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THE VALIDITY OF THE ISOTOPIC SPINJ QUANTUM NUMBER FOR LIGHT NUCLEI 

Wmo Mo MacDonald 

ABSTRACT OF THESIS 

The validity of the isotopic spin quantum number~ which exists 

for charge independent nuclear forces~ is affected only by the Coulomb 

potentialo Unless charge independence is to be renounced 3 it must be 

possible to attribute violations of certain isotopic spin selection rules 

on nuclear reactions solely to the effect of the Coulomb potential in 

mixing states of different isotopic spin •. 

The isotopic spin impurity can be considered to arise in two ways: 

(1) through perturbation .of the wave functions of nucleons ~n open shells. 

by their Coulomb interaction with each other and with the field produced 

by protons in closed shells~ and (2) through perturbation of the wave 

functions of nucleons in closed shells by their mutual interaction. The 

second effect, termed the ncore impurity1i, has been neglected in previous 

work by L. A. Radicati. But a simple calculation using plane waves to 

represent the nuclear states (statistical model) gives a 'much larger figure, 

for the core impurity than that which Radicati found for the impurity of 

the state of nucleons in open shells. 

Calculations of both types of impurity are then made using the 

jj coupling model of M. Mayer and harmonic oscillator wave functions. 

An understanding is obtained of the operation of the Coulomb potential in 

introducing isotopic spin impurity into the states of two and three 

nucleons in an open shell by studying the mixing of states of the 
_2 2 . 3 

representative. configurati~ns (lp3; 2) ~ (lp1; 2) ~ and (lp3; 2) to other 

low~lying states. The impurities of these states are found to be even 
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smaller than the results of Radicati. The principal reason for the 

difference lies in our use of the r 2 potential produced by a uniform 

sphere of charge rather than the singular (1/r) core potential of Radicati. 

A general for;nula is derived for ·the e,quivalent potential produced by 
\', ·.: 

nucleons in closed jj shells when th'e field arises from scalar~ spin 

independent~ two-body potential. For the specific case of the Coulomb 

interaction one obtains an equivalent core potential which differs very 

little from that produced by a uniform sphere of charge. 

The core impurity for the nucleons in closed jj shells can then 

be calculated in terms of the two-particle matrix elements which were 

just found. The figure obtained for the isotopic spin impurity of c12 
is 

in excellent agreement with the simple statistical model calculation and 

confirms the predominance of this core impurity over the impurity of 

states of nucleons in.open shells. One can conclude in fact that only 

the isotopic spin impurity of the core need be considered to be present 

in nuclear states until quite high·excitations are reached. 

An isot.opic spin selection rule on electric dipole transitions 

provides a basis for the actual experimental determination of isotopic 

spin impurity provided that one can predict uninhibited El widths with 

sufficient reliability. A discussion is presented of the effectswhich 

produce variations.in El matrix elements and the conclusion is reached 

that these effects are not important in light nuclei (A ~ 20) at 

" \\ 

moderate excitation energies ( ( 15 Jl.1ev). Consequently the limits on )~I 

isotopic spin impurity determined experimentally by Wilkinson and 

collaborators from the El selection rule are approximately correct. 

These lirirl.ts are easily explained by the presence of the Coulomb inter-

action. 
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Higher order correction terms to -the El selection rule are also 

_calculated and found to be r'-' 1000 times less effective than isotopic 

spin impurity in promoting forbidden transitions. In the course of the 

calculation formulas are derived for the exact quantum mechanical 

transition probabilities for radiation of any multipolarity. 

Finally~ the isotopic spin selection rule on [3 -decay is studied, 

but one can show ·that no violations of the _selection rule are likely to 

be found in light nuclei, The effect of the isotopic spin impurity on 

the Fermi coupling constant derived from 0~~ o+ transitions is shown 

to be just beyond the present limits of experi~ental accuracy, 
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THE VALIDITY OF THE ISOTOPIC SPIN QUANTUM NUMBER FOR LIGHT NUCLEI 

Wm. M. MacDonald 

1. Introduction 

The introduction. of the isotopic spin quantum number into nuclear 

physics occurred in a paper by Heisenberg (H32) on the systematics of 

nucleL Heisenberg proposed to write the nuclear hamiltonian in a way 

which was symmetric with respect to the nucleons interacting by taking 

the wave functions for a neutron or a proton to be eigenfunctions 

corresponding to ,the eigenvalues + 1 and -1 respectively of· an isotopic 

in its diagonal form by the 2 x 2 

order to treat correctly terms arising 

from the 'space exchange of a neutron and a proton it is. also necessary 

to introduce the other three components of the isotopic spin vector 

-;g:: { 7:5 I 7:?l G!J 

Co .1) 
~~: 

~ ..i 0 (~ -i) 
-r:7 = a o · (1) 

With these definitions (which differ from those of later authors; e.g., 

Wigner (W37), (W41),) one has a formalism which is the precise counter-

part of the Pauli spin theory and in fact the Pauli spin matrices 

o-;j o-yJ and o-~ have this matrix representation" We should 

remember, however, that the isotopic spin operates not in 3-space but 

in 81 isotopic spin space 11 , and we shall~ for this reason, use the 

~ to denote the components of the isotopic spin vector ~ 
...... 

It is trivial to verify that these operators satisfy the commutation 

relations 

['~''(, ?:7] =~i.z--.f _.{-r71 7:.r] =.tt:?:'! [~{; '?'[]~ ..2i ?'? (2) 
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The simplicity with which the isotopic spin formalism can represent 

the four nuclear interactions in common use was recognized by Gassen and . 

Condon (C36) who gave the following formulas. for the Wigner, Bartlet~ 

Heisenberg, and Majorana potentials 

: l 

Wigner (ordinary) 

Bartlett (spin exchange) 

Heisenberg (space artd spin 
exchange)' 

VM(r) = -!(1 + cr-1 • ~2 ) (1 + t:' 
1

• 't'
2
)V(r) 

· YJ.ajorana (space exchange) 

(3) 

Following a suggestion by Breit.and Feenberg (B36) that the 

nuclear forces are independent of the character of the interacting 

nucleons~ i~e. whether neutron or proton, Wigner applied the concept of 

isotopic spin to the formulation of a theory of the symmetric hamiltonian 

(W37a). Using as the two assumptions 

(1) the nuclear hamiltonian is independent of the character of 

the interacting nucleons 

(2) nuclear forces are spin independent, 

Wigner developed the elegant supermultiplet theory of nuclear structure 

in which one can attach three quantum numbers to the nuclear levels 

which characterize certain multiplets. Using group theory the relative 

\) 

separations of the multiplets can be given in terms of a direct and an ~ 

exchange integral, to be evaluated by use. of.some model or set of wave 

functions, for a potential which is the sum of a Wigner and a Majorana 

interaction (W37b, F37b). Perhaps the most striking ·success of Wigner v s 
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theory is in the interpretation of the irregularities in binding'energie:s 
16 . . 

of the nuclei beyond 0 (W37b 9 W40) eogo energy differences between 

odd=odd and even=even nuclei 9 instability of odd=odd nuclei 9 etto . ' . 

The requirement of a description of the matrix element for 

f =decay~. which should be symmetrical in the nucleons J led Nordheim 

and Yost (N.37) to formulation of the theory in. terms of the is'otopic 

spin coordinate o Wigner (W39) also looked at (I =decay from the 

standpoint of sup~rmultiplet theory and was able to give selection 

rules for ~ -decay between different supermultiplets for both Fermi 

and Gamow-Tel~er matrix elements o The prediction of favored allowed · 

~-transitions was and·is a striking success~ unique to Wigner 0s theoryo 

The validity of the 11 fi:rst approximation"~ in which both of 

Wigner 8 s assumptions are made~ and of the 11 second approximation; in which. 

·only the first holds,have been discussed in. considerable detail by Wigner 

and F~mberg (W4l)o We shall not review the evidence for the validity 

of the 10 first approximation" here but will oniy point out that the whole 

theory of the rather successful jj coupling shell model rests on a 

cont)'adictory assumption (F49) ~·the existence of a strong spin~orbit 

potential in order to provide the clo::iur-e of subshells a:t the 11magic 

numbers 11 (E33, E34~ M48, M49~ H49)o The suggestion of such a force has 

also been made by Case and Pais (G50) to explain the 340 Mev pp scattering 

data, In addition 3 work .'.by Ao ].L Fe.ingold (F52) and Keilson (51) 

indicates that an appreciable spin=orbit coupling is to be expected 
I "•f." ' 

from a tensor force via second order perturbation theoryo This origin 

of the spin~orbit force i?3 not genex"ally accepted 9 but other sources 

have not yet been foundo The work of Br~it (B37a~b 9 B38) shows that 

one cannot.expect from relativistic corrections to two particle equations 

a spin orbit force of sufficient magnitude ,to, ghre the jj coupling 
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model. This result has also been verified by Dresner (D53) using 

pseudoscalar meson .theory. 

Even when the first approximation is assumed to be invalidated 

by strong spin dependent forces 1 however 1 the isotopic spin of a nucleus 

remains a good quantum number in the se?ond approximation and extremely 

useful selection rules for nuclear reactions emerge from its properties. 

In the.next section we shall discuss the significance of the isotopic 

spin for nuclei and give the consequences of its validity. 

2. The Isotopic Spin Quantum Number for Nuclei 

(2.1) Validity of the Isotopic Spin and Selection Rules 

Just as we have defined the isotopic spin vector ~ in in 

strict analogy to the Pauli spin vectors from the requirement that the 

neutron and proton wave functions be eigenfunctions of ~( with eigen­

values +1 and =1~ we can proceed to define the isotopic spin 1 , of 
. ~ 

a particle and of a nucleus T by the equations 

+ J. "'111 +­- ~:r- (1) 

The (-component of a nucleus will be given from these definitions by 

the formula 

Tf-= ± ( N- 2.) (2) 

The result follmafrom the conservation of charge that nuclear states 

are eigenfunction of T From the fact that a state of charge T f 

cannot belong to a state of lower multiplicity than (2Ts + 1) the 

inequality follows that T ~ T~ • The condition that T be a good 

quantum number is the same as that which holds; for· example~ for£ 1 
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the spin quantun1 number, vizo 

[rr\ H] = o (3) 

or stated otherwise---T is a good quantum nun1ber if an only if H is 

.invariant to. rotations in isotopic spin spaceo 

The common statements that T is a-good quantum number only if 

nuclear forces are "charge independent" or lfidoes not depend_on the 

isotopic spin" are seen to be misleading and erroneous o _The charge of 

the neutron and proton really have little to do with isotopic spin 

formalism except insofar as the charge of a proton distinguishes it .from 

a neutron (W52)o Further, the absence of the isotopic spin from the 

nuclear hamiltonian is certainly sufficient but not at all necessary for 

the :v·alidity of isotopic spino The interaction of the charge symmetrical 

meson theory 6?1 o""'?2) is obviously invariant under rotations in the 

isotopic spin space of the particles and therefore leaves T a good 

quantum numberJ just as does the neutral meson theory, 

The present active interest in the isotopic spin began primarily 

with the experimentalists in nuclear physics and those otherwise 

interested in cataloguing and understanding the large amount of experi-

mental data on.light nuclei which is being accumulated at an increasing 

rateo For them the isotopic spin provides _several important selection 

rules in each of the three types of nuclear reactions~ (1) p ~decay~ 
(2) isomeric transitions:~ and (3) reactions resulting in heavy particle· 

ernissiono Selection rules for processes of type (1) are usually simple 

and forbid such reactions such as (d, ~) going from the· ground state 

of an N = Z nucleus to the T = l states _of the final N ~ Z nucleuso 

Selection rules for the-first process were first given by Wigner (W39) 

and are different for the :Fermi and Gamow..,'i'eller matrix elemento 
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Fermi matrix element LlT = 0 

Gamow-Teller matrix element -aT = 1 no 0_,.. 0 . 

There are of course additional selection rules fo·r spin and angular 

momentum. Finally, selection rules for electric dipole transitions were 
. 

recently derived by Trainor (T52) in supermultiplet theory and by Christy 

(C52) 9 Radicati (R52), and Gell-iuf...ann and Telegdi (G53) for the second 

approximation. 

The validity of these selection rules is affected only by a 
2 

nuclear interaction which does not commute with T , i.e. by a "charge 

dependent 11 interaction, and by the-ordinary Coulomb interaction 

e~ L (,- '"r:$i)~~- rr;) 
g . • /Z'I.j. 

''~"1' (/ 

which also does not commute with 
2-

T • 

Before any_ conclusions can be drawn about the equality of the neutron~neutro~ 

protron-:proton; and·neutron-proton nuclear force,-·we must .consequently 

know quantitatively the effect of the Coulomb force on the isotopic 

spin quantum number. Dismissal of any 9bserved departures from the 

above selection rules by ascribing them to the Coulomb force would 

strongly suggest "charge independence" of the nuclear interaction. 

Conversely, the observation of large departures from the isotopic spin 

selection rules which could not be explained by Coulomb forces would 

certainly ~ply the existence of forces which were not independent of 

the character of the interacting nucleons. Of course, in case Coulomb 

forces should be shown to give rise to considerable mixing of the states 

of different isotopic spin the usefulness of the isotopic sp~n quantum 

number would be destroyed. 

An investigation of the effectiveness of the'Coulomb interaction 

in mixing states of different isotopic spin has been carried out by 
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Radicat.i (R53a) for the_ground states of nuclei with two or four nucleons 

outside a closed core~ for the lo74 Mev and 5oll Mev states of B10 ~ and ' . 16. . . . 

for the 7ol2 Mev state of 0 These calculations are limited somewhat 

in their validity by (1) the use of the supermultiplet theory (especially 

for excited levels)~ (2) by the neglect of core excitation to higher 

isotopic spin states~ and (3) by the neglect to a large extent of 

configuration inte ractiono The first of these should tend to give 

somewhat lower values for the percentage mixing of higher isotopic spin 

states to the ground state because of the.fact that the Coulomb excitation 

leaves L ~ and ~ 2.- good quantum numbers o In a classification of 

nuclear states which has L l.. and ,f~ good quantum numbers 3 as in 

super.multiplet theory,the Coulomb perturbation should be much less 

effective in mixing states o The sec:;ond assumption is completely 

unjustified without further inve~tigation in view of the fact that the 

first isotopic spin state which can be mixed to the T :::: 0 ground state 

in even-even nuclei lies at only "'-~15 Mev~ whereas the first such state 

in light odd=odd nuclei;! as we shall show~ lies at, rv 8 Mev. The fact 

that energy denominators for mixing are only twice as large in the 

even=even nuclei as in odd=odd nuclei suggests strongly that core 

excitation and configuration interaction may be very important even in 

light nuclei where Radicati 9 .s assumptions have the best chance of being 

correcto For heavy nuclei these effects of core excitation and config-

uration interaction are almost surely of considerable importanceo 

We shall restate the problem of isotopic spin impurity and our 

approach to the whole questiono 

We are interested in the extent to which. on~ can assign an 

isotopic spin quantum number to the states of light nuclei~ by which we 

mean A ~ 20o Since an obvious manifestation of an isotopic spin 
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quantum number would be the existence of certain selection rules for 

nuclear reactions, we shall pose the more concrete question--How much 

admixture of states of different is9topic.spin is introduced into ·an 

eigenstate of the total isotopic spin by the Coulomb interaction? We 

shall call the amount of the admix.ture-- 11 the isotopic spin impurity of 

the state'i. 

In the shell model the simplest nuclear state is the ground 

state of a nucleus consisting of closed shells in neutrons and protons. 

Although the number of such stat~s is an insignificant fraction of the 

states of interest, we can describe approximately the ground state and 

low-lying states of a nucleus with .one or more particles in open shells 

as the state of a system consisting of a closed shell nucleus and one 

or more extra nucleons. Since the states of different isotopic spin 

are separated by a rather large energy, this neglect of exchange terms 

of the Coulomb interaction between closed shell and open shell states 

is legitimate (cf. 4.42). The effect of the Coulomb interaction in 

promoting the isotopic spin impurity of the ground state of the ".core", 

or closed shells, and of the state of the extra-shell nucleons can be 

treated separately. In calcula~ing·the latter, the isotopic spin impurity 

of the nucleons in open shells. (assuming no core excitation), the inter-

action with the core is introduced by an "effective" potential which 

represents the non-exchange terms in the matrix element of the Coulomb 

interaction. 

In this way we can approach the problem of isotopic spin impurity 

in nuclei having several closed shells .and one or more nucleons in open . 

shells by answering as completely as possible the following two questionsg 

(l) In light nuclei (A ~ 20) to what extent does the Coulomb energy mix 
. 

to the ground state of the core, taken as the closed shells of the 

' 
'\ ,.., 
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nucleus 3 excited states of the core with different isotopic spin? 

(2) .What is the effect of the Coulomb interaction between particles in 

open shells upon the impurity of the isotopic spin quantum number of the 

ground state? 

We shall first answer question (1) by using methods based on the 

statistical model of the nucleus and thus obtaining results which are 

somewhat less dependent on the details of nuclear structure than later 

calculations which use the jj coupling model. Following this discussion 

a study is made of the mixing of states belonging to two or three particles 

in an open shell. The whole problem of the mixing of isotopic spin states 

for light nuclei then is oompleted and made consistent by using harmonic 

.oscillator wave functions. also to find the mixing of the core (closed 

shells) of light nuclei. Comparison of the latter results with the results 

of the statistical model are in agreement. 

Following the development of the answers to these questions, we 

shall be concerned with the implications of the experimental results which 

shed light on the isotopic spin impurity of nuclear states. These results 

can be classified into rs -decayJ isomeric transitions, and reactions 

resulting in heavy particle emission. By far the greater emphasis will be 

placed on the data on isomeric transitions which comes from the work of 

D. H. Wilkinson and collaborators. These experiments on the electric 

dipole radiation were specifically designed to answer the question of 

isotopic spin impurity. 

It has been suggested by M. Gell-Mann and V. L. Telegdi, however, 

that the lower bounds on isotopic spin impurity obtained by Wilkinson 

from electric dipole transition are invalidated by the effect of higher 

order terms in the electric dipole moments. These terms are ordinarily 

neglected in the approximation . kr ( ( 1 where "k" is the wave number of 

the emitted- r -ray and "R11 is the nuclear radius. We shall show 

that for the energy of the electric dipole 
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transitions which Wilkinson considers these higher order terms are a 

factor of rv lOOOless important than the isotopic spin impurity in 

promoting transitions which violate the ~e~tion rule on electric dipole 
'"' '·· 

transitions derived by Radicati. In so doing we offer a derivation of J 

the multipo,le transition probabilities for ·the non-relativistic hamiltonian 

which is exact in (kR) and in a form suitable for estimating corrections 

t.o the Weisskopf formulae (W51) o This has not been done before for the 

non-relativistic hamiltonian and has just recently been done for the 

Dirac equation by Stech. (S54) o 

(2o2) Dynamic Validity of the Isotopic SRin 

In ad~ition to questionsconcerning the mixing.of states belonging 
2 

to different eigenvalues of the total isotopic spin T Wigner has 

raised a point which he has termed .the question of the "dynamic validity 
. . . · .. 

of the isotopic spin11
o To see what this means we observe that from the 

commutati~n relations of jl~ and the defi~itions (1) it follows that 

the operator· ( 7! t- i '; ) raises .or lowers the T,r eigenvalue Leo 

the charge~ of a state chara~terized by eigenvalue 'T' unless Ts "" T 

or T.(= - T respectively, when the state is annihilated by the operator o 

(T{;- iT() ':!!T~T~ = ,;(T-T!)(T-t-T~+ 1)' !iT,Ts-t-1 

(T~- i. TI)1T,T( = -/(r-t-T.r) (T-Tr + i) 1 ~~.Tr- 1 (4) 

In the theory of.Wigner 1 s second approximation, the corresponding 
10 10 10 

states of an isobaric-triad,·such as Be - B .C , are simply the 

different· T! components· of the same · T_:.multiplet and should possess 

the same nuclear spin J, parity~ and energy except for the perturpation 

. by the Coulomb interactiono Wignerv s question then is--To what extent 



are '/;,he equation~. (4) valid in the presence of the Coulomb for6e? 
-
This 

question.is of obvious significance for such reactions as the allowed-

faJvored ;§~decays o 

Assume first that we are given a complete set of commuting constants 

of the motion including T , which is not quite a constant of the 

motion because of the Coulomb interact,iono We can then .characterize 

every nuclear.level by a set of quantum numbers~ which are valid in the 

presence of the Coulomb interaction9 and by the isotopic spin quantum 

number 'r The question of the dynamic validity is now equivalent to 

the question of impurity of isotopic spin states~ since the Coulomb force 

can only mix states of different ~ 

We can now see clearly ~hat only when the quantum numbers~ which 

we use to characterize a nuclear state~ do not form a complete set of 

commuting constants of the,motion doe~ this question ariseo For example 

in the calculations which are made on the jj coupling shell model the 
~ 

quantum numbers are the configurations e ,,g, (.i. f3~) and the spin and 

isotopic spin J, T o For this case a state of definite T is mixed 

by the Coulomb force with states of other configurations having the same 

J .9 To For this reason the possibility arises of the result that the 

Coulomb interaction leaves T a good quantum number but invalidates the 

relation (4) o We shall give also an answer in this thesis to the question 

of dynamic validityo 

(2o3) Location of the Low-lying Isotopic Spin States 

For a discussion of the isotopic spin selection rules,and isotopic 

spin mixing produced by the C'oulomb interaction a knowledge of the low~ 

lying isotopic spin states is cruciaL We are interested in the ground 

state isotopic spin~ the first excited isotopic sp~n state~ and the 
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first excited isotopic spin state of the same nuclear spin J and parity 

as the ground state.. The latter level is the most important one for 

considera~ipn of the mixing of excited isotopic spin states to the ground 

state. 

