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a b s t r a c t 

Complexities in river discharge, variable rainfall regime, and drought severity merit the use of advanced 

optimization tools in multi-reservoir operation. The gravity search algorithm (GSA) is an evolutionary 

optimization algorithm based on the law of gravity and mass interactions. This paper explores the GSA’s 

efficacy for solving benchmark functions, single reservoir, and four-reservoir operation optimization prob- 

lems. The GSA’s solutions are compared with those of the well-known genetic algorithm (GA) in three op- 

timization problems. The results show that the GSA’s results are closer to the optimal solutions than the 

GA’s results in minimizing the benchmark functions. The average values of the objective function equal 

1.218 and 1.746 with the GSA and GA, respectively, in solving the single-reservoir hydropower operation 

problem. The global solution equals 1.213 for this same problem. The GSA converged to 99.97% of the 

global solution in its average-performing history, while the GA converged to 97% of the global solution of 

the four-reservoir problem. Requiring fewer parameters for algorithmic implementation and reaching the 

optimal solution in fewer number of functional evaluations are additional advantages of the GSA over the 

GA. The results of the three optimization problems demonstrate a superior performance of the GSA for 

optimizing general mathematical problems and the operation of reservoir systems. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The scarcity of water and recurrent drought in many parts of

he world demand the careful management of water resources.

ptimization methods are well suited for improving water re-

ources planning and management. Papers dealing with optimiza-

ion methods in reservoir operation can be classified as classic or

volutionary ( Ahmadi et al., 2014; Ashofteh et al., 2013; 2015 ).

he classical optimization methods are useful in finding the op-

imal solution of unconstrained maxima or minima of continuous

nd differentiable functions ( Wehrens et al., 2006 ). Random search

echnique, linear programming, and dynamic programming fall in

his category of classic optimization methods. Among the clas-

ical optimization methods Tilmant and Kelman (2007) reported

 methodology for analyzing trade-offs and risks associated with

arge-scale water resources projects under hydrologic uncertainty.

heir proposed methodology relies on the stochastic dual dynamic

rogramming (SDDP) model to derive monthly or weekly operating
∗ Corresponding author. 
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309-1708/© 2016 Elsevier Ltd. All rights reserved. 
ules for multipurpose multi-reservoir systems taking into account

he stochasticity of the inflows, irrigation water withdrawals, min-

mum/maximum flow requirements for navigation, fishing and/or

or ecological purposes. Ficchi et al. (2015) reported the improve-

ent of the operation of a four-reservoir system in the Seine River

asin, France, employing deterministic and ensemble weather fore-

asts and real-time control. Their simulation results demonstrated

hat the proposed real-time control system largely outperforms

he no-forecasts management strategy, and that explicitly consider-

ng forecast uncertainty through ensembles can compensate for the

oss in performance due to forecast inaccuracy. 

The classic optimization methods, however, do not perform well

n many complex problems with multimodal functions. Therefore,

volutionary methods (EM) were developed and are commonly

sed to tackle such problems. Evolutionary methods can handle

ny type of objective function, including multi-objective variants,

nd avoid entrapment in suboptimal solutions much more effec-

ively than classical methods. 

Several mathematical benchmark functions have been imple-

ented for testing classic and evolutionary methods. Yao et al.

1999) proposed the improved fast evolutionary programming

IFEP) employing mixing of different search operations (mutations)

http://dx.doi.org/10.1016/j.advwatres.2016.11.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2016.11.001&domain=pdf
mailto:OBHaddad@ut.ac.ir
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and fast evolutionary programming (FEP). They compared the re-

sults with classic evolutionary programming (CEP) by testing 19

benchmark functions. Their results obtained with the benchmark

functions showed that the IFEP performed better than or as well as

the FEP and CEP for most tested benchmark functions. Vesterstrom

and Thomsen (2004) evaluated the performance of differential evo-

lutionary (DE), particle swarm optimization (PSO), and evolution-

ary algorithms (EAs) on a suite of 34 widely used benchmark func-

tions. The results from their study indicated that DE generally out-

performed the other algorithms, although two noisy functions, DE

and PSO were outperformed by the EA. Wang et al. (2011) com-

pared a multi-tier interactive genetic algorithm (MIGA) and the GA

to find the optimal solution to long-term reservoir operation. 

The optimization of multi-reservoir operations has been tackled

with evolutionary algorithms. There are different rules for reser-

voir operations systems ( Oliveira and Loucks, 1997 ). Bolouri-Yazdeli

et al. (2014) evaluated real-time operation rules in reservoir sys-

tems operation. Long-term reservoir operation in this study relies

on a specific inflow time series, and it is assumed that similar time

series will be observed in the future under steady climatic condi-

tions. In contrast, real-time operation a reservoir relies on current

system parameters that account for reservoir inflow, downstream

water demand, and the storage at the beginning of each opera-

tional period. 

Mousavi et al. (2004) solved reservoir optimization with fuzzy

and non-fuzzy stochastic dynamic programming (SDP). Celeste and

Billib (2009) assessed the performance of seven stochastic mod-

els to determine optimal reservoir operating policies. Their mod-

els were based on implicit stochastic optimization (ISO) and ex-

plicit stochastic optimization (ESO), and on the parameterization–

simulation–optimization (PSIO) approach. The ISO models include

multiple regressions, two-dimensional surface modeling and a

neuro-fuzzy strategy. Wardlaw and Sharif (1999) evaluated several

alternative formulations of a genetic algorithm for reservoir sys-

tems by using a four-reservoir, deterministic, finite-horizon prob-

lem and a ten-reservoir problem. They found that the genetic algo-

rithm approach is easily applied to complex systems and it was a

viable alternative to stochastic dynamic programming approaches.

Côté and Leconte (2015) compared stochastic optimization algo-

rithms for hydropower reservoir operation. Three explicit stochas-

tic optimization approaches, i.e., stochastic dynamic programming,

sampling stochastic dynamic programming, and a scenario tree ap-

proach were compared with the operation of the Rio Tinto Alcan

(RTA) hydropower system in Québec, Canada. Ahmadianfar et al.

(2015) introduced the improved bat algorithm (IBA) with a hybrid

mutation strategy to improve its global searching capacity. 

Bozorg-Haddad et al. (2010) evaluated the performance of EAs

in reservoir operation by testing the honey-bee mating optimiza-

tion (HBMO) algorithm with three benchmark multi-reservoir (four

and ten-reservoir) operation problems in the discrete and con-

tinuous domains. In addition, they compared the HBMO’s results

with those of the genetic algorithm (GA) and linear programming

(LP). The comparison of the results of HBMO, GA, and LP demon-

strated a superior performance of the HBMO. Bozorg-Haddad et

al. (2015) applied the biogeography-based optimization (BBO) al-

gorithm to solve reservoir operation problems. The BBO algorithm

was verified with the optimization of three mathematical bench-

mark problems and then was applied to the operation optimiza-

tion of a single reservoir system and a four-reservoir system. The

performance of the BBO algorithm was compared with that of the

genetic algorithm (GA) in solving the three optimization problems.

