for novel developer defined types.

4.10 Conclusion

DiverseTyper presents a test of our hypothesis that user-defined type declarations and the

corresponding type annotations can be aligned and used in type predictions. We demonstrated

that deep learning models could learn to encode novel class and interface declarations, leverage

the learned representations to guess rare and difficult user-defined types, and extend to never

before seen types. Finally, we believe that our approach can be applied to other applications of

machine-learning to software engineering, where developers can freely proliferate concepts, (e.g.,

functions, interfaces, classes, generics, exceptions) and thus arbitrarily transcend any vocabulary

limits pre-set by machine-learning models.
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Chapter 5

ManyTypes4TypeScript: A

Comprehensive TypeScript Dataset for

Sequence-Based Type Inference

5.1 Preface

Benchmarking type-inference models is complicated: most papers are evaluated on their own

collections of source code from public repositories. A significant challenge in Chapter 3 and Chapter 4

was the lack availability of model weights with the corresponding model code; some models required

specific virtual environments no longer available. Platforms like Huggingface make significant

efforts to publish and standardize how models are ran on common hardware like Nvidia GPUs.

DiverseTyper is a natural extension of TypeBERT and the evaluation dataset for both was the

same, however, this is not often the case. To address this roadblock and lower the barrier of entry

to published type inference models, we have published a dataset, with mining scripts, and popular

models trained for type inference. These models are very easy to integrate into future tools and

frameworks; one of which we discuss in Chapter 6. The dataset and evaluation is on Microsoft’s code

intelligence leaderboard1 and GitHub2. This chapter is based on a MSR 2022 conference paper titled
1https://microsoft.github.io/CodeXGLUE/
2https://github.com/microsoft/CodeXGLUE
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ManyTypes4TypeScript: A Comprehensive TypeScript Dataset for Sequence-Based Type Inference

completed with myself as lead author and Premkumar Devanbu in an advisory capacity.

5.2 Summary

In this chapter, we present ManyTypes4TypeScript, a very large corpus for training and

evaluating machine-learning models for sequence-based type inference in TypeScript. The dataset

includes over 9 million type annotations, across 13,953 projects and 539,571 files. The dataset is

approximately 10x larger than analogous type inference datasets for Python, and is the largest

available for TypeScript. We also provide API access to the dataset, which can be integrated into any

tokenizer and used with any state-of-the-art sequence-based model. Finally, we provide analysis and

performance results for state-of-the-art code-specific models, for baselining. ManyTypes4TypeScript

is available on Huggingface, Zenodo, and CodeXGLUE.

5.3 Introduction

There is considerable interest recently in the application of machine learning (ML) models to a

variety of software-related tasks and datasets. ML has largely focused on improving performance,

using probabilistic models of source code that exploit code’s regularity and patterns [8]. The

type-inference problem is one such task where probabilistic code models work well. Probabilistic

type guessers can infer types for developers, helping them avoid type errors, and lowering the

annotation effort [65]. TypeScript and Python have been the primary languages targeted by

researchers [182,240]. Recent ML-based methods [11,78,95,149,157,164,172,230] appear to

work well, but are hard to compare, due to variability in evaluation practices.

The field of type inference varies quite a bit, in methods, data, and metrics. With the abundance

of open source repositories, new methods often mine their own data or attempt to sample similar data

from previous work [11,95,172,230]. Despite these works often using similar metrics, performance

is confounded with scoring differences and sampling bias. Scoring differences arise when various

subsets of types are evaluated and not others, for example, based on frequency (top-100), location

(parameter, and function level), and annotation type (user-defined). Sampling bias occurs from

type inference papers sampling different projects or files at various commits where code context
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and the annotations themselves can differ. Though there have been some attempts at standardized

comparisons for instance DeepTyper [78] and NL2Type [142], Typilus [11] and Type4Py [149],

other recent publications showed quite a bit of variance in evaluation, e.g. some used Top 100

types [157]; some compare across different projects; others use the same projects, but at different

time slices. We feel there is still a need for a comprehensive TypeScript dataset and metrics.

To help standardize training and evaluation for TypeScript type inference, we offer the Many-

Types4TypeScript dataset. This comprehensive dataset includes over 9 million type annotations,

which is 10x more annotations than the next largest Python annotated dataset ManyTypes4Py [148].

The ManyTypes4TypeScript also comes with evaluation scripts, enabling models to be properly

benchmarked against the test set. We make all of our collection scripts, unprocessed data (Zenodo3),

processed API dataset (Huggingface4), usage examples, and evaluation script publicly accessible.

The dataset was collected in mid January of 2022 for publicly available GitHub projects. Our

contributions are as follows:

• A dataset containing a comprehensive set of code snippets and aligned type annotations

across 13,953 TypeScript projects resulting in 9M type annotations.

• Standardized access across a range of state-of-the-art models on Huggingface.

• Standardized scoring with metrics and existing evaluation of state-of-the-art models.

• Additional word tokenized data for flexible model input, allowing choice of sub-tokenization

methodologies. We include the mining scripts so the SE community can update the dataset

as needed.

All of our code is publicly available. In the next section we discuss the collection process and

parsing of projects.

5.4 Collection Process and Parsing

Figure 5.1 illustrates the collection process and parsing from project to machine learning dataset.

First we use GraphQL5 to gather a list of ∼29,500 public TypeScript projects on GitHub. The

GraphQL query returns TypeScript projects by the number of GitHub stars to ensure the collection
3https://zenodo.org/record/6387001
4https://huggingface.co/datasets/kevinjesse/ManyTypes4TypeScript
5https://graphql.org
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Figure 5.1. The collection and parsing process of ManyTypes4TypeScript

of quality projects. After mining the list of projects, a custom bash script attempts to install

packages, types, and other requirements with Pnpm6. This is important for compiler inferred types

as inferred types largely come from resolved package dependencies. Each file’s AST (abstract syntax

tree) is traversed, extracting both human annotations as well as compiler-inferred annotations. The

traversal, gathers the tokens and labels types on the AST nodes. The types are removed and the

tokens are pushed onto a queue. The types are aligned to the token sequence to create an aligned

pair. This process is repeated recursively for each directory that contains a “tsconfig.json”. The

final output from our parser is a json for each project. We aggregate the project outputs and prepare

the data for de-duplication.

De-duplication is essential, as shown by Allamanis [7], prior to training machine learning models;

duplication can result in biased performance estimates. Lopes et al. [136] identified a large amount

of near-duplicate code on GitHub; Allamanis [7] released a tool based on Jaccard similarity to

help the community avoid this issue. We run the de-duplication tool7 on the raw corpus to find &

remove duplicates. Out of 1,128,744 original files, 204,358 duplicates (about 18%) were found and

removed, leaving 924,386 files. After filtering files with annotations 539,571 files remained. The

de-duplication is done without type annotations, to ensure that even differently annotated duplicates

are safely removed; this is different from Mir et al. [148]. Mir et al. [148] performs lemmatization

over variables for classic NLP techniques like TF-IDF. This limits input choices for model developers.

With the adoption of subtokenization, subtokenizers pretrained on large code corpora are trained

to tokenize complete token sequences. By leaving the sequences tokenized in contiguous words, it

is up to the model designer to determine how to represent the input. Techiques include: words,

6https://pnpm.io
7https://github.com/Microsoft/near-duplicate-code-detector
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Table 5.1. Statistics Across Data Splits

Split Train % Test % Validation %
Projects 11,413 81.8% 1,336 9.58% 1,204 8.62%
Files 486,477 90.16% 28,045 5.20% 25,049 4.64%
Examples 1,727,927 91.95% 81,627 4.34% 69,652 3.71%
Types 8,696,679 95.33% 224,415 2.46% 201,428 2.21%

The data set is split across projects.

Table 5.2. JSON schema in ManyTypes4TypeScript

JSON Field Type Description
tokens list[string] Sequence of tokens (word tokenization)
labels list[string] A list of corresponding types

url string Repository URL
path string Original file path that contains token sequence

commit_hash string Commit identifier in the original project
file string File name

identifier splitting [208], BPE [193], WordPiece [116], SentencePiece [117], lemmatization, etc.

This is paramount as Shi et al. [197] recently showed that splitting identifiers when combined with

BPE subtokens can improve performance.

The de-duplicated set of token sequences, type annotations, and type meta-information is split

by projects ∼80%/10%/10% which provides a file split of ∼90%/5%/5% for train/test/validation

respectively. More information on the data split can be found in Table 5.1. As shown in Figure 5.1,

the JSONL unprocessed data splits are uploaded to Zenodo. Next we define a output vocabulary

size of 50,000 and replace any type that exceeds rank 50,000 with an UNK token. In classification

tasks with finite vocabulary, a special type token UNK represents a type guess that exceeds the

classifiers prediction capabilities. This is a function of the model and can be changed for models

using a larger or smaller classification layer. Additionally, the uninformative “any” type annotation

is removed from the training and evaluation data. These are standard practices for classification

tasks. The schema of files in the Huggingface dataset can be found in Table 5.2. Table 5.2 consists

of tokens, labels, repository url, file path, commit hash and file name. This schema is fed into the

dataloading script and can also be found on the Huggingface “Dataset card”. Finally, the custom

Huggingface dataloading script, named ManyTypes4TypeScript.py, can be used to generate and
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push the dataset to the Huggingface hub. This script is available on the Zenodo dataset page so

anyone can “fork” a customized ManyTypes4TypeScript dataset.

In the next section, we discuss the design choices of our API Huggingface dataset and how the

design of the Datasets Hub [122] provides easy to use, optimally compressed access to over 12GB of

type inference data.

5.5 Dataset Design and Useability

The ManyTypes4TypeScript dataset conforms to the Huggingface Datasets specification for

several reasons. First, the compatible Huggingface transformers library incorporates state-of-

the-art models including code specific models like CodeBERT [62], GraphCodeBERT [72], and

CodeBERTa [234] which has been widely used across the field especially in CodeXGlue [137] for a

wide set of tasks and model probing [107]. New advancements in transformers are often integrated

into Huggingface, thus permitting new applications to existing tasks in addition to easily accessible

models [3, 62, 72, 228]. It is our goal to make the type inference task as widely applicable to

new state of the art transformers with ManyTypes4TypeScript. In later sections we discuss our

application of ManyTypes4TypeScript on three SOTA models.

Second, another reason for hosting ManyTypes4TypeScript on Huggingface are the efficiency

and scale capabilities. The datasets are capable of being cached completely once downloaded and

mapping operations i.e subtokenization and subtoken label alignment are also cached. The datasets

are stored as compressed .parquet files with Git-LFS (large file storage) and work seamlessly

with all available tokenizers and feature-extraction tools. Massive datasets can also be streamed.

Model training and evaluation can be accelerated with the Huggingface accelerate8 library which is

particularly helpful for sequence tagging efficiency.

Finally, the tokenizer, dataset and any transformer model can be instantiated in the following

five lines of code (LOC).

(1) The dataset is downloaded from Huggingface or instantiated from a local directory.

dataset = load_dataset (’kevinjesse / ManyTypes4TypeScript ’)

8https://github.com/huggingface/accelerate
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Figure 5.2. Frequency of annotation locations in ManyTypes4TypeScript.

Figure 5.3. Top 10 most frequent types in ManyTypes4TypeScript.

(2) Then the tokenizer is instantiated.

tokenizer = AutoTokenizer . from_pretrained (’microsoft / graphcodebert -base ’)

(3) The dataset is tokenized into subtokens and the labels are aligned with our provided

align_labels function to map labels to the first subtoken.
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Figure 5.4. The ratio by percentage of developer vs. inferred annotations by type
in the top 50 most frequent types.

tokenized_dataset = dataset .map( align_labels )

(4) The label list is extracted from the ManyTypes4TypeScript meta data.

label_list = tokenized_dataset ["train"]. features [f" labels "]. feature .names

(5) The weights for GraphCodeBert [72] are instantiated with a projection layer fit to Many-

Types4TypeScript type vocabulary.

model = AutoModelForTokenClassification . from_pretrained (’microsoft /

graphcodebert -base ’, num_labels =len( label_list ))

With the above steps, one can instantiate a model with the ManyTypes4TypeScript dataset; the

model developer has end-to-end control of model input and output schemes. For example, the model

developer can use the GraphCodeBERT contextual embeddings for a kNN (k-nearest neighbor) search

rather than a classification layer; this would effectively expand the closed-vocabulary output.