For identification of the isotopic spin states in nuclei with 

· A ~ 20 we have the convenient rule that the ground state of all nuclei 

34 (' ) ~ up to Cl A53 have as the ground sts_!.te T = 1 ( The origin of 

this rule (W37b) lies in the simple fact that the C.oulomb energy will 

make the normal state of the nucleus with the largest value of --r~ the 

most stable one unless the Coulomb perturbation becomes so large that 

the binding energy is lower .for the next higher isotopic spin multiplet 

and same Tt This is illustrated by th~ (Wigner-type) following 

dia.gram in whicn··the ordinate .represents the excitation energy above 

some (negative) .reference energy ana the abscissa is Tf . In the 

diagram Fig. lc the effect of the Coulomb force has been to bring the 

T := l multiplet below the · T :: 0 multiplet for nuclei with T ( ~4,. 

A detailed discussion of the stability relations for heaviernuclei 

which Wigner diagrams suggest has been given by Feenberg (F47). 
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The validity of this rule tha.t the ground state has T = T ( for 

light nuclei enables us to determine the·· T ::: 1 level in odd-odd and 

even-even 'nuclei with T (::: 'o as the analogue (always after corrections 

for the Coulomb energy. difference and neutrar-proton mass difference) of '--; 

the ground state of the neighboring IT ( j = i isobars, The relations 

say further that every le~.rel of the I T~l- 1 nucleus must have an 

analogue level of the same nuclear spin and parity in the T( = o 

isobar, The identification of the first excited isotopic spin state 

with the same spin and parity as the ground state is considerably more 

difficult because such states occur in a region of high level density 

in the ·stable "T'~ = 0 nucleus while orily a. few spins and parities 

have usually been measured for the unstable / Ttl= 1 isobars. There 

is difficulty in locating even the first excited isotopic spin state 

in even-odd nuclei~ so the first excited state with the same spin and 

parity is unknown in all·these cases. We shall make no attempt to 
. . 

locate the low.;.lying states in the Cidd=odd members of even A nuclei 

since no information~ even on the ground states of their isobars with 

I Ttl=~~ is available. 

We shall now list the low-lying isotopic spin states for 

lr(=o nuclei which are even-even or odd=odd and for odd-even nuclei, 

The level separations in these cases form three separate series, 

Even-even Nuclei--(The first T = l J = o+ state is unknown in alD 

Li.
8
(f-)Be

8 
with C~mlomb correction gives T = 1 state of Be8 

at "'"'--'16.8 Mev. The obser-vation·that over 95% of the ~eactions 

c12
( ~~d._ )Be

8
leave Be

8 
inan excited state at 17.0± 0.2 

Mev (W51~ T53) strongly suggests T ~ 1 for this state. Strong 

angular correlations indicate a J .~ 2 a.nd Telegd:i (T53) 

assigns J ;;: 2+. The spirs and parities of the ground states 



. 8 -8 . . . + 
of Li and B a.re unkhowri but.we expect J::::: 2 if Telegdi 1 :S 

assignment is correct, 

c12 B
12(F )c12 ~ith Coulomb correction gives position of T ::;; 1 

16 
0 

. . 

as 15.09 Mev, A state is listed by Ajzenberg and Lauritsen 

at this energy but there are several near by levels~ so positive 

identifica+,ion is not possible o 

' ~) 6 
\ with Coulomb correction gives 12.2 to 13.3 Mev, Nlo 'f. - )o-L_. 

16 
A number of states in 0 lie in this range including twC? J "" 2 

state.s at 12.51 Mev and 12.95 Meva Tentative iden'Cification 
14 

of the ground state of N as J ;;: 2 favors either of these 

two states as the T 1 1 0 016 
~ ana ogue 1n o Positive identification 

has not been made. 

20(~-) 20 0 0 F ( Ne w~th Coulomb correct~on gives lOol Mevo 

level is list,ed by ·Ajzenberg and Lauritsen as occurring in 
19 20 16 . 16 

F (d~ n)Ne and 0 ( ~~ «. )0 o The latter reaction~ however~ 

can show a 10.1 Hev level only by violation of the strict 

isotopic spin selection rule, 

Odd-odd Nuclei 

6 
The level in Li at 3.58 Mev has the correct position9 nuclear 

spin and parity to correspond to the ground state o:f He6(J ;;: o+) 0 

The T = 1 J = 1 + state corresponding t.o ground state is 

unknowno 

B
10 

The lo74 Mev state has the correct position~ spin~ and parity 

(J ::: o+) to be the first T ::: 1 leveL 

10 
The 8.89' Mev 'level of B is suggested (A52) as T ::: 1 

corresponding to the J :;;:: 3 t state at 7 o3'] Mev in Be
10 o This 

state has the same spin and parity as the ground state of B10 . 
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14 
N . The 2.31 Mev level has the correct position~ spin~ and parity 

(J = o+) to be the first T ~ 1 state. 

The 8.1 Mev level is quite possibly (S52~ T52) the analogue 
14 

of the 6.1 Mev level of C ~ both being J = 1 states. 

This level has the s~e spin and perhaps parity as the J = 1 

ground state. 

F
18 The Coulomb energy produces the first stable T = 1 state. 

F
18

( p-Jo18 
with Coulomb .. correction gives the T =· 1 state in 

F
18 

at 1.1 Mev. _No identifications of this T = 1 state or a 

state of the same spin and parity as the ground state has been 

made. 

Odd-even Nuclei 

7 .7 4 
Li Peaslee and Telegdi (P53) conclude from data on L1. ( ~ t )He 

. 7 6 
and Li ( ~n. )Li that the first T ::: 3/2 level of Li 7 occurs 

at 10.8 Mev. 
9 

14.1 Mev separation from Li when corrected for Coulomb energy 

gives 15 Mev for the first T = 3/2 level. 
. 15 15 . 
N 8.8 Mev separation from C leads to 10.9 Mev for T = 3/2 

17 
0 

tables. 

. 15 
level of N • 

. 17 I 8.8 Mev separation from N leads to 11.6 Mev for T = 3 2 

17 level of 0 • 
19 19 

0 <(3-)F has a Q'. of 4.5 Mev giving 7 Mev for the T = 3/2 

state while known states occur at 4. 76 and 8. 56 ~1ev. 

We shall summarize these level locations in the following 

} 
~. 



. TABLE I. 

Separations of T = 0 and T :: 1 Multiplets for T ( ::: 0 Nuclei. 

A 6 

Nucleus Li6 

· T ::: l level 3o58 

ke.rl 

T = 1 level 
of ·ground 
state spin 
and parity 

8 

8 
Be 

16o8 

10 

10 
B 

lo 74 · 

8,89 

TABLE II 

12 

l5o09 

14 

14 
N 

2o31 

ELl 

16 

12-13 

18 

. 18 
F 

1.05 

Separation of T ::: ~ and T :;;; 3/2 Multiplets for T ( : ! Nuclei. 

A 9 15 17 19 

.. 

Be
9 ~.!;:; 17 19 

Nucleus O"JL#, 0 F 
I 

~ ~} (ere( 
r Ne;; 

15 10o9 11.2 7 

20 

20 
Ne 



It is·hardly necessary to emphasize that although these levels 

are incomplete and experimentally unverified in many cases~ the locations 

are certainly correct to 10% or less and are therefore useful in providing. 

an orientation and for computing the impurities of isotopic spin stq.tes. 

We again mention that the first T = 1 ·state of the same spin 

and parity as the ground state T = 0 in odd-odd nuclei with T{ = 0 
I 

lies much higher than the first T - 1 state. The first state which can 

be mixed to the ground state by Coulomb forces does not lie more than a 

factor of two lower in odd-'odd nuclei Tf = o than the first T - 1 

level in even-even T S = o nuclei, 

3. First Approximations to the Impurity of Isotopic Spin States of the 

Core 

(3.1)· Sum Rule Techniques 

The so-called Coulomb perturbation which actually contains also 

the neutron~proton mass difference is given by 

2 
The last two terms commute with T and can produce no mixing of nuclear 

states of either the same or different isotopic spin ·if these states 

are orthogonal~ but only energy shifts •< The first term cari .be· •. 

decpmposed into parts which are irreducible tensors.in isotopic spin 

space with separate selection rules for each part. 

~J 



Scalar 

Vector 

Ten.sor 

The scalar 

T T'""' 0 

.aT= o 

which are independent of T( Since the sole effect of S is a 

displacement of the 

nuclear hamiltonian., 

T levels, it ca.n always be included in the 
'2) 

The tensor Tt can only mix the T : 0 with 
0 

T :;;:; 2 state, and the ~nergy separations of these st,ates will enable us 

(2) 
to neglect T in computing the i_rnpurity of T :::: 0 states o We shall 

0 

limit, ourselves t.o this case in this section and can therefore corifine 

ourselves.to the vector component of the Coulomb perturbationo 

When one applies a perturbation }{ p . to an eigenstate ~ 0 of 

a hamiltonian~ the perturbed stat~ corresponding to t]J!.o can be 

expanded in the eigenstates 1 Y of the hamiltonian 

(3) 

The coefficients GL~ give the amplitude of higher states ~Y in 

the pertwrbed state ~! with ,i -I <.to I~ (( 1 for validity of the 

expressions 6 The percentage admixture of higher states to ~0 is 

simply 

(4) 
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By closure the inequality.holds 

(5) 

. .. It, is therefore convenient to subtract from 
(1) . 

T an expression which 0 . 

makes { rwo){f 'Y?c,) zero and .is of COUrSe a SCalar in isotopic spino 

We shall use for the Coulomb perturbation Co 
I 

c ,;;: . -s-r ( 4 TS" 
g LJ --. . . A 

. 'l.+t . 
(6) 

. . ' . 
whose expectation value is indeed zero in a T = 0 ground state as we 

shall see in the next sectiono The percentage mixing of T = 1 states 

to the T = 0 ground state is limited by 

(~e, (1-'Wg) 
(EeL- E1):L (7) 

2 
We· shall evaluate the matrix element of C by a method commonly used in 

de~iving sum rules o We f~·rst write 
·o 

<ct) = z~ ·< t~~yt- I~TI (-c,,+ 'l:rj) + :c ('l:wt 'l:rJl'}'Lif 
\,i .. 

+ .t 
1 
f1 ~ ~~ "- ~ ~ ( ~ '<"rit- 'l:'rj + 'l:rL) + ('t:i t'CrJ) ('z;, + ?..t) }!J ~til. ,., 

+ L 
1

I3~ "[t'"- 4J' ('ti; + .'t~~ + 7:r-tt + ~ .t_)+ ( 'Cti tt"rJ)(tr, + ru) l.ttij-t\1\ 
i~-t~~~ J I 

(8) 



~~ 

where the primed summations indicate that different indices never assume 

the same valueo We shall now assume that the. expectation value of the 

reciprocal separation distances is the same for every term of 

the sums and shall designate 
=2 

these average values by r
12 

each of 
~l =1 

rl2 rl3 J 

and 
=1 =l 

rl2 r34 0 
Each of the resulting expressions in the isotopic spin 

coordinates can be summed explicitly to give 

<c •): "ft A( A -1) (1- <~-A(){-t;-;'· + (A-4) 4-~~ii-: (A-3)~Z;;!-t>!t-) 
(9) 

This expression satisfies 

-2 and for r12 = 

the requirements of vanishing for T S = A/2 

- r~~ r)t , The first case corresponds to 

all nucleons beingneutrons so that no Coulomb interaction exists, The 

second result follows from the fact that when these averages are eq~al 

the slim vanisheso 

0 

(10) 

The averages which appear above can be evaluated on the uniform 

model which regards every nucleus as a sphere of nuclear matter with 

uniform density everywhereo The averages are then given by 
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4-n; 3 I where V is the volume of the nucleus.~ and represents a 
... . ... .. . -? 

volume integral in which the points ~l ~ r2 ~ r3 ~ and r 4 move over the 

interior of a sphere of radius R. 

The int·egrations can be effected most easily by use of a general 0. 

formula for the i~tegral §' /-{~/.z.JaLz,d-cz.. . To obtain this formula 

choose the coordinate ~- of the center of mass of particle 1 and 

particle 2 and· } = 
~ ~ r 2 - r

1 
the relative separation. The trans-

formation is 

... ~ 1J ft, = /Z; 

. .il~ = ;:t + !z,:f 

of which the Jacobian is unity. The integral can 

then be written. 

. . 

I - f J(h.,.)ri.-c,.L-r:.= /Nt)f~otd.o~.d.(l• . 
. Jl/2.?.~ ~dt8aL:Jri:fd4 

with ( ~~ ~ ) the .angular coorainates of . :f/:;. and (9j ¢) those 

.· f ..., 
.o r. The ranges of-integration for the coordinates are 

and for the J coordinate 

Q 4:.~ ~7C 

Then 

0 .~ (3· !6 ..ut: . 
0 -~f ~..z...e · .. 

77,1l . 
.2·~11: r6-et, · <~/.)\I a.. · (- 1 · ~}J -:3 .:1' V' .,P . (~ ~ ~4 ~II(. • f -.;a~o~.. r!r~ 2."' + ?wez -~/ 

(11) 
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Since 

This result now gives 

. -1 =1 =·2 
r r :: l.ll-4 R 
12 34 

with ease as 

Trivial integrations yield the other averages 

-1 =1 
r r 
12 13 

-2 -2 = 2! R : 1.457 R 
35 

2 -2 
- ~ R : 2~25 R 

.4 

Inserting these quantities in (9) the matrix element emerges as 

4. 
e A(A - 1)(0.76+ 0.017 A) • 

l6R
2 

(12) 

(13) 

(14) 

This result is very interesting in its dependence on A. From 

equation (9) one might expect ~c2)> to be proportional to ·A3
J but 

this result is proportional to A(A = l) for A ~ ~100. An 

interpretation of this result can be made which is best expressed by 

the following equation 

= Pparticle A(A ='l} 
2 

2 2 

Pparticle = <:a) 1 ·52 (15) . 

where pstate is the perturbation of a nuclear state~ Pparticle the 

perturbation of the state of a single nucleon and A(A-1)/2 represents 

the nun1ber of interacting pairs in the nucleus. This equation will be 

justified later by another .calculation of Pparticle~ and will be seen 

to be very useful in estimating the mixing of excited states. 



(3.2) The Statistical Model 

This simple calculation completely neglects the effect.s of 

correlation embobied in the Pauli principle as is obvious from the 

~ -1 =1 
expressions for r12 ~ r

12 
r
13 

and For example, two particles 

in the same spin and isotopic spin state can never come into coincidence 

according to the Pauli principle, and for such pairs of particles the 

above averages should be smaller. The effect of these correlations 

should be greatest on rl~ 3 since co~tributions from the singularity 

are sharply reduced. The average is affected somewhat less 

because the third particle may be in a different spin and isotopic state 

from the particles 1 and 2~ and this 
-1 

r 13 singularity. Since there is in 

fact allows contributions from the 
-1 ·=1 . 

r 12 r
34 

a complete lack of 

correlation between the positions of 1, 2, and 3, however, the average 
' 

-1' =1 
ru~ r 34 is· affected least of all by correlations. A. much more physical 

way of seeing the effect of correlations on the averages proceeds from 

the physical interpretation of these quantities. The significance of - . 
=2 r
12 

is that it provides a measure of the magnitude of the density 

fluctuations in the nucleus. The-quantity on the other hand 

associates the 11 density11 in one direction from the point 1 with the 

11 density11 in another direction from that point. We may interpret 

-1 -1 r
12 

r
13 

as measuring the "angular" uniformity in density about a point. -

-1 -1 
The last quantity r

12 
r
34 

correlates the density at one point with 

that·at another point. . -1 ·"":1 For this reason r
12 

r
34 

measures the uniformity 

of the density of the nucleus. 

For a reasonablY· large nucleus it is clear that uniformity of 

the nuclear matter from point t.o point should become a good approximation 
-1 -1 

first. One sees in this way that r
12 

r
34 

can be well approximated 

by its value for a uniform nucleus. The effect of the nuclear surface 
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-1 -1 
will cause r 12 r 13 to deviate somewhat more from its value for a 

uniform nucleus than The local density fluctuations 

should certainly disappear last, if at all~ so that 
=2 

r
12 

will show a 

rather large deviation from its value for a uniform nucleus, Comparison_ 

of the expressions (9) and (14) shows that correlation effects may be 

quite important and may materially affect the magnitude of ( c2
) , . We 

shall therefore proceed to evaluate < c
2

) in a frame·work in which 

such effects may be copsidered, 

In attempting a more correct evaluation of < e2
) .9 we work in 

the framework of the Hartree or single particle picture of the nucleus 

and shall use a formalism which is similar to that of Rosenfeld (R48), 

There are a number of his expressions which omit terms that are important 

for our problem9 however~ and the result which we obtain for the matrix 

( i / ,.. (z
1
;r.a. )j; ) will differ in several significant respects from 

that of Rosenfeld, The extension of these methods to the evaluation of 

three and four particle operators has not been done previously, 

We begin by giving the state of the nucleus as described by the 

wave function ~ (Q1 ~ Q2 ~ ,,,, Qn) which is antisymmetric in the 

collective coordinates Qi representing five coordinates; three space 

coordinates, a spin coordinate, and an isotopic spin coordinate, That 

the nuclear wave function should also be anti~symmetric when the 

isotopic spin is used as a coordinate follows from the application of 

the exclusion principle to the neutrons and protons individually as 

was elegantly shown by Klein (K38). In the single particle model the 

anti-symmetry of ~ permits representation of the state by a 

Slater determinant 
l'lP, (G.,) ' " 

'l -
(16) 



=26-

where we sha:J_l take .'¥-',., (Q..;) to be a single particle wave function of 

the form 

(17) 

where U. y ( ~ 
1 
?' .y) is a spin= isotopic spin function and 1iv (1) is 

a space state. Our treatment will be quite general up to the point where 

matrix elements are actually eva1uated3 but_from this point we use 

plane waves normalized to a box:. ·of volume V. This choice constitutes 

the use of the "statistical model" which has been discussed in detail 

by Bethe (Be36). .The use here is similar to that by H. Euler (E37) and 

Watanabe (Wa39) in their respective studies on the saturation properties 

of nuclear forces and the effect of nuclear forces on a Fermi 

distribution of·nucleons. Our justification of the use of the statistical 

model is that we expect the results to be more dependent on the symmetry 

of .~ than on the functional form. 

