
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

Hierarchical Heterogeneous Cluster Systems for Scalable Distributed Deep Learning

Permalink

https://escholarship.org/uc/item/84n5978r

Author

Wang, Yibo

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/84n5978r
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Hierarchical Heterogeneous Cluster Systems for Scalable Distributed Deep Learning

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Yibo Wang

Dissertation Committee:
Professor Jean-Luc Gaudiot, Chair

Professor Nader Bagherzadeh
Professor Sergio Gago-Masague

2023

© 2023 Yibo Wang

DEDICATION

Dedicated to my parents, whose unwavering support has been a guiding force in my
academic journey. To my loving wife and kids, you are my constant inspiration and the joy

that brightens every step of the way.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1
1.1 Current Trends of DNNs in Distributed Systems 2
1.2 Problem Statement, Motivation and Goals 5

2 Background 6
2.1 Forward and Backward Propagation . 6

2.1.1 Forward Propagation Calculus . 7
2.1.2 Backward Propagation Calculus . 9

2.2 Parallelization Methods . 11
2.2.1 Data Parallelism . 11
2.2.2 Model Parallelism . 12
2.2.3 Hybrid Parallelism . 13
2.2.4 Pipeline Parallelism . 14

2.3 Parameter Distribution and Communication 14
2.3.1 Centralized . 15
2.3.2 Decentralized . 15
2.3.3 Comparison of Centralized and Decentralized 16

2.4 Synchronization . 17
2.4.1 Fully Synchronized . 18
2.4.2 Asynchronized . 18
2.4.3 Partially Synchronized . 19

2.5 Fine Grain Model Parallelism . 20
2.6 Summary . 21

iii

3 AllReduce Local Optimization 22
3.1 AllReduce Algorithms and Comparison . 23

3.1.1 Centralized AllReduce . 23
3.1.2 Ring AllReduce . 24
3.1.3 Other AllReduce Algorithms . 25
3.1.4 AllReduce Performance on Single Node 26
3.1.5 Memory Effect and Local Optimization 28

3.2 Mathematical Analysis of Compute and Transfer Ratio in Distributed System
Decisions . 33
3.2.1 Three Nodes Scenario with Single Operation 34
3.2.2 Three Nodes Scenario with Multiple Operations 35
3.2.3 N Nodes Scenario . 37

4 Hierarchical Heterogeneous Framework, Simulation, and Experiment 40
4.1 Homogeneous Group Separation . 42
4.2 Hierarchical Structure . 43
4.3 Simulation with Fluctuate Computation and Communication Cost 44

4.3.1 Fixed Delay . 45
4.3.2 Random Delay . 46

4.4 Experiments on Heterogeneous Distributed System 48
4.4.1 Runtime Management Module . 48
4.4.2 Heterogeneous CPU environment . 49
4.4.3 Heterogeneous GPU environment . 53

5 Conclusion and Future Work 55

Bibliography 57

iv

LIST OF FIGURES

Page

1.1 Trends in Model Size [32] . 2
1.2 Parallel Architectures in Deep Learning. [3] 3
1.3 Parallel Nodes and Communication Layer in Deep Learning. [3] 4

2.1 A Three Layers Neural Network . 7
2.2 Sigmoid Function . 8
2.3 A Three Layers of Single Neuron Neural Network 9
2.4 Data Parallelism [26] . 12
2.5 Model Parallelism [26] . 12
2.6 Pipeline Parallelism [20] . 14
2.7 Centralized and Decentralized Architecture 15

3.1 Centralized AllReduce . 23
3.2 Four Steps of Ring AllReduce . 25
3.3 Recursive Doubling AllReduce . 26
3.4 Linear AllReduce . 26
3.5 AllReduce Algorithms Performance on Single Node 28
3.6 AllReduce SUM and PROD Operator Comparison on Single Node 29
3.7 Cache and Granularity on Allreduce Operations 29
3.8 Cache and Granularity on Allreduce Operations 30
3.9 Speed Ratio of Ring Allreduce vs Centralized Allreduce 31
3.10 Cache and Granularity on Allreduce Operations 32
3.11 Sub Groups and One Group Comparison . 33
3.12 Abstraction of Nodes and Costs . 34
3.13 Mathematical Analysis of Three Nodes Multiple Operations 35
3.14 Mathematical Analysis of Nodes Groups . 37

4.1 Proposed Framework Layers . 41
4.2 Homogeneous group separation . 42
4.3 Examples of hierarchical logical structures 44
4.4 Three Nodes Unstable Network . 45
4.5 Three Nodes Unstable Network Simulation Fixed Delay 46
4.6 Three Nodes Unstable Network Simulation Random Delay 47
4.7 Flexible Synchronization . 49
4.8 Heterogeneous CPU Experiment Result . 52

v

4.9 Heterogeneous GPU Environment . 54

vi

LIST OF TABLES

Page

3.1 Hardware Configurations of Single Node Allreduce 27

4.1 Hardware Configurations of Heterogeneous CPUs 51
4.2 Hardware Configurations of Heterogeneous GPUs 53

vii

LIST OF ALGORITHMS

Page
1 Homogeneous Group Separation Algorithm 43
2 Runtime Distributed Ring AllReduce Algorithm 50
3 Runtime Abnormal Detection Algorithm . 50

viii

ACKNOWLEDGMENTS

I would like to thank my supervisor and committee chair, Professor Jean-Luc Gaudiot for
his invaluable supervision, and continuous support during the course of my PhD degree. I
would also like to thank my committee members Professor Nader Bagherzadeh and Professor
Sergio Gago-Masague for their valuable advice and suggestions on my research work.

Additionally, I would also like to thank Professor G. P. Li and Dr. Yutian Ren from Calit2
- UCI, for providing the resources and valuable comments for my research experiments.

Furthermore, I would like to thank my colleagues in the PArallel Systems Computer Ar-
chitecture LAB (PASCAL), Dr. Tongsheng Geng, Dr. Congmiao Li, Dr. Beverly Abadines
Quon, Dr. Nazanin Ghasemian Moghaddam, and Jaya Keshava Chandra Kotha, for the
assistance and support of my research work and cherished time spent together.

Finally, many thanks to faculty and staff from Graduate Division, Department of Electrical
Engineering and Computer Science for years of support of my research and study.

This work was partially supported by the National Science Foundation under award CCF-
176379.

ix

VITA

Yibo Wang

EDUCATION

Doctor of Philosophy in Electrical and Computer Engineering 2023
University of California, Irvine Irvine, California

Master of Science in Computer Science 2017
University of California, Irvine Irvine, California

RESEARCH EXPERIENCE

Graduate Research Assistant 2019–2023
University of California, Irvine Irvine, California

Research Specialist 2017–2019
Calit2-UCI Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2019–2023
University of California Irvine Irvine, CA

x

ABSTRACT OF THE DISSERTATION

Hierarchical Heterogeneous Cluster Systems for Scalable Distributed Deep Learning

By

Yibo Wang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2023

Professor Jean-Luc Gaudiot, Chair

Distributed deep learning framework should aim at high efficiency of training and inference

of distributed exascale deep learning algorithms. There are three major challenges in this

endeavor: scalability, adaptivity and efficiency. Any future framework will need to be adap-

tively utilized for a variety of heterogeneous hardware and network environments and will

thus be required to be capable of scaling from single compute node up to large clusters.

Further, it should be efficiently integrated into popular frameworks such as TensorFlow,

PyTorch, etc.

This dissertation proposes a dynamically hybrid (hierarchy) distribution structure for dis-

tributed deep learning, taking advantage of flexible synchronization on both centralized and

decentralized architectures, implementing multi-level fine-grain parallelism on distributed

platforms. It is scalable as the number of compute nodes increases, and can also adapt to

various compute abilities, memory structures and communication costs.

xi

Chapter 1

Introduction

The introduction section will provide an overview of the current situation in machine learn-

ing, particularly focusing on the scale of training and the trend toward distributed systems.

It will cover the fundamentals of neural networks, with a specific emphasis on fully connected

layers and the reasons why we need to consider adaptivity, scalability and performance issues

and why they are crucial during the training process.

Neural networks have triggered a remarkable transformation in various aspects of our daily

lives. They have found applications in a wide array of fields, such as natural language

processing (NLP) [12], optics [17], image processing [30], and computer vision (CV) [4].

These developments have driven progress in technologies like autonomous driving [6], face

recognition [34], anomaly detection [24], text comprehension [22], and even art [13]. The

influence of neural networks continues to expand and strengthen.

At present, every research domain has been touched by this wave of innovation in neural

networks, resulting in substantial improvements in capabilities and performance. The pri-

mary drivers behind their current success are the vast volumes of available data, which are

crucial for training large neural networks, and the advancements in GPU computing, which

1

dramatically accelerate training times (sometimes achieving up to a 100-fold speed improve-

ment compared to traditional CPUs). The advantages of neural networks are particularly

pronounced at a large scale. Therefore, having a large data size and the necessary hardware

for processing them are essential for the success.