Their results from five test problems demonstrated the superior ca-

pacity of the BBO to optimize general mathematical problems and

the operation of reservoir systems. The genetic algorithm (GA) is

one of the most widely used evolutionary algorithms this being

the reason for using it as a comparison optimization method. 
The GSA (gravity search algorithm) is an evolutionary method

hich is based on Newton’s law of gravity ( Rashedi et al., 2009 ).

ewton’s law states that particles attract each other with a force

hich is directly proportional to the product of their masses and

nversely proportional to the square of the distance between the

articles. Rashedi et al. (2009) compared the GAS with particle

warm optimization (PSO) and central force optimization (CFO)

sing well-known benchmark functions. Their results established

he excellent performance of the GSA in solving various nonlin-

ar functions. Ghalambaz et al. (2011) presented a hybrid neu-

al network and gravitational search algorithm (HNGSA) method

o solve the well-known Wessinger’s equation which is a fully

mplicit first order nonlinear differential equation. Their results

howed that the HNGSA produced a closer approximation to the

nalytic solution than other numerical methods and that it could

asily be extended to solve a wide range of problems. Jadidi et al.

2013) proposed a flow-based anomaly detection system and ap-

lied a multi-layer perceptron (MLP) neural network with one hid-

en layer for solving it. The latter authors optimized interconnec-

ion weights of a MLP network with a gravitational search algo-

ithm (GSA) and the proposed GSA-based flow anomaly detection

ystem (GFADS) was trained with a flow-based data set. Chen et al.

2014) proposed an improved gravitational search algorithm (IGSA)

nd solved the identification problem for a water turbine regula-

ion system (WTRS) system under load and no-load running con-

itions. 

The GSA algorithm has not been previously applied to multi-

eservoir operation systems. This paper tests the GSA algorithm

ith several well-known benchmark functions presented in the

ppendix . The GSA algorithm is herein also applied to optimally

perate: (a) a hydropower production problem, and (b) a well-

nown four-reservoir operation problem. The GSA is herein com-

ared with the GA employing LP and NLP globally optimal solu-

ions to test its capacity for solving long-term reservoir operation

ith single- and multi-reservoir systems. The GA was the first EA

nd its good performance is well established. The GA is available in

he Matlab software thus making a relatively simple benchmark to

mplement in evaluating the performance of the other algorithms. 

. The gravitational search algorithm (GSA) 

The GSA is a novel evolutionary algorithm. According to the

SA every particle or mass in a system determines the position

nd state of other particles according to the law of gravity ( Rashedi

t al. 2009 ). Each particle exhibits simple behavior In the GSA, and

ll of them follow intelligent pathways towards the near-optimal

olution. For better understanding of the GSA one must resort to

he law of gravity. Nature encompasses three type of masses: (1)

ctive gravity mass, in which the gravity force increases with in-

reasing mass; (2) passive gravity mass, in which the gravity force

oes not increase with increasing mass, and (3) inertial mass, that

xpresses the resistance of mass to change its position and move-

ent. Particles in a system attract each other with a specific grav-

ty force that is directly related to the product of their masses of

he particles and inversely related to the square distance between

ny two particles (see Fig. 1 ): 

 = G 

M 1 M 2 

R 

2 
(1)

here F = gravity force ( N ); M 1 = active gravity mass ( kg ) of

rst particle; M 2 = passive mass ( kg ) gravity of second particle;

 = Newton’s gravitational constant [( Nm 

2 )/ kg 2 ], and R distance

eparating the two particles ( m ). G is a parameter in the GSA

hat controls the searching capacity and the algorithm’s efficiency.

n the one hand, the searching capacity of the optimization al-

orithm increases whenever G increases. On the other hand, the
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Fig. 1. Relations between particle mass and gravity force. 
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onvergence efficiency of the search algorithm increases when G

ecreases. For these reasons, it is recommended to use a value

f G that is set initially high and decreases with increasing time

 Rashedi et al. 2009 ). A suitable formula for G is: 

 (t) = G 0 e 
− α t 

T t = 1 , 2 , . . . , T (2)

here G ( t ) = Newton’s gravitational constant as a function of

he iteration number; G 0 and α = controlling coefficients of the

SA; T = lifetime of the system (total number of iterations); and

 = number of iterations. G ( t ) is initialized in Eq. (2) at the begin-

ing of the optimization and is reduced over time to control the

earch accuracy. 

Newton’s second law states that when a force, F , is applied to

 particle, its acceleration a , ( m / s 2 ), depends only on the force and

ts mass, M : 

 = 

F 

M 

(3) 

here a = particle acceleration, and M = inertial mass. The varia-

ion of the velocity or acceleration of any mass is equal to the force

cted on the system divided by the mass of inertia. 

The vector of positions X i ( 1 ) in a D-dimensional system at time

 = 1 is defined as follows: 

 i (1) = (x 1 i (1) , . . . , x d i (1) , . . . , x D i (1)) i = 1 , 2 , . . . , S; t = 1 

(4) 

n which x d 
i 
= represents the position of the i- th mass in the d- th di-

ension at time (iteration) t = 1 (represents a particle) , D = num-

er of decision variables; d = counter of decision variables, d = 1,

, …, D; i = counter of populations in each iteration (represents a

ass), and S = number of populations. 

The steps of the GSA, as described in Rashedi et al. (2009) , are

ynthetized below and depicted in Fig. 2: 

1) Initialization: In the first iteration (or step) the values of x d 
i 

(as

decision variable) are chosen randomly and extend over the en-

tire solution space. 

2) Evaluation of the objective function ( fit i ). The value of the ob-

jective function is calculated for each mass and is denoted by

fit i . The value of fit i is calculated by inserting X i in the objec-

tive function. The best and the worst values of the objective

function are called best ( t ) and worst ( t ), respectively, and are

then determined as follows (under minimization): 

worst (t ) = Maximum f i t i (t) i = 1 , 2 , . . . , S; t = 1 , 2 , . . . , T 

(5) 

best (t ) = Minimum f i t i (t) i = 1 , 2 , . . . , S; t = 1 , 2 , . . . , T 
(6) 
3) Calculation of the relative normalized objective function M i ( t ).

The value of M i ( t ) increases with increasing value of the objec-

tive function ( fit i ) as follows: 

m i (t) = 

f i t i (t) − worst(t) 

best( t) − worst(t) 
i = 1 , 2 , . . . , S; t = 1 , 2 , . . . , T 

(7) 

M i (t) = 

m i (t) 
S ∑ 

j=1 

m j (t) 

i = 1 , 2 , . . . , S; t = 1 , 2 , . . . , T (8)

where m i ( t ) = the normalized objective function of the mass i at

time (iteration) t , and M i ( t ) = normalized objective function of

mass i at time (iteration) t . 