The closed type output of the Huggingface API dataset is fixed to 50,000 type categories; but is

amenable with the dataset scripts on Zenodo. The current type vocabulary on Huggingface covers

approximately 94.08% of all type occurrences as most types are “common” types. The remaining

types placed in the UNK category cover approximately 5.92% of the 9M types. These types are local

and infrequent types, where the types occur less than 10 times corpus wide. Figure 5.2 represents
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Table 5.3. Accuracy Comparisons On ManyTypes4TypeScript.

Model Top 100 Overall
Precision Recall F1 Accuracy Precision Recall F1 Accuracy

CodeBERT [62] 84.58 85.98 85.27 87.94 59.34 59.80 59.57 61.72
GraphCodeBERT [72] 84.67 86.41 85.53 88.08 60.06 61.08 60.57 62.51
CodeBERTa [234] 81.31 82.72 82.01 85.94 56.57 56.85 56.71 59.81
PolyGot [4] 84.45 85.45 84.95 87.72 58.81 58.91 58.86 61.29
GraphPolyGot [4] 83.80 85.23 84.51 87.40 58.36 58.91 58.63 61.00
RoBERTa [134] 82.03 83.81 82.91 86.25 57.45 57.62 57.54 59.84
BERT [55] 80.04 81.50 80.76 84.97 54.18 54.02 54.10 57.52

Top 100 types are the most frequent 100 types. Overall is scored with all type locations. UNK is considered
incorrect.

the frequency of type annotation locations where the majority are variable declarations and function

parameters with 3.8 million and 3.7 million annotations respectively. Figure 5.3 represents the

frequency of the top 10 most frequent types in the ManyTypes4TypeScript corpus. The majority of

types are string, any, and number. With a large majority of human and compiler inferred types

resolving to the uninformative “any” type, probabilistic type inference has the potential to increase

type coverage; type coverage in the optional type setting reaches traditional static typing when all

types are annotated or inferred. Finally in Figure 5.4, we examine the ratio of compiler inferred

types to human annotations in ManyTypes4TypeScript. We examine that most types are mixed

between compiler inferred and human annotations. Corpus wide, the ratio is approximately 57%

inferred types to 43% human annotated types. Figure 5.4 shows that only 20% of “any” are labeled

by humans and the vast majority are inferred by the compiler. The compiler resolves the type to be

any when the compiler cannot determine the type from existing type constraints. Quantifying a

model’s ability to resolve the “any” type is a possible derivative work from our dataset as “any”

type annotations are available in the Zenodo data. Lastly, in Figure 5.4, some types are all or nearly

all human annotations. This is a unique opportunity for type inference models to assist compilers,

alert developers to must have annotations, and resolve types accordingly.

In the next section, we discuss tracking models’ performances with a public scoreboard and

pushing models trained on the ManyTypes4TypeScript dataset to the Huggingface model hub.
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5.6 Tracking Performance and Reproducibility

The ManyTypes4TypeScript dataset on Huggingface is integrated with “Papers With Code"9

which tracks new papers with consistent metrics. The ManyTypes4TypeScript dataset on Hugging-

face keeps a list of all models trained or “fine-tuned” on ManyTypes4TypeScript. The models that

are trained and evaluated on ManyTypes4TypeScript and pushed to the model hub are linked to the

ManyTypes4TypeScript datacard viz. homepage. These models can be downloaded and verified in

section 5.5. The ManyTypes4TypeScript is currently being integrated into the CodeXGLUE10 [137]

set of tasks. CodeXGLUE is a benchmark dataset and open challenge for code intelligence managed

by Microsoft Research. With ManyTypes4TypeScript, there is a community driven approach to

adding datasets, metrics, models, and documentation to institute a standardization across the type

inference task for TypeScript. Next we discuss our supplied metrics.

5.7 Task Specific Metrics and Scores

In the dataset on Zenodo, standard sequence evaluation scripts seqeval11 are available to

evaluate the sequence predictions. We modify the ground truth and predictions such that scoring

subsets of types can be done easily. We permit classic tagging scoring, considering UNK predictions

as incorrect, and top-100 type scoring. The community can add various subsets to the existing

metrics such as user-definition and location specific scoring. Our scoring metrics also permit per

type evaluation. The dataset in CodeXGLUE will have detailed instructions and scripts to evaluate

models, and these scripts will be used to track and verify the task leader-board.

Table 5.3 contains a list of state-of-the-art models scored with the aforementioned metrics. The

performance of the models are similar in overall top 100 accuracy to Jesse et al. [95] which is

completely pre-trained on JavaScript. The performance between the models is in line with previous

comparisons [4,107]. The models provided by us serve as baselines for future contributions. We

intend to increase the number of models evaluated across ManyTypes4TypeScript including but

not limited to: C-BERT [33], CuBERT [101], CodeBERTa [234], PLBart [3], and CodeT5 [228].

9https://paperswithcode.com/dataset/manytypes4typescript
10https://microsoft.github.io/CodeXGLUE
11https://github.com/chakki-works/seqeval
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Additionally, we plan to increase the granularity of the metrics so specific outcomes can be evaluated

viz. user-defined types.

5.8 Conclusion

In this chapter, we present the ManyTypes4TypeScript dataset of over 9 million type annotations

across 13,953 projects and 539,571 files. ManyTypes4TypeScript aims to facilitate the application

of new advances in ML-based type inference, with easy to use APIs. ManyTypes4TypeScript

standardizes evaluation with the provided test set, metrics, and baselines. By providing the tools

used to extract ManyTypes4TypeScript and evaluate state-of-the-art models, we believe that the

dataset itself can be a useful resource for the community to maintain and contribute to the type

inference task for TypeScript.
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Chapter 6

FlexType: A Plug-and-Play

Framework for Type Inference Models

6.1 Preface

Chapter 3 through Chapter 5 develop a notion of developer aligned type inference models with

the latter chapter democratizing access to type inference datasets and models. In this section, we

introduce a framework that makes it easier to integrate any new type inference model into the IDE.

Ideally, a new model trained and published on Huggingface would require a singular line of code,

namely the models url, to be changed in the frameworks startup configuration. To this objective,

we build a framework, FlexType, that can be used just that simply. The framework is open sourced

as a Visual Studio plugin. This work was featured at Automated Software Engineering 2022 titled

FlexType: A Plug-and-Play Framework for Type Inference Models. This work was led by myself and

Sivani Voruganti with Premkumar Devanbu as an advisor.

6.2 Summary

Types in TypeScript play an important role in the correct usage of variables and APIs. Type

errors such as variable or function misuse can be avoided with explicit type annotations. In this work,

we introduce FlexType, an IDE extension that can be used on both JavaScript and TypeScript
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to infer types in an interactive or automatic fashion. We perform experiments with FlexType in

JavaScript to determine how many types FlexType could resolve if it were to be used to migrate

top JavaScript projects to TypeScript. FlexType is able to annotate 56.69% of all types with high

precision and confidence including native and imported types from modules. In addition to the

automatic inference, we believe the interactive Visual Studio Code extension is inherently useful in

both TypeScript and JavaScript especially when resolving types is taxing for the developer.

The source code is available at GitHub1 and a video demonstration at https://youtu.be/

4dPV05BWA8A.

6.3 Introduction

Type inference for dynamically typed programming languages, like Python and TypeScript,

can help developers improve code quality. By foregoing type annotations, developers coding

in dynamically typed languages gain additional flexibility. This flexibility helps developers and

designers avoid committing to particular design decisions regarding types. On the other hand,

static typing helps detect bugs before execution, and supports both compilation performance and

program understanding [34,170]. Developers have viewed the benefits of static typing as the most

desired feature in languages like Python [96]. Leading technology companies have developed their

own type systems for various languages; Microsoft’s TypeScript, Facebook’s Flow, and Google’s

Closure with TypeScript and Flow being syntactic supersets of JavaScript and Python respectively.

TypeScript has exploded in popularity over the last few years jumping to the fourth most used

language according to GitHub’s Octoverse [69] in 2020 and 2021. While JavaScript remains the top

language, it is a reasonable expectation for TypeScript to further increase in popularity since it

can be applied to any JavaScript project with few modifications. TypeScript inherits JavaScript’s

long standing popularity and widespread adoption so tools built for TypeScript often benefit the

JavaScript community as well.

Unlike JavaScript, TypeScript calls for a set of types (either explicitly annotated or inferred)

that type the program consistently. Defining a set of types and annotating with said types is not a

trivial task for developers; this is called the type annotation tax. Type declaration files (.d.ts) and

1https://github.com/vsiv16/typescriptsuggestions
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Figure 6.1. An overview workflow of the FlexType framework. To determine the
type, the framework parses JavaScript or TypeScript ASTs and passes AST or token
information to type checker and open source type inference neural model. The type
is converted to a type node and added to the type attribute in the AST. Finally,
FlexType converts the AST to a token sequence for the IDE.

repositories like DefinitelyTyped2 help alleviate the typing cost by defining general, high quality

types which are included automatically by the compiler. The convenience of importing existing

types does not supplant the action of annotating the code elements. Moreover, the compiler cannot

synthesize types where static constraints or dependencies are not satisfied in the type dependency

graph. Frequently, existing tools like TypeScript’s type checker are unable to infer types more

specific than the generic “any” because it fails to find type hints from static type constraints or

package dependencies. Type ambiguity often exists in dynamic typing, because the compiler has too

few type constraints to resolve [38]. Type ambiguity is more prevalent in languages like JavaScript,

than in explicitly typed languages like TypeScript, where developers have no explicit annotations

and must rely on interpretation, documentation, and surrounding expressions to determine the

likely types. Thus, developers could benefit from tools that recommend likely types and insert types

with little to no effort.

For these reasons, the type inference task has been well studied, in the software engineering

research community [11,78,95,149,157,164,172,182,230]. Most of these works in type inference

are a result of the abundance of code and the success of deep learning for software engineering.

The abundance of patterns in code warrants probabilistic models to exploit the regularity of code;

in type inference it is the regularity of how types are used. The newest advances in machine

learning [55,121,125,134,177] often come with downstream improvements to software engineering

2https://github.com/DefinitelyTyped/DefinitelyTyped
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models [3, 10, 62, 72, 102, 228], but in practice, these improvements have not been tangible to

developers as most published models stop short of publishing IDE tools. We argue that the gap

between model development and model deployment in integrated development environments is

worthwhile, but challenging.

To address this gap, in this chapter, we present our tool FlexType, a plug-and-play framework

for any new state-of-the-art type inference model in a VSCode environment for TypeScript and

JavaScript. JetBrains found that 60% of JavaScript and TypeScript developers use Visual Studio or

Visual Studio Code as their preferred IDE [97]. The core idea behind FlexType is the integration

of such models in an interactive and automatic way that complements existing static type checking

capabilities, even in dynamically typed languages like JavaScript. To evaluate our idea, we have

implemented an extension for Visual Studio Code, a popular IDE from Microsoft, using one of the of

several type inference models from ManyTypes4TypeScript [94]. Our contributions are as follows,

• An interactive, model-agnostic framework for type inference in Visual Studio Code.

• A tool that uses the AST to correctly insert type elements from sequence-based or graph-

based models.

• A use-case experiment evaluating the effectiveness of FlexType in migrating JavaScript

projects to TypeScript.

6.4 Related Work

The landscape of type completion tools ranges significantly in capability from static checking [25],

neural type inference [11,78,94,95,149,172,230], and code completion-like type generation [3,17,

40,218,228,239].