1.1 Current Trends of DNNs in Distributed Systems

Realistic quantities of training data range from 1TB to 1PB. This allows one to create

powerful and complex models with 109 to 1012 parameters. [19] These models are often

shared globally by all worker nodes, which must frequently access the shared parameters as

they perform computation to refine it. As shown in Figure 1.1, we can observe a significant

increase starting from mid 2018. The growth rate before 2018 was 0.1OOMs/year(order of

magnitudes per year), whereas after 2018 the growth rate is 0.9OOMs/year if we assume a

single exponential trend. [32]

Figure 1.1: Trends in Model Size [32]

In the amount of training data, the model accuracy can, to a large extent, be improved

by feeding more training data into the model In practice, it is reported that 10s to 100s of

Terabyte (TB) of training data are used in the training of a neural network model. [19] In

the size and complexity of the models themselves, simple and shallow neural network has

2

evolved to increasing depth and more sophisticated model architecture to improve the model

accuracy. For example, as early as 2010, Ciresan et al. [8] has been proved that increasing

the hidden layers and many neurons per layer improves the accuracy rate on the MNIST

data set. In the aspect of infrastructure, the availability of programmable highly-parallel

hardware, especially graphics processing units (GPUs), is a key-enabler to training large

models with a lot of training data within a limited time.

Figure 1.2 shows a concise summary of the machine architectures featured in research papers

over the years. Not only the GPUs prevalence in the recent year, it is important to note

that even accelerated nodes may not fully meet the demands of the extensive computational

workloads. Figure 1.2 (b) visually illustrates the rapid growth of multi-node parallelism in

these research endeavors, signaling that, commencing in 2015, distributed-memory archi-

tectures equipped with accelerators like GPUs have become the default choice for machine

learning across all scales in the present day.

Figure 1.2: Parallel Architectures in Deep Learning. [3]

Figure 1.3 shows how the number of nodes used in deep learning research has evolved over

time. There was initially a large number of nodes during the DistBelief era, a slight dip

when powerful accelerators were introduced, and a steady increase since 2015, mainly due to

large-scale deep learning. It’s important to note that configurations resembling those used

in High-Performance Computing (HPC) have become common in modern training scenarios.

3

In the same figure, the various communication methods used in 55 out of the 80 papers that

employ multi-node parallelism can be observed. This indicates that the research community

quickly has realized the similarities between deep learning and large-scale HPC applica-

tions. As a result, starting in 2016, the established MPI interface became the standard for

communication in distributed deep learning.

Figure 1.3: Parallel Nodes and Communication Layer in Deep Learning. [3]

The primary benefit of fully connected networks is that they are ”structure-agnostic” [16]

in nature, which means specific assumptions are not required about the input data. While

this characteristic makes fully connected networks versatile and widely applicable, these

networks often exhibit lower performance compared to specialized networks designed to

match the inherent structure of a given problem domain. In many applications, multi-

feature and multi-layer perceptron neural networks are preferred because the features are

known in advance during data collection. Feature engineering can be conducted prior to the

use of the fully connected layer, which is computationally intensive in these scenarios. In

contrast to Convolutional Neural Networks (CNNs) which have found extensive applications

in areas such as image and video processing, there are situations where the convolution layer

may not be suitable. For instance, in certain medical contexts, like the study by Haoren

Wang et al. [33] arrhythmia classification was achieved by manually extracting features and

employing fully connected layers.

4

1.2 Problem Statement, Motivation and Goals

The main challenge we encounter is the use of computational power and network resources in

distributed systems for scalable machine learning and deep learning to tackle parallel com-

puting problems. When we specifically focus on fully connected layers in neural networks,

where both data and models are exascale, it is crucial to coordinate computation, commu-

nication, and data storage to ensure the efficient utilization of all resources. To achieve this,

we aim to establish a hierarchical approach for displaying and managing these resources.

We are particularly interested in the inclusion of heterogeneity into the distributed system

considerations because it is inevitable when we aim to utilize various hardware resources,

such as different generations of Intel CPUs, ARM CPUs, and different brand or series of

AMD or Nvidia GPUs. We also explore the integration of CPUs into GPU training, even

though GPUs are prevalent in the training process. We seek ways for CPUs to contribute

to the process, if possible. It is also worth considering the practicality of multiple clusters

or data centers collaborating, and when dealing with heterogeneous hardware, establishing

proper connections becomes essential.

Since the model is distributed across different nodes, we are actively researching the design

of a distributed architecture that can efficiently coordinate and enhance resource utilization.

Additionally, the choice of an appropriate synchronization method plays a crucial role in

overall training performance. This is because local model parameters need to be computed,

loaded, or saved in local storage, and these actions must be synchronized effectively.

5

Chapter 2

Background

Extensive research has been conducted in this rapidly advancing field, with contributions

from various research communities. This is due to the numerous challenges associated with

managing large, distributed infrastructures for neural networks and hosting a vast number

of models trained with substantial training data. Many hot research areas involve exploring

questions related to parallelization, resource scheduling, elasticity, data management and

portability, distributed and networked systems, and more.

In this chapter, we will delve into several critical aspects, including the fundamentals of neu-

ral network training (both forward and backward propagation), distributed infrastructures,

parallelization in neural network training, synchronization, fine-grain model parallelism, and

various platforms and optimizations.

2.1 Forward and Backward Propagation

Forward propagation, also known as the forward pass, calculates and stores intermediate

variables, moving from the input to the output layer in a neural network. Backward Propa-

6

gation, on the other hand, is the preferred method for adjusting the weights to minimize the

loss function. In this section, we’ll examine Forward and Backward Propagation in detail,

understanding their mathematical principles and why Backward Propagation is the preferred

approach.

2.1.1 Forward Propagation Calculus

For simplicity, we choose to use a three layer architecture of the neural network is [2, 3, 1]

with: 2 independent variables, Xi in the input layer, 3 nodes in the hidden layer, and 1 node

in the output layer. The neural network operates by:

a. Initializing the weights with some random values, which are mostly between 0 and 1.

b. Compute the output to calculate the loss or the error term.

c. Adjust the weights so that to minimize the loss.

We repeat these three steps until have reached the optimum solution of the minimum loss

function or exhausted the pre-defined epochs (i.e. the number of iterations).

Figure 2.1: A Three Layers Neural Network

Now, the computation graph after applying a nonlinear activation function is:

a2,1 = σ(a1 · w2,1) (2.1)

7

σ is the activation function, e.g. Sigmoid function show in Figure 2.2

Figure 2.2: Sigmoid Function

The output of this three layers of neural network will be:

ouput = σ(σ(σ(X ·W1) ·W2) ·W3) (2.2)

Various activation functions are available, and there’s no definitive guide to choosing the best

one for a specific problem. It typically involves a trial-and-error approach, where experiment

with different functions to see which one performs best for particular problem. Here are four

of the most commonly used activation functions:

a. Sigmoid function (σ): g(z) = 1/(1 + e−z). The sigmoid function is best for the output

layer as it keeps values between 0 and 1 for easy interpretation as probabilities. However,

using it in hidden layers can slow down learning because it has a very small gradient over a

large part of its input range.

b. Hyperbolic Tangent function: g(z) = (ez − e−z)/(ez + e−z). The tanh function is an

improvement over the sigmoid because it centers the output around zero, helping with faster

learning. However, like the sigmoid, it still faces the issue of having a very small gradient

over a significant part of its input range.

c. Rectified Linear Unit (ReLU): g(z) = max{0, z}. ReLU is a good choice for many

problems because it’s similar to linear functions, which are easy to optimize. However, it

8

has a limitation: the gradient is zero for values less than or equal to zero, making learning

difficult in those cases.

d. Leaky Rectified Linear Unit: g(z) = max{αz, z}. It overcomes the zero gradient issue

from ReLU and assigns α which is a small value for z ≤ 0.

ReLU is a commonly used choice for hidden layers. For binary classification in the output

layer, the sigmoid function is a natural and fitting option.

2.1.2 Backward Propagation Calculus

Backward Propagation is an algorithm for calculating the gradient of the cost function of a

network.

∇C =



∂C
∂w(1)

∂C
∂b(1)

...

∂C
∂w(L)

∂C
∂b(L)

(2.3)

In backpropagation, we are primarily concerned with the derivatives of the cost function

concerning the various weights and biases in the network. These derivatives are the compo-

nents of the gradient vector, and they guide us in optimizing the network. For Simplicity,

we use three layers of one neuron network as an example:

Figure 2.3: A Three Layers of Single Neuron Neural Network

9

∂C

∂wL
=

∂zL

∂wL

∂aL

∂zL
∂C

∂aL
(2.4)

where

∂C

∂aL
= 2(aL − y),

∂aL

∂zL
= σ

′
(zL), and

∂zL

∂wL
= aL−1 (2.5)

Update the all the weights

W = W + α∇C (2.6)

where α is learning rate.

In general for a L layers neural network , the gradient will be calculated as:

∇C =
∂C

∂wl
jk

= al−1
k σ

′
(zlj)

∂C

∂alj
(2.7)

where

∂C

∂alj
= Σ

nl+1−1
j=0 w

(l+1)
jk σ

′
(z

(l+1)
j)

∂C

∂a
(l+1)
j

(2.8)

In the context of distributed training, this gradient will be generated from each worker, and

shared among the workers, and then weights can be updated using the up-to-date gradient on

each workers. We will get into the details of the parallel methods that used in the distributed

neural network training.

10

2.2 Parallelization Methods

In deep neural network training, there are three dominant parallelization method: data

parallelism, model parallelism, pipeline parallelism, and also hybrid forms of parallelism.