4) Update the gravitational constant and calculate inserted force

on each particle. The gravitational constant is updated base on

Eq. (2) and the force acting on mass i from mass j [this is an

extension of Eq. (1) ] as follows: 

F d i j (t) = G (t) 
M i (t) × M j (t) 

R i j ( t) + ε 

[
x d j ( t) − x d i (t) 

]
j = 1 , 2 , . . . , S; i = 1 , 2 , . . . , S; i � = j;
t = 1 , 2 , . . . , T ; d = 1 , 2 , . . . , D (9) 

where F ij 
d ( t ) = the force action on first mass i from second mass

j in time (iteration) t and dimension d; M i ( t ) = normalized first

mass i (passive gravitational mass); M i ( t ) = normalized second

mass j (active gravity mass); x d 
j 
(t) − x d 

i 
(t) is the distance be-

tween two particles of mass i and mass j in dimension d; ε = 
small positive constant, and R ij ( t ) = the Euclidian distance be-

tween two masses i and j : 

R i j (t) = || X i (t) , X j (t) | | 2 
= 

√ 

[ x 1 
i 
(t) − x 1 

j 
(t)] 

2 + [ x 2 
i 
(t) − x 2 

j 
(t)] 

2 + ... + [ x D 
i 
(t) − x D 

j 
(t)] 

2 

j = 1 , 2 , . . . , S; i = 1 , 2 , . . . , S; t = 1 , 2 , . . . , T ; i � = j (10) 

The GSA algorithm is randomized by assuming that the total

force acting on mass i in a dimension d is a randomly weighted

sum of the D - th components of the forces exerted on other

masses: 

F d i (t) = 

S ∑ 

j =1 , j � = i 
ran d j F 

d 
i j (t) i = 1 , 2 , . . . , S; t = 1 , 2 , . . . , T ;

d = 1 , 2 , . . . , D (11) 

where F i 
d ( t ) = summation force on mass i in dimension d and

time (iteration) t, and rand j =a random number with uniform

distribution in the interval [0, 1] that introduces random prop-

erties to the GSA. 

5) Calculate the acceleration and velocity of each particle. The ac-

celeration of each mass in dimension d is calculated based on

the second law of motion as follows: 

a d i (t) = 

F d 
i 

M ii 

i = 1 , 2 , . . . , S; t = 1 , 2 , . . . , T ;
d = 1 , 2 , . . . , D (12) 

where M ii = inertial mass i that equals M i . Substituting the force

from Eqs. (9) and ( 11 ) into Eq. (12) yields: 

a d i (t) = G (t) 
S ∑ 

j=1 

j � = i 

{
ran d j 

M j (t) 

R i j (t) + ε 
[ x d j ( t) − x d i (t)] 

}

i = 1 , 2 , . . . , S; t = 1 , 2 , . . . , T ;
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Fig. 2. The steps of the GSA. 
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d = 1 , 2 , . . . , D (13)

The velocity is calculated as follows: 

v d i (t + 1) = ran d i . v d i (t) + a d i (t) 

i = 1 , 2 , . . . , S; t = 1 , 2 , . . . , T ; d = 1 , 2 , . . . , D (14)

where v i 
d ( t ) = velocity of mass i in dimension d and time (iter-

ation) t , and rand i =a uniform random variable in the interval

[0, 1]. 

6) Update position of masses. The new position of mass i in di-

mension d is given by: 

x d i (t + 1) = x d i (t) + v d i (t + 1) 

i = 1 , 2 , . . . , S; t = 1 , 2 , . . . , T ; d = 1 , 2 , . . . , D (15)

where x i 
d ( t ) = position of mass i in dimension d and time (itera-

tion) t . The GSA algorithm generates the new X i with the newly

calculated positions of the masses. 

7) Apply the stopping criterion: Repeat Steps 2 to 6 until the stop-

ping criterion is reached. 

One way to improve the performance of GSA is to reduce the

number of masses (which make up the population of solutions)

with lapse of time in Eq. (11) . Hence, a set of masses (defined

as Kbest ) with high merit are chosen as elite masses and apply

their force to the other masses. Kbest is a function of time, in

which the initial value decreases with time. In this manner all

the masses apply a force initially, and Kbest is decreased lin-

early with the passage of time, until there is only one mass ap-

plying force to the other masses. Accordingly, Eqs. (11) and ( 13 )

are changed as follows: 

F d i (t) = 

∑ 

j ∈ kbest, j � = i 
ran d j F 

d 
i j (t) i = 1 , 2 , . . . , S;

t = 1 , 2 , . . . , T ; d = 1 , 2 , . . . , D (16)

a d i (t) = G (T ) 
∑ 

j∈ kbest 

j � = i 

{
ran d j 

M j (t) 

R i j (t) + ε 
[ x d j ( t) − x d i (t)] 

}

i = 1 , 2 , . . . , S; t = 1 , 2 , . . . , T ;
d = 1 , 2 , . . . , D (17)

where Kbest is a set of elite masses with the best fitness values.

These previous 7 steps are implemented in a minimization

problem. For a maximization problem Eqs. (8) and ( 9 ) must change
o: 

orst (t ) = Minimum f i t i (t) i = 1 , 2 , . . . , S; t = 1 , 2 , . . . , T (18)

est (t ) = Maximum f i t i (t) i = 1 , 2 , . . . , S; t = 1 , 2 , . . . , T (19)

t the end of these steps the optimal values of the decision vari-

ble ( x d 
i 
) and the objective function ( fit i ) are obtained. Particles,

asses, and the population in the GSA algorithm are shown in

ig. 3. 

. Multi-reservoir operation optimization rules 

Three standard benchmarks functions were evaluated to test

he GSA. Details about the test of the benchmark functions are pro-

ided in the Appendix . The capability of the GSA was also tested

ith the optimization of reservoir operation problems. Two reser-

oir operation problems were considered: one is a single reservoir

hat produces hydropower and minimizes the power deficit. The

ther is a four-reservoir problem that maximizes a benefit func-

ion. The schematic of the single reservoir is shown in Fig. 4 . The

uality of GSA results in terms of the process of achieving optimal

olution in reservoir-operation have been obtained by comparing

ith the results of GA algorithm, a well-proven and reliable EA. 

