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ABSTRACT OF THE DISSERTATION

Enhanced Situational Awareness in Power Distribution Systems: Data-Driven Analysis of
Harmonic Synchro-Phasors and Synchro-Waveforms

by

Fatemeh Ahmadi Gorjayi

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2024

Dr. Hamed Mohsenian-Rad, Chairperson

Harmonic Phasor Measurement Units (H-PMUs) and Waveform Measurement

Units (WMUs) are two emerging smart grid sensor technologies that are critical for en-

hancing situational awareness in power distribution systems and distributed inverter-based

resources (IBRs), especially in the era of increased reliance on renewable energy resources

and advanced grid edge technologies.

H-PMUs can particularly assist power system operators to enhance reliability in

monitoring harmonic distortions, which have become more prevalent due to the growing

number of power electronic devices and inverter-based energy resources. Harmonic State

Estimation (HSE) plays a key role in developing real-time monitoring systems to help power

distribution system operators identify harmonic sources and track their propagation. How-

ever, the limited deployment of power quality sensors in real-world power system presents

a significant challenge.

To tackle this open problem, this thesis develops novel physics-aware HSE meth-

ods that leverage the radial topology of power distribution systems to identify sparsity pat-
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terns. The two proposed approaches are: a Physics-Aware Sparse HSE using constrained

weighted-Lasso optimization for single harmonic sources, and a Physics-Aware Mixed Inte-

ger Quadratic Program (MIQP) to estimate the number and locations of multiple harmonic

sources without prior information.

Additionally, this thesis examines the information content in harmonic phasor sig-

natures from power system events. Using real-world H-PMUmeasurements, we demonstrate

that harmonic phasors can reveal new information content about power system events that

are not captured by fundamental phasors from conventional PMUs. The proposed data-

driven, information-theoretic approach enhances event clustering, particularly for transient

and high-frequency events.

Furthermore, this thesis addresses the challenges due to the increasing deployment

of Distributed Energy Resources (DERs) and their impact on the dynamic behavior of power

systems, often occurring within fractions of a cycle. Utilizing real-world data from WMUs,

novel data-driven methods were proposed to model the dynamic response of IBRs to high-

frequency disturbances. These methods operate in both frequency domain, such as using

modal analysis techniques, and in time domain, employing regression techniques such as

finite impulse response and auto-regressive eXogenous models, to estimate IBRs’ responses

to high-frequency disturbances.
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Chapter 1

Introduction

1.1 Background

The power systems consist of four main sectors: generation, transmission, distribu-

tion, and consumption. It facilitates the delivery of electricity from generators to consumers

through transmission and distribution systems [1]. Electricity is predominantly transmitted

in the form of alternating current (AC), characterized by sinusoidal variations in voltage

and current over time.

Modern power systems face increasing complexities due to several factors. The

integration of renewable energy sources, such as solar and wind power, has seen substantial

growth to mitigate environmental impacts and reduce reliance on fossil fuels. However,

these energy sources introduce various challenges to the power grid. For instance, power

electronic devices, such as inverters and converters, play a pivotal role in integrating renew-

able energy sources into the grid and enhancing energy efficiency. However, these devices

introduce harmonic and inter-harmonic distortions and non-linearities that can compromise
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the quality and stability of power supply [2]. Furthermore, intermittent renewable gener-

ation and volatile loads inject significant uncertainty into system operations, potentially

jeopardizing stability and security [3, 4, 5]. Moreover, the inertia-less nature of renewable

generators adds to the challenges of maintaining power system stability [6].

Also, the introduction of new electrified technologies, such as plug-in electric ve-

hicles, has contributed to a more varied load profile [7]. As EV adoption increases, so does

the demand for electricity, particularly during peak charging hours. This not only affects

the overall load on the grid but also introduces variability and unpredictability in demand

patterns [8].

In addition to these technological shifts, the power system is increasingly exposed

to extreme weather conditions, such as wildfires, hurricanes, and heatwaves, which pose

significant threats to its infrastructure [9, 10]. Wildfires, for instance, can damage trans-

mission lines, substations, and other critical components of the grid, leading to widespread

power outages and interruptions in electricity supply.

In this regards, the increasing complexity and dynamic behavior of modern power

systems, driven by the diversification of loads, the rapid deployment of power electronic

devices, the integration of renewable energy sources, and also the impact of extreme weather

events, underscore the need for enhanced real-time monitoring and situational awareness.

Advanced smart grid sensors, such as Harmonic Phasor Measurement Units (H-PMUs) and

Waveform Measurement Units (WMUs), offer the potential to address these challenges by

providing high-resolution data and insights into the operational status of the power grid.

This background sets the stage for exploring innovative methods to improve the reliability

2



and security of power distribution systems, especially in the context of low-observable grids.

The following section will delve into the motivation behind this research, highlighting the

necessity of utilizing these advanced sensor technologies to enhance the grid’s resilience and

performance.

1.2 Motivation

The evolution of the power system into a smart grid, incorporating advanced mea-

surement technologies, is essential to address the myriad challenges facing modern power

distribution systems [11]. As these challenges increase, so does the necessity for innova-

tive approaches to monitoring and analysis that can fully utilize the capabilities of these

new sensors. This section highlights the need for smart grid sensors and the difficulties

posed by the limited availability of these devices, which result in low-observability in power

distribution systems.

The first critical step in modernizing the power grid is the integration of cutting-

edge technologies, such as smart grid sensors, which provide significant benefits for real-

time monitoring and situational awareness. These sensors offer valuable insights into the

operational status of the grid and its components. The three main classes of smart grid

sensor technologies available for power distribution systems are: 1) Supervisory Control and

Data Acquisition (SCADA) systems [12], 2) Phasor Measurement Units (PMUs), including

harmonic phasor measurement units, and 3) Waveform measurement units.

SCADA systems have been widely integrated into distribution systems over the

past fifty years [13]. They report the root-mean-square (RMS) representation of voltage

3



and current measurements and operate at low reporting rates, typically one sample per

second. While SCADA systems have played a crucial role in monitoring, their capabilities

are limited by their low resolution and reporting rate.

Over the past two decades, PMUs have been deployed in distribution systems to

provide time-synchronized phasor measurements of voltage and current. Equipped with

GPS, PMUs operate at high reporting rates, such as 120 samples per second (2 samples

per AC cycle), offering significant advancements in monitoring and situational awareness

[14]. Additionally, H-PMUs provide harmonic voltage and current phasor measurements,

significantly enhancing the ability to monitor harmonic distortions in power systems [15, 16,

17, 18, 19]. However, phasor measurements also have limitations, particularly when voltage

and current waveforms include distortions or non-sinusoidal shapes, which are increasingly

common in modern grids [20].

WMUs represent the latest advancement in smart grid sensor technology, emerging

to address the limitations of SCADA and phasor measurement units. WMUs capture the

actual voltage and current waveforms in the time domain with extremely high reporting

rates, such as 15,360 samples per second (256 samples per AC cycle). This high resolution

allows WMUs to record detailed wave-shapes of voltage and current, enabling precise mon-

itoring of transient and high-frequency events. WMUs provide high-resolution monitoring

of inverter-based resources (IBRs) during rapid, sub-cycle disturbances, but the vast data

they generate poses challenges for storage and processing.

Despite the significant benefits of smart grid sensors, their limited deployment in

power distribution systems leads to low-observability. [21, 22, 23].
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The limited availability of smart grid sensors in power distribution systems signif-

icantly hinders the ability to achieve harmonic state estimation (HSE). Although extensive

research has been conducted on HSE at the transmission level, studies at the distribution

level remain scarce [24]. This disparity primarily arises from the fundamental differences

between power transmission and distribution systems. These differences include system

balance [25], resistance-to-reactance ratio [26], lack of full-observability [27], and the uncer-

tainties introduced by the high penetration of renewable energy resources [28, 29]. Because

of these distinctions, the direct application of transmission system state estimation methods

to distribution systems is often ineffective. These challenges are addressed in greater detail

in Chapters 2 and 3.

Also, observability at the fundamental frequency can be achieved using different

types of sensors like PMUs or smart meters. However, there are only a few sensors available

for studying HSE. Therefore, a power distribution system could be fully-observable at the

fundamental frequency while remaining low-observable at harmonic frequencies. This raises

the question of how to achieve situational awareness of harmonic phasors and power quality

in power distribution systems with limited H-PMUs.

Moreover, the prevalent application of H-PMUs in power systems primarily centers

on steady-state characteristics, such as monitoring harmonic distortions [30] and assessing

power quality [31]. This focus has led to an underutilization of the dynamic potential of

harmonic phasor measurements. By harnessing this underexplored dimension, harmonic

phasor measurements can capture a more detailed and nuanced picture of power system

events, allowing for a deeper understanding and more precise characterization of these oc-
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currences. For instance, the enhanced detail provided by harmonic phasor measurements is

invaluable in improving the accuracy and granularity of event clustering. Through the use

of harmonic phasors, it becomes possible to identify and categorize power system events

based on their unique signatures across different harmonic frequencies. This method not

only aids in distinguishing between various types of events but also enhances the detection

capabilities, leading to more informed decision-making and more effective mitigation strate-

gies in power system operations. The deployment of harmonic phasor measurements can

significantly advance the state-of-the-art in event detection and system stability analysis,

providing operators with a critical tool for managing the increasingly complex dynamics of

modern power systems.

Furthermore, as it was mentioned earlier, the dynamic behavior of modern power

systems is increasingly influenced by the proliferation of IBRs, which introduce a level of

complexity and unpredictability not previously encountered. In several system-wide inci-

dents, as reported by the North American Electric Reliability Corporation (NERC), the

unexpected dynamic response of IBRs to transient disturbances has been identified as a key

contributing factor. These incidents have underscored the crucial need for high-resolution

monitoring and analysis the rapid and sub-cycle disturbances that characterize the opera-

tion of IBRs. In this regards, modeling the sub-cycle dynamics of IBRs is vital for enhancing

the situational awareness of utilities and independent system operators (ISOs). It allows

for a more precise identification of the types and magnitudes of regional or system-wide dis-

turbances, enabling operators to better anticipate and respond to transient events, thereby

mitigating risks and enhancing the overall resilience of the power system. This motivation
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drives the need for further research and development in high-resolution monitoring tech-

nologies and the implementation of data-driven methods to support the evolving landscape

of the power grid.

Therefore, this thesis addresses the challenges of achieving situational awareness

in low-observable power distribution systems by leveraging advanced smart grid sensors.

It focuses on developing novel data-driven methods for real-time monitoring and dynamic

response modeling, utilizing the enhanced capabilities of WMUs and H-PMUs to provide

comprehensive insights into the operational status of the power grid. The goal is to improve

the reliability and security of power distribution systems in the face of increasing complexity

and uncertainty.

1.3 Summary of Contributions

The summary of contributions for each chapter in this thesis are listed as follows:

1) Chapter 2 and 3 presents novel physics-aware harmonic state estimation formulation for

low-observable power distribution systems, focusing on extracting unique sparsity patterns

from the radial topology. In this regards, we identified physics-based sparsity patterns for

harmonic nodal injection current phasors, harmonic line current phasors, and harmonic

nodal voltage phasors. Given the scarcity of harmonic measurement sensors in the power

distribution feeder, we incorporated these patterns into two different formulations for the

HSE problem:

i. In chapter 2, we reformulated the HSE problem as a constrained weighted-Lasso opti-

mization, known as physics-aware sparse HSE problem. We considered two scenarios:
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• We proposed sparse HSE problem formulation when the location of the harmonic

source for each harmonic order is known. We formulated a constrained weighted-

Lasso optimization problem that incorporates the mathematical implications of

the various identified physics-based sparsity patterns.

• We also formulated and solved the sparse HSE problem under a more challenging

scenario where the location of harmonic source is not known. Accordingly, we

combine the proposed sparse recovery formulation with a proper exhaustive search

in order to enforce the various identified sparsity features despite the lack of prior

knowledge about the location of the harmonic source.

ii. In chapter 3, We also reformulated the HSE problem using a physics-aware MIQP

approach to estimate the number and locations of multiple harmonic sources without

prior information:

• We proposed a method to tackle the challenges when there are multiple harmonic

sources of the same harmonic order on the power distribution feeder, while the

number and locations of the harmonic sources are unknown. This is a major

achievement; specially due to the low-observability of the power distribution sys-

tem.

• The proposed HSE method integrates the captured physics-aware sparsity char-

acteristics into the formulation of a novel mixed-integer quadratic programming

(MIQP) formulation, instead of taking the approach of a typical sparse recovery

optimization.
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2) In Chapter 4, we adopted a unique multidisciplinary approach to leverage the additional

information provided by harmonic phasor signatures for a more in-depth analysis of power

system events. This data-driven methodology, viewed through the lens of information the-

ory, is based on real-world H-PMU measurements.

Our analysis identified significant independent information content in the features extracted

from event signatures in harmonic phasor measurements. We utilized concepts like normal-

ized mutual information (NMI) and entropy to quantify the additional information captured

by harmonic phasors that fundamental phasors cannot. This study explores the following

applications of utilizing this additional information content:

• Optimal Harmonic Phasor Order Selection: By applying the normalized mutual infor-

mation among different set of harmonic phasors’ feature data, we show that we can

be able to optimally select the orders of harmonic phasors for analyzing power system

events, enhancing the ability to identify and interpret these events accurately.

• Event Clustering Enhancement: By integrating harmonic phasor measurements with

fundamental phasor data, we demonstrate a significant improvement in event clustering

tasks. This enhancement is quantitatively shown through the use of silhouette values,

indicating the better-defined clustering of events when incorporating the harmonic

feature space.

3) In chapter 5, Utilizing real-world data from Waveform Measurement Units, we proposed

novel data-driven methods to model the dynamic response of inverter-based resources to

high-frequency disturbances in power systems. In this regards, We treated the IBR as a

black-box with an input of voltage waveform and an output of current waveform. After ex-
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tracting differential voltage waveforms and differential current waveforms from raw data, we

developed multiple methods, including data-driven model library construction and proper

model selection.

i. We proposed methods in the frequency domain based on modal analysis:

• Applying modal analysis techniques, such as the Prony method, to express differ-

ential voltage and current waveforms as sums of dynamic modes characterized by

angular frequency and damping factors. We used these modes to build a library

of equivalent admittance models.

• Selecting the appropriate model from this library to estimate the IBR’s response

to disturbances by identifying the mode closest to the test input signal’s dynamic

mode.

ii. We proposed methods in the time domain based on regression analysis of time-series

data:

• Using Finite Impulse Response (FIR) models to estimate the IBR’s response as

weighted sums of recent samples from the input signal.

• Employing Auto-Regressive eXogenous (ARX) models to estimate the IBR’s re-

sponse using recent samples from both the input signal and its own output signal.

• Constructing a model library from training data and selecting the appropriate

model by directly comparing the time series of the test input signal with those of

the training input signals.
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1.4 Definitions

The following technical terms are used throughout this thesis:

Harmonics: Harmonics refer to the sinusoidal components of a periodic waveform that

are integer multiples of the fundamental frequency. These components distort the waveform

and can cause various power quality issues in power systems.

Harmonic Phasor Measurement Unit (H-PMU): A Harmonic Phasor Measurement

Unit is an advanced measurement device that extends the capabilities of conventional Phasor

Measurement Units (PMUs) by also measuring the harmonic phasors. This allows for

detailed monitoring and analysis of harmonics in the power system.

Harmonic State Estimation (HSE): Harmonic State Estimation is a technique used

to estimate the magnitudes and phases of harmonic components of the state variables in a

power system. This helps in identifying the sources and propagation of harmonics, thereby

enhancing the situational awareness of power distribution systems.

Inverter-Based Resources (IBRs): Inverter-Based Resources are power generation

sources that use inverters to convert direct current to alternating current. Examples include

solar photovoltaic systems, wind turbines, and battery storage systems. IBRs are critical

for integrating renewable energy into the power grid.

Cycle: In a power system operating at 60 Hz, one cycle is completed in 1/60 seconds, or

approximately 16.67 milliseconds.

Event: An event (or a disturbance) in the context of power systems refers to any significant

occurrence that affects the normal operation of the system. Events can include faults,

switching operations, load changes, and other disturbances.
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Transient Event: A transient event is a temporary disturbance in the power system that

lasts for a short duration, ranging from less than a cycle (sub-cycle), to up to four cycles

(multi-cycle). These events can include sudden voltage changes, current surges, or other

brief anomalies that can impact system stability and equipment.

