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Enhanced cell segmentation with limited
training datasets using cycle
generative adversarial networks

Abolfazl Zargari,1,* Benjamin R. Topacio,3,4,5 Najmeh Mashhadi,2 and S. Ali Shariati3,4,5,6,*
SUMMARY

Deep learning is transforming bioimage analysis, but its application in single-cell segmentation is limited
by the lack of large, diverse annotated datasets. We addressed this by introducing a CycleGAN-based ar-
chitecture, cGAN-Seg, that enhances the training of cell segmentation models with limited annotated
datasets. During training, cGAN-Seg generates annotated synthetic phase-contrast or fluorescent images
with morphological details and nuances closely mimicking real images. This increases the variability seen
by the segmentation model, enhancing the authenticity of synthetic samples and thereby improving pre-
dictive accuracy and generalization. Experimental results show that cGAN-Seg significantly improves the
performance of widely used segmentation models over conventional training techniques. Our approach
has the potential to accelerate the development of foundationmodels formicroscopy image analysis, indi-
cating its significance in advancing bioimage analysis with efficient training methodologies.

INTRODUCTION

Generative adversarial networks (GANs) have gained significant attention in recent years due to their remarkable success in generating real-

istic images and videos.1,2 GANs are deep learning architectures that consist of two neural networks: a generator and a discriminator.3–5 The

generator network is responsible for synthesizing new data, while the discriminator network attempts to distinguish between real and syn-

thetic samples. The two networks compete in a game-like scenario until the generator produces data that is nearly indistinguishable from

real data. GANs have exhibited substantial capabilities across a wide variety of applications, including image synthesis,1 video generation,6

and natural language processing.7

Cell segmentation is a crucial step in microscopy, which involves the identification and delineation of individual cells within images. Cell

segmentation is inherently complex due to the diversity and irregularity of morphological features of different cell types, such as shape and

size, as well as the propensity for cells to cluster together, making highly accurate segmentation a challenging task. Deep learning methods,

particularly convolutional neural networks (CNNs), have shown great success in improving cell segmentation accuracy.8–12 The development

and application of deep learning models for cell segmentation heavily depend on the availability of a large amount of annotated

training data.

While recent efforts have introduced useful large datasets of microscopy images such as LiveCELL,13 the manual annotation of cell images

remains a laborious and time-consuming task. Although software such as Cell-ACDC and microSAM have made significant improvements in

segmentation, annotation speed, and efficiency by assisting experts in the manual labeling process,9,14 outlining individual cells in micro-

scopic images to create ‘‘ground truth’’ masks still requires considerable effort by cell biology experts. This process becomes practically infea-

sible when dealing with large volumes of data or when timely results are needed. Despite the progress in dataset development, the scarcity of

annotated data still poses challenges to training robust models, thus slowing down progress in building cell segmentation models that work

across diverse imaging scenarios and modalities.

In this study, we propose a solution to this challenge by employing a CycleGAN-based segmentation model, termed cGAN-Seg, that is

designed to train cell segmentation models with limited annotated data. We used cGAN-Seg to generate realistic and diverse microscopy

images of cells in different modalities, thereby enriching the training data for the segmentation model. We systematically compared the

cGAN-Seg training approach with that of the conventional training approach in terms of the performance of our segmentation model.

Our results showed that the cGAN-Seg approach, with limited annotated cell image datasets, increased the model’s ability to generalize

and, thus, enhanced the performance of cell segmentation tasks.
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RESULTS

Designing an enhanced cycle-generative adversarial network architecture

An overview of our cGAN-Seg design is illustrated in Figure 1A. The cGAN-Seg architecture uses a customized CycleGAN approach15 for cell

image segmentation, offering enhanced data diversity. The cGAN-Seg has several new key features: (i) Application of a proposed style gen-

eration path within a 2D-UNET-based image generator,16,17 our approach captures complex image variations from varied cell shapes to intri-

cate structures and textures and also enhances the creation of diverse synthetic microscopy cell images (Figure S2). This prepares the model

to tackle a wide range of image conditions, boosting its versatility and accuracy, (ii) Two adversarial PatchGan discriminators enhanced with a

linear attention layer,18,19 our model focuses on the most salient features, producing synthetic images that closely mirror real samples (Fig-

ure S3). This approach ensures stable and efficient training dynamics, making the synthetic images more authentic, (iii) Implementation of a

differentiable image augmentation technique20 in our design applies identical differentiable augmentations to both real and synthetic sam-

ples (Figures 1A and S1). This reduces the risk of the discriminator memorizing exact training samples, combats overfitting, and improves the

realism of synthetic images, aligning them closely with real-world scenarios, and finally (iv) Through a balanced utilization of different loss

functions, including L1 and VGG-based perceptual loss functions (for the generation model)21,22 and Cross-Entropy and Dice losses (for

the segmentation model), the model ensures the production of high-fidelity synthetic cell images while maintaining segmentation accuracy

(Equations 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17).

