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Original Article

Introduction

In people without diabetes, blood glucose, insulin, and other 
metabolic outputs (eg, glucagon) are rhythmically regulated 
at multiple timescales.1-4 Prominent timescales include the 
day (circadian rhythm(s); CR, 23-25 h)5-7 and within-a-day 
(ultradian rhythm(s); UR, ~1-6 h).2,4 CRs are maintained by 
a hierarchy consisting of a master brain clock in the supra-
chiasmatic nucleus of the hypothalamus that coordinates the 
activity of subordinate central and peripheral cellular oscilla-
tors.8-11 Although mechanisms of UR generation are still 
under investigation, these oscillations are nearly ubiquitous 
in metabolic and endocrine systems and are thought to be 
generated centrally and reinforced peripherally.12-14 At both 
timescales, exogenous signals such as food intake and light 
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Abstract
Background: Blood glucose and insulin exhibit coordinated daily and hourly rhythms in people without diabetes (nonT1D). 
Although the presence and stability of these rhythms are associated with euglycemia, it is unknown if they (1) are preserved in 
individuals with type 1 diabetes (T1D) and (2) vary by therapy type. In particular, Hybrid Closed Loop (HCL) systems improve 
glycemia in T1D compared to Sensor Augmented Pump (SAP) therapies, but the extent to which either recapitulates coupled 
glucose and insulin rhythmicity is not well described. In HCL systems, more rapid modulation of glucose via automated insulin 
delivery may result in greater rhythmic coordination and euglycemia. Such precision may not be possible in SAP systems. 
We hypothesized that HCL users would exhibit fewer hyperglycemic event, superior rhythmicity, and coordination relative 
to SAP users.

Methods: Wavelet and coherence analyses were used to compare glucose and insulin delivery rate (IDR) within-day and 
daily rhythms, and their coordination, in 3 datasets: HCL (n = 150), SAP (n = 89), and nonT1D glucose (n = 16).

Results: Glycemia, correlation between normalized glucose and IDR, daily coherence of glucose and IDR, and amplitude of 
glucose oscillations differed significantly between SAP and HCL users. Daily glucose rhythms differed significantly between 
SAP, but not HCL, users and nonT1D individuals.

Conclusions: SAP use is associated with greater hyperglycemia, higher amplitude glucose fluctuations, and a less stably 
coordinated rhythmic phenotype compared to HCL use. Improvements in glucose and IDR rhythmicity may contribute to 
the overall effectiveness of HCL systems.
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act as cues to synchronize internal systems with respect to 
the 24 h day.5,15-20

Stability and in-range amplitude of CRs and URs are 
associated with better health outcomes. At the CR timescale, 
stable sleep-wake schedule and time restricted eating are 
associated with improved glycemia in individuals without 
diabetes and in those with type 2 Diabetes (T2D).15,21-24 
Circadian oscillators within pancreatic beta islet cells modu-
late insulin secretion throughout the day, with disruption to 
these rhythms resulting in oxidative stress and diabetes in 
animal models.25-27 Additionally, time of day modulates the 
response of muscle and adipose tissue to insulin, with more 
efficient glucose uptake during the daytime hours.28,29 At the 
UR timescale, a pulse of glucose followed promptly by a 
pulse of insulin can more expediently trigger glucose uptake, 
thereby preventing glucose from rising out of the euglycemic 
range.5 Conversely, a pulse of glucose followed by a delayed 
or blunted pulse of insulin is more likely to result in hyper-
glycemia,30 a dynamic observed previously in individuals 
with T2D.31 Together, metabolic health does not merely 
reflect healthy levels of key factors, but coordinated rhyth-
mic patterns of intake, absorption, and production.