(3. 21) Matrix Elements of General Two 9 Three 9 and Four 

Nucleon Operators 

Two Nucleon Operators: 

Consider an operator w12(Q1 ~ Q2) of the collective coordinates 

Q1 and Q2• The expectation value of .W12 will be 

is defined by 

where is an exchange operator on the ·collective coordinates· Qi· 

We can eXpress . P. . when operating on· properly anti...;symmetrized wave 
~J 

1._) 
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where is an isotopic spin exchange operator and is 

the spin exchange operator, The expectation value of W(Q11 Q'3.) can 

be ·written differently by separating the space and 11 total 11 spin 

(isotopic spin and intrinsic spin) coordinates of Q1 and Q2 , Let 

1~i 1H denot,e the total spin state of both nucleons and use Xp x
2 

for 

their space coordinat,es, Then· 

(19) 

The summation over ~1 i" is simply the operation of taking a trace over 

the 16 dimensional total spin state of the two nucleonso We can make a 

unitary transformation in this space to the representation.in which the 

~/ states are eigenstates of ~~ ·and ~ the 1- components of the 

isotopic: spin of the two particles, The expectation value of W( QV Q:) 

in this space will be 

where i and f are now quantum numbers and (?..' /' (?G,,'X',) /f) is a 

matrix defined by 

In the state ?P given by (16) we shall suppose most of the 

space states ~.., to be occupied by 4 nucleons~ two neutrons and 



two protons:s. with each pair of like nucleons having opposite spin, We 

shall restrict ourselves~ as Rosenfeld does~ to the case of nuclei for 

~hich A "" 4n and T ::;: 0, One can give formulae for the more general 

case .,c; 'when every space state is not filled with four particles~ but the 

expressions for the matrix elements of multiple=nucleon operators become 

extremely complicated, 

We now introduce for the ~~ plane waves normalized to volume V .... ~ 

-a ~~·/t 
f2te-~ = ff e 

and. mak~ the assumption that possible free particle states are dense in. 

k-space, We can therefore replace sums over the ~Y by integrals up 

to some maximum km determined by 

~m = (t:f7C) ~ = /, s-.33 
4~ 

The ·general expression for (a'!Jfn11 'X.,_)/:1) is the following . 
. •) I ~·~m 

(z- lj{?Gn"X..7)/II = ;1(/1-1} jAJ·{ fl/r{IJ~_,(:;.f(i'/1//)~~f-(1)91<-I{J.) 

-(1 I fi.. ';I I) j)tt,. (J) 1 fc-1 (I) 

+J1,, z,-tt;r~>~;{1) &:!tlf)fJ~<,.t,)(/~f-(2.) 
. r . . - f2'1 /h.,_ !.I )!J~(i) .f~ t2f} 

+ .u:o_.] 
. (22) 

I 
where i : to'c..al spin state for two non-congruent nucleons (different 

spin or isotopic spin), 

product of space and spin exchange operators, 

The is just intended to restrict the sum over spin states 

to those states compatible with the requirement that the single-particle 

wave function can not be taken twice from 1:J! to give. terms like 

2 ?f/(t) 1/J,_"'(J.J) 1.J;f-(1) t?.pt<- (?-) 0 

r 

. ~ 



With the normalization which we have chosen for the :J~-.J 

the sums over states give the fbllowing expressions 

m ~ ~ 

Z I ct~fc,)/ lct*-~c~)l = 
jA-1Y z ~i!; {I)~~~ 4) 1-A.io- ( ~)9~-~lt) =-r,'f 

where 

. (23) 

The function G(r) will be designated as theequivalent nucleon 

correlation function~ since it gives the probability of a certain 

relative separation r of two nucleons with the same spin and isotopic 

spino This correlation function was first introduced by Wigner and 

Seitz (W34) in the course of an investigation of the binding energy of 

metallic sodiumo In this case G(r) gives the probability of the 

relative separation r of :two electrons with parallel spino 

The specific form of G(r) given here is the result of our 

choice of free particle wave functions as the free particle stateso 

More generallyj G(r) might be termed the "incomplete delta function" 

and can be defined for any orthonormal set from the equation 

N 

q, (.~r.iA..,.Ir.L) = p, 'fr- (x,) r,. (x.) 

There exist general relationships of this kind~ for example 3 for the 

Hermite polynomials (A26) 
n='k . 
L: ~ ]{-n (x)}f-n { y,)-= ~ fut, fdG)Hu(~)-}{i(x)][~t, ('!) 

")')=on. . o '*· x.-r 
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so that the simple treatment of such correlation effects need not be 

restricted to the statistical model of the nucleus. In fact~ the 

application of f.<;>rmulae of the type (22) makes it possible to apply 
'.-,·-. u •• 

~ •• I ,. ' • 

correctly the formalism we have developed to several single particle 

models which are'much more realistic~ eogo the harmonic oscillator 

modelo 

If we insert the expressions (24) into (23) we obtain finally 

(24) 

Three Nucleon Operators~ 

Just as in the case of the tvm nucleon operator we can write 

the expectation value of a three nucleon operator as 

where of course ::_. i · and f now denote the total spin state of 
~- .· 

three nucleonso Similar considerations as led to (24) now give 

J(x,;x,;ic,) =diva [t -P~ q"(l!,.)- p;! 9 '(413)- &;3q~..,) 

t ~~3 ~(t1n.)G0.3)q{ti~ + ~1' ~{12,1.) G(li,3) c;;(.~~.2.3j} • 
· r 1 +- if-, (d1i1,1. + ~,~ 3 + ~;,~3) + " · (c8{,:' i +d!,;,' )'1 L rr- . (,4-t)(4 .. ,_) I\ 13~:J 

(26) 

where 

· d •I - total spin state for three non-congruent nucleons 
1 ~1.1.3 

(no two having the same ~pin or isotopic spin) 

The terms which are multiplied by Kronecker c:f i-1 came from terms which 

had two or more particles in the same space stateo 
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Four Nucleon Operatorg . 

The matrix element of a four nucleon operator is just. 

(27) 

with the proper density matrix being 

I [. 1\. l./ ) ot1 f!.."a./ ) 'L:) ,_, t:!V. ) g. (z1,X.11 x 3)X<t) = c2S~'V""T 1- Rr--e ~ t~,,. - 'h ...., tk11 - •a-t ._, tkt4 

- p;~ t:72.(~~3)- P:: q~:z.+) - &~· 9Y)l,3.,_) 

-P;~23 c;r1~~ )9ihZ~~)t;A-2J,46~~J- ~Jf-.2. ~Ph4)t/ifi:~-,.)(JA2..,.)9/hJ:~.!} 
, " 

'I 1~3., 1]., j 
(28) 



These expressions seem rather lengthy at first, but there are two 

ways in which great simplifications can be achieved, It will be noticed 

that the exchange terms arise from all the permutation operators on the 

symmetric group of order two 9 three~ or four, In evaluating the matrix 

element of an operator~ however 9 terms of say (28) which are equivalent 

under the normal subgroup which leaves the 9perator invariant contribute 

equal integrals to (27), Thus only the permutations of the corresponding 

factor group~ multiplied by their multiplicity in the symmetric group, 

need be considered, 

Secondly,a large number of terms will vanish under the trace 

operation when the matrix elements of the operators are calculated, We 

shall see this in the development which follows, 

~ 2 
{3,22) Evaluation of·. (c ) for T ~ :::: 0 ... A ~ 4n Nuclei 

From equation (8) the squared Coulomb operator can be 

written as 

where we have defined 

. ~· =! '..::C' - · J': r"* .. f ~) + (z:..·,. ~')'}ei/ 
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From the complete·antisyrmnetry of the wave function it follows that 

(c2.) = 1~"' [AU{-t)('Wi,) + A(A-1)(/f-.<)("W;'l9 ) 

+ ;f-11 (!tl-1) t4-2 J(A-3) (Wid~-> j 
(30) 

In the case of T f ::: 0 A ~ 4n nuclei the operators whose matrix 

elements we shall need are 

~-

(]J.;>rr;Q..(~z +?:ff) 
/l./2 4.31-

Evaluation of W12 ~ 

In calculating < W12 > 
smallero The result will be 

Using the following sums 

Z (1/vv;)./1) (i It!/) =-
~~ . . 

?: (.I/~/,) (,1 "-''#) = 
~~ . 

we have for (w12 ) · 

we shall omit, terms of order 

. (31) 

1 
A or 



:·,.. 

=34= 

(33) 

where is defined as in section (3.1). 

Evaluation of (W123) : 

To evaluate (w123)> we shall use (25) and shall include in 

( a' I J(;c, 1~;ix:i)/ ~) all non-exchange terms ( (/t/t-) absent) to order 

1/A and the exchange_integrals from terms of order unity. 

+ I 
/~{4-.2) 

In evaJ.,uating (25) the sum:s over i and f ·give expressions of the 

form 

~ (iiWj~31t):... '4/t.;~lt.:~ 
i 

l (1',:~.l~~lli.~)= 3.2~7i ll.-;j' 
i,!l. 

t' ( ias I W,1.l bl~) = 0 
iu 

Making use of the symmetries of integrals containing .the 

obtain the terms of lowest order in .4, "=' -~y;'J R • 
o//4) we 

.w 
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These are the lowest order terms for the correlation terms containing 

integrals ,over C7 H,) 'i because the appearance of each additional 

$f4) under the integral introduces another factor of T 
Evaluation of ( w1234) ~ 

In ( W1234) we must include not only the terms of order 1/A 

arising when th~ space states of two particles are the same l' as in 

the second line of (23) 9 but also t;,erms of order I
. 2 

1 A in which the 

· space states of three particles are the same, In this calculation some 

peculiar features arise from the fact that in some isotopic spin states 

for four nucleon_~-< w1234> is positivej and in others it is negativeo 

In the case of (w12) and ( w12~ only positive values were possible o Let 

us use, the symbols ( .f-f- i- r- /~39 /-f-t--/-+ ) to denote the matrix 

element of a state with ?:fl '= 7:';.2. = zrs = ?::.r-9 = ;;t while 

means- that the state is "(/1 = 1::".t~ = -.t 

It then follows that 

L] (l /W;:u_, /2•) ==- ( ~-1--1- ~ /"U;3~ /-1- +t--f) of (...- ~ -!W;;.sJ~-- -) 
i 

-r (++-- /Wi.:n-?- /-1- t---) -1- (-- r+/W:31s.,_/- ~ ~t-)=- 0 

where only the terms which are individually non~zero are displayedo 
< • ' • 

The significance of this result is that the contributions from (w1234) 
of order unity will vanish, and the last ·two terms of (30) will both 

2 
be of order A o Evaluation o;f the other stuns arising in (27) gives · 

; .·. 
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\ . 

The only part of arising fr?m particles 1, 2, 3, and 4 in 

different space states is that containing the nucleon correlation 

function. We give only the terms which are of lowest order, those in 

which ~ {4) 

(as r;J.u) or 

appears under the integral no more than twice 

(35) 

The terms arising from two particles in the same space state are 

of ~rder 1~ .:._ ?' ~. but the extra factor of (A-3) for (w1234) gives 

terms of the same order as . ( w123) • 

The contributions will be 

where 
• I 
~~ "J is the total spin state of two equivalent nucleons 

(same space state). The following traces over the total spin states 

are needed 
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Using these sums in (2g) we obtain for this contribution to < W1234) 

_, -1 
1-lt,:. A:st 

(A-3) 
(36) 

The terms arising from three particles in the same space state 

are mult~plied by l but are actually of the same order of 
(A-2)(A-3) 

magnitude as (36) o Their contribution to < w1234> can be shown to be 

I t -1 -1 o.h.:,:a Alt 
(19-:J.){A-3) 

although the analysis is somewhatlong, 

(3?) 

Finally there are terms from pairs of doubly occupied statess 

a.nd ·their contribution can also be calculated to be 

(3S) 

These last two results show that the contribution of the correlation 

terms of ( w1234 ) surely does not reside wholly in (35) but is 

affected considerably by contributions of doub~ and triply occupied 

states and of pairs of doubly occupied stat.es, The analysis of these 

contributions is rather involvedj but we can say something about the 

form of the correlation term which comes from this part of <w1234) 
without further calculation, 

The largest correlation effects will come from terms with 

C7'flt) or tfth)~Ptf}, In' (w1234). only th~ first type of term 

appears~ ·as we see from (3 5) o The contribution which < w1234) makes 

to correlation terms of this order are therefore 
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(39) 

where A is in general a function of Ao 

Combining the expressions (36), (37), (3S), and (39), we have 

for (wl234) 

(-w-;~34) =- ~A.,;'!l,-1 (A+~) + +.i\ J ~2(;z,,;) 
~ . (A -:t )(4-3) . ::;;+ ,..e 1~ AJ '1-

(40) 

' ' . 

~With these results for (w12), <w123), and <w1234), we canderive 

the matrix element of <c2
) o Using (30), (33), (34), and (40), we 

obtain 

(c<-> = 1:1-19f/4-!)~;i -r fA+-P-)4;//i;J -f1-t-5)/t/:.~3-J -;J'u!} 
(41) 

where~~,} co~tains the corr~lation terms 

./(/;)= - .#• j q~,.)- ~:)A. '2n~tJfo¥;1,_)+f~~?.3)}· 
. /ll~ 

(42) 

~2. -1. =1' -1 -1 
:j:f we insert the averages r12 ~ r

12 
r

13 
, and r 12 r

34 
given in 

(12) and (13), the final result for (c2) is· 

;;-. 
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where R is the nuclear radi.uso· Ifthe·correlation effects introduced 

through f(A) are small~ this result is seen to be in remarkably close 

agreement with the equation (14) obtained by the simple sum rule 
,. ' ', > 

calculations, In view of the extremely crude nature of the latter~ 

the agreement is surprisingo 

~3o23) Correlation Effects 

We observed in (3,1) that if the r,, are all equal to 
~J 

the same constant~ then < c2 )· :::: 0, Turning to (41) we can conclude 

that when this is so f(A) also must vanish'o From (42) this implies 

that 

We can solve this for ~ and obtain 

.A= 
(44) 

Inserting this result in f(A) we have 

(45) 

The evaluation of these integrals is quite difficult and no exact 

expression has been obtained, The asymptotic behavior for ~ ) ) 4 
I 

of these integrals is given in Appendix I.11 and these results bear out 
. . -2 

the assertion that the corrections to r12 decrease most slowly~ the 

~l =1 corrections .to r 12 r 34 less slowly than this, while the corrections 
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to 
-1 -1 

r r 
12 34 

soon become negligible for large nuclei. From equation (41) 

we see that the effect of correlations will be to decrease the expectation 

value of (c2
) ,although the effect should not be large,as one sees 

from the way in which (45) was obtained. That this is reasonable can be 

seen irt the following way. 

The q~antity < c2 > is a m(;!asure of the perturbation of the 

wave function which is assumed in the absence of the vector part of the 

Coulomb perturbation. Since the perturbation C for T ~ :: 0 has the 

form 

c e.z.. 
2: re,,. T-""'C'fd. - T 
i=t:tf AJ, 

'I 
the effect of c on the wave function is to produce an apparent 

attraction of neutrons and an apparent repulsion of two protons. Since 

~e actually. evaluate ( c2
) , the effect of C on any pair of neutrons 

or protons is a mutual repulsion. Now if the original wave function 

contains any correlation of this kind, the perturbation produced by C 

1,.,rill be decreased. The statistical~ model does provide a certain amount 

of the required correlation when one brings in the exchange integrals 

containing the <7~) ·Viz., there exists a repulsion between any pair 

of neutrons or protons when both particles have the same spin. To the 

extent that this correlation coincides with the mutual repulsion 

required by C Will the effect of C in bringing in higher isotopic 

spin states be reduced. 

We can conclude from our discussion that setting f(A) - 0 

makes <c2 > a maximum and we shall use this expression for 

in coni:fmting the impurity of the T,.,= 0 ground state of T f :::: 0 even­

even nuclei ·as predicted by the statistical modeL From (43) 

4 . 1 7 < c
2

) = h. A(A ~ 1)' [ 0.878 + 0.017 Py' (46) 
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One more point should be mentioned concerning the relation of this 

value of ( c2
) to the value obtained from other models, in particular the 

single·particle model with harmonic oscillator wave functions. When we 

say that the value of ( c2
) given by (44) neglects correlatioh effects~ 

one inust not conclude that (4.4) represents an upper bound on the predictions 

of more detailed single particle models. For although a nuclear wave 

function of the type (16) contains certain correlations, the individual 

particle wave functions are smooth (I ~...J 11 =1. ~ ! J and do not provide 

a 11 positive inter-nucleon" correlation. A wave function or set of wave 

functions, which describes a state with pronounced maxima or minima of the 

nuclear density in certain regions of the nuclear volume could increase 
--=2 

the values of r
12 

increase < c2 > 0 . 

and relative to and thus 

_0.3) Impurities in the T = 0 Ground States of T ~ = 0 (N = Z) 

Even-Even Nuclei. 

Using the expression 

i ~ ~c1~ 
( 1::. - E,Ja.. 

(c2) 2 
with given by (46) and (E - E1) from Table I in 

can give an upper limit on p. These are the following 

A 

(3.4) Perturbation TheorY 

16 

=2 
L9 X 10 

The perturbation upper bound on mixing 

(Cl.) 
(E -E1)~ 

Chapter 2 3 we 

20 

=2 
3.9 X 10 
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where C is the perturbation, may be much larger than the value of p 

from 'the perturbation expression (4) if there is much contribution t·o 

<c2> from high-lying states. In this case, one should use 

(47) 

- 2.. -2 
where (E - E) is the reciprocal of (E - E ) averaged with the 

'matrix elements of C. It is, .. in a sense, the average energy separation 

of the ground 'state from the excited states which are mixed to the ground 

state by C. It is of interest to see whether (l) is a gross overestimate 

of the p one should obtain-from the statistical model. We shall 

therefore. do a perturbation calculation of -p using for the ground 

and excited states wave functions of the type (16). 
'2 

We first use.the perturbation formalism for C as a check of 

the expres·sion for the matrix elements ( JE 
1 

C, 1J2 
0 

) between the 

nuclear ground state and the excited states ~~ 

· The Coulomb perturbation (changing the sign for convenience) is 

·C 

for a T { = 0 state and we shall compute 

where 1/!Y is a wave function of the-type (16), differing from 

~0 by either.one or two single particle states. We shall not 

compute the matrix elements ( .Y /C/ () ) for states ?/!.y " 

differing 

by two particles from ?Jio , because these can be shown to be of 
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order 1/A with respect to the matrix elements for which '~Y differs 

from 1:£ 0 in one single-particle state (TAS Chapter 6)" The matrix 

elements for excitc>.tion of one particle are then 

where . 1/Jt (1) is a single 

particle wave ~~~(,) = ~ 

particle state consisting of a free 
-!/1' _, 

,. "'~~l'lt. e 7 multiplied by a spin and 

(49) 

isotopic spin state, For the first term to be non-vanishing i and 

~ must be in the sam~ isotopic spin state while in the second term 

i~ j, and. ~ must all have the same total spin state, Summing ~'(.2,i) 

over spin and isotopic spin states~ under the assumption that 1f~ 

describes an A = 4n nucleus in its ground state~ we have 

(50) 

lve shall neglect the exchange integral~ ·which is small compared to the 

direct integral, The first integral to be evaluated over a sphere is 

the following 

f!l(IJ~(i/~ "*~= ij~-··{/;.-;(~)·1-;1;._ ~..-... , 

Carrying out the necessary integration over the volume of a sphere we 

find 

(51) 
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where 

R being the radius of the sphereo The matrix element (48) becomes 

(52) 

We note here that contrary to the result of evaluations of (48) which 

are not taken over a sphere the matrix element is finite even as 

I~ -~-vi--r o 

(c2 ) 0 

Thus (52) will give a finite result for 

The sum over these matrix elements is 

(c--)- J: j(v;c/o )!"-= fl ~(4-1) /!7C'fz
2>fftfoHfJ!;:It 

(53) 

The factor of four in parenthesis arises from the fact that ~~ may 

differ from 11:!() in any one of four 11 total11 spin states associated 

with each space stateo The integration on '1;. is over the interior 

of the Fermi sphere with radius in k-space of 

~ ... = l ({."-f)f = /. F.23A ~ 
The range of ~~ is from km to infinityJ corresponding to the 

condition under which the relation ;; IG /C I()),/~- ( c(> is 
-1 

valid" Defining dimensionless variables 

~ - ::J.. R ' w =- ~~ R = /. S.:J.J 4 ~ 
rt=ZR 

we write (53) as 

'•' 



Z j(-;(C /o)/~ ~ 
'¥ 

We then transform ~ to bipolar coordinates r7j" ;o and f 
angle of rotation of ~ about ;:., o Integrating over 3' 

_, 
the angle variables of r:r-

A simple but crude approximation can be made 

the 

and 

(56) 

to check,, at least approximatelyll the agreement of (56) with (46), As 
sfp f ~ o both sides of (J:::t.) approach the same limit 0 The maximum of 

both sides also occurs at the same value of J . Inserting (56) in 

(55) we obtain 

where 

For t.,J >:' 3 we can approximate cosh~- sinh w ~ i e w 

so that quite a good approximation to f(w) is 

(57) 



(58) 

Although 11 a 11 is determined by (11) to be approximately 1.5./from (57) and. 