Model’s performance evaluation

To test our proposed cGAN-Seg approach, we designed and ran three distinct segmentation training scenarios: 1) Employing cGAN-Seg to

train segmentation models on a selected small subset of a dataset, followed by evaluation on the selected test set (Figure 1A); 2) Direct and

conventional training of segmentation models on the same small subset without cGAN-Seg, with subsequent testing on the same test set

(Figure 1B); 3) Direct and conventional training of segmentationmodels on the full dataset of the same cell type and assessing its performance

on the same test set (Figure 1C). To ensure the robustness and generalizability of our proposed approach across a diverse range of biological

contexts, we utilized samples from four different imagedatasets, each featuring differentmodalities and cell types. These datasets include the

DeepSeaDataset,12 the LiveCell dataset,13 the Cell Tracking Challenge dataset,23 and the CellPose dataset.11 For the segmentation tasks, we

used the DeepSea baseline architecture,12 as well as two of the most widely utilized baselines in the field: the 2D-UNET17 and the CellPose

models11; The 2D-UNET is known for its high performance and suitability for biomedical imaging due to its encoder-decoder architecture, the

DeepSea architecture is a streamlined adaptation of 2D-UNET optimized for simplicity without compromising on efficiency; and CellPose

uses a versatile neural network that is trained on diverse cell types, allowing for generalization across various cell types.

In the testing phase, our evaluation focused on the accuracy of the segmentation models by measuring the Intersection Over Union (IOU)

between predicted and true cell masks. Cells detected with an IOU at or above our threshold were labeled as the correct detection. To pro-

vide a holistic view of model performance, we calculated precision, recall, and the F-score. Thesemetrics inherently account for the impact of

false positives (incorrectly predicted cells) and false negatives (missed actual cells), offering a balanced measure of our models’ effectiveness

across varying IOU thresholds (Equations 2, 3, and 4). In all experiments and score reports, we applied the 5-fold cross-validation technique,

aiming to provide a more robust assessment of the segmentation model’s performance by reducing the impact of random variations in the

training and validation data splits and ensuring that the model’s performance is not overly influenced by a specific subset of the data.

Figure 2 presents the average f-score of three segmentation models trained using the cGAN-Seg method on a small dataset of 200 sam-

ples. This performance is comparedwith that achieved by conventional trainingmethods (Figures 1B and 1C), using both the same small data-

set and a larger dataset of 1000 samples. It focuses on two distinct cell types from the DeepSea dataset for which sufficiently large, annotated

image collections were available. In all test experiments, cGAN-Seg significantly improved the performance of three segmentationmodels of

2D-UNET, CellPose, and DeepSea almost at all IOU threshold values compared to when we trained the segmentation model with the same

limited dataset. This enhancement is particularly evident in stem cell samples, which pose a greater challenge due to the higher diversity and

complexity of cell images. Importantly, the segmentation scores achieved using the cGAN-Seg method with a limited dataset closely match,

or even surpass, those of segmentation models trained with traditional approaches on large datasets. This outcome underscores the cGAN-

Seg architecture’s style generator’s capability to produce a diverse enough array of samples during training. This diversity effectively com-

pensates for the limited data available to the segmentation model, showcasing the method’s efficiency in optimizing performance despite

data constraints.

Next, we extended our analysis to two other publicly available datasets or microscopy images, LiveCell and Cell Tracking Challenge, to

test the applicability of cGAN-Seg for a diverse set of cell types. Table 1 summarizes an f-score comparison between the conventional seg-

mentation and our proposed cGAN-Seg trainingmethod for different cell types in the LiveCell and Cell Tracking Challenge datasets. In addi-

tion, we measured the average recall, precision, and dice score metrics (Tables S1–S3) for the 2D-UNET and CellPose models. The results

demonstrate that the cGAN-Segmodel improves the segmentation model’s performance in every case. This consistent enhancement across

different cell types and experimental conditions highlights the model’s robustness and its adaptability to the inherent variations present in

biological imaging data, particularly where data scarcity often limits the efficacy of conventional approaches.