Biological rhythms and coordination of glucose and insu-
lin have been studied only to a limited extent in people with 
T1D, with previous studies largely restricted to model-
ing.32-35 People with T1D likely exhibit widely varying glu-
cose and insulin dynamics in comparison to nonT1D and 
T2D individuals, due to the latter’s temporal pattern of 
endogenous insulin production and sensitivity. As a result, 
understanding (1) the timing of glucose and insulin delivery 
fluctuation, and (2) any preservation of endogenous glucose 
rhythms in people with T1D, is critical for understanding the 
efficacy of current treatments and designing effective future 
therapies.

For people with T1D, insulin is delivered exogenously 
under varying protocols, ranging from multiple daily injec-
tions, to Sensor Augmented Pump (SAP) therapy and Hybrid 
Closed Loop (HCL) therapy. In SAP therapy, an insulin 
pump delivers a pre-programmed basal rate of insulin which 
is supplemented by manual bolusing as needed for meals or 
corrections. In HCL therapy, glucose data are fed into an 
algorithm that directly determines insulin delivery adjust-
ments up to every five minutes and is supplemented by man-
ual bolusing for meals by the user. This process allows for 
frequent adjustment of insulin delivery, greater personaliza-
tion, and is associated with greater safety, improved glyce-
mia, and superior A1c as compared to SAP therapy.36-48

Much remains to be learned about how T1D therapies 
temporally coordinate with metabolic physiology, the mech-
anisms responsible for the particular effectiveness of HCL, 
and how the growing diversity of HCL systems could be fur-
ther improved. A key difference between SAP and HCL sys-
tems is that, in SAP therapy, glucose does not automatically 
influence insulin administration, whereas, in HCL therapy, 
glucose algorithmically determines insulin delivery. A 

possible downstream effect of these two methods of insulin 
administration is a difference in temporal coordination 
between glucose and insulin delivery rate (IDR) which may 
generate differences in the amplitude and stability of glucose 
rhythms. Understanding potential rhythmic differences 
between users of SAP and HCL and any relationship between 
rhythmicity and glycemia may enhance our understanding of 
how HCL achieves its success and suggest avenues for future 
improvements and personalization.

T1D rhythmicity can now be studied for the first time in a 
large, longitudinal dataset of SAP and HCL continuous glu-
cose monitor (CGM) and insulin pump data to better charac-
terize therapy outcomes beyond A1c and time in range. 
Additionally, the increased usage of CGMs by individuals 
without diabetes now allows for glucose timeseries and 
rhythmicity comparisons among people with and without 
T1D. We hypothesized that glycemia and rhythmicity vary 
widely among T1D individuals, but that HCL system use 
results in patterns of rhythmic change in glucose and insulin 
delivery, such as high glucose-insulin delivery temporal 
coordination and linear correlation relative to SAP.1,2,5,49,50 
Specifically we hypothesized that: (1) HCL users would 
show fewer instances of hyperglycemia compared to SAP, 
consistent with previous findings;36,37,39 (2) glucose levels 
and IDR would be more strongly correlated in HCL than 
SAP users; (3) such coordination, if present, may be associ-
ated with greater correlation of rhythmicity at higher fre-
quencies in HCL (as these frequencies of change are enabled 
stably by HCL systems) than SAP users, and (4) HCL users 
would exhibit stronger temporal coordination between glu-
cose and IDR compared to SAP users. To examine these pos-
sibilities, we used wavelet and wavelet coherence analyses to 
compare glucose and insulin delivery datasets.

Methods

Ethical Approval and Data Access

T1D data used in this study (1-SRA-2019-821-S-B) were 
licensed by JDRF from the Tidepool Big Data Donation 
Project,51 a type 1 diabetes data organization service. 
NonT1D data used in this study were made available 
through Open Humans,52 a service that allows individuals 
to anonymously donate their biometric data.53 Because all 
data were anonymized and retrospective, IRB approval was 
not required.