Waveform Measurement Unit (WMU): A smart grid sensor used to capture high-

resolution time-domain waveforms of electrical signals. WMUs provide detailed data on

voltage and current waveforms, which are essential for analyzing dynamic behaviors and

disturbances in the power system.
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Chapter 2

Physics-Aware Sparse

Harmonic State Estimation

in Power Distribution Systems

2.1 Introduction

2.1.1 Background and Motivation

Harmonic pollution has often been the cause of failures which severely affect re-

liable operation of power systems [32]. As discussed in Chapter 1, it is highly important

in modern power systems to develop situational awareness regarding harmonic distortions.

Harmonic state estimation is crucial in achieving situational awareness about harmonics.

Although the cost of power quality sensors is dropping, it is still impractical to

maintain full-observability about harmonic distortions by placing power quality sensors at
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every bus. That raises the question on how can we achieve situational awareness about har-

monics in power distribution systems, while using only a few harmonic phasor measurement

sensors. In this chapter, we seek to address this open problem.

2.1.2 Related Works and Contributions

Although extensive research has been conducted on the study of Harmonic State

Estimation at the transmission level [33, 34, 35, 36, 37, 38], developing HSE methods at

power distribution networks requires addressing its own unique issues. These challenges

stem from the fundamental differences between power transmission and distribution sys-

tems, which prevent the direct application of transmission system state estimation methods

to distribution systems. For instance, power distribution systems are often highly unbal-

anced [25], while state estimation methods, including HSE, are typically designed for the

balanced operation of power transmission networks. This imbalance increases the com-

plexity of the power flow equations, requiring the use of a three-phase model instead of

a single-phase equivalent. Furthermore, power distribution lines generally have a higher

resistance to reactance ratio, making the DC power flow equations used in transmission

state estimation methods inaccurate for distribution systems [26]. As a result, the power

flow equations for state estimation in distribution systems must be formulated using AC

power. Lastly, the high penetration of renewable energy resources introduces significant

uncertainty into HSE at the distribution level. This uncertainty affects aspects such as

network topology and line parameters, further complicating the HSE process compared to

that in transmission systems [28, 29].
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For a radial or weakly-meshed power distribution system, numerous harmonic

measurement devices are needed to make the system fully-observable. Therefore, due to

the lack of extensive monitoring at the distribution level, a necessary requirement in any

HSE method at distribution level is to address the issue of low-observability [24, 39, 40, 41].

A common approach to make up for the lack of measurements in the HSE problem

is to use pseudo-measurements such as historical data. But in this case, the error and

uncertainty in the historical data can severely affect the accuracy of HSE.

Another approach is not to use pseudo-measurements, but rather to directly deal

with the low-observability conditions by using mathematical techniques to solve the HSE

problem as an undetermined system of equations. In [39], the HSE problem is solved by

using singular value decomposition, where the HSE problem is formulated as a least square

optimization and solved by obtaining the pseudo-inverse of the low-rank measurement ma-

trix. In [24], a method is proposed to solve the HSE problem based on sparse Bayesian

learning which involves regression analysis for power flow calculation and recurrent neural

network models for demand prediction in power distribution systems. In [37], the HSE

problem is formulated as a constrained sparsity maximization problem which is solved by

using linear programming.

However, to the best of our knowledge, the prior studies in the literature have

not taken the unique physics-based features of the power distribution system into account,

such as its radial topology, as the main tool in achieving sparse recovery. As a result, they

still require a considerably large number of sensors to be deployed. Thus, there is still

a need to explore some of the most important sparsity patterns in the state variables of
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the power distribution system, while the physics-based relations and constraints among the

state variables are being considered.

In this study we propose a novel physics-aware sparse HSE method in power dis-

tribution systems with very few power quality sensors. The proposed method is built upon

extracting some unique sparsity patterns in power distribution systems based on their radial

topology and other physical characteristics.

2.2 Problem Formulation

Let G := (N ,L) denote the graph representation of a power distribution feeder,

where N is the set of nodes and L is the set of distribution lines. For a harmonic order

h, let IN (h) denote the vector which contains the nodal harmonic injection current for all

the nodes in set N . Also, let IL(h) denote the vector of harmonic line currents for all the

line segments in set L for harmonic order h. Let V(h) denote the vector of nodal harmonic

voltage phasors for all the nodes in set N for harmonic order h. In our problem formulation,

the vector of state variables for each harmonic order h is denoted by

X(h) = [ IN (h) IL(h) V(h) ]⊤. (2.1)

Suppose there are only a few harmonic phasor measurement units available across

the distribution feeder to measure the harmonic nodal voltage phasors Vm(h) and the

harmonic line current phasors ImL (h) at the locations of H-PMU installations. Let Z(h)

denote the measurement vector:

Z(h) = [Vm(h) ImL (h) ]⊤. (2.2)
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The goal in HSE is to estimate the state variables X(h) based on the available

measurements Z(h).

2.2.1 Basic Equations

Since all the harmonic measurements are in phasor domain, the following relation-

ship holds between the harmonic phasor measurements and the harmonic state variables:

Z(h) = H(h)X(h), (2.3)

where H(h) is the measurement matrix at harmonic order h. Next, we explain the con-

struction of matrix H(h).

The first type of equations in matrix H(h) are associated with harmonic volt-

age phasor measurements. The following relationship holds between the nodal harmonic

injection current phasors and the harmonic voltage phasor measurements:

Vm(h) = Y−1(h) IN (h), (2.4)

where Y(h) is the admittance matrix for harmonic order h. In addition to (4), the harmonic

voltage phasor measurements can be mapped also to their associated entries in the vector

of harmonic voltage phasors through an identity mapping:

Vm(h) = UV(h), (2.5)

where U is a diagonal matrix, where a diagonal entry is 1 if its corresponding state variable

is a harmonic voltage phasor that is directly measured; otherwise it is 0.
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The second type of equations in matrix H(h) are associated with the harmonic

line current measurements. The harmonic line current measurements are mapped to the

vector of nodal harmonic voltage phasors as follows:

ImL (h) = Yprim(h) V(h), (2.6)

where Yprim(h) is the primitive admittance matrix [42], which includes the line admittances

only for the line segments whose harmonic current phasors are measured. Harmonic line

current phasor measurements can also be related to the vector of the harmonic line current

phasors through an identity mapping:

ImL (h) = U IL(h), (2.7)

where U is a diagonal matrix, where a diagonal entry is 1 if the corresponding state variable

is a harmonic current phasor that is directly measured; otherwise it is 0.

2.2.2 Additional Equations

The equations in (2.4)-(2.7) capture all the basic relationships between the entries

of vector Z(h) and those of vectorX(h). We can use the equations in (2.4)-(2.7) to construct

matrix H. However, due to the limited measurements, which is due to the limited number

of H-PMU installations in practice, matrix H(h) is a low-rank matrix. Thus, the system of

equations in (2.3) has an infinite number of solutions; which is not desirable.

The main remedy to the above issue is the use of sparsity analysis as we will see in

Section 2.3. However, it is useful to also add more equations to the basic set of equations in

(2.4)-(2.7). In particular, we need to create more couplings among the state variables, even
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though such additional couplings does not make matrix H(h) full-rank. To do so, for the

line segments that do not come with a direct harmonic phasor measurement, we propose to

write an equation similar to (2.6), as follows:

0 = Yprim(h)V(h)− IL(h). (2.8)

Unlike in (2.6), the equations in (2.8) are not based on measurements; but they do serve

the purpose of further coupling the state variables. Here they act as auxiliary equations.

We can treat the zeros on the left hand side in (2.8) as virtual measurements to

revise the vector of measurements in (2.2) as:

Z(h) = [Vm(h) ImL (h) 0 ]⊤. (2.9)

2.2.3 Original HSE Formulation

If the power distribution feeder is fully observable at harmonic order h, then we

can formulate the HSE problem as:

min
X(h)

||Z(h)−H(h)X(h)||22. (2.10)

However, if the network is not fully observable, i.e., if we only have a few H-PMUs,

then solving the above problem does not lead to a meaningful solution. Therefore, for the

rest of this paper, we seek to address this open problem by making use of concepts from

sparse recovery in signal processing.
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2.3 Physics-Based Sparsity Features

From the theory of sparse recovery in signal processing, when it comes to an

undetermined system of linear equations, such as the one in (2.3), if the unknown vector is

sparse, then we might be able to obtain the unique solution of the undetermined system of

linear equations despite the low observability conditions [43]. To do this, we need to first

identify and extract the inherent sparsity patterns in the physical system.

Consider the IEEE 33-bus distribution test network in Fig. 2.1. Suppose there is

a harmonic current source at bus 13. As it is previously shown in [11, 44, 45], the harmonic

current in this power distribution feeder almost entirely flows through the substation and

not through the loads. The reason is that the impedance in the Thevenin equivalent of the

substation that is seen by the distribution feeder is much less than the impedance of the

loads across the distribution feeder. Therefore, almost the entire harmonic current that is

injected by the harmonic source at bus 13 passes through the line segments that are marked

with red color, all the way up to the substation.

The above physical observation can be used as the foundation to introduce sparsity

to harmonic state estimation. Based on the notations that we defined in Section 2.2, the

sparsity is primarily in the vector of nodal harmonic current injection, i.e. IN (h). Since

only one harmonic source of each harmonic order is assumed to be in the network, only one

entry in IN (h) is non-zero, which is associated with the node of the harmonic source. The

rest of the entries in IN (h) are zero.

There is also a major sparsity in the vector of harmonic line current phasors,

i.e., IL(h). Recall from Fig. 2.1 that only the line segments on the red path between the
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harmonic source and the substation carry harmonic current. Therefore, only the entries in

IL(h) that are associated with the line segments on the red path are non-zero. All the other

entries in IL(h) that are associated with the line segments that are outside the red path

are almost zero. Moreover, all the line segments that are on the red path have almost equal

harmonic current; because the harmonic current almost entirely flows to the substation.

The above analysis also has implications for the harmonic voltage phasors. Since

there is harmonic line current on the red path in Fig. 2.1, the nodal voltage for all the

buses on this red path include some level of harmonic distortion associated with the same

harmonic source. However, the story is a bit different for the nodes that are outside the

red path.

To see this, let us first group the nodes that are outside the red path such that

all the nodes that are laid on the same lateral are put in the same group; see [46] for a

similar grouping idea. For example, buses 26, 27, 28, 29, 30, 31, 32, and 33 form one group

in Fig. 2.1. Bus 6 is the boundary node for this group. For any such group, if there is no

(almost no) harmonic component in the voltage at the boundary node, then there is zero

(almost zero) harmonic component in the voltage of all the nodes in the group; otherwise,

there is non-zero harmonic component in the voltage of all the nodes in the group. If all

of the harmonic voltage phasors are non-zero in a group, they are equal to the harmonic

voltage phasor at the boundary node.

For example, again consider buses 26 to 33 in Fig. 2.1 which are outside the red

path and on the same lateral. They form one group. For all the nodes in this group,

all would have equal nodal harmonic voltage phasors. If there is zero (or almost zero)
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Figure 2.1: An example distribution feeder with one harmonic source. In practice, the
harmonic current almost entirely flows through the substation.

harmonic component in the voltage at the boundary node, i.e., bus 6, then there would

be zero (or almost zero) harmonic component in the voltages at buses 26 to 33. If there

is a considerable harmonic component in the voltage at bus 6, then there would be an

equal harmonic component in the voltages at buses 26 to 33. This is because there is no

harmonic current flowing on any of the lines between the nodes in the above group of nodes.

Thus, in addition to the sparsity in harmonic current phasors IN (h) and IL(h), there is also

a group sparsity in the nodal harmonic voltage phasors V(h). We can enforce all these

various sparsity patterns by constructing the following additional equality constraint in our

problem formulation:

AX(h) = 0. (2.11)

The rows are corresponding to two types of equality constraints: 1) the harmonic line

current phasors are equal for all the line segments on the path between the substation and

the node where the harmonic source is located; and 2) the harmonic voltage phasors are

equal at the nodes within each group, including the boundary node of the group.

For instance, in the example that we mentioned earlier, to set the harmonic voltage

phasor at bus 26 to be equal to the harmonic voltage phasor at bus 6, we need a row in
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matrix A to include 1 as the coefficient to the harmonic voltage phasor at bus 6; and −1 as

the coefficient to the harmonic voltage phasor at bus 26. Notice that, one single constraint

in matrix form can capture all such equalities across all the groups. The same holds for the

equality of harmonic line currents.

Remark 1 : The assumption that the network topology is radial is necessary for

the proposed method. For the case of a weakly meshed network, we may still apply our

method to the radial sub-segments of the network. We may also take a meshed sub-segment

of the network as a super-node, thus reducing the weakly meshed network topology to radial

topology with a few super-nodes for applying our proposed method. However, for a meshed

network topology, such as in some micro-grids, our method may no longer be applicable.

Remark 2 : The sparsity patterns that we discussed in this section are based on

the assumption that there is only one harmonic source of the same harmonic order on the

distribution feeder. Of course, we can have multiple harmonic sources of different harmonic

orders. If there are multiple harmonic sources of the same order, then our method may still

work; however, as the number of harmonic sources increases, the sparsity in state variables

diminishes, which might degrade the performance of the method. Addressing this issue is

beyond the scope of this paper and can be studied in a future work.

2.4 HSE with Sparse Recovery

Methods from compressed sensing and sparse recovery can be used to obtain the

solution of the undetermined system of equations in (2.3). In this regard, we can formulate

the HSE problem as a Lasso optimization problem [43]:

min
X(h)

1

2
||Z(h)−H(h) X(h)||22 + λ||X(h)||1. (2.12)
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The first term in the objective function is the least square error in state estimation. The

use of ℓ1-norm in the second term is a common approach in sparse recovery to minimize

the number of non-zero state variables, where λ is a penalty factor.

Although the Lasso optimization in (2.12) treats X(h) as a sparse vector, it does

not distinguish between its entries. Whilst, in our discussion in Section 2.3, we extracted

valuable information about the sparsity pattern of the specific entries in vector X(h) based

on the physics of the system. Hence, we need to reflect that information in the the problem

formulation. This raises the question on how this would be done if:

1) The location of harmonic source is known,

2) The location of harmonic source is unknown.

2.4.1 Known Location of Harmonic Source

In this scenario, we assume that the location of the harmonic source is known.

We know which entry in the nodal harmonic current injection vector IN (h) is non-zero;

however, its value is still not known and it must be estimated by the HSE. Similarly, we

know which entries in vector IL(h) are non-zero; but we do not know their values. We also

know which entries in vectors IL(h) and V(h) are in the same group.

To incorporate the above information to the sparse recovery process, we refor-

mulate the Lasso optimization in (2.12), and present it as a constrained weighted-Lasso

optimization [47]:

min
X(h)

1

2
Z(h)−H(h) X(h)22 + λWX(h)

s.t. AX(h) = 0.

(2.13)
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where W is a vector which contains the weight for each entry in vector X(h) to enforce the

extracted sparsity patterns. If an entry in X(h) is known to be zero, then a large weight

is used in W to create a large penalty to push the value toward zero. In contrast, for the

entries in X(h) that are known to be non-zero, we only use a small weight in W to create

a small penalty for that entry such that it does not grow.

Problem (2.13) is convex. We can use any convex optimization solver, such as

CVX toolbox [48], to solve it.

2.4.2 Unknown Location of Harmonic Source

As a more challenging scenario, next, we assume that the location of the harmonic

source is not known. Hence, we do not know which exact entries are zero in advance.

Nevertheless, all the sparsity patterns that we extracted in Section 2.3 are still

valid. Therefore, we can still solve this more challenging case by combining the method in

Section 2.4.1 with an exhaustive search. The idea is as follows:

If we assume a tentative location for the harmonic source, we can use the exact

formulation as in (2.13) to solve the HSE problem by using the sparsity patterns based on

such tentative assumption. Suppose we assume that bus k is the location of the harmonic

source; and accordingly, we obtain Rk as the corresponding residue when we solve the

optimization problem in (2.13). In other words, Rk(h) is the optimal objective value of the

optimization in (2.13) based on the assumption that the harmonic source is at bus k.
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Therefore, by taking each of the buses in the network as the location of the har-

monic source and solving the optimization problem in (2.13) accordingly, we can identify

the unknown location of the harmonic source at harmonic order h as:

k⋆ = arg min
k

Rk(h). (2.14)

The above problem can be solved by using an exhaustive search. This requires to solve

N optimization problems of the form in (2.13), where N is the number of buses in the

network. Once we obtain Rk(h) for each k = 1, . . . , N , we can obtain k⋆ by simply taking

the minimum of the N obtained residues.

