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CloneRetriever: An Automated Algorithm to Identify
Clonal B and T Cell Gene Rearrangements by

Next-Generation Sequencing for the Diagnosis of
Lymphoid Malignancies

Eitan Halper-Stromberg ,a Chad M. McCall,b Lisa M. Haley ,a Ming-Tseh Lin,a Samantha Vogt,c

Christopher D. Gocke,a,d James R. Eshleman,a,d Wendy Stevens,e Neil A. Martinson,c,f Marta Epeldegui,g

Matthias Holdhoff,d Chetan Bettegowda,h,i Michael J. Glantz,j Richard F. Ambinder,d and Rena R. Xian a,d,*

BACKGROUND: Clonal immunoglobulin and T-cell re-
ceptor rearrangements serve as tumor-specific markers
that have become mainstays of the diagnosis and moni-
toring of lymphoid malignancy. Next-generation se-
quencing (NGS) techniques targeting these loci have
been successfully applied to lymphoblastic leukemia and
multiple myeloma for minimal residual disease detec-
tion. However, adoption of NGS for primary diagnosis
remains limited.

METHODS: We addressed the bioinformatics challenges
associated with immune cell sequencing and clone de-
tection by designing a novel web tool, CloneRetriever
(CR), which uses machine-learning principles to gener-
ate clone classification schemes that are customizable,
and can be applied to large datasets. CR has 2 applica-
tions—a “validation” mode to derive a clonality classi-
fier, and a “live” mode to screen for clones by applying a
validated and/or customized classifier. In this study,
CR-generated multiple classifiers using 2 datasets com-
prising 106 annotated patient samples. A custom classi-
fier was then applied to 36 unannotated samples.

RESULTS: The optimal classifier for clonality required clonal
dominance �4.5� above background, read representation
�8% of all reads, and technical replicate agreement.
Depending on the dataset and analysis step, the optimal
algorithm yielded sensitivities of 81%–90%, specificities
of 97%–100%, areas under the curve of 91%–94%, posi-
tive predictive values of 92–100%, and negative predictive

values of 88%–98%. Customization of the algorithms
yielded 95%–100% concordance with gold-standard clon-
ality determination, including rescue of indeterminate sam-
ples. Application to a set of unknowns showed concordance
rates of 83%–96%.

CONCLUSIONS: CR is an out-of-the-box ready and user-
friendly software designed to identify clonal rearrange-
ments in large NGS datasets for the diagnosis of lym-
phoid malignancies.

Introduction

Lymphoid malignancies harbor uniquely rearranged im-
munoglobulin (Ig), or T-cell receptor (TCR), genes that
serve as clonal markers of disease. Identification of
clonal rearrangements is critical to the diagnosis and
monitoring of lymphoblastic leukemia, lymphoma, and
multiple myeloma. Given the clinical importance, Ig
and TCR clonality assessment by Southern blot and
PCR has been performed for over 20 years (1, 2). With
the advancements in massively parallel sequencing, sev-
eral next-generation sequencing (NGS)-based technolo-
gies (3–6) are now available to study lymphoid
malignancies, as well as interrogate the immune reper-
toire (7). NGS technologies can improve sensitivity and
specificity of primary diagnosis (5, 8, 9), and can also
monitor treatment response (10–12). Such techniques
have enabled the study of tumor-derived cell-free DNA
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in patients with lymphoma, even longer V(D)J rear-
rangements exceeding 150 bases (13), supporting a role
for Ig clonality in liquid biopsies (13–15).

To date, PCR remains the gold-standard method
for Ig and TCR clone detection in clinical practice.
Although this technique was standardized in 2003 (1,
16, 17), and early attempts were made to address inter-
pretation challenges (18), consensus interpretation
guidelines remained elusive for nearly a decade thereaf-
ter (19). Collaborative efforts from the EuroClonality-
NGS working group (20) are beginning to standardize
immune cell sequencing for minimal residual disease de-
tection, but there are no available recommendations for
the interpretation of NGS data for the diagnosis of lym-
phoid malignancies, despite good concordance between
PCR and NGS methods (5, 9, 20). The lack of stan-
dardization of the technique and/or interpretation
guidelines contributes to the limited adoption of Ig and
TCR NGS for the diagnosis of lymphoid malignancies.