(58) it follows that. t.he value of <c2
) is rather sensitive to the 

exact choiceo We shall therefore choose nan by requiring that (55) 

give the same result as (46)o This leads to the equation 

,4-/ 
A 

Using the approximation Ja/--t-..)4 "> ) .:f we get 

a. = ( (~) J~t -) t;. 
raR?ff O.CJ/U 

A ;a 

The fact that a is not constant but 
1/6 

~ A for large A is 

(59) 

(60) 

probably a result of the approximation (56); Considering the rough 

nature of theapproximation (56), the result (60) shows that (54) and 

(46) do in fact agreeo Having satisfied the requirement that the 

result of (54) converge and agree with (46)~ we look at the perturbation 

.expression for~ o Since the energy denominators are simply the 

difference in kinetic energy of the particle in the excited and the 
;/: 2 . 2 

ground state~ they are given simply by E0 - E = _. (k - ki) o 

2M 
Placing this quantity iri the denominator of (52) we can th(m square 
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and :sum to get for 

{(a,~)- c..-.r)6o~J/l 
( 0"'~- ~ .. ),.. 

(61) . 

where we have again used dimensionless variables, We have made the 

further assumption that there exists a ngap11 in the continuum of free 

particle states3 so that the lowest excited state occurs for propagation 

vector I< with k i€ .::::::_!2 , while the last filled state of the 

degenerate Fermi gas ~f nucleons is km~ with krnR = GJ , The 

introduction of the 11 gap11 is necessary.9 since otherwise the expression 

for 'j:> contains a logarithmic infinity, In so far as this assumption 

is an ad hoc addition to the statistical model~ it is inconsistent with 

the model, The physical relevancy of this gap is quite clearJ however, 

and in fact if one returns to the picture of free-particles in an 

infinite potential well of finite radiusJ one obtains a discrete set 

of levelso Regarding the statis~ical picture~ one can argue that it 

is scarcely ad hoc to intr~duce a physical feature~ ordinarily relatively 

inconsequential for obtaining the gross features of a model~ when ·that 

feature becomes importanto 

The equation (61)· then leads to the usual upper limit on~ 

when one uses the fact that the integrand possesses·a strong max1mum at 

o-2.- --c~ =_a.~- w ~ 
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o.1s 

o.1o 

o.o5 

1.0 ~.o 3.0 4.0 

J 0 -1.0 ~.0· 3.0 .::r.o 4-. 5' 
. ~ 

c~(f_)- -~ "' 160" I 0.13.(. o.oo3S' "'- o.oo5'13 j:2., o.oo 1:2.5 o.ooo.a.<.S' 
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We can draw several conclusions by comparing (61) and (62). 

Since !~~}-~~ ~~ rises to a sharp .? f2J• J 
maximum at ./ -~ .1 II. Jo 

9 which corresponds to an energy of ~~ ~~~- ~ 

and decreases extremely rapidly beyond, the average energy separation 

used :i..n (47) 1r~ill not exceed ,.._ 10-15 Mev for g ~ A :E 27 ~ 

if the energy separation E ~ E1 does not exceed this. For E ~ E1 

greater than Em 9 the rapid drop of the integrand in (61) assures 

that E ~ E will not be greater than E - E1 o For E -· E1 less than 

EriP a higher E = E is favoredo As one sees from the graph of 

.J!! ~;_;;::--'!:( and from the integrand in ( 61), however, this 

shift of E ~ E upwards from E - E1 is very slighto 

We conclude from this discussion of the perturbation expressions 

for E /(.Y/C/o) J1P 
and for (c~> as 

"" 
( Ec- E',.; )?.- ( ec- e.,)-

given by (61) and (62) t.hat for the statistical model i:,he upper limit, 

on is very close to the value of j. ~ 

(3 o 5) Summary of Results from the Statistical :Hodel on Core Mixing 

'l'he object of these .calculations was to prov::i.de an answer to the 

qu.estion of the extent to which the core of light nuclei may be expected 

to be pure isotopic spin T ::;; 0 states, The results of these calculations 

on even~even T~ ::;; 0 nuclei indicat~ that the impurity of the T = 0 
16 

ground state is small but not negligible, For 0 J for example~ the 

statistical model gives lo9 percent. impurity in the ground state, this 

is the same order of magnitude as Radicate (R53B) has provided for the 

impurity of the 7"12 Mev state of o16 
by neglecting the core impurity, 

Our conclusion from the comparison of these results in that the isotopic 

spin impurity of the core in light nuclei is of the same order of 
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magnitude as the isotopic spin impurity of the particles in open shellso 

The question of whether the more detailed shell model calculation will 

alter this result will be answered in a later chapter, 

4o Shell Model Calculations 

The calculations based on the uniform model were intended 

primarily to provide an orientation with regard to the isotopic spin_ 

impurity of the core of light nucleio Using the more detailed shell 

model~ we wish to investigate the impurity of the states of the particles 

in open shellso The model we shall use is the jj coupling shell model 

whos·e origins and principal features have also been discussed in detail 

by Wigner (W51) and by Redlich (R54)o The order of levels and the 

"magic nmnbersn of the jj model ca.n be derived by using the levels 

of either a square-well potential or an harmonic oscillator potentiaL 

Cdnsistent use of both of these wave functions will provide estimates 

of the isotopic spin mixing which are in reasonable agreement. with each 
! 

othero This being the case we shall use the harmonic oscillator 

functions in the shell model calculations which follow since the 

evaluation of matrix elements of two~particle operators is particularly 

simple in this case (T52a)o 

The Scrodinger equation for a particle in an harmonic oscillator 
\ 

potential is 

(1) 

Jhe solutions of this equation can be expanded in eigenfunctions of 

the angular momentum multiplied by a solution of the corresponding 

radial equationo These are 



(2) 

where Y; jLs a surface spherical harmonic and 

'-.) .?. I 

o · _ AT - ;r-4 .L.-1-1 1 ,/fi 
/LYI..l. - JV'n,t e A; l.J.,-.+.J.-.J ... 

. I 

J .,/.(. ;z: 
1-1 ~ being an associated Laguerre polynomiaL The form given 

-nt-..4-~ 

here ~orresponds to the convention that n ~ 1 9 2~ ooo The radial 

wave functions for n - 1~ 2 are then 

-fiC I· 3 · · · ( .:U+- I) 

=.IV': e- l::..Lri (_ £:.!._ ~.t) A';;= !1'7 r;J../,f-1 4 .-er-1 (#, +!) 
-2-l. ( , Ut-3 I ,(;£ ./. 3 . . (I -1- :2..L) 

(4) 

The parameter ..Y should be introduced from experimental data on 

features of the nuclear density distributiono There is considerable 

rurit·igui.ty in the way one should prorceed 9 . however 1 but. one might make 

the assumption that y should be. related to < r 2 ) by the f'orrnnla 

(5) 

~ 
where R is given by /l.oA 'J where A is the atomi<e mass number~ and 

r
2 

is·the radial coordinate of a nucleon in the center of mass systemo 

2 
The evQlluation of ( r ) would be found by using a nuclear wave 

function composed of individual particle wave functions of the form (4)c 



The equation (5) then gives the following values for .Y 

A 4 1.2.. 

"(6) 

In working in the lp shell~ however~ we have found it convenient to 
-- = 

determine ~ from the equation r 2 : R
2 

where . r 2 is the average 

of lp state. In section (4.1) we shall also average 

in the state of the ·outside particle. Physically this means that we 

2 
r 

say that. the particles in outer shells actually are moving in a region 

close to· the nuclear boundary. In the . ··1 p shell the value of 

and this is sufficiently close to the-values listed in (l6) to· be 

reasonable as well as convenient. As one proce-eds to larger A this 

method of choosing would tend to give larger values of ~ than 

would (5). This happens because the relative weight of the contribution 

to ~ of the outside particle in (5) grows smaller with increasing 

atomic number. 

(4.1) The Coulomb Perturbation of Single Particle Levels 

Using the wave functions (4) we can proceed to discuss the 

perturbation introduced by the Coulomb interaction on the wave function 

of a single proton outside a closed shell. We do not consider the 

impurity of the closed shell at th~s point. Although simple~ the 

perturbation of a single nucleon outside a closed shell is interesting 

as the clearest and most obvious test of the dynamic validity of the 

isotopic spin quantum numb~r for the nuclear states composed of jj 

wave functions. 

Now a T J = !" ! nucleus with a single particle outside 

closed shells is in the state T = ! and cannot be mixed with anything 



but another T ~ ~ :state without excitation of the core to a T ~ 1 

stateo The perturbation of the outside nucleon therefore affects only 

the dE!;amic validity of the isotopic spin for the nucleuso If we succeed 

in showing that the perturbation of the extra nucleon wave function is 

very small~ we shall have demonstrated that the validity of the isotopic 

spin quantum number and the dynamic validity coincide in the case of 

closed shell nuclei with an extra particle (or hole)o This last 

st,atement is true if states produced by excitation of two particles 

play only a small role in the core :tnixingo We shall see later that 

this is the caseo 

The perturbation of the wave function of the single proton is 

taken as that produced by a sphere of radius R and uniform charge 

densityo 

V(Ji.) 

= (7) 

In describing the interaction of the extra nucleon with the core by an 

equivalent potential we are neglecting the exchange terms arising from 

the anti-symmetric part of the complete nuclear wav-e function (cfo 4o4l3)o 

Alt.hough these terms are not describable by a ;c;entral potential (TAS 10
6) ~ 

their ~ontribu.tion to isotopic :spin impurity is negligibleo We first, 

show that the 11 outside11 part of V{r) f'or · r 7 R makes a very small 

contribution to the matrix elements of V(r) and that one can actually 

take 

Y(~>-) = (8) 

with considerable accuracyo The single particle matrix elements of V(r) 

are given in the following table and would all be equal to 210 Ze 1 u if 

( 8) were valid o 
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(3:JJ'f/3s)"' toJlze·[(~s.4- 375; -t ~~~+ 1~5;,~·);'." ! , 

· . + ~~ (s:-- ~ Xds.-~) 

where #~= .y o'2. ( ) ( ) ~~ "' and V r i.s given by 7 o 

fr we insert reasonable values of ~e 
~ 

into these expressions~ we 
. :l- :z.... 

find that the deviation of the matrix elements from _e_ . R. is only 

a few percent o As one .. expects~ the deviation is slightly larger for 

' 
states of higher angular momentum and larger principal quantum numbero 

From the fact that even for non-diagonal. matrix elements the factor 
f'W- s: . . 
..._. will multiply the contributions from V (r > R) ~ we 

can see that here too~ (7)~ ean.be replaced by (8) with little erroro 



We have shot-m by these results that we may use (e} instead of (7) 

to evaluate the core perturbation of the single particle harmonic 

oscillator wave functionso Using this fact we can give an explicit 

f·ormula for the effect of the core in mixing any harmonic· oscillator 

wav~ function to higher stateso To do this we note that the matrix 

elements ("tl!.t 1J )!,.~ /11.1) vanish unless .A.'=.A i 
n ,., n~ n+ L The 

exact perturbation for the admixture of' higher states therefore reduces 

to one term 

(-n+, ..e I -vu2 I Yl ..e) 
(Eo- E

1
):a-

:l 

In evaluating the equation (ll) the constant term of (e) 

contributes nothing~ and we may in fact take V(r) as 

(9) 

(10) 

This :lLs the form of the core perturbalion which we shall use in the 

two and three particle calculat,ions alsoo (The validity of this 

approximation of the core perturbation will be discussed in great 

detail in a later sectiono)· The matrix element of (10) required in (9) 

follows from the formulas of Shaeffer (S44) 

(tl+ I ..e /42. J n -R. J .z. = -n (nt,l + -1) 
·..yL 

~9 approximately we find 

(11) 

Combining this with (11) we find for the pert-urbation of .the. single 

particle outside a closed shell 



I r= 4 

where 

Eo-£1 = 
.. 

More explicitly we write 

=56-

"f 
p as 

(12) 

(13) 

f I , . N'~ When we apply this ormula to the case of the p proton 1n we 
~ . . . 2 

find __ p·= 4.3 x 10 . Due to the fact that the r potential brings 

a .y-+ into p 9 the ambiguity in determining y is too serious~ to 

allow one to believe (13) for more than order. of magnitude results. 

These impurities of the single extra nucleon state are much 

smaller than .the isotopic spin impurity of the core as estimated in 

(3.3). From this result we can conclude that-=The dynamic validity,of 
. ' 

the isotopic spin in closed shell nuclei with one extra particle (or 

hole) holds to the same extent that isotopic spin is a good quantum 

number. 

(4.11) Coulomb Expansion of Single Particle Functions 

For harmonic oscillator wave functions the Coulomb 

perturbation (10) has an interesting significanceg it produces only 

an expansion of the wave functions. Thus for the Schrodinger equation 

of a single nucleon which interacts with the core potential given by 

(10) we have 

... 



. (14) 

But if we define 

-yl~ = y 2. -

(15) 

equation (14) is just the-oscillator equation (1) whose solutions are 

given by (2) and (3) with a new parameter -l1 
If ' -l iS 

deterril.ined by an equation of the form of (5) j the change in -;) can be 

related to an expansion of the nuclear wave functiono From (15) one 

can find the change in y to be in fact 

(16) 

For the (ld) proton ( ;J> 17) the expansion of the nuclear wave 

function is ,......_, 0 ol3% o This is an extremely small effect o A similar 

result has been found by Bo Jancovici (J54) using exact wave functions 

supplied by Go Breit (B54) for a neutron and proton in a nuclear 

potential described by a finite square well and Coulomb potential given 

by (7)o 

(4o2) Validity of the Isotopic Spin for Two-Particle States 

When there is only one particle outside closed jj shells~ 

there can be no mixing to higher isotopic spin states unless there is 

also excitation of the coreo ·With the appearance of two particles 

outside closed shells 9 however, the possibility arises of mixing 

behreen T ~ 0 and T "" 1 states as well as between T ""' 0 states of 

different configurations, The first type of mixing produces violations 



of the isotopic spin selection.rules which are derived for eigenstates 

of the isotopic spino The second type of mixing destroys.the dynamic 

validity· of the isotopic spin since the eigenstates of T ! and T 

are not related by 

(17) 

As we have noted in (2o2) this is merely a consequence of the fact 

that the jj configurati9ns are not eigenstates of a hamiltonian 

which includes the Coulomb ihteractiono 

Bo~h of these two types of mixing are produced by both the 

interaction ofthe particles with the core and with each othero The 

core excitationj being a central potential proportional to r 2 

(Eqo 10) ~ connnut.es with the j of the individual particles and will 

produce mixing to excited configurations differing from the ground 

state only in the principal quantum number of one of the particleso 

On the other hand the particle interaction does not commute with the 

j of the individual particles and can.mix the ground state to many 

configurations whose parities are the same o 

For a specific investigation of two particle mixir~ we. shall 
. ~ ~ 

choose to study the {!/J3/.L) and ( ljo~~J configurations of 

the Mayer jj coupling shell modelo The results which we obtain will 

be specifically applicable to the isobaric triads at A = 6 and A = l4o · 

We do not imply that jj coupling should be valid for so light a 

nucleus as Li
6

j but only that the general results for ( ~~~) 2 
will 

appear in other j
2 

type configurations at larger Ao We prefer.red, 
. .t,... 

for the sake of being specific)to calculate the (?;63/~) mixing for 

a definite nucleusj A : 6. From the results of these calculationsy 
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there will emerge certain general conclusions which are applicable to any 

·r 
configuration ~ o 

(4~1) Calculation of the Matrix Elements 

The total interaction of two particles in an open shell 

with the core through '(12) and with each other through the Coulomb 

where -tf is the ~-component of the vector ~t defined as 

£-=_!.?! 
'"" (19) 

and related to the total isotopic spin operator T and the t-
component T--?' 74 or (r.;,,) by 

,4. 

T = E tr1 Tf -
?.• =I 

(20). 

The choice of a core potential proportional to 
2 

r is justified by 

the results of (4o413)o This dependence differs from the 1/r potential 

used by Radicati for which there is no justification and which leads 

t.o much larger matrix elements, The core potential represents only 

the direct terms of the interaction of the extra nucleon and the core 

In a manner similar to that adopted in (3ol) we shall decompose 

(18) into the irreducible components in isotopic spin spaceo Writing 

Yc =- 1:; { (1-ts)f!~ + (i- *t~)t2!} 
(21) 

for the core perturbation and 



(22) 

for the particle interaction~ we can begin by decomposing the core as 

Vc. = 'VC(o)_ + 

(23) 

where Vc (d) is a 'scalar and .'fc(j o) is the zero 1th component 

(W31) of a vector in isotopic spin spaceo Similarly for the particle 

interaction~ we obtain 

,r(o)- e<- (-' + ....L =t·. t) 
Yc -- 4 3 I ,2. 

I ./(1,2, . . 

"t. Jw(l. o) ""'.t Vf = - .,. 

with yeo) 
p 

again being an isotopic spin scalar, Y 1 p. 
the zero 0th component of vector; and -y- (a.o) 

r 

(24) 

.component of a second rank tensor in isotopic spin spaceo For.the 

two particle operators simple expressions in terms of T arid Tf 

existo 

' ~ 



.. 

e.z. T -y-Oo) · -p :24,.2, ~ 

y-(&6) e.2. ( :t , J . T ~) (25a) 
.- -· T.--p ..2/l.IR. $ ..3 . 

(25b) 

These expressions clearly exhibit the fact that in the two particle 

case no mixing of states of' different T is caused by the interaction 

of the particles, From (25a) and (25b) it further follows that V (i~) 

and y-(po)vanish in T~ -=0 states and have in T~=.:!:"l states 

tne form 

Tg =I y-lt O) =- J!!... -v-(~o)_ e~ 
f ~li,~ p .... -

(., ll. I "l. 

-y-Qo) - e!l.. y- (a.o) e. :f. ? :u, ll. p - --(D /1., J'&. 

