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ScienceDirect
The medial cortico-striatal-thalamo-cortical (CSTC) motor

circuit is a core system that exerts control over interval timing

and action. A common network generates these behaviors

possibly owing to cellular coding of temporal and non-temporal

information, which in turn promotes reconfiguration of

functional connectivity in accord with behavioral goals. At the

neuroanatomical level, support for flexible CSTC

reconfiguration comes from studies of temporal illusions

demonstrating that this system calibrates the experience of

time through functional interactions with various context-

sensitive brain regions. Revelations that CSTC effective

connectivity is pivotal for context-dependent facets of

voluntary actions, namely action planning, complement its role

in predictive processes such as timing. These observations

suggest that the CSTC is positioned to represent high-level

information about ‘what to do’ and ‘when to do it’ by

dynamically reconfiguring effective connectivity as

circumstances arise.
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Introduction
Research into the neural mechanisms of temporal proces-

sing and voluntary action have proceeded independent

of one another, even though time is a basic facet of

action representation that comes into play when antici-

pating and guiding the timing of movements. This review

seeks to integrate recent findings across these areas by

focusing on a core system that exerts control over interval

timing and voluntary actions, namely the supplementary
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and presupplementary motor areas (SMA/preSMA), the

striatum, and the thalamus, otherwise referred to as the

cortico-striatal-thalamo-cortical (CSTC) system (Figure 1,

bottom). We begin by discussing neurophysiological mech-

anisms by which this system governs interval timing and

may also permit reconfiguration of CSTC functional inter-

actions for the control of action. Indeed, CSTC interactions

are conditional on the behavioral goal, which is highlighted

by the discovery that different neural architectures are

specialized for relative and absolute forms of timing. We

then consider emerging studies of temporal illusions,

which demonstrate that CSTC interactions with various

brain regions alter perceived duration in a contextually-

sensitive manner. This revelation is a powerful illustration

of the system’s capacity for flexibly calibrating time and by

extension, modulating context-dependent facets of volun-

tary action. Here, we discuss the pivotal role of the CSTC

system in planning actions, which complements its role in

relative timing.

CSTC system and dopamine
neurotransmission in interval timing
A defining quality of purposeful behaviors is time and

rhythm, which support the fluency, coordination, and

organization of actions into abstract groupings [1]. Tim-

ing processes also optimize the prediction of when to act,

drawing upon past experiences of temporal regularities

in events or responses to them, which seemingly capture

attention automatically. There is growing consensus

across species that the striatum and dopamine (DA)

neurotransmission (Figure 1, top) exert control over

interval timing in the range of milliseconds to several

seconds ([2–5]; for reviews see [6��,7,8]). This is com-

patible with impaired timing in basal-ganglia disorders

such as Parkinson’s disease (PD) [9�,10��,11–13] and

prodromal Huntington’s disease (prHD) [14,15]. How-

ever, psychophysiological features of interval timing,

such as the scalar property, emerge through striatal

interactions with the cerebral cortex. According to the

striatal beat-frequency model, medium spiny neurons of

the dorsal striatum sense temporal patterns by serving as

coincidence detectors of activity engaged by cortical

neurons, which comprise the ‘clock signal’ ([16]; for

reviews see [6��,17�]). One activity pattern is the oscil-

latory firing patterns of cortical neurons, which are

thought to be synchronized to the onset of relevant

stimuli via DA release from the substantia nigra pars

compacta [18]. There is growing consensus that a key

cortical component of interval timing is the medial

prefrontal cortex, namely the SMA and preSMA, which
www.sciencedirect.com
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Figure 1
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Neural substrates of interval timing and action planning. (Top) An

illustration of cortical-basal ganglia and neurotransmitter systems that

are the cornerstone for interval timing and action representation.

Elements of basal ganglia and cortical networks are respectively

highlighted in light blue and red boxes. Multiple functionally-

segregated circuits link the cortex and basal ganglia, which enables

the control of timing and actions in a context-sensitive manner. The

nigrostriatal dopamine pathway connects the substantia nigra pars

compacta (SNc) to the dorsal striatum and is part of the motor circuit.