Once k⋆ is obtained, the analysis in this section reduces to the same analysis in

the first scenario in Section 2.4.1.

2.5 Case Studies

We apply the proposed physics-aware sparse HSE method to the IEEE 33-bus

distribution test system [49]. All the case studies are simulated in the Open Distribu-

tion System Simulator (OpenDSS) [50]. Six H-PMUs are assumed to be installed at the

substation and at nodes 6, 18, 22, 25, and 33.

2.5.1 Performance Comparison

We compare the performance of the proposed physics-aware sparse HSE method

with two other methods: 1) the sparse HSE but without utilizing the physics-based knowl-
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Table 2.1: Performance comparison of different HSE methods for harmonic order h = 3

Method MSE V STD V MSE IL STD IL
Physics-Aware
Sparse HSE

0.0174 0.094 0.00275 0.0274

Method in [37] 223.8 7.56 13.34 2.53

Method in [39] 221.1 7.368 9.79 2.512

edge, i.e., the method in [37]; and 2) the method in [39] which works based on singular

value decomposition. We use the Mean Square Error (MSE) as the metric to compare the

performance of different HSE methods:

MSE =
1

N
||Xact(h)−Xest(h)||22, (2.15)

where N is the number of unknown harmonic state variables.

Table I shows the results based on the mean and the variance of the MSE index;

which are calculated separately for the unknown harmonic nodal voltages, denoted by MSE

V and STD V, and for the unknown harmonic line currents, denoted by MSE IL and STD

IL. The harmonic source is assumed to be of harmonic order h = 3. The magnitude of the

injected harmonic current is assumed to vary randomly between 10% to 50% of the load at

the location of the harmonic source. We assume that the location of the harmonic source

is known.

As we can see, the proposed method has a drastically lower average MSE and

standard deviation in comparison with the method in [39] and the sparse HSE without

physics-awareness.
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Figure 2.2: Residue Rk(h) versus the candidate location of the harmonic source. The
location of the harmonic source is not known in advance.

2.5.2 Unknown Location of Harmonic Source

Next, we assume that the location of the harmonic source is not known. Accord-

ingly, we use the proposed method in Section 2.4.2. The results from the exhaustive search

are shown in Fig. 2.2. Here, we plotted the Residue Rk(h) versus the candidate location

of the harmonic source at buses k = 2, . . . , 33. We can see that the minimum residue is

obtained at k⋆ = 4. This is indeed the correct location of the event bus; which confirms the

effectiveness of the proposed method even when the location of the harmonic source is not

known.

2.5.3 Sensitivity Analysis: Harmonic Order

In practice, the magnitude of harmonic source may vary depending on the har-

monic order. Thus, to have a fair assessment, we compare the normalized MSE for voltages

for different harmonic orders. The results are shown in Fig. 2.3. We can see that the
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Figure 2.3: Comparing the results at different harmonic orders.

normalized MSE increases as we increase the harmonic order as well as the magnitude of

harmonic source.

2.5.4 Sensitivity Analysis: Location of the Harmonic Source
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Figure 2.4: HSE residue versus the location of the harmonic source, where h = 3.

Fig. 2.4 shows the HSE residue, i.e., the optimal objective value of the HSE op-

timization problem, for all the possible scenarios for the location of the harmonic source.
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We can see that, as the distance of the harmonic source from the substation grows, the

performance of the HSE method gradually degrades. This is due to the fact that a longer

distance for the harmonic source from the substation means a less sparse scenario. Also,

when distance increases, the estimation error increases as well; because the observability

over the nodes that are far from the sensors is lowered. As a result, as we move to bus 33,

the HSE estimation error increases in general.
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3.1 Introduction

3.1.1 Background and Motivations

Modern power systems have increasingly become reliant on power electronic de-

vices, nonlinear loads, and inverter-based energy resources. These technologies, while benefi-

cial, have significantly contributed to the rise in harmonic distortions within power distribu-

tion systems. Harmonic pollution can jeopardize the reliability and safety of the grid, lead-

ing to conductor overheating and interference with protection systems [2]. Consequently,

utilities are mandated to monitor and manage harmonic levels to ensure system integrity

[51].

As noted in Section 2.1.1, Harmonic State Estimation is critical in developing a

comprehensive real-time monitoring system, enabling operators to identify harmonic sources

and track their propagation across the distribution network. However, the widespread in-

stallation of Harmonic Phasor Measurement Units is hindered by high costs and impracti-

calities. This raises the question of how we can achieve situational awareness of harmonic

phasors and power quality in power distribution systems while using only a few H-PMUs.

In Chapter 2, we proposed a solution to maximize grid harmonic visibility with

limited H-PMU deployment However, there are limitations to this approach. 1) The method

requires prior knowledge of the harmonic source’s location. In the absence of such infor-

mation, an exhaustive search across the network becomes necessary, which can be com-

putationally expensive, particularly for large-scale power networks. 2) the method is most

effective in scenarios involving a single harmonic source. Performance decreases significantly

as the number of harmonic sources increases due to reduced sparsity of the state variables.
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In this chapter, we propose a novel formulation for the HSE problem that seeks to

overcome these limitations. Our enhanced approach is designed to improve the robustness

and efficiency of HSE, even in complex power systems with multiple harmonic sources even

for each harmonic order. By refining the model and algorithm, we aim to provide a more

practical and scalable solution for achieving effective situational awareness in modern power

distribution systems.

3.1.2 Related Work

While there is a rich literature on the study of HSE at the transmission level

[33, 34, 35, 36, 37, 38], the literature on the study of the HSE at the distribution level is

still limited [52, 53, 54, 24, 39, 40]. This is because, HSE is a relatively new problem at power

distribution systems in practice. It has been emerging as a viable effort only recently due to

the recent advancements in instrumentation and sensor deployments at power distribution

systems.

However, there are major differences between conducting HSE at the transmission

level and conducting it at the distribution level. There are at least two reasons for these

differences. The first issue is the lack of measurement redundancy at distribution level;

even lack of sufficient measurements to achieve basic observability. Importantly, most of the

existing HSE methods are meant to be used at transmission level with sufficient harmonic

phasor measurements such that the network is fully-observable [27]. The second issue is

the nature of all radial topologies in power distribution networks. Inherently, there is less

coupling among the harmonic voltage phasors across different buses in a radial network

topology; because each bus has at most only two immediate neighboring buses. This is very
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different from the tight coupling among the harmonic voltage phasors in a meshed network

topology, which is common in power transmission systems. Therefore, one cannot simply

reuse the HSE methods that are developed for the transmission level at the distribution

level. For a power distribution system that has a radial topology, numerous harmonic

measurement devices (and their associated communication infrastructures) are needed in

order to make the system fully-observable; but this is cost prohibitive.

Therefore, the ability to work under the low-observability conditions is a necessary

feature for an effective HSE method that is meant to be used in power distribution networks.

Accordingly, we can divide the existing literature on HSE at power distribution

systems into two groups. First, the HSE methods that do not explicitly address low-

observability, e.g., in [53, 54, 55]. Second, the HSE methods that do explicitly mention the

need to address low-observability [24, 52, 39, 40].

The methods in the first group usually fail to provide accurate results when the

network is not observable. This is because they are not designed to work under such

circumstances.

As for the methods in the second group, that do recognize the need to address

low-observability in the HSE problem at distribution level, a common approach is to use

pseudo-measurements (such as historical data) to make the network fully-observable, e.g.,

see [56, 53]. However, uncertainty and error in historical data have huge impact on the

accuracy of the HSE methods that need to rely on pseudo-measurements.

Another approach to tackle low-observability in the HSE problem is to use math-

ematical techniques to deal with the rank deficiency of equations in the HSE problem. In
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[52, 39], HSE methods are proposed based on singular value decomposition to formulate

the HSE problem at distribution level as a least square optimization and to solve it by

obtaining the pseudo-inverse of the low-rank measurement matrix. In [24], an HSE method

is proposed based on sparse Bayesian learning which involves using regression for power

flow analysis and recurrent neural network models for demand prediction.

In [37], the HSE problem is formulated as a constrained sparsity maximization

which is solved by linear programming. Although this work was tested on the 14-bus power

transmission system, since the methodology does not depend on the inherent properties

of the transmission level, it has the basic capabilities to be applied to power distribution

systems as well. Compressed sensing is used also in [57], where the focus is on the case with

only one harmonic source in the network.

Although sparse recovery is considered effective in finding the sparse solution for

an undetermined system of equations, the mathematical conditions that may guarantee its

performance are usually very specific and do not hold in the HSE problem, specially if there

is more than one harmonic source of the same harmonic order in the system [57].

There are also methods that are not meant to solve the HSE problem; but they

seek to estimate and identify the location of the harmonic source(s) at the distribution

level [58, 59, 27, 41]. These methods are very different from HSE; because they do not

estimate the harmonic state variables across the power distribution network. In [58], a

Bayesian approach is proposed to locate the harmonic source. In this method, the infor-

mation to indicate the possible presence of the harmonic source as well as a metric about

the reliability of such metric are discussed. In [59], a method is proposed based on particle
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swarm optimization to locate and estimate the parameters of the harmonic source with the

highest contribution. In [27], a method based on exhaustive search is developed to locate

and estimate multiple sources of harmonics in a low-observable power distribution system.

Importantly, the methods in [58, 59, 27, 41] are not designed to solve the HSE problem.

Another subject that is widely discussed in the literature is the task of sensor

placement in power systems, including the placement of harmonic sensors. Different meth-

ods have been used, such as integer programming [60], quadratic programming [61], genetic

algorithm [62] and neural networks [63]. However, sensor placement is beyond the scope of

this paper.

Last but not least, it is worth emphasizing that, when it comes to the HSE problem,

the issue with low-observability is with respect to the harmonics in the system. It is not

with respect to the fundamental component. It is possible that a power distribution system

is observable at the fundamental frequency, but it is not observable at the harmonics. Note

that, observability at the fundamental frequency can be achieved or reinforced by using

different types of sensors, including PMUs and smart meters, which are widely deployed

by many utilities. Therefore, there can be several sensors available for an ordinary state

estimation at the fundamental frequency. The literature on addressing low-observability

in ordinary (i.e., not harmonic) distribution system state estimation is separate, such as in

[64, 46, 65, 66]. However, in practice, we have a few harmonic sensors available for harmonic

state estimation. Consequently, it might be possible for a power system to be observable at

the fundamental frequency, but not at certain harmonics.
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Figure 3.1: An example distribution feeder with one harmonic source. In practice, the
harmonic current almost entirely flows through the substation.

3.2 System Model

Let G := (N ,L) denote the graph representation of a radial power distribution

feeder, where N is the set of all buses and L is the set of all line segments. An example

is shown in Fig. 3.1, where the network topology is based on the IEEE 33-bus test system.

For each harmonic order h in the system, we assume that IN (h) denotes the vector of the

harmonic nodal current injection phasors at all the buses in set N . Similarly, let IL(h)

denote the vector of the harmonic line current phasors at all the line segments in set L; and

let V(h) denote the vector of the harmonic nodal voltage phasors at all the buses in set N .

3.2.1 Basic HSE Problem Formulation

At each harmonic order h, we define the vector of the harmonic state variables in

the power system as follows:

X(h) = [(IN (h))⊤(IL(h))
⊤(V(h))⊤]⊤. (3.1)

Our goal is to estimate the above vector of state variables by using harmonic synchrophasor

measurements from H-PMUs. Each H-PMU measures the harmonic nodal voltage phasors

and the harmonic line current phasors at its location.
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Let Z(h) denote the vector of all available harmonic synchrophasor measurements

that are collected from the H-PMUs:

Z(h) = [(Vm(h))⊤(ImL (h))⊤]⊤, (3.2)

where superscript m indicates the measurements to distinguish them from the state vari-

ables. Also, let us define H(h) as the harmonic measurement matrix, which captures all the

mappings between the harmonic synchrophasor measurements in Z(h) and the harmonic

state variables in X(h) as:

Z(h) = H(h)X(h) + e(h), (3.3)

where e(h) is the corresponding vector for measurement noise. The construction of matrix

H(h) is discussed in Appendix A.

The HSE problem is then formulated as follows:

minimize
X(h)

∥∥Z(h)−H(h)X(h)
∥∥2
2
. (3.4)

If matrix H(h) is full-ranked, then the network is fully-observable at harmonic order h and

the least-square problem in (3.4) has a unique solution. This happens only if we install a

large number of H-PMUs across the distribution circuit.

3.2.2 Augmented HSE Problem Formulation

A power system is said to be fully-observable in the domain of harmonics, if the

harmonic state variables at all buses and/or all line segments can be uniquely obtained

from the available harmonic phasor measurements. An analytical interpretation of full-
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observability is that the measurement matrix H(h) must be full-rank. To achieve full-

observability in a radial power distribution feeder, the grid operator must install H-PMUs

at least at half of the buses. However, this is not a realistic option, because of the high

cost of H-PMUs, including the cost of sensors, the cost of sensor installation, and the

cost of setting up a communication infrastructure for data collection. As a result, power

distribution systems are often inherently subject to low-observability, specially when it

comes to solving the HSE problem. For instance, for the case of the network in Fig. 3.1,

we may face a scenario where only five H-PMUs are available; one at the substation; one

at the end of the main; and three at the end of each of the three laterals.

Therefore, in practice, the network is not fully-observable; and it is a challenge to

solve the HSE problem in (3.4).

To properly address this challenge, we focus on an augmented version of the HSE

problem as follows:

minimize
X(h)

∥∥∥∥∥
 Z(h)

0

−

 H(h)

G(h)

X(h)

∥∥∥∥∥
2

2

, (3.5)

where G(h) is a matrix that captures the relationships among the harmonic state variables,

in particular between V(h) and IL(h), by using the circuit equations. More details about

the construction of matrix G(h) is provided in Appendix A.

For a network that is fully-observable, there is no advantage to use the augmented

HSE formulation in (3.5) compared to the basic HSE formulation in (3.4). However, when

the network is not fully-observable, it is necessary to use the augmented formulation to at

least include the unobservable variables in the equations of the HSE problem formulation;

otherwise they cannot be even part of the analysis; because they would not show up in
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any equation. Thus, for the rest of this paper, we focus on the augmented HSE problem

formulation in (3.5).

Next, we consider three different scenarios: a) the case where there is one harmonic

source in the network; b) the case where the are multiple harmonic sources in the network;

and c) the case where the number of harmonic sources is unknown.

3.3 Physics-Aware HSE Solution: One Harmonic Source

In this section, we discuss a scenario where there is exactly one harmonic source

in the network. The immediate result of this assumption is that exactly one entry in vector

IN (h) is non-zero; while all the other entries are zero. In other words, there is an inherent

sparsity in the construction of vector IN (h), which can be mathematically expressed as:

e⊤i IN (h) = 0, ∀ i ∈ N\{k}, (3.6)

where k is the bus number for the location of the harmonic source; and ei is a standard

basis vector with all its entries being equal to zero, except for the entry at row i which is

one.

Given the radial topology of the power distribution systems, one may ask: how

does the inherent sparsity in vector IN (h) may create sparsity in vectors IL(h) and V(h)?

Next, we answer this question by using the physical characteristics of the under-

lying power distribution circuit. Accordingly, we build the foundation for our proposed

physics-aware HSE solution for low-observable power distribution systems.
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3.3.1 Fundamental Sparsity in Radial Networks

Again Consider the power distribution feeder in Fig. 3.1. Suppose there is exactly

one harmonic source in the network. Suppose the harmonic source is at bus 13. The

harmonic source injects the harmonic current to the distribution feeder; accordingly, it is

modeled as a current source in Fig. 3.1.

As it is shown in [11, 19, 44], and also explained in Appendix B, the injected

harmonic current at bus 13 almost entirely flows through the substation and not through

the loads. The reason is that the impedance in the Thevenin equivalent of the substation

that is seen by the distribution feeder, which is marked by ZThevenin in Fig. 3.1, is much

less than the impedance of the loads on the distribution feeder. Thus, almost the entire

harmonic current that is injected by the harmonic source passes through the substation

connector path, i.e., the lines that are marked in red, from bus 13 all the way up to the

substation.