·~ =-1 

(26) 
I 

In the calculation of the effect of the Coulomb perturbation 

we shall use only the vector and tensor parts of V because the 

scalar part of the interaction can be included in the nuclear hamiltonian 

and T will still be rigorously a good quantum number for the nucleus, 

The perturbation we shall use is therefore 

y(go) 

p 
(27) 

The evaluation of matrix elements of V' .9 a potential containing 

isotopic spin dependence .9 is most easily performed by transforming to 

the representation irt·which the states are characterized by the eigen~ 

values of t,he individual t! , In this representation the. problem 

of finding matrix elements of an isotopic spin depen<:ient two=particle 



interaction between states completely anti-sYJI!IIletric in spacej spin, and 

isotopic spin coordinates has become the problem of evaluating matrix 

elements of several ordinary potentials between wave functions either 

symmetric .2!: anti-symmetric in the space and spin coordinates of the 

two particles but containing no isotopic spin coordinateso The procedure 

will be clear in a momento 

We first transform matrix elements of the general form 

( "( T tilT f ?)' [-t 1 T rvlT ) j where a" and ?(I represent all 

the auxiliary quantum numbers 3 into the representation in which states 

are characterized by the individual -6 t' = -b~ + t~l..i r -b ;i (= 1) a:nci i Si. • 

Defining by the equation 

a table 9f Clebsch-Gordon coefficients for spin ~ particles taken from 

y- (M-;) 
TAS yields for ,-rl the following expressions 

I M,-= o. 
y (0) = oe 
y-(o) 

0 I -
"\ J- ~) -
V II 

M, =-l 

0 

~:~-(~t-At) 
0 

v (I) = - :£!.!- (tt ~ + tt.).,) + 
II :U~l I I 

'lJI" l'1r = I 

"'r(
1

1
)
1 
= ~e2. /"' 2. " .... ) ..1.. cs a. · 

~ Rl 1..
1
"'

1 + '' " - . .3 ll.1 "a. 
(29) 



-,,-co) 
The anti=symmetric character of v 01 arises from the difference in 

syrr~etry of the spin-space part of wave functions with T = 0 and T = 1. 

The vanishing of the vr:/o . and . V~' follows from the general selection 

rule on the zero 1th component of isotopic spin vectors in MT = 0 nuclei~ 

This rule is of v~ry great importance for nuclear 

electric dipole transitionso The sign of v~; is determined by 

the phases of Clebsch-Gordon coefficients and does not have a uniquely 

determined sign. This apparent arbitrariness disappears, however, ~hen 

one comes to the matrix element of v~: since the sign of the anti­

symmetric space-spin function associated with the T = 1 state is also . 

determined by the phase of the Clebsch-Gordon coefficients. 

The matrix elements of the potentials can now be evaluated in 

the following way. Since the V(r) of (25) are diagonal in the 1 2 S 
2 

representation, one can compute matrix elements between the (lp) and 

the low-lying configurations by using formula (38) of Racah (R42) for 

the particle interaction. 

( n,i, 'Y1 ~.Qt. L M I ;&,.I ~lJ.3"tl4f J.~ L M) = ~ (1,1~L M I ct-tt.>. c.(~) l..e, ,L"f L M ). 

• tfC'It) (n,~,"''h . .e,_!, Yl~....e~ Yl 41-.tr) 

= c-,/'+-~~- L ._f(..t,ll c. (-~<)Ill. )(..!.II c t-lt\IIJ.~)vtu;.~...e3..R.. 1L --~..) 
~ f> ("")( . ~ " !J /) ) 

Yl,...t.,"Yl;~.A:~:a., \ Y'i\-l'::; 'ri4-"C.~ 

(30) 

wa,~~£~-~dt ',L i) is the Racah coefficient tabulated by Biedenharn (Bi52) 

while (.e,
1

(\ C(--h)lll") is given in (51) of (R42). The integral jf{~) is 

_j_ 
A.,,., the matrix element of the expansion of in Legendre polynomials 

. r 



,~coD ( ,,.e, _,.,.£ •. ,.YI, 1, Yl1..4)= S:dc,J Li6i !(,,., (, w,,~.(~) -l1.. G.~) f?~,&(d ~""~.,~) 
(31) 

where ~'k {112) is defined as 

i-~t (t):u) = 

The evaluation of the 
Q{i) . 
t"- can be accomplished very simply for harmonic 
I 

os_cillator wave functions as Talmi (T52) shows explicitly. For complete-

ness we g~ve the procedure. Using the definition of t~1,~) ~ Eq. (31) 

can be written 

where 

~R~ "tt,.) ~) = R-n~.t~ (1 H<Yl,t,. {"-)R~~~~ (t) R1'l"t~ (2.. )(~h.~a Pi. { ~) 
Introducing the center of mass coordinate and the relative coordinate by 

. R = ± (~-+ ll~ ) 
~ = ±(~-1,) 

When we let 
-~:.t 
4:·~ l =_ ~ and use R~ r~ and 1 as new variables~ we 

V'llt.,a.) i" .1. {~c, A. u.) as a rational polynomial in R9 r~ can express 
-~ 11'tt.1 r· ·. 

and f~ 9 for the 

the obvious relations 

(k) . 
F which appear in (302. To do this we use 

"'/i._ r- = R,.-~ 

- A.~ +t1 ~ = t.R.R1.+ ~ 
I ·~ ~ 

k,~A~ = [R'-+¥J- R'4~~ 

IG~ = 'R4 + * ~tt. R'1 
/'r- = R4+f-~RI (32) 



A table of 
e2... 

of 
.-£,4.. 

for various diagonal and non~diagonal matrix elements 

is given in Appendix IIo 

Having evaluated the LS matrix elements of the expressions in 

(29), we transform to jj coupling matrix elements by the use of the 

(LSJr11(1•i~Jr~) transformation coefficients given by Racah (R50), or 

less explicitly by a formula due to Hope and quoted by Edmonds and 

Flowers (E52a)c The final expressions for the non-zero matrix elements 

between ( 1 r~1..,.)~ and a number of jj configurations is given in 

Table I o The corresponding matrix elements for (1f!l,)2-are given in 

Table IVo 

Using the tabulated ~( ~)G, 1.,t 1 Y\,_..Q,. 1

1Y'l _,Q1 Yl+j+) we can evaluate 

these jj matrix elements for the nuclei Li6 ~ Be
6

j N14, and o14
0 Since 

the shell model predicts level positions also~ although these will be 

modified by various forces which we believe to exist in the nucleus 

(T52) and (R54), we can also evaluate the percent admixture of higher 

states to the ground state ·~f (tr-~~)~r (!Fit,..)~ These are given in 

Tables II~ III and Tables V, VI respectivelyo 

(4o22) Mixing of Different Isotopic Spin States 
a.. ·. 

The first observation is that in the Qp!lt,) configuration 

no mixing to the (tFI;1..)2... configuration can occur with change of 

isotopic spin To This means that all mixing of different T states 

must occur to configurations which are separated by a rather large 

energy 1'\J 20-30 Mev o The particle interaction vanishes for MT = 0 

components and can therefore mix only T = 1 stateso The core inter-

action on the other hand can only mix states of different isotopic spina 

In doing this there is an additional selection rule, however, which 

arises from the central force character of the core potentialo The 

. rule is that .tCl\ ._ 0 where .i.;, are the angular momenta of the 
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individual particles" The result of these two selection rules on ~ is 

·that the only possible miXing of T ::::: 0 and T :: l states is that between 

( 1 f~/J~and lf"::t,/f!IA., or between (1fJ4).tand 'f1t~.P-/Jt 
(4o23). Mixing of the Isotppic Spin Triplet States 

Although no mixing of different.isotopic spin states of the 

two outside particles can occur when Mr "::::. + i L e. when the particles 

are both' neutrons or both .protons~ the matrix elements between the T = l 

states of different configurations have several interesting featureso 

We note first of all that mixing can occur to configurations in which 
; 

the individual angular momentum j of one or both particles is differento · 

The core interaction does not play a.ny role in these matrix elements~ so 

we should expect them to be somewhat smaller than th<?se to the 1f~".:u.2~~.;~.; 

I 

stateo What we actually find is that the latter matrix elements are 

larger by a factor ofNlO- 15 than the matrix elements to states in 

which one or both j 1 s are different and that this difference is not 

due to the core aloneo This result holdsin fact for any spin-independent 

''long range force 11 for which the F
(O) 

defined in (31) are appreciably 

larger than the 

That the ~ =value of the individual particle should be 

preserved nearly follows when we show that the coefficient of F(O) in 

the Slater expansion of the matrix element vanishes unless the 

excitation of the individual particle is to a state of the same ~ 0 _, 
Any central potential commutes with ~~· and therefore satisfies the 

selection rule on its matrix elements, .::ti; = 0 Now the coefficient 

of F(O) for any two particle force is the matrix element of 

. Jo (1,;.) Po(~~ )=to(1)21) which is an average of. the two particle 

interaction over all angles o The ~ (i.,'l.) e. e C etr.J..~) must commute 
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therefore with the individual-)_, ; and therefore also sat:lsfies the 

selection rule .d/)· -o -"1 - Since the particle interaction is assurr1ed 

to be spin independent we immediately have the additional result that 

the coefficient of F(O) vanishes between jj states differing in the 

individual ho 

'J;'his result follows trivially from.the expression for 

( -€ 11'-{ e'l./Jt 1 ..... j.Q3).4 ') given in (30) when one uses the relation 

w-(1
1
11-13 4 ·) L o) = -w- (1,~l1).JAt) 

= (- 1) ~~+~~- L ~~~i ~J:Jtt 
. t/(:213 + 1) (J.l .. + ,) 

We have shown therefore that 
(; 

Jo) appears only in the expansion 

of the matrix element of the particle interaction between states which 

do not differ in the individual ~ or j quantum numbers" From 
(Q) (k) -
F )) F follows then the approximate diagonality of long range 

()~ fi ) representation. 
,, 

scalar particle interactions in the 

Besides the fact that matrix elements from (I rll.t.) 2.. to the 

(p'Jh:i· p ~l-a,. states are much larger than any others, we also note 

that the largest matrix elements to jj 1 states arising from some_ 

(J.,.l 1) configuration are those to states where both particles have-

parallel spin-and orbit. Almost equally large are matrix elements 

( 
- L -

from I r~l').) to states in which both particles have anti-parallel 

spin and orbit 0 Matrix elements from ( l r~/3-) ..... to states in which one 

particle has parallel spin and orbit and the other anti-parallel spin 

and orbit are generally smaller than the other two matrix elements. 

We have calculated the (~ f,lt)2- matrix elements for A ::::: 6 

where the core consists of only two protons and two neutrons" As we 

have said) we do not wish to imply that jj coupling should be valid 
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for such a light nucleus~ but merely wish to study the case of two 

particles outside closed shells in order to see the general results 

which one may expect. Even in such a light nucleusj howeverj the core 

interactionj which is proportional ~o the charge of the corej has matrix 

elements (where they exist) of nearly twice the magnitude of the 
~ 

particle interaction ~ 
' -1. /1-

.matrix elements. The core interaction is 

even more important in heavier nuclei as one sees clearly in the mixing 

of the (,r~~)~ st~te which is calculated for A= 14. There the core 

interaction is approximately 6 "-' 10 times as effective as the particle 

interaction in producing mixing. While some of this large difference 

. 6 
between the relative effectiveness of the core interaction 1n Be and 

N
14 

is due to the relatively smalle:Q matrix elements of ( 'f';b)~ to 

j we expect the core interaction to increase in 

importance proportional to A. 

In this discussion we have made tvw points ,<,1) that the Coulomb 

int·eraction between two particles in an open shell has an effect like a 

central potential in that it mixes states of the same j and ~ and 

(2) that the core potential predominates over the extra~nucleon inter= 

action in producing_mixing. From these two conclusions we can make 

the statement--Unless the energy separation of the ground state of two 
2 

outside nucleons in a (nj) configuration from the same JT state 

of (nt"> 'h +I-;/) is much larger (5-10 times) than that from 

another (-ni I'Yl~ 11 ) of the same parity, the mixing may be computed 

as though due to an "equivalent" central potentiaL We shall show in 

detail later that a not unreasonable equivalent central potential is 

that due to a uniform sphere of charge. 

This discussi~n of the two-particle matrix elements may seem 

somewhat irrelevant since these are matrix elements between states of 
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the same isotopic spino As we shall see in the discussion of the three 

particle mixing~ however~ these effects will play a part in determining 

the matrix elements between states of different isotopic spin for more 

than two particles outside closed shells. 

It seems clear that any detailed study of the relative contributions 

to mixing made by configurations other than the 

is un.iustified in view of the considerable splitting and displacement 

of levels which is necessary even to give the jj shell modelo In 

order to obtain some idea of the extent to which higher configurations 

appear in the ground state~ we 
2 

jj states arising from (lf) o 

have given the matrix elements to the 

Although the (lf)
2 

states lie twice 
2 

as far from the ground state as the states of (ld) ~ the matrix elements 

to the jj states of these configurations are of the same order of 

magnitudeo In fact the largest difference between matrix elements of 

the same type (to parallel spin and orbit 9 etc.) is only 2 """3 ~ while 

several matrix elements are nearly equal o In this case the.n the 

energy denominators are decisive in determining the relativ-e amounts 

of mixingo 

·,,-



TABLE I 

The jj Matrix Elements between { 1 t~~~)-2, and Other Low-lying Configurations " 

Only the matrix elements to !Jp~;'.l.l :l'f-;1,_, are non-zero 

(U"f,,_)"'"·nfV11-p•,.~f''> rr')"' ~ ~]1 
. i 

The non~zero matrix elements are for these JTT. . values 

J T T~ 

0 l 0 

1 0 l 

2 1 0 

3 0 1 

MT :::::: 1 

Matrix element ((lp-,ta.).,JTI?fl1il.rr1) T = T' = 1. 

·For MT = 1 multiply every rf!.c) by (~l/.3)3 for MT = =1 multiply every 

Fk by 2/30 

i-i'' T :r ( (Lf,,..)a. J T IV'/ ji' :rT' ) 

(I,Pf:..i'- I 0 ~ t(~)(v?Y·: {I;;J)..) 
1r~19;z.. I "' - ~ ;lr:l)(u;;.J:JJ; (!i),) 

1~)1~ I ..( ;;};1" pr~({J,PJ~· 1?/J) 

If '%-II .57.,., I ..2 - 7:/f j:!'6.J((I~r; ~~~f) 
~-, /t)t ~~~ I ~ .2~# ~6)(6?.)'51~1/) 

't~ 11"14 I ..2 c:> 

(/_Is;;.)~ I 0 . *If r'6>0~)2;(1/)~-f 1/f r(4)c6J>;;e£)~ 
I ~ -~If ;tt~(IL!J)}.; (;~y) t-li/jlr4){o_;:;)2;(/.l)~ 

I .I~/~ I ,.,2. ~/!' ~f2.J(~.J~;~~Jl)- ~ /f ,c'!P(tpJ~;ft-/J:) 
* 



. ld~lri,a 

(!ds;p_)~ 

If~ ~ff-;,. 

If~~~"'" 

If~~~ 

f? h .2 j>}.z. 

I o 

I ..t 

I Q 

I ..z 

I .:;.., 

I 0 

I 2.. 

TABLE I (Cont o) 

}-§ li fir,.> ~:6; trJ~ -1- ~~ -£.1{-f)~lf)~; (tvfr) 

if-If ;I~>((JpJ/J;; (;1),-Mlf ;o~·n(r;;:;Jl:(!Jl) · 

,. 
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TABLE II 

Interaction Matrix Elements of 
.. · .2.. 

(1 ·1"~1) to Low-lying Configurations and 
,.: .. 

the Mixing for Each. 

Mr = 0 (Li 
6) 

~ :: ((/;'~.J"' .TT/f//tf~"~-<t~~1 i-rt) = 
f = {1:~)-i. =' - 3. 3 I X l 0- s 

Mr = 1 (He
6) 

1ij J" ((tp3.1jl.JIIV'I-j.j 1 J" :t. ): !?z 

(t~J:... 0 ~0.0177 Mey 

lf;/,;..1,~,... 2 0.00696 

I p 11, 1/s-1,. 2 -0.0145 

., r~~l- ,;S",._ 2 0.00774 

I f:?Jh.l ;?,,_ 2 -0.0190 

I f'~t.l+i/1. 2 0 

Q-Cs;).)" 0 -0.0346 

( t.f.n,_) 2.. 2 -0.00589 

l.f? h 1-Ps-;l. 2 -0.00954 

(it; h.)~ 0 =0.0352 

(I f7h.t 2 -0.0235 

(j ci"'J/.Jl. 0 0.0499 

(I rJ.:'~1j2. 2 0.0163 

ld~'l.lci~A,. 2 0.0200 

(l aLs-~,.). ~ 0 0.0740 

( I rlr:;:J,_ 2 0.0681 

lpl~.<~,,l. 0 -0.0139 

I p~,~2P~a. 2 0~00:394 

_ 1 F'~,.~r~~~ 2 -o·.oo394 

'rll\'-r'l. 0 -0.453 

'F)~2r1. 2 :..0..438 

o.fo'7 Mev 
:J= o\.2. T T 1 = 1, 0 

) 

'J=-1~1 T;Tl::el1 

f =. 
'762. 

( t: .. -E,),. 

2.20 X 10-7 

6.28 x-10-8 

3.78 x lo-7 

0 

3.14 x lo-7 

9.08 X 10-9 

2.39 X 10-8 

3.24 x 1o-7 

1.45 X 10-7 

2.61 X 10-6 

2.78 x lo-7 

4.19 x lo-7 

. -6 5.93 X 10 

4.86 X 10=6 

2.02 X 10 -7 

1.62 X 10-8 

"1.62 X 10-S 

: 
2.15 X 10-4 

2.01 X 10-4 

' 



TABLE III 

Interaction of' (;/3~) <. with Low~lying Configurations. in 

Mr ::: "'"1 Nucleus (Be6)_ 

.j i I .T ~ p1~)'~1/'UI.J *'J"1)..: ~ -p-:: ~l.~ { Et:~- E),_ 

( 1 f1h)~ 0 Oo0354 1.32 X 10=6 

I F'1l. 1f'''2. - 2. =0,0139 2,03 X 10=7 

1 r II). 1 t5;J,. 2 0,0290 8,80 X 10='7 

lp3/l. \ ~~'/.. 2 ~0,0155 2,51 x lo-7· 

1 r?,~lf,h.. 2 0,0380 L51 X 10 =6 

I p 1h.IM;~ 2 0 0 

Qf~, .. J~ 0 0,0692 6 =6 L2 X 10 

(t ~s-A)a. 2 0,0118 3,6J X 10=8 

ltS'/2.\frtt:r.. 9,53 X 10=8 -
2 0,0191 

(lf.lt..)2.. 0 0,0704 L30 X 10=6 

(I tih.y•- 2 0.0470 5,78 X 10=7 

( l QJ. ~1),) '1. 0 =0,0998 1.04 X 10=5 
,. 

(I ~~6);. 2 =0,0326 Lll X 10='6 

1 ot~/,_,\a~,a. 2 -0,0400 L68 x 1o=6 

( \c!sl .. )'l.. . 0 =0"1480 2,37 X 10=5 

(I d..ro1::J,_ 2 =0,1362 1.94 X 10=5 ' 

lp''-.2-f'~ 0 0,0278 8,08 X 10=7 

I f;,h.2p~,_ 2 -·0,00788 6,48 X 10=8 

1 r "'),. .{ r'!l.\ 2 0,00788 6 8 c~8 · ,4 ·x 10 

I r~~.~~}~ 0 0,552 L79 X 10=4 

I f~h .. lf'l). 2 0,'520 . -4 L68 X 10 .. 
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TABLE IV 

The jj Matrix Elements between (1f112 ).2.; and Other Low-lying Configurations , 

Mr = 0 Nucleus 

Only the matrix elements to I j''.l.. 2.f''2.. are non-zero 

Non-zero elements are for i I 
J = O, T = 1, .T = 0 and J = 1, T = O, T • 1. 