Inclusion Criteria and Data Cleaning

Data were included from SAP and HCL users with at least 1 
month of data without gaps of >12 h at any point during the 
month (n = 89 SAP, n = 150 HCL). In wavelet analyses, 
data were further restricted to users who consistently logged 
>4 CGM readings per hour (n = 144 HCL, n = 82 SAP); the 
vast majority of data points were logged approximately 
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every five minutes. CGM data from n = 16 nonT1D indi-
viduals from the Quantified Self Blood Glucose Data Set 
were included. Data were not cleaned of outliers as we 
intended to capture all variance within the data but were 
z-scored for wavelet coherence analyses and wavelet scatter 
plots. There were no age, sex, or parity restrictions (see 
Demographic data). Data were interpolated to a standard of 
five minute resolution for analysis.

Data Analysis

All code and data needed to recapitulate these analyses are 
available on AG’s Github.54 Code was written in MATLAB 
2020a, 2020b (MathWorks, Natick, MA, USA), and Python 
3 (Python Software Foundation, Wilmington, DE, USA). 
Wavelet transformation (WT) code was modified from the 
Jlab toolbox and from Dr. Tanya Leise.55 WT was used to 
assess the structure of URs and CRs of blood glucose and 
IDR timeseries, and wavelet coherence was utilized to 
assess the relationship between rhythms in glucose and 
rhythms in IDR. In contrast to signal processing methods 
that transform a signal into frequency space without tempo-
ral position (eg, Fourier transform using sine wave compo-
nents of infinite length), wavelets are constructed with 
amplitude diminishing to 0 in both directions from center, 
enabling frequency and amplitude calculation at a given 
position (see: Supplemental Figure 1).

Additionally, wavelets enable variation of window length 
when calculating power at different frequencies, enabling 
more accurate assessment of power at each frequency. 
Wavelets can assume many functions (eg, Mexican hat, 
square wave, Morse); the present analyses use a Morse 
wavelet with a low number of oscillations (defined by β and 
γ), analogous to wavelets used in previous circadian applica-
tions.55,56 Morse Wavelet parameters of β = 5 and γ = 3 
describe the frequencies of the two waves superimposed to 
create the wavelet, and which have successfully been used 
on biological timeseries.56–58 This low number of oscillations 
enhances detection of contrast and transitions. The maxi-
mum for each point in time within the band of the wavelet 
matrix rhythms of each hour (eg, 2-3 h) was taken in order to 
create linear representations of UR WT power over time. 
Bands analyzed here corresponded with the daily ultradian 
peak power observed in URs across many physiological sys-
tems (2-5 h), with a slight shift (omission of 1 h) and expan-
sion (inclusion of up to 6 h) in supplemental figures to 
account for the onset and duration of insulin action in people 
with T1D.12,13,59 The band of the wavelet matrix correspond-
ing to 23-25 h was assessed to represent circadian rhythmic-
ity. Because WTs exhibit artifacts at the edges of the data 
being transformed, only the WT of the second through the 
second to last days of data were analyzed further. After WT, 
wavelet matrices were down-sampled to every 10th point for 
ease of visualization in scatter plots. Wavelet coherence was 

assessed using the MATLAB “wcoherence” package by Dr. 
Aslak Grinsted.60,61 Briefly, wavelet coherence enables the 
assessment of the extent to which two signals share power at 
a timescale (here, circadian) at a given moment, and the con-
sistency of their phase relationship.61,62 Thus, coherence 
between IDR and endogenous glucose rhythms was assessed 
despite the delay from subcutaneous insulin delivery to 
absorption into the bloodstream.

Statistics

Distributions of glucose were differentiated by group by 
extracting skewness of each individual’s proportionally 
scaled glucose distribution using the MATLAB function 
“skewness.” A Kruskal Wallis test (non-parametric ANOVA) 
was then used to compare skewness of individuals by group 
(HCL vs SAP vs NonT1D). Linear regression was used to 
generate correlations of z-scored glucose and z-scored IDR, 
and of glucose and insulin UR power, using the MATLAB 
function “fitlm.” Area under the curve was used to represent 
an individual’s amplitude of daily and hourly glucose 
rhythms and, separately, circadian coherence. Kruskal Wallis 
tests were used to compare areas under the curve by group 
for circadian glucose oscillation amplitude and ultradian glu-
cose oscillation amplitude differences from NonT1D “base-
line,” and to compare circadian coherences. Each statistic 
utilized 1 number representing each individual per group, per 
comparison. Corrections for multiple comparisons used 
Dunn’s test within the matlab function “multcompare”; 
where all groups differed significantly, the largest P-value 
was reported. Findings were considered statistically signifi-
cant when P < .05.