Next, we sought to test the impact of the modifications we introduced in the CycleGAN-based approach on the generation of synthetic

images of cells by comparing synthetic cell images generated by three different generator configurations: 1) UNET generator with L1 loss, 2)

StyleUNET generator with L1 loss, and 3) StyleUNET generator with L1+VGG loss (Figure 3) and used the DeepSea model for the segmen-

tation part. Synthetic images generated by the UNETmodel with L1 had an average Frechet Inception Distance (FID) score of 98, indicating a
2 iScience 27, 109740, May 17, 2024



Figure 1. Three different cell segmentation training scenarios

(A) Training cGAN-Seg on a limited dataset of cell images (e.g., 200 training samples in this article) using a customized design of CycleGAN approach, termed

cGAN-Seg, that incorporates features such as style injecting, modified PatchGan discriminator, and differentiable image augmentation.

(B) Conventional training of the segmentation model on a limited dataset of cell images.

(C) Conventional training of the segmentation model on a large dataset of cell images (e.g., 1000 training samples in this article).
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Figure 2. Comparative f-score performance of segmentation models across IoU thresholds

F-Score performance across varied IoU thresholds for different segmentation models using cGAN-Seg training vs. conventional training on datasets of 200 and

1000 samples. A) UNET (top row), B) CellPose (middle row), and C) DeepSea (bottom row).
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Table 1. F-Score comparison for cGAN-Seg and conventional segmentation

A17213 BT47413 Huh713 SkBr313 C2C12 Muscle12 PSC23 U37323

Conventional

Seg: CellPose

0.51 0.53 0.47 0.89 0.79 0.90 0.95

Conventional

Seg: 2D-UNET

0.52 0.53 0.49 0.90 0.79 0.92 0.96

cGAN-Seg

Seg: CellPose

0.60 0.56 0.55 0.91 0.84 0.92 0.98

cGAN-Seg

Seg: 2D-UNET

0.60 0.55 0.59 0.92 0.83 0.95 0.98

Comparative analysis of average f-scores at 0.5 IoU threshold: cGAN-Seg segmentation vs. conventional segmentation using limited datasets (200 training sam-

ples) across diverse cell types.
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high dissimilarity between the synthetic and real cell images. The FID score dropped to 43 when we applied StyleUNET with L1 loss, resulting

in increased similarities between synthetic images and real images. This improvement primarily stems from the enhanced capability of

StyleUNET to capture and generate variations in style. Lastly, when we applied StyleUNETwith the VGGperceptual loss, the synthetic images

achieved a remarkably enhanced FID score of 23, reflecting a substantial increase in similarity to real cell images. The overall results of these

modifications are synthetic images with detailed representations of features at subcellular levels. The enhanced similarity of synthetic images

and lower FID score signifies the superiority of the perceptual loss function in preserving high-level details and morphological nuances,

thereby leading to more realistic synthetic images.

To demonstrate the extensibility of our proposed approach, we trained the cGAN-Seg model across various imaging modalities, diverse

cell types, and subcellular organelles (from the DeepSea and CellPose datasets). Subsequently, the trained StyleUNET generator was em-

ployed to produce synthetic images that span these diverse conditions. While the limited number of available annotated images posed a

challenge for a subset of samples, our SyleUNETgenerationmodel still generated realistic synthetic images similar to the real domain images

and relatively overall low FID scores (Figure 4). We anticipate that withmore extensive training data, themodel’s capacity for generating high-

quality images would be significantly enhanced.

Most of our training data consisted of low- and mid-density cell images. We were curious to test if our generator could extrapolate its

knowledge by generating new synthetic high-density images of cells that were not seen during training. This is particularly useful as the

manual annotation of high-density images of cells can be very time-consuming and error-prone. To accomplish this, we designed an algo-

rithm for generating synthetic high-density and colony-like cell masks (a relatively easy task) as input for the generator (in the test phase). As

shown in Figure 5, our approach confirms the ability to extrapolate knowledge from low- and mid-density cell images, creating annotated

images across any density level and magnification. This also includes the generation of colony-like cell formations (Example 3 in Figure 5)

extending beyond the variations present in the original dataset. Such a capacity enables us to create synthetic cell images mimicking a broad
Figure 3. Impact of style injection and vgg perceptual loss on cGAN-Seg image generation

Two examples of comparing the effect of the style injecting technique and Vgg perceptual feature loss function on cGAN-Seg performance to generate images

of DeepSea embryonic stem cells.

iScience 27, 109740, May 17, 2024 5



Figure 4. Versatility of cGAN-Seg in generating realistic synthetic images across modalities

cGAN-Seg style generator can generate synthetic images across multiple imagingmodalities, cell types, and subcellular organelles (fromDeepSea and CellPose

datasets) similar to real images, as relatively low FID scores show.
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range of real-world scenarios. The capacity of ourmodel to extrapolate learned knowledge to unseen scenarios can provide a powerful tool to

generalize this approach, aiming to develop segmentation models for a variety of cellular imaging modalities.