The general objective function includes minimization of the

ower-production deficit in the hydropower reservoir and the

aximization of benefits ( = minimization of negative benefits) in

he four-reservoir system: 

inimize F = k ×
n ∑ 

i =1 

T ∑ 

t=1 

(
1 − P i (t) 

P P C 

)2 

− (1 − k ) 

×
n ∑ 

i =1 

T ∑ 

t=1 

a i (t) × R i (t) (20)

here P i ( t ) = power generation (W) in period t = 1, 2,…, T, and

eservoir i = 1, 2…, n; PPC = maximum power generation (W); R i 
 reservoir release (m 

3 ) in period t and reservoir i; a i ( t ) = bene-

t function period t and Reservoir i; T = total number of periods;

 = total number of reservoirs, and k = coefficients can be either 1

for hydropower reservoir) or 0 (for four-reservoir). The power P i ( t )

W) is calculated as follows: 

 i (t) = 9 . 81 × 0 . 88 × Q R i (t) × ( H i (t) − 845) 
i = 1 , 2 , . . . , n ;
0 . 2 10 0 0 
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Fig. 3. Schematic of the "particles", "mass" and "time" in GSA algorithm. 

Fig. 4. Schematic of reservoir with inputs and outputs. 
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here QR i ( t ) = turbine inflow (m 

3 /s) in period t and reservoir i;

 i ( t ) = water level (m) in reservoir i and period t ; 9.81 = accelera-

ion of gravity (m/s 2 ); 0.88 = efficiency of power plant; 0.2 = plant

unctional coefficient and, 845 = reservoir tail water level (m), and

0 0 0 is used for unit conversion. The decision variables in the ob-

ective function ( 20 ) are the reservoir releases R i ( t ). 

QR i ( t ) is calculated as follows: 

 R i (t) = 

R i (t) 

2 . 592 

i = 1 , 2 , . . . , n ; t = 1 , 2 , . . . , T (22) 

eservoir area A (m 

2 ) and reservoir water level H (m) formulas in

erms of reservoir storage S (m 

3 ) are as follows: 

 i (t) = 

4 ∑ 

j=0 

b i j × S i (t) 
j 

i = 1 , 2 , . . . , n ; t = 1 , 2 , . . . , T (23) 

 i (t) = 

4 ∑ 

j=0 

d i j × S i (t) 
j 

i = 1 , 2 , . . . , n ; t = 1 , 2 , . . . , T (24) 

here b ij and d ij = area-volume coefficient and height-volume co-

fficient in Reservoir i , respectively. 

The continuity constraint on reservoir storage is: 

 i ( t + 1 ) = S i ( t ) + Q i ( t ) −
[

( A i ( t ) × E v i ( t ) ) 
10 0 0 

]
− M n ×n R i (t) 

i = 1 , 2 , . . . , n ; t = 1 , 2 , . . . , T (25) 

here S i ( t ) = reservoir storage in period t and reservoir i;

 i ( t ) = reservoir inflow in period t and reservoir i (m 

3 ); A i ( t ) = reser-

oir area in period t and reservoir i; Ev ( t ) = reservoir evaporation
i 
n period t and Reservoir i (mm), (input and output of reservoir,

ee Fig. 4 ), and M = a n × n matrix of indices of reservoir connectiv-

ty of water releases and inflow (the relations between reservoirs

ased on inflow and outflow, see Fig. 5 ). 

Releases from the reservoirs are constrained: 

mi n i ≤ R i (t) ≤ Rma x i i = 1 , 2 , . . . , n ; t = 1 , 2 , . . . , T (26) 

here Rmin i = minimum release in Reservoir i (m 

3 ) , and Rmax i =
aximum release in Reservoir i (m 

3 ), R i ( t ) is modified as follows

hen P i ( t ) exceeds the PPC in the hydropower reservoir: 

 i (t) = 

P P C × 0 . 2 × 30 × 24 × 3600 

9810 × 0 . 88 × ( H i (t) − 845) 

i = 1 , 2 , . . . , n ; t = 1 , 2 , . . . , T (27) 

 i ( t ) in Eq. (27) was obtained by combining Eqs. (21) and ( 22 ). The

onstraint on reservoir storage is: 

mi n i (t) ≤ S i (t) ≤ Sma x i (t) i = 1 , 2 , . . . , n ; t = 1 , 2 , . . . , T (28) 

n which Smin i ( t ) = minimum storage in period t and Reservoir i

m 

3 ) , and Smax i ( t ) = maximum storage in period t and Reservoir i

m 

3 ). Spillage is calculated when reservoir storage [ S i ( t )] exceeds

ts maximum storage [ Smax i ( t )] as follows: 

 p i (t) = S i (t) − S max 
i 

⇒ S i (t) = S max 
i 

i = 1 , 2 , . . . , n ;
t = 1 , 2 , . . . , T (29) 

here Sp i ( t ) = spillage in period t and Reservoir i (m 

3 ). 

Moreover, the initial storage of Reservoir i ( Sinitial i , m 

3 ) is made

qual to the ending storage of Reservoir i ( Starget i , m 

3 ) (the peri-

dicity constraint): 

in itia l i = St arg e t i i = 1 , 2 , ..., n (30) 

f the reservoir storage does not meet the constraints ( 28 ) and ( 30 ),

he result would be infeasible. Therefore, penalty functions must
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Table 1 

Reservoir inflow ( Q ) and reservoir evaporation ( Ev ) in 60 operating periods. 

Year Q (10 6 m 

3 ) Ev (mm) 

1 2 3 4 5 For 5 years 

Month 1 217 .4 191 .6 210 .8 160 .8 128 .3 158 .4 

2 220 .2 220 .2 211 186 .2 123 .4 77 .9 

3 250 .7 240 .4 226 .0 205 .1 213 .7 55 .2 

4 148 .4 199 .0 161 .3 124 .9 136 .7 49 .9 

5 262 .6 701 .8 354 .9 326 .9 216 .9 64 .4 

6 344 .4 1012 .7 943 .0 455 .4 452 .3 80 .7 

7 1118 .3 1969 .5 1031 .9 714 .2 613 .8 131 .1 

8 1120 .3 1170 .9 762 .6 548 .4 486 .8 165 .8 

9 738 .5 722 .8 475 .3 340 .9 307 .1 238 .3 

10 431 .5 463 .6 290 .9 205 .6 181 .4 253 .3 

11 264 .8 305 .7 218 .8 164 .3 141 .6 259 .8 

12 208 .2 233 .9 184 .5 135 .4 125 .8 208 .2 
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be added. The penalty functions, Pe i ( t ), are expressed as follows: 

P ema x i (t) = P ema x i (t) + C max × [ Sma x i (t) − S i (t)] 2 

i = 1 , 2 , . . . , n ; t = 1 , 2 , . . . , T (31)

P emi n i (t) = P emi n i (t) + C min × [ Smi n i (t) − S i (t)] 2 

i = 1 , 2 , . . . , n ; t = 1 , 2 , . . . , T (32)

P etarge t i (t) = P etarge t i (t) + C target × [ Starge t i − Sinitia l i ] 
2 

i = 1 , 2 , . . . , n ; t = 1 , 2 , . . . , T (33)

where C max , C min , and C target = penalty coefficients for the viola-

tion of penalties on maximum storage ( Pemax ), minimum stor-

age ( Pemin ) and inequality penalties on initial and target stor-

age ( Petarget ), respectively. The penalized objective function be-

comes: 