Static type checking from the TypeScript compiler occurs when the TypeScript compiler

transpiles TypeScript to JavaScript. The TypeScript type checker can be accessed through a

shipped version of TypeScript installed with the IDE. The IntelliSense feature in Visual Studio

and Visual Studio Code can provide underlying types by relying on the internal type checker for

TypeScript. The type checker is capable of performing type inference from the variable’s value as

long as the type constraints exist. For example, the variable i in var i = 0 can be inferred as

a number from the value in the assignment expression. Any high-level interpretation of i, such
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as the use of i as an iterator, cannot be inferred by the type checker without a higher order type

indicating such functionality. In JavaScript, the IntelliSense method signature information shows

the uninformative “any” type for the method parameters because JavaScript is dynamic and does

not enforce types [145]; this is not particularly helpful for a developer wishing to pass the correct

type to the function.

Neural type inference and code completion aim to model attributes of source code probabilistically

by exploiting the regularity of software [8,81] and an abundance of existing typed code on open

source repositories. In contrast to static type inference, neural type models rely on large code

corpora and can suggest richer, more contextualized type annotations overcoming the lack of existing

type constraints realized when the compiler predicts “any”; in our experiments this occurs 63.46%

of all typeable identifiers. Our goal here is to build a flexible way to integrate neural type inference

models into an IDE, to make these models more accessible.

Some published neural type inference models Typilus [11], HiTyper [164], and LambdaNet [230]

expose inference methods where the model can be called on a set of source code files and the

appropriate annotations are logged in an output file; this is impractical for the typical developer

and such models often require computing not found on a laptop. One model cites the need of a

“high-end Nvidia GPU with at least 8GB of RAM” and “a CPU with 16 threads or higher” [149].

The requirements for running massive code generation models like Codex [40] (Copilot), Google’s

137B parameter model [17], and PolyCoder [239] is further beyond any consumer PC, thus access

to such models must be by remote API. Remote API access is viable for many developers, but

communicating large token windows of proprietary software introduces valid security and privacy

concerns [40, 159,209]; a local type inference model is ideal. In contrast, FlexType uses local

models that can run efficiently on a laptop CPU. The user can simply hover over the variable,

parameter, function or method to get a drop down list of types including the compiler inferred type,

if any, and see the type properly inserted.

In the following sections, we present our approach, implementation, and evaluation of FlexType.
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Figure 6.2. A snapshot of the FlexType VSCode extension.

6.5 Approach

Figure 6.1 shows how FlexType interactively works with the developer to recommend types.

When the developer toggles the VSCode extension, FlexType activates the mouse hover action

which pops up a list of types. By default, VSCode provides existing prototype information with type

annotations that are written in the code such as const sequelize: any in Figure 6.2. FlexType

presents an informative list to the developer integrating compiler inferred types (often useful for

native types and user-defined types) with the neural type suggestions. The neural type suggestions

can be quite useful to the developer, because the type recommendations derive from large corpora

training, and elucidate types that local constraints often cannot resolve.

Figure 6.2 illustrates a key situation where the type assistant shines. With the current type

constraints, the compiler cannot resolve what type sequelize is. The term “sequelize” in itself is a

natural language hint, one that hints at it connecting to a SQL database often pronounced “see-kwl”.

While these natural language hints are not always readily available, the syntax and usage of function

calls are, which deep learning models capture. The resulting list of contextually derived types, as

seen in Figure 6.2, is helpful in understanding the likely functionality of such APIs. The developer

has the liberty to choose which type annotations are useful with the model’s perceived probabilities.

This feature is available for TypeScript and JavaScript files as TypeScript data transpiles into

JavaScript code and thus captures otherwise implicit type information in JavaScript. JavaScript
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syntax does not permit types, so types are not “insertable” when interacting with JavaScript.

We believe FlexType can help both TypeScript and JavaScript developers, as type information

improves code readability, comprehension, and proper usage of code elements. In the following text,

we discuss the details of the approach within the framework’s pipeline.

FlexType starts with an incremental compilation3 of the program, targeting just the current

editor file for AST parsing. Then the framework digests the developers current word token index4

and finds the character offset of the token which aligns best with the pos (position) field in the

parsed AST. FlexType uses an AST linter to traverse the AST in preorder, filtering only valid

typeable locations. For each leaf node (indicating a code token) the corresponding code token is

appended to a list of tokens which will serve as the tokenized input to the machine learning model;

tokenizing from the AST has the benefit of filtering out non-code related tokens such as comment

blocks. In the traversal, the framework keeps a cache of the parent type because the parent node

is where the type annotation is located, specifically, in a variable, parameter, function, or method

declaration syntax node. Finally, when the identifier syntax node corresponding to the identifier of

interest is visited, which is a child to the typed parent, this token is aligned to the cached AST

type and to the current token index. The cached type node is fed to the type checker which returns

the result of any the static type constraints, if any, for that identifier. Finally, the token sequence,

inferred type, and token index is returned. If the developer’s cursor location is not at a typeable

variable, parameter, function, or method declaration, the AST linter is immediately returned with

null values.

The token sequence and token index is passed through a localhost port to a WSGI Flask5 server

started as a background task when the extension is enabled. This server encapsulates the neural

inference model. The token sequence is subtokenized using the neural model’s tokenizer and the

new subtoken index is calculated. The framework then determines an optimal context window

around the identifier of interest; this is necessary for long files as a model’s sequence-based input is

limited. The type inference model in our demo, is a Huggingface type inference model based on

3An incremental compilation saves compute resources when previous changes are minimal across a set of files and
project dependencies.
4The term position is usually synonymous for token indexes in sequences across NLP literature, but is confusing in the
context of the AST, thus we only use it when referring to the AST.
5https://flask.palletsprojects.com/en/2.1.x/
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the popular GraphCodeBert [72]. Here, we emphasize the “plug-and-play” dynamic where neural

type inference models, such as our from_pretrained(‘microsoft/graphcodebert-base’), is amenable

with alternative choices. With respect to future proofing our design, our GraphCodeBert [72]

type inference model improves upon CodeBert, namely, where data flow awareness is principle to

performance. For type inference, GraphCodeBert increases performance, likely due to the role data

flow plays in types. Finally, these neural suggestions are serialized and returned to the VSCode

portion of the framework where the types are displayed to the developer.

For a TypeScript (.ts) file, the framework presents the recommended types with keystrokes to

embed the types as formal type annotations. For a JavaScript (.js) file, the framework shows the

developer the type recommendations only. If the developer chooses a type, the framework performs

a postorder AST traversal to return to the identifier’s parent node, generate a type node from the

type, and assign the type node to the parent’s type field. The traversal is immediately returned,

returning the root node of the sourcefile which is then used to synthesize the file with the type

annotation in the correct location; this insertion technique is guaranteed by the compiler’s printer to

work for any valid type node. Since the type node’s synthesis is independent of the actual type value,

FlexType can always guarantee correct type placement. Finally, the VSCode editor is updated

with the new type embedded sequence. In the next section, we discuss the high level implementation

design.

6.6 Implementation

We implemented our approach as an extension to Microsoft’s Visual Studio Code, Figure 6.2,

which is the most adopted TypeScript/JavaScript IDE according to a JetBrains survey [97]. We

implement the client in TypeScript where VSCode can pass actions such as hover, click and drag, and

keyboard strokes to the client. Upon a hover over a type permissive location (variable, parameter,

function, method), FlexType performs static and neural type inference and recommends types.

The modularity of the static type checker and the neural type model permits the interchange of

a variety of models with minimal changes. While sequence-based methods (RNN, Transformer,

Pretrained Language Models) are very popular, there is an increasing demand for models that

capture code structure (GNN [10], Hybrid [80]). In addition to the “plug-and-play” neural type
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Table 6.1. Recall Percentage of Types Across Top 5 Projects

Repo Stars TC (%) TC + NN (%)
goldbergyoni/nodebestpractices 77728 33.73 60.0
Dogfalo/materialize 38682 29.02 52.6
yangshun/front-end-interview-handbook 33963 19.83 45.69
quilljs/quill 32667 26.28 55.01
marktext/marktext 31921 33.1 56.63

FlexType recall uses only the static type checker (TC) and FlexType using both the type checker
and neural type inference model (TC+NN).

architecture, FlexType re-synthesizes the snippet of code with the TypeScript Compiler API6. By

altering the AST, rather than the code sequence itself, the framework is compatible with graph-based

methods. Finally, for best results, we apply graph optimization and quantization to the neural

type inference model, which results in blazing quick inference times under .4 seconds on a Intel 8th

generation Coffee Lake and even faster on Apple M1. In the next section, we perform an experiment

to simulate the impact of our tool for developers migrating from JavaScript to TypeScript and

equivalently coding only in JavaScript.

6.7 Evaluation

FlexType uses both type checker and neural type inference models. To evaluate FlexType’s

effectiveness migrating JavaScript to TypeScript, we checkout over 150 most-starred Javascript

repositories and let FlexType annotate them as best as it can. For brevity, we have only included

5 of these projects in Table 6.1 with the full results available at our GitHub.

The 150 JS projects have no human annotated types, so performance must be evaluated with

an oracle. The neural type model per se can serve as an oracle if it’s confidence threshold is set

such that precision remains very high; only if a type prediction is above this threshold can it be

labeled as correct. To calibrate, we measure the precision-recall curve of GraphCodeBERT on

the ManyTypes4TypeScript [94] test set. This is a dataset of manually-annotated Typescript

projects allowing direct performance evaluation. GraphCodeBERT achieves a precision of 89.10%

and recall of 53.83% across 224,415 types with a 90% confidence threshold. Thus, we can use

GraphCodeBERT’s confidence threshold with a precision of 89.10% as a proxy to the number of

6https://github.com/microsoft/TypeScript/wiki/Using-the-Compiler-API
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Figure 6.3. Static, neural, and combined recall of FlexType components per project.

types that can be resolved. In other words, 89.10% of JavaScript types with a confidence of 90% or

greater is a reasonable metric for evaluation. While this method is effective, it is important for us

to calculate how much we are potentially underestimating our model’s performance.

The recall of 53.83% means that 46.17% of types fall below the confidence threshold. We can

calculate the precision across the 46.17% set of types to determine how many types were missed.

This precision is 31.51% and so the model’s recall is underestimated at most by 15% (31.51% of

46.17%).

We emphasize that this performance is for the top-1 (the model’s best guess), and ignores

selecting the 2nd or 3rd best choice in the interactive dialog seen in Figure 6.2. In the interactive

setting with 5 choices, the recall is naturally higher than in the top-1 setting. We use top-1 in our

automatic evaluation of FlexType to estimate a lower bound of performance in a common use

case, migrating JavaScript to TypeScript.

RQ1: What is the recall of types for FlexType across the top 150 starred JavaScript

projects?
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Across the set of 150 projects, 56.69% of types are resolved by FlexType. The recall of the

compiler is 36.54% and the neural type inference model provides the additional 20.15% recall. On a

per project evaluation, the mean project recall is 51.44% with the compiler providing 29.49% of the

types and the neural type inference model providing an additional 21.95% recall. The per project

recall distribution of each component can be seen in Figure 6.3.

This evaluation suggests that FlexType helps annotate a good fraction of type locations (56.69%)

in JavaScript; this reduces the annotation burden in JavaScript to TypeScript migration. Moreover,

we argue that developers will use the tool in an interactive fashion using the drop down menu in

Figure 6.2. This should further increase the recall which represents the number of type constraints

the developer could reasonably add with minimal effort.

6.8 Conclusion

As a development tool, FlexType can help increase the volume of type annotations. We also

see an opportunity to use FlexType in an automated setting to improve type annotation coverage

in existing and new projects. We hope the adoption of this framework can reduce the burden of

adding type annotations in TypeScript and the reduce the misuse of variables and APIs in both

TypeScript and JavaScript, thus improving software development and maintenance.
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Chapter 7

Large Language Models and Simple,

Stupid Bugs

7.1 Preface

So far we have presented our work on models that solve developer-facing problems like type

inference. Code assistance has since captured the likes of OpenAI, Microsoft, and more. The

meteoric rise of code completion tools like Copilot [249] is largely based on the success of large

language modeling [40]. “Code assistants” are prevalent in 2023 and provide developers with entirely

new capabilities. In this chapter, we examine the implications of these models, specifically, whether

they generate hard-to-locate single statement bugs. This chapter serves as the groundwork for

future work in Chapter 8. The paper is titled Large Language Models and Simple, Stupid Bugs, and

is by myself, Toufique Ahmed, Premkumar Devanbu, and Emily Morgan; it will appear at Mining

Software Repositories (MSR) 2023.