We can analyze the impact of injecting harmonic current by a harmonic source at

any other bus in the network in a similar way, i.e., based on the substation connector path

between the location of the harmonic source and the substation.

From the above physics-based observation in radial networks, together with the

inherent sparsity in (3.6), we can conclude that the entries in vector IL(h) that are associated

with the line segments on the connector path between bus k and the substation are non-

zero; while all the other entries are almost zero. In other words, the entries in IL(h)
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that correspond to the line segments in set Lk are non-zero; while the entries in IL(h) that

correspond to the line segments in set L\Lk are zero. This can be mathematically expressed:

e⊤l IL(h) ≈ 0, ∀ l ∈ L\Lk, (3.7)

where Lk is the set of all line segments that belong to the substation connector path for

bus k. Note that, Lk ⊆ L.

The zero approximations in harmonic currents in (3.6) and (3.7) also have impli-

cations on nodal harmonic voltages in V(h). To see this, let us define Nk as the set of all

buses that are on the substation connector path for bus k. Furthermore, for each bus i in

set N\Nk, let us define p(k, i) as the bus that is the most downstream parent of bus i that

belongs to set Nk. For example, for the scenario in Fig. 3.1 with k = 13, we have:

p(13, 23) = p(13, 24) = p(13, 25) = 3. (3.8)

This is because bus 3 is the most downstream parent of buses 23, 24, and 25 that belongs to

the substation connector path between bus 13 and the substation. From (3.7), the harmonic

voltage phasor at buses 23, 24, and 25 is almost equal to the harmonic voltage phasor at

bus 3. This comes from the fact that there is no harmonic current on the line between

buses 3 and 23, the line between buses 23 and 24, and the line between buses 24 and 25;

therefore, there is no harmonic voltage difference across buses 3, 23, 24, and 25. This leads

to the following voltage approximation in the power system:

e⊤i V(h)− e⊤p(k,i)V(h) ≈ 0, ∀ i ∈ N\Nk. (3.9)

As a result, we do not need to estimate all the harmonic voltage phasors in the system.

Instead, we can only estimate harmonic voltage phasors at the buses that are on the sub-
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station connector path for bus k. The rest of the harmonic voltage phasors are then readily

obtained from the approximation in (3.9).

Summary: Based on the analysis in (3.6), (3.7), and (3.9), the total number of harmonic

state variables that we need to estimate for the scenario with one harmonic source at bus

k is:

|Nk|+ |Lk|+ 1. (3.10)

In other words, since the total number of harmonic state variables of harmonic order h in

the system is 2|N |+ |L|, the total number of harmonic state variables that we can readily

obtain from the results in (3.6), (3.7), and (3.9) is:

2 |N |+ |L| − |Nk| − |Lk| − 1. (3.11)

For example, for the scenario in Fig. 3.1, the number of state variables to estimate

is 13 + 12 + 1 = 26. The remaining 72 variables are obtained from (3.6), (3.7), and (3.9).

3.3.2 Physics-Aware MIQP Formulation

In this section, we integrate the physics-based approximations in (3.6), (3.7), and

(3.9) into the formulation of the augmented HSE problem in (3.5). This is done by intro-

ducing a novel and tractable mixed-integer formulation for the HSE problem.

Let us define b as an |N | × 1 vector of binary variables. For each row k, the

corresponding entry is 1 if the harmonic source is located at bus k; otherwise the entry is

0. From (3.6), we know that exactly one entry in b is 1 and all other entries are 0. This

can be mathematically expressed as:

1⊤b = 1. (3.12)
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Also, from (3.6), we know that harmonic nodal injection current is zero for all the

buses in N\{k}. We can express this sparsity pattern through the defined binary variables

as:

−M b ≤ IN (h) ≤M b, (3.13)

where M is a large number. In total, there are |N | rows of both lower-bound and upper-

bound inequalities in (3.13). From (3.13), together with (3.12), the harmonic nodal injection

current is zero for all the buses in N\{k}, i.e., all the buses that are not the location of

the harmonic source. For any of such buses, the corresponding row in (3.13) forms a pair

of a lower bound at zero and an upper bound at zero; thus, forcing the harmonic current

injection to be zero. This is done without knowing the location of the harmonic source in

advance; because the constraints in (3.13) are defined based on the binary vector b.

It is worth mentioning that, the constraints in (3.13) have no impact on the har-

monic nodal injection current at the location of the harmonic source. This is because the

corresponding lower bound and the corresponding upper bound would be ineffective; due

to the fact that M is a large number.

In order to incorporate the binary vector b in the approximate equality constraints

in (3.7) and (3.9), let us first define:

U =
∑
k∈N

∣∣L\Lk

∣∣, W =
∑
k∈N

∣∣N\Nk

∣∣. (3.14)

Here, U denotes the total number of the zero approximations in the form in (3.7) for all

possible choices for the location of the harmonic source. Similarly, W denotes the total

number of the zero approximations in the form in (3.9) for all possible choices for the

location of the harmonic source. Depending on the location of the harmonic source, i.e.,
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depending on which exact entry in vector b is 1, some of these zero approximations must

be used and some of them must be disregarded.

Accordingly, we can express the zero approximations in (3.7) based on the defined

binary variables as follows:

−M Ψ (1− b) ≤ A IL(h) ≤M Ψ (1− b), (3.15)

where Ψ is a matrix of size U × |N |; and A is a matrix of size U × |L|. In each row of

matrix Ψ, exactly one entry is 1, and all the other entries are zero. Similarly, in each row

of matrix A, exactly one entry is 1, and all the other entries are zero. In total, there are

U rows of both lower-bound and upper-bound inequalities in (3.15). From (3.15), together

with (3.12), the harmonic line current is zero for all the lines in set L\Lk, i.e., for all the

lines that are not on the connector path between the location of the harmonic source and

the substation. For all such lines, the corresponding rows in (3.15) form a pair of a lower

bound at zero and an upper bound at zero; thus, forcing them to be zero. This is achieved

without knowing the location of the harmonic source in advance; because the constraints in

(3.15) are directly defined based on the binary vector b.

Finally, we can also express the zero approximations in (3.9) based on the defined

binary variables as follows:

−M Φ (1− b) ≤ BV(h) ≤M Φ (1− b), (3.16)

where Φ is a matrix of size W ×|N |; and B is also a matrix of size W ×|N |. In each row of

matrix Φ, exactly one entry is 1, and all the other entries are zero. In each row of matrix

B, exactly one entry is 1, exactly one entry is −1, and all the other entries are zero. In
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total, there are W rows of both lower-bound and upper-bound inequalities in (3.16). From

(3.16), together with (3.12), the equality in (3.9) holds for any bus in set N\Nk for any

choice of bus k as the location of the harmonic source. Just like in (3.13) and (3.15), this

is achieved without knowing the location of the harmonic source in advance; because the

constraints in (3.16) are defined based on the binary vector b.

We are now ready to reformulate the HSE optimization problem as follows, where

the physics-aware sparsity patterns are fully integrated into the problem formulation:

minimize
X(h),b

∥∥∥∥∥
 Z(h)

0

−

 H(h)

G(h)

X(h)

∥∥∥∥∥
2

2

subject to Eqs. (3.1), (3.12), (3.13), (3.15), (3.16).

(3.17)

The above optimization problem is an MIQP, where the objective function is a

standard Least-Square (LS) formulation over continuous variables, while the constraints

are linear mixed-integer. The MIQP in (3.17) can be solved by using various optimization

solvers, including CVX toolbox in MATLAB [48]. Once the optimal solutions are obtained,

the only non-zero entry in b pinpoints the host bus for the harmonic source; and X(h)

provides us with the estimation of harmonic state variables. Therefore, the proposed HSE

method not only does not need any prior information about the location of harmonic source,

but also it gives us the exact host location in addition to the estimation results under the

low-observability conditions.

46



3.4 Physics-Aware HSE Solution: Multiple Harmonic Sources

The MIQP formulation in (3.17) fully incorporates the fundamental physics-based

concepts that we discussed in Section 3.3.1. However, a key assumption in (3.17) is that

there is only one harmonic source in the network. This assumption may not always hold

in practice. Therefore, in this section, we properly extend the proposed physics-aware HSE

solution to the case where there are multiple harmonic sources in the network.

If each of the harmonic sources in the network has a different harmonic order, then

we can simply solve the optimization problem in (3.17) for each harmonic order separately.

In such cases, the HSE problem reduces to the same analysis as in Section 3.3. Therefore,

for the rest of this section, we rather focus on the more challenging case where there exist

multiple harmonic sources of the same harmonic order.

Throughout this section, we assume that the number of harmonic sources is known;

but their locations are unknown. The case in which neither the number nor the locations

of the harmonic sources are known will be discussed in Section 3.5.

3.4.1 Decomposition of the Problem

To address the case with multiple harmonic sources, we apply the superposition

theorem from Circuit Theory [67]. We decompose the HSE problem and introduce a sep-

arate set of state variables corresponding to each harmonic source based on a separate

equivalent circuit. Once the harmonic voltage phasors and the harmonic current phasors

are defined separately in accordance to each individual harmonic source and its correspond-
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Figure 3.2: An example distribution feeder with multiple harmonic source. In practice, the
harmonic current almost entirely flows through the substation.

ing equivalent circuit, we can algebraically add them together in order to obtain the overall

harmonic state variables for the understudy power distribution system.

An example is shown in Fig. 3.2. First, consider the power distribution feeder in

Fig. 3.2(a), which has two harmonic sources of the same harmonic order at buses 13 and 31.

Each harmonic source injects a certain level of harmonic current to the network. Based on

the superposition theorem, we can decompose the analysis of this circuit into two separate

cases, one based on the analysis of only the harmonic source at bus 13; see Fig. 3.2(b), and
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another one based on the analysis of only the harmonic source at bus 31; see Fig. 3.2(c).

Similar to the discussion in Section 3.3.1, the injected current from each of the two harmonic

sources flows through its associated substation connector path, as marked on Figs. 3.2(b)

and (c), respectively. If we denote the vector of the state variables corresponding to the

decomposed circuit for the first harmonic source by X1(h) and the vector of the state

variables corresponding to the decomposed circuit for the second harmonic by X2(h), then

from the superposition theorem, we know that:

X(h) = X1(h) +X2(h), (3.18)

where X(h) is the vector of state variables for the original circuit, i.e., the one that has

multiple harmonic sources.

We can similarly break down any power distribution circuit with multiple harmonic

sources to a superposition of multiple decomposed circuits; thus solving the HSE problem

separately for each harmonic source; and then adding up the results. This approach is

explained in details in the next subsection.

3.4.2 Extended Physics-Aware MIQP Formulation

For a given harmonic order h, suppose there are K(h) harmonic sources across the

distribution feeder. Let us define:

K(h) =
{
1, . . . ,K(h)

}
. (3.19)

Based on our discussion in the previous section, let us apply the superposition theorem and

decompose the distribution feeder into K(h) circuits such that in each of them only one of
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the harmonic sources is present and the rest are eliminated. For each κ ∈ K(h), let Xκ(h)

denote the vector of state variables for the decomposed circuit by the superposition theorem

that corresponds to the κ-th harmonic source:

Xκ(h) = [(IN,κ(h))
⊤ (IL,κ(h))

⊤ (Vκ(h))
⊤]⊤. (3.20)

We can expand the summation in (3.18) to have:

X(h) =
∑

κ∈K(h)

Xκ(h). (3.21)

Similar to (3.12), for each decomposed circuit, we know that only one harmonic

source is present. Therefore, we have:

1Tbκ = 1, ∀κ ∈ K(h). (3.22)

Furthermore, similar to (3.13)-(3.16), we know that the following equations hold for each

set of state variables associated with each of the decomposed circuits for each harmonic

source:

IN,κ(h) ≤M bκ, ∀κ ∈ K(h), (3.23)

IN,κ(h) ≥ −M bκ, ∀κ ∈ K(h), (3.24)

A IL,κ(h) ≤M Ψ (1− bκ), ∀κ ∈ K(h), (3.25)

A IL,κ(h) ≥ −M Ψ (1− bκ), ∀κ ∈ K(h), (3.26)

BVκ(h) ≤M Φ (1− bκ), ∀κ ∈ K(h), (3.27)

BVκ(h) ≥ −M Φ (1− bκ), ∀κ ∈ K(h). (3.28)

Matrices A, B, Φ, and Ψ do not have superscript κ; because they do not depend

on the number of harmonic sources.
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We can now MIQP formulation in (3.17) to the case with the presence of multiple

harmonic sources as follows:

minimize
X(h),Xκ(h),bκ

∀κ∈K(h)

∥∥∥∥∥
 Z(h)

0

−

 H(h)

G(h)

X(h)

∥∥∥∥∥
2

2

subject to Eqs. (3.1), (3.20)− (3.28).

(3.29)

The above optimization problem incorporates all the harmonic sources into one

integrated formulation. Note that, the optimization variables corresponding to all the har-

monic sources are coupled through the constraints in (3.21); therefore, they all simultane-

ously affect the objective function in (3.29).

In each binary vector bκ, only one entry is non-zero; which pinpoints the location

of the κ-th harmonic source. The solution of the optimization problem in (3.29) gives us

the estimation of the state variables for the original circuit, as well as those for all the K(h)

decomposed circuits. Just like the problem in (3.17), the problem in (3.29) is a MIQP.

Hence, it can be solved by using a commercial solver such as CVX [48].

With regards to the complexity of our method, suppose there are K(h) harmonic

sources of order h across the distribution feeder. The MIQP HSE formulation in (3.29)

would include K(h)× (2×|N |+ |L|) continuous variables (corresponding to harmonic state

variables) and K(h) × |N | binary variables (corresponding to the harmonic sources to be

identified).

Importantly, if the binary variables are relaxed, then the MIQP optimization in

(3.29) becomes a convex optimization problem. Therefore, the complexity of the method

primarily depends on the number of binary variables, i.e., K(h)× |N |.
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Algorithm 1 HSE in low-Observable distribution network with unknown number and

location(s) of harmonic source(s)

Set threshold ζ.

Set X∗(h) = 0.

Set K∗(h) = {}.

K = 1 to |N | − 1 Solve Problem (3.29) to obtain X(h).

condition (3.30) holds X∗(h) = X(h);

K∗(h) = {1, . . . ,K}.

break;

3.5 Physics-Aware HSE Solution:

Unknown Number of Harmonic Sources

So far, we have assumed that the number of harmonic sources, i.e., K(h) is known

to us. The final step to complete our design in this paper is to relax such assumption. In

this section, we assume that K(h) is not known. Instead, it needs to be estimated. This

can be done by using a novel algorithm, as shown in Algorithm 1. This algorithm is based

on conducting an exhaustive search. The key in this algorithm is the for loop from Line 4

to Line 12. At first, we assume that there is only one harmonic source in the system, i.e.,

K = 1, and we solve the HSE problem in (3.29). Next, we set K = 2 and solve (3.29) again.

Every time we do so, a new non-zero entry is obtained in vector IN (h), while the value and

the location of the previous non-zero entries may also change.
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What matters to us in this exhaustive search is the value of the smallest non-

zero entry in the vector of harmonic nodal injection current phasors, i.e., IN (h). Let I ̸=0
N (h)

denote the vector which includes only the non-zero entries of vector IN (h). In every iteration

that we solve the HSE problem, we check to see if the following condition holds:

min
{
I ̸=0
N (h)

}
≥ ζ, (3.30)

where ζ is a predefined threshold which is selected based on the smallest harmonic current

magnitude that we are concerned about in practice for nodal injection by a harmonic source.

If the inequality in (3.30) does not hold, then it means that we have already passed the

actual number of harmonic sources; and the value of K in the previous iteration is the true

number. Once the algorithm ends it returns the number of harmonic sources as well as the

ultimate results for harmonic state estimation.

As a special case, if there is no harmonic source in the network, then the algorithm

ends without changing the initial values for X∗(h) and K∗(h). Accordingly, the outcome of

Algorithm 1 is correct even under such special case.