Minimize F = k ×
n ∑ 

i =1 

T ∑ 

t=1 

(1 − P i (t) 

P P C 
) 

2 

− (1 − k ) 

×
[ 

n ∑ 

i =1 

T ∑ 

t=1 

a i (t) × R i (t) −
n ∑ 

i =1 

T ∑ 

t=1 

P ema x i (t) 

−
n ∑ 

i =1 

T ∑ 

t=1 

P emi n i (t) −
n ∑ 

i =1 

T ∑ 

t=1 

P etarge t i (t) 

] 

(34)

where k = 1 is for single reservoir for hydropower operation objec-

tive function and k = 0 is for the four-reservoir operation objective

function 

4. Case studies 

4.1. Single reservoir operation for power production 

The system consists of one reservoir for power production as

shown in Fig. 5 (a), where reservoir releases are used for hy-

dropower generation. The data used in this problem are based on

data of the Karon4 hydropower dam in Iran. The objective function

is to maximize power generation over a 5-year period or 60 oper-

ating periods (months) (or minimize power deficit) as written in

Eq. (34) with k = 1. The final storage in Reservoir 1 equals the be-

ginning storage, and the PPC is expressed in 10 0 0 watt ×10 3 (MW).

The matrix of indices of reservoir hydraulic connectivity for the

hydropower-reservoir problem is: 

M 1 ×1 = [ −1] (35)

Eq. (35) indicates an output from the hydropower reservoir when

there are not inputs from other reservoirs. Reservoir inflow, Q, and

reservoir evaporation, Ev, over the 60 operating periods are listed

in Table 1. 

Constraints posed on reservoir releases, R , and reservoir stor-

ages, S , (in 10 6 m3) are: 

0 ≤ R 1 (t) ≤ 450 t = 1 , 2 , . . . , 60 (36)

1441 . 29 ≤ S 1 (t) ≤ 2190 t = 1 , 2 , . . . , 60 (37)

The penalties C max , C min , and C target are equal to 0, 50, and 50, re-

spectively. The b 1j (area-volume constant) and d 1j (height-volume

constant) are listed in Table 2 . The objective function according to

Eq. (34) and k = 1 is as follows: 

Minimize F = 

n ∑ 

i =1 

T ∑ 

t=1 

(1 − P i (t) 

P P C 
) 

2 

(38)

where F = total power deficit. The decision variables of the objec-

tive function are the reservoir releases R ( t ). 
i 
.2. Four-reservoir system operation 

This problem was introduced and solved by Chow and Cortes-

ivera (1974) and by Murray and Yakowitz (1979) . Bozorg-Haddad

t al. (2011) solved this problem using HBMO, considering 220

opulations in the HBMO and using 50 0 0 iterations (approximately

 billion evaluations). Also, this problem is solved by Bozorg-

addad et al. (2015 , 2014a, b) using BBO (Biography-Based Opti-

ization), BA (Bat Algorithm) and WLA (Water Cycle Algorithm)

As respectively. In order to compare GSA with those proposed by

ther researchers, the problem is solved in this paper as well. No-

ice that this problem is a hypothetical example and accordingly,

he used data are without units (i.e., they are normalized). 

The system consists of four-reservoirs, as shown in Fig. 5 (b) and

eservoir releases are used for irrigation demand. The objective

unction is to maximize the sum of benefits from the four reser-

oirs according to Eq. (34) with k = 0 (or minimized the minus of

otal benefits). Each reservoir is operated in 1 year, or 12 operat-

ng periods (months). The initial storages equal the ending storages

periodicity constraint). The initial storages are: 

 i (1) = 

[
6 6 6 1 

]
i = 1 , 2 , 3 , 4 (39)

he matrix reservoir connectivity for the four-reservoir problem

s: 

1 2 3 4 

 4 ×4 = 

1 

2 

3 

4 

⎡ 

⎢ ⎣ 

−1 0 0 0 

0 −1 0 0 

0 1 −1 0 

1 0 1 −1 

⎤ 

⎥ ⎦ 

(40)

here 1, 2, 3 and 4 are the numbers (No.) of the reservoirs, and the

umbers 1 and −1 in the matrix show inflow and outflow to the

eservoirs, respectively. The inflows Q 3 ( t ) and Q 4 ( t ) are zero and,

ccording to Eq. (40) , the releases of Reservoir 2 are the inflows

o Reservoir 3 and the releases of the Reservoirs 3 and 1 are the

nflows to Reservoir 4 [ Fig. 5 (b)]. Constraints imposed on reservoir

eleases are: 
 

 

 

0 . 005 

0 . 005 

0 . 005 

0 . 005 

⎤ 

⎥ ⎦ 

≤ R i (t) ≤

⎡ 

⎢ ⎣ 

4 

4 . 5 

4 . 5 

8 

⎤ 

⎥ ⎦ 

i = 1 , 2 , 3 , 4 ; t = 1 , 2 , . . . , T (41)

he penalties C max , C min , and C target equal 40, 40, and 60, respec-

ively. The river inflows, Q, Smax, and Smin in the 12 operating pe-

iods are listed in Table 3 . The benefit functions, b , are listed in

able 4 . The objective function according to Eq. (34) is as follows

 K = 0): 

aximize F = 

n ∑ 

i =1 

T ∑ 

t=1 

a i (t) × R i (t) −
n ∑ 

i =1 

T ∑ 

t=1 

P ema x i (t) 
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Table 2 

Area-storage coefficients and height-storage coefficients for hydropower production reservoir. 

Coefficient i = 0 i = 1 i = 2 i = 3 i = 4 

b 1 1 .0143 0 .0357 −2 .9825 × 10 −5 1 .4117 × 10 −8 −2 .3491 × 10 −12 

d 1 864 .6173 0 .3077 −0 .0 0 03 1 .5737 × 10 −7 −2 .7228 × 10 −11 

Table 3 

Reservoir inflow (units) and storage (units) constraints in 12 operating periods 

for the four- reservoir system problem. 

Reservoir Smax Smin Q 

1 2 3 4 For 4 reservoirs 1 2 

Month 1 12 15 8 15 1 0 .50 0 .40 

2 12 15 8 15 1 1 .00 0 .70 

3 10 15 8 15 1 2 .00 2 .00 

4 9 12 8 15 1 3 .00 2 .00 

5 8 12 8 15 1 3 .50 4 .00 

6 8 12 8 15 1 2 .50 3 .50 

7 9 15 8 15 1 2 .00 3 .00 

8 10 17 8 15 1 1 .25 2 .50 

9 10 18 8 15 1 1 .25 1 .30 

10 12 18 8 15 1 0 .75 0 .75 

11 12 18 8 15 1 1 .75 1 .75 

12 12 15 8 15 1 1 .00 1 .00 
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Table 5 

Characteristics of the GSA and GA applied to the 

hydropower-reservoir problem. 