7.2 Summary

With the advent of powerful neural language models, AI-based systems to assist developers in

coding tasks are becoming widely available; Copilot is one such system. Copilot uses Codex, a large

language model (LLM), to complete code conditioned on a preceding “prompt”. Codex, however,
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is trained on public GitHub repositories, viz., on code that may include bugs and vulnerabilities.

Previous studies [16,162] show Codex reproduces vulnerabilities seen in training. In this study,

we examine how prone Codex is to generate an interesting bug category, single statement bugs,

commonly referred to as simple, stupid bugs or SStuBs in the MSR community. We find that Codex

and similar LLMs do help avoid some SStuBs, but do produce known, verbatim SStuBs as much as

2x as likely than known, verbatim correct code. We explore the consequences of the Codex generated

SStuBs and propose avoidance strategies that suggest the possibility of reducing the production of

known, verbatim SStubs, and increase the possibility of producing known, verbatim fixes.

7.3 Introduction

The rise of language-model based AI coding tools promises to change programming practice.

Developers can now use AI coding tools, which inherit their power from models trained on enormous

corpora of open-source code. Copilot, a language-model based coding assistant [249], is available in

many integrated development environments (IDEs). Copilot uses a model named Codex [40] to

generate code completions. The full power of Codex is still being learned: it can already perform

a diverse set of tasks including: code completion [40], automatic program repair (APR) [173],

comment generation [5,40], program synthesis [91,204], and incident management [6].

Copilot is free to use, and is widely adopted. It is an attractive tool for developers at different

skill levels; it helps provide starting points for developers [219] and can start functions from just

input, output examples [204]. The capabilities of Codex and similar models [63,153,217,239] have

raised many concerns, and have given rise to different research thrusts. Active avenues of Copilot

research include how developers work with it: researchers report concerns on an over-reliance and

unwarranted trust in Copilot-generated code [190,219], the quality of the completions [152,243],

security implications [16,160,166,189], and copyright infringement [106]. These research topics

are motivated by the free access and popularity of Copilot, particularly, the use of code it generates

may give rise to broader ethical and functional concerns.

Codex has been found to work for program repair [161, 173], problem solving [17, 106],

math [58,211], and translation from natural language to various target languages [17,40,178,214]
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to name a few applications. With many use cases, Codex is a double-edged sword of utility and risk

and ultimately we should find ways to minimize the risk and maximize the utility of Codex.

To that objective, this work examines Codex on the 2021 MSR mining challenge dataset

ManySStubs4J [105]. The dataset consists of single statement ‘simple, stupid bugs’ (SStuBs) mined

from Maven projects. Karampatis and Sutton found that SStuBs have a frequency of 1 in every 1,600

LOC and that static analyzers cannot detect them [105,151]. Mosolygó et al. [151] determined

that SStuBs appear more in larger chunks of code authored by the same developer, perhaps due to

loss of attention or misunderstanding of code functionality. We see this exact phenomena in Codex

studies [190, 219] where developers use Codex to generate large blocks of code and, if a bug is

found, dive into a time-consuming rabbit hole to fix the code [219]. Worse, this study reports that

developers often blindly trust generated code, or optimistically hope to fix problems later.

Surprisingly, so-called “simple, stupid” bugs can survive a long while; in the SStuBs dataset,

fixes take around 240 days [119, 151]. More worryingly, when Codex generates code, an ‘agent’

other than the active IDE user is actually ‘coding’, and thus the number of commits to fix the

SStuB might be even longer (see Mosolygó et al. [151]). This disappointing possibility is supported

by surveys [190, 219], suggesting that developers don’t always understand generated code, and

struggle to fix any bugs therein.

The performance of Codex has been extensively benchmarked [40, 161], checked for security

vulnerabilities [106,160,166,189,189], and empirically evaluated [16,152,190,219]. However,

Codex has not been evaluated against SStuBs, which are a special kind of bug [88]. To understand

SStuBs related to AI-supported programming, we evaluate whether Codex and other code completion

models produce SStuBs, or their fixes; also we look at the consequences of such bugs in code bases.

Finally, we present a Codex experiment aimed at automatically communicating developer intent,

using generated comments, to help avoid introducing simple, stupid bugs, and also producing

commented code.

Our research questions are as follows, all primarily evaluated using the ManySStuBs4J dataset:

• RQ1: How often do Codex and similar language models (CodeGen [153] and Poly-

Coder [239]) produce simple, stupid bugs?
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• RQ2: When Codex generates the same simple, stupid bug that a human does, how much

time does the SStuB originally take to fix?

• RQ3: Does Codex produce buggy or correct code more confidently (viz. at higher

probability)?

• RQ4: Does adding automatically generated comments to the prompt help Codex and

akin language models avoid SStuBs? Do other types of prompt improvements help reduce

SStuBs?

• RQ5: How do bug-derived code comments, when inserted in the prompt, affect code

generated by Codex and other LLMs?

Our key findings are: (1) LLMs do help avoid some SStuBS in our dataset! (2) Codex and

other LLMs do produce known SStuBs, and at a rather high rate (perhaps twice as often as they

produce known correct, bug-fixing code); (3) When Codex generates a known SStuB, it’s associated

(historically) with longer fix-times; (4) Codex-generated completions appear equally ‘natural’ [81],

regardless of whether they match buggy code or the related fix; if they match neither, they are less

natural. (5) Automatically generated comments, when added to prompts, appear to reduce the

known SStuB production rate for most models and improve the bug/patch ratio; (6) Even buggy

comments help to reduce the bug/patch ratio in Codex, suggesting just attempting to comment

code helps. The improvement in avoiding SStuBs with comments from neural comment generation

model CodeTrans [59], suggest that using these models with Codex would be beneficial to avoid

SStuBs.

Data from this study is available here1.

7.4 Related Work

We discuss related work on language models and code quality.

7.4.1 Simple, Stupid Bugs

Simple, stupid bugs (SStuBs) are bugs that have single-statement fixes that match a small

set of bug templates. They are called “simple” because they are usually fixed by small changes

1https://doi.org/10.5281/zenodo.7676325
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and “stupid” because, once located, a developer can usually fix them quickly with minor changes.

However, locating SStuBs can be time-consuming [105]. Karampatsis and Sutton [105] published a

collection of SStuBs mined from a set of template bug types, e.g., CHANGE_IDENTIFIER or DIFFERENT_-

METHOD_SAME_ARGUMENTS. Through their study of the dataset, Karampatsis found that SStuBs are

prevalent in code bases, accounting for 33% of single statement bugs detected in 1000 Maven projects.

They found that these bugs occur every 1,600 lines of code, and were not detected by static analysis.

MSR once used ManySStuBs4J dataset as a mining challenge, to study these bugs, and manage

their impact.

Mosolygó et al. [151] studied the history of SStuBs. They find that SStuBs are more frequent in

code modified by the same developer, often when s/he writes large chunks of code. This is perhaps

because such large coding tasks strain focus and attention. They found that only 40% of SStuBs

were fixed by the same author in a median time of 4 days; when the SStuB is fixed by a different

author, the SStuB took 136 days to find and fix! We hypothesize that if comments were present in

a Codex prompt, we’d get better code completions, and the entire chunk would be easier to read &

fix.

Zhu and Godfrey [248] studied how developers fix SStuBs. Similar to Mosolygó et al. [151]

they found that developers fix their own bugs quicker, whereas bugs from other developers take

significantly more time to fix. This suggests that Codex generated SStuBs may take longer to fix

since they come from an artificial ‘developer’. Codex-generated code-snippets that include SStuBs

may require extensively debugging to be patched in a similar fashion. A Copilot study [219], found

that users had trouble debugging generated code from Codex spending considerable time and effort

to fix, for instance, a generated regular expression.

Madeiral and Durieux [141] discussed SStuBs in the context of code clones [187] and the changes

that introduce them, viz. “change clones”. They found that 29% of change clones introduced SStuBs

by matching the 16 SStuB patterns. Since Codex is a language model that tends to repeat code it’s

seen, it could conceivably generate SStuBs in multiple locations, increasing the repair effort.

Peruma and Newman [167] examined SStuBs in unit test files. They found that SStuBs tend to

occur in non-test files and that developers fix the bugs separately despite test and non-test files
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being functionally related. Peruma and Newman also discovered that developers prioritize non-test

files and the fixes in tests are associated with asserts.

Latendresse et al. [119] and Hua et al. [88] addressed the detection of SStuBs. Latendresse et

al. [119] found that continuous integration (CI) tools cannot catch any SStuBs. Hua et al. [88] found

that deep learning vulnerability detectors were suboptimal compared to traditional vulnerability

detectors on SStuBs. Our results confirm that models as large as Codex, find SStuBs to be equally

regular to the patches it generates.

Mashhadi et al. [144] applied CodeBERT [62] (fine-tuned for patching) to SStuBs and could fix

19% of de-duplicated Many4SStuBs4J dataset. Mashhadi et al. mentions an advantage of using

CodeBERT: no special tokens are required like in SequenceR [41]; similarly, many APR techniques

with Codex [161,173] rely on a prior of knowing a bug exists or even, more specifically, the bug

location [41]. Adding comments to the prompt does not require making any of these assumptions.

Finally, PySStuBs [100] is a Python simple, stupid bug dataset. The more recent TSSB-3M [185]

is also a Python SStuBs dataset mined at scale. Our study focuses on the established Java SStuBs

patterns from the everpopular ManySStuBs4J dataset. We plan to expand our findings to other

languages and SStuB patterns, resources permitting. Currently OpenAI restricts usage of Codex to

20 requests per minute. Inference on large models for ManySStuBs4J takes just over a day.

7.4.2 Examining Codex Completions

Vaithilingam et al. [219] studied the developer experience with Codex. The key findings were

that most participants preferred Codex to Intellisense in Visual Studio IDE. Participants preferred

to use Codex as a starting point in lieu of searching online. Unfortunately participants over-relied

on Codex and then struggled when generated code was buggy. The authors reported three major

issues: (1) participants often didn’t understand and assess the correctness of generated code, (2)

participants underestimated the repair-effort required when generated code was buggy, (3) the

prompts used by participants were quite varied, sometimes resulting in undesired code completions.

Sarkar et al. [190] wrote an extensive review of programming with an AI assistant Codex.

Sarkar et al. surveys previous work citing Codex’s reliability, safety, and security implications. The
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review covers studies in Codex usability, design, and user reports. Sandoval [189] and Perry [166]

examine Codex security implications.

Yetistiren et al. [243] and Nguyen et al. [152] empirically studied Copilot’s code suggestions.

Yetistiren et al. [243] found Copilot mostly generated valid code and Copilot improved it’s correctness

with further input from the developer; sample examples, unit tests, docstrings, and prompts increased

correctness further. Nguyen et al. [152] found Copilot correctness varies by programming language

and does not differ in complexity (cognitive and cyclomatic) among programming languages.

Prenner et al. [173], Pearce et al. [161, 162], Karmakar et al. [106], and Ahmed et al. [5, 6]

apply Codex in various settings: automatic program repair (APR) [173], security vulnerability

prediction [161], HackerRank challenges [106], code summarization [5], and incident management [6].

In APR, Prenner et al. tried engineering prompts to find a way to push Codex to generate a

non-buggy version of the code. Codex performed competitively to recent work but was sensitive

in the prompt. Pearce et al. found Codex could repair 58% of real world security vulnerabilities.

Karmaker et al. applied Codex on HackerRank problems with great success; some of the success

was attributed to Codex already knowing the solution despite an incomplete prompt, in other words,

memorizing the solution. Ahmed et al. trains Codex on few-shot project-specific code to achieve

state-of-the-art code summarization. Ahmed et al. found success in using Codex to help engineers

diagnose and mitigate production incidents. All of these works use prompting to illicit a desired

response from Codex.