Results

Demographics

The T1D dataset comprised a wide age range of individuals, 
most diagnosed with T1D at a young age. Notably, ethnicity 
data were not collected by Tidepool and reporting of sex was 
optional. Demographics, including the percentage of indi-
viduals who opted not to report sex in each group, are listed 
in Table 1.

Table 1. Demographics. Age, Sex (when listed), and Years Living 
with Diabetes of Individuals by Group.

n-Value
Mean age 

(SD)
% Female, 

male, unlisted
Years living with 

diabetes (SD)

SAP 89 34.4 (20.6) 13,23,64 18.4 (16.9)
HCL 150 28.5 (16.2) 44,32,24 15.3 (12.0)
Non-T1D  16 33.6 (13.9) 56,44,0 0 (0)

Abbreviations: HCL, Hybrid Closed Loop; SAP, Sensor Augmented Pump; 
SD, standard deviation; T1D, type 1 diabetes.
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HCL Use Is Associated With Improved Glycemia

HCL use reduces hyperglycemia.36–39,63–67 Specifically, SAP 
system users exhibit a broader, right shifted distribution of 
glucose in comparison to HCL system users, indicating 
greater hyperglycemia (>7.8 mmol/L); SAP, HCL, and 
nonT1D glucose distributions differed significantly from one 
another (χ2 = 57.86, P < 3 × 10-4). Hypoglycemia was rare 
in both T1D datasets (<5% of all data points for either 
group) (Figure 1).

Linear and Rhythmic Correlation of Glucose and 
Insulin Delivery Rate Are Increased in HCL Users

HCL increases the correlation between normalized glucose 
and IDR levels (SAP r2 = 0.002; P = .119; HCL r2 = 
0.015; P = 1.26 × 10-5) and the correlation between glu-
cose and insulin high frequency URs (SAP r2 = 0.002; P = 
.127; HCL r2 = 0.084; P = 5.6 × 10-22) compared to SAP 
(SAP metrics are uncorrelated). (Figure 2). This difference 
was not restricted to the 2 to 3 h ultradian band (Supplemental 
Figure 2).

HCL Use Is Associated With Lower Amplitude 
Circadian and Ultradian Glucose Deviations Than 
SAP

SAP glucose CR and UR amplitude is significantly higher 
than that of HCL or nonT1D (χ2 = 140 P < 4.41 × 10-4, 
χ2 = 73.5, P < 1.11 × 10-4, respectively). (Figure 3a). 
HCL CR amplitude is not significantly different from 
nonT1D CR amplitude (P = .206). Together, HCL users 
are more similar than SAP users to the canonical nonT1D 
phenotype of glucose rhythmic amplitude.

HCL Exceeds SAP Wavelet Coherence of 
Circadian Rhythms of Glucose and Insulin 
Delivery Rate

HCL users exhibit greater coherence between circadian 
rhythms of glucose and IDR (χ2 = 29.12, P = 6.80 × 10-8) 
(Figure 3b). Finally, HCL improves the correlation between 
glucose and IDR circadian rhythms (SAP r2 = 0.002, P = 
.141; HCL r2 = 0.083, P = 1.13 × 10−21) (see Supplemental 
Figure 2). These findings indicate that the relationship 