GSA parameters 

G 0 50 

α 1 

GA parameters 

Mutation rate 0 .05 

Mutation function Uniform 

Crossover function 0 .6 

Crossover fraction Roulette wheel 

GSA and GA parameters 

Population 70 

Iteration 10 0 0 

Objective function evaluation 70 ,0 0 0 

Fig. 6. Convergence paths to a near-optimal solution with 70,0 0 0 functional evalu- 

ations in hydropower-reservoir problem. 

(  
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i  
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a  

t  
−
n ∑ 

i =1 

T ∑ 

t=1 

P emi n i (t) −
n ∑ 

i =1 

T ∑ 

t=1 

P etarge t i (t) (42) 

he decision variables of the objective function are the reservoir

eleases R i ( t ). 

. Results and discussions 

The results of the single-reservoir operation and four-reservoir

peration are discussed in the next two sections. Those corre-

ponding to the benchmark mathematical functions are found in

he Appendix . 

.1. Results for single reservoir operation (power production) 

The optimal operation of single reservoir (Karun4) was solved

sing the GSA method, and compared with solutions calculated

ith GA and nonlinear programming (NLP). Also, the results of this

tudy were compared with that of proposed by Bozorg-Haddad et

l. (2015 , 2014a, b) using BBO, BA, and WLA EAs. The GSA and

A were programmed with the MATLAB ( 2007 ). Also, to achieve

he global solution, the NLP method was implemented in Lingo

1.0 (obtained after 16 hours of processing time with Intel Core

7-2.93 GHz processor). The parameters of the GSA and GA algo-

ithms are listed in Table 5 . Notice that without having the global

olution from NLP it would be impossible to assess how accurate

re the GSA and GA solutions. 

The GSA and GA were initialized with random solutions, thus,

here always is a possibility that an individual run may misrepre-

ent their capabilities. Therefore, 10 different runs of GA and GSA
ere carried out with the same number of functional evaluations s  

Table 4 

Benefit functions in 12 operation periods for four-rese

Month 1 2 3 4 5 

Reservoir 1 1 .1 1 .0 1 .0 1 .2 1 .8 

2 1 .4 1 .1 1 .0 1 .0 1 .2 

3 1 .0 1 .0 1 .2 1 .8 2 .5 

4 2 .6 2 .9 3 .6 4 .4 4 .2 
equal to 70,0 0 0). The global solution was 1.213 ×10 3 W using the

LP method. 

The average convergence paths of GSA and GA are presented in

ig. 6 . These results establish that the GSA has better and faster

onvergence than GA towards the optimal solution. 

The results of 10 different runs of the GSA and GA are presented

n Table 6 and Fig. 7 . The coefficient of variation of the GSA is less

han the coefficient of variation of the GA and consequently the

recision of the GSA exceeds that of the GA (see Table 6 ). The rel-

tive error associated with the average value of the objective func-

ion with 70,0 0 0 GSA functional evaluations compared to the op-

imal solution is 0.4%. The relative error equation was calculated

ccording to (GSA result- optimal solution) × 100/ optimal solu-

ion. In summary, Fig. 7 shows that the GSA outperforms the GA in

olving this reservoir production problem. The best and the worst
rvoir system problem. 

6 7 8 9 10 11 12 

2 .5 2 .2 2 .0 1 .8 2 .2 1 .8 1 .4 

1 .8 2 .5 2 .2 2 .0 1 .8 2 .2 1 .8 

2 .2 2 .0 1 .8 2 .2 1 .8 1 .4 1 .1 

4 .0 3 .8 4 .1 3 .6 3 .1 2 .7 2 .5 
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Table 6 

Results for 10 different runs of the hydropower-reservoir problem. 

No. of run GSA ∗(10 3 W) GA ∗ (10 3 W) NLP (10 3 W) 

1 1 .219 1 .672 1 .213 

2 1 .218 1 .549 

3 1 .218 1 .864 

4 1 .216 1 .752 

5 1 .218 1 .986 

6 1 .217 1 .752 

7 1 .218 1 .931 

8 1 .219 1 .569 

9 1 .216 1 .841 

10 1 .217 1 .534 

Best 1 .216 1 .534 

Worst 1 .218 1 .986 

Reliability Average 1 .217 1 .745 

Standard deviation 0 .0 0 09 0 .161 

Coefficient of variation 0 .0 0 07 0 .092 

∗ with 70,0 0 0 functional evaluations employing the GSA and the GA 

Fig. 7. The results of 10 different runs for the hydropower-reservoir problem. 

Fig. 8. The best and the worst convergence paths over 10 runs for the hydropower- 

reservoir problem. 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Monthly reservoir release for the hydropower-reservoir problem. 

Fig. 10. Monthly storage for the hydropower-reservoir problem. 

Table 7 

Characteristics of GSA and GA used in four-reservoir 

system problem. 

GSA parameters 

G 0 3 

α 5 

GA parameters 

Mutation rate 0 .06 

Mutation function Uniform 

Crossover function 0 .7 

Crossover fraction Roulette wheel 

GSA and GA parameters 

Population 200 

Iteration 2500 

Objective function evaluations 500 ,0 0 0 
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T  
results of 10 runs with 70,0 0 0 functional evaluations are plotted

in Fig. 8 . Also, the worse and the best objective function values

are 1.218 and 1.216 (10 3 W), respectively. Notice that the process-

ing time of the GSA algorithm was less than two minutes in each

run. A decreasing value of the objective function with increasing

number of functional evaluations is evident in Fig. 8. 

Monthly reservoir release and storage are presented in Figs. 9

and 10 , respectively. These results show that all releases and stor-

age are in the range of feasible solutions. The GSA results are closer

to the optimal solution than the GA results. For example, at the be-

ginning and end of the operation period in Fig. 10 the GA results

and differ from those of NLP noticeably. 
.2. Results for the four-reservoir system operation 

The optimal operation of the four-reservoir was solved using

he GSA method, and compared with solutions calculated with GA

nd LP. The GSA and GA were programmed with MATLAB ( 2007 ).

he LP method was applied employing Lingo 11.0 and the obtained

lobal solution was 308.2, which is similar to the reported result

y Chow and Cortes-Rivera (1974) . The quality of the GSA solutions

as determined by comparing its results with global solutions. The

arameters of GSA and GA are listed in Table 7. 

Ten different runs of the GA and the GSA were analyzed and

ompared using 50 0,0 0 0 functional evaluations. Table 8 lists the

esults of 10 different runs. The results show that coefficient of

ariation of the GSA is very low and its reliability is very high.

he relative error associated with the average value of the objec-
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Table 8 

Results for 10 different runs in four-reservoir system problem. 