3.6 Placement of H-PMUs

In this paper, we assume that only very few H-PMUs are available. Therefore, low-

observability is the primary challenge, regardless of where the H-PMUs are located. Thus,

sensor placement is not the focus of this paper. Instead, we assume that the H-PMUs are

already installed at very few locations; and we rather focus on solving the HSE problem

to cope with the low-observability issues. It should be added that, in this work, H-PMUs

are assumed to be installed at only 15% − 25% of the buses. For instance, for the IEEE
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33-bus test network that we will discuss in Section VII-D, only six buses (i.e., only 18% of

the buses) are assumed to have H-PMUs.

Nevertheless, in this section, we provide some discussions on the subject of sensor

placement to serve as a supplementary insight. First, we discuss the intuitive importance

of certain locations to install H-PMUs on a radial topology. Next, we provide an algorithm

to select the locations of the H-PMUs.

3.6.1 Intuitive Importance of Certain Buses to Host H-PMUs

Let us again consider the IEEE 33-bus test network. We can distinguish three

groups of buses, as marked on Fig. 3.3: 1) The buses that are circled in red, which include

the substation and all the terminal buses, i.e., buses 1, 18, 22, 25, and 33. 2) The buses

that are circled in blue, which are at the head of laterals, i.e., buses 2, 3, and 6. 3) The rest

of the buses.

The buses in Group 1, i.e., those that are circled in red, are particularly beneficial

to host H-PMUs. The intuitive reason is that, if we place H-PMUs at the buses in Group

1, then every bus in the system is monitored by at least a pair of an upstream sensor and

a downstream sensor. The advantage of such dual monitoring has been reported also in

prior studies, e.g., in [68]. Further, as we will see in a case study in Section 3.7.6, moving

H-PMUs away from the buses in Group 1 leads to degradation in the HSE performance,

depending on how far we move the H-PMUs away from the buses in Group 1.

The buses in Group 2, i.e., those that are circled in blue, are also (to a lesser

extent) beneficial to host H-PMUs. For example, by placing an H-PMU at bus 6, we can
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Figure 3.3: Three groups of buses on a radial feeder: 1) the buses that are circled in red,
2) the buses that are circled in blue, and 3) the rest of the buses.

enhance the upstream monitoring of the buses on two major branches of the radial network

topology, i.e., for buses 7 to 18 on the main as well as for buses 26 to 33 on a lateral; while

we also enhance the downstream monitoring of buses 2 to 5.

From the above intuitive explanations, and given the fact that our focus in this

paper is on low-observable power networks with very few H-PMUs, we expect that the

choices of the H-PMUs should include the buses in Group 1 and possibly a few buses in

Group 2. Nevertheless, the main challenge remains to be the issue of low-observability in

the system.

3.6.2 H-PMU Placement based on Algorithm

Further to the intuitive approach in Section VI-A, next, we provide an algorithm

to choose the locations of H-PMUs based on the desired number of H-PMUs. This algorithm

is provided to make the paper self-sufficient. Please refer to the very rich literature in this

field, such as in [60, 61, 62, 63], for more details.

In the proposed sensor placement algorithm, we start from the case where all buses

are equipped with an H-PMU, i.e., we start with the hypothetical case where the power

distribution network has full observability. Then, in every iteration, we seek to remove
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one of the H-PMUs such that we experience the lowest decline in the accuracy of the

proposed HSE method after solving the optimization problem in (3.17). Here, we examine

the hypothetical presence of the harmonic source at each bus and consider the average of

the resulting MSE values. After we remove one H-PMU, we repeat this process to remove

H-PMUs one by one, until we reach the desired number of installed H-PMUs. Please note

that, due to the radial topology of the network, it might happen in some iterations that

removing an H-PMU from a group of neighboring buses leads to an equal amount of decline

in the MSE. In that case, one can remove the H-PMU from either one of those buses. In

such rare cases, instead of removing one of the identified buses randomly, we rather follow

our intuitive discussion in Section 3.6.1 and we give the priority to keep the H-PMUs at

buses in Group 1 over Group 2, and Group 2 over Group 3. The summary of the above

process is shown in Algorithm 2.

3.7 Case Studies

In this section, we examine different case studies based on the IEEE 33-Bus test

network [49]. We run the harmonic power flow in the Open Distribution System Simulator

(OpenDSS) [50], and then we use CVX toolbox with MOSEK solver [48] in MATLAB to

solve the HSE optimization problem in (3.29) and to execute the steps in Algorithm 1.

Unless stated otherwise, we assume that six H-PMUs are installed on the network

and measure the harmonic nodal voltage phasors and the harmonic line current phasors.

The placement of the H-PMUs is done by Algorithm 2, where the desired number

of H-PMUs is P = 6. Accordingly, H-PMUs are installed at buses 1, 6, 18, 22, 25, and 33.
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Algorithm 2 Placement of H-PMUs

1: The desired total number of available H-PMUs is P .

2: Initially, place H-PMU at every node, i.e., M = N

3: Set M∗ = {}

4: for m = 1 to |N | − P do:

5: minMSE = 1e3

6: F = {}

7: for i ∈ M/M∗ do:

8: Remove H-PMU at bus i and Solve Problem (3.17).

9: if MSE <minMSE then

10: minMSE = MSE;

11: F = {i}

12: end if

13: end for

14: Set M∗ = M∗ ∪ F

15: end for

16: Return M−M∗

We assume that up to five harmonic sources may exist on the power distribution

feeder, and they may inject harmonic currents with harmonic orders h = 3, 5, and 7. The

magnitude of the harmonic source at a bus is assumed to be up to 30% of the default load

at that bus in the IEEE 33-Bus test feeder.
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3.7.1 Performance Comparison

We compare the performance of our method with two other methods. We choose

the methods in [37] and [39] for the purpose of performance comparison. The method in

[37] is based on some popular sparse recovery techniques. It works by considering the nodal

injection currents as the vector of state variables. Sparse recovery is done by conducting

an ℓ1-norm minimization. Therefore, this method is inherently designed to solve the HSE

problem under the low-observability condition without the need for making any modifica-

tions. As for the method in [39], it is based on Singular Value Decomposition (SVD). It

has some structural characteristics which can be used to solve an undetermined system of

equations. This method addresses low-observability by examining singular values and the

null space vectors of the measurement matrix.

As the metric for performance comparison, we use the Mean Square Error (MSE)

in the HSE results. Since the magnitudes of the harmonic voltage phasors are different

from the magnitudes of the harmonic current phasors, we calculate the MSE for each type

of harmonic variables separately. Thus, we provide separate results for MSE V and MSE I.

The results are shown in Table 3.1. Here the harmonic source is at harmonic order

h = 3 and the magnitude of the injected harmonic current is 30% of the default load of the

bus where the harmonic source is located. As we can see, the MSE for both voltage and

current is significantly lower for the proposed method in comparison with the methods in

[37] and [39]. Of course, as we increase the number of harmonic sources, the MSE increases

in all three methods. However, in all cases, the proposed physics-aware method performs

drastically better.
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Another comparison between the performance of the proposed method and those

of [37] and [39] is done is Fig. 3.4. Here we examine the MSE V for each of the three methods

versus the location of a single harmonic source. The harmonic source is at harmonic order

h = 3, and the magnitude of the injected harmonic current is 10% of the default load at

each bus where the harmonic source is located. As it can be seen in Fig. 3.4, the proposed

method demonstrates a much lower MSE in comparison with the works in [37] and [39].
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Figure 3.4: MSE in estimating harmonic voltage phasors at all buses, for three different
methods, versus the location of the harmonic source. The number of harmonic sources is
K = 1. The harmonic order is h = 3.

3.7.2 Harmonic Source Location Identification

Although the focus in this paper is on harmonic state estimation, it is worth to also

compare our proposed method with the existing methods that are designed to identify the

location(s) of harmonic source(s). In any such comparison, we would utilize only a subset
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of the strengths of our proposed method. Clearly, not every HSE method can also identify

the unknown location(s) and the unknown number of the harmonic source(s). However,

the approach in this paper does provide the number and the location(s) of the harmonic

source(s) as a bi-product of the proposed physics-aware MIQP HSE method. Therefore,

making such comparison could be insightful.

In this case study, we compare the average error in identifying the location(s) of

harmonic source(s) of the proposed method versus the method in [41], which is designed

to identify the location(s) of the harmonic source(s). The harmonic source location iden-

tification method in [41] is based on the concept of compressed sensing. The results are

shown in Fig. 3.5. As the number of harmonic sources increases, it causes degradation in

the performance of both methods. However, the proposed HSE method demonstrates a

better performance in all scenarios. Of course, unlike our proposed method, the method in

[41] does not also solve the harmonic state estimation problem, as it is not designed to do

so.

3.7.3 Unknown Number and Location(s) of Harmonic Source(s)

In this section, we investigate the performance of Algorithm 1 in correctly esti-

mating the number of harmonic sources as well as the location(s) of the harmonic sources.

Suppose there are four harmonic sources at buses 14, 21, 24, and 29. All harmonic

sources are at the same harmonic order, where h = 3. We assume that neither the number

nor the locations of the harmonic sources are known.

Table 3.2 shows several details about the operation of Algorithm 1 for the above
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Figure 3.5: Error in location identification of the harmonic source(s).

scenario. At each step of the for loop in Algorithm 1, this table shows several details about

the internal parameters in the algorithm. The first column denotes the value of parameter

K. The second column denotes the optimal objective value of the optimization problem

in (3.29). The third column shows the entries in vector I̸=0
N (h), i.e., the non-zero entries

in vector IN (h). The number in bold is the entry that has the smallest amount, i.e., the

entry that is corresponding to the condition in (3.30). The fourth column shows the current

list of buses in set K∗. The number in bold is the bus number that is corresponding to

the condition in (3.30). The fifth column indicates whether condition (3.30) holds; ‘Yes’

means condition (3.30) holds; and ‘No’ means condition (3.30) does not hold. Parameter ζ

in (3.30) is set to 0.01.

Per Algorithm 1, we continue incrementing K for as long as condition (30) holds.

Accordingly, the highest value of K for which condition (30) holds gives us the number of

harmonic sources in the network. For the example, in Table 3.2 , the number of harmonic
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sources is obtained asK = 4, which is correct. If we consider K∗(h) at the row corresponding

to K = 4, it gives us the locations of all harmonic buses:

K∗(h) = {14, 21, 24, 29}, (3.31)

which is indeed correct; because the harmonic sources are indeed at buses 14, 21, 24, and

29. Notice that, for the last row in Table 3.2, that is corresponding to K = 5, bus 18 is not

a correct location for a harmonic source. Its corresponding value in vector I ̸=0
N (h) is 0.0054,

which is less than ζ = 0.01; hence, the condition in (3.30) does not hold at K = 5.

It is worth mentioning that, the optimal objective value, i.e., the value in the

second column in Table 3.2, is non-increasing in terms of parameter K; it cannot increase

as we increase K.

3.7.4 Increasing the Number of Harmonic Sources

Recall from Table 3.1 that increasing the number of harmonic sources (of the same

harmonic order) makes the HSE problem more challenging. It is very challenging to solve

the HSE problem when 1) there are several harmonic sources in the network, 2) the number

of the harmonic sources is unknown, 3) the locations of the harmonic sources is unknown,

and 4) we have only a few sensors deployed on the network. However, as we will show in

this section, the performance of Algorithm 1 can improve by slightly increasing the number

of H-PMUs.

Here, we examine a total of 100 random scenarios, where the randomness is with

respect to the locations and the magnitudes of the harmonic sources. Our goal is to examine

the percentage of the harmonic sources whose locations are identified correctly (or almost
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correctly). The results are shown in Fig. 3.6. In each bar, the dark portion indicates the

cases where the exact bus is identified while the light portion indicates the cases where the

immediate neighboring bus is identified. Therefore, the length of each bar indicates the

percentage of the the harmonic sources whose locations are identified either exactly or by

only one bus difference.

First, consider the case with the default number of H-PMUs, i.e., when there are

six H-PMUs in the system; one at the substation and the others at buses 6, 18, 22, 25,

and 33. As we can see, the performance of Algorithm 1 is generally acceptable when K

is 1, 2, 3, or 4. However, the performance drops when K is 5. Next, consider the case

where the number of H-PMUs is seven. The 7th H-PMU is installed at bus 14. As we

can see, the performance of Algorithm 1 improves significantly. In particular, when K is

5, the percentage of the harmonic sources whose locations are identified correctly increases

to 65% (exact bus) and 83% (exact or neighboring bus). Finally, consider the case where

the number of H-PMUs is eight. The 8th H-PMU is installed at bus 29. As we can see, the

performance of Algorithm 1 further improves. In particular, when K is 5, the percentage

of the harmonic sources whose locations are identified correctly further increases to 72%

(exact bus) and 85% (exact or neighboring bus).

From the results in Fig. 3.6, we can conclude that, as the number of harmonic

sources increases, we would need more H-PMUs to be installed in the system in order to

maintain high accuracy in the harmonic state estimation results.
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Figure 3.6: The impact of increasing the number of H-PMUs on improving the performance
of Algorithm 1 in identify the locations of the harmonic sources as we increase the number
of harmonic sources in the network. In each bar, the dark portion indicates the cases where
the exact bus is identified while the light portion indicates the cases where the neighboring
bus is identified.

3.7.5 Increasing the Harmonic Order

To investigate the effect of harmonic order on the accuracy of the proposed HSE

method, we perform a sensitivity analysis based on the harmonic order h, and with respect

to different number of harmonic sources K. We compare the results of our method with

those of the methods in [37] and [39]. To have a consistent comparison, we assume that

the magnitude of the harmonic injection current for different harmonic orders is the same.

The magnitude of each harmonic source is 10% of the default load at the bus where the

harmonic source is located. The results for the MSE of harmonic nodal voltage phasors

and the MSE of harmonic line current phasors are shown in Table 3.3. As we can see, the

proposed method demonstrates a drastically better performance compared with [37] and

[39].
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Table 3.3: Performance Under Different Harmonic Orders

K h MSE V MSE I
Proposed
Method

[37] [39]
Proposed
Method

[37] [39]

1 3 0.0017 1.25 7.02 0.00025 0.94 0.83
5 0.0046 1.96 17.3 0.00028 1.17 1.29
7 0.0089 2.63 32.9 0.00035 1.37 1.94

2 3 0.0030 3.91 18.3 0.00037 1.65 2.20
5 0.0077 6.28 40.8 0.00049 2.10 3.39
7 0.0153 8.35 100 0.00060 2.43 4.36

3 3 0.0052 6.40 30.9 0.00077 2.25 3.42
5 0.0323 10.1 74 0.00858 2.84 5.29
7 0.1075 13.1 134 0.01467 3.28 6.81

4 3 0.0718 11.9 101 0.00970 3.20 4.80
5 0.0917 19.1 141 0.01050 4.08 7.40
7 0.1590 24.7 202 0.02150 4.60 10.1

3.7.6 Impact of Changing the Location of H-PMUs

As it was mentioned in Section 3.1.2, sensor placement is beyond the scope of this

paper. Nevertheless, it is interesting to examine the sensitivity of our proposed method to

changing the location of an H-PMU. Thus, in this section, we examine the results when we

change the location of the H-PMU that is at bus 33. Here, we move the sensor to every

bus on an entire lateral that includes buses 26 to 33. The results are shown in Fig. 3.7. As

we can see, the performance of the method, i.e., the MSE index, remains almost unchanged

as we move up to three buses away from the default location of the sensor at the end of

the lateral. However, if we move away even further, then we gradually start experiencing

degradation in the performance. We can conclude that, the best option is to stick to the

typical placement of the sensors as in the aforementioned default setting. Nevertheless, we

can see that the proposed method is not very sensitive to the exact location of the H-PMUs,

and it may cope with slight changes in the location of the sensors.
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3.7.7 Impact of Unbalanced Operation

Next, we study the impact of having unbalanced phases on the performance of the

proposed HSE method. In this case study, we examine a larger power distribution network,

namely the IEEE 123 bus test system [69]. The majority of the loads in this test system are

single phase loads that are on different phases. There are also multiple unbalanced three-

phase loads with Wye connections. Many of the laterals in this network are very small.

We aggregate the loads on any such small lateral as a single load point, as shown in red

in Fig. 3.8. We assume that there are only four H-PMUs available, one at the substation

and three at buses 95, 197 and 250. These H-PMUs provide three-phase harmonic voltage

phasor measurements and three-phase harmonic line current phasor measurements. The

harmonic source is at harmonic order h = 3 and the magnitude of the injected harmonic

current is 30% of the default load at the bus where the harmonic source is located.