Prompting instructions with natural language or code is often implemented as a comment to the

prompt passed to Codex. The prompts are implemented as comments to improve generated code,

e.g., natural language instructions in docstrings or input-output examples. Prompting relies on

knowledge a priori that Codex should adopt into its generations. A prompt could be: an example

completion, a problem description, input format, code that is vulnerable, a docstring documenting

a bug location, input-output pairs, and snippets of bugs and corresponding patches (few-shot). In

this work, we explore similar prompting techniques from Prenner [173], and focus on prior-free

prompting through traditional commenting practices. We find that good commenting practices can

guide Codex to more SStuB-free completions.
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Figure 7.1. The orange highlighted code is the candidate single line completion
that Codex can match to the automatic evaluation either the known bug or fix. Blue
highlighted code is the prompt a.k.a. the text proceeding SStuB statement that
Codex uses for completion. The purple highlighted code is the code after the SStuB.

7.5 Methodology

In this section, we describe the methodology for evaluating Codex [40], PolyCoder [239], and

CodeGen [153] on SStuBs. 100



(a) This completion is incorrect.

(b) This completion matches the fix. Earlier in the code, the constant MINIMAL_POLL_PERIOD is set to 1.

Figure 7.2. This annotation tool helps mark Codex completions that do not
match any SStuB directly. This guarantees our evaluation is not missing reasonable
alternatives to the SStuB that could be deemed a bug or fix.
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Figure 7.3. Match rate of Codex Davinci (left). Completions that do not match a
patch or SStuB are validated by hand (right).

7.5.1 Experimental Setup

ManySStuBs4J

This dataset consists of a small and large dataset with 10,231 and 63,923 single-statement

bug-fix changes (a.k.a SStuBs) mined from 100 and 1000 popular repositories respectively. These

SStuBs must match one of 16 bug templates. The goal is to collect bugs that are difficult to locate,

but easy to fix. It’s natural to wonder if automated coding tools based on language models could

introduce such single-statement bugs.

For our study, we use the ManySStuBs4J large dataset of 63,923 samples and use git checkout

to obtain versions of the bug prior and after being fixed. We use git blame to determine when the

bug was introduced and capture key statistics such as the number of commits to fix the SStuB. The

bug locations within the files are indexed with fields bugNodeStartChar and bugNodeLength. Using

these fields we can find the code before the bug, the bug, the fix, and the code after the bug/fix. Our

experiment focuses on giving Codex a piece of code prior to the bug and seeing if Codex generates

the correct code (fix) or incorrect code (bug). A large concern in this experiment is to make sure

Codex has an equal opportunity to generate the known bug or patch. Therefore, we remove SStuBs

that have other changes besides fixing the SStuB, which could otherwise condition or bias Codex to
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make a decision; for example, a new variable only exists in the buggy version so Codex completes

the bug. This leaves 34,595 bugs prior to deduplication. Then we drop duplicates for bugs that

share the exact same prefix, bug, and fix. It is important to not inflate results by duplicate code

examples [7]. The remaining 16,899 SStuBs are used for evaluating all models.

Codex, PolyCoder, CodeGen

Large language models like Codex, PolyCoder, and CodeGen are demonstrably useful in code

completion tools like Copilot, and are available for experimentation. Other models exist, like AI21

Jurassic; however they are not free, and would be costly at our scales, so were excluded from our

study. We also didn’t have the computational resources to run very large models locally. For these

reasons, we follow the methodology from Xu et al. [239] and use CodeGen, PolyCoder, and Codex.

Codex derives from GPT-3; its training data consists of natural language and source code from

available sources like public GitHub repositories. Codex has two sizes one called cushman-codex

and davinci-codex [154]. To query cushman-codex and davinci-codex models, we must make API

requests using the OpenAI API (free, but rate-limited to 20 requests a minute). While the exact

number of parameters is unknown, for both cushman-codex and davinci-codex models, prior work

suggests sizes of 12B and 175B parameters [40, 173, 178] for cushman-codex and davinci-codex

respectively. Codex is primarily trained on Python [40].

To determine if our results generalize to other large language models (LLMs) for code, we

evaluate two additional families of models on SStuBs. These models are trained with different

procedures and are readily available. CodeGen [153] is an auto-regressive transformer model, trained

with the next-token prediction objective on a corpus of code and natural language from GitHub.

CodeGen is trained on multiple languages, but Python is the primary language. PolyCoder [239] is

based on GPT-2 architecture and is trained on 250GB of code across 12 programming languages

with C, C++, and Java being the primary language. PolyCoder outperforms all other code LLMs

in C including Codex. Codex, PolyCoder, and CodeGen represent a diverse set of models all with

several model size versions. Testing our the SStuBs hypothesis on Codex, PolyCoder, and CodeGen

highlights potential risks of inducing SStuBs while using LLMs. While we cannot say for certain,

other LLMs trained on similar data could show similar behavior.
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We use the aforementioned models to generate completions by prompting with the code before

the SStuB. When models complete the prompt, we can analyze the completion, by matching the

known bug, or fix, from the SStuBs dataset. To compare completions to the bug and patch ground

truths, we use substring matching (ignoring whitespace and formatting). To verify the accuracy of

the results, a survey was conducted where the authors determined if sampled completions (n=401)

match the bug, fix, or no match in a manner the automatic evaluation could not capture. For

each model family, the best performing model completions were subjected to finer scrutiny; it is

important that semantic equivalents are properly counted, such as Codex replacing a constant for

the equivalent literal value. The manual survey interface2 is screen-shot in Figure 7.2. Figure 7.2a

shows a completion that is logically incorrect. In Figure 7.2b, Codex actually replaces a constant

with its literal value which matches the fix. 401 randomly selected SStuBs are evaluated across each

of the three model families to guarantee a confidence level of > 95%. The overwhelming majority of

completions are semantically incorrect to the bug or patch, see Figure 7.3.

// Fix bugs in the below function .

...

g2d. setColor ( tabFillColor );

g2d.fill( shaper .reset (). doRect (boundsX , topY + shape.path. deltaY (1) ,

boundsWidth , paintBorder .top). getShape ());

if (

Code Listing 7.1. Prompting Codex with hint.

// Fix bugs in the below function

// Buggy Java

paintBorder .top >= 1

// Fixed Java

paintBorder .top > 1

2The annotation tool is a fork from localturk, a tool designed to emulate Amazon’s Mechanical Turk. https:
//github.com/danvk/localturk
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...

g2d. setColor ( tabFillColor );

g2d.fill( shaper .reset (). doRect (boundsX , topY + shape.path. deltaY (1) ,

boundsWidth , paintBorder .top). getShape ());

if (

Code Listing 7.2. Prompting Codex the bug and fix.

Prompting LLMs with Comments

Large language models were found to be surprisingly effective with good prompting [130].

“Prompt engineering” is the process of constructing a text prompt, either just a textual prefix

and/or set of explicit instructions to induce generation of desired text. Prompt engineering has

shown an effect on fixing programs, and generating solutions to coding questions [106,161,226]; see

Code Listing 7.1 for an example. Effective prompts may include sample input-output pairs [173]

or SQL queries [178, 214]; Code Listing 7.2 is an example of bug-fixing comments according to

the OpenAI API instructions [154]. This form of traditional hard-prompting [226], named hard

because it uses hard-coded language, requires a prior viz. some known information about the input,

e.g., it is buggy. In Codex experience surveys [219], it appears that prompt engineering is not

useful in situ, for actual coding. Still, prior work suggests prompt engineering can sometimes be

useful [169,173,226].

We hypothesize including comments within a code prompt might pre-condition the model better,

to produce more relevant and better overall code, in a couple ways: (1) generated code, if relevant, will

be easier to understand; previous works show that comments help code comprehension [213,219,235].

(2) comments will help generated code be more maintainable [75,127]. This led us to use comments

to augment the readability and maintainability of the code prior to the SStuB for Codex. Figure 7.4

illustrates the incremental addition of comments starting around the SStuB, and then to surrounding

code. We automatically generate comments using CodeTrans comment generation model [59], trained

on the DeepCom dataset [87]. The comment generation model [59] can use any number of statements
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Figure 7.4. Adding neural-generated comments, step by step, in the prompt
preceeding the SStuB. The first added comment induces greatest improvement in
generated code.

to condition its outputs on; we chose to use two statements for each comment, plus the buggy or

fixed line, to keep the comment related to the SStuB.

Comments can be generated from either the buggy or fixed version of code. Comments generated

from the fixed version of the code should represent the correct logical steps through the single

statement bug. On the other hand, comments generated from the buggy version should represent
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mostly correct steps with a minor single statement mistake. We test all models using both versions

of generated comments; the fixed version representing a “non-buggy” comment and the buggy

version a “buggy” comment; this facilitates an evaluation of how non-buggy vs. buggy comments

influence Codex’s ability to avoid/make a single-statement mistake. We suspect that commenting in

general, regardless of minor mistakes in natural language descriptions, will still condition Codex to

use more reliable, well commented data for generation. Figure 7.4 shows the incremental addition

of comments with automatic comment generation tools. We find that the comments are beneficial

for Codex models, irrespective of the developer’s minor misunderstanding as conveyed in comments.

Prompt input, length, and SStuB completion

The code prior to the SStuB, if available, is the conditional input to the model or prompt. The

prompt, or code prior to the SStuB, is identical for all 16,899 SStuBs which guarantees the model is

not biased towards the bug or the fix. When commenting the SStuB, an automatically generated

comment from CodeTrans is placed above the lines used to generate it, properly tabulated, such that

the comment appears natural as a developer would place it; see Figure 7.1. The prompt includes

the code prior to the bug and up to the maximum allowed amount for each model. The length of

any comments reduces the available input we can pass to the LLMs due to the fixed-length token

window. The token window for Davinci is 8000 and the other models, Cushman, PolyCoder and

CodeGen, are 2048. The token window is ultimately reduced further by the code completion length

as the model performs generation in an auto-regressive fashion.

LLM code completions can span several lines. Codex can use a stop token, such as the newline

character, to terminate completion early. We found that LLMs, like Codex, often add arbitrary

newlines and whitespace to completions; thus terminating completion on a newline might otherwise

leave unmatched completions. Instead, we ask the LLMs to complete a length of 64 tokens, which

is sufficient for almost all SStuBs; SStuBs have a mean length 29 tokens and a median length 25

tokens. After generating a sequence of length 64, the completion is compared to the SStuB ignoring

whitespace. The generated sequence must match the SStuB completely to count as a bug or fix.
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Table 7.1. SStuB production rate on off-the-shelf LLMs

(a) LLM completed SStuBs vs. correct code.

Model Bugs Patches No Match Bug/Patch Match Rate (%)
PolyCoder 160M 3429 1635 11835 2.10 29.97
PolyCoder 0.4B 3672 1852 11375 1.98 32.69
PolyCoder 2.6B 3924 2096 10879 1.87 35.62
CodeGen 350 3709 1911 11279 1.94 33.26
CodeGen 2B 4102 2756 10041 1.49 40.58
CodeGen 6B 4168 2944 9787 1.42 42.09
CodeGen 16B 4299 3296 9304 1.30 44.94
Cushman 12B 3775 1833 11291 2.06 33.19
Davinci 175B 4452 2267 10180 1.96 39.76

(b) Manually examined model predictions when neither bug or patch a.k.a. “No Match” is detected.

Model PolyCoder 2B CodeGen 16B Davinci
counts % counts % counts %

Incorrect 361 90.02 357 89.03 362 90.27
Patch 19 4.74 28 6.98 19 4.74
Bug 15 3.74 10 2.49 14 3.49

Unsure 6 1.50 6 1.50 6 1.50

In the next section, we present the results from our findings: how often Codex and LLMs

produce SStuBs, the number of commits to fix the generated SStuBs, and how annotating code

with comments can improve performance on SStuBs.

7.6 Results

7.6.1 SStuB production in LLMs (RQ1)

Table 7.1 is the number of bugs, patches, and non-matching completions from studied LLMs.