No. of run GSA ∗ GA ∗ LP 

1 308 .5 300 .4 308 .2 

2 308 .7 298 .8 

3 308 .6 300 .0 

4 308 .3 300 .4 

5 307 .9 298 .4 

6 308 .1 300 .0 

7 308 .1 299 .2 

8 308 .5 299 .8 

9 308 .5 299 .2 

10 308 .7 300 .3 

Reliability Best 308 .6 300 .4 

Worst 307 .8 298 .4 

Average 308 .3 299 .6 

Standard deviation 0 .277 0 .705 

Coefficient of variation 0 .0 0 08 0 .002 

∗ With 50 0,0 0 0 functional evaluations employing the GSA and the GA 

Fig. 11. The results of 10 different runs for the four-reservoir problem. 

Fig. 12. Convergence paths to a near-optimal solution with number of functional 

evaluation for the four-reservoir system. 
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Fig. 13. The best and the worst convergence paths over 10 runs for the four- 

reservoir problem with the GSA. 

Fig. 14. Monthly release (unit) in the four-reservoir problem. 

Fig. 15. Monthly storage (unit) in the four-reservoir problem. 
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c  
ive function with 50 0,0 0 0 functional evaluations for GSA and GA

re about 0.4% and 0.7% compared to global solution (the LP re-

ult), respectively (see Fig. 11 ). 

The convergence paths of the GSA and the GA are compared

ith the global solution’s in Fig. 12 , where it is established the

uperior performance of the GSA relative to the GA. It is clear that

fter 50 0,0 0 0 functional evaluations there is a better convergence

o the near-optimal solution by the GSA than by the GA. 

Results obtained for the best and the worst solution in 10 runs

re presented in Fig. 13 . Monthly releases and storages for the four

eservoirs along with the allowable range of releases and storages

re presented in Figs. 14 and 15 , respectively. It is noted that all re-
eases and storages are within the range of feasible solutions with

o constraint violations. 

.3. Comparing GSA results with the results of BA, BBO, and WCA 

In order to evaluate the ability of GSA, single reservoir opera-

ion and four-reservoir system operation were solved using GSA.

lso, Bozorg-Haddad et al. (2015 , 2014a , b ) solved these problems

ith BBO, BA and WLA EAs with the same data and the same func-

ion evaluations. 

Ten different runs of the GSA and the BBO, BA and WLA were

ompared in this study. Note that in all cases, 70,0 0 0 function eval-
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Table 9 

Results for 10 different runs of GSA, BA, WLA and BBO in single reservoir operation and four-reservoir system 

operation. 

Number of run Single reservoir operation Four-reservoir system operation 

BA WLA BBO GSA BA WLA BBO GSA 

1 1 .233 1 .289 1 .232 1 .219 308 .20 306 .83 308 .00 308 .50 

2 1 .235 1 .269 1 .239 1 .218 307 .12 302 .40 308 .02 308 .70 

3 1 .254 1 .287 1 .227 1 .218 307 .41 303 .65 308 .12 308 .60 

4 1 .236 1 .260 1 .235 1 .216 307 .93 303 .60 307 .56 308 .30 

5 1 .237 1 .289 1 .223 1 .218 308 .09 302 .38 307 .11 307 .90 

6 1 .250 1 .285 1 .223 1 .217 307 .95 306 .01 307 .88 308 .10 

7 1 .237 1 .281 1 .227 1 .218 308 .09 304 .05 307 .57 308 .10 

8 1 .234 1 .279 1 .223 1 .219 308 .03 306 .75 308 .08 308 .50 

9 1 .235 1 .286 1 .229 1 .216 307 .62 306 .63 308 .00 308 .50 

10 1 .241 1 .262 1 .225 1 .217 308 .02 306 .92 306 .55 308 .70 

Global solution 1.213 308.20 

Average 1 .254 1 .279 1 .228 1 .217 307 .12 304 .92 307 .69 308 .30 

Relative error% 3 .41 5 .44 1 .23 0 .33 0 .350 1 .064 0 .165 0 .032 

Worst 1 .233 1 .289 1 .223 1 .216 308 .20 306 .92 308 .12 308 .70 

Best 1 .239 1 .260 1 .239 1 .218 307 .84 302 .38 306 .55 308 .10 

Standard deviation 0 .007 0 .010 0 .005 0 .001 0 .350 1 .887 0 .511 0 .277 

Coefficient of variation 0 .006 0 .008 0 .004 0 .001 0 .001 0 .006 0 .002 0 .001 

Fig. 16. The results of 10 different runs problem of GSA, BA, WCA and BBO for the 

single reservoir operation. 

Fig. 17. The results of 10 different runs of GSA , BA , WCA and BBO for the four- 

reservoirs system operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Convergence paths of GSA, BA, WCA and BBO to a NLP solution with num- 

ber of functional evaluations for the single reservoir operation. 
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uation in single reservoir operation and 50 0,0 0 0 functional evalu-

ations in four-reservoirs system operation were considered. Table

9 lists the results of the 10 different runs. The results show that,

the coefficient of variation and the standard deviation associated

with GSA results are significantly lower than other EAs. The av-

erage value of the 10-objective function in GSA are more close to

global solutions (see Figs. 16 and 17 ). Also, the relative error as-

sociated with the average value of the objective function for GSA,

BBO, BA and WLA were calculated and listed in Table 9 . The com-

puted relative errors associated with GSA was considerably lower

than other EAs. 

The convergence paths of the GSA, BBO, BA and WLA were com-

pared with the global solutions in Figs. 18 and 19 . The results show

that GSA has better and faster convergence than other algorithms

towards the optimal solution where it is established the superior
erformance of the GSA relative to these EAs (BBO, BA and WLA).

n summary, the results of the GSA demonstrate its ability and ef-

ciency for solving water-resource optimization problems. 

. Concluding remarks 

Evolutionary optimization algorithms have been widely used to

olve complex water management problems. The gravity Search

lgorithm, GSA, which is based on the Newton’s law of gravi-

ation, is one type of such evolutionary optimization algorithm.

he GSA’s performance was evaluated in this paper by minimiz-

ng three benchmark functions, i.e. Bukin6, Rosenbrock, and Sphere

nd by solving a hydropower optimization problem, and a four-

eservoir optimization problem. Consequently, the applicability and

calability of GSA were evaluated by using different type of ob-

ective functions such as LP and NLP and also with different scale

r type of problems such as single reservoir operation and multi-

eservoir operation problems. The GSA was compared to the Ge-

etic Algorithm (GA), a well-known and reliable EA, for solving

hese sets of problems. The results indicated that the GSA could



O. Bozorg-Haddad et al. / Advances in Water Resources 98 (2016) 173–185 183 

Table 10 

Specification of the benchmark functions. 