For MT = ~ 1 multiply every ~k) by (=1/3); for MT ~ -1, by (+2/3). 

. 'I T .:r { (i,P~)a. :r r I Y Iii 1 .r T') cr=T~I) 11 
'• 

.ad~):J, I 0 ..;;.... ~ra ;¢' (&;JJ.a.; QetJ2} 
.3 . 

(/d~~ I () . - ~ ~)((/j)).LJ e¢)·'') 

(!_.P~)~ I !;.~ )1_(2) ( &rv"- , w ") . ..s- .I 

(!_~)~ I ~ ;- jPt<?) ( o/)~j {d'ft 

lr-.~4 I C) e ~~ -!;/[ -1- ~ ,Jto) (u;Pz.J ~~,;;) 

lfl~fi. I 0 .2Q j!ta) ((Jf:J)3.; ~.l;o) l.s-

8 - . - .M.; -
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TABLE V 

Interaction Matrix Elements of (t f1/z..)2.... to Low-·lying Configurations and 

the Mixing for Each, 

' 14 
MT = 0 Nucleus (N ) 

Only the matrix elements to I p 't.l..)-f ''z_ are non=ze:ro, 

1~' T J" T 

I F''~2 f''~ 0 \ 0 

((IF''-.)~ TT I V' '11 I Jl )~ ??'&, 
'Y"r'lr:;d. 

F = 7=~-E~)i. 

I s.1 ~ x 10- 4 
0 Q 

I 

' -j j I ((lp1hf<'ll V'lj~ 1o1)= ~ t: %1-
(~o-~,)'l. 

v v ~ 

1,9o x lo·=5 Qci~t1.)'"" ! 0,0772 Mev 
. ' 

(L Gls-t1-J .. 0.,0258 2,13 X 10=6 

(L-9~')..)~ . =0,03.36 9,49 x io=7 

~ t,,~,)~ =0,0184 5,20 X 10-·7 

I F''"";(P'h =0,873 2,44 X 10~"3 

=8 
I r~, .. .?.p:?~ =0,00351 3,94 X 10 

The energy separation of 
2 

(lp) and 
2 

(ld) was taken as 
2 ~ . . 

E0 = E1 ~ 17.7 Mev, The separation of (lp) and (lf) was taken as 

35.4 Mev, 



TABLE VI 

Interaction Matrix Elements of (I pt;l.) 2.. to Low-lying Configurations for 

. '/ 
;If 

(ial-,,.,}~ 

(lots:,,)~ 

(1.f'5"/;t.) 'l.. 

l~s-1~ 1~,,,. 

If '':2..2f'':z. 

I p;;:~..2f;tl 

Mr = -1 

' 

14 
0 

((tf",Jl.~ II V" 1±_~ 1 
0 I J.;~ 

-0.154 Hev. 

-0.0517 

0.0672 

0.0368 

0.940 

0.00702 

_-t= 

2 2 
Energy separation of (lf) from . (lp) · is 35.4 Hev. 

'~'1o1 
(~o-r:: )"1. 

7.58 X 10-5 

8.53 X 10 
-6 

}.80 X 10 -6 

2.08 X 10 
-6 

9.76 X 10-3 

1.58 X 10-7 

.. 
·~: 
.;.·;: 
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(4o3) Isotopic Spin Impurities in a Three Particle Configuration 

The results of the cq.lculation of the mixing of the states of 

two parti9fes outside a closed shell disclosed certain interesting 
'·' .• 

general features concerning the relative magnitude of the matrix elements 

to excited stateso The two particle configuration, howeverj was seen 

to have the special characteristic that no mixing of different isotopic 

spin states could be produced by the particle interactiono Consequently 

the efficiency of the particle interaction in mixing states of different 

isotopic spin is first to be observed in the case of three particles 

outside a closed shello In addition there was in the two particle case 

no mixing of states of different isotopic spin belonging to configurations 

which would be degenerate on a strict harmonic oscillator model with no­

particle :interaction other than the Coulomb potentialj eogo (lf''3".t;).:t. and 

I f'36.. I PI''-
In order to investigate these featuns of the Coulomb mixing we 

shall consider the isotopic spin impurity of the (I j~l')..)3 state~ 
--such a configuration being the one to which the low.;..lying states of Li 

7 

should belongo 

(4o31) Fractional Parentage Coefficients and Tensor Operators 

Forthe calculation of matrix elements for states belonging 

to configurations of many particles we shall use the fractional parentage 

coefficients (cofo po) defined by Racah (R43) and their extension to 

the jj states of non=equivalent particles as given by Redli.ch (R~4) o 

Redlich's derivation is not generally accessible and we shall give it 

here in an abbreviated form for referenceo We shall then develop 

expressions-for the matrix elements of general tensor operators in 

isotopic spin space in preparation for calculating matrix elements of 

the Coulomb interactiono 
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Consider a properly anti=symmetrized state for n particles in 

the configuration j 1 , •.. , jn with angular momentum J, Z-component of 

angular momentum MJ, isotopic spin T, and ~ -component of isotopic 

spin MT· The total J can be obtained from the successive addition 

of the j. 
l. 

so that the set "a" of 'the angular momenta 
_, 

may be added to a similar set "b" for the ti to complete the 

specification of the state · t1/J Such a state 1.P ( YJI"' r M;rT Mr) 

[ jiJ where· n denotes the set and o/., the collective set of a and _, 
b, can be found by first adding a particle with angular momentum -Jill to 

r;;;(. 1 1 I 'M I) 'f/1 77fA .. J oi.. T 11y T T . · and the correctly symmetrized state 

then an~i-symmetrizing. Thus, 

·z' z Cp (c 'n~~l(, (u~-' 'J"' M~ i'M+)Jtt·,-«.'TM:r'T~} 
...1,. ot':r';' j . • 

• ( Yl1-t1 ( .1. 1 T 1T')1~ /} o~...J"T) . . 
(33) 

where p{ [ 'CJ+Ll,{J.'T' tvt} T/t-1~)1A.~~J"M.r TM,-)is the unsymmetrized state 

formed by vector addition of the particle with spin jr to the correctly 

anti=symmetrized 1/P ( "'CJ, :.1 ... o~.. 1 :TIM :;1 TIM/ ) The coefficients 

( )") 1 ·1~, {i.1 r'T')i ft. I}~J"t1~iMi) are the coefficients of fractional 

parentage. 

The c .f .p. can now be used to reduce the mat'rix elements for 

configurations for n particles to those for configurations of n = 1 

particles. We. can consider two. classes of operators 
7\. ... 

1.) ~("T"I) = ,Z:. it 

) It ('"tl) ·= 
'-· I 

\=1 
. (34a) 

(34b) 



.. 

where t 1 depends only on the coordinates of one particle and tij 

depends on the coordinates of two particleso 

In discussing matrix elements of (~4a) we shall take ti ~ t~k)(i) 
to be the q 1th component of a general tensor operator of degree k in 

isotopic spin space (R42)~ a scalar in space and spin coordinateso The 

more general case when ti. is a tensor operator in all coordinates 

is obtained as a trivial generalization of the discussion which follows. 

In writing matrix elements we shall suppress the MJ since 

all matrix elements are independent of this quantum numbero From the 

symmetry of ~(?2) ~ :rr Mr ) there follows 

< '22, ol T T M T I ~{-n) I'!!. d.. T T I MT) = -n~ 1 (rJ,oL'J"TMT / tl'Vl-r) I:!::L ot::rr'rv'h) 
(35) 

(n-1) 
where F is defined precisely as in (34a) and no longer contains 

the coordinates ef eRe of the r 0th particleo We are also assuming 

that commutes with so that MT is a good quantum 

number at all timeso This is an expression of the law of conservation 

of chargeo Using (33) we can write for the matrix element on the right 

hand side 

(u) ~ T T M,-1 F' f-n-l) I n, ot J""T MT) = 2: ( o<. J"T{ I ~ ( c~.,J",T, )-Jtt) · 
o£,:Tj 1j 

.. ' (n1-ll. {oh .. l; T:a. J~~~~'Q 1 ot .TT 1
)( 'n -h. (~,Ji""'GJi ~o(. J'T MT I ~(,H)\ 

· 1 ) • 1 IM ) ·'Y.l,--1 ~<:<~J"2..1';_ ~l!.c<. Jl T 

(36) 

(n=l) 0 • 0 0 

We now use the fact that F 1s assumed to be an 1rreduc1ble tensor 

operator and the fact that it commutes with tr j the isotopic spin 

vector of the r 1th particlej to derive from (44a) of Racah (R42) the 

expression 



( -n,-~- ~ol,:Ji~) 1-"1. ·ol. J""TM,-1 r(~-,) 1 ~ ~~:rt.n )i-t c~..· J"T 1MT > · 
=· (-,) o!. +- -T,_t MT j(J. T+ t) (~T' + 1) I WCT,T"t. T 1) ~--k) . 

. ·y-(::,]: 1 ~.) r Mr M1 ~)<-r1,-:-4. (~,JjT,) II ~ c~-')1171,--1 ~,_:r,_"Tt)) 
' . '. . . ". ~ . . 

·(37) 

(n=l) 
The.double-barred matrix element of F appearing on the right is 

independent of' MT
1 

and can be related to the more usual matrix element 
(n=l) . . 

of F · by formula (29) of Racah (R42) 

The 

the 

( n,-~ ·(~, :r; T, M-ri )I f'(r~- ,) / "rl>-1 (o< ... :r,_ T, M-r.))=·(-,}+' M1j V(TiTj~·,- M-r; Mrj~· 

• ( "1,-!t (c(,Jilj)\1 ~l-n-~~~~ 'r\,..;lt (~-a.Ji.T~)) 
(38) 

quantities . W(o.. b c.. ) y ~'"l" J are the Racah functions and 

-v-( a. b~) o{.~'"'lfJ are syrrnnetrical quantities closely related to 

the Clebsch=Gordon coefficients. Now by combining (35) ~ (36) ~ · (37) ~ 

and (38) we have the desired reduction of the matrix elements of F(n) 

to the n-1 particle c~nfigurations. The treatment of the two particle 

operators is preci~ely the same except for the equation (35) which 

becomes 

( 'Y) ot. :rT M, ./ G,("ff)l -a..· c~. 'TT 1MT)= ~(n ~::rTMT le_{"-')lo.a~.~T 1Mi) 

(39) 

Assuming that the matrix elements of F and G are known for 

the (n-1) particle case~ the problem is now merely that of calculating 

the c.f.p. · For many configurations of equivalent particles jn the 

9.f.p. have been given by Edmonds and Flowers (E52a), For configurations 
. 2 

of inequivalent particles of-the kind j 1 j 2 ~ it is easy to show (R5f) 

that the c.f.p are given by the expressions 



' ' 

/. 

.. 

(jt (T'T ')i,. :rT\~ i~il (riT')JT) = ff (4o) 

(.~,t• ("J1'Tu)i, jT:j}~ti~(T1T 1 ) :JT )= ,{f h(:r'J 11 J) ~(T'T''T) 

With formulas (40) and (41) we can construct tables of Cofop for the 
3 

three· particle configurations in which we are interested, vizo (r fl?.J ~ 

(Lp3,~)~\f~~ and (lp~h-).2. :t..f>"?>;., ... o Tables of these cofoPo 

follow wit,h those for -( 1 f:ah. J'3 being constructed from the tables 

of Edmonds and Flowers (E52) and John and van Wieringen (J5l) 

(c~~i·(J"'T')\\3(~j '(J""'T') .Pr) 
T .:r T 1=o 0 I I 

.J'=l .3 0 ~ 

..l ..L _j_ _L 
)..; .1<., r{£ ~ 

* :t, ~ Ito -I& -[,£ 
% llo -,II --k 
'l.z. -L _L 

1£ - ,(2. 

~ 
_L -ff 1r 

In this table and those which follmn; vacant squares are to be under-

stood as zero elements, 



(C~t-'Cr'T') "ll~f~.tY"±(:r'T1) ·· .:IT) 
.' (:i.L~ (:r'' T'1) }2JI~ (i)~(J"'T') :rr) 

-

T .:r T'=o 0 I I T :r "i~o ~ I I 

J'= I 3 0 ~ j' =I :L I ·.2_, 

I 

I la_ 
~ ;;.._ 

.l .lG,.. ~ _j_ -11 ,(3 
.2.. ~ 1" 4 4 

J..b I 

2 {3 
J.b _f! _{i ..L ~ J. 4 4 .f 

lo.. I -
~ r/3' 

2.(4., I I -L -Hi -.(, ~1'& ~~ .(-!'"£ 

lb I 
~ 13 db -~ _.L -..L _...l. 

J,; :ii ~1I :;.a 
I 

r~ J 
:L 13 

S:G. -~ ..L ('7 I --- 4 .a.. +13 4 

S'b ...L 
.JJ fi 

..S::b -.t _{7 
=tt3 it]t :J, + 

I I li9v ?3 
1 I 1-

~ ~ f3 
~ J. I _..I.. 
.;;.._ 2., 

-1i « 
~ J_ 

::lJ 13 
1. J 'ft 
:J., ;'! 

5' I 

~ {3 
~ -~ -~ ~ ~ ~3 

In both of these tables 11 a11 designates·three particle states arising 

from the T ~ 0 multiplet of the parent 

11 b18 designates those arising from the T :;;; 1 multiplet, o 

With these preliminaries we are ready to analyze the isotopic 

spin impurity in the ( 1 f11~)3 ground state, 



_ti 

.(432) Impurity of. the {~')..)3 Ground State. 

The greatest impurity in the T ~ 1/2 (1 ~'\~) '3 state we 

may expect to arise from low~lying statesJ perhaps solely because of 

smaller energy dencirninat·ors~ as we have suggested in the two particle 

case, The nearest states of different isotopic spin 3 viz, T ::::: 3/2j 

are those belonging t,o the same configuration,. {1 f"!l/.3.') 3 - , Although 

of course these states are all degenerate on the strict single particle 

model which does not consider particle interactions~ we know from the 

data that the separation of the first T ~ 3/2 and T ~ 1/2 states in 

Li
7 

is probably ~ 10,8 Mev (P53) or a little higher, The first 

isotopic spin state of the same spin and parity may well lie several 

Mev higher, 

Another configuration which should lie very near to '(IF~/~)3 is 

( 1 f71,)~ 1p~1~, This state also introduces T ~ 3/2 impurity into 

the T: 1/2 state of. {1~/~3 , The splitting of the 
!p l"'f\. ' 

of the same isotopi~has been suggested by Inglis (I54) as 0,48 Mev in 

Li 
7 

and by Adair (A53) as ) L5 Mev, Although these estimat.es are 

not .in agreement with the dependence on -L and A usually assumed 

I \ - 2/3 
· ··;v (lt- '1.-) A (I 53~ M50b) J both values are much smaller than 

the energy separation of the T multiplets, This is in agreement with 

Wigner"s isotopic multiplet picture of nuclear levels, 

The significance of this rather obvious point is that the energy 

separations of different isotopic states are always large in light 

nuclei even ~hen the states belong to the same or an adjacent config-

urationc In fact, if we take the separation of different orbits to be 

given by the oscillator or square well models 9 the energy denominator 

for the admixture of T : 3/2 of ( 1 p~,...J .2. 2f ~l.. is only three 

times (30o9 Mev) the minimum separation which could exist between 
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the T :::;: ! state. of (lr~;J 3and another 

Actually~ the calculations of Kurath 

T = 3/2 state 3 i.e.!"\,...; 10.8 Mev. 

~ 
(Ku52) on the ( 1 F'}.l~) . lead to a 

separation of the J = 3/2 T :: 1/2 and J = 3/2 T = 3/2 states 

of ~ 43 Mev. We shall therefore compute the amount of· T = 3/2 
' 

impurity which comes from states of (I F';;.l.)~f'!.z.. as well as states of 
. 3 . 
(._\ ~')1.,_) and 

Impurities from configurations like may also 

appear and we should like to know what are the relative magnitudes of 

the mixing to this configuration .and to From 

equations (35)~ (36), (37), and (38) we see that three-particle matrix 

elements are linear combinations of two=particle matrix elements. 

The c.f.p. concerned satisfied the sum rule (R54) 

-91. -
,, 

where the configuration • ) ( ' ).y (. I \ -Y'ft ( ~ = ~ 1 
1 

• • • ~ l, J and · 'Yl 

The c.f.p. are therefore always less than unity. Since for three particles 

the sum is distributed over not more than four parent states and the c.f.p 

vary among themselves in magnitude by no more than a factor of I'\.; 2 

(as one verifies from the above tables or from the more extensive tables 

of Edmonds and Flowers (E52))j the relative magnitude of corresponding 

matrix elements (same J~ MT) to different configurations is determined 

mostly by the relative magnitudes of the two particle matrix elements 

of the parent states. Observing that matrix elements from (I ~~~'2.-Y··to 
\\~~~?~~ are 10 -~ 15 times larger than those to all other 

configurationsj we conclude that the three particle matrix elements 

from {J_ f'!>12..J 3 
to ( \ ~)/2..)4 :lf'>/~ will also predominate by such a 

factor. 

·,o:... 
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We may therefore expect that in the three particle case also the 

mixing to (, p~)~ .lp~/ .... should predominate over the mixing to any 

other configuration except possibly ( 'f~/~)3 or ~ \3/~) a. 'f'l,_ 
Even here u rhr· ~r~~l- may be as important as the othersJ in 

spite of the larger energy separation involvedJ just because the 

corresponding two-particle matrix elements are so much larger, 

For a system of n nucleons the Coulomb interaction is simply 

· Analogous to equation (27) follows the result 

where 

The 

V'= 

\r{~o) _ 
v 'P -

\((to) and 
c. 

-y-(to) are the zero components of vectors in 
'P 

{42) 

isotopic spin space arising from the core and particle interactions 

respectively, We can no longer use the simple relations of (25a) and 

(25b) where T and T { are the total isotopic spin operators for 

' 

t,he system and its { -component J but instead must use the methods 

given in (4o31), In the calculation of Radicati (R53a.~ b) the different 

transformation properties of the irreducible components of the Coulomb 



energy are ignored with the results that the isotopic spin scalar and 

.tensor parts are either treated incorrectly or neglectedo 

From the table of CofoPo for (Jf'.3/.J3 we observe that the only 

component of the T = 1/2 multiplet which can be mixed to a T = 3/2 

state fs the J = 3/2 coi:nponento We shall calculate the matrix elements 

of the interact~on ~ between these states by evaluating the elements 

for each of the three op?rators in (42)o One might a priori expect 

these matrix elements to be quite large since they are between two states 

of the same configurationo . That this is not so can easily be seen in 

the following calculation of _(~(to~ which we give in some detail for 

this reasonj as well as to illustrate the techniques we useo 

The matrix element of any of the three operators in (42) follows 

from (36) and the CofoPo table for ( IF3;.,__}~ as 

<_l~y~ ~ i M,l fc;~) \ (-l)~ ~~:a. MT> 

where 

- ((l\~1.1. \\(3\2..(. '\ '3 ''?.>l)l13)'-1 )"3 3.J.:/'LI3)3'33) 
J.. J l. 2. L ].J 0 IJ "'i 1 ""i,. l. \\ ""i. ( 0 I 2.. 