A major problem encountered with Ig and TCR
sequencing is that the large datasets generated by NGS re-
quire several steps of data processing before human-read-
able outputs can be reviewed. This often requires
customized bioinformatics pipelines bespoke to specific
sequencing chemistries, assays, and research and clinical
questions. To address this problem, several publicly avail-
able tools have been developed and customized for the Ig
and TCR loci to perform immune repertoire profiling
and clonality detection (21–24). Some of these tools are
able to process raw FASTQ files to generate aligned and
filtered clonotypes (24), while other tools streamline
workflows, incorporate data quality analyses, as well as
statistical and plotting functions that can summarize large
cohorts (23, 25). However, very few groups have
addressed clonality interpretation in the NGS era. Those
that have, have used a variety of criteria, thresholds, and
interpretation caveats without clear consensus (5, 9, 11,
12, 20). Different groups have used absolute read depth,
relative read depth, and relative clone dominance, as well
as other features to determine clonality. This small num-
ber of variables makes an attempt at recapitulating the
pattern recognition that an experienced reviewer applies
to the interpretation of PCR-based clonality assays.
Nevertheless, subtle variations in interpretation, such as
oligoclonal and gray-zone calls, are lost this way.

With an eye toward future standardization of NGS
clone interpretation, we have developed an automated
algorithm that simplifies the identification of clonal Ig
and TCR gene rearrangements. This tool addresses
obstacles related to clonal criteria determination and
clone detection on a large scale, and returns some of the
visual cues of PCR-based techniques back in control of
the user. The present study summarizes the design, de-
velopment, and validation of CR using distinct patient

cohorts, and demonstrates the accuracy and flexibility of
this intuitive and novel tool.

Methods

SAMPLE SELECTION AND SEQUENCING

A total of 142 deidentified patient samples (92 from site
1, Johns Hopkins University and 50 from site 2, Duke
University) were studied after appropriate institution re-
view. DNA was extracted from 58 plasma, 31 formalin
fixed paraffin embedded (FFPE) tissue, and 3 cerebral
spinal fluid from site 1, and 23 FFPE, 16 whole blood, 7
bone marrow aspirate, and 4 fresh tissue from site 2
(summarized in Tables S1 and S2 in the online Data
Supplement). Sequencing libraries from site 1 were pre-
pared using 10–50 ng of input DNA per reaction using
the LymphoTrackVR immunoglobulin heavy chain (IGH
FR1, FR2, FR3) MiSeq panel (Invivoscribe Inc.) per ven-
dor protocols with minor adjustments. Sequencing librar-
ies from site 2 were prepared using 50 ng of input DNA
per reaction using either the LymphoTrack TRG-PGM,
IGH FR1-PGM, IGH FR3-PGM or IGK-PGM assays
(Invivoscribe) following vendor protocols. See online
Supplemental Table S1 and the Supplemental Methods.

GOLD-STANDARD DATA INTERPRETATION

As a reference standard for comparison against CR-derived
interpretations, the following criteria were used (Table 1).
In brief, at site 1, visual assessment of clonality was per-
formed by 2 molecular pathologists. The top 200 unique
reads from each sequencing reaction were used to generate
histograms using GraphPad Prism (v.8.4.3, GraphPad
Software). A sample was considered clonal if �1 primer
set(s) was clonal, either mono- or bi-allelic, with the same
sequence(s) in both replicates. When clonal dominance
was deemed borderline by visual review, the top 10 merged
reads were reviewed to confirm that the candidate clone
was �4� the fourth ranked sequence. This threshold was
adopted based on previously published studies (5, 12).
Dominant sequences that were found in both replicates
but were on average <4� the fourth ranked sequence
were deemed indeterminate (IND). In brief, at site 2, clon-
ality interpretation was performed by one laboratory tech-
nologist followed by one pathologist according to
previously validated clinical laboratory criteria. A sample
was deemed clonal if�1 primer set(s) were clonal in singli-
cate. Primer sets showing candidate clones that met 1, but
not both, criteria were deemed IND. Seventy-five percent
(106/142) of the samples were annotated before CR analy-
ses (online Supplemental Table S3).

CLONERETRIEVER DATA PROCESSING

CloneRetriever (CR) is a python-based automated pipe-
line used to analyze Ig and TCR gene rearrangement
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sequences from NGS. CR is deployed as a web applica-
tion (https://clone-retriever.herokuapp.com) using the
Heroku cloud platform (Salesforce) and the Streamlit
python library (Streamlit Inc.). Two applications,
“validation” and “live,” are available. To assess the func-
tionality of validation mode, NGS data files (top 10
merged read files) from 106 annotated samples were
processed through CR to train and validation clonal
classifiers (Fig. 1). Each row/sequence within a sequenc-
ing file was annotated by gold-standard interpretation as
clonal (1), nonclonal (0), or IND (0). In this portion of
the study, IND sequences were grouped as nonclonal.
Seventy-three percent (41/56) of the annotated samples
from site 1, all of the plasma samples, served to train a
classifier using 3 features: repeatability, clonal domi-
nance (fold change above fourth ranked sequence), and
read representation (merged count of sequence divided
by total count). Fragment length and V, or J gene, usage
were not considered for this analysis. See online
Supplemental Methods.

