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Abstract

Purpose: To assess the generalizability of a deep learning-based algorithm to segment the 

ellipsoid zone (EZ).

Methods: The dataset consisted of 127 spectral-domain optical coherence tomography volumes 

from eyes of participants with USH2A-related retinal degeneration enrolled in the RUSH2A 

clinical trial (NCT03146078). The EZ was segmented manually by trained Readers and 

automatically by DOCTAD, a deep learning-based algorithm originally developed for macular 

telangiectasia type 2. Performance was evaluated using the Dice similarity coefficient (DSC) 

between the segmentations, and the absolute difference and Pearson’s correlation of measurements 

of interest obtained from the segmentations.

Results: With DOCTAD, the average (mean ± SD, median) DSC was 0.79 ± 0.27, 0.90. The 

average absolute difference in total EZ area was 0.62 ± 1.41, 0.22 mm2 with a correlation of 

0.97. The average absolute difference in the maximum EZ length was 222 ± 288, 126 μm with a 

correlation of 0.97.
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Conclusion: DOCTAD segmented EZ in USH2A-related retinal degeneration with good 

performance. The algorithm is potentially generalizable to other diseases and other biomarkers 

of interest as well, which is an important aspect of clinical applicability.

SUMMARY

We validate the clinical applicability and generalizability of DOCTAD, a deep learning-based 

algorithm originally developed for macular telangiectasia, to segment the ellipsoid zone on 

optical coherence tomography images of eyes with USH2A-related degeneration. The algorithm 

performed well on a diverse dataset from the large-scale, international, multi-center RUSH2A 

clinical trial (NCT03146078).

Keywords

Automatic; clinical applicability; deep learning; ellipsoid zone; generalizability; optical coherence 
tomography; segmentation; USH2A-related retinal degeneration

INTRODUCTION

Usher syndrome is an autosomal recessive genetic disease and the most common genetic 

cause of deaf-blindness.1 Of the three forms of Usher syndrome, Usher syndrome type 2 

(USH2) is the most common, accounting for over half of all Usher syndrome cases.2 USH2 

is characterized primarily by retinitis pigmentosa (RP) accompanied by mild to moderate 

hearing loss. USH2 is most commonly associated with variants in the USH2A gene, which 

is also the most common cause of non-syndromic autosomal recessive RP (i.e., without 

hearing loss).3, 4

USH2A-related RP is characterized by retinal photoreceptor ellipsoid zone (EZ) loss, 

representing macular photoreceptor degeneration.5 Measurements of EZ loss, including 

length or area, are commonly used outcome measures in clinical studies of retinal diseases 

including macular telangiectasia type 2 (MacTel2).6, 7 The change in total EZ area is one 

of the primary outcome measures in the ongoing, international, multi-center, longitudinal 

natural history study of participants with USH2A-related retinal degeneration (Rate of 

Progression of USH2A-related Retinal Degeneration (RUSH2A) Study, NCT03146078). 

Spectral domain optical coherence tomography (SD-OCT) provides non-invasive and high-

resolution imaging of the retinal structures including the EZ, which can be measured 

quantitatively.

Automatic algorithms have been developed to analyze the EZ on SD-OCT images from 

a variety of retinal diseases.8–20 While most of these algorithms were developed for a 

specific condition, generalizability is an important aspect of clinical applicability whereby 

the algorithm can be applied to other conditions. Trainable algorithms, such as modern deep 

learning-based algorithms, have especially strong potential to do so, given the appropriate 

training dataset. However, this is not necessarily always true. For example, we previously 

showed that a deep learning-based algorithm developed to segment exudative cystoid 

structures did not generalize well to segment degenerative cystoid structures in a different 

disease, thus warranting the development of a new algorithm.21 Therefore, it is necessary 
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to explicitly validate algorithms for generalizability to other conditions. Besides broadening 

the scope of application of the algorithm, thereby increasing clinical applicability and 

potential for real-world clinical use, this generalizability also enables research efforts to 

be optimally focused on applications when existing algorithms do not suffice. Two notions 

of generalizability can be considered, which are (1) the generalizability of an existing 

methodology given the appropriate training dataset for a new application and (2) the 

generalizability of an existing model trained for a different application.