The results of applying the proposed HSE method are shown in Table 3.4. By

comparing the results in this table and those in Table 3.1, we can see that the performance
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Figure 3.8: An example three-phase distribution feeder with unbalanced loads. Four H-
PMUs are available at buses 95, 149, 197, and 250.

Table 3.4: Performance in an unbalanced network

K MSE V MSE I

1 0.0183 0.0042

2 0.9174 0.2315

3 1.1289 0.1507

4 2.3154 0.4538

5 29.258 12.743

of the proposed method remains satisfactory despite the phase unbalance in the system.

This is because the unbalanced operation of the power distribution system does not change

the nature of the problem, such as the characteristics of the substation connector path or the

inherent linearity in the equations that directly comes from the Ohm’s law. The proposed

HSE method works well whether or not the network is balanced.
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3.7.8 Performance in the Presence of DERs

In this Section, we evaluate the performance of our method in the presence of

distributed energy resources (DERs). The results are shown in Table 3.5. Here, we assume

that five DERs are at buses 5, 15, 20, 24, and 29. We consider different scenarios for

different number of harmonic sources. All harmonic sources are at harmonic order h = 3

and the magnitude of the injected harmonic current is 30% of the default load at the bus

where the harmonic source is located.

As we can see in Table 3.5, our method demonstrates similar accuracy as the

previous case, where there were no DERs, such as in the results in Table 3.1. The reason

is that, the presence of DERs does not impact the sparsity patterns that we extracted in

Section 3.3. Also, it is worth mentioning that DERs may cause reverse power flow on the

fundamental component of the current [19]; however, our focus in this study is rather on

the harmonic components, not the fundamental component.

Table 3.5: Performance in the Presence of DERs

K =1 K = 2 K = 3

MSE - V 0.0158 0.8913 0.9937

MSE - I 0.0025 0.2562 0.1443

3.7.9 Validation of the Superposition Theorem

We end the case studies by directly examining and validating the application of

the superposition theorem in our proposed HSE method. Same as in Section 3.7.3, suppose

there are four harmonic sources at buses 14, 21, 24, and 29.
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For the purpose of this validation task, we run the harmonic power flow for four

different cases. In each case, exactly one of the four harmonic sources is assumed to be

connected to the network, while the remaining three harmonic sources are disconnected.

Furthermore, we also separately run the harmonic power flow for the case that all four of

the harmonic sources are connected to the network.

Let us denote the vector of the harmonic line current phasors corresponding to

the first four cases by IL,1, IL,2, IL,3, and IL,4. They are corresponding to the simulation of

the four cases with individual harmonic sources, i.e., when the only harmonic source in the

network is at bus 14, at bus 21, at bus 24, and at bus 29, respectively. If the superposition

theorem holds, then the following summation:

IL,1 + IL,2 + IL,3 + IL,4, (3.32)

would closely match IL which is the harmonic current phasor corresponding to the case

where all four harmonic sources are connected to the network. This issue is validated in

Fig. 3.9. As we can see, there is almost a perfect match between the summation in (3.32),

which is the outcome of applying the superposition theorem, and the actual simulation

results with the simlultanous presence of all four harmonic sources.
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Figure 3.9: An illustrative example to validate the superposition theorem for the harmonic
state variables. There are four harmonic sources on the network.
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4.1 Introduction

4.1.1 Background and Motivations

Data from Phasor Measurement Units (PMUs) have been widely used in recent

years to detect, characterize, identify, and classify events in power systems. An event in

this field is defined broadly and may refer to load switching, capacitor bank switching, con-

nection or disconnection of distributed energy resources, inverter malfunction, momentary

oscillations, a minor fault, a signature for an incipient fault, etc. Analysis of events has

major applications in power system situational awareness [70, 71, 72], equipment condition

monitoring [73, 74, 75], cyber-security [76], and modeling power system dynamics [77, 78].

Traditionally, PMUs provide phasor measurements based on the fundamental com-

ponent of voltage or current. However, the fundamental phasor measurements may not fully

capture the rich information content that is embedded in the changes that occur in voltage

and current during an event.

This area has recently received a boost with the development of Harmonic Phasor

Measurement Units (H-PMUs), which are a new class of smart grid sensors. H-PMUs can

provide not only the phasor measurements for the fundamental component (same as in the

traditional PMUs), but also the phasor measurements for the harmonic components. We

refer to [79, 15, 80, 16, 17] for more details about the recent developments in the field of

H-PMUs. Thus, in this paper, we seek to examine the event signatures as captured not only

in the fundamental phasor measurements but also in the harmonic phasor measurements.

Throughout this paper, we use real data from a test site in California. An example

is shown in Fig. 4.1. The measurements are three-phase, but only one phase is shown here.
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Figure 4.1: Signatures of an event in: (a) fundamental phasor measurements, (b) third
harmonic phasor measurements, (c) fifth harmonic phasor measurements.

Fig. 4.1(a) shows the signature of an event in the fundamental phasor measurements.

Figs. 4.1(b) and (c) show the signatures of the same event in the third and the fifth harmonic

phasor measurements, respectively. These signatures demonstrate important features, both

in transient changes and in steady-state changes, as well as both in magnitude and in phase

angle.

The type of harmonic phasor signatures that are shown in Figs. 4.1(b) and (c) are

currently unexplored as they have not been used in the literature to study power system

events. However, when available, the further information that is provided about an event

by these additional phasor measurements can significantly enhance our ability to make

inferences.

4.1.2 Related Work

PMU measurements have been widely used for the analysis of power system events.

Various methods have been developed for examining the event signatures in the fundamental
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phasor measurements, such as to do event detection [71], event location identification [81],

and event type classification [82, 83].

As for the literature on harmonic phasor measurements, the focus so far has not

been on the analysis of event signatures. It has been rather on the following three general

categories. First, there are studies that focus on the design of H-PMU devices and the

signal processing methods to accurately obtain the harmonic phasors, such as by using

matrix pencil method [84]. Second, there are studies that seek to identify the sources of

harmonics in power systems, such as based on Harmonic State Estimation (HSE) [24, 85].

This line of work also includes methods to assess the daily harmonic variations in power

systems [86]. Importantly, the work in this category is only concerned with the steady state

analysis of harmonics. It is not concerned with the analysis of power system events. Third,

there are studies that focus on other (less traditional) applications of harmonic phasor

measurements, such as in topology identification [19], fault location identification [87, 88],

and detection of wide-band oscillations in power systems [89].

There are also studies that investigate which certain harmonic orders are created as

the result of which certain physical phenomena; albeit with focus on steady-state harmonics.

For example, the third harmonic is common when there are issues in three-phase systems

without a neutral, while the fifth harmonic can be due to the saturation in the transformers’

cores [90].

Different from the above-mentioned literature, in this paper, we take a rather

unique approach to harness the additional information provided by harmonic phasor signa-

tures to better analyze power system events. The only other study that has touched on a
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similar idea is the recent work in [91], in which Graph Learning is used to investigate events.

In [91], the main focus is still on fundamental phasors; yet an example is presented for the

case where some harmonic phasor measurements are included in the analysis. Notably, the

example in [91] was based on computer simulations, and not real-world data. Here, we

take a new and more fundamental approach by using information theory and by analyzing

real-world data.

4.2 Problem Statement

The purpose of this study is to investigate the hypothesis that the event signatures

in harmonic phasor measurements can uncover some significant insights about power system

events, that are not captured by the event signatures in the conventional fundamental phasor

measurements. Suppose a conventional PMU provides the following vectors of fundamental

voltage and current phasor measurements during an event:

V1∠θ1, I1∠ϕ1, (4.1)

where

V1 =
[
V1[1] . . . V1[n]

]T
, I1 =

[
I1[1] . . . I1[n]

]T
θ1 =

[
θ1[1] . . . θ1[n]

]T
, ϕ1 =

[
ϕ1[1] . . . ϕ1[n]

]T (4.2)

are the time-series of the magnitude of the fundamental voltage phasor, the magnitude of

the fundamental current phasor, the phase angle of the fundamental voltage phasor, and

the phase angle of the fundamental current phasor, respectively. Parameter n is the number

of phasor measurements that are recorded in the window of time series that captures each

event.
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Next, suppose we replace the conventional PMU with an H-PMU. In addition to

providing the fundamental voltage and current phasor measurements in (4.2), the H-PMU

can also provide the following complex-valued vectors of harmonic voltage and current

phasor measurements during the event:

V2∠θ2,V3∠θ3, . . . ,Vm∠θm

I2∠ϕ2, I3∠ϕ3, . . . , Im∠ϕm

(4.3)

Here, the harmonic phasors are reported by the H-PMU up to harmonic order m. In

practice, the H-PMU may not report all the harmonic phasors. For example, it may only

report the third and the fifth harmonics. Or it may only report the two most dominant

harmonics; see [11, Section 4.5]. Furthermore, the H-PMU may or may not report both the

harmonic voltage phasors and the harmonic current phasors. For example, for the phasor

measurements in Fig. 4.1, the H-PMU only reported V3∠θ3 and V5∠θ5, in addition to

reporting V1∠θ1.

It is clear that an H-PMU provides more data than a conventional PMU. However,

our question is on whether (and to what extent) the event signatures in the harmonic

phasor measurements in (4.3) provide more information than the event signatures in the

fundamental phasor measurements in (4.2), as far as the analysis of the power system events

is concerned. The presence and the extent of such additional information can depend on the

type of the event that is captured and the order of the harmonic phasor that is measured.

We seek to address this open problem by using concepts from information theory.

The nature of this study is inherently data-driven. Therefore, we leverage a real-

world dataset from a substation in California. The measurements are made at the secondary

side of a 69 kV to 12.47 kV transformer that supplies a power distribution feeder. The
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dataset covers one whole year of power system events, from March 1, 2022 to February 28,

2023. A total of 2400 events were recorded during this period. All events are three-phase

and often unlabeled. For each event, the voltage and current phasors are recorded, both at

the fundamental and harmonic frequencies.

4.3 Methodology: An Information Theoretic Approach

4.3.1 Entropy and Information Content

We commence our proposed approach by introducing the concept of entropy, which

is the foundation of information theory [92]. For a random variable, entropy measures the

inherent uncertainty or randomness of its outcomes. For a discrete random variable A,

entropy H(A) is defined as:

H(A) = −
∑
a∈A

PA(a) logPA(a), (4.4)

where PA is the probability mass function of discrete random variable A over its support

set A, which is the set of all possible values that A can take with a non-zero probability.

Given another discrete random variable B, the notion of conditional entropy can

be similarly defined as [93]:

H(A|B) = −
∑
a∈A

∑
b∈B

PA,B(a, b) log

(
PA,B(a, b)

PB(b)

)
, (4.5)

where PA,B is the joint probability mass function of A and B. The conditional entropy

measures the average residual uncertainty about variable A once variable B has been ob-

served.
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Together, the above two concepts lay the groundwork for the definition of Mutual

Information (MI), a measure of the reduction in uncertainty about random variable A when

random variable B is observed [92], or in other words, the overlap in information content

between two variables:

MI(A;B) = H(A)−H(A|B). (4.6)

We note that MI is symmetric in A and B, i.e., MI(A;B) = MI(B;A). It is zero when

A and B are statistically independent, indicating that observing A provides no additional

information about B and vice versa [92]. A Normalized Mutual Information (NMI) has

been introduced in [94] as:

NMI(A;B) =
MI(A;B)

H(A) +H(B)
, (4.7)

which takes a value between 0 and 1. If there is no shared information content between A

and B, then NMI(A;B) = MI(A;B) = 0. The more the overlap in information content of

A and B, the closer the NMI approaches a value of 1.

The formulations in (4.6) and (4.7) can be extended to also measure the overlap

in the information content among sets of variables. For instance, the NMI between random

variable A and the pair of random variables B and C is obtained as:

NMI(A;B,C) =
MI(A;B,C)

H(A) +H(B,C)
, (4.8)

where

MI(A;B,C) = H(A)−H(A|B,C). (4.9)

Note that H(A|B,C) is the conditional entropy of A, given both B and C. Again, the value

of NMI(A;B,C) is always between 0 and 1, where 0 implies no shared information content
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between A and (B,C). The closer NMI(A;B,C) is to 1, the more information content is

shared by A and (B,C).

4.3.2 Information Content of Features in Phasor Measurements

In order to apply the above concepts to the context of our study, we take two steps.

First, we represent the event signatures, whether in the fundamental phasor measurements

or the harmonic phasor measurements, based on features, which represent a summary statis-

tic of time series measurements. Second, we discretize the extracted features from the first

step.

With regards to feature extraction, we start from the existing literature in the

analysis of event signatures in phasor measurements. Specifically, we focus on extracting

the features from the following time-series on each of the three phases [83]:

Vi, Ii, cos(θi − ϕi), i = 1, . . . ,m. (4.10)

Note that, for i = 1, i.e., for the fundamental phasors, the term cos(θi − ϕi) in (4.10) is

the same as power factor. However, for any i > 1, i.e., for harmonic phasor measurements,

the term cos(θi − ϕi) in (4.10) can too be viewed as a notion of power factor, but based

on harmonic phasors. Importantly, it is common not to directly use the phase angles of

voltage and current in the analysis of events. Instead, the cosine of their difference is used

to eliminate the impact of the fluctuations in the frequency of the power system, see [11, p.

114].

Let X(t) denote a time-series from the list in (4.10)Suppose X̄pre and X̄post denote

the average ofX(t) before and after the event, respectively. Furthermore, letXmin andXmax
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denote the minimum value and the maximum value of X(t) during the event. We define

two features with respect to each X(t):

S = X̄post − X̄pre (4.11)

and

T =


Xmax − X̄pre if |Xmax − X̄pre| ≥ |Xmin − X̄pre|

Xmin − X̄pre otherwise,

(4.12)

where S is the change in the steady-state conditions of the time-series, before and after the

event; and T is the maximum change in the transient conditions of the time-series during

the event, either as overshoot or as undershoot during the event.

Importantly, for each event, the above two features are extracted from not only

the event signatures in the fundamental phasor data but also the event signatures in the

harmonic phasor data. Accordingly, a total of 6m features are extracted from the phasor

data in (4.10) on each phase for each event.

The discretization of the extracted features is done by dividing the range of each

continuous-valued feature into a number of bins (equal to the square root of the number of

data points). This choice balances the objectives that discretization effects remain negligible

for NMI measurements and that the numerical NMI estimates are sufficiently accurate.

We can incorporate each pair of the extracted discretized features as random vari-

ables A and B to obtain NMI as in (4.7). For example, A can be the transient change in

the event signature in the fundamental phasor measurements and B can be the transient

change in the event signature in the harmonic phasor measurements of the third harmonic.

Accordingly, we can investigate the information content of the extracted features in the

real-world power system events in the dataset.
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Table 4.1: Normalized MI Among Certain Pairs of Features

V I cos(θ − ϕ)

NMI(T1;T3) 0.1034 0.0445 0.0208

NMI(T1;T5) 0.0653 0.0389 0.0217

NMI(S1;S3) 0.0524 0.0417 0.0191

NMI(S1;S5) 0.1386 0.0544 0.0203

In this study, we estimate the joint probability functions as well as the marginal

probability distribution functions by discretizing the extracted features into bins, and using

bivariate or multivariate histogram bin counts depending on the number of features. The

results are then normalized based on the number of events. Marginal distributions are

obtained by summing the joint probabilities for the two features.

4.4 Case Studies Using Field Data

4.4.1 Analysis of Pairwise Information Content

Suppose the harmonic phasor measurements are limited to the third harmonic

phasors, and the fifth harmonic phasors. The results are shown in Table 4.1. Each row

provides the NMI between a feature from the fundamental phasor measurements and a

comparable feature from the harmonic phasor measurements. These results are based on

taking the average of the NMI across all the power system events in the dataset. The

features are extracted by (4.11) and (4.12). For example, T1 is the transition change in the

event signature based on the fundamental phasor data, and S3 is the steady-state change

in the event signature based on the third harmonic phasor data.