2.2.1 Data Parallelism

In data parallelism, multiple workers (like machines or GPUs) each use a copy of the same

deep neural network model (as shown in 2.4). The training data is divided into separate

chunks and given to the model copies on the workers for training. Each worker trains on

its data chunk, which leads to updates in the model parameters. So, the model parameters

among the workers must be kept in synchronization. Data parallelism offers a significant

benefit in that it can be used with any deep learning model architecture without any specific

knowledge about the model. It’s highly effective for tasks that demand substantial compu-

tational power but involve only a limited number of parameters, like Convolutional Neural

Networks (CNNs). However, performance bottleneck occurs when dealing with operations

that have a large number of parameters, as the synchronization of these parameters becomes

a limiting factor. [21] The issue can be addressed by using larger batch sizes, but this can

introduce data delay among the workers and result in poor model convergence. Another

drawback of data parallelism is that it cannot handle the case when the model is too large to

fit on a single device. Additionally, in many data parallel training methods, it is necessary

that the training data is independent and identically distributed (i.i.d.) [37], so it allows the

updates from parallel workers can be easily combined to update the global model parameters.

11

Figure 2.4: Data Parallelism [26]

2.2.2 Model Parallelism

In model parallelism, the deep neural network model is divided, and each worker focuses on

training a specific part of the model, as shown in Figure 2.5. Workers handling the input

layer get the training data. During the forward pass, the output is calculated and then sent

to workers managing the next layer. In the backpropagation phase, gradients are computed,

starting at the workers responsible for the output layer and moving back towards the workers

handling the input layers.

Figure 2.5: Model Parallelism [26]

The biggest challenge in model parallelism is figuring out how to split the model among the

parallel workers. One common way to find the best model splitting is by using reinforcement

learning. [28] It starts with an initial partition, tries different permutations, and keeps the

12

ones that improve performance, repeating this process until performance stabilizes. The key

benefit of model parallelism is its minimal memory requirements. Since the model is divided,

each worker needs less memory. This is particularly valuable when the entire model is too

large to fit on a single device, which can happen when using specialized hardware like GPUs

or TPUs. The disadvantages of model parallelism are the heavy communication between

workers. Splitting complex models effectively can be challenging, leading to potential worker

slowdowns due to communication and synchronization issues. As a result, increasing the

complexity of model parallelism doesn’t always speed up training. [28]

2.2.3 Hybrid Parallelism

Hybrid Parallelism is widely used in deep learning because complex models often have di-

verse layers with different architectures, requiring various parallelization methods. As a

result, hybrid approaches that combine data, model, and pipeline parallelism are commonly

employed to efficiently train these models. For instance, Krizhevsky [23] suggested using

data parallelism for computationally intensive layers like convolutional and pooling layers

with few parameters, and model parallelism for fully connected layers, which are lighter in

computation but have many parameters. Additionally, instead of relying solely on manually

designed parallelization optimizations, recent developments include automated optimization

approaches. One such example is FlexFlow by Jia et al. [21], which is an automatic par-

allelization optimizer using an execution simulator. It accurately predicts the performance

of parallelization strategies and is faster than previous methods that executed each strategy

one by one.

13

2.2.4 Pipeline Parallelism

Pipeline parallelism is one example of hybrid parallelism, which utilizes both model paral-

lelism and data parallelism. In pipeline parallelism, the model is divided among workers and

each worker handles a different part of the model (as shown in Figure 2.6). The training

data is also split into batches. Each worker processes batches, and passing results to the

subsequent workers. In this way, multiple batches are streamed through the forward and

backward passes in parallel, increasing worker efficiency compared to pure model parallelism,

where only one batch is processed at a time. At the same time, This approach retains the

advantages of model parallelism, where no single worker needs the entire model. Techniques

like GPipe [20] and PipeDream [18] support pipeline parallelism.

Figure 2.6: Pipeline Parallelism [20]

2.3 Parameter Distribution and Communication

There are three key challenges of creating an effective system architecture for parameter

distribution and communication. First, scalability ensures the architecture can handle a

large number of parallel workers that update the deep learning model and receive updates

for further training. Second, configuration simplicity makes it easy to set up and config-

14

ure the system to achieve good performance without requiring extensive parameter tuning.

Third, optimal use of primitives makes efficiently using lower-level tools like communication

primitives, such as NCCL, to enhance performance.

2.3.1 Centralized

The centralized parameter server is the most popular architecture in data parallel neural

network. The workers in the system are logically connected to a central parameter server, and

periodically report their computed parameters or parameter updates to a set of parameter

servers (as shown in Figure 2.7). Systems that use parameter server architecture includes

MapReduce [11], TensorFlow [1], SparkNet [29], Poseidon [40], GeePS [9], DistBelief [10],

and etc. Sharding of the model parameters and distribute the shards on multiple parameter

servers [10], is a common approach is to update in parallel.

Figure 2.7: Centralized and Decentralized Architecture

2.3.2 Decentralized

In a decentralized architecture, there’s no parameter server. Workers directly exchange

parameter updates through an allreduce operation, as shown in Figure 2.7. The way workers

15

are connected matters. In a fully connected network where every worker talks to every other

worker, the communication cost scales with the square of the worker count (O(n2) with n

workers), creating a communication bottleneck.

A common alternative is to employ a ring topology (referred to chapter 3 for detailed dis-

cussion about ring-allreduce) which reduce the complexity of the communication cost to be

independent of the worker count. Other topologies that have been proposed such as, a tree

topology [2], and a graph that is built based on a Halton sequence [25], dynamically changed

run-time topologies [35], and etc.The primary drawback of topologies other than the fully

connected one is that they can require more time for parameter updates to propagate to

all workers because there may be multiple hops between worker pairs. However, adjusting

the worker topology isn’t the only method to reduce network load. Watcharapichat [36]

use a fully connected network of workers, but break down the gradients exchanged between

workers into partitions (partial gradient exchange). The communication load depends on the

partition size, determined by the number of partitions, and the number of workers. To keep

network bandwidth constant, the number of partitions adjusts automatically, regardless of

how many workers are involved.

2.3.3 Comparison of Centralized and Decentralized

In this section we summarize the advantages and disadvantages for the comparison of cen-

tralized and decentralized architecture.

The advantages of centralized are summarized as following:

1. Easy control and cost efficient. Centralized networks make reporting, securing, monitor-

ing, and management simple.

2. Elastic scalability. New nodes can be added without restarting the running framework.

16

The disadvantage of centralized are summarized as following:

1. Inconveniences of implementing and tuning a parameter server.

2. Potential bottleneck when the network traffic is large.

3. Lost compute power when assign the nodes are used for parameter server.

The advantages of Decentralized are summarized as following:

1. Avoids the inconveniences of implementing and tuning a parameter server.

2. Fault tolerance can be achieved more easily, because there is no single point of failure

such as the parameter server.

The disadvantage of Decentralized are summarized as following:

1. Communication increases quadratically with the number of workers, if there is no coun-

termeasures are taken.

2. The lack of vertical top-down visibility, and oversight and analytics throughout the net-

work can make scaling up or global changes challenging.

In summary, both centralized and decentralized approaches are commonly integrated into

open-source deep learning frameworks. Some frameworks, like TensorFlow and MXNet,

support both approaches. For example, TensorFlow utilizes the decentralized architecture

for training on a single compute node with multiple GPUs, taking advantage of efficient

allreduce implementations like NCCL allreduce. However, when it comes to multi-node

training, the centralized architecture is often employed.

2.4 Synchronization

Determining when to synchronize parameters among parallel workers has been a subject

of significant focus. The primary challenge in parameter synchronization is managing the

balance between potential training quality loss or reduced convergence speed due to work-

17

ers training on outdated neural network models and the cost of synchronizing to update

these models on the workers. Overall, three main approaches are commonly employed: Syn-

chronous, bounded asynchronous, and asynchronous training.

2.4.1 Fully Synchronized

In synchronous training, after each iteration (processing of a batch), the workers synchro-

nize their parameter updates. This strict synchronization model can be implemented as Bulk

Synchronous Parallel (BSP) model [31], which are often available in data analytics platforms

like Hadoop/MapReduce [11] and Spark [27]. The advantage of strict synchronization is that

it simplifies model convergence. However, it also makes the training process susceptible to

the straggler problem, where the slowest worker can significantly slow down all the others.

Synchronous training is commonly implemented in various open-source deep learning frame-

works, such as TensorFlow [1] and MXNet [5]. It is particularly suitable for parallel training

on a single multi-GPU compute node, where communication delays are minimal, and the

computational load is balanced, reducing the impact of the straggler problem.

2.4.2 Asynchronized

In asynchronous training, workers update their models independently without any synchro-

nization, meaning that there’s no guarantee on how current or outdated a worker’s model

might be. Consequently, it becomes challenging to mathematically reason about model con-

vergence. However, this approach offers the most flexibility to workers in their training

process, completely avoiding any straggler problems.

Similar to synchronous training, asynchronous training is well-developed, with multiple

implementations in current open-source machine learning frameworks like TensorFlow [1],

18

MXNet [5], and PyTorch. Asynchronous training takes advantage of the approximate nature

of neural network training. Neural network models aim to approximate target functions as

closely as possible, allowing for small deviations and non-determinism in the training process

without significantly affecting model accuracy. This differs from ”strict” problems in data

analytics, such as database queries, where deterministic results are essential.