Another limitation to the clinical applicability of these automatic algorithms is that the 

performances are frequently reported on limited datasets with minimal heterogeneity. 

Therefore, while the reported performances of some of these techniques may be impressive, 

they do not reflect clinical applicability, and there is often a significant decline in 

performance when applied in real-world clinical settings. To minimize such discrepancies, 

we advocate for using complete clinical study datasets to ensure that the reported 

performance is as representative as possible of the performance in real-world clinical 

settings including diverse patient populations. Figure 1 shows some example images from 

the RUSH2A clinical study that exhibited a wide range of disease severity and macular 

findings. Such diversity increases segmentation complexity which may be difficult even for 

trained and experienced experts and would therefore provide a more robust evaluation of the 

algorithm’s performance.

Deep OCT Atrophy Detection (DOCTAD) is a fully-automatic, deep learning-based, en face 
segmentation algorithm initially developed for and validated to segment EZ defects on SD-

OCT images of eyes with MacTel2.14, 22 One aspect of DOCTAD’s clinical applicability has 

been previously validated, as the algorithm reproduced the statistically-significant expert-

evaluated results in a phase 2 clinical trial for MacTel2.22 In this article, we further assess 

DOCTAD’s clinical applicability by validating its generalizability to segment the presence 

of EZ on SD-OCT images of USH2A-related RP from the RUSH2A clinical study. We focus 

on the generalizability of an existing methodology given the appropriate training dataset for 

a new application, as this approach would also be applicable for validating DOCTAD to 

segment biomarkers other than the EZ. However, since the EZ happens to be the biomarker 

of interest in both MacTel2 and USH2A-related RP, we also provide a brief analysis of the 

generalizability of an existing model trained for a different application.

METHODS

Dataset

The dataset consisted of OCT images of eyes of participants with USH2A-related RP 

enrolled in the RUSH2A clinical study (NCT03146078) at 16 clinical sites in North 

America, Europe, and the United Kingdom. The study was approved by the ethics 

board at each clinical site and adhered to the tenets of the Declaration of Helsinki. For 

each participant, the study eye was defined as the eye with better visual acuity at the 

baseline visit. All study eyes were imaged with Spectralis SD-OCT systems (Heidelberg 

Engineering, GmBH, Heidelberg, Germany) to obtain high resolution, macula-centered 

volume scans. All volumes were exported as raw binary files from Heidelberg Eye Explorer 

and converted to .tif images for image analysis.
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Manual segmentation

Manual segmentation of the en face EZ was performed by a trained Reader using the 

Duke OCT Retinal Analysis Program (DOCTRAP V63.9, Duke University, Durham, North 

Carolina, USA) who labeled the absence or presence of EZ on each A-scan. Per the 

grading protocol, for each SD-OCT volume, the foveal B-scan on which the EZ was easiest 

to identify was segmented first, followed by the neighboring B-scans. If the absence or 

presence of EZ was unclear, the Reader used the assumption of EZ continuity from the 

fovea, to discourage the segmentation of small and discontinuous regions of EZ. A second, 

senior Reader reviewed the segmentations of the first Reader and made corrections when 

necessary. Figure 2 shows the manual segmentation process.

Automatic segmentation

Automatic segmentation of the en face EZ was performed by DOCTAD,14, 22 a deep 

learning-based, en face segmentation algorithm. The convolutional neural network (CNN) 

architecture and training procedure were not modified in any way from the original 

publications. Briefly, the CNN was trained to classify clusters of A-scans with the absence 

or presence of EZ. The CNN architecture consisted of four blocks and three fully-connected 

layers followed by softmax activation in the final layer. Each block consisted of two 

convolutional layers, a batch normalization layer followed by rectified linear unit activation, 

and a max-pooling layer.

Six-fold cross-validation was used to train and test the automatic segmentation algorithm on 

all available data to avoid selection bias and to ensure independence between the training 

and testing sets. Participants were randomly divided into six groups of approximately 

equal size. Five groups were designated as the training set while the remaining group 

was designated as the testing set. The groups were then rotated such that each group was 

used once for testing. For validation, one group from the training set was designated as the 

hold-out validation set.