We use the bug/patch ratio, as a metric to universally compare models as the overall number of

successful completions, either a SStuB or a patch, varies between models. Codex, PolyCoder, and

CodeGen 350M all produce nearly 2x as many bugs as patches. Davinci-codex and cushman-codex

perform surprisingly poorly given their size, and extensive training. It is plausible that the Codex

models recapitulate bugs seen in training data [106], however, many of these SStuBs will have

been addressed per their inclusion in the ManySStuBs4J corpus two years ago; viz. there is a fix.
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Figure 7.5. Developers take more time, measured in commits, to resolve SStuBs
that Codex generates. All differences are pairwise statistically significant to p ≤
0.0001.

Table 7.2. Bug Rate and Patch Rate after adding a comment around the SSTUB.

Model Name Model Size
(Billions)

Bug
Change

% Change Patch
Change

% Change Bug/Patch
Ratio

Change

% Change Match Rate
Change

PolyCoder 160M 0.16 -427 -12.45 150 9.17 -0.42 -20.42 -1.64
PolyCoder 400M 0.4 -376 -10.24 250 13.50 -0.41 -21.94 -0.75
PolyCoder 2.6B 2.6 -407 -10.37 323 15.41 -0.42 -23.23 -0.50
CodeGen 350M 0.35 -427 -11.51 256 13.40 -0.43 -21.70 -1.01
CodeGen 2.7 2.7 -655 -15.97 129 4.68 -0.29 -18.73 -3.11
CodeGen 6B 6.1 -742 -17.80 -174 -5.91 -0.18 -11.59 -5.42
CodeGen 16B 16.1 -759 -17.66 -81 -2.46 -0.20 -10.24 -4.97
Codex Cushman 12.0 800 21.19 2329 127.06 -0.96 -44.90 18.52
Codex Davinci 175.0 877 19.70 2882 127.13 -0.93 -46.08 22.24

Although Codex produces a high rate of SStuBs, Codex is capable of avoiding 13.41% of SStuBs in

the dataset.

RQ1: Codex and LLMs produce twice as many SStuBs as correct code. Codex manages to avoid

13.41% of SStuBs.
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Table 7.3. LLM completed SStuBs vs correct code with a comment prior.

Model Bugs Patches No Match Bug\Patch Match Rate (%)
PolyCoder 160M 3002 1785 12112 1.68 28.33
PolyCoder 0.4B 3296 2102 11501 1.57 31.94
PolyCoder 2.6B 3517 2419 10963 1.45 35.13
CodeGen 350M 3282 2167 11450 1.51 32.24

CodeGen 2B 3447 2885 10567 1.19 37.47
CodeGen 6B 3426 2770 10703 1.24 36.66
CodeGen 16B 3540 3215 10144 1.10 39.97
Cushman 12B 4575 4162 8162 1.10 51.70
Davinci 175B 5329 5149 6421 1.03 62.00

7.6.2 Number of commits to fix LLM produced SStuBs (RQ2)

Figure 7.5 shows the number of commits to fix of SStuBs where Codex generates the original

human-created ‘Bug’, or a ‘Patch’, or something else (‘No Match’). For each of these categories, we

examine the version-control history to examine how long (count of commits from introduction to fix,

using git blame) developers took to fix them. Unfortunately, the number of commits to fix when

Codex (re)produces SStuBs (bugs) is significantly longer than in other cases. The median number

of commits to fix for the bugs, patches, and no match is 265, 106, and 121 commits respectively.

Significance of pairwise t-tests was sustained even after the conservative Bonferroni correction. This

finding suggests that when Codex generates SStuBs, these might inherently take human developers

longer to fix! If used widely in open-source code, Codex might spout SStuBs that live longer

(in version history) and further pollute future Codex training data. We believe future, detailed

investigation in the 4452 matching SStuBs might help improve Codex.

RQ2: The ManySStuBs4J data suggest that in cases where Codex wrongly generates simple, stupid

bugs, these may take developers significantly longer to fix than in cases where Codex doesn’t.

7.6.3 SStuB regularity (RQ3)

The significant number of commits to fix SStuBs vs. patches (RQ2) motivates a comparison

of the “naturalness” of bugs, patches, and no match group of SStuBs. Figure 7.6 shows that

there is little difference between the negative log-likelihood of bugs and patches. As expected, the

‘no-matches’ have a higher negative log-likelihood, since these completions were presumably not

seen in the training set. The similar negative log-likelihood of SSTuBs and patches suggests that

it may be challenging to fine-tune Codex to detect or avoid SStuBs, since Codex rates them both
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Figure 7.6. SStuB bugs and patches from Codex are equally more
natural than other code it generates. All differences are pairwise statistically signifi-
cant to p ≤ 0.0001.

equally ‘natural’; we leave this for future work. However we do study if proper prompt engineering

(e.g., with comments), might help matters.

RQ3: Codex log-probabilities indicate that SStuBs (bugs and patches) are regular and natural,

thus making detection difficult.

7.6.4 Avoiding SStuBs (RQ4)

We now turn to the question of whether adding natural language comments to the prompt

suppresses SStuB generation by Codex. Table 7.3 shows the results of inserting a single comment

into the prompt. Table 7.2 captures the rate change in bugs, patches, and bug/patch ratio after

adding a comment prior to the SStuB. First, Codex and other LLMs PolyCoder and CodeGen

behave differently, namely in the match rate; Codex match rate increases by 19-22% where as other

LLMs do not change much. In PolyCoder and CodeGen, the number of bugs decreases from 10-18%
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(a) Codex models (Cushman & Davinci), without comments, perform not well on
bug/patch ratio and the match rate.

(b) Commenting code helps Codex achive best performance across SStuBs while im-
proving the match rate;

Figure 7.7. Prompting with comments should be used to both avoid SStuBs
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Figure 7.8. Bug/Patch Ratio vs. Parameter Count. Three model families at
various sizes. The largest difference is the addition of 1 comment prior to the SStuB.

and the patch rate increases. The bug/patch ratio in all models improves! Codex Cushman and

Davinci generate 20% more bugs, but then produce 127% more patches. The bug/patch ratio is cut

by almost half. This suggests that developers get better results by commenting code while using

Codex: this amounts to about 3000 more patches (5149 vs. 2267).

Figure 7.7 are scatter plots showing the relationship between match rate and bug/patch ratio.

Ideally, models will have a high match rate (less unknown cases) and a low bug/patch ratio. Per

Figure 7.7a, Codex models Cushman and Davinci were not competitive to other off the shelf models.

After adding comments to the SStuB prone code, Figure 7.7b, all models perform better and Codex

performs much better than the next best model CodeGen 16B.
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Table 7.4. Bug Rate and Patch Rate after adding erroneous comments around
SSTUB.

Model Name Model Size
(Billions)

Bug
Change

% Change Patch
Change

% Change Bug/Patch
Ratio

Change

% Change Match Rate
Change

PolyCoder 160M 0.16 59 1.72 -237 -14.50 0.40 18.97 -1.05
PolyCoder 400M 0.4 171 4.66 -132 -7.13 0.25 12.69 0.23
PolyCoder 2.6B 2.6 234 5.96 -145 -6.92 0.26 13.84 0.53
CodeGen 350M 0.35 110 2.97 -178 -9.31 0.26 13.54 -0.40
CodeGen 2.7 2.7 -78 -1.90 -420 -15.24 0.23 15.74 -2.95
CodeGen 6B 6.1 -264 -6.33 -603 -20.48 0.25 17.79 -5.13
CodeGen 16B 16.1 -95 -2.21 -558 -16.93 0.23 17.72 -3.86
Codex Cushman 12.0 1511 40.03 1135 61.92 -0.28 -13.52 15.66
Codex Davinci 175.0 1620 36.39 1613 71.15 -0.40 -20.31 19.13

Figure 7.9. Comment effect on bug/patch ratio. Lower is better. Top axis is total
SStuB count, little significance placed on bug categories with less than 100 samples.
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Figure 7.10. Comment effect on patches. Higher is better. Top axis is total SStuB
count, little significance placed on bug categories with less than 100 samples.

Table 7.5. Codex (Davinci) performance across various prompting techniques.

Prompt Bugs Patches No Match Bug/Patch Match Rate (%)
Hint 6228 4814 5857 1.29 65.34

Bug & Fix 6565 6055 4279 1.08 74.68
Comment 5329 5149 6421 1.03 62

Figure 7.8 shows the effect of adding comments to the bug/patch ratio with model parameter

counts. Adding a comment in the prompt helps more than increasing parameter counts! A 160M

parameter PolyCoder with a comment outperforms (by 14% improvement in bug/patch ratio) both

the Codex Cushman 12B and Davinci 175B, without comments.
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Finally, Figure 7.9 shows the bug/patch ratio and Figure 7.10 shows the number of patches by bug

type (given in the ManySStuBs4J dataset) ranked left to right by the frequency in the dataset. The

largest improvements in bug/patch ratio in a sufficient set of samples are LESS_SPECIFIC_IF, MORE_-

SPECIFIC_IF, OVERLOAD_METHOD_MORE_ARGS, and DIFFERENT_METHOD_SAME_ARGS. The bug types that

gained the most patches are CHANGE_IDENTIFIER and DIFFERENT_METHOD_SAME_ARGS. SWAP_ARGUMENTS

got worse, but only consists of 4 total examples, and it is hard to make any conclusions from this.

7.6.5 Commenting vs Traditional Prompting (RQ4 cont.)

Prompting LLMs both in NLP and SE applications often come in the form of instructions prior

to the input. Previous empirical studies of Codex [152,160,161,162,166,173,189,204,226,243]

prompt Codex with instructions, input-output pairs, or examples prior to the input that the model

is conditioning the output on. We compare in a similar fashion to Prenner et al. [173] by providing

Codex with hints (Code Listing 7.1), and SStuBs (Code Listing 7.2). We remind the reader that

both prompting techniques found commonly in previous works, require knowing something about

the snippet of code that will be generated; e.g., a location in the code that has a SStuB (hint) and

what the SStuB is and how to fix it (bug and fix).

While both approaches improve the bug/patch ratio and match rate, Table 7.5, neither does as

well as adding natural language comments. Furthermore the number of bugs greatly increases in

the traditional prompting techniques.

RQ4: Commenting code can lead to less generated SStuBs and more generated patches. Codex

models improve the most from code comments.

7.6.6 What if we insert a ‘buggy’ comment? (RQ5)

Finally, we try inserting a buggy comment in the prompt, to mimic the developers description of

the SStuB. The natural language comment for buggy code is created by conditioning CodeTrans on

the SStuB (bug) rather than correct code (patch). Table 7.4 shows the difference in bugs, patches,

bug/patch ratio, and match rate with a buggy comment before the SStuB. Surprisingly, Codex is

robust and still improves bug/patch ratio over the “no comments” case. This suggests that the mere

presence of relevant comments in the prompt sufficiently pushes the model to produce better code.
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It’s also interesting to note that the lower capacity models (and also the 16B parameter CodeGen)

tend to be misled by the ‘buggy’ comments, whereas the larger capacity, well-trained Codex models

are not.

RQ5: Misleading comments still condition Codex to produce less SStuBs. Commenting appears

beneficial irrespective of the developer’s understanding of the SStuB.

7.7 Discussion

7.7.1 Implications of Findings

Implications of Codex Producing SStuBs

The good news: Our study suggests that LLMs like Codex do help avoid a significant number

of SStuBs in our dataset, out-of-the-box, and even more with non-buggy comments! But they

do produce simple, stupid bugs. Even Codex produces up to 2x more SStuBs as patches, if used

directly, nor does increasing model size (see Table I) necessarily help.

To better understand why Codex still produce SStuBs, one must further examine the training

data (sadly, not available for many LLMs); we hope training data will become more available.