To further assess the capability of the StyleUNET generation model in enhancing the segmentation of more challenging, high-density cell

images, we used our synthetic high-density cell images (showcased in Figure 5) to conventionally train a segmentation model. To validate the

model evaluation process, we categorized the test set images into two groups based on their complexity: ‘‘easy’’ samples, which include iso-

lated cells or cells in non-touching colonies, and ‘‘hard’’ samples, characterized by cells in close contact or within touching colonies. In this

experiment, we employed the DeepSeamodel for the segmentation and focused on the DeepSea stem cell test set, where we found enough

easy and hard samples for this specific analysis. As presented in Table 2, integrating hard, colony-like, and high-density synthetic images into

the training process notably enhances segmentation performance on ‘‘hard’’ samples to a greater extent compared to the ‘‘easy’’ samples,

underscoring the effectiveness of StyleUNET generation model outputs in tackling complex segmentation scenarios.

DISCUSSION

A large and diverse annotated dataset of images is key to the successful development of deep learning models that can perform across

a variety of real-world images. Currently, a harmonized large and diverse dataset of microscopy images is not available to train new

deep-learning models because the annotation of microscopy images is a tedious and time-consuming task. Our study provides a so-

lution to this problem by proposing a method for training cell segmentation models using a CycleGAN approach that we termed

cGAN-Seg to address the critical issue of limited annotated data in cellular imaging. cGAN-Seg harnesses the potential of GANs to

generate a diverse set of synthetic realistic cell images, enhance the diversity of the available training datasets without manual anno-

tation, and improve the overall performance of the segmentation models with a limited annotated dataset. Importantly, we showed that

cGAN-Seg allows for the extrapolation of knowledge by model by generating synthetic images that the model has not been exposed to

during the training.

We made several modifications to the original CycleGAN architecture to build the cGAN-Seg model and apply the microscopy images.

First, a style generation path was integrated into the synthetic image generator to boost variation in synthetic images. Second, a linear atten-

tion mechanism was incorporated into the PatchGAN discriminator-based architecture to enhance its differentiation capabilities and syn-

thetic image quality. Third, differentiable image augmentation was introduced during the training phase to further diversify image generation

and reduce the risk of overfitting. Fourth, instead of the L1 loss function conventionally used in the CycleGAN, we employed a combination of

cross-entropy (CE) and dice losses for the segmentation, improving the handling ofmulti-class classification and imbalanced datasets. Finally,

as a critical modification, we replaced the L1 loss function in the generator with a VGG perceptual loss function to promote the retention of

more high-level features and nuances in the generated synthetic images, leading to enhanced similarity between real images of cells and

synthetic images. These enhancements collectively improved the diversity and quality of synthetic cell images, resulting in a more diverse

and generalized segmentation model trained with various microscopy imaging styles and conditions.
6 iScience 27, 109740, May 17, 2024



Figure 5. Generating high-density cell Images with cGAN-Seg

Three examples of producing colony-like and high-density cell images using synthetic high-density mask images as input for cGAN-Seg style generator.
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Our experimental results show that the proposed cGAN-Seg approach provides a straightforward solution for the paucity of annotated mi-

croscopy data for training deep-leaningmodels. Experimental results showed that the performance of segmentationmodels trained using our

cGAN-Segmethod improved thesegmentation scoresacrossdifferent cell typesofdifferentdatasets.Notably, this enhancementwasobserved

irrespective of the scarcity of annotated cell image datasets, illustrating the potential of our approach in effectively addressing this prevalent

issue in biomedical imaging. Implementation of Style injecting in our UNET generator significantly improved the quality of synthetic images,

reflected by an FID score reduction from 98 to 43. A further enhancement was achieved by adding VGG perceptual loss to the conventional

L1 loss function, resulting in an FID score of 23.We also validated themodel’s versatility acrossmultiple imagingmodalities, cell types, and sub-

cellular organelles. Besides,we further validated the trained cGAN-Seg ability to extrapolate knowledge from low- andmid-density cell images,

creating annotated images across different density levels andmagnifications, even those absent in the original training dataset. We extended

theutility of the cGAN-Segmodel by incorporating thegenerated synthetic high-density cell images into the segmentation fine-tuningprocess.