2.4.3 Partially Synchronized

In partially synchronized or bounded asynchronous training, workers may train on somewhat

outdated parameters, but this staleness is limited and can be bounded [7]. Bounded staleness

permits mathematical analysis and proof of model convergence properties. This bound

provides workers with more independence to make training progress, helping mitigate the

straggler problem to some extent and increasing overall throughput.

The partial or bounded synchronous model isn’t widely implemented in neural network

frameworks. This is because it has been observed that the benefits of partial synchronous

were not significant enough in frameworks like Tensorflow or PyTorch [39], where the delays

were small due to the consistent performance of GPU-intensive operations.

However, the concept of partial synchronization becomes more relevant when introducing

heterogeneity into a distributed system. In heterogeneous environments, where workers may

have varying computational capabilities or network speeds, achieving balanced progress in

a fully asynchronous setup can be challenging. Partial synchronization, with its controlled

staleness, can be a valuable strategy to maintain reasonable training efficiency while accom-

modating differences in worker performance.

19

2.5 Fine Grain Model Parallelism

Fine-grained parallelism involves breaking down a program into many small tasks and as-

signing these tasks to numerous processors. Each task does a small amount of work, and this

work is evenly distributed among the processors, which helps with load balancing. However,

because each task processes a small amount of data, a large number of processors are needed

to complete the work. This leads to increased communication and synchronization over-

head. Fine-grained parallelism works best in architectures that support fast communication,

particularly in shared memory systems with low communication overhead [15]. Detecting

fine-grained parallelism in a program is challenging for programmers, so it often falls to

compilers to identify it.

The granularity, or the size of the tasks, affects the performance of parallel computers. Using

fine-grained tasks can increase parallelism and speed up processing, but it can also intro-

duce synchronization and scheduling challenges. To reduce communication overhead, the

granularity can be increased, resulting in coarse-grained tasks, which have less communi-

cation overhead but may lead to load imbalance. Optimal performance is typically found

between the two extremes of fine-grained and coarse-grained parallelism. Determining the

best granularity for parallel processing depends on various factors and varies from problem

to problem. Researchers have proposed different solutions to help find the right granularity

for specific applications. [14]

Zeng et al. [38], have applied a Codelet Model, which is a fine grain dataflow-based execution

model. They group 10-15 neurons into a codelet, and this approach has resulted in a 60%

higher speedup compared to OpenMP, a commonly used coarse-grain multithreaded parallel

computing model. They conducted this test on LeNet-5, a 7-layer convolutional neural

network, using a single-node computing system. By integrating this fine-grain model with

a distributed computing system, a compounded speedup can be anticipated that leverages

20

the advantages of both the fine-grain model and the distributed system. This could lead to

even more significant performance improvements.

2.6 Summary

This area of research has seen significant progress, with many optimization techniques devel-

oped to address the challenges in neural network training. We’ve examined various common

methods proposed by researchers, including the analysis of distributed infrastructures, tech-

niques for parallelization, scheduling, and data management. A wide range of scalable deep

learning techniques is now available in open-source frameworks.

However, a noteworthy observation is that many of these research efforts have not adequately

tackled the issue of system heterogeneity. To effectively manage heterogeneous systems, new

infrastructures and tools are essential. These tools should enable us to make the most

of the diverse hardware and software resources available. As the infrastructure becomes

increasingly diverse, machine learning tools should not merely cope with this heterogeneity

but also harness it to optimize the training process.

21

Chapter 3

AllReduce Local Optimization

In the context of parallel and distributed computing, AllReduce is an algorithm where every

process or worker shares its data with all other processes, and a reduction operation (e.g.,

sum, multiplication, max, min) is applied. The primary goal is to condense the target arrays

in all processes or workers into a single array, and the result is then distributed or broadcasted

back to all processes.

The AllReduce operation can be implemented using various algorithms, and the choice of

algorithm often depends on the specific distributed structure or communication pattern of

the system. Different algorithms may have varying performance characteristics based on

factors such as the number of processes, network topology, and available communication

bandwidth. The choice of algorithm depends on the specific characteristics and constraints

of the distributed system. Optimizing AllReduce is crucial for achieving good performance

in large-scale parallel and distributed computing environments.

22

3.1 AllReduce Algorithms and Comparison

Some common algorithms for AllReduce include:

1. Scatter-Gather AllReduce: Involves a scatter phase where data is sent to different pro-

cesses, followed by a gather phase to combine the results.

2. Ring-based AllReduce: Processes form a logical ring, and data is passed along the ring

through a series of point-to-point communications until all processes have the final result.

3. Recursive Halving/Doubling AllReduce: a tree-based approach, but organized in a recur-

sive manner. It’s particularly efficient when the number of processes is a power of two.

4. Linear AllReduce: Uses a linear communication pattern to efficiently combine data across

processes.

We will examine and compare these algorithms in the following sections.

3.1.1 Centralized AllReduce

As shown in Fig 3.1, there is one centralized driver, and all the other workers send all the

elements to the driver, after the driver process the reduce operator, it will send the results

back to the other processes.

Figure 3.1: Centralized AllReduce

Suppose we have P processors, and each of them has N element. We wanted to calculate the

elements sent across the network. In step 1, every worker sends its copy the the driver, so N

23

elements will be sent (P −1) times. In step 2, after the driver apply the reduce operator and

send the results back to the other processes, another N(P − 1) elements across the network.

So the total number of element sent across the network during this centralized AllReduce is

2(N × (P − 1))

3.1.2 Ring AllReduce

Assume we have P number of the processes, and each with some data in an array. These

processes are organized in a ring. Here’s how they collaborate using a Ring-AllReduce

algorithm as shown in the Figure 3.2, and the algorithm can be describe as follow:

1. Each process divides its array into chunks. Let’s call each chunk chunk[p], where p is the

process number.

2. Each process sends its chunk to the next process and receives a chunk from the previous

process simultaneously.

3. The process then combines the received chunk with its own chunk using a reduction

operation (like adding them together) and sends the result to the next process.

4. This process repeats P − 1 times, so each process gets a different portion of the final

result.

5. After going through all processes, every chunk has traveled around the ring, and each

process holds a portion of the final result.

6. To complete the AllReduce operation, processes share their distributed partial results

without doing additional reduction operations.

Compare the amount of communication of Ring-AllReduce to that of the Centralized al-

gorithm we mentioned in earlier section above. In the Ring-AllReduce algorithm, we can

calculate the amount of communication in each process in the following way. In the earlier

24

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 3.2: Four Steps of Ring AllReduce

half of the algorithm, each process sends an array, the size of which is N/P and P − 1

times. Next, each process again sends an array of the same size P − 1 times. The total

amount of data each process sends throughout the algorithm is 2N(P −1)/P , which is prac-

tically independent of P . Thus, the Ring-AllReduce algorithm is more efficient than the

simple algorithm because it eliminates the bottleneck process by distributing computation

and communication evenly over all participant processes. Many AllReduce implementations

adopt Ring-AllReduce, and it is suitable for distributed deep learning workloads as well.

3.1.3 Other AllReduce Algorithms

Recursive Doubling AllReduce is a tree-based approach, and organized in a recursive manner.

It’s particularly efficient when the number of processes is a power of two as shown in Figure

3.3. Processes are paired up in a binary tree structure. In each step, each process exchanges

data with its paired partner. The exchanged data is combined using a reduction operation

25

(e.g., sum, max, min). The binary tree is recursively traversed, and in each step, processes

exchange data and perform the reduction operation. This continues until all processes have

combined their local data. The amount of data sent will be proportional to logP .

Figure 3.3: Recursive Doubling AllReduce

Another AllReduce algorithm is linear AllReduce, which means the data is passed from

one node to another in a linear direction.In each step, processes send their local data to a

designated next process. The designated process combines the received data with its own

using a reduction operation (e.g., sum, max, min). The combined result is then broadcasted

back to all processes. This linear communication process is repeated a number of times until

all processes have combined their local data. The amount of data sent will be proportional

to the number of processors in the sequence P

Figure 3.4: Linear AllReduce

3.1.4 AllReduce Performance on Single Node

The memory hierarchy plays a critical role in influencing the performance of computer archi-

tectural design, algorithm predictions, and low-level programming constructs. It particularly

impacts the concept of ”locality of reference.” Locality of reference refers to the tendency

of a computer program to access a relatively small portion of its memory space frequently

for a specific period, whether in terms of reading or writing data. Optimizing memory ac-

cess patterns to maximize locality of reference is crucial for improving the performance of

26

computer systems. It involves considerations related to cache management, data layout, and

algorithm design. Understanding and exploiting locality of reference is essential for efficient

memory utilization and overall system performance.

We have performed a single node test of four different AllReduce algorithms and compare

their performance by changing the input data size. The idea is trying to find the relation-

ship of memory hierarchy and optimal data size. As we mentioned in Chapter 2.5 fine grain

parallelism, choosing the best granularity directly affects the overall performance. The test

node we used are listed in table 4.2

Table 3.1: Hardware Configurations of Single Node Allreduce

Node CPU Cores L1 Cache L2 Cache L3 Cache
node1 Ryzen 3 1600 3.6GHz 6 96KB/core 512KB/core 16MB shared
node2 Xeon(R) W-2155 3.3GHz 10 32KB/core 1024KB/core 14MB shared

In Figure 3.5, it’s observed that both centralized AllReduce and ring AllReduce exhibit

better performance compared to linear and recursive doubling as the data size increases.