For training, clusters of A-scans (with dimensions 256 × 16 × 5) and their corresponding 

labels (0 for absence of EZ and 1 for presence of EZ in the central A-scan) were randomly 

extracted from the SD-OCT volumes in the training set. The weights of the CNN were 

randomly initialized using Xavier initialization and optimized using Adam optimization to 

minimize a binary cross-entropy loss. The CNN was trained for 10 epochs with a batch size 

of 250 and learning rate of 0.0001. Performance was evaluated on the hold-out validation set 

and the weights of the best-performing epoch were retained as the final weights of the CNN 

to be used during testing.

During testing, an en face probability map of EZ was generated by the trained CNN for 

each SD-OCT volume. The probability map was thresholded at 0.95 to obtain a binary 

map. A binary morphological operation was applied to fill any holes in the binary map and 

regions smaller than 0.025 mm2 were removed to exclude small and discontinuous regions 

of EZ, to mimic the manual segmentation protocol. The hold-out validation set was used 

to establish the thresholds of 0.95 and 0.025 mm2 indicated above. Figure 3 shows the 

automatic segmentation process.
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Performance metrics

Several performance metrics were calculated to evaluate the performance of the automatic 

segmentation algorithm, using the manual segmentations as the gold standard. The Dice 

similarity coefficient (DSC) was calculated to measure the proportion of overlap between 

the manual and automatic en face segmentation maps. Measurements of the total EZ area 

(mm2) and the maximum EZ length (μm) for each volume were also obtained from the 

segmentations. The absolute difference and Pearson’s correlation between the manual and 

automatic measurements were calculated. A higher value indicates better performance for 

the DSC and Pearson’s correlation, both of which range from 0 to 1, whereas a lower value 

indicates better performance for the absolute difference.

Generalizability of models trained on MacTel2

To investigate the generalizability of an existing model trained for a different application, we 

used the trained models from the MacTel2 study22 to segment the EZ in USH2A-related RP. 

As there were six trained models from the MacTel2 study due to the six-fold cross-validation 

procedure, we used an ensemble of the six trained models by taking the mean of their 

predictions. As the models were trained to predict the probability of EZ defects in MacTel2, 

the probability map of EZ defects (p) was inverted (1 – p) to obtain the probability map 

of EZ in USH2A-related RP. The probability map was thresholded and postprocessed as 

described above, using the same thresholds of 0.95 and 0.025 mm2.

Implementation

DOCTAD was implemented in Python with the TensorFlow23 (Version 1.2.1) library. 

Statistical analysis was performed with MATLAB24 (Version 9.5.0 R2018b).

RESULTS

Dataset

The dataset consisted of 127 SD-OCT volumes from 127 enrolled participants at the 

baseline visit. Participants in the RUSH2A study have been previously described.25 All 

SD-OCT volumes consisted of 121 B-scans × 1536 A-scans within a 30° × 25° retinal area, 

with the exception of one volume with 768 B-scans, one volume with 49 B-scans × 1024 

A-scans, and two volumes with 49 B-scans × 512 A-scans. All B-scans had a height of 

496 pixels and an axial resolution of 3.87 μm/pixel. One participant was later considered 

ineligible because the EZ extended beyond the scan area, a study exclusion criterion for EZ 

analysis.

Quantitative analysis

Overall, there was good agreement between the manual and automatic segmentations 

with high DSC and Pearson’s correlation, and low absolute differences. The average 

(mean ± SD) DSC was 0.79 ± 0.27 (median: 0.90). When the automatic measurements 

of total EZ area were compared to the manual measurements, the average absolute 

difference was 0.62 ± 1.41 (median: 0.22) mm2 and the Pearson’s correlation was 0.97. 

Similarly, when the automatic measurements of maximum EZ length were compared to 
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the manual measurements, the average absolute difference was 222 ± 288 (median: 126) 

μm and the Pearson’s correlation was 0.97. Figure 4 shows the relationship between the 

measurements of the total EZ area and maximum EZ length obtained from the manual and 

automatic segmentations and the corresponding Pearson’s correlation. Performance metrics 

are reported on all 126 eligible participants.