CLONERETRIEVER DATA ANALYSIS TO TRAIN A CLASSIFIER

Using these inputs, a logistic regression classification
was performed using the 3 aforementioned features and
the sequence-level annotation of clonality (0 or 1) as the
outcome. The classifier mimics visual review considera-
tions by using “AND” among the features, as opposed
to “OR”. To input this logic into the classifier, and be
able to subsequently return discrete values for each

variable, a single predictor term that encapsulates all 3
features was derived. This term was defined as
f(v)¼ clonal dominance� repeatability� read represen-
tation (online Supplemental Methods). After calculating
this term for each sequence, one half of the training data

Table 1. Gold-standard clonal criteria.

Site 1 Site 2

Clonal criteria

Clone rank 1st or 2nd 1st or 2nd

Repeatability Found in duplicate as 1st or 2nd NA

Clonal dominance �4� over 4th �5� over 5th (B cell)
�6.1� over 4th (T cell)

Read representation Not applicable AND � 5% of all reads

Indeterminate criteria

Clone rank 1st or 2nd 1st or 2nd

Repeatability Found in duplicate as 1st or 2nd Not applicable

Clonal dominance <4� over 4th �5� over 5th (B cell)
�6.1� over 4th (T cell)

Read representation Not applicable OR � 5% of all reads

Clonal sample (B cell) �1 clonal framework for IGH �1 clonal framework for IGH or clonal IGK

Features for optimization

Repeatability Yes vs. no Not applicable

Clonal dominance Fold change (�) Fold change (�)

Read representation % %

Site 1 Data
N=56

Split into Training and 
Validation Datasets

Validation 
Data 1
(N=15)

Training Data
(N=41)

Site 2 Data
N=50

Generate Classifier 
using a Logistic 

Regression Model
f(x)

Validation 
Data 2
(N=50)

Visualize and Interact with Results

Fig. 1. Experimental design. B- and T-cell receptor gene
rearrangement sequencing data from a total of 106 mixed-
type samples were used to train and validate a clonality
classifier using CloneRetriever.
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was used to train a classifier. To maximize sensitivity as
a screening tool, the best classifier was defined as the
one yielding the highest sensitivity in the first half of the
training data with �0.8 specificity in the remaining
half. Confidence intervals were then generated for each
classifier using a bootstrapping approach.

CLONERETRIEVER DATA ANALYSIS TO VALIDATE THE

CLASSIFIER

To determine whether 1 or more features yielded higher
sensitivity/specificity, 3 possible classifiers were generated
from the training data. These classifiers were applied to
the remaining annotated samples from site 1 (validation
1) and all samples from site 2 (validation 2). A fourth
classifier was created to illustrate the role of repeatability
in validation 1. CR returns sequence-, primer-set-, and
sample-level performance and graphs, as CR was designed
to collapse replicate results, and multiple Ig, or TCR, tar-
gets for a sample to generate aggregate primer-set-level
and sample-level calls. Interactive controls in CR allow
further customization of a classifier to best fit a given
dataset. The custom classifier generated for site 1 was
then applied to the remaining unannotated samples
(39%, 36/92) from site 1 to assess CR “live” mode. The
CR calls on the sequence, primer-set and sample levels
were exported from CR, and provided to 2 pathologists
who performed consensus data review. The pathologists
compared the CR results against visual interpretations us-
ing gold-standard criteria (Table 1).