Function Sphere Rosenbrock Bukin6 

Equation 
n ∑ 

1=1 

x 2 
i 

n −1 ∑ 

i =1 

[100 ( x i +1 − x 2 
i 
) 

2 + ( x i − 1) 
2 
] 100 

√ | x 2 − 0 . 01 x 2 
1 
| + 0 . 01 | x 1 + 10 | 

Global minimum 

f ( x ∗) = 0 

x ∗ = (0 , . . . , 0) 

f ( x ∗) = 0 

x ∗ = (1 , . . . , 1) 

f ( x ∗) = 0 

x ∗ = (−10 , 1) 

Variable range − 5 .12 ≤ x i ≤ 5.12 − 2 .048 ≤ x i ≤ 2.048 − 15 ≤ x 1 ≤ −5, −15 ≤ x 2 ≤ −5 

Fig. 19. Convergence paths of GSA , BA , WCA and BBO to a LP solution with number 

of functional evaluations for the four- reservoir system. 
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f

nd solutions more rapidly and with better accuracy than the GA.

he relative errors of the average value of the GSA objective func-

ion associated with the hydro-power reservoir optimization (the

arun4 reservoir) and four-reservoir system compared to the op-

imal solution were equal to 0.4% and 0.3% respectively. The rela-

ive errors of the GA were 30% and 3% of the optimal solutions for

he two same reservoir problems, respectively. The standard de-

iations of the GSA results were lower than those of the GA in

0 runs of the operations of the single and multi-reservoir prob-

ems. The standard deviations of the GSA were 0.0 0 09 and 0.277

or the Karon4 reservoir and the four-reservoir operations system,

espectively. Concerning the GA results the standard deviations of

ts solutions from 10 runs were 0.161 and 0.705 for the single

eservoir and four-reservoir problems, respectively. Consequently

he reliability of the GSA exceeded the GA’s. Approximately simi-

ar numbers of populations, iterations, and objective function eval-

ations were applied to obtain the associated parameters of the

SA and the GA. However, the results indicated that the tuning

f the GSA parameters was simpler and its run time was faster
Fig. 20. Benchmark functions: (a) Sphere, (b) Rosenbrock, and (c) 
han the GA’s. This is another advantage of the GSA over the GA.

n summary, the results of the GSA demonstrate its applicability,

calability, and efficiency for solving water-resource optimization

roblems. 

ppendix. Verifying the GSA with benchmark functions 

The performance of the GSA algorithm was evaluated with

hree standard benchmark functions. These benchmark functions

re the Sphere, Rosenbrock and Bukin6 functions that have strik-

ngly different geometries but have a minimum equal to zero in

ll three cases. Details of the three functions are presented in Fig.

0 and Table 10. 

The GSA was compared with the GA [GSA and GA were pro-

rammed with MATLAB ( 2007 )] by minimizing the three bench-

ark functions applying 9001 functional evaluations in each of 10

uns used to approximate the global minimum. Notice that each of

he 10 runs was reported to ensure the results are not fortuitous.

rom these evaluations the worst, the best, and the average solu-

ions from the 10 runs were calculated. 

The results and statistical measures derived from the 10 differ-

nt runs are listed in Fig. 21 and Table 11 . Notice that Fig. 21 dis-

lays the unique solution (equal to zero) obtained with nonlinear

rogramming (NLP) implemented by using LINGO 11.0. The very

ow coefficient of variation from the 10 runs is an indication of

he convergence to a close region enveloping the global minimum.

he average values of the GSA objective functions for 10 differ-

nt runs with 9001 functional evaluations each are closer to the

lobal minima than those obtained with the GA. Since for single

bjective algorithms, reliability is represented by the average and

tandard deviation ( Marchi et al., 2014 ), it can be said the relia-

ility of GSA was more than GA. On the other hand, the increas-

ng reliability is associated with decreasing the standard division

nd the average EAs’ results in severa runs are close to the global

olution. 

Fig. 22 presents the convergence paths for the GA and GSA. It 

s seen in Fig. 22 that the GSA converges close to the global min-

ma after 9001 functional evaluations. The convergence paths of

he GSA to the best and the worst solutions over the 10 runs are

resented in Fig. 23. 

The previous results confirm the excellent performance of the

SA method in solving the chosen nonlinear functions, in which it

ared better than the GA. 
Bukin6 (The global minimum equals zero in each function). 
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Fig. 21. The results of 10 different runs for (a) Sphere, (b) Rosenbrock, and (c) Bukin6 functions. 

Table 11 

Minimization results for 10 different runs using benchmark functions. 

Problem Sphere Rosenbrock Bukin6 

GA GSA ∗ GA GSA ∗ GA GSA ∗

1 0 .04 0 .0 0 016 0 .00269 0 .0 0 0 0 013 0 .08 0 .008 

2 0 .05 0 .0 0 0 09 0 .0 0 047 0 .0 0 0 0 0 04 0 .04 0 .001 

3 0 .11 0 .0 0 0 07 0 .0 0 023 0 .0 0 0 0188 0 .05 0 .026 

No. of run 4 0 .05 0 .0 0 0 06 0 .00105 0 .0 0 0 0 045 0 .02 0 .009 

5 0 .07 0 .0 0 0 06 0 .0 0 0 03 0 .0 0 0 0206 0 .04 0 .022 

6 0 .13 0 .0 0 0 09 0 .0 0 0 01 0 .0 0 0 0 024 0 .05 0 .005 

7 0 .07 0 .0 0 0 06 0 .0 0 0 01 0 .0 0 0 0 0 07 0 .06 0 .003 

8 0 .07 0 .0 0 0 05 0 .0 0 048 0 .0 0 0 0 0 06 0 .06 0 .014 

9 0 .08 0 .0 0 0 05 0 .0 0 013 0 .0 0 0 0 010 0 .04 0 .018 

10 0 .08 0 .0 0 0 09 0 .0 0 0 05 0 .0 0 0 0 0 02 0 .05 0 .012 

Best 0 .04 0 .0 0 0 05 0 .0 0 0 01 0 .0 0 0 0 0 02 0 .02 0 .001 

Worst 0 .13 0 .0 0 016 0 .00269 0 .0 0 0 0206 0 .08 0 .026 

Reliability Average 0 .08 0 .0 0 0 08 0 .0 0 052 0 .0 0 0 0 050 0 .05 0 .012 

Standard deviation 0 .02 0 .0 0 0 03 0 .0 0 0829 0 .0 0 0 0 078 0 .01 0 .008 

Coefficient of variation 0 .33 0 .420 0 0 1 .595149 1 .5340490 0 .30 0 .674 

∗ with 9001 functional evaluations employing the GSA and GA algorithm (10 population, 10 0 0 iteration and 1 

elite selection) 

Fig. 22. Convergence paths to a near-optimal solution with number of functional evaluations for (a) Sphere, (b) Rosenbrock, and (c) Bukin6 functions. 
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Fig. 23. The best and the worst solutions over 10 runs for the (a) Sphere, (b) Rosenbrock, and (c) Bukin6 functions. 
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