Both centralized and ring AllReduce show similar and improved performance as the amount

of data grows. In the case of ring AllReduce, there’s an optimal data size for the best

performance. This means that as the data size increases, performance improves, but only

up to a certain point. Beyond this optimal data size (specifically, at 4M in Figure 3.5 (b)),

ring AllReduce outperforms centralized AllReduce by 1.5 times.

The tests of different reduce operator behaviors on the performance of these algorithms

show consistent patterns across different reduce operators, as shown in 3.6. Regardless of

the specific reduce operator used, the performance patterns of the algorithms remained the

same. The shape of the performance curves was consistent for the same hardware, indicating

a definite relative performance among the four algorithms. This consistency is advantageous

27

(a) Single Node 6 Cores (b) Single Node 10 Cores

Figure 3.5: AllReduce Algorithms Performance on Single Node

because it allows for the identification of the most suitable algorithm and optimal data size

for a given case. It means that users can confidently choose the appropriate algorithm and

data size before integrating these variables into a large distributed system.

In summary, having a clear understanding of how different algorithms perform under var-

ious conditions, including different reduce operators, provides valuable insights for making

informed choices in the design and integration of large distributed systems.

3.1.5 Memory Effect and Local Optimization

We would like to examine the cache effect on the AllReduce operators, and this is directly

related with the granularity of fine grain parallelism. We designed this experiments as

shown in Figure 3.8. Fig 3.8 (a) shows core 0, core 1, and core 2 have independent L1 and

L2 cache, and shared L3 cache. This setup allows the examination of how the shared L3

cache impacts the performance of AllReduce operators. The design is intended to explore

how caching mechanisms, particularly at the L3 level, influence the parallel execution of

AllReduce operations on different cores.

The observation indicates a clear performance improvement for three cores with shared L3

28

(a) 6 Cores SUM Operator (b) 6 Cores PROD Operator

(c) 10 Cores SUM Operator (d) 10 Cores PROD Operator

Figure 3.6: AllReduce SUM and PROD Operator Comparison on Single Node

(a) Three Cores with Shared L3 Cache (b) Three Cores without Shared L3 Cache

Figure 3.7: Cache and Granularity on Allreduce Operations

29

cache, especially in the data size range from 32K to 512K (where 512K is the size of L2

cache in Node 2 as shown in Table 4.2). The key takeaway is that constraining the data size

within the size of the L2 cache leads to better performance. Key points from the observa-

tion: First, we observed L3 Cache impact. Three cores sharing an L3 cache exhibit better

performance, highlighting the importance of cache effects on parallel operations. Second, we

observed optimal data size. The performance improvement is particularly visible when the

data size is within the size of the L2 cache in Node 2 (512K). This suggests that optimizing

data size within the available cache capacity is crucial for achieving better performance.

Third, we observed similar shapes for centralized and ring AllReduce: Both centralized and

ring AllReduce operations generate similar and almost identical plot shapes, indicating a

consistent performance pattern across these two algorithms.

(a) Centralized Allreduce SUM Operator (b) Ring Allreduce SUM Operator

Figure 3.8: Cache and Granularity on Allreduce Operations

In summary, optimizing data size based on cache constraints is a key factor for achieving

better performance. Additionally, the similar performance shapes for centralized and ring

AllReduce suggest that the choice between these two algorithms may depend on other con-

siderations, given their comparable performance in this context.

The investigation into the performance of ring AllReduce versus centralized AllReduce con-

tinues with a focus on the speed ratio between these two algorithms under shared L3 and

30

non-shared L3 cache conditions. From Figure 3.9, in both shared and non-shared L3 cache

scenarios, ring AllReduce exhibits an optimal data size that results in the best speedup.

Under shared L3 cache conditions, the speed ratio between ring and centralized AllReduce

can be as high as 2.2 times for a data size of 8K.in the case of non-shared L3 cache, the

speed ratio reaches up to 1.65 times for an optimal data size. This indicates that the benefits

of using ring AllReduce persist. In summary, the comparison between ring and centralized

AllReduce, considering speed ratios, highlights the importance of data size optimization for

achieving optimal speedup. The significant speedup observed, particularly in the shared L3

cache case, emphasizes the impact of cache configurations on the performance of parallel

algorithms.

Figure 3.9: Speed Ratio of Ring Allreduce vs Centralized Allreduce

The observation of improved performance with a shared L3 cache raises the question of

whether sub-grouping, where cores are separated based on cache sharing, can lead to better

performance. Specifically, if cores 0, 1, and 2 are grouped together, and 3, 4, and 5 are

in another group, the comparison is made to determine which structure yields better per-

formance. The structure is illustrated in Figure 3.10, with cores grouped into sub-groups.

31

The main question is which sub-grouping structure can achieve better performance. The

exploration of sub-grouping aims to understand the impact of how cores are grouped on the

overall performance of parallel algorithms. The experiment will give an example on whether

certain sub-groupings can outperform others in specific scenarios.

(a) Without Subgroups (b) With Subgroups

Figure 3.10: Cache and Granularity on Allreduce Operations

The results, as depicted in Figure 3.11, indicate that, for the majority of data sizes in this

experiment, sticking with a single group yields better performance compared to having two

subgroups. Only when the data size is smaller than 4K, the performance with two groups is

slightly better than the case with one group. The observation suggests that, for most of the

data sizes considered in this experiment, the optimal choice is to stick with a single group.

In summary, optimizing AllReduce operations in shared memory conditions,involves consid-

ering cache and memory effects, highlighting the importance of identifying an optimal data

size for fine-grain parallelism. The observed fast access in shared memory scenarios sug-

gests that subgrouping or other logical structures may be negligible. However, the question

of when to consider subgroups and the specific conditions favoring their use remains open.

The next section will undertake a mathematical analysis to explore the relationship between

computation and data transfer in distributed systems, aiming to provide nuanced insights

into decision-making for performance optimization in such environments.

32

Figure 3.11: Sub Groups and One Group Comparison

3.2 Mathematical Analysis of Compute and Transfer

Ratio in Distributed System Decisions

In this section, we use mathematical abstractions to simplify representations. Uppercase

letters are used to represent node names, and the numbers on each node represent the

unit cost (cost per byte) associated with a specific operation, considering the workload and

computational power. The numbers on the lines connecting nodes indicate the transfer cost

per byte for the respective connections. A job is symbolized by a square, incorporating a

job name, operation, and the size of the processed data. Taking Figure 3.12 as an example,

it illustrates an operation denoted as opa with a data size of n. The cost is 1 unit per byte

if executed on node A, 10 units per byte if on nodes B or C. When transferring between

nodes AB or AC, the cost is 100 units per byte, and it becomes 1000 units per byte between

nodes BC.

33

Figure 3.12: Abstraction of Nodes and Costs

3.2.1 Three Nodes Scenario with Single Operation

In the case of three nodes, suppose we have the cost on A equals 1 unit per byte, and cost

on B and C is 10 units per byte. We would like to understand what’s the relationship on the

network transfer between A and B, or A and C and the cost on each node. So we assume

cost X on the network transfer of AB and AC. Now we have three options to run the this

job: sequential on fast node A, include one of the slow node B or C, or include all the three

nodes ABC. Following is the analysis to determine when should choose one of these options.

Sequential on Node A:

costA = n · 1 = n (3.1)

Parallel on Node AB or AC:

costAB = costcompute + costtransfer =
10

11
· n · 1 + 1

11
· n ·X (3.2)

If we want to include B or C into the operation, we should let costAB < costA, and that

gives X < 1, and it means that the cost on the network should be smaller than cost on A.

34

Parallel on Node ABC:

costABC = costcompute + costtransfer =
10

12
· n · 1 + 1

12
· n ·X (3.3)

If we want to include both B and C into the operation, we should let costABC < costA, and

that gives X < 2, and it means that the cost on the network should be less than twice of

cost on A.

We can conclude that the relationship between X and ratio of cost on A and B determines

if B and C should join into the whole operation.

Figure 3.13: Mathematical Analysis of Three Nodes Multiple Operations

3.2.2 Three Nodes Scenario with Multiple Operations

Suppose we have two operations opA and opB, and define a ratio of cost on a certain node

as:

opb
opa

= r, r > 1 (3.4)

Sequential on Node A:

costA = n · (r + 1) = n (3.5)

35

Parallel on Node ABC, with cost on A:

costA = n · r = nr (3.6)

Cost on B or C:

costB/C = 10 · n
2
+X · n

2
= (10 +X) · n

2
(3.7)

Let costB/C < costA, we can get:

costB/C = (10 +X) · n
2
< (r + 1) · n (3.8)

and continue to solve the equation, we have:

r >= 4 +
X

2
< (r + 1) · n (3.9)

We can examine the equation, and the value 4 comes from the compute power ratio of Node

B and Node A, or Node C and Node A. The value 2 comes from the number of worker nodes.

These two numbers should be changed back to variables to extend this equation to general

case.

In the two examples provided earlier, we showcased an abstraction model designed to depict

a heterogeneous environment characterized by uneven computational power and disparate

network transfer rates. In the upcoming subsection, we will broaden the scope to encompass

N nodes and delve into the criteria for deciding when to utilize multiple nodes within such

a heterogeneous environment.