All the NMI values in Table 4.1 are close to 0, highlighting that every feature

for every harmonic phasor that is listed in this table carries distinct information. The
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varying levels of NMI values in this table suggest that the information overlap between

these features are different for different features and for different harmonics. A lower value

for NMI means that the second feature provides more additional information to the first

feature. For example, consider the lowest value of NMI in the column under V , which is

NMI(S1,S3) = 0.0524. This means that by using the steady-state changes in the voltage

magnitude of the third harmonic phasors, we can most significantly increase the information

content of the features, compared to the case where we only use the steady-state changes

in the voltage magnitude of the fundamental phasors.

4.4.2 Application in Optimal Selection of Harmonic Phasors to Maximize

Information Content in Event Signatures

Recall from Section 5.2 that an H-PMU may provide harmonic phasor measure-

ments only for a small and specific number of harmonics. One may ask: if we can only

measure a few harmonic phasors, which ones should we pick for the analysis of events?

Next, we seek to answer this question.

Specifically, we compare two scenarios, which contain an equal number of harmonic

phasors within their feature sets. Without loss of generality, we assume that only the

magnitudes of the voltage phasors are used in this case study. Scenario 1 exclusively employs

odd harmonic phasors:

V1∠θ1, V3∠θ3, V5∠θ5, V7∠θ7, V9∠θ9. (4.13)

Scenario 2 employs both odd and even harmonic phasors:

V1∠θ1, V2∠θ2, V3∠θ3, V4∠θ4, V5∠θ5. (4.14)
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Table 4.2: Normalized MI for Two Different Scenarios for Choosing a Fixed Number of
Harmonic Phasors

Selection Scenario 1 NMI(T1; T3, T5, T7, T9) 0.2463
NMI(S1; S3, S5, S7, S9) 0.2620

Selection Scenario 2 NMI(T1; T2, T3, T4, T5) 0.1334
NMI(S1; S2, S3, S4, S5) 0.1383

The above two scenarios use the same number of phasors, i.e., five. The question is:

which scenario carries more information about the event? We can answer this question

by conducting a multivariate mutual information analysis corresponding to the formulation

in (4.8), but based on five variables to account for the number of phasors in (4.13) and

(4.14). The results are shown in Table 4.2. We observe that, whether with respect to the

transient features or with respect to the steady-state features, Scenario 2 has a lower NMI

than Scenario 1 on average:

NMI(T1; T2, T3, T4, T5) < NMI(T1; T3, T5, T7, T9)

NMI(S1; S2, S3, S4, S5) < NMI(S1; S3, S5, S7, S9).

(4.15)

That means that the features in Scenario 2 have less information overlap with the

features of the fundamental phasors than those in Scenario 1. Thus, the event signatures

in Scenario 2 are expected to be more informative with respect to the characteristics of the

events than the event signatures in Scenario 1. This approach can help with systematic and

optimal selection of the harmonic phasors to maximize their information content.

We note that the above results are in contrast to the traditional analysis of har-

monics in the field of power quality, where even harmonics are almost never considered due

to the often symmetric nature of voltage waveforms in steady-state conditions. However,
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when it comes to the analysis of power system events, the above results suggest that the

use of even harmonics, as in Scenario 2, can be beneficial.

4.4.3 Application in Event Clustering

The additional information content of H-PMU measurements can improve the

performance of event-based tasks in power systems. An example is in the field of event

clustering and event classification, where we seek to identify the type or cause of an event

based on its signatures in the measurements.

Fig. 4.2 depicts the use of harmonic phasor measurements in event clustering.

The clusters are obtained by using K-means clustering for different choices of the feature

space. Different subfigures demonstrate different harmonic phasor signature feature spaces,

while sharing a common color-coding. The color coding is based on clustering of the events

with respect to their S and T features as captured in Fig. 4.2(a) based on the fundamental

phasor measurements. This representation provides a baseline scenario to assess how the

events that may seemingly belong to the same cluster appear very differently based on their

features in the higher harmonic spaces.

To see this, consider the feature spaces in Figs. 4.2(b) and (c), which are based

on the features that are extracted from the third and the fifth harmonic phasor measure-

ments, respectively. Note that the colors represent the same clusters that were identified

in Fig. 4.2(a), based on the features from the fundamental phasor measurements.

The comparison of Figs. 4.2(a), (b), and (c) confirms that the clusters based on

the features in the fundamental phasor measurements are not valid for the higher harmonic

feature spaces. This discrepancy demonstrates that clustering based purely on fundamental
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Figure 4.2: (a) Fundamental phasor signature feature space, (b) Third harmonic phasor
signature feature space, (c) Fifth harmonic phasor signature feature space. In all subfigures,
the color coding is based on clustering of the events with respect to their S and T features
in the fundamental phasors.

phasors may not fully capture the characteristics that are hidden in the higher harmonic

phasor features.

Since the event data in real-world power systems is predominantly unlabeled, we

propose to use the silhouette value to assess the performance in event clustering, leveraging

the various features derived in our analysis. Silhouette value indicates how well each object

lies within its cluster. Specifically, it is a measure of how similar an object is to its own

cluster (cohesion) compared to other clusters (separation) [95].

The silhouette value ranges between −1 and 1. A higher value indicates a better

clustering quality of the power system events. Without loss of generality, we assume that
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Table 4.3: Silhouette Values for 4 Clusters

Harmonic Phasor Features I V cos(θ − ϕ)

Fundamental 0.174 0.2151 0.2248

Fundamental and Third 0.2884 0.4526 0.3432

Fundamental and Third and Fifth 0.3547 0.677 0.5011

the number of clusters is fixed at four. That is, the target in each clustering task is to create

four clusters based on certain features.

Table 4.3 shows the silhouette values obtained for different scenarios, i.e., 1) when

we use only the features from the fundamental phasors, 2) when we use the features from

the fundamental phasors and the third harmonic phasors, and finally, 3) when we use the

features from the fundamental phasors, the third harmonic phasors, and the fifth harmonic

phasors.

By comparing the results in Table 4.3 we can conclude that the silhouette values

are highest in all variables when all features are included in the event clustering task. This

outcome supports the premise that the inclusion of the features from the event signatures

in the harmonic phasor measurements, particularly both the third and fifth harmonics, can

significantly enhance the event clustering performance.
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Chapter 5

Data-Driven Models for Sub-Cycle

Dynamic Response of

Inverter-Based Resources Using

WMU Measurements
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5.1 Introduction

With the increasing penetration of inverter-based resources, power systems are be-

coming more complex and more dynamic. Further, the recent incidents with the unexpected

responses of IBRs to system-wide disturbances, such as in California, have underlined the

need to monitor and characterize the dynamic behavior of IBRs at high-resolution waveform

levels, such as within the short period of one AC cycle [96, 97].

However, the measurements from phasor measurement units that are commonly

used in this field do not provide the type of data that is needed for this kind of analysis.

Instead, we need to use the measurements from waveform measurement units.

WMUs are a new class of smart grid sensors that have emerged only recently [11, Section

4.6]. WMUs provide time stamped waveform measurements.

In this study, we use WMU data from a pilot project in California to address the

above open problem. Specifically, we develop new data-driven methods to estimate the

dynamic response of IBRs to system-wide sub-cycle disturbances.

To the best of our knowledge, this is the first study of its kind. In fact, as it

is recently surveyed in [98], the existing methods in this field can be divided into two

categories. First, there are methods that use the internal physics of the IBR [99, 100, 101].

Clearly, such methods require access to the internal physical systems for each IBR. Second,

there are methods that are data-driven [102]. However, so far, the focus has been primarily

on using data from PMUs. In this study we rather use data from WMUs.
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5.2 Problem Statement
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Figure 5.1: An IBR’s response to a real-world system-wide sub-cycle disturbance: (a) the
disturbance causes momentary distortions in voltage waveforms; (b) the dynamic response
by the IBR is in form of momentary agitations in current.

Fig. 5.1 shows the real-world waveform measurements during a system-wide dis-

turbance that is captured by a WMU at a three-phase PV unit. The disturbance causes a

voltage event at the location of the PV inverter. This in turn, causes an agitation (response)

in the PV inverter’s current waveforms.

The impact of the exact same disturbance on another PV unit is shown in Fig. 5.2.

The measurements in this figure are from another WMU. They are time-synchronized with

the measurements at the first WMU. Thus, the measurements in Figs. 5.1 and 5.2 provide

us with synchro-waveform measurements, to enable us compare the dynamic response of

the two PV inverters (i.e., the two IBRs) to the same disturbance; see [103]. Importantly,

the second IBR is located on a different feeder. Notice that, the response of the IBR in
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Figure 5.2: Another IBR’s response to the exact same real-world system-wide sub-cycle
disturbance: (a) the voltage distortion at the second IBR; (b) the dynamic response of the
second IBR in form of momentary agitation in current.

Fig. 5.2(b) is different from the response of the IBR in Fig. 5.1(b). Whether in Fig. 5.1 or

in Fig. 5.2, the disturbances as well as the responses of the IBRs are all very short, lasting

only about half of a cycle.

5.2.1 IBR as a Dynamic System at Waveform Level

Based on the above examples, each IBR can be seen as a dynamic system that

responds to the very fast and very short disturbances in the power system. Each IBR

responds to the disturbances based on its own unique internal dynamics.

Accordingly, we can model the behavior of each IBR at waveform level as a dy-

namic system. Such system can be represented as an input-output box, as shown in Fig. 5.3.

Here, the input signal is the disturbance in voltage waveform at the terminals of the IBR,

and the output signal is the agitation in the IBR’s current waveform in response to the

disturbance.
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Inverter-Based Resource
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Waveform)
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Disturbance: Voltage Waveform Response: Current Waveform
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Figure 5.3: The waveform-level input-output dynamic model of an IBR.

5.2.2 Waveform Representation in Differential Form

The disturbance in voltage waveforms as well as the IBR’s dynamic response in

the current waveforms can be best anlyzed once they are represented in differential form.

Let time t0 denote the moment when the disturbance starts. We can express the differential

waveform corresponding to waveform x(t) with respect to the event as follows [11, Section

4.2.5]:

∆x(t) = x(t)− x(t− T ), ∀ t ≥ t0, (5.1)

where T = 1/60 seconds is the waveform interval. Time t0 can be obtained by using the

existing methods in [11, Section 4.2]. Fig. 5.4 shows the differential waveforms correspond-

ing to the disturbance in Fig. 5.1. Only Phase A is shown here. We can now clearly see the

fast dynamic behavior of the IBR at this short interval; which is caused in response to the

disturbance.
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Figure 5.4: Differential waveforms for Phase A of the waveforms in Fig. 5.1.
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5.2.3 Our Objective

For the rest of this study, our objective is to develop data-driven models to capture

the dynamic response of the IBR, i.e., to predict the IBR’s injected current in differential

waveform in response to a disturbance in voltage in differential waveform.

5.3 Model Construction in Frequency Domain Using Modal

Analysis and Library Development

Consider the differential voltage waveform (input signal) in Fig. 5.4(a) and the

differential current waveform (output signal) in Fig. 5.4(b). We refer to them as ∆v(t) and

∆i(t). By applying the modal analysis, such as the Prony method [11, Section 2.6.3], we

can express these two differential waveforms as:

∆v(t) =

M∑
m=1

Ame
σmt cos(ωmt+ ϕm), (5.2)

∆i(t) =

M∑
m=1

Bme
σmt cos(ωmt+ ψm), (5.3)

where M denotes the number of dynamic modes. Each dynamic mode m is represented by

angular frequency ωm and damping factor σm. The differential voltage waveform at mode

m is represented by magnitude Am and phase angle ϕm. The differential current waveform

at mode m is represented by magnitude Bm and phase angle ψm. Accordingly, at each

mode m, we can define the equivalent admittance of the IBR at that particular mode as

the following complex number:

Hm =
Bm∠ψm

Am∠ϕm
=
Bm

Am
∠ (ψm − ϕm) at ωm + jσm. (5.4)
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5.3.1 Data-Driven Library Construction

Suppose the voltage and current waveforms are available from a WMU at an IBR

during K disturbances. Let ∆v1(t), . . . ,∆vK(t) denote the differential voltage waveforms

and ∆i1(t), . . . ,∆iK(t) denote the differential current waveforms during disturbances k =

1, . . . ,K. By applying the analysis in (5.2)-(5.4) to the above measurements, we can obtain:

Hk
m at zkm = ωk

m + jσkm,
k = 1, . . . ,K,

m = 1, . . . ,M.

(5.5)

Each model in (5.5) corresponds to one dynamic mode that is derived from the analysis of

one disturbance; thus adding up to build a library of K ×M models using modal analysis.

5.3.2 Data-Driven Model Selection

Let ∆vtest(t) denote the differential voltage waveform for the given disturbance.

Let ∆itest(t) denote the differential current waveform for the response of the IBR to this

disturbance. Given ∆vtest(t), we seek to estimate ∆itest(t) based on the model library in

(5.5). We denote our estimate by ∆̂itest(t).

Let us denote the dynamic modes of the test input signal ∆vtest(t) by zn,test =

ωn,test + jσn,test, where n = 1, . . . ,M . For any such dynamic mode n, we define k⋆n and m⋆
n

as follows:

[ k⋆n,m
⋆
n ] = argmin

k,m

∣∣∣zn,test − zkm

∣∣∣2 . (5.6)

Here, we select one dynamic mode from the library in (5.5) that has the minimum distance

from dynamic mode n of the test input signal.
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We estimate the IBR’s response to ∆vtest(t) as:

∆̂itest(t) =
M∑
n=1

Cne
σn,testt cos(ωn,testt+ φn), (5.7)

where

Cn = An,test

∣∣∣Hk⋆n
m⋆

n

∣∣∣ , φn = ϕn,test + ∠Hk⋆n
m⋆

n
. (5.8)

Here, An,test and ϕn,test are the magnitude and phase angle for modal representation of

∆vtest(t) at its dynamic mode zn,test. We use the magnitude and phase angle of the proper

equivalent admittance from the model library to obtain Cn and ϕn in (5.8), which we use in

(5.7) to estimate the IBR’s response, denoted by ∆̂itest(t). As for indices k⋆n and m⋆
n that

are used in (5.8), they are defined in (5.6) and are used in order to select the proper model

among the equivalent admittances in the model library. Notice that matrix H is defined in

(5.4). In order to select the proper choice of H from the library of models in (5.5), we use

indices m⋆
n and k⋆n, which are defined in (5.6).

5.4 Model Construction in Time Domain Using Regression

Analysis and Library Development

Again consider the differential waveforms in Fig. 5.4. In this section, we represent

∆v(t) as ∆v[1],∆v[2], . . . ,∆v[N ], which is a discrete time-series, where N is the number of

samples. Similarly, we represent ∆i(t) as ∆i[1],∆i[2], . . . ,∆i[N ].
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5.4.1 Data-Driven Library Construction

Next, we use two different time-domain models, with and without auto-regression,

to build the data-driven model library:

Approach 1: Using FIR Models

The response of the IBR is constructed by a Finite Impulse Response (FIR) model:

∆i[τ ] = b1∆v[τ ] + b2∆v[τ − 1] + . . .+ bnb
∆v[τ − nb + 1]. (5.9)

The above FIR model estimates each sample of the output signal as a weighted sum of the

nb most recent samples of the input signal. Here, nb denotes the order of the model.

Approach 2: Using ARX Models

The IBR’s response is constructed by an Auto-Regressive eXogenous (ARX) model:

∆i[τ ] = a1∆i[τ − 1] + · · ·+ ana∆i[τ − na] + b1v[τ ]

+ b2∆v[τ − 1] + ...+ bnb
∆v[τ − nb + 1].

(5.10)

This ARX model estimates each sample of the output signal as a weighted sum of the nb

most recent samples of the input signal and the na most recent samples of the output signal

itself. Here, na and nb denote the order of the model.

Given the K training data sets, we can use (5.9) or (5.10) to build a library of K

FIR models or K ARX models. For each model, we need to estimate the corresponding

unknowns as:

θFIR = [b1, · · · , bnb
]⊤, (5.11)

θARX = [a1, · · · ana , b1, · · · , bnb
]⊤. (5.12)
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Vectors θFIR and θARX can be obtained using methods such as Least Square (LS) optimiza-

tion, e.g., [104, Section 3.2].

5.4.2 Model Selection

Similar to the analysis in Section 5.3.2, we need a method to select the proper

model from the library. However, since we do not use modal analysis in Section 5.4, we

select the model based on directly comparing the time series of the test input signal and

the time series of the training input signals:

k⋆ = argmin
k

∑N
τ=1

∣∣vk[τ ]− vtest[τ ]
∣∣2 . (5.13)

Given k⋆, we can estimate ∆itest(t) by using either the FIR model in (5.9) and (5.11) or

the ARX model in (5.10) and (5.12).