1
1-;:..:?.. J \"i "i.""i • 

'. ((.i)~(o,) ~~)1.~M-r\YI (t)~(o,)1\ ~tnT> + 

+ a~YJ,. ~ ti(1J2~'H1 ~ U~i)3 rti/C1:/(21)i\ i ~) 
<(1-Y(~l)i S~tM,_,. ¥""1(1)1(~1)t '> t~ MT > 

(43) 

\/" (~ 0 denotes a general three=particle operator and the 3, 

matrix elements on the right are between unsymmetrized states obtained 

by vector coupling a single nucleon. to the properly symmetrized two 

· particle states of These matrix elements can be expressed 

for .as 



, 
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< ( t)'-( Jl) l.L:t MT / y;cto) I (-l)'--{ ~T) l ~ l'llT) = (-1)t + M~w 

-w-(r.± If,. ;?,. I) y-(± ~ 1 ; -: ('1TMro XG)( :r7JtY~II$~ 

(44) 

) 
...., ,-/a o) . , 

The matrix elements in (43 of 3v c' can be expressed as matru 

elements of ~(to) ~ which does not contain the coordinates of one 

particle~ and the proper Cof oPo inserted from the table to give 

<C1)3 H MTI ;~(io)\(-iY i-\ MT> 
= ::- ~j{ g\)'(et) l'li. ~ MTj..V/t•li(\J\o t)t_ \ ~lMT> 

_/.(3)3(~ ,}~ , ~ J. M j "V:(to)l (].)31 ) .2_ , i :? M_ ,l 
,~ Ol ~' .;t ..<. T .tc .;a. l«l ,4 '"'A. I rr)J 

This result is quite interesting since from (44) we see that only 

< (\)~ JT\1 y;(~c))l(!.)~JT) can be different for the.two terms . 
.t C.. J.. · (to) 

of (43ij)o This~ howeverJ means that the matrix element of ~ will 

vanish since the double=barr~d matrix elements of. ~~Cto) for J ~ 0, 2 

are equaL Further 3 only the F(2) terms of the Slater expansion for 

the matrix elements of ~ 
At'\. 

will not cancel in (43 1 )~ as we have 

explained in our discussion of the two particle terms, The matrix 

elements between T = 1/2 and T = 3/2 of the ( I p ')1~ 3 
configuration . 

will be much smaller than one might axpect o 

Combining two equations similar to (43 1 ) and (44)J we can find 

the matrix elements for y~o) and , JY':r;) and therefore of ~ 0 



These are given in the table which summarizes the intermultiplet matrix 

elements having the initial state ( 1 ~~,.,_') ~ •. 

The mixing of. (I r~J3 and u f3~) -t.- I f'/~ can actually occur 

for the J : 1/2~ 3/2, and 5/2 components of the T : 1/2 and T : 3/2 

multiplets. As a matter of interest we have found the intermultiplet 

matrix el~ments for all these J states. It is very interesting to 

note that the smallest isotopic spin mixing between these configurations 

occurs for the J ::.: 3/2 state~ which should also be the ground state 

for according to Nordheimgs empirically derived rules. This 
•. 

prediction of the ground state spin has been ver~fied by direct 

calculation (K52) on the jj ·coupling shell model. 

The calculation of. the mixing between (lf'/).Yl and U..r3"'.1..) ~<r~~4 
is somewhat more lengthy due to the existence of two % 3~ states having 

the parents (01) and (21) in the (! r~z..J 2-. configuration (cf. the 

derivation of the c.f .p.). As we expected these matrix elements are· 

quite large and ~re the only ones into which the core interaction enters 

in producing isotopic spin impurities in the 

We observe that the matrix elements to the 

~2. ~ state of (Lp ~~) 3 
• 

Q f'"-.J 2-~ p~ .... ~ state having 

the parent (21) are much smaller than those to the state with (01) parent. 

This is a reflection of the fact that all the two particle·matrix 

elements betweeri J ~ 2 states are much smaller than those between 

J :::: 0 states. 

The matrix·elements for isotopic spin mixing between all these 

configurations are given in table VII. · Their magnitudes are what one 

should expect from· considering the corresp:mding two particle matrix 

elements. The determination of the percentage impurity which these 

matrix elements imply l.s "somewhat ambiguous considering the lack of 

' 

··~ 



knowledge on sep13;rations of states of various configurationso We have 

therefore given what one might consider to be an upper limj_t on the 

impurity from various T ;;;: 3/2 states by taking the separation of the 

T = 1/2 and T : 3/2 states to be E
0 

- E1 "V 10 Mev and calculating 

f :::' ::?_~ 
~ , in each caseo From the discussion which preceded 

(~,.- fl).i. 

thi.s calculation we must conclude that this p is really an extreme 

upper limit f~r the mixing of the ground state if one neglects excitation 

of the coreo 

Perh~ps the most significant feature of Table VII is the large 

factor by which the mixing produced by the core exceeds the mixing 

produced by the particle intera.c:tiono. Again this conclusion reflects 

the corresponding :situation in the mixing of two particle stateso The 

domination of the pert,urbation by the core is quite significant when 

ene considers that Z is only 2 for t.he 11 core 1~ in the A :.;; 6 triado 



TABLE VII 

MT -h1e AI= 7 'N(.{.cie'-VS p=IO-;).~~ 

~ 0 / 

-~ 41-f/l f)& n~ ~·"''a Mev 4, :;s.x 10-s-
-

~-- . -

·J" M, ?f?p A= 7 Nwt..cietd ~=;a-~~,_ 

~ f. 0 :;,. 
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-~, OJ.P, ~?C. IG - t:J, Ol7t:; /iw ~.ii )</0 

,, 

1, ~ 0 

-~ · 1 &e' 
-?~ :siC~ - c::>~oa~ 9' f. ?Jx 1 o -.s-

~ f;, 
~ 0 
I -'-/IF eZ r o. a :a.< o 

-$" 
-~ fJ, . .;p. ~ ;c "'7l' /. ().:J. X 10 

:r' T 1Mr -~ A-=7 Neu.ieuS p = !0:;. ??tp2.. 

0 I I k2 I 
- "· 1~.:;., /. 71-X/0-1-~ -R.~?!.t' -

-a - ~z.~_.l3 /k ~ 
' d> .::1.., 7.2. T{; "-' 

- o.:2B3 .6: 4~i< /0---1 

.2 l i ~ Ze2..~ 3.S:i. )1. 10.; ~ --;e- 6 :2.- .(!). &59.3 

-f.. ~'LI 31/l~ 
)</07 ::2. R ~~ -.3,a 7{ 1< - e>. ()~ 17 :~..9 

' ' 
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(4o4~ The Excitation of the Isotopic Spin State of Closed Shells 

In the calculations which we have done on the mixing of · .: , 

the isotopic spin states of two or three nucleons we have always neglected 

the excitation of the isotopic spin state of the coreo Since all our 

calculations have been based .on the jj coupling shell model of the 

nucleus~ this assumption is a particularly convenient oneo All nuclei 

with mass numbers between A ~ 12 and A = 20 will then require nothing 

more than a calculation involving the states of either two particles or 

two holeso We now purpose to consider the excitation of the core and 

the isotopic spin impurity in a nucleus with closed shellso The problem 

can be treated by.two different method~ which illuminate-two different 

aspects of the Coulomb effect on the isotopic spin state of closed spel.lso 

.These two methods are (1) the :reduction to the two nucleon matrix 

elements~ and (2) the method of an "equivalent" potential of a closed 

shello The first approach will shew how one may regard the excitation 

of the isotop:i.c spin state of the core as an extension of the problem 

of Coulomb mixing of the states of two nucleonso The second approach 

is a rigorous derivation of the method by which we have included the 

effect of the interaction of the core on two particle states, but will 

show ·in fact how we can also use the method to calculate the impurity 

of a closed shello 

Finally we shall give some consideration to the question of how 

one may obtain approximately the isotopic: spin impurity in the ground 

and excited states of' nucleL The result of this investigation will be 

that one may relatively easily estimate isotopic spin impurities in 

ground and excited states of nucleio 



(4o4l) Reduction of Closed Shell Mixing to Two Particle 

Mixing 

The wave function for a closed shell nucleus corresponds to 

a J - 0 T ~ 0 state and is an antisymmetric linear combination of 

products of the single particle wave functions 1/J.., = 9fm ..... {-'t·, ae)u(~) 
The function of space and spin coordinate flr"Y.,...,. (7!. 1 '&-) is 

characterized by a definite value of angular momentum j and the 

z.;..c:omponent The isotopic spin function u(t*) is an eigenfunction 

of with eigenvalues The nuclear wave function for the 

ground state of a shell will be designated by and can be 

written as a Slater determinant of these wave functions with all the 

(2j ~ + 
u(t!) 

1) values of i'Yl.Y appearing as well as the eigenfunctions 

and u(~!) o Excited states of the closed shell nucleus ~..y 

can also be written as Slater determinants~ or as linear combinations 

of Slater determinants~ in which one or more single particle wave functions 

have been changed to states of a single particle lying outside the shello 

Since the Coulomb perturbation is a two=particle operat®r~ matrix elements 

will vanish to states ~-J differing from ~~. by more than two 

single particle stateso We shall first assume that differs 

from 'W" by only one state since we expect the contributions to be 

small from states which correspond to the excitation of two nucleons, 

This approximation will be checked by deriving a general expression for 

the contributions from states of two=particle excitation and evaluating 

it for c-~2. (closed l Sv, and I f31z.. on jj coupling model) 0 

The Coulomb interaction of system of nucleons is given by 

v= l e"l-. (±--tft)(±-tr~)= v(b)+ y(lo)+y(:u) 
. . h~-t 
n~ <l' 

and has the irreducible components . 
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-y~(o) =- z e' (t + t t;~~) 
t>j /1..1 i 

V{lo)-==- z e2.. 
. ( t ${ +'t~~) 

hJ ,'2.kt~ 

ylu)= ·2: .£ (trts ·- -L ~ •• ?;i) 
' ' lz.~~ I ~ 3 \ 
~) d 

where V 
(0) (10) 

is a scalar in isotopic spin space~ V · » the zero 0 th 

component of 
. (20) . 

a vector~ and V j the zerouth component of a tensor 

of rank twoo The selection rule on the matrix elements of v(
2
0) 

which reads~ /J, T ::: 2~ insures that the only mixing produced by V(
2
0) 

will be to states which lie so high that their contributions to isotopic 

' (10) spin impurity can be neglectedo Thus only matr1X elements V . need 

be calculated~ and we shall put 

c (46) 

for convenienceo The selection rule ~ T ::;: 1 on C insures that all 

its contributions to mixing are from T ::: 1 states and none are from 

T "' 0 states o The impurities produced in ll 0 by C are therefore 

isotopic spin impuritieso 

Designate the excited single particle state in ~v 

with momentum j3~ suppressing the principal quantum number n for the 

p:resento The Z~component of the state must be the same as that of the 

corresponding state in 1/!t) ;; Jtn2 sayJ so that MJ = Oo The 

matrix element of c is (TAS 56) 
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(~" )c ~J =- ~ ~ [ j t~J;(,)1p:C~) t,, :;~7. 1l}(, )1P~6) 

- J't(J:c, )1>/C~) tr,,..ira. "4->-Jc,) ~fG") l 
lk-. 'J 

(47) 

Summing over the isotopic spin states of particle 2 this becomes 

( 1")11 c 1t) = - i~ ~ [J ~;(,)'l'J6.) t, ... fff (t )Cfo~ (~) -
- Jcp:(l)qt£,.)t,l. r1l(l)~tLtJ.)J (48) 

Using the Dirac notation (48) can be written more explicitly as 

(1J~>C ~oJ=- ~ ~ l ~~3m&~~~~~~~~IJ~r-n,j,m)-
. dl 'Mt ~ 

- ~' m, ~ 'm' J ~ ... J ~1 
""' ~""' • ~ 

(49) 

We shall transform the two particle matrLx elements into the JMJ 

representation~ obtaining 

(1J!,,C ~.} = - ~t ~ Z: l [(~, ro,j,y,,IH rM~8·i· rM:riJ."'·~· ,). a' W\1 ~M:r _ _ 

_ · Ci3i, rt ~ IJ~~~ r) 
- ( ~vn~~,m, lja{1 JM:r) (~, ~l.:TYl:r\~, m,~',;m,.J · 

• ( ~l ~I :r l ~~J i·~l~ J) J 

We have omitted the index MJ on the matrix elements of ~ 
'"'ll. 

(50) 

since 

these are independent of MJ o For :simplifying this sum we int-roduce 

the V(abc, fl.,.~; ) discussed by Racah (R42) and defined by him as 



' 

(id"l-im ~~~11 m,vn~J = (- IJ-}+~ ,j~i +I Y' (111' ~~ \ ~, W\~-n,) 
(51) 

The first term in (50) when summed only over m1} MJ is 

i: C~a1'YI,_~,~, \1a ~~ :rMJ")(tl~' J M.T\~~~ ... ~,W1,) 
rn 11 M:r . . 

: (- I) Q. ( J"i"' M :-) l (.tl J"' + I }"\f'(i ~ i, 'J'" \ 'rr"\ •- rr; , M :r} 
.,., ','IV\~ -\r ( • • ) 

• V i~ ~I J { 'VY'l'l. 'M 1- ~J'" 

::: l:. V(~ 1 J"i, \ M 1 -1"1 :rm'l.)Y(1,..r i~ ~ m, ·- M:r"ni';I.J "J+ \J (52) 
"'tr' J" 

where we have used the symmetries of the V(abc} J..fo-1 ) o Using the 

orthogonality relation 

the equation (52) becomes 

(53) . 

By similar processes one gets for the second term in (50) 

(54) 

Insertion of equations (53) and (54) into equation (50) givGs finally 

(~,C'll!.l = -f.~ E~i;') u)'~··~· :r\tJt1.p-)+ . 
a') 

· + (-1)J"+~~-~, (~~~~~ :r\~\.1 a-'~~i~ rTI 
(55) 
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The 'i and i represent the principal quantum numbers of the single 

particle states jl and j 2 o The significance of the equations (53) and 

(54.) which require that a particle of the state fc must be excited ... , 

without change of the individual angular momentum j 2 is very easily 

seen by using the fact that the spin of ~0 is J ,.. Oo The excited 

state ~v can be regarded as a shell with a single hole of spin j 2 

coupled to an outside particle, ioeo the excited nucleonj of spin jJ" 

But unless j2 :::: j 3 ~...,; will not have spin J = 0 and the matrix 

element ( ~-v ,t tliJ
6 

) will vanish o 

The form of equation (50) displays the relation of the problem 

of core excitation to the existence of a two particle interactiono The 

individual terms are in fact the 11matrix elements" for the excitation of 

a single particle which is interacting with another particle of the 

core through the Coulomb potentialo These are not matrix elements 

between properly symmetrized two particle states as one sees from the 

derivation of (55)o 

From (49) we observe that the matrix element (55) corresponds to 

the excitation of just the single particle state jzm2 , while m2 may 

assume (2j2 + 1) values and j 2 should assume a different value for 

each closed shelL The value of -b! for the excited nucleon may 

also assume two values corresponding to whether a neutron or a proton 

was excitedo Let 

~(j:z.J == 

where (~-.~,L 1eo) 

(j2) designate 

("ZLJ,.c.w~ 
£: -E ... 

o a ... (56) 

is the matrix element (55) between ~0 and 

the state- 1J!4 corresponding to excitation of particle ·jzm2 and 

E
0 

= Eji is the appropriate energy denominatoro The total impurity p 

• 



.. 

in ~~ is then 

(sum over closed shells) · 

(57) 

We shall apply these formula to the specific case of 
12 

C and shall then compare our results with the amount of isotopic 

spin impurity obtained from the calculations on the statistical model. 
12 

On the jj model C consists of closed \Sti2.. and I f3;,_ shells 

and the isotopic spin impurity follows from (55) and (57) 

(58) 

( E:o- e:, r,j .l(i r~J= - e,_'" t ~ (~~+I) ~p.;.l p~>_j It,~ I (I r""-)'r)(i+Hf) 

t ~ 2.::1 l ( ~f"- Is,,. J 1 ;t..\ 1 p•,.ls,,,:r)- (--,\" (.2r~,.~~.!lli.l 1s~,1 r11.j~ 

(59) 

C E".- ~ ,l,,}~o( 1 .,,,) ....: - ~ f ~ :'£ 1 ~ ... 1 ~\l..r I ;b; lr s ~.~ r~ .. ::r) -
- (-' ) :r-( .:H ~.Jp3~,. :r I tl.J ' f"%. ' s,,~ :r ~ 
+ (!l.s,,,_ls,~,.ojAI,., I (ls~J,_o)} 

(60) 

\ 



We now apply the same procedu~e with which we calculated two particle 
,_i'-' 

matrix elements in <.(4.21). W:e find first the 11matrix elements" .in LS 

coupling~. calculate all the required Slater integrals 9 and transform · 

t.o jj coupling. The necessary jj 11 matrix elements" are listed in 
k . 

the following table while the appropriate F are to be found in 

. Appendix II 
( 

Direct Terms 

( ar'~ ~~." L'l..',~/1 p)l,_l P''~o) = ~ t) ((\f) 'a.~ I p2.p) + t r='l. (<1 r)'~ I pl. r) 
. \..J_I . r 3 (~p~;~ lr~~l A,~ 1f~1~1f''v:2.) = ro \(!f),,, I p2-~) -.:tS" r~((,f)\.1 p2..~) 

(-<r~ \SII'a._o Itt. II r~.l~ \s~~o I ~0 .. 

( :2~~ \S~. \ \-t~ \ I r>i,_ Is,,'" I) -= ~ 0 G pIs \ I f j s) 

( ;t~1,.,_ I f¥~1 \ t~ l \SJ11 1. f% . .2-J = Fa (c2.S 1 i. ~ If Is) 

(ls~'" Is '1\.. 0 I :t1.\.ls~\. i St,~·o ) = F0 c~~ \ s \ (IS J~) 

(..?f31\..l g~ o ~~~ l'l s,,\.1 f1~ o I = o . 

c .l f3-'2. ul,,~, It" 11 s ''~ , r,,~ 1 ) = - ~ t!, (!(? 1 s '> , s 1 ? 1 

(~f!.t& \~111:L \t~l\~11~ \f'12..l.) = -1 r1 (~pIs \.IS I~) 

(a2S~J),. I ~'!11~ 0 \~ \ 1f?v'a..\S~10 J =- 0 

(.it~~ 1 F~J. 1 I i~ \ 'r\<~1 s,,,. 1) = ~* ~ 1(~ 1 p "1 -pt.s') 

(.:ts~~,. l?:v .. ~ \ t ... \ i po~-.. lst,,. 2.) = -1 ~ 1 C<p Is ; l s 1 ~) 

... 



We emphasize that these are not ·matrix elements between properly 

symmetrized two particle statesJ but only between unsymmetrized states 

of two particles coupled to form different angular momenta. With these 

values of the 11matrix elements~~ the mixing coefficients given by (59) 

and {60) become 

( Ec- E"lr>;.,).t( 1 pv.) = - '£>. [.3 !"" 0 (-<p lp \ (lpl ~)-]. ~ 1(lf' If~ lof) 

+ .:2 pi• (ap\S ) I pIS)+ 1 \-" 1(:l.p \~ \ \.S 1, Jj 
(61) 

(to- tl!i1~Jct(\SI1,)= -:{['1 t= 0(~1?\ Is lfl+j: != 1(.2.Sif ~lpls} 

+ f 0 (2S Is \0-s'l>-) J 
(62) 

Using the value for 

coefficients for c12 

s:-
-y::: - these equations yield for the mixing 

.2.R'\. 

(e:~-Eif'') «((LflA.)= - 0,"2..4 ~. 

(E.- E::,5,,,.) ot.(ll11J .. - o. !102 sR'\ 
According to equation (57) the impurity in the ground state of c12 is . 

(63) 

where we have taken Co- E 1 r:>'l : E .... E\ . : t::.. _'E. a This value 
1 II). 0 S11~ J;;c 1 

of p for c12 
is to be compared with the value obtained from the 

expression for p found from the statistical model 

A A-1') ez/ R J
~ 

G I " t tM 1 &' + o. 011 A ~ ( E.- E, 

The value of r~ . ior c12 is found from this expression to be 

rs = 11.0 t ::~~) .. 
(64) . 
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The agreement between (63) and (64) is really quite remarkable~ but the 

value of p found from (63) will be somewhat lower ·than the upper limits 

given in our work on the statistical_modelo We now know that Eo- E1 

is equal to the separat.ion of levels for a single particle having the 

same j value but differing by unity in the principal quantum number n. 