Results

SEQUENCING DATA REPRESENTED DIVERSE SAMPLE TYPES,
TARGETS, AND CLONAL OUTCOMES

To assess generalizability of CR, data generated from 2
different sites using different targets (online
Supplemental Tables S1 and S2) and different gold-
standard interpretation criteria (Table 1) were analyzed.
A total of 142 samples (92 from site 1 and 50 from 2;
106 annotated and 36 unannotated) were studied com-
prising 62% fresh tissue samples and 38% formalin
fixed samples (online Supplemental Table S2). Samples
from site 1 comprised 55 nonhodgkin lymphoma, 16
classical Hodgkin lymphoma, and 21 controls without
lymphoma. Samples from site 2 were blinded to diagno-
ses, but comprised a mixture of lymphoid malignancies
and nonlymphoid processes. Seventy-one percent of
samples underwent Ig sequencing (IGH and/or IGK),
and 29% underwent TCR sequencing (TRG) generating
572 sequencing files (504 files from site 1 totaling 4861
rows of sequences in duplicate; 68 files from site 2 total-
ing 683 rows of sequences in singlicate). For the training
and validation studies, clonally annotated samples
(n¼ 96) were selected to mimic real-world conditions

with 31% defined as clonal, 59% as nonclonal, and 9%
as IND for clonality using gold-standard criteria (online
Supplemental Table S3). Representative histograms that
were used in the visual assessment of clonality at site 1
are shown in Fig. 2. These 96 samples yielded 356 indi-
vidual sequencing files (288 files from site 1 totaling
2756 rows of sequences generated in duplicate; 68 files
from site 2 totaling 683 rows of sequences generated in
singlicate) that were submitted to CR to train and vali-
date a classifier.

A THREE-FEATURE CLASSIFIER PERFORMED BETTER THAN 2-

OR 1-FEATURE CLASSIFIERS

Seventy-three percent (41/56) of the annotated samples
from site 1, all plasma samples, totaling 1875 sequences
in replicate, served to train a classifier in a divided man-
ner based on sequence-level sensitivity and specificity
described in the Methods. Training data yielded 3 dif-
ferent classifiers. Since data for validation 2 were only
available in singlicate, repeatability was always presumed
to be true, or 1, for those data, and the impact of repeat-
ability would not be directly assessed here (see later).
After training, the best classifier (Table 2) that used
both parameters (and assumed repeatability) corre-
sponded to a clonal dominance of �4.5� [95%
CI¼ (3.8�, 7.2�)] and a read representation �0.08
[95% CI¼ (0.02,0.08)]. Training using only one pa-
rameter showed classifiers that corresponded to higher
thresholds, either 16.9� [95% CI¼ (8.9�, 18.1�)]
clonal dominance, or 0.14 [95% CI¼ (0.12,0.20)] read
representation, respectively, and wider confidence inter-
vals. The sensitivities and specificities of all 3 classifiers
applied to the training data were similarly high (95–
100% sensitivity, 99–100% specificity). These classifiers
were then applied to the remaining annotated samples
(site 1: 27%, 15/56, 881 rows of sequences; site 2:
100%, 50/50, 683 rows of sequences) as validation data
1 and 2, respectively. Once these classifiers were applied
to the validation data, performance characteristics
changed (Table 2 and online Supplemental Table S4).
The three-feature classifier (classifier 1) showed superior
performance in both datasets. Whereas, classifier 3 out-
performed classifier 2 in validation 1, and classifier 2
outperformed classifier 3 in validation 2. Since the im-
pact of repeatability could not be formally assessed
above, we performed a subanalysis only using the 56
samples from site 1 to generate classifier 4 that only
used repeatability. Repeatability resulted in 100% sensi-
tivity across all levels of analysis, although specificity re-
duced to 92%, 91%, and 71% respectively. On the
sequence level, this classifier showed the lowest specific-
ity (92%), as compared to the other classifiers.

Since these classifiers were trained exclusively using
plasma samples, we next evaluated the effect of sample
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type on classification schemes by repeating training and
validation using a more similar admixture of samples.
The new training cohort included 29 plasma, 10 FFPE,
and 2 cerebral spinal fluid samples from site 1. Again, 4
different classifiers (5–8) were generated, and applied to
the remaining annotated validation data (online
Supplemental Table S5). The new classifiers showed
similar improvements in performance using a 3-feature
classifier, as opposed to a 2- or 1-feature classifier.
Overall, these new classifiers demonstrated superior per-
formance in the validation data, particularly on the sam-
ple level, and showed tighter 95% CI compared to the
original classifiers 1–4.

CUSTOMIZATION OF THE CLASSIFIER IDENTIFIED

INDETERMINATE (GRAY-ZONE) SAMPLES

Since CR classifiers were only trained to differentiate
clonal vs nonclonal results, IND clones were “lost” in the
nonclonal category in the previous analysis. In practice,
borderline findings are occasionally encountered. As it
would be inappropriate to classify these samples as either
clonal or nonclonal (5, 19), CR-generated classifiers can
be modified to rescue these gray-zone samples (Fig. 3).
To capture the IND samples (2 from site 1, 8 from site
2), manual manipulation (Fig. 4, A) of features and
thresholds was performed in CR to customize a classifier
that best fit the respective data. This exercise showed that
both datasets performed best when a 2-feature classifier
was applied (Fig. 3 and online Supplemental Fig. S1).