Qualitative analysis

Overall, there was good qualitative agreement between the manual and automatic 

segmentations. Figure 5 shows an example. The measurements of the total EZ area and EZ 

length were very similar and segmentation differences occurred only around the boundaries. 

This was true in general, despite the diverse disease manifestations and the presence of 

other abnormalities. Figure 6 shows various examples of segmentations in images with 

different disease manifestations, for which the EZ ranged from disrupted to clear and thin 

to thick, as well as the presence of other abnormalities such as intraretinal fluid, large 

central cysts, macular atrophy, adherent posterior hyaloid with vitreomacular traction, and 

epiretinal membrane with lamellar macular hole. Overall, the automatic segmentations were 

appropriate even in these extreme cases. Most segmentation differences occurred around 

the boundaries or in ambiguous regions where the EZ was disrupted and faintly visible but 

also not fully intact. As with any automatic segmentation algorithm, there were also a few 

cases of segmentation failures. Figure 7 shows examples where EZ was incorrectly identified 

(when clearly absent) or missed (when clearly present) in the automatic segmentations. 

However, such cases were very rare.

Generalizability of models trained on MacTel2

Using the trained models from the MacTel2 study, the average DSC was 0.43 ± 0.28 

(median: 0.43). For measurements of the total EZ area, the average absolute difference was 

1.85 ± 1.86 (median: 1.24) mm2 and the Pearson’s correlation was 0.89. For measurements 

of the maximum EZ length, the average absolute difference was 520 ± 528 (median: 

395) μm and the Pearson’s correlation was 0.85. We found that the predictions of the 

models trained on MacTel2 were considerably noisier when applied to USH2A-related 

RP. By applying an additional postprocessing step of simply removing all but the largest 

continuous region, which typically corresponded to the central EZ, the performance metrics 

improved. The average DSC was 0.45 ± 0.37 (median: 0.63). For measurements of the 

total EZ area, the average absolute difference was 1.34 ± 1.71 (median: 0.68) mm2 and the 

Pearson’s correlation was 0.95. For measurements of the maximum EZ length, the average 

absolute difference was 528 ± 430 (median: 409) μm and the Pearson’s correlation was 0.91. 

Further improvements would likely be obtained with more complex modifications, which are 

beyond the scope of this paper. Figure 8 shows the relationship between the measurements 

of the total EZ area and maximum EZ length obtained from the manual and automatic 

segmentations and the corresponding Pearson’s correlation. Overall, the performance of the 

models trained on MacTel2 was reasonable, but as expected, not as good as the performance 

of the models trained specifically for USH2A-related RP.
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DISCUSSION

Many automatic algorithms have been developed to aid clinicians with medical image 

analysis. While an algorithm is often developed for and validated on a specific condition, 

explicit validation of the generalizability of the algorithm for application to other conditions 

is important for clinical applicability. In this article, we validated the generalizability of 

DOCTAD,14, 22 a fully-automatic, deep learning-based, en face segmentation algorithm 

initially developed to segment EZ defects in MacTel2, for application to segment the 

presence of EZ in USH2A-related RP. To ensure that the performance evaluation would 

be clinically applicable, we used a diverse dataset from the large-scale, international, multi-

center RUSH2A clinical study (NCT03146078).

Despite the diverse disease manifestations, DOCTAD segmented the EZ on SD-OCT 

volumes of participants with USH2A-related RP with good performance26 without any need 

to modify the architecture or training procedure. Overall, DOCTAD achieved a high average 

DSC of 0.79 ± 0.27 (median: 0.90) compared to manual segmentations by trained Readers. 

This performance was comparable to the performance observed in the original MacTel2 

studies, where DOCTAD achieved an average DSC of 0.79 ± 0.22 (median: 0.87), and 

which reproduced important clinical trial outcome measures.14, 22 DOCTAD also achieved 

low absolute differences and high correlations of 0.97 for measurements obtained from the 

segmentations.