Previous work [16,160,204] studying Codex-generated vulnerabilities blames Codex’s language

modeling roots, which push it to produce the most “likely completion (for a given prompt) based on

the encountered samples during training”. Also, SStuBs are capable of lasting for long periods of

time [151] and are not detected by continuous integration [119] or static analysis [88, 105,151]

which explains why Codex recapitulates them (from it’s training data). Simple, stupid bugs are

likely regularly injected by devs; training Codex without SStuBs would be challenging, given training

data is drawn from 54 million repositories [40]. The effect of Codex produced SStuBs is significant,

and troubling. The number of commits to fix Codex produced SStuBs versus the avoided SStuBs is

significant, taking more than twice as long to fix. Still we should bear in mind that Codex avoids

2,267 bugs on its own or 13.41% of the dataset, indicating an AI paired programmer is helpful in

avoiding SStuBs too.

Avoiding SStuBs with LLM
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Codex and other LLMs respond unpredictably to prompts, and developers often struggle to get

LLMs to generate desired code [219]. Studies suggest that breaking coding tasks into manageable

sub-problems helps [214, 219]. NLP tasks work similarly; chain-of-thought [231] and reasoning

step-by-step [114] improve problem-solving rate. Commenting is ideally a form of step-by-step

reasoning, explaining high level steps, or clarifying confusing code. The generated comments we

used appear to be high-level descriptions and not deep technical commentary of computed values

and algorithmic mechanisms. Our work suggests minimal effort techniques, like automatically

generated documentation, may help avoid SStuBs when using an AI programming assistant like

Copilot. Not only can comments be automatically generated as documentation, but comments can

be used directly as a prompt for Codex. To the best of our understanding, Codex might condition

the generated code on a smaller search-space of non-buggy solutions, thus helping the developer

avoid introducing SStuBs.

Lastly, comments can sometimes be used to check the implementation consistency given the

desired functionality [232]. Future work could examine if SStuBs can be detected with the same

tools given a set of generated comments.

In our experiments the placement of comments is uniform, and further work should be done to

determine best possible comment placement in a density that is adequate and not excessive; automatic

methods exist [90]. Excessive commenting is typically symptomatic of a lack of understanding of

the code and a “code smell” [20].

Maintaining AI Generated Code

Language models for code like Codex, PolyCoder, CodeGen, and others [3,62,72,102,228] will

become bigger, and better at code completion [79]. In a world where AI programming assistants

learn from data at scale [118], it is hard to say how much of novel programming projects or

code reuse [7] will guide such tools. Fundamentally, there is a need for improved readability and

comprehensibility in AI-generated code [219]. Code comments can improve comprehensibility of

inserted code, especially of more difficult statements. Code that is more readable and understandable

is much more maintainable. Our work suggests that comments help avoid SStuBs, in addition to

the traditional role of improving code readability. Prior work indicates that nearly half of SStuBs
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are fixed by another developer and with greater effort [248]; note that any code (buggy or not)

generated by a language model may be unfamiliar to a developer.

Lastly, the preliminary successes on SStuBs warrants further research in comment generation with

AI programming assistants. Comment generation models like DeepCom [87] and CodeTrans [59] are

fully automated and could function in a variety of roles for AI programming assistants. For example,

comment generation models could serve as automatic code commenting for Codex completions, be

used to check for implementation consistency and accuracy, and improve the quality of training

data for Codex to name a few. Our approach of using comments with Codex should be reexamined

under a variety of applications including program repair and defect prediction. This is an interesting

future direction.

7.8 Threats to Validity

7.8.1 Internal Validity

ManySStuBs4J

We assume the samples in this dataset are mostly actual bugs. The authors report that changes

related to refactoring, are removed, but some non-bug-fixing commits may remain.

Manual Inspection

We use automated matching to determine whether the models produce a known SStuB or patch.

However, it is possible the automatic evaluation misses semantically equivalent but syntactically

different bugs or patches. This could potentially hide the true number of bugs and patches. To reduce

this threat to our results, we have three independent raters (the authors) inspect random samples

from davinci-codex completions (for the cases with no-comments, and the cases with non-buggy

comments) that matched neither bug nor fix (we call this unmatched subset “dark matter”).

With fair agreement, Fleiss Kappa 0.40, the independent raters found the vast majority (over

80%) to be inappropriate code completions (neither bug nor fix — just wrong), and sparsely little

bugs or patches for the no-comment case with Davinci Table 7.1a. With moderate agreement,

Fleiss Kappa 0.6, the independent raters found a smaller majority (about 70%) of inappropriate

code generations in the “dark matter sample” for the non-buggy comment case, Table 7.3. The
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independent ratings all found that, even in the “dark matter” sample, adding comments in the

prompt resulted in substantial increase in patches. While we acknowledge that Codex non-match

completions pose a threat to our findings, our sampled examination of this “dark matter” in both

settings (with and without comments) suggests that adding comments does help LLMs avoid the

generation of SStuBs.

Data Leakage from LLM Training

We cannot independently verify that the ManySStuBs4J dataset is excluded in the training of

the models since none of the models’ training data is published. “Data leakage” is traditionally a

concern when evaluating the performance of language models as data seen during training might

artificially inflate results. In our case, data leakage will bias the model towards an outcome either

the bug or the fix. We examined the latest fix date for the studied SStuBs and found 100% of the

SStuBs were fixed by February 2019 and the earliest data collected for training is 2020 (cushman)

and 2021 (davinci). If there is data leakage from ManySStuBs4J, we postulate the models would

most likely see the fixed version of the code, but intriguingly, the models still produce 2x more

SStuBs!

Reproductions of Generations

Depending on hyper-parameters, Codex models are nondeterministic in their text generation

(for the same prompt). We sampled the top-1 completion for each ManySStuBs4J sample across all

models (Codex, PolyCoder, and CodeGen), with and without comments.

7.8.2 External Validity

ManySStuBs4J

Generalizability is subject to the limits of ManySStuBs4J. The dataset consists of Java single

statement bugs; our results may not generalize to other languages, or less simple bugs. PySStuBs

[100] and TSSB-3M [185] are larger, and cite different SStuB patterns. The ManySStuBs4J dataset

is the appropriate size given our constraints on available compute, and also API access to Codex.
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We were limited by OpenAI’s rate ceiling of 20 requests per minute; on local hardware, the largest

model, CodeGen 16B takes over a day for a run with a single prompt on ManySStuBs4J.

Models at Scale

Language models are getting ever larger. Results may vary with the next generation of models.

7.9 Conclusion

Most importantly, we find that Codex and other large language models significantly help avoid

human-produced simple, stupid bugs! In our best case, around 30% (5149) SStuBs were actually

patched (avoided) by Codex Davinci. Still, we find that large language models might produce many

more SStuBs than patches. First, Codex and PolyCoder produce nearly twice as many SStuBs as

fixes. Second, and very worryingly, Codex generated SStuBs apparently took significantly longer to

resolve and that the SStuBs appear to be as natural as the correct statements. Our results show

that AI pair programming can introduce SStuBs, and the manner in which developers are known to

use such tools is not conducive to avoiding SStuBs. Still, though the models were somewhat SStuB

prone, even out-of-the-box LLMs could have avoided as many as 2,300 SStuBs had developers used

code completion instead of writing them.

Since the simple, stupid bugs are quite obvious after detection, we explore the idea of guiding

AI assistants by adding comments describing high-level functionality. The proposed strategy of

communicating functional intent to Codex with comments improved the bug/patch ratio substantially.

Finally, we explore minor misunderstandings in the intended functionality by using buggy comments

and find that Codex may not require strict correctness in comments to avoid SStuBs. Our results

suggest that good commenting practices, even in an automatic setting, can help other developers

and Codex, especially in an era where AI generated code is regularly committed.

Overall, our findings are somewhat promising, LLMs may help avoid at least some simple, stupid

bugs!
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Chapter 8

Reflections, Future Work, and

Concluding Thoughts

8.1 Reflection

In the last ten years, machine learning has permeated practically every aspect of modern life.

The focus on AI in software engineering is more recent, but with increasing attention in mainstream

culture. Forbes is one of many mainstream media outlets that sensationalize the capabilities of

language models with articles titled How ChatGPT and Natural Language Technology Might Affect

Your Job If You Are A Computer Programmer [143]. When I began the Ph.D., I never expected the

field to be so hot, for better or for worse. My biggest fear is not the replacing of developers entirely;

far from it. I am optimistic that the technologies we develop today are helpful in solving problems

we could never tackle in the first place. Opportunities arise for models to guide developers into

secure coding and better coding practices. Models that are trained with a better understanding

of code, e.g. how static code translates to traces, can alert developers to potential edge cases or

extremely improbable situations with catastrophic consequences. Take the Ariane 5 disaster, where

the horizontal bias, represented as a 64 bit float, was typecasted to a 16 bit value causing the value

to overflow; ultimately flipping the rocket 90 degrees, ripping it into pieces due to aerodynamic

forces. Had machine learning been where we are today for software development, it is conceivable
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that the engineers would have detected the critical runtime bug. This is not a far fetch assertion, as

pretrained transformers and LLMs are widely integrated into the Software Development Life Cycle

(SDLC): requirement analysis [109,138,188], design [32], construction [26,210], testing [216,229],

analysis [14,56,77], and maintenance [15,92,215] to name a few.

8.1.1 Software Practices

AI4SE will birth many technologies that will solve decade old problems. Developers are

traditionally plagued by monotonous tasks like sifting through log files to locate a bug when often

the bug is difficult or impossible to locate without help; log files often contain redundant messages

or content that is not particularly helpful. This can result in developers making a larger mess out of

the code, e.g. adding an obscene amount of debug and error messages. One effective AI solution can

possibly solve downstream code quality problems. Anecdotally, developers hard-code error values to

better navigate log files and this technique is unfortunately common, but creates obfuscation for

unfamiliar developers; I was a witness to this in recent memory at a large technology company!

There is a moat of opportunity at improving general practices of developers. The best products will

likely be localized in large tech company offerings via cloud development. However, individual tech

innovators and startups have more power than ever to develop novel solutions on age-old software

engineering challenges.

8.1.2 Software Processes

AI4SE solutions will improve the process of developing software too. When runtime failures are

discovered it can be difficult to replicate the environment. AI solutions trained over probabilistic

input and outputs can eliminate testing many benign values. Even the build and test aspect of code

pipelines will be improved; QA testing will become more comprehensive and localizing problemsome

commits and lines of code (LOCs) will be more efficient. Rather than checking out commits to test

for runtime problems, imagine using a model to localize the behavior automatically. I am excited by

easy to use, model driven software visualizations including visualizing: the distributions of variable

values, the LOCs that need to be refactored, the potential attack vectors, and more. These models

are amendable to practically any aspect of learning, given an objective function that aligns with the
123



problem; as seen in Chapter 4. Not only can machine learning benefit developers and the process of

developing software, but also the users of products made with AI.

8.1.3 Software Users

Today, in an AI age, software users are pseudo-developers. The clicks, scrolls, and actions

are reward signals in themselves. A UI developed with customer feedback through LLMs has the

potential to create more engaging, useful software. This of course has several positive and negative

implications. Software that is easier to use is inherently more useful, however, software features like

infinite scrolling might drive up engagement with consequential societal implications. We live in an

age of constant entertainment with the development of features like shorts and infinite scrolling.

Research scientists at social media companies are responsible for understanding these consequences

when developing such features or optimizing them to be more addictive. To generalize broadly,

these models must be aligned with our values to be viable solutions.

8.1.4 Software Jobs

A recent paper from OpenAI [60] cites that GPTs (generative pretrained transformers) are GPTs

(general purpose technologies). General purpose technologies are characterized by “widespread

proliferation, continuous improvement, and the generation of complementary innovations”. In

AI4SE, GPTs are proliferating, improving, and will create many new software products. However,

the current iteration of GPTs are not well aligned with developers; maybe RLHF will improve

that eventually. For example, the transformer networks are constantly being modified to align to

developer (e.g. secure code) and organizational (e.g. requirement understanding) values, and to

improve code understanding (e.g. unnatural but valid coding practices) through techniques like

prefix tuning [76], inductive biases integration [72], and better semantic understanding [37]. These

adjustments require real engineers and developers for the foreseeable future to adjust off the shelf

LLMs, or develop alternative solutions when LLMs perform poorly in forums such as closed-source

software environments.