Clonal dominance and repeatability best delineated site 1
data, and read representation showed no added benefit;
whereas clonal dominance and read representation best
delineated site 2 data, as repeatability was not considered.
Data from site 1 showed that despite substantial overlap
in the log2 ratios of fold change among the 3 clonality
outcomes, the custom classifier showed 95% concor-
dance with the annotated sample-level interpretations.
Data from site 2 showed a more distinct log2 ratio of fold
change breakpoint between clonal and nonclonal sam-
ples, although indeterminate samples overlapped with
nonclonal samples. The site 2 custom classifier showed
100% concordance in clonality assignment.

APPLICATION OF THE CUSTOM CLASSIFIER TO UNKNOWN

SAMPLES SHOWED HIGH CONCORDANCE

The site 1 custom classifier was applied to the remaining
samples (n¼ 36) from site 1, which were annotated (on-
line Supplemental Fig. S3). From a total of 647 candi-
date clones (rank 1–3), 96% (619/647) were correctly
assigned as clonal, nonclonal, or IND. On the primer
set and sample levels, CR showed 92% and 83% con-
cordance with visual interpretations, respectively.
Discrepancies were related to differing thresholds for
clonal dominance (4.7� by CR vs 4� by visual review),
differences in clonotype read counts based on merged
(CR) and unmerged (visual review) reads, requirements
for threshold agreement between replicates (visual re-
view), as opposed to single/best-replicate (CR), and last

Fig. 2. IGH sequencing and gold-standard clonality determination (Site 1). (A), Primers used to sequence IGH. (B),
Representative histograms used for clonality determination. Unique VDJ sequences are separated by amplicon length (0–400
bases) versus read depth. (i) Clonal, bi-allelic. (ii) Clonal, mono-allelic, (iii). Clonal, mono-allelic. (iv). Indeterminate. (v).
Nonclonal, polyclonal. (vi). Nonclonal, pseudoclonal. All profiles are reproduced in replicate (data not shown).
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the lack of size range or V–J mapping parameters in CR.
For example, during visual review, the presence of a po-
tential clone outside of the expected primer-set size
range, or V-only or J-only sequence alignment, would
exclude a sequence from being clonal irrespective of
clonal dominance and/or repeatability. Besides export-
ing data, “live” mode of CR has additional web-based
functions, including a simple control panel (Fig. 4, A)
and plotting functions, such as a “Merge Count vs
Sample” graph, which allow users to rapidly identify

potentially clonal sequences and samples (Fig. 4B), and
likely nonclonal samples (online Supplemental Fig. S2).

Discussion

To address the analysis and interpretation needs pre-
sented by Ig and TCR rearrangement NGS, CR was
designed as an out-of-the-box ready and user-oriented
software useful for clonality interpretation. This study
summarized the design, training and validation of

Fig. 3. Custom classifiers in CloneRetriever. Sample-level results from all available data after applying site-specific custom classi-
fiers. (A), Custom classifier for site 1. (B), Custom classifier for site 2. Panels represents gold-standard clone evaluation. The x
axis shows either nonclonal (No), indeterminate (IND), or clonal (Yes) results based on the custom classifier, which are plotted
against clonal dominance of the top sequence (log2 ratio).
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clonality classifiers, and additional functionality of CR,
as applied to 2 distinct datasets. Despite fundamental
technical and analytical differences, including gold-
standard clonal criteria, a single “best” classifier was gen-
erated that could be applied to both datasets. Yet, differ-
ent custom classifiers could also be created that best fit,
and most accurately assessed clones from, the respective
datasets. By mirroring gold-standard interpretation cri-
teria, CR was able to identify key clonal features inher-
ent to particular datasets, and return these features as
discrete and meaningful values to the reviewer.
Returning these metrics on the sequence-, primer-set-,
and sample-level allows users to easily review the validity

of the classifier, and modify it accordingly. To our
knowledge, CR is the only bioinformatics tool available
that simplifies clonality criteria determination and clone
detection for the diagnosis of lymphoid malignancies.