36

3.2.3 N Nodes Scenario

As shown in Fig 3.14, We use the bigO notation to represent the unit cost (cost per byte) on

a certain operation based on the workload and compute power. The node with O(n) in the

circle means it will cost n unit of time to complete a certain operation with a certain data with

a size of n. All the nodes in the system can be separated into p number of groups(vertically)

from M1 to Mp. We characterized the heterogeneous node with same order of magnitude

into the same homogeneous group. Grouping algorithms can be used to separate the nodes

first by transfer cost among the nodes and the compute difference, The algorithms are shown

below:

Figure 3.14: Mathematical Analysis of Nodes Groups

As discussed in the related work, the recent hybrid cluster system is trying to utilize the ring

allreduce with synchronization,and only discovers the homogeneous part of a cluster. And

the cluster is composed of large number of homogeneous node. We are proposing instead

of just discover the homogeneous part, but we should also create the homogeneous group

which composed of the heterogeneous node. In the cases of having more heterogeneous node

and fewer homogeneous nodes in the system, our framework is able to compose the heteroge-

neous nodes into homogeneous group by considering their computer power and transfer rate

between them. In this way, the allreduce and fully synchronization can still be maintained

in the system, and also all the compute nodes in the system can be utilized.

37

Mathematical analysis of compute and transfer ratio in system decisions

Once we have the grouping and characteristics are done, mathematical analysis can be

applied on the static structure to give an early decision on how many nodes in the system

should be used, and how they should synchronize with each other when a computation job is

given. Using the setup in Fig 3.14, we consider the transfer cost to be identical among each

of the nodes suppose we have done the separation by transfer cost beforehand, using O(Tr).

We also define O(rbN) where rb = opb/opa, which means the ratio of the cost for different

operation opa and opb on the same compute node with same data size. Even opa and opb are

within the same order of magnitude, but they are still different by a ratio of rb.

Assume we have m number of jobs (a1, a2, ..., am) with the same workload for simplicity,

which is also the case of data parallelism strategy used in distributed deep neural network

training where parallel compute nodes are used to process the partitioned training dataset

using a replica of the deep learning model. If m < M1 we have two options: either serial

computation on one of the node in M1, or parallel within the group of M1. The cost for

the serial option will be mN , and the parallel on M1 will cost nTr for the transfer data and

N for the compute. So the total cost is nTr +N when jobs are averaged assigned onto M1

group. If the number of jobs is larger than the number of node in M1, i.e. m > M1, we have

the options to either send batch (m/M1) jobs onto M1,

parallelM1 = (nTr +N)(m/M1 + 1) (3.10)

or utilize both M1 and M2 groups with M1 jobs are sent to M1 and (m−M1) jobs are sent

to M2, we can have

parallelM1M2 = (nTr +N)(m/(NM1 +M2)) + (nTrr +N2)(m/(NM1 +M2)) (3.11)

= (2nTr +N +N2)(m/(N2M1 +NM2 +M3)) (3.12)

38

Apply the same logic on M3 when all the M1,M2andM3 are used, so there are (m −M1 −

nM2/N) jobs on M3, and total cost on this situation will be:

parallelM1M2M3 = (nTr +N + nTr +N2)(m/(N2M1 +NM2 +M3)) (3.13)

= (3nTr +N +N2 +N3)(m/(N2M1 +NM2 +M3)) (3.14)

by deduction we can conclude that:

parallelM1M2M3...Mp = (pnTr+N+N2+N3+...+Np)(m/(Np−1M1+Np−2M2+Np−3M3+...+Mp))

(3.15)

In the overall analysis, we have a set of p equations to evaluate, allowing us to compare and

select the option with the least cost. This approach serves as a mathematical static strategy,

laying the groundwork before transitioning to the runtime layer. By evaluating costs across

different options, we can make informed decisions, contributing to the efficient management

and optimization of distributed system performance.

39

Chapter 4

Hierarchical Heterogeneous

Framework, Simulation, and

Experiment

The overall structure of the framework tool we are proposing utilizes flexible synchroniza-

tion and hybrid architecture which can adaptively and dynamically adjust the architecture

based on the performance of heterogeneous hardware and different algorithms. The targeted

platform includes heterogeneous cores, heterogeneous node with different computation capa-

bility, distributed nodes with heterogeneous network environment. The overall hierarchical

structure includes: First, a number of nodes form a unit group. The criteria of which nodes

are grouped and how many nodes are in one group can be heuristic for the static structure.

For example, heuristically we would like the identical nodes to be in one group and jobs can

be evenly split among the nodes in the group. However sometimes we would like to have

less powerful nodes to work together with powerful nodes on some jobs which requires less

computing power in a way to fully utilize the resources.

40

Consider the nodes communication within each group, either centralized or decentralized

way can be applied based on the characteristics of the nodes within the group. Each lower

level group can also be considered a member of the high level group. The main issue we

have discovered in the recent research paper is that the scalability issue is not considered.

Many of the algorithms and strategies are sensitive to the number of nodes in the group. So

in order to organize large amount of resources, hierarchical structure has to be applied into

the system.

The algorithms related and specific hardware to design the initial structure and dynamic

structure structure, aiming to use different type of algorithms based on the profile of jobs

to be finished. For computing bound, memory bound and communication bound, we design

the corresponding strategies, which will be described in section IV.

Figure 4.1: Proposed Framework Layers

First our framework tries to group the heterogeneous nodes, and forms homogeneous group

and in this way we can utilize the ring AllReduce and synchronization. Second level utilize

the hierarchical grouping which is the way to apply scalable features. The number of node

within a group has to be limited, and prevent the group size to be too large. On next level,

consider the rate of compute and transfer to adjust the grouping. It should be avoided that

lower transfer rate node is grouped with high transfer rate node. At last, utilize the fine grain

parallelism on each compute node to fully discover compute efficiency and the relationship

41

with local memory structure. Each level of the framework will be discussed in the following

subsections.

4.1 Homogeneous Group Separation

As discussed in the related work, the recent hybrid cluster system is trying to utilize the ring

AllReduce with synchronization,and only discovers the homogeneous part of a cluster. And

the cluster is composed of large number of homogeneous node. We are proposing instead

of just discover the homogeneous part, but we should also create the homogeneous group

which composed of the heterogeneous node. In the cases of having more heterogeneous node

and fewer homogeneous nodes in the system, our framework is able to compose the heteroge-

neous nodes into homogeneous group by considering their computer power and transfer rate

between them. In this way, the AllReduce and fully synchronization can still be maintained

in the system, and also all the compute nodes in the system can be utilized.

Figure 4.2: Homogeneous group separation

As shown in Fig 2, We use the bigO notation to represent the unit cost (cost per byte) on

a certain operation based on the workload and compute power. The node with O(n) in the

circle means it will cost n unit of time to complete a certain operation with a certain data with

a size of n. All the nodes in the system can be separated into p number of groups(vertically)

from M1 to Mp. We characterized the heterogeneous node with same order of magnitude

into the same homogeneous group. Grouping algorithms can be used to separate the nodes

42

first by transfer cost among the nodes and the compute difference, The algorithms are shown

below:

Algorithm 1 Homogeneous Group Separation Algorithm

Wi represent worker;
List of Group[] distinguished by communication cost;
List of group[] distinguished by compute power;
for i = 0 to n do
for j = i− 1 to 1 do
if O(Ci,i−1) = O(Cj,j−1) then
Wi.groupId = Wcj .groupId;
Group[Wi.groupId].add(Wi);

end if
end for

end for
return Group[], group[]

4.2 Hierarchical Structure

It is generally accepted that the ring-AllReduce theoretically is faster comparing with the

parameter server with used centralized architecture, assuming all the compute node on the

ring has the finish the same workload and communicate cost is same between nodes on the

ring.

One problem in the cluster system is scalability, and even if the ring AllReduce and fully

synchronization architecture still have the concern on the scalability issue. The recent prim-

itive experiment shows that with the increasingly number of nodes, the benefit of using ring

AllReduce rather than parameter server decreased. It can be explained using the probability

of including a node of slow transfer rate into the whole ring structure has increased, so the

overall performance of reduced. and also more node included into the ring, we have more

chance of having a faulty node in the whole structure. So we should consider improving

the scalability using the hierarchical way of grouping, to limit the size of the ring. So that

43

drives us to explore the hierarchical solutions if the nodes are heterogeneous and the number

of nodes are increasing. Assume we have n number of compute nodes, and n is a large

number. The intuitively straight way to form a hierarchy will be take the square root of n,

so the total number of the groups will be
√
n and the size of each group is also

√
n. For

each group, the hierarchical formation can still continue to 2
√
n. Fig 3 shows two examples

of hierarchical structures with logical connections to form different structure, which include

the ring-AllReduce configuration and parameter configuration.

Figure 4.3: Examples of hierarchical logical structures

When choosing which nodes should be formed in one subgroup, random formation is one

strategy if no particular feature can be discovered among the nodes. The Central limit

theorem tells us as we take more samples, especially large ones, the graph of the sample

means will look more like a normal distribution. So we can make sure that the overall

compute power will be a normal distribution.

4.3 Simulation with Fluctuate Computation and Com-

munication Cost

To analyze the impact of fluctuating computation and communication costs on training per-

formance, we’ve crafted a simulation. This simulation is designed to replicate scenarios re-

lated to real-world conditions where computational resources and communication bandwidth

may vary. In this simulated environment, we introduce controlled variations in computation

power and communication speed, mimicking the challenges encountered in dynamic comput-

44

ing setups. Our focus is on understanding how these fluctuations influence critical training

metrics, including convergence rates, accuracy, and resource utilization.