This addition enhanced the model’s segmentation capabilities, especially for complex, densely populated cell structures.

In our experiments, we noticed that the impact of the cGAN-Seg training approach varied between different cell-type images. The da-

taset comprising less complexity and lower diversity showed a lower improvement compared to the more complex dataset. This can be

attributed to the inherent simplicity of the data, which likely enabled the model to learn necessary patterns without the need for additional

augmented examples. Conversely, for complex datasets with more inherent variability, cGAN-Seg proved more beneficial by providing

diverse synthetic image examples during the training, thus enhancing themodel’s ability to generalize.We believe that the exact dynamics

depend on the specific dataset, model, and augmentation techniques used, underscoring the need for task-specific experimentation and

validation.

Our CycleGAN-based method opens up new possibilities for training deep-learning models for microscopy applications by offering a so-

lution to the challenge of limited annotated cell image datasets. This study illustrates how generative deep learning methods such as GANs

can be utilized to address data limitations in microscopy, thereby pushing the boundaries of what is possible in the field of biomedical

imaging. It is important to mention that while our approach has shown promising results, there is room for further improvement and exper-

imentation, including exploring different GAN architectures and further refinement of the augmentation techniques. The generated synthetic

images can also be made more diverse and realistic through additional modifications in the GAN training process.
iScience 27, 109740, May 17, 2024 7



Table 2. Enhancing segmentation model training with synthetic high-density images

200 training images 200 training images+700 synthetic images

Easy samples 0.86 0.92

Hard samples 0.77 0.86

Average f-score comparison before and after adding synthetic high-density cell images (generated by the cGAN-Seg style generator) into the conventional

training process of the DeepSea segmentation model.
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Limitation of the study

While our cGAN-Seg approach enhances the training of cell segmentation models in the context of limited annotated datasets,

there are a few limitations to consider. Firstly, the quality and diversity of the generated synthetic images, although improved, may

not fully capture the complexity of all possible cell types and conditions found in real-world microscopy images. This could lead to

model performance that is not uniformly enhanced across different imaging modalities or biological contexts. Secondly, the integration

of style generation paths and the use of VGG perceptual loss in our modified CycleGAN architecture can introduce additional

complexity and computational demands, which may limit the accessibility of our approach to researchers with fewer computational

resources.
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9. Padovani, F., Mairhörmann, B., Falter-Braun,
P., Lengefeld, J., and Schmoller, K.M. (2021).
Cell-ACDC: a user-friendly toolset
embedding state-of-the-art neural networks
for segmentation, tracking and cell cycle
annotations of live-cell imaging data. Preprint
at bioRxiv. https://doi.org/10.1101/2021.09.
28.462199.
10. Schmidt, U., Weigert, M., Broaddus, C., and
Myers, G. (2018). In Cell Detection with Star-
Convex Polygons. held in Cham, A.F. Frangi,
J.A. Schnabel, C. Davatzikos, C. Alberola-
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https://github.com/abzargar/cGAN-Seg.
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METHOD DETAILS

Datasets

In our study, we utilized four distinct training datasets, each representing different modalities and cell types, to ensure the robustness and

generalizability of our proposed segmentation model across a diverse range of biological contexts. They include 1) our recently published

annotated dataset of phase-contrast images of the DeepSea,12 which is a large collection of accurately annotated phase-contrast time-lapse

microscopy images of three cell types of Mouse Embryonic Stem Cells, Bronchial epithelial cells, and Mouse C2C12Muscle Progenitor Cells,

2) LiveCell dataset13 which is a diverse collection of annotatedmicroscopy images. It covers various cell types such as A172, BT474, Huh7, and

SkBr3 across multiple experimental conditions, 3) Cell Tracking Challenge dataset,23 which is a dataset repository consisting of 2D and 3D

time-lapse sequences of fluorescent images of different cell types such as PSC and U373 cells, 4) CellPose dataset11 which is a curated collec-

tion encompassing a wide variety of annotated images from different cell types, tissues, and organisms. We used 15% of the dataset samples

for testing all training scenarios. To ensure a rigorous evaluation of our model, we allocated 15% of the samples from each dataset exclusively

for testing across all training scenarios.