Revisiting controversial headlines like New York Times’s Tinkering With ChatGPT, Workers

Wonder: Will This Take My Job? fails to acknowledge the alignment problem currently plagued

by LLMs; misalignment of software, developer, and societal values and the understandings therein.
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This alignment problem exists in the domain LLMs are trained in, the values that they generate at

inference, and propagate into the applications driving our society. Concluding on this thought, I

think of many developers who have reached out concerned about the risk of the GPTs (ChatGPT,

Copilot, etc). No, these models are not comprehensive problem solvers, nor do they understand the

processes and values associated with software development. Software developers will be expected

to work with generative models side-by-side, improve the workflow with them, and improve their

capabilities over the next 10 years. This vision is guiding my research for the foreseeable future and

hopefully downplays the apprehension developers are facing.

8.2 Worthwhile Research Pursuits

8.2.1 Increasing the Reach of LLMs

Off the shelf LLMs are general purpose generative tools that are widely trained on open-source

data. Published models like CodeGen, CodeParrot, PolyCoder, even Codex do not contextualize

their outputs on project specifics, e.g., existing function and variable nomenclature out of its current

scope. Currently IDE tools like Copilot perform some dark magic to bias the model towards outputs

that are somewhat contextualized, however, syntactically correct outputs are nowhere guaranteed.

While approaches like prompting are effective, there is still a lack of awareness for the rules a project

is constrained by; this can include language version, availability of different language constructs

(type inference in Java), existing security and coding standards, and more. Finding ways to include,

more broadly, developer and organizational constraints will greatly improve the usability of these

models.

Along a similar thread, LLMs have an opportunity to suggest improvements to existing code:

where and why code should be refactored, and even what code should go there. We often associate

code completion as a “AI co-programmer” [249] but code completion is not truly a co-programmer.

Human co-programmers recognize when functions should be split up, new classes created, and

better use of language constructs such as polymorphism to improve the overall organization and

performance of the code base. An unrealized gain of true “AI co-programming” is the prioritization

of technical debt; models will recognize subpar code and will force developers to address it, especially,

if future completions depend on significant refactorings. It is in the interest of the developer to
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abide by the AI recommendations, such that future recommendations are not contributing to an

increased technical debt. Finally, a dialogue with the developer on why completion performance is

dependent on addressing existing technical debt is a great motivator.

8.2.2 Runtime Information

Many software engineering tools rely on pre-trained code embeddings. The code embeddings

stem from on-going paradigm shift with the rise of language models defined by billions of parameters,

encoded from self-supervision on open source data at scale. Large scale pre-trained embeddings

have dramatically improved natural language processing task performance and many new models

continue to be applied to code. Much of the adoption of these models do not account for the many

differences between code and text. Some works account for this by adapting the structure of the

model or training signal to account for code specific features like data/control flow; some models

even encode the AST for the code completion. However most works ignore an obvious difference

of code and text: run time information. Code is executable and LOC often repeat with different

values. A new research direction based on runtime information understanding can condition static

code embeddings with much more information! Finding ways to augment static embeddings with

information related to the runtime environment, e.g. traces, will give developers power to predict

how code will run, and the problems therein, prior to the introduction in the code base.

It is widely recognized that existing language models do not understand the specifics of how

code executes [17]. Austin et al. states, “even our largest models are generally unable to predict

the output of a program given a particular input, whether few-shot or with fine-tuning” and I have

verified this more broadly on open-source models: CodeBERT, GraphCodeBERT, CodeBERTa, etc.

Trace analysis is a promising direction although somewhat inefficient due to the sheer scale required.

I am optimistic that larger language models will require less code coverage to better understand

runtime information. Any pursuit on the integration of this untapped potential can benefit code

understanding broadly across all applications using ML-based methods.

8.2.3 Prompt and Prefix Tuning

Prompt and prefix tuning are promising approaches. Prefix tuning can adjust .1% of model

parameters [120, 124] and prompt tuning only adjust .01% of model parameters [120]. These
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approaches can distill relevant information for specific tasks. It would be interesting to see how

much project specific information can be distilled by such methods to improve performance of off

the shelf LLMs. Prompt and prefix tuning has already been shown to be effective for generating

secure code [76]. I am intrigued by future applications of prompt and prefix tuning.

8.2.4 Hybrid ML and SE approaches

Software engineering is defined by two fundamental channels [36]. Engineers communicate

with a natural channel which contributes program semantics. For example, developers can use the

natural channel to convey code meaning, developer goals, code functionality, explanations, code

requirements, and more. The formal channel is defined by language syntax and algorithmic execution

of code. Often software solutions reside in either the algorithmic channel, e.g. static analysis and

program verification, or the natural channel, e.g. code completion. Programs generated with code

completion tools lack the rigor of formal correctness and often hallucinate with the inclusion of

fictitious variables and functions [17,40]. A promising approach is a hybrid between the formal and

natural channels. Take HiTyper [164], a hybrid type inference approach where the expressiveness of

deep learning meets the formal checking of static type inference. This approach uses the formal

correctness of type dependency graphs with the expressiveness of ML based type inference. Uniquely,

this type inference model produces type consistent code. Hybrid approaches are more prevalent in

code completion settings today [40,41,139].

8.2.5 Code Compression

Code is often repeated and a majority of machine learning based models learn from duplicated

(sub)sequences of source code. The snippets of source code passed into sequence based models

often have long dependencies that are not available to the model due to a limited context window.

Context windows in LLMs are getting larger with sufficient hardware in data centers, however,

smaller localized modeling is greatly limited by the amount of relevant information that can be

included to the prompt. I believe there are properties unique to code that can be highly compressed;

the removal of tokens like brackets and braces seem to have little impact in code intelligence task

performance. Inspired by several works on transformer position encoding [110, 163,199], I believe
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that efficient representations will allow more relevant tokens in finite context windows for a wide

variety of models.

8.2.6 Reinforcement learning with Human Feedback (RLHF)

The best “supervised signal” is real human interaction with LLMs. Feedback in the form of

ranking [156], natural language [39], and dialogue [153,237] effectively capture real time feedback

from real users; no need for complex (and ineffective) simulators. As users accept and reject

completions from tools like GitHubs’ Copilot, a ground truth of human feedback is accumulated.

This dataset of feedback can be optimized in traditional settings or with reinforcement learning. The

widespread paradigm shift to RLHF from traditional approaches, like increasing model parameters,

is promising for institutions interested in value alignment. In our current conversation of making

models more developer aligned, RLHF is arguably the most promising prospect.

8.3 Conclusion

This thesis presents several approaches that build better models and representations of code

for developers. The gradual improvement of representations is achieved by task-specific design of

the machine learning methods, the code representation it attempts to understand, and mining of

relevant, readily available data. To model specific nuances of code, such as user-defined types, we

found that the additional mining of necessary declarations in conjunction with learning associations

between these declarations was sufficient. Augmenting the existing representations between class

declaration statements and the downstream use of that declaration is an alignment problem between

human understanding and machine’s interpretation of code.

A popular theme in natural language processing is that the path to more comprehensive

representations are models with more parameters [200] and larger corpora. This path is promising

overall and runs parallel with improving the networks’ ability to represent complete program

semantics. Such networks [9,80,163] unfortunately still require subject matter experts to determine

meaningful hyper-edges and translate the data accordingly [86]. Indeed, representing entire programs

in a model at scale will result in incredibly useful embeddings and general purpose models, but
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still require task specific alignments; for example the user-defined types problem. This should not

discourage the pursuit of better general code representations.

A major takeaway from this thesis is that we (model architects) can find meaningful representa-

tions of code by combining formal and natural channels with powerful models. In Chapter 3, we

found that existing modalities, namely partial token sequences, was sufficient to learning common

types when supplemented with giga-scale self-supervision. The improvement in top-1 accuracy

across the most frequent types was substantial (89.51% vs. 66.9%) indicating that existing graph

neural networks (GNNs) were sub-par for frequently used types.

TypeBert demonstrated a trade-off between engineering sophisticated, graphical inductive biases,

vs. general purpose representations that may only learn sequential patterns of code. This simple

intuition of code is apparently sufficient to allow TypeBert to make relevant predictions across all

type locations; albeit not guaranteeing formal correctness. The GNN approach often couldn’t make

simple type guesses with incomplete projects; but guarantees a higher degree of correctness. The

approximate nature of partial contexts lacks formal correctness, but in real-world applications it may

prove to be more practical. In following the theme of the thesis, we found that the representations

TypeBert used were ill-conditioned for a fundamental characteristic of code; the neologism of

user-defined types. With the rich contextual encoding of source code across giga-token corpora,

we postulated from the outset that user-defined type declarations could be embedded and aligned.

By (re)formulating a machine construct, self-supervised embeddings, in a fashion in which humans

interpreted user-defined types, we were able to perform large scale alignment as almost all projects

have user-defined type declarations.

In Chapter 4 we take the ideas presented in Chapter 3 further and explore a core typing problem.

Can we jointly learn traditional common types and the more expressive user-declared types with

partial contexts? We explore this goal by supplementing our existing type inference dataset with

an user-declared type dataset and jointly train DiverseTyper with two losses: cross-entropy and

triplet loss. We attempt to preserve the prediction accuracy that TypeBert has while gradually

aligning the type declaration to occurrence of its use. We argue that our approach to user-defined

type inference is not a task specific solution, but an adaptation to a particular dynamic of code; a

modeling solution. This approach lead to a 72.85 percent increase in user-defined type inference
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(30.16% absolute) and an absolute overall improvement of 8.59% increase over TypeBert. In terms

of practical usefulness, DiverseTyper [93] was correct almost 55% of the time on just the novel

types. Beyond statistics, DiverseTyper colored an important picture; translating program semantics

as humans interpret them for machines leads to big performance gains. Qualitatively, DiverseTyper

seemed to always get the type correct, mainly attributable to its comprehensive dataset and its

ability to localize declarations. In summary, by removing the representational ambiguity between

two seemingly distinct tokens to the machine learning model, we explicitly encode type usage

conventions and create a more meaningful representation of code for type inference. The general

principle of optimizing the way machine learners see code will be a focus of many future works.

Chapter 5 realizes a dataset, ManyTypes4TypeScript, that facilitates a goal of standardized

evaluation for type inference [94]. The inclusion of the dataset and evaluation scripts on Microsoft’s

CodeXGLUE will encourage the development of new type inference models and model comparisons.

I also introduced a suite of new models that use data and control flow for type inference.

Chapter 6 is the actualization of a framework that can be used for virtually any type inference

model [225]. With the ManyTypes4TypeScript dataset in Chapter 5, creating new models is easier

than ever. However, most models stay in GitHub repositories or Huggingface model cards. The goal

of FlexType is to bring the model into a visual studio environment for rapid use by developers. I

am pleased to contribute this tool to the open-source community.

In our final piece, Large Language Models and Simple, Stupid Bugs, Chapter 7, we study popular

code completion tools on their performance on SStuBs (Simple, Stupid Bugs). We were alarmed

that the Copilot model, Codex, generates ≈2x more bugs than correct code! I further studied the

implications of LLM completed SStuBs and find they are equally natural to their correct counterpart,

thus making SStuBs very difficult to spot; this confirms existing work in the field [105]. I also

studied how long SStuBs last in projects and find that LLM generated bugs last longer than the

SStuBs Codex avoided. In an age of AI “copilots”, this is a toxic combination as more AI generated

code will exist and be difficult to localize and fix. Furthermore, AI generated code is often ill

understood by their users [219] and may introduce simple, stupid bugs at an increasing rate [92].

As future AI models are trained on open source code, this can ultimately lead to a negative feedback
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loop. Finally, we present how just commenting code, either automatically or manually, can condition

LLMs to avoid SStuBs.

8.3.1 Final Remarks

Holistically, we hope that this body of work demonstrates the value of finding developer aligned

representations of code. The pursuit of finding meaningful representations of code that reflect

developer, organizational, and societal values is ambiguous, however, in my humble opinion, a

very enterprising ambition. Through the techniques discussed, it should be clear that there is still

a plethora of software engineering data, much of it still untapped and unrealized, that is widely

receptive to innovative learning methodologies.
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