The mesocortical dopamine pathway connects the ventral tegmental

area (VTA) to the cortex, particularly the frontal lobes. Excitatory

(glutamate) and inhibitory (GABA) projections are designated by green

and red dashed arrows, respectively. (Bottom) A core system that

governs both interval timing and action planning is the medial cortico-

striatal thalamo-cortical (CSTC) motor circuit, which consists of the

SMA and preSMA (red), the striatum (blue), and the thalamus (purple).
complete the medial CSTC motor circuit (Figure 1,

bottom). Although SMA function is not well understood,

it is routinely engaged during timing [19–25] and may

support the accumulation and maintenance of temporal

information [21].
www.sciencedirect.com 
Another important finding is that the CSTC system gov-

erns relative (e.g., longer of two intervals) rather than

absolute (e.g., 500 ms) or implicit forms of timing, in which

temporal regularities in events or motor responses can be

used to achieve non-temporal goals. For example, when

beat rhythms (relative timing) are compared to non-beat

rhythms (absolute timing), striatal activity was higher [26]

and effective connectivity was stronger between the puta-

men and SMA [27]. Thus, the CSTC system is pivotal for

predicting and generating rhythms. These findings agree

with cell recordings in animals showing that temporal

tuning in the striatum rescaled when intervals were ex-

panded or contracted [28��]. By contrast, when irregular

sequences of clicks were compared to regular sequences,

activation was greater in the olivocerebellar system [29].

The prospect of distinct networks for relative and abso-

lute timing is compatible with observations of increased

cerebellar activity and effective connectivity in PD dur-

ing interval timing [10��,30,31�], possibly signifying com-

pensation for CSTC dysfunction. Indeed, temporal and

musical cueing therapies for improving gait in PD also

improved performance on timing tasks [11,12,32], partly

owing to increased metabolism in cerebellar–temporal–
parietal regions [33]. The benefits conferred by cueing

therapies on movement further suggest that motor dis-

turbances in PD are partly linked to deficient internal

timing, possibly due to CSTC coding of temporal and

non-temporal information. In fact, cellular recordings in

animals indicate that the SMA and putamen not only

display chronotopy during timing, but also represent

multiple information streams (e.g., time passed, remain-

ing time for an action, serial order, sensorimotor state of

organism) [28��,34,35��,36–39], which may enable the

reconfiguration of functional interactions in accord with

behavioral goals [40�]. These observations suggest that

the CSTC is well placed to represent higher-level infor-

mation about actions and their timing. Voluntary actions

may also rely on the same oscillatory processes as pro-

posed for interval timing [16,17�], yet differ in some

measure with respect to the information streams that

code features and reconfigure CSTC interactions for

goal-directed action [40�].

Context-sensitive interactions of the CSTC
calibrate perceived time
The proposal that the CSTC system flexibly alters inter-

actions with various brain centers contingent on the

situation is compatible with demonstrations that internal

states of an organism, past experiences, and stimulus

properties can distort the experience of time. Unraveling

the mechanisms by which the CSTC system calibrates

perceived duration is important because it also has impli-

cations for understanding how this system controls vol-

untary action, which is also context dependent [41–43]. It

has long been known that emotionally aversive, larger

magnitude, or intense stimuli are perceived as lasting
Current Opinion in Behavioral Sciences 2016, 8:78–84
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Brain systems that display context-dependent interactions with the

CSTC system. The CSTC system is thought to shape the experience of

time through interactions with other brain centers that are relevant to a

situation. Thus, by extension these functional interactions may also

come into play during action planning. (Top) Cognitive and emotion-

based systems interact with the CSTC system during interval timing in a

contextually-sensitive manner. Lateral and coronal views display

cognitive and emotion processing centers known to exhibit effective

connectivity or co-activate with the CSTC system during interval timing.