Figure 4.4: Three Nodes Unstable Network

As shown in Figure 4.4, Let’s use the example of three nodes (Node 0, Node 1, and Node 2)

connected to each other. Nodes 0 and 1 have fast connections, while Node 2 has a slow con-

nection with Node 0 and 1. A wait function time will be inserted into the code to simulation

the slow connection. We’ll then observe the behavior of the unstable network connection in

relation to the training performance, and monitor and record relevant performance metrics

such as training loss, accuracy, and convergence time.

4.3.1 Fixed Delay

The outcome is depicted in Figure 4.5. We conducted two distinct tests with convergence

thresholds set at loss = 0.1 and loss = 0.05 using MNIST dataset and modified LeNet

network. Our aim is to examine how the synchronization rate with Node 2 impacts the

training performance, specifically the time it takes to achieve convergence. Theoretically,

Node 2 has a slower connection with Node 0 and 1. To minimize overall delay, it is advisable

to decrease the synchronization rate with Node 2. On the other hand, we also need Node 2

to contribute into the simulation. So we anticipate identifying an optimal synchronization

rate ranging from 0 to 100%. In essence, rather than opting for full synchronization or

asynchronization, we seek to determine the optimal rate for synchronization with Node 2.

45

Figure 4.5: Three Nodes Unstable Network Simulation Fixed Delay

4.3.2 Random Delay

In the next simulation, we configure the unstable value to be a randomly assigned value

within a specified range. Our objective is to investigate the diverse behaviors that may

emerge due to the fixed delay influencing performance. Additionally, we aim to discover how

the introduction of random delays changes the optimal synchronization rate with Node 2.

The results is shown in Figure 4.6, we can see from Figure 4.6 (A), we can see the optimal

synchronization rate with Node 2 reduced to around 10% for using the threshold loss = 0.1.

In addition to adjusting the delay factor, we aim to observe the correlation between the

synchronization rate and both computation and synchronization times. To achieve this, we

introduce two runtime lists, as run time list[] and sync time list[], to track the runtime

aspects of computation and synchronization. Our goal is to align these values with the

synchronization rate. In Figure 4.6 (B), we note that at a 10% optimal synchronization

rate, the ratio of synchronization to computation time is approximately 0.02, or 2%. This

46

Figure 4.6: Three Nodes Unstable Network Simulation Random Delay

indicates the importance of monitoring the synchronization time relative to computation

time, aiming for a 2% ratio during the training process to optimize performance. By adjusting

the synchronization rate with Node 2, we can achieve this optimal training performance. If

the observed percentage deviates from the 2%, dynamic control of synchronization times

with Node 2 becomes necessary.

In summary, our simulations provide evidence that in an unstable computational and syn-

chronization environment or in a heterogeneous environment, employing a flexible synchro-

nization strategy allows for the effective control of the synchronization rate. This control

proves valuable in minimizing unnecessary costs associated with synchronization, ultimately

enhancing overall system performance. To further enhance these outcomes, it is imperative

to get into runtime strategies and explore optimal solutions for this particular context.

47

4.4 Experiments on Heterogeneous Distributed Sys-

tem

In our study, we implemented and tested our runtime system in three distinct environments:

a heterogeneous CPU environment, a heterogeneous GPU environment, and a combined GPU

and CPU environment. The evaluation involved a comparison of training performance with

various synchronization strategies, including fully synchronized, no synchronization, fixed

percentage synchronization, and flexible synchronization. The flexibility in synchronization

was achieved by our runtime module, which monitored the runtime behavior of each node

and the network conditions. Additionally, we assessed the robustness of our runtime system

by introducing delays and variances into the network connections. Notably, our system

demonstrated the capability to identify and exclude abnormal nodes from the synchronization

process, ensuring the overall performance of the entire system. All tests were implemented

and integrated within the PyTorch framework.

4.4.1 Runtime Management Module

Our runtime management module, integrated with compute and transfer variance in a dy-

namic structure, offers several significant advantages. The logical organization of hierarchical

nodes ensures effective utilization, allowing even less powerful nodes to contribute meaning-

fully to overall system performance. The hierarchical structure enables the dynamic inclusion

or removal of nodes from specific groups based on network availability and instantaneous

data transfer rates. This adaptability at a local level enables fine-grained configuration ad-

justments in response to varying computational resources and network conditions. Given

the inherent volatility of computational power and network conditions, we have developed

a runtime management module. This module serves as a proactive supervisor during neu-

48

ral network training, capitalizing on flexible synchronization techniques. By adapting to

real-time system characteristics, the module optimizes resource allocation, ensuring that the

neural network operates efficiently, even in the face of fluctuating computational resources

and network conditions.

Figure 4.7: Flexible Synchronization

Figure 4.7 shows node 4 is excluded from the ring when the runtime management module

detects the abnormal situation from node 4 either because of slowdown in the computation or

the congestion happened in the the network connection from node 4 to runtime management

module. Node 1, 2 and 3 can form a new ring logically and continue the ring AllReduce

process when updating the model parameters.

We can use the abnormal detection as an API access, so further intelligence on the design of

the algorithm can be directly plug into the whole system. For example a running average or

limited width sliding window algorithm are both used as we develop the runntime system.

4.4.2 Heterogeneous CPU environment

The CPU cluster we formed for evaluation comprises 13 nodes. Nodes with fast connections

are put into one group. Only one node in the group serves as communication node with the

outside group. The nodes in group 1 and group 2 are within the same magnitude as we use

49

Algorithm 2 Runtime Distributed Ring AllReduce Algorithm

nodei represents worker i;
nodei.ring[] contains nodes active in ring-AllReduce;
while not converged do
for i = 0 to n do
if abnormal detection(nodei) then
ring[].remove(nodei);

end if
end for
for i = 0 to n do
update(nodei.ring[]);

end for
end while

Algorithm 3 Runtime Abnormal Detection Algorithm

nodei represents worker i;
threthold represents limit value to define abnormal;
while not converged do
for i = 0 to n do
if abs(nodei.cycle time− nodei.running average) > threthold then
nodei.abnormal = true;

end if
update(nodei.running average)

end for
end while

50

big O notation to describe the compute power. Group 3 and 4 is one more magnitude slow

comparing with group 1 and 2.

Table 4.1: Hardware Configurations of Heterogeneous CPUs

Group Nodes CPU Network Adapter
G1 node 0-3 Intel i5 1Gbps
G2 node 4-7 AMD Ryzen 5 1Gbps
G3 node 8-10 Arm V8 1Gbps
G4 node 11-13 Arm V7 1Gbps

We select the LeNet networks and MNIST dataset in this experiment. We record the training

time till the test accuracy reaches 95%. In the case of connection all group 1 to 4, the nodes of

group 3 and 4 are dropped off during the runtime because the compute power is magnitudes

lower and also with a slow connection to group 1 and 2.

Comparing the Fully Synchronization, Percentage Synchronization, and Flexible Synchro-

nization. Percentage Synchronization has close to optimal performance, and flexible syn-

chronization has the advantages on the runtime when network variance is introduced into

the computation environment. The plots presented in Figure 4.8 illustrates a significant

decrease in the performance of full synchronization when confronted with network or com-

putation variances. While the percentage synchronization also experiences a slowdown, it

maintains a relatively high performance by constraining the synchronization rate with slower

connections or computation nodes. The runtime flexible synchronization demonstrates an

improvement in performance compared to full synchronization, although it falls short of the

performance achieved by percentage synchronization.

Despite not matching the efficiency of percentage synchronization, the runtime management

module remains effective in addressing the variances or turbulence within the distributed

system. This suggests that the runtime flexible synchronization can serve as a valuable tool

for mitigating the impact of disruptions in a distributed computing environment.

51

Figure 4.8: Heterogeneous CPU Experiment Result

52

4.4.3 Heterogeneous GPU environment

For creation of the test in a heterogeneous GPU environment, We use two Nvidia Professional

GPUs Quadro P6000 to form one group (G1) in the table, and another Quadro P6000 to

form another group (G2) in the table. We choose a commercial GPU Nvidia 3060Ti to be

the contrast group with different computation power. The hardware details are listed in

Table 4.2.

Table 4.2: Hardware Configurations of Heterogeneous GPUs

Group Nodes GPU Network Adapter
G1 node 0-1 Nvidia P6000 1Gbps
G2 node 2 Nvidia P6000 1Gbps
G3 node 3 Nvidia 3060Ti 1Gbps

We have conducted tests on four distinct sets under varied group conditions. Across the

board, the performance of full synchronization shows a notable decline when confronted

with huge differences in computer power or substantial variances in the network. This

decline was particularly evident in scenarios such as G1 and G2 with network variance or

G1 and G3. In contrast, percentage synchronization showcased greater resilience by adeptly

regulating the synchronization rate, especially in the presence of slower connections, whether

in computation or transfer.

The flexible synchronization, operating as a runtime method to govern the synchronization

rate, proved to be a viable alternative. It demonstrated an ability to sustain performance

levels relatively well when compared to the more resource-intensive full synchronization. This

underscores the effectiveness of adopting a flexible synchronization strategy, particularly in

environments characterized by computational disparities or network variations, where it can

effectively mitigate unnecessary costs and optimize overall system performance.