Figure 1. HCL systems reduce hyperglycemia. (a) Proportional counts of glucose distributions of all individuals with T1D using SAP and 
HCL systems. Note that counts are scaled such that each individual contributes the same proportion of total data. SAP system users 
exhibit greater hyperglycemia (>7.8 mmol/L); SAP, HCL, and nonT1D glucose distributions differed significantly. Hypoglycemic events 
(<4 mmol/L) comprised <5% of all data points for either T1D dataset. (b) Proportional counts of nonT1D glucose distributions. (c) 
Median distributions for each dataset. HCL, Hybrid Closed Loop; SAP, Sensor Augmented Pump; SD, standard deviation; T1D, type 1 
diabetes.
*Significantly different from other groups in the same figure panel P < .05.
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between glucose and insulin in HCL users more closely 
resemble that expected in nonT1D than SAP users.1,5,7,68

Discussion

The present findings reveal that glycemia, biological rhythms 
in glucose and IDR, and rhythmic coherence vary signifi-
cantly by T1D therapy type. In conjunction with lower inci-
dence of hyperglycemia, HCL system use is associated with 
lower amplitude rhythmic fluctuation at the CR and UR tim-
escales, a stronger association between glucose and IDR, and 
increased coherence of glucose and IDR circadian rhythms. 
The lack of a significant amplitude difference between CRs 
in HCL and nonT1D individuals is encouraging. Although 
much research is aimed at raising the amplitude of biological 
rhythms, the nonT1D data provide a context for illustrating 
that a reduction of rhythmic amplitude with preservation of 
rhythmic stability may be desirable in SAP systems, and in 
HCL systems at the UR timescale. Together, HCL systems 
appear to recapitulate glucose levels and rhythms to a greater 
extent than SAP systems.

The biological rhythm and insulin delivery metrics in the 
present investigation differ from those typically used to 
assess the efficacy of T1D therapies (eg, A1c and time in 
range). In contrast to insulin release in nonT1D individuals, 
absorption of insulin delivered subcutaneously results in 
smoothed levels of the hormone reaching the bloodstream 
with a delay.69,70 Such delays can also occur for measure-
ments of interstitial glucose, relative to circulating levels.71,72 
Although these delays may hamper the interpretation of 
rhythms in IDR, the present findings argue that this variable 
can be informative. The observation that glucose and IDR 
oscillate at the same frequencies and are temporally coordi-
nated argues that the algorithmic coupling of glucose to 
delivered insulin can be stably maintained in both outputs, 
and therefore that central insulin maintains aspects of this 
2-5 h and 24 h rhythmicity.

Because timeseries metrics assess key aspects of glu-
cose-insulin regulation, CRs and URs, they may be useful 
for further comparison of different HCL systems or for 
reviewing efficacy at different time points after adoption 
of HCL. Consideration of rhythms in, and coordination of, 

Figure 2. HCL increases correlation of glucose and IDR levels and ultradian rhythmicity. SAP users exhibit uncorrelated normalized 
glucose and IDR levels (a) and uncorrelated URs of glucose and insulin (d). Glucose and its rhythms assume a wide spectrum of values 
for each of the standard doses of insulin rates provided by the pump, leading to the striped appearance of the correlations. By contrast, 
Hybrid Closed Loop users exhibit correlated normalized glucose and IDR levels (b) and correlated ultradian rhythms of glucose and IDR 
(e). Overlays of normalized glucose and IDR (c) and ultradian rhythms (f) emphasize group differences. HCL, Hybrid Closed Loop; SAP, 
Sensor Augmented Pump; UR, ultradian rhythm.
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glucose and insulin may enable better understanding of 
how algorithmic changes to HCL systems result in 
improvement or deterioration of glycemia and may guide 
protocols to help individuals more quickly achieve eugly-
cemic status after changes in therapy. Additionally, avail-
able data on the number of interactions required both by 
users of HCL and SAP therapies may help differentiate 
outcomes and highlight possible improvements based on 
the number of interactions required to achieve euglycemia. 
In each of these cases, attempts to understand and improve 
therapies may be more successful if both the levels and 
rhythmic patterning of glucose and insulin administration 
are evaluated.