Even in extreme cases and in eyes with a variety of retinal abnormalities, severe 

segmentation failures were rare, demonstrating the robustness of the algorithm. Instead, 

segmentation differences occurred mostly around the boundaries of the EZ or in ambiguous 

regions where the EZ was disrupted and faintly visible but also not fully intact. These 

regions are difficult to segment even for expert Readers and often simply require a judgment 

call, which may differ between Readers. While such segmentation differences, due to the 

inherent bias or judgment in each segmentation method or Reader, may result in significant 

differences between the respective measurements at a single time point, measurements at 

a single time point are typically not the main clinical outcome measure. Instead, changes 

over time are more clinically relevant, as they reflect disease progression and treatment 

effects. Previous validation of DOCTAD’s clinical applicability in a phase 2 clinical trial for 

MacTel2 showed that significant differences between manual and automatic measurements 

at a single time point were inconsequential, as each segmentation method was consistent 

over time and therefore able to accurately measure similar changes and treatment effects 

over time.22 We will continue to further validate the performance of DOCTAD in the 

longitudinal natural history study of USH2A-related retinal degeneration over time as the 

RUSH2A clinical study progresses over four years. Analysis on a wider range of data and 

outcome measures will provide further insight into the reliability of the algorithm for clinical 

applications.

The performance of the models trained on MacTel2 was reasonable when applied to 

USH2A-related RP, as indicated by the high correlations of more than 0.90 for the 

measurements obtained from the segmentations. However, as indicated by the spread about 

the trendline, the differences between the manual and automatic segmentations were greater 
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for the models trained on MacTel2 (as shown in Figure 8), compared to the models trained 

specifically for USH2A-related RP (as shown in Figure 4). There are several possible 

reasons for these differences including different underlying disease pathology, different 

scanning protocols, and larger scanning field of view. However, perhaps the most important 

differences are the grading instructions and judgment criteria for manual segmentation in 

the different studies. Therefore, if the appropriate training dataset is available for a new 

application, training the algorithm for the specific application is highly recommended as 

there are often nuances in the manual segmentation approach that may not be reflected when 

using models trained for a different application. This approach would be straightforward 

with a generalizable methodology such as DOCTAD. However, in the absence of an 

appropriate training dataset, models trained for a different application may still be employed 

if the target biomarker is the same, although a certain degree of adjustment may be required 

to adhere to the specific segmentation protocols.

One limitation of this study is that we have only validated DOCTAD’s generalizability 

to one other condition. However, DOCTAD also has the potential to be used to segment 

other biomarkers of interest in other conditions, such as geographic atrophy or drusen in 

age-related macular degeneration. We will continue to validate DOCTAD’s generalizability 

to these other conditions in our future work.

In conclusion, we validated the generalizability of DOCTAD, a fully-automatic, deep 

learning-based, en face segmentation algorithm, that can be applied to retinal diseases 

other than MacTel2, the disease on which it was originally developed for. We showed that 

DOCTAD could be applied to segment the EZ in USH2A-related retinal degeneration with 

good performance on a diverse dataset from a large-scale clinical study. We also recommend 

that algorithms from other investigators should be validated for different aspects of clinical 

applicability, including generalizability to other conditions, to increase their potential for 

real-world clinical use.

ACKNOWLEDGEMENTS

The source of the data is the Foundation Fighting Blindness Consortium, but the analyses, content and conclusions 
presented herein are solely the responsibility of the authors and may not reflect the views of the Foundation 
Fighting Blindness.

Funding:

National Institutes of Health (P30 EY005722). Research to Prevent Blindness (Unrestricted Grant to Duke 
University). Funding to support the Rate of Progression of USH2A-related Retinal Degeneration was provided 
by the Foundation Fighting Blindness Consortium.

REFERENCES

1. Mathur P, Yang J. Usher syndrome: hearing loss, retinal degeneration and associated abnormalities. 
Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2015;1852(3):406–420. 
[PubMed: 25481835] 

2. Eudy JD, Weston MD, Yao S, et al. Mutation of a gene encoding a protein with extracellular matrix 
motifs in Usher syndrome type IIa. Science 1998;280(5370):1753–1757. [PubMed: 9624053] 

Loo et al. Page 8

Retina. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Pierrache LH, Hartel BP, Van Wijk E, et al. Visual prognosis in USH2A-associated retinitis 
pigmentosa is worse for patients with usher syndrome type IIa than for those with nonsyndromic 
retinitis pigmentosa. Ophthalmology 2016;123(5):1151–1160. [PubMed: 26927203] 