53

Figure 4.9: Heterogeneous GPU Environment

54

Chapter 5

Conclusion and Future Work

A dynamically hybrid and hierarchical logical architecture for cluster nodes has been in-

troduced to satisfy the adaptivity and the scalability issues in distributed neural network

training. As all the software, hardware, and network variables in the whole system are con-

sidered by using different layers of classification and dynamic runtime system, we have been

able to utilize the hierarchical hardware resources more efficiently in an uncertain network

environment.

Work is still needed in the future in this subject. First, the algorithm which is used in

the runtime system to control the objects and frequency of the synchronization can still

be improved, as we can see from the experiment above. Even though we have improved

the running time to convergence but there is still some room to improvement to reach the

optimal value. More wisdom can be put into the effort to explore more efficient algorithm

and also machine learning strategy can be brought into consideration.

Secondly, the experiments conducted so far may not fully represent exascale scenarios, despite

considering scale factors. Future research could benefit from the inclusion of additional

hardware resources, such as multiple clusters or multiple data centers, to achieve a more

55

comprehensive understanding of system behavior. Additionally, the current simplification

of network conditions using big O notation might not capture all the intricacies. Therefore,

future efforts should consider a more detailed examination of various network variables to

enhance the accuracy and reliability of the entire system.

56

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. {TensorFlow}: a system for {Large-Scale} machine learning.
In 12th USENIX symposium on operating systems design and implementation (OSDI
16), pages 265–283, 2016.

[2] A. Agarwal, O. Chapelle, M. Dud́ık, and J. Langford. A reliable effective terascale linear
learning system. The Journal of Machine Learning Research, 15(1):1111–1133, 2014.

[3] T. Ben-Nun and T. Hoefler. Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. ACM Computing Surveys (CSUR), 52(4):1–43, 2019.

[4] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with
atrous separable convolution for semantic image segmentation. In Proceedings of the
European conference on computer vision (ECCV), pages 801–818, 2018.

[5] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang. Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[6] Z. Chen, J. Zhang, and D. Tao. Progressive lidar adaptation for road detection.
IEEE/CAA Journal of Automatica Sinica, 6(3):693–702, 2019.

[7] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson, K. Keeton, and E. Xing.
Solving the straggler problem with bounded staleness. In 14th Workshop on Hot Topics
in Operating Systems (HotOS XIV), 2013.

[8] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep, big, simple
neural nets for handwritten digit recognition. Neural computation, 22(12):3207–3220,
2010.

[9] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing. Geeps: Scalable deep
learning on distributed gpus with a gpu-specialized parameter server. In Proceedings of
the eleventh european conference on computer systems, pages 1–16, 2016.

[10] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang, et al. Large scale distributed deep networks. Advances in neural
information processing systems, 25, 2012.

57

[11] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[13] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2414–2423, 2016.

[14] T. Geng, L. Liu, S. Yin, M. Zhu, and S. Wei. Parallelization of computing-intensive tasks
of the h. 264 high profile decoding algorithm on a reconfigurable multimedia system.
IEICE TRANSACTIONS on Information and Systems, 93(12):3223–3231, 2010.

[15] T. Geng, S. Zuckerman, J. Monsalve, A. Goldman, S. Habib, J.-L. Gaudiot, and G. R.
Gao. The importance of efficient fine-grain synchronization for many-core systems. In
International Workshop on Languages and Compilers for Parallel Computing, pages
203–217. Springer, 2016.

[16] J. Godino-Llorente, S. Shattuck-Hufnagel, J. Choi, L. Moro-Velázquez, and J. Gómez-
Garćıa. Towards the identification of idiopathic parkinson’s disease from the speech.
new articulatory kinetic biomarkers. PloS one, 12(12):e0189583, 2017.

[17] H. Haim, S. Elmalem, R. Giryes, A. M. Bronstein, and E. Marom. Depth estimation
from a single image using deep learned phase coded mask. IEEE Transactions on
Computational Imaging, 4(3):298–310, 2018.

[18] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur, G. Ganger, and
P. Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. arXiv preprint
arXiv:1806.03377, 2018.

[19] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L.
Casas, L. A. Hendricks, J. Welbl, A. Clark, et al. Training compute-optimal large
language models. arXiv preprint arXiv:2203.15556, 2022.

[20] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam, Q. V.
Le, Y. Wu, et al. Gpipe: Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing systems, 32, 2019.

[21] Z. Jia, M. Zaharia, and A. Aiken. Beyond data and model parallelism for deep neural
networks. Proceedings of Machine Learning and Systems, 1:1–13, 2019.

[22] R. Kadlec, M. Schmid, O. Bajgar, and J. Kleindienst. Text understanding with the
attention sum reader network. arXiv preprint arXiv:1603.01547, 2016.

[23] A. Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv
preprint arXiv:1404.5997, 2014.

58

[24] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim. A survey of deep
learning-based network anomaly detection. Cluster Computing, 22:949–961, 2019.

[25] H. Li, A. Kadav, E. Kruus, and C. Ungureanu. Malt: distributed data-parallelism for
existing ml applications. In Proceedings of the tenth european conference on computer
systems, pages 1–16, 2015.

[26] R. Mayer and H.-A. Jacobsen. Scalable deep learning on distributed infrastructures:
Challenges, techniques, and tools. ACM Computing Surveys (CSUR), 53(1):1–37, 2020.

[27] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen, et al. Mllib: Machine learning in apache spark. The journal of
machine learning research, 17(1):1235–1241, 2016.

[28] A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le, and J. Dean. A hierarchical
model for device placement. In International Conference on Learning Representations,
2018.

[29] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan. Sparknet: Training deep networks
in spark. arXiv preprint arXiv:1511.06051, 2015.

[30] E. Schwartz, R. Giryes, and A. M. Bronstein. Deepisp: Toward learning an end-to-
end image processing pipeline. IEEE Transactions on Image Processing, 28(2):912–923,
2018.

[31] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

[32] P. Villalobos, J. Sevilla, T. Besiroglu, L. Heim, A. Ho, and M. Hobbhahn. Machine
learning model sizes and the parameter gap. arXiv preprint arXiv:2207.02852, 2022.

[33] H. Wang, H. Shi, K. Lin, C. Qin, L. Zhao, Y. Huang, and C. Liu. A high-precision ar-
rhythmia classification method based on dual fully connected neural network. Biomed-
ical Signal Processing and Control, 58:101874, 2020.

[34] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu. Cosface: Large
margin cosine loss for deep face recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5265–5274, 2018.

[35] M. Wang, T. Xiao, J. Li, J. Zhang, C. Hong, and Z. Zhang. Minerva: A scalable and
highly efficient training platform for deep learning. In NIPS Workshop, Distributed
Machine Learning and Matrix Computations, page 51, 2014.

[36] P. Watcharapichat, V. L. Morales, R. C. Fernandez, and P. Pietzuch. Ako: Decen-
tralised deep learning with partial gradient exchange. In Proceedings of the Seventh
ACM Symposium on Cloud Computing, pages 84–97, 2016.

59

[37] E. P. Xing, Q. Ho, W. Dai, J.-K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and
Y. Yu. Petuum: A new platform for distributed machine learning on big data. In Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1335–1344, 2015.

[38] S. Zeng, J. M. M. Diaz, and S. Raskar. Toward a high-performance emulation plat-
formfor brain-inspired intelligent systemsexploring dataflow-based execution model and
beyond. In 2019 IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC), volume 2, pages 628–633. IEEE, 2019.

[39] C. Zhang, H. Tian, W. Wang, and F. Yan. Stay fresh: Speculative synchronization
for fast distributed machine learning. In 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), pages 99–109. IEEE, 2018.

[40] H. Zhang, L. Stafman, A. Or, and M. J. Freedman. Slaq: quality-driven scheduling for
distributed machine learning. In Proceedings of the 2017 Symposium on Cloud Comput-
ing, pages 390–404, 2017.

60

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Current Trends of DNNs in Distributed Systems
	Problem Statement, Motivation and Goals

	Background
	Forward and Backward Propagation
	Forward Propagation Calculus
	Backward Propagation Calculus

	Parallelization Methods
	Data Parallelism
	Model Parallelism
	Hybrid Parallelism
	Pipeline Parallelism

	Parameter Distribution and Communication
	Centralized
	Decentralized
	Comparison of Centralized and Decentralized

	Synchronization
	Fully Synchronized
	Asynchronized
	Partially Synchronized

	Fine Grain Model Parallelism
	Summary

	AllReduce Local Optimization
	AllReduce Algorithms and Comparison
	Centralized AllReduce
	Ring AllReduce
	Other AllReduce Algorithms
	AllReduce Performance on Single Node
	Memory Effect and Local Optimization

	Mathematical Analysis of Compute and Transfer Ratio in Distributed System Decisions
	Three Nodes Scenario with Single Operation
	Three Nodes Scenario with Multiple Operations
	N Nodes Scenario

	Hierarchical Heterogeneous Framework, Simulation, and Experiment
	Homogeneous Group Separation
	Hierarchical Structure
	Simulation with Fluctuate Computation and Communication Cost
	Fixed Delay
	Random Delay

	Experiments on Heterogeneous Distributed System
	Runtime Management Module
	Heterogeneous CPU environment
	Heterogeneous GPU environment

	Conclusion and Future Work
	Bibliography