Additional factors, such as sex and age, likely impact 
rhythmicity of glucose and insulin.73-76 For example, adoles-
cence is a time of restructuring of circadian and ultradian 
rhythmicity, and, in females, the emergence of a monthly 
timescale of rhythmicity in the form of the ovulatory cycle 
(or its suppression by the use of hormonal contraceptives).77 
Likewise, aging (eg, menopause, andropause) is a time of 
endocrine, metabolic, and rhythmic change as circadian 
rhythms lose coherence and decrease in amplitude.78-81 These 
changes to hormones, metabolism and their temporal struc-
tures may require different algorithms to customize therapy 
for different age groups, sexes, and hormonal milieus. Future 
explorations of donated T1D and nonT1D timeseries will be 
essential to understanding individual differences in glucose-
insulin dynamics and to creating more effective, personal-
ized HCL algorithms.

Limitations

These analyses were limited to the HCL systems present in 
the Tidepool HCL dataset and may not apply to all HCL sys-
tems. Additionally, analyses were conducted on basal-rate 
and temporary basal-rate delivered insulin data. This analy-
sis excludes manual bolus data. More specifically, correc-
tions for out of range glycemia are delivered by either bolus 
or temporary basal rates manually by SAP users whereas 
temporary basal rates likely make up a larger proportion of 
“corrections” for out of range glucose levels in HCL users, 
depending on their HCL and the available settings. Thus, 
future analyses will evaluate rhythmic features with the addi-
tion of manual boluses in both datasets. Finally, subcutane-
ously delivered insulin takes time to reach the bloodstream, 
and subcutaneously measured glucose may not capture 
changes at the highest frequencies in general circulation.69-72 
The true relationship between circulating insulin after admin-
istration and circulating glucose requires longitudinal evalu-
ation in a clinical setting, and future work modelling these 
delays32,82,83 in real-world conditions.

Conclusions

HCL use is associated with beneficial outcomes and rhythmic 
dynamics that more closely resemble nonT1D individuals, 
including: (1) a significantly lower incidence of hyperglyce-
mia compared to SAP users, consistent with previous reports, 
(2) lower amplitude glucose oscillations at the circadian and 
ultradian timescales than SAP users, (3) a greater correlation 

Figure 3. HCL use decreases amplitude of glucose oscillations and increases glucose-IDR coherence compared to SAP. The amplitude 
of HCL users’ glucose CRs (blue) and URs (maroon) (solid), and those of nonT1D (dashed) and SAP (dotted) users’ (a). Transparent 
shading indicates SD. SAP glucose CR and UR amplitude is significantly higher than that of HCL or nonT1D. HCL CR amplitude is 
not significantly different from nonT1D CR amplitude. Mean ± SD of circadian wavelet coherence for HCL (solid) and SAP (dotted) 
users (b). Circadian (blue) coherence of glucose and IDR in HCL (solid) and SAP (dotted) users. Transparent shading indicates SD. 
Although both HCL and SAP individuals exhibit lower coherence than would be expected in nonT1D individuals, HCL CR coherence 
is significantly greater than SAP CR coherence. CR, circadian rhythm; HCL, Hybrid Closed Loop; SAP, Sensor Augmented Pump; SD, 
standard deviation; T1D, type 1 diabetes; UR, ultradian rhythm.
*Significantly different from other groups indicated in the same figure panel P < .05.
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of glucose and IDR than SAP users, (4) a higher correlation of 
ultradian rhythms of glucose and ultradian rhythms of IDR 
than SAP users, and (5) greater rhythmic coordination of glu-
cose and IDR at the circadian and ultradian timescales com-
pared to SAP users. Together, these results illustrate that HCL 
use is associated with both improved glycemia and stronger 
coordination between key rhythmic patterns of glucose and 
insulin administration.

Abbreviations

nonT1D, non-type-1-diabetes; HCL, Hybrid Closed Loop; SAP, 
Sensor Augmented Pump; CR, circadian rhythm; UR, ultradian 
rhythm; T2D, type 2 diabetes; CGM, continuous glucose monitor; 
WT, wavelet transform; IDR, insulin delivery rate.
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