CycleGAN-based approach overall view

In our proposed cGAN-Seg method (Figure 1A), in addition to the conventional augmentation pipeline, we employed an approach to train

the cell image segmentation model using a modified CycleGAN process.15 In comparison with conventional augmentation techniques, the

CycleGANprocess enhances the diversity of training cell images for the segmentationmodel by generating synthetic images of cells and their

corresponding masks that are almost indistinguishable from real images. The CycleGAN architecture is unique in that every step in the

training process encompasses two mapping paths: forward consistency and backward consistency (Equation 1). In the forward consistency

path, the model learns to translate an image from domain A (mask image) to domain B (cell image). Subsequently, it attempts to translate

this new cell image back to domain A, aiming to reconstruct the original mask image. The backward consistency path mirrors this process,

starting with domain B, translating to domain A, and then back to B. The essence of this approach lies in its ability to maintain the integrity of

the original images throughout the translation and back-translation processes, ensuring that crucial information is not lost. This dual-path

mechanism has the potential to introduce a greater degree of diversity to the training data. Within this architecture, the generator plays a
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pivotal role. It is capable of creating new synthetic cell images that might exhibit a significantly different distribution pattern from the original,

real training samples. As a result, our segmentationmodel can train on a blend of these artificially generated images and the augmented real

images. This hybrid training approach not only diversifies the data pool but also helps the model adapt to a broader spectrum of cell images.

The addition of synthetic images simulates a wider array of scenarios that the model may encounter, thus improving its robustness and pre-

dictive power when faced with unfamiliar data.

�
Forward Consistency Path : Real mask image/

Generation
Fake cell image/

Segmentation
Fake mask image

Backward Consistency Path : Real cell image/
Segmentation

Fake mask image/
Generation

Fake cell image
(Equation 1)

Augmentation functions

Image augmentation techniques play a critical role in expanding the diversity of training datasets, thereby improving model general-

ization and robustness.24,25 In the training process of our deep learning models, we applied some mostly used conventional image

augmentation functions to every single cell image with the probability of p_vanilla, including random histogram equalization, random

crop, random sharpness adjustment, random brightness adjustment, random contrast adjustment, random horizontal flip, random ver-

tical flip, random saturation, adding random gaussian noise, and adding random gaussian blur as shown in Figure S1A. For the binary

mask images, we only used the applicable random crop, horizontal flip, and vertical flip functions. The training algorithm executes a

sequence of the provided augmentation functions for each cell and mask image pair with a pre-defined probability value ’p_vanilla’.

In the requested augmentation pipeline, each function is randomly chosen with a consistent probability of 50% and is also applied

in a randomized sequence.

However, when it comes to training Generative Adversarial Networks (GANs), especially models like CycleGAN that learn mappings be-

tween different image domains, conventional augmentation might not be sufficient for enhancing the diversity of generated images. This is

where differentiable augmentation becomes valuable. Differentiable augmentation applies the same random augmentations to both real

and fake samples in a way that is differentiable with respect to the model parameters.20 This approach encourages the discriminator to

less memorize the exact training samples, thus causing the generator to produce more diverse images, thereby improving the overall image

generation performance. Furthermore, differentiable augmentation can mitigate overfitting and improve training stability, making it partic-

ularly beneficial for GANs trained with limited data. In this project, we used five different differentiable augmentation functions: random

contrast, random brightness, random cutout, random translation, and random saturation (Figure S1B). The decision to perform an augmen-

tation is dictated by the probability variable ’p_diff’. In an attempt to ensure fair representation and randomness, each of the differentiable

augmentation functions is executed in a randomized sequence, with each having an equal 50% probability of selection. This approach not

only diversifies the images but also ensures that the model remains adaptable to any new form of data it might encounter in the future,

thus improving its resilience and overall effectiveness.