4. Fuster-García C, García-García G, González-Romero E, et al. USH2A gene editing using the 
CRISPR system. Molecular Therapy-Nucleic Acids 2017;8:529–541. [PubMed: 28918053] 

5. Jacobson SG, Cideciyan AV, Aleman TS, et al. Usher syndromes due to MYO7A, PCDH15, 
USH2A or GPR98 mutations share retinal disease mechanism. Human molecular genetics 
2008;17(15):2405–2415. [PubMed: 18463160] 

6. Mukherjee D, Lad EM, Vann RR, et al. Correlation between macular integrity assessment and 
optical coherence tomography imaging of ellipsoid zone in macular telangiectasia type 2. Invest. 
Ophth. Vis. Sci. 2017;58(6):291–299.

7. Chew EY, Clemons TE, Jaffe GJ, et al. Effect of ciliary neurotrophic factor on retinal 
neurodegeneration in patients with macular telangiectasia type 2: a randomized clinical trial. 
Ophthalmology 2019;126(4):540–549. [PubMed: 30292541] 

8. de Sisternes L, Hu J, Rubin DL, Leng T. Visual prognosis of eyes recovering from macular hole 
surgery through automated quantitative analysis of spectral-domain optical coherence tomography 
(SD-OCT) scans. Invest. Ophth. Vis. Sci. 2015;56(8):4631–4643.

9. Itoh Y, Vasanji A, Ehlers JP. Volumetric ellipsoid zone mapping for enhanced visualisation of outer 
retinal integrity with optical coherence tomography. Brit. J. Ophthalmol. 2016;100(3):295–299. 
[PubMed: 26201354] 

10. Zhu W, Chen H, Zhao H, et al. Automatic three-dimensional detection of photoreceptor ellipsoid 
zone disruption caused by trauma in the OCT. Sci. Rep. 2016;6:25433. [PubMed: 27157473] 

11. Wang Z, Camino A, Zhang M, et al. Automated detection of photoreceptor disruption in 
mild diabetic retinopathy on volumetric optical coherence tomography. Biomed. Opt. Express 
2017;8(12):5384–5398. [PubMed: 29296475] 

12. Banaee T, Singh RP, Champ K, et al. Ellipsoid zone mapping parameters in retinal venous 
occlusive disease with associated macular edema. Ophthalmol. Retina 2018.

13. Camino A, Wang Z, Wang J, et al. Deep learning for the segmentation of preserved photoreceptors 
on en face optical coherence tomography in two inherited retinal diseases. Biomed. Opt. Express 
2018;9(7):3092–3105. [PubMed: 29984085] 

14. Loo J, Fang L, Cunefare D, et al. Deep longitudinal transfer learning-based automatic segmentation 
of photoreceptor ellipsoid zone defects on optical coherence tomography images of macular 
telangiectasia type 2. Biomed. Opt. Express 2018;9(6):2681–2698. [PubMed: 30258683] 

15. Lang A, Carass A, Bittner AK, et al. Improving graph-based OCT segmentation for severe 
pathology in Retinitis Pigmentosa patients. Medical Imaging 2017: Biomedical Applications in 
Molecular, Structural, and Functional Imaging. 2017.

16. Liu Y, Carass A, He Y, et al. Layer boundary evolution method for macular OCT layer 
segmentation. Biomed. Opt. Express 2019;10(3):1064–1080. [PubMed: 30891330] 

17. He Y, Carass A, Liu Y, et al. Structured layer surface segmentation for retina OCT using fully 
convolutional regression networks. Med. Image. Anal. 2021;68:101856. [PubMed: 33260113] 

18. Yang Q, Reisman CA, Chan K, et al. Automated segmentation of outer retinal layers in macular 
OCT images of patients with retinitis pigmentosa. Biomed. Opt. Express 2011;2(9):2493–2503. 
[PubMed: 21991543] 

19. Wang Y-Z, Cao A, Birch DG. Evaluation of a UNet Convolutional Neural Network (CNN) for 
Automatic Measurements of Ellipsoid Zone (EZ) Area and Photoreceptor Outer Segment (POS) 
Volume in X-Linked Retinitis Pigmentosa (xlRP). Invest. Ophth. Vis. Sci. 2021;62(8):2134–2134.