CSTC functional interactions with of these regions are thought to bring

about distortions in perceived duration. These regions include frontal

cognitive-control or executive processing centers (purple), dorsal (green)

and ventral (gold) attention networks, and an emotion-processing hub,

the amygdala (blue; coronal view). (Bottom) Sensorimotor and

association centers also interact with the CSTC system during interval

timing and for the purpose of action planning. These centers include the

premotor (green), sensorimotor (blue), inferior parietal (yellow), primary

auditory (red), and visual (fuchsia) cortices.
longer than their physical duration, whereas duration is

underestimated when stimuli are repeated, high proba-

bility, or non-salient (for a review see [44]). Although the

neurobehavioral mechanisms underlying distortions in

perceived duration remain debated, there is consensus

that attention and arousal can speed up or slow down

timing [45–47]. Emerging research also suggests that

CSTC regions calibrate time via context-sensitive inter-

actions with various brain centers.

One compelling demonstration of the striatum’s role in

calibrating time comes from an fMRI study of time

dilation in an emotionally arousing situation. Participants

judged the duration of aversive-neutral pictures or two

neutral pictures, and after imaging memory for the pic-

tures was tested [48�]. Recognition memory was better for

aversive pictures that were incorrectly timed (overesti-

mated) than for incorrectly timed neutral pictures. More-

over, activation was greater for incorrectly than correctly

timed pictures in the amygdala, striatum, medial frontal

cortex, and a region of the ventral attention network

(Figure 2), the anterior insula, which is routinely engaged

during timing [21,49,50]. Interestingly, better recognition

of aversive pictures was correlated with greater insula and

putamen activation on incorrectly, but not correctly timed

trials. These results suggested that arousal of the ventral

attention system by emotionally aversive pictures may

accelerate the accumulation of activity into the striatum,

which in turn compromises timing accuracy yet improves

memory.

Distortions in perceived duration also arise in settings

void of emotional undercurrent, wherein temporal infor-

mation from different senses is commonly paired, namely

audition and vision. Auditory signals are perceived as

lasting longer than visual signals of the same duration

when they are compared together [51�,52], owing to the

dominance of audition, which presumably captures and

sustains attention during timing more automatically than

visual stimuli ([47]; for an alternative interpretation see

[53�]). Thus, time is overestimated (dilated) when the

duration of an auditory (A) comparison interval is judged

relative to a visual (V) standard interval (VA) and under-

estimated (compressed) when a V comparison interval is

judged relative to an A standard (AV). One study reported

that audiovisual timing was mediated by the CSTC,

ventral attention (insula), and sensory-association systems

(temporal-occipital) (Figure 2) [51�]. Frontal ‘cognitive-

control’ centers (Figure 2) also exhibited greater activa-

tion when time was compressed (AV) than dilated (VA),

consistent with the greater controlled attention demands

of timing visual information, which if not sustained, leads

to a loss in pulses from the pacemaker–accumulator

mechanism [46]. Converging support for these findings

comes from an fMRI study of audiovisual timing in PD

[10��]. When timing emphasized controlled attention

(AV), time compression was markedly exaggerated in
Current Opinion in Behavioral Sciences 2016, 8:78–84 www.sciencedirect.com
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patients relative to control participants, whereas when

attention was more easily sustained (VA), time was dilat-

ed in both groups, but less so for patients. Importantly,

abnormal CSTC and anterior insula effective connectivi-

ty in PD differed for the two audiovisual conditions. In

the AV condition, effective connectivity of the CSTC and

anterior insula was notably weakened in PD with distrib-

uted frontal cognitive-control centers and the ventral and

dorsal attention networks (Figure 2), consistent with the

considerable attentional demands of the condition. In the

VA condition, however, effective connectivity of the

striatum with frontal cortex and the SMA was stronger

in PD relative to controls, possibly signifying compensa-

tion when attention to timing was less taxing. Regardless

of the condition, effective connectivity of the cerebellum

with frontal cortex was stronger in PD relative to controls,

suggesting compensation in absolute timing systems

[30,31�].