Segmentation models

For the segmentation tasks, we employed and compared our recently publishedDeepSea baseline architecture12 along with two widely used

segmentation models: the 2D-UNET17 and CellPose11 models. The 2D-UNETmodel has become synonymous with high-performance image

segmentation across various biomedical applications. Its design is characterized by a symmetric encoder-decoder structure that efficiently

captures context and enables precise localization. This architecture facilitates the learning of rich feature representations from limited training

data, making it particularly suitable for medical imaging tasks where annotated samples are scarce. The strength of 2D-UNET lies in its ability

to handle a wide range of cell types and imaging conditions, thanks to its deep convolutional layers and skip connections that preserve spatial

information across the network. DeepSea architecture is also an efficient scaled-down version of the 2D-UNETmode. To simplify the task, we

chose not to incorporate the layer representing touching cells, as this would necessitate custom touching cell masks (alongside cell body

masks) and additional loss functions. The CellPose model also represents a significant leap forward in the segmentation of complex cell im-

ages. It is designed around the concept of predicting cell ’poses’—spatial arrangements that are invariant to cell shape and size—allowing it

to segment cells in a highly generalized manner. This model leverages a powerful neural network trained on a diverse dataset, enabling it to

accurately segment cells across different experiments without the need for retraining. TheCellPosemodel’s robustness and adaptability stem

from its novel use of flow fields, which guide the segmentation process and ensure high precision across varying biological contexts. We

would like to mention that to reduce complexity and focus on the essential aspects of segmentation, we excluded CellPose’s flow fields

from the cGAN-Seg approach.

Style generation model

In our proposed cGAN-Seg architecture, the generator is responsible for generating synthetic cell images. It employs a 2D-UNET architec-

ture,17 as shown in Figure S2. UNET is renowned for its effectiveness in biomedical image segmentation due to its unique architecture, which

consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. However, we have taken

this a step further by incorporating a style decoding path into the decoder part of the UNET architecture, an idea inspired by the StyleGAN2

model.16

This fusion of concepts from StyleGAN2 and UNET brings about the prospect of generating better synthetic images. The style decoding

network is designed to control the stylistic aspects of the generated images, thereby allowing the model to create more diverse and
iScience 27, 109740, May 17, 2024 11



ll
OPEN ACCESS

iScience
Article
potentially higher-quality synthetic cell images. This combination of architectures seeks to maximize the strengths of both models - the seg-

mentation prowess of UNET and the sophisticated generative capacity of StyleGAN2. This integration could potentially yield amore powerful

generator model for synthetic cell image creation, thereby enhancing the overall performance of our cGAN-Seg model.
Discriminator models

In our proposedmethod, we applied a modified version of the PatchGAN baseline architecture18 for our discriminators, integrating a layer of

residual linear attention, as shown in Figure S3. The PatchGAN architecture, known for its effectiveness in examining both global and local

image features, has demonstrated impressive performance in diverse GAN applications. The architecture operates by creating multiple

’paths’ with different receptive field sizes, enabling the model to scrutinize image details at various scales.

However, we sought to improve the discriminator’s ability to focus on critical features by incorporating an additional layer of residual linear

attention.19 This is an approach to attentionmechanisms that makes use of a linear combination of input features and learned attentionmaps,

thereby enabling the model to weigh different regions of the input differently. As a result, the model can focus on more critical parts of the

image, thereby enhancing its ability to discriminate real images from synthetic ones accurately. Bymodifying the PatchGAN discriminator, we

aimed to improve the model’s focus on salient image features, thus boosting its ability to accurately distinguish between real and generated

images.
Evaluation metrics

In the testing phase, we leveraged the Intersection over Union (IoU) metric, also known as the Jaccard Index, which ranges from 0 to 1, to

evaluate the alignment between the segmentation model’s predictions and the manually annotated ground truth masks.26 For each test im-

age, we designated each detected cell body as a True Positive (TP) prediction if its IoU index exceeded a predetermined threshold value,

indicating a valid match to the ground truth. Conversely, any ground truth cell body masks that failed to find a valid match were classified

as False Negatives (FN), and any predictions lacking corresponding ground truth masks were labeled as False Positives (FP), representing

non-cell entities. Subsequently, we calculated the Precision, Recall, and F-score for each image in the test set using Equations 2, 3, and 4.

Precision =
TP

TP+FP
(Equation 2)
Recall =
TP

TP+FN
(Equation 3)
Fscore = 23
Precision3Recall

Precision+Recall
(Equation 4)

We also evaluated our segmentation models using Dice Score. The Dice score, also known as the Dice Similarity Coefficient, is a common

metric used in the field of image segmentation, including cell image segmentation, tomeasure the similarity between two samples and can be

measured by Equation 5, X represents the set of pixels in the predicted segmentation and Y represents the set of pixels in the ground truth

segmentation.