20. De Silva T, Jayakar G, Grisso P, et al. Deep-learning based automatic detection of ellipsoid 
zone loss in SD-OCT for hydroxychloroquine retinal toxicity screening. Ophthalmology Science 
2021:100060.

21. Loo J, Cai CX, Choong J, et al. Deep learning-based classification and segmentation of retinal 
cavitations on optical coherence tomography images of macular telangiectasia type 2. Brit. J. 
Ophthalmol. 2020.

Loo et al. Page 9

Retina. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Loo J, Clemons TE, Chew EY, et al. Beyond Performance Metrics: Automatic Deep Learning 
Retinal OCT Analysis Reproduces Clinical Trial Outcome. Ophthalmology 2020;127(6):793–801. 
[PubMed: 32019699] 

23. Abadi M, Barham P, Chen J, et al. TensorFlow: A System for Large-Scale Machine Learning. 
OSDI. 2016.

24. MATLAB. version 9.5.0 (R2018b). The MathWorks Inc. 2018.

25. Duncan JL, Liang W, Maguire MG, et al. Baseline visual field findings in the RUSH2A study: 
associated factors and correlation with other measures of disease severity. Am. J. Ophthalmol. 
2020;219:87–100. [PubMed: 32446738] 

26. Mukaka MM. A guide to appropriate use of correlation coefficient in medical research. Malawi 
Medical Journal 2012;24(3):69–71. [PubMed: 23638278] 

Loo et al. Page 10

Retina. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Example images from the RUSH2A clinical study that exhibited a wide range of disease 

severity and macular findings. This diversity increases the segmentation complexity and 

would provide a more robust evaluation of the algorithm’s performance.
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Figure 2. 
Illustration of the manual segmentation process. A: SD-OCT volume. B: Examples of 

B-scans with the segmentation of EZ (white). C: En face segmentation map of EZ. The 

colored lines correspond to the position of the B-scan outlined in the same color.
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Figure 3. 
Illustration of the automatic segmentation process. A: SD-OCT volume. B: CNN trained 

to classify clusters of A-scans with the absence or presence of EZ. C: En face probability 

map of EZ generated by the trained CNN. D: En face segmentation map of EZ obtained via 

thresholding and post-processing.
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Figure 4. 
Scatterplots showing the relationship between the measurements of the total EZ area and 

maximum EZ length obtained from the manual and automatic segmentations and the 

corresponding Pearson’s correlation, r on all 126 eligible participants with USH2A-related 

RP.
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Figure 5. 
Example of good agreement between the manual and automatic segmentations. Left: En 
face segmentation maps of EZ. The measurements of the total EZ area are shown in the 

bottom corner. Right: Segmentations of EZ in the B-scan corresponding to the yellow line. 

The measurements of the EZ length are shown in the bottom corner. The colors in the 

automatic segmentations correspond to the true positives (green), false positives (blue), and 

false negatives (red).
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Figure 6. 
Examples of segmentations in images with different disease manifestations for which the EZ 

ranged from disrupted to clear and thin to thick (A – E), as well as the presence of other 

abnormalities such as intraretinal fluid (F – H), large central cyst (H), macular atrophy (I, 

J), adherent posterior hyaloid with vitreomacular traction (K), and epiretinal membrane with 

lamellar macular hole (L). The measurements of the EZ length are shown in the bottom 

corner. The colors in the automatic segmentations correspond to the true positives (green), 

false positives (blue), and false negatives (red).
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Figure 7. 
Examples of rare segmentation failures where EZ was incorrectly identified (top) or missed 

(bottom) in the automatic segmentations. The measurements of the EZ length are shown 

in the bottom corner. The colors in the automatic segmentations correspond to the false 

positives (blue) and false negatives (red).
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Figure 8. 
Scatterplots showing the relationship between the measurements of the total EZ area and 

maximum EZ length obtained from the manual and automatic segmentations and the 

corresponding Pearson’s correlation, r on all 126 eligible participants with USH2A-related 

RP. The automatic segmentations were obtained using the models trained on images from 

participants with MacTel2.
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