These discoveries are persuasive examples of the CSTC

system’s capacity for shaping perceived duration by inte-

grating signals from contextually relevant systems in-

volved in cognitive control, attention, emotion and

sensory processing, which can also come into play during

voluntary action. As such, reconfiguration of CSTC inter-

actions with context-dependent brain networks may be a

mechanism by which this system governs ‘what to do’ and

‘when to do’ it as a situation arises.

Configuration of CSTC system for action
planning
Although it has long been known that voluntary actions

are supported by the CSTC system, its specific functional

role has received relatively less attention. Nonetheless,

there is growing consensus that the CSTC system governs

action planning, which is compatible with this system’s

role in predictive processes such as beat prediction, which

depends on a representation of the structure of events to

predict and guide behavior [26].

Indirect evidence for the centrality of the CSTC system

in action planning comes from neuroimaging studies

contrasting movements performed in the presence of

sensory information that guides performance (externally

guided) with movements performed from memory with-

out external cues (internally generated). Early studies

reported greater activation of the CSTC during internal-

ly-generated than externally-guided action [42,43],

whereas frontoparietal and cerebellar activations were

greater during externally-guided action [43]. Importantly,

the different avenues for motor control were also distin-

guished by the type of functional interactions among the

same set of brain regions. Stronger interactions were found

amongst the SMA, putamen, and thalamus during inter-

nally-generated movement, whereas interactions amongst

the cerebellum, premotor cortex, and sensorimotor cortex

were stronger during externally-guided movement [54].
www.sciencedirect.com 
Other studies seeking to directly unravel the neural

mechanisms of action planning separated activation as-

sociated with the premovement period of planning a

sequence and the movement period when the action is

performed. One study also manipulated sequence com-

plexity [41], which increases planning difficulty. CSTC

and premotor cortex activation increased with sequence

complexity, more so during the premovement than the

movement phase of internally-generated sequences [41].

Notably, only basal ganglia activation increased with

sequence complexity during the premovement, but

not the movement phase, suggesting a specific role of

the striatum in integrating information for action plans.

Other studies using similar methods also endorsed a

CSTC role in planning [55,56,57�], sometimes jointly

with the substantia nigra [55], suggesting dopaminergic

gating of motor sequences. Impaired motor planning and

an abnormal reliance upon external cues to sequence

or initiate actions in PD and prHD [58–62,63�,64,65]

provide converging support for CSTC centrality in

action planning. More generally, weakened CSTC effec-

tive connectivity is observed in PD during voluntary

actions [63�] and self-initiated movements [61], whereas

strengthened  connectivity of the lateral premotor

systems [66] or the cerebellar-thalamocortical system

is found in PD, especially during externally guided

action [67].

Interestingly, the CSTC and the cerebellar systems’

respective roles in internally-generated and externally-

guided movement parallel their control of relative and

absolute timing. One speculation is that action planning

exploits relative timing mechanisms, whereas online mo-

tor-control engages absolute or implicit timing processes,

which predict sensory consequences of actions and rap-

idly fine tune movement on the basis of an efferent copy

of sensorimotor information.

Conclusions
Altogether, interval timing and action planning appear to

originate from the CSTC system. However, evidence for

flexible, context-dependent CSTC interactions is only

beginning to emerge. CSTC connectivity as modulated

by timing versus action planning has yet to be studied, but

would address basic questions about the nature of this

system’s interactions with the brain for different behav-

ioral goals. The influence of cognitive demands on con-

nectivity will be especially important as investigations

move toward studying more complicated forms of timing

(e.g., multiple events) and action planning (e.g., complex

actions, larger repertoires of behaviors). These lines of

inquiry are highly relevant to unraveling mechanisms

of pathological timing and action in basal ganglia dis-

orders, and may provide insight into cognitive-training

approaches that target brain networks capable of com-

pensating for neuronal dysfunction.
Current Opinion in Behavioral Sciences 2016, 8:78–84
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