Dice Score = 23
jXXY j
jX j+jY j (Equation 5)

Frechet InceptionDistance (FID) is also awidely usedmetric to evaluate the quality of images generatedbyGANmodels.27 It quantifies the

dissimilarity between the distributions of generated and real images in the feature space of a pre-trained Inception network. Lower FID scores

represent higher-quality synthetic images that more closely resemble the distribution of real images. By assessing differences in both mean

and covariance of the features, FID provides a more comprehensive evaluation of image quality and diversity, making it a good choice for

evaluating the performance of our modified generator.
Loss functions

In the training phase of our cGAN-Seg model, we employed a series of loss functions to effectively optimize the performance of both the

generator and the segmentation model. These loss functions are specifically tailored to address the unique challenges presented by the

task of generating high-quality synthetic images and accurately segmenting cell structures.

Two fundamental loss functions utilized in our model are identity loss and reconstruction loss. Identity loss ensures that an image trans-

lated to its own domain remains unchanged, which encourages the generator to preserve color and texture composition between the input

and output.15 Reconstruction loss, on the other hand, is used to maintain cycle consistency, ensuring that an image translated from one

domain to another can be accurately translated back to its original form. These losses are critical to ensure that the model not only learns

the correct mappings between the domains but also produces images that are consistent with the original data distribution.

For the generator, we utilized the VGG perceptual feature loss function22,28 for both identity and reconstruction loss (Equations 8 and 10).

The VGG loss function is a high-level feature extraction loss that helps preserve the perceptual and semantic understanding of the images. It is
12 iScience 27, 109740, May 17, 2024
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a concept based on a deep convolutional neural network (CNN), like VGG, that has been pre-trained on a large dataset for an image clas-

sification task.

For the segmentation model, we combined Cross-Entropy (CE) loss and Dice loss for both identity and reconstruction loss (Equations 9

and 11). Cross-Entropy loss is a popular choice for multi-class classification problems, calculating the dissimilarity between the predicted

probability distribution and the ground truth distribution. The Dice loss, on the other hand, is specifically designed for handling imbalanced

datasets and is extensively used in medical image segmentation tasks due to its efficiency in dealing with small objects and imbalanced clas-

ses. By using these two loss functions in tandem, we enhance the performance of our segmentation model, ensuring it can effectively handle

the challenges of cell image segmentation.

The discriminators in our model were optimized using the Mean Squared Error (MSE) loss as an adversarial loss. This loss function encour-

ages the discriminators to distinguish between real and fake images by minimizing the average squared differences between the predicted

and actual values.

Each of these loss functions is assigned a specific weight in order to balance their contributions during the optimization process (Equations

16 and 17). By integrating these diverse loss functions and carefully selecting their weights, we can effectively train our cGAN-Seg model,

ensuring both the production of diverse, high-quality synthetic cell images and the accurate segmentation of cell structures.

D1 G L = MSEð1;D1ðDiffAugðGenðreal maskÞÞÞÞ (Equation 6)
D2 S L = MSEð1;D2ðSegðreal imgÞÞÞ (Equation 7)
Rec G L = L1ðreal img;GenðSegðreal imgÞÞÞ+VGGðreal img;GenðSegðreal imgÞÞÞ (Equation 8)
Rec S L = CEðreal mask;SegðGenðreal maskÞÞÞ+Diceðreal mask; SegðGenðreal maskÞÞÞ (Equation 9)
Id G L = L1ðreal img;Genðreal maskÞÞ+VGGðreal img;Genðreal maskÞÞ (Equation 10)
Id S L = CEðreal mask;Segðreal imgÞÞ+Diceðreal mask; Segðreal imgÞÞ (Equation 11)
Real D1 L = MSEð1;D1ðDiffAugðreal imgÞÞÞ (Equation 12)
Real D2 L = MSEð1;D2ðreal maskÞÞ (Equation 13)
Fake D1 L = MSEð0;D1ðDiffAugðGenðreal maskÞÞÞÞ (Equation 14)
Fake D2 L = MSEð0;D2ðSegðreal imgÞÞÞ (Equation 15)
Total Gen loss = D1 G L+D2 S L+ 1003Rec G L+ 1003Rec S L+ 503 Id G L+ 503 Id S L (Equation 16)
Total D loss = 0:53Real D1 L+ 0:53Real D2 L+ 0:53 Fake D1 L+ 0:53 Fake D2 L (Equation 17)

QUANTIFICATION AND STATISTICAL ANALYSIS

To verify the reproducibility of our findings, we repeated all training and testing experiments using the cross-validation method. We selected

five random subsets for training, validation, and testing from the generated dataset and reported the average performance metrics.
iScience 27, 109740, May 17, 2024 13
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