Strengths of this study are multiple. The datasets
varied by sample type, sequencing targets, sequencing
platform, clonal composition, and clonality criteria.
This afforded ample diversity in the datasets, and show-
cased the flexibility of CR’s algorithm. Despite the fact a
single sample type (plasma cell-free DNA) and target
(IGH) was used for training, the resultant classifiers
could be applied to other sample types and targets with
good accuracy. Matching the sample types of the

Fig. 4. CloneRetriever control panel and plotting. (A), Control panel. (B), Representative plots of clonal patterns (bi- or mono-
allelic) when replicate data are available. See online Supplemental Materials for detailed description. *Nonrepeatable sequen-
ces and rank �4th sequences are colored gray. # Mono-allelic clone with subclone.
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training and validation datasets changed thresholds and
confidence intervals suggesting sample type-related dif-
ferences in clonal criteria. Since CR can train on any
data admixture, users can determine how best to design
their training and validation cohorts, including target-
specific analyses. The ability to customize CR-generated
classifiers enabled rescue of IND samples, and use in
“live” mode in a set of unknown samples. The high con-
cordance seen in clonal calls highlighted the possibility
of using CR as a screening tool.

Additional strengths of this study include the use of
highly salient features needed for clonality, which were
selected based on previously published data (5, 9, 11,
12, 20) and expert opinion. The annotation of sequen-
ces was of high-quality owing to independent analyses
by experienced reviewers. Although the algorithm for
clone classification is machine-learning-driven, the algo-
rithm design was purpose-built to retain the original
meaning of the features thereby avoiding the impenetra-
ble “black-box” criticism associated with certain
machine-learning algorithms (26). Returning results
based on decreasing levels of granularity (sequence> -
primer set> sample) enables rapid assessment of classi-
fier performance by an analyst. The end-result is
simplification and streamlining of a workflow that inte-
grates existing accumulated knowledge of clone calling
in the context of NGS into a single web tool. Unlike
previous studies examining clonality interpretation and
diagnostic performance of Ig and TCR NGS, this work
does not give recommendations on optimal thresholds,
nor specific features of clonality. Rather, CR provides a
fixed algorithm and framework to manipulate large data-
sets and extract meaningful clone-calling results.

Weaknesses of this study could include limitations on
generalizability. Although the samples studied were diverse,
a single vendor manufactured all sequencing primers, and a
comparable raw data processing pipeline was used. Unlike
software that performs end-to-end clone calling from
FASTQ files (23, 24), CR only uses processed data files.
The performance of CR as a clone-calling tool using proc-
essed data generated by other methods remains unknown,
which can be addressed in future studies. Other limitations
relate to the hard-coded CR algorithm. The combination of
features selected by CR may be considered simplistic, as ad-
ditional features, such as productivity and degree of somatic
hypermutation, can also factor into clone determination
(27–29). Currently, the CR algorithm only accepts and
returns clonal and nonclonal results forgoing subtleties, such
as oligoclonality and indeterminate clones. While indetermi-
nate clones are readily rescued by the user by customizing a
CR-generated classifier, oligoclonal samples may currently
be masked by CR as nonclonal. CR calculates clonal domi-
nance based on the fourth ranked sequence. In oligoclonal
samples, the fourth sequence may actually represent the
fourth clone, and CR may erroneously label such a sample

as nonclonal due to the absence of dominant clones. Lack
of fragment length parameters and requirements for com-
plete V(D)J alignment could result in over- and under-
calling by CR. Last, lack of any quality metric cut-offs, such
as total read count, may assign clonality values to samples
that should receive a no-result classification (5).

In this initial description of this tool, we focused on
a complete software that accepts postprocessed data to
identify important features of clonality, and apply these
features to screen unannotated datasets for clones. The fal-
libility of an automated pipeline, irrespective of down-
stream user-control, needs to be considered. As such, CR
should only be used as a screening tool, until such time as
extensive clinical validation can be completed. Future ver-
sions of the tool may incorporate data quality thresholds,
secondary statistical analyses, such as confidence intervals,
additional clonality features such as fragment length,
V(D)J alignment and productivity, and exploratory fea-
tures that refine the determination of indeterminate and
oligoclonal samples. As it stands, CR is a ready-to-use solu-
tion that can ease the bioinformatics burden of assessing Ig
and TCR clonality by NGS. Integrating CR into practice
broadly will require further demonstration of ease of use,
generalizability, flexibility, accuracy, and efficiency, all of
which will be explored in future studies. Should tools like
CR become widely implemented, this may create a shared
framework in which consensus NGS interpretation guide-
lines can be developed in the future for the diagnosis of
lymphoid malignancies.

Supplemental Material

Supplemental material is available at Clinical Chemistry
online.
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