5.5 Potential Applications

The analysis in this paper can be used in various potential applications. First, the

models for the dynamic response of IBRs can be used for diagnosis purposes to enhance

the life span of IBRs. This can be done by comparing the derived data-driven models with

the nominal/reference models that are provided by the IBR manufacturers. Another option

is to regularly monitor the dynamic behavior of each IBR over time. A major change

can potentially indicate an incipient failure that may suggest the need for inspection or

maintenance. Second, modeling the sub-cycle dynamic behavior of IBRs may also help

with developing digital twins for different types of IBRs to predict how different IBRs may

respond to various disturbances in power systems. This can ultimately help with identifying
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the type and magnitude of disturbances that are likely to cause undesirable tripping of IBRs;

see [96] for a related discussion. Third, the analysis in this paper can also be used to compare

the dynamic response of a large group of IBRs in a given geographical region. Such analysis

may also shed light on potential ripple effects in the power system that may follow a system-

wide disturbance due to the agitations in power production or even momentary secession

of IBRs.

5.6 Case Studies

In this section, we apply the proposed methods to the real-world waveform mea-

surements that are obtained by a WMU at a 480 V / 100 kW PV unit, for six months. In

total, 63 sub-cycle system-wide disturbances and the corresponding responses of the IBR

were recorded in this period. Out of the 63 available disturbances, we used 42 disturbances

for training the model, i.e., two third of the available disturbances in the data set is used

for training. The remaining 21 disturbances are used for testing the accuracy of the model,

i.e., one third of the available disturbances in the data set is used for testing. As a result,

we evaluated the out-of-sample performance of the proposed models; because the samples

that we used for performance evaluation had no overlap with the samples that we used to

obtain (i.e., train) the models.

5.6.1 Comparison with Baseline Methods

As the baseline method to be compared with the design in Section 5.3, we consider

a method that applies multi-signal modal analysis to all the 42 training data sets to develop
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5.3

5.4

Figure 5.5: Performance comparison with the corresponding baseline methods: (a) for the
method in Section 5.3; (b) for the method in Section 5.4.

a single model in frequency domain. That is, unlike our proposed method in Section 5.3, this

baseline method does not involve the library construction in (5.5) and the model selection

in (5.6). The results are shown in Fig. 5.5(a), in terms of the Mean Squared Error (MSE)

for each method. As we can see, both methods improve as we increase the number of modes.

However, the proposed method always performs much better than the baseline method.

As the baseline method for the design in Section 5.4, we consider a method that

applies multi-signal regression to all the 42 training data sets to develop a single model in

time domain. That is, unlike our proposed method in Section 5.4, this baseline method does

not involve library construction and model selection. The results are shown in Fig. 5.5(b).

In both cases, we use FIR models. As we can see, the proposed method always performs

much better than the baseline method.
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5.6.2 Analysis of Modal Distance

For the method in Section 5.3, it is insightful to examine the MSE as a function of

the modal distance between each test input signal and the training input signals. For each

∆vtest(t), we obtain:

Modal Distance: Φ =

√∑M
n=1

∣∣∣zn,test − z
k⋆n
m⋆

n

∣∣∣2. (5.14)

The results are shown in Fig. 5.6. A trend is evident. In general, a higher modal distance

for a test input signal leads to a higher MSE in estimating its corresponding test output

signal.
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Figure 5.6: Plotting the individual MSE of each test case versus the modal distance between
the test input signal and the training input signals. Parameter M = 6.

5.6.3 Using FIR vs. ARX Model

For the proposed method in Section 5.4, Table 5.1 compares the performance

of using the FIR model versus the ARX model. The FIR model shows a more stable

performance, i.e., its MSE consistently improves as we increase the order of the model. The

101



Table 5.1: MSE for Using FIR VS. ARX Models in Section 5.4

nb = 2 nb = 3 nb = 4 nb = 5

FIR 13.1761 12.7091 12.5947 12.5859

ARX (na = 1) 12.4331 12.6453 12.4619 12.3848

ARX (na = 2) 12.5315 12.3748 12.4892 13.4232

ARX model rather needs proper tuning of its parameters. However, once such tuning is

done, the ARX model can perform slightly better than the FIR model. In fact, the best

result in Table 5.1, in bold, is achieved when we use the ARX model with na = 2 and

nb = 3.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Conclusions

The goal of this thesis was to enhance situational awareness in power distribution

systems, particularly focusing on the challenges posed by limited harmonic-observability and

the integration of renewable energy sources. By developing novel physics-aware harmonic

state estimation methods and utilizing data-driven approaches, this work aims to provide

power distribution system operators with advanced tools to monitor and analyze harmonic

distortions and dynamic behaviors effectively.

In Chapter 2, a novel physics-aware sparse HSE formulation was developed for

radial power distribution systems under low-observability conditions. This design extracts

various individual and group sparsity patterns in harmonic nodal injection current phasors,

harmonic line current phasors, and harmonic nodal voltage phasors with respect to the

location of the harmonic source. The HSE problem is formulated as a constrained weighted

Lasso optimization. Our analysis covers the challenging scenario where the location of
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the harmonic source is unknown, and multiple case studies in OpenDSS confirmed the

effectiveness of the proposed method.

In Chapter 3, a novel physics-aware mixed-integer quadratic programming formu-

lation and corresponding innovative algorithm were proposed to solve the HSE problem in

low-observable power distribution feeders. This method extracts the sparsity patterns of

harmonic state variables in the presence of multiple harmonic sources with unknown num-

bers and locations. Using the superposition theorem, this methodology uniquely integrates

the process of obtaining the number and locations of harmonic sources with harmonic state

estimation. The effectiveness of the proposed method was verified through various case

studies and compared with existing methods.

In Chapter 4, new data-driven methods were developed and tested to model the

dynamic behavior of inverter-based resources when responding to sub-cycle waveform dis-

turbances. Experimental results confirmed the high performance of the methods compared

to baselines, providing valuable insights to utilities and independent system operators for

enhancing situational awareness and improving power system stability and reliability. Mod-

eling the sub-cycle dynamic behavior of IBRs can help identify disturbances that can cause

significant agitation or momentary cessation in power production, as well as potential ripple

effects in the power system.

In Chapter 5, we explored the event signatures in harmonic phasor measurements

recorded by H-PMUs to uncover new information about power system events not captured

by fundamental phasor measurements from conventional PMUs. By applying techniques

from information theory to real-world phasor measurements, we demonstrated that har-
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monic phasors provide significant independent information content. This information is

valuable for optimizing the selection of harmonic phasor orders for event analysis and en-

hancing the performance of event clustering in power system situational awareness. Incorpo-

rating harmonic features significantly improved event clustering performance, as evidenced

by improved silhouette values. Future research can further explore the applications of this

new direction in power system monitoring.

Overall, this thesis presents comprehensive methodologies for enhancing situa-

tional awareness in power distribution systems through advanced HSE techniques and data-

driven dynamic response modeling, contributing significantly to the field of power system

monitoring.

6.2 Future Work

While this thesis has made significant contributions to enhancing situational aware-

ness in power distribution systems, there remain several avenues for future research to

further advance this field.

The proposed methods in Chapters 2 and 3 took advantage of the radial topology

of the power distribution system [57, 85]. Future research could examine cases where the

network topology is not radial, adding complexity and requiring new approaches to HSE.

Further research could investigate the integration of the developed HSE methods

with other power system applications, such as fault detection and localization, asset man-

agement, and predictive maintenance. This would provide a holistic approach to power

system monitoring and control.
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For the information-theoretic approaches in Chapter 4, we examined the informa-

tion content of the harmonic phasors [105]. Future research could extend this to include

wideband phasors, such as inter-harmonics, analyzing their information content and poten-

tial benefits for power system monitoring and situational awareness.

Lastly, in Chapter 5, the proposed method used modal analysis and regression

models to estimate the IBRs’ response to transient events [106]. Future work could employ

machine learning methods, such as deep learning, to enhance the accuracy of these models.

Additionally, future research could extend the analysis to different types of events, including

voltage sags, frequency deviations, and other power quality disturbances. Methods could

also be proposed to reuse or adjust a model from one IBR to capture the response of another

IBR based on the analysis of time-synchronized waveform measurements at both IBRs.
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Appendices

Appendix A

In this Appendix, we explain how to construct matrices H(h) and G(h) in order

to formulate the equation in (3.5).

The measurement matrix H(h) contains two types of rows. The first type of rows

in matrix H(h) is associated with harmonic voltage phasor measurements. The following

relationship holds between the harmonic nodal injection current phasors and the harmonic

voltage phasor measurements:

Vm(h) = Um
V Y−1(h) IN (h), (7.1)

where Um
V ∈ R|N |×|N | is a diagonal matrix,such that its diagonal entry in row i

is 1 if the associated bus i is equipped with measurement, and otherwise it is zero. Also,
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Y(h) is the admittance matrix for harmonic order h. In addition to (7.1), the harmonic

voltage phasor measurements can be mapped also to their associated entries in the vector

of harmonic voltage phasors through an identity mapping:

Vm(h) = Um
V V(h), (7.2)

The second type of rows in matrix H(h) is associated with the harmonic line current mea-

surements. The harmonic line current measurements are mapped to the vector of harmonic

nodal voltage phasors as follows:

ImL (h) = Um
I Yprim(h) V(h), (7.3)

where Um
I ∈ R|L|×|L| is a diagonal matrix, such that its diagonal entry in row i is 1 if the

associated line segment i is equipped with measurement, and otherwise it is zero. Also,

Yprim(h) is the primitive admittance matrix [42], which includes the line admittances only

for the line segments whose harmonic current phasors are measured. Harmonic line current

phasor measurements can also be related to the vector of the harmonic line current phasors

through an identity mapping:

ImL (h) = Um
I IL(h). (7.4)

As for matrix G(h), it includes similar equations to (35). But for the line segments that

are not equipped with H-PMUs, we use an equation that captures the relationship between

the harmonic nodal voltage and the harmonic line currents:

0 = (I−Um
I )(Yprim(h)V(h)− IL(h)), (7.5)
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where I ∈ R|L|×|L| is an identity matrix. The equations in (7.5) create more coupling among

the state variables, which finally appears in (3.5) as:

0 = G(h)X(h). (7.6)

It is worth mentioning that, for a network with low observability, it is crucial to use the

augmented formulation in (3.5) in order to at least include the unobservable harmonic

variables in the equations of the HSE problem formulation through the use of matrix G(h).

Otherwise, there is no other place to include the unobservable harmonic variables in the

formulation of the problem; which would not allow estimating them.
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Appendix B

In this Appendix, we explain the key characteristics of the substation connector

path that was mentioned in Section 3.3.1. In particular, we explain why the harmonic

current almost entirely flows through the substation, i.e., through the substation connector

path, which is marked in red in Fig. 3.1. The steps to explain this concept are shown in

Fig. 7.1(a).

First, consider the network model in Fig. 7.1(a). Here, we have replaced the

laterals with their equivalent impedance. In particular, we have replaced the lateral that

contains buses 19 to 22 with impedance Z19−22; the lateral that contains buses 23 to 25

with impedance Z23−25; and the lateral that contains buses 26 to 33 with impedance Z26−33.

Furthermore, we replaced the part of the main feeder that is on the right hand side of the

harmonic source at bus 13, i.e., the part that includes buses 14 to 18, with impedance Z14−18.

As for ZThevein, it denotes the impedance in the Thevenin equivalent of the substation that

is seen by the distribution feeder.

In Fig. 7.1(a), since ZThevein and Z19−22 are in parallel; and because, in practice,

the impedance of the power network as seen at the substation is much smaller than the

impedance of any lateral [107], i.e., ZThevenin is much smaller than Z19−22, we can conclude

that no harmonic current will go through Z19−22. Instead, almost the entire harmonic

current will go through the substation. Therefore, we can eliminate the lateral and reduce

the network model to Fig.7.1(b).

Similarly, in Fig.7.1(b), since ZThevenin and Z23−25 are in parallel, and ZThevenin

is much smaller than Z23−25, we can conclude that no harmonic current will go through
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Z23−25. Note that, with a slight abuse of notation, ZThevenin in Fig. 7.1(b) is redefined as

the impedance of the Thevenin equivalent of the combination of the substation and bus 2.

We can eliminate the lateral and reduce the network model to Fig.7.1(c).

Similarly, in Fig. 7.1(c), since ZThevenin and Z26−33 are in parallel, and ZThevenin

is much smaller than Z26−33, we can conclude that no harmonic current will go through

Z26−33. Therefore, we can eliminate the lateral and reduce the network model to Fig. 7.1(d).

So far, all the laterals are eliminated.

Finally, in Fig. 7.1(d), since ZThevenin and Z14−18 are in parallel, and ZThevenin

is much smaller than Z14−18, we can conclude that no harmonic current will go through

Z14−18. Therefore, almost the entire harmonic current flows from the harmonic source to

the substation through the substation connector path, as it is marked on the figure.
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Figure 7.1: The illustration of the explanations in the Appendix about the characteristics
of the substation connector path: (a) replacing the laterals in Fig. 1 with their equivalent
impedances; (b) eliminating the first lateral; (c) eliminating the second lateral; (d) elimi-
nating the third lateral.

112



Appendix C

In this appendix, we explain why it is necessary to consider both V(h) and IL(h)

as state variables in our HSE problem in Chapters 2 and 3.

Consider the small network in Fig.7.2. The network has five buses. One H-PMU

is installed at bus 1 and another H-PMU is installed at bus 5. The H-PMU at bus 1

measures the harmonic nodal voltage phasor at bus 1 and the harmonic line current phasor

at line L1. The H-PMU at bus 5 measures the harmonic nodal voltage phasor at bus 5 and

the harmonic line current phasor at line L4. Accordingly, the vector of harmonic phasor

measurements at harmonic order h is:

Z(h) = [V1(h)
m V5(h)

m IL1(h)
m IL4(h)

m]⊤, (7.7)

where superscript m indicates a measurement to distinguish the measurements from the

state variables. To see the importance of including the line current phasors in the vector

of state variables, let us hypothetically assume that we consider only the harmonic nodal

voltage phasors as state variables:

X(h) = [V1(h) V2(h) V3(h) V4(h) V5(h)]
⊤. (7.8)

From (3.3), we would have the following system of equations:



V m
1 (h)

V m
5 (h)

IL1(h)
m

IL4
(h)m


=

[
S

]



V1(h)

V2(h)

V3(h)

V4(h)

V5(h)


. (7.9)
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Figure 7.2: An illustrative example for the discussion in Appendix C: A small distribution
feeder with 5 buses and 4 lines. Only two buses have H-PMUs.

where

[
S

]
=



1 0 0 0 0

0 0 0 0 1

yL1(h) −yL1(h) 0 0 0

0 0 0 yL4(h) −yL4(h)


.

The above system of equations does not involve V3(h); because the associated

coefficients are zero in all the rows. Thus, it is impossible to estimate V3(h) from the above

equations; because V3(h) is simply not part of the equations.

If we do include the harmonic line current phasors in state variables, which is what

we do in this paper, we would have:

X(h) = [V1(h) ... V5(h) IL1(h) ... IL4(h)]
⊤. (7.10)
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From (3.5), we would have the following system of equations:



V m
1 (h)

V m
5 (h)

IL1(h)
m

IL4
(h)m

0

0



=

[
R

]



V1(h)

V2(h)

V3(h)

V4(h)

V5(h)

IL1
(h)

IL2(h)

IL3
(h)

IL4
(h)



, (7.11)

where

[
R

]
=



1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

yL1
(h)

2 −yL1
(h)

2 0 0 0 1
2 0 0 0

0 0 0
yL4

(h)

2 −yL4
(h)

2 0 0 0 1
2

0 −yL2(h) yL2(h) 0 0 0 −1 0 0

0 0 −yL3(h) yL3(h) 0 0 0 −1 0



.

The last two rows in (7.11) are corresponding to matrix G(h) that we defined in Section

3.2.2. Unlike in (7.9), the system of equations in (7.11) involves all the state variables. This

is a necessary condition to estimate all the state variables in the system. This is why we

have included the harmonic line current phasors in the vector of the state variables in this

study.
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