Where we took E0 = E1 0---'15 Mev for an upper limit on p (and should 

again for an unquestionable upper limit)~. we will assume now that 

E0 ~ E1 is at least as large as the separtion of the l_f and ..<. ~ 

levels.- or ~ 20 Mev. The impurity in c12 is therefore 3o02 X 10=
3 

as compared to the previously estimated ?o5 x 10~3. We must remember 3 

however~ that most of this factor of ~ 2.5 differenl(~e is a result ~f 

a different choice of E0 .= E1 and the agreement of statistical model 

and these shell model calculations iS really surprisingly~ perhaps 

fortuitouslys close. 

The impurity of the ~ -particle is very easily found by using 

just the 
4 

for He 

H 
4. 0 .of e ~s 

o( ( 1 S.(l>-) found above. If we use the ..2 ~ \ IS separation 

25 Mev.7 the isotopic spin impurity in the ground state 

4~").(\~/1-,,) -3 
. ,....., .2.>.10 

( E.'e- ~I )'l. ,...... 

The fact that the impurity for He
4 

is nearly as large as that for c12 

. . 4 
is a result of the much smaller radius of He • 

{4.412) .Contributions to Im;eurities from Doublz 

The contribution to isotopic spin impurity from 

excited states ~~ formed by excitation. of' two particle states in 

~0 has been assumed to be much smaller than contributions from 

states ~-v of single particle excitation. We shall now justify 

..... 
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- -- ' 

this assumption by first deriving a general expression for the isotopic 

spin impurity from 19 doubly excited 11 states and then evaluating the 

' 12 
expression for C 

Just as we wrote equation (47)j we first write the matrix element 

of C between tJlc and a doubly excited state ~.; (TAS s')as 

This matrix element vanishes unless tr 1-=-t: ~ 'L = ± i 
protons or two neutrons are excitedo In this case we find 

(1-~,c~.) ~ ± ~ [J ~;(,)~~ t,.~t" ~~t,~ ~~(~)­
- ]C1~!·>~1(,)~~ C!/)~{1~~~{-.) J 

or using Dirac notation 

(~-tp, \to) = ± ~ [( ~~"lj .. m~ It~ l-1\-m '~" 'fn~J-

(65) 

(66) 

-(j~m~~m~ )~,~ j-j,'l'Yl•i· -m2.)] (67) 

Again we transform to the JMJ representation 

( 'lli_, .( 'll1.,) = ±: ~ L [ ( i• m, i<~ ""4/ ~ tt- J"M:r) ~ ,jJMr-~1 111, d .. m~) · 
J.Mr ·(+J~ r/;t: l+i· :r) 

- ( ~ .. ~4{• .,, 1~{3 ~~ )(j'fr~j~·"'·~· ~~. 
.. • ( ';)11> J: /l!,J~ ·~· ;r) J 

(68) 
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This matrix element can be formed for any of the values of m1 ~ m2 ~ m31 

and m4 so that the isotopic spin impurity due to excitation of particles 

of spin jl and j 2 will be the square of (68) summed over all the 
:: . ,' -: . . . . ·.: . ' . ·~ : .' ; . . . 

possible values of m1 ~ m2 j ~~ and m4o A factor of two comes in from 

the possibility of exciting two neutrons or two protons, This sum is 

then 

L; I N.,t'Y!.) I"= ~(~f [A- :J. 8+-C}:: 11 (11 i~ \ i~ i+J 
A-= ~ ~ L ({~~!~~4I~J1- ~M:r)(iim3jtm+/~-j.<rr'MJ-)' 

'rl'l1)m\. "J\Mt :r;~V~:r . 

(-i 1 ~~ ~ M:rl~lm,ijYn,.) (i,i• T 1 M} ~~ 1'M1~> ..,~) 
(i5{~ J" \:t~ \i~~~:r)(~3~ :r'I~,Ji~~~:J 1) .. 

(3 = ~ ~ , l: ( 1~~~i4~+l~a~JMJ-){; m+J~'m~S1 ~) 
, :r ~, Mr '"1'1'1 "'t"t\1. 'ir 

'('t'l~,'rl"l+ ' 
( • \(· - I I l' ' '\ ~ ri "). :r M.:r ~ i I --rrq ~")< 'rrl 2.} ~ 11~:r M:r i I VV\ I <f;, m~ } 

(1,tt :r IL.\ H~ :r), ( ~+i• :r'l;tJ i~i· :J') 
C = '6 2: 1 Z (+~m4~3m3J...i4Jl.JM:r)~4~4~~~3~4~~.J1 ~) 

'Vi'1 11'WI,_ .:r I M:r .:~ <:J d 

(1, {> rMr 11,mri2.~ .. 1(j,~~r' M} 1-j,Yn,~~ -m~) 
. (~ i· :r lk'.~ 1-H > :r) (i d > .Ti/ ;;!;-,_ I~ I~> :r') 

(69) 
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These three expressions can all be reduced by the_methods which gave 

(5.3) and (54),· The resulting expression for (69) is 

8(~ 1 1> ;1,1+) = .z(o;_jl- ~ (x:r+tl[ (J.i~ J btJ ~ ,p·) ,_ 

- ~ ( i3 i~ j It~ fi,i·~ X )(it13 J" I t,./-id',:r) 
+ (1.4-t~ :r \ft._\ 1t {. T)") 

(70) 

where the sum on J is from the larger of / J1 - J2 I~ I J3""" J4) 

to the smaller of [ h t j 2 [ ~ \j3 + j 4 I o ·· To obtain the total 

isotopic spin impurity due to excitation of a pair of particles from 

any two states of the nucleus consisting only of closed shells~ we must 

sum (70) over all possible values of j 19 j 2 j j 3 j and j 4 afte~ dividing 

each term like (70) by the correct energy differenceo This gives for 

the isotopic spin impurity 

(71) 

The largest contribution to the sum for c12 might be expected 

to come from the term which has the smallest energy denominator vizo 

excitation of two \ f~l'2- particles to \~~.. states, For either 

Jv j 2 o:r j3; jft, i.n the same state 9 however j the term given in (70) 

vanisheso Since parity is a good quantum number the excitation of 

' 
must be to an odd~parity 
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11two-particle state"~ The lowest lying is and this has 

only, J;;; 1 in common with \f~'"L.,\<;t1l­

leads to the isotopic spin impurity 

For this excitation (70) 

Since 

I. 

?: - c~i 2•3l (t f''•z~/ ~·It r~. Is,,,, r-
- :... ( 1 ~y~ 2. ~,,,, 1 ~-1 1 rlt~ ~~~.~ )( 2S~, 1 r~,l \Xi Jtrl" 1 s ,,;.1) 

+ ··. ( .:LSv. I rv.l I ;&J I f)1 .. ISih 1 )'" J 

we are left with 

(.1s~ 1 F~ 1/i"i,_/tp~ .. I s1,,.1):... 

or evaluating the matrix element 

( 
4f ) 2.. . _.3 ,IS R 

p-.. = 7. 7 2_ X I 0 ~0- E I (72) ' 

This is to be compared with the value of p for c12 given in (63), 

-3 
\. ~~ X 10 

(73) 

The energy denominators for excitation of \ fl;~~,.l S ~.,_ to 

all other states are twice as large~ making the contributions negligible 

from all states except possibly a .2p')13. 2...&'11'2,.. combination. From 

the results for the two particle mixing and the ensuing discussion one 

'sees that these matrix elements might exceed those to '\ r I;~\ 1 l/1- by 
.. 

a factor of~·10. Considering the additional factor of -"'... 2 in the 

... 
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energy denominator of ..2_.P~..~.,...,2..S~,.. these contributions to (71) cannot 
.25" 

exceed (72) by more than ~ Therefore even in this case the contributions 

from doubly excited states is negligibleo 

We conclude--States formed from the ground state of closed shell 

nuclei by excitation of two nucleons contribute negligibly to isotopic 

spin impurity of the ground state, 

{4o4l3) An Equivalent Potential for Closed J1 Shells 

If we return to any of the equations (47)j (48), or (49) 

we can see that if the sum over the states Sfy(2) were performed and 

then the integration over just the coordinate of the second particle 

performed~ we should have for the first term of (48) a matrix element 

for the excitation of a single nucleon moving in the equivalent potential 

of the other nucleons in the closed shellso The second term~ which w~ 

call the exchange termj is actually equal to the first term when jl. ~ j 2 

and m1 ~ m2 (remember jJ - j 2 according to (54) and (55)) and reduces 

the sum over m1 when jl ~ j 2 by a factor of 

~~,+\)4- (;~a,+') 
(I .o2-J, -t-' ) = .:;l' 

This means that if one wished to calculate (47) by neglecting the 

second term~ one should multiply the sum over the jl ::: j2 terms by 

f .,),t-i ) ioeo by 3/4 when jl ::; j2 ::; lf~ta.. or by ! when ~11'" I 

h:;;; j2 = Is~ This is merely subtracting the self-perturbation 
l-

effect, The terms of the second sum have no simple interpretation in 

terms of an equivalent potential (TAS 10
6

) when "YYI•~i, =F Yr'l~,~~" These 

"exchange" integrals will be much smallerJ howeverj than the 11direct 11 

integrals a 

The equivalent potential is given by the sum 

(74) 
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carried out over all closed shells.of the nucleuso The integral in (74) 

can be expressed in terms of 11 spinl~ss 11 wave functions 

--. 
by the transformation 

(~ ± j -rn~·~~'m-t -t "ms; )(..t "m~ t ,..,, /.1 ± ~ -.md) I 

·J l~(,)* ~~1(') (74) 

Now using a Slater-type expansion of the integral (TAS 8
6
), we can write 

where 

~(~{<L) = .;>~.,t-/ }Rrtt(J Rn-t(l) A.:.t ~/'~_w1J~(t!a:Ho1,)~t 
_, -? ' 

&:r.:r t-.J/:1., .=. ' 41 ""lz 

..z,.-2~ (77) 

Now choose the coordinate system so that . ..&~ = o and ~w.-:~.. = ~..B~ 

From equations (47) and (52) of Racah (R42) 

(L-m..e/ ~(e.eJ>w1:.) /~-wU) = (-!) n-?..(.(u.-1-1)7/(JL~; tJd~:J)~ _ 

' . -v-4~ ~ ~ - n?.e -m..e. t!:)) (78) 

where the V(abc; ~'t) are the functions previously introduced as 

related to the Clebsch~Gordon coefficients. With this notation VE 
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with W(~j ~j; !k) being a Racah coefficient, In summing over j the 

~ values also change, Only even k appear in the sum since 

V(-t~ k; 000) vanishes unless _.l!f~I-,~E. ~ is eveno 

The second sum ih (49) in the same way gives rise t9 a sum over 

11 non-diagonal" integrals of the form 

/ft,mjJ,>i;~ 9f'~111d~ (,) = E U f.;t>"mi, /~ ·vn.tt, fmJ,Xt,m~ ~ms;/.tafj, "'V~) 
. m.~, )¥1~, 

tl'l..t''l> :»>J~, 

, /:t_'m4 /;) I ~n-t. ) ..,,.4, C 1/ 41-z. Jt n..t: (t 
(80) 

Just as we obtained (79) we obtain for the sum over the "incomplete" 

matrix elements (80) . 

(81) 

with 

(82) 

The expressions (81) and (82) are quite general and suffice to determine 

the effective potential produced. by any scalar two-body force, In the 

next section~ however, we limit ·ourself to the Coulomb potentiaL 

(4o414) · Electrostatic Potential Produced by Protons 

4 12 
in He and C 

The sum in (74) has been carried out over all the states 
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which protons (or neutrons) occupy in a closed shell nucleus and therefore 

VE(r~) is the electrostatic potential produced by protons in the 

nucleus o We shall now proceed to calculate VE(r z ) for simple closed 
· .... · '.· ., 4·' ' 12 

shell nuclei He and C to compare this VE(~ with the electrostatic 

potential which is produced by a uniform sphere of charge. In this 

way we shall justify the use of this latter potential in the calculation 

of the perturbation of the states of onej two~ and three particles 

outside a core of closed shells. 

We shall derive the VE(5) 

be able to give VE for He
4 also. 

2 the sum in (79) reduces to 

for c12 
first and shall immediately 

12 
Since for C , k can only be 0 or 

The sum over the V(3/2 3/2 2~ ~mJo mo 0) in the second term can be 
' J 

shown to vanish~ so one has only terms in which k = 0. By considering 

tne series expression for the V(abc; ~;1,() one can show that 

f (-t/+- ~Y~'ic J-•N. <>) = (-;}/'-~._ .( ::J,ff-1 

Combining this with 

• 
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we d~rive the result 

(:<.-L!-1) V(...t...to:ooo)1</(tj.Lj; ~o?Jf-o"'Jf-~Yr;jjo ;-""<}»-;; o)=.t 
() ( B4) 

From this it follows that 

12 for C o The potential for He4 is obviously 

Performing the integration indicated in (77) we find 

where 

0 
We have used Y = .::vf?,_ in our calculations with harmonic 

(B5) 

(B6) 

oscillator wave functions ,in the lp shell and will therefore proceed 

to discuss the effective potentials for this value of i>. Later we 

shall see how the discussion applies to (B7} and (BS) for any value ofY o 

. The a~ymptotic forms of (87) and (88) are 
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! )').1. 

(89) 

! ">?:I.. 

(90) 

These expressions are very interesting as a representation of t.he 

physical picture, The potential produced by /~ particles is an 

oscillator potential for small ,5 ~ similar to the potential of a 

uniform sphere of charge, This is a reflection of the fact that a 

Is wave function represents a distribution of charge which is non= 

zero at the origin and is constant to first order in Jt The 

constants are not precisely those which one finds for. a uniform sphere 

of charge 

~- ~?. (-fs~ 
(91) 

but these are determined by the ov~rall charge distribution and depend 

At large distances 

For the ·~ 

$ ') ') :t. . the potential must become 

wave function.the potential at the 

origin is constant o This reflects the fact that the ·.~ wave furiction 

represents a parti.cle in an orbit~ so that one is 11 insidett the charge 

at the origin, By Gauss' Theorem the potential must be constant here, 
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4 
The potential produced by the protons in He is given by (86) 

and is 

(92) 

. 12 ) The potential produced by the protons in C is given by (85 ,and is 

-£J.L ) z 
VE(f! =(,;-lf-f/ff, B ... +- f¥./:l tlj 

(93) 

The asymptotic forms of (93) are 

Y;(j) ~ 7i ¥~(-if t') 

(94)_ . 

The numerical values of these potentials as a function of § are 

given in Tables VIII and IXo Also given are the potentials of a 

uniform sphere of charge for Z = 2 and Z = 6 

(95) 
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6 ' - 3 
The potential for He is also given for the value of ~- ~~~ 

which is perhaps more reasonable' for this nucleuso The data in 

Tables VIII and IX are plotted on the graph which gives 1a. ~(j) and 

4 12 
for He and C as functions of 

These graphs show very clearly that the electrostatic potential 

for a uniform sphere is quite a good approximation to that produced by 

protons in the proper harmonic oscillator states for single particles. 

By choosing Y = ~.tfiJ~S"' instead of ~ the two potentiais can be 
/?,_ ~'lo 

made to coincide at the origin and differ by less than 5% everywhereo 

The effect of changing y is most easily seen by writing the 

expressions for ~{d) (Is J l,s) and ;;/;(fJ)(! ;:_;_;lp) in terms of a new 

variable '"? = ,;/;7 --ta. o Equations (87) and (88) become simply 

'?7g, (o) (11) I ,r ) .:. 6' a "7 "'r 
~(•)(tp;lp) ==~·o/jfje-"1~ zff..!. .!!)J 

.< "? -~- ' 
(96) 

(97) 

The effect of -)/ is to determine first, the value of the potential 

at the origin~ and secondly~ to accelerate the approach of the potential 

to the asymptotic form 1/r, Using (96) and (97) we obtained the last 

two columns in Table VIII. 

·"'· 

~-

., 
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TABLE VIII 

Coulomb Potential of Protons in He4 

.. · '"· \ ·. 

, .. 

s R 11;. {t) ~ ~(/) ")1- 3 t_ nld) v=£ - -.4R'- ~R'-e• 

0 3.00 2.77 3.57 

0.2 2.96 2.76 3.49 

0.4 2.84 2,56 3.14 

0,6 2.64 2.35 2.74 

0,8 2.J6 2.09 2.31 

1.0 2.00 L84 1.95 

L4 L43 L41 1.43 

L8 1.11 1.11 1.11 

2.2 0.909 0.909 0,909 

2,6 0.769 0.769 0.769 

3.0 0.667 0.667 0,667 

• 



TABLE IX 

Coulomb Potential of Protons in c12 

" 

t ::·7JUl~) . . 4,. ~It)~~ ::-~~-a. ~I (f t61~ . 
t"~ * ~ .y- .1.92.-!" 

-~ '&., 

0 9.00 8.33 0 9.00 

0.2 8.88 8.20 0.185 8.86 

0.4· 8.52 . 7.84 0.371' 8.47 

0.6 7.92 7.23 0.556 7.81 

0.8 7.08 6.47 0.741 6.98 

1.0 6.00 5.65 0.926 6.10 

1.4 4.29 4.28 1.30 . 4.63 

1.8 3.33 3.33 1.67 3.59 

2.2 2.73 2.73 2.13 2.95 

2.6 ~.31 2.31 2.41 2.49 

3.0 2.00 2.00 2?78 2.18 
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In summarizing the results of this section we can say 

(1) the use of the Coulomb potential of a uniform 

(2) 

sphere is justified for calculating the mixing 

of two·particle states when the core is not excited, 

12 
the electrostatic potential for the C nucleus ... 

produced by protons in harmo~ic oscillator states 

differs from that predicted by the uniform model by 

less than 10%, perhaps much less. 

The last remark has great significance for the interpretation of high 
12 

energy electron scattering experiments on C 

(4.414) Simplified Calculation of Impurity in a Closed 

Shell Nucleus 

The close agreement. between the electrostatic potential 

produced by a closed shell of protons arid the potential produced by a 

uniform sphere of charge suggests a very simple method of calculating 

very approximately the impurity in the ground states of closed shell 

nuclei. For the equivalent pot.ential VE(r) we use 

"Y;U) = /f.. (fi, /9§-·,.,~)/~rh;. 
(98) 

= fki) (A'<t-4~) 
In using VE(r) we must be careful to subtract the self-perturbation 

effect, i.e. the perturbation .of an orbit by the particle itself. This 

is subtracted in the exact calculation by the appearance of the proper 

matrix element in the second term of (47). The equivalent potential 

(98) gives the qu~nti.ty o(, (~~'>") defined in .(56) as 
. . .. .,( . . 

1 .. - ,, ' ~ .\ .. '~ t. ~ 

( E;,- EIP'·) o(ti·I·P ,~~)-=. f1_2-/J_)d''"~~~:J\~~~)~ ·:u;~~ .~-~ 
. . /·"'.v. . (_,. ,' ~ c~,~:? . r ~"/ ~ ~~ ·.~ 

•. 

t . ·~ .. , 
. ' .. 

... 

.-... " 
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The factor of 3/4 approximately corrects for the self~perturbation, 

it is just .:z· t -
:~.·-rl 'I 

Similarly 

( E~ -~Is~:~-- Jf= 
o<.(IS~) 

quantities now give These for the perturbation of c12 

This differs from the exact result only by 7%, but this accuracy is at· 

least partly coincidence, 

(4,42) Isotopic Spin Impurity for Closed Shell Plus Two Nucleons 

Having discussed separately the isotopic spin impurity for 

the ground states of two nucleons outside a closed shell and for the 

ground state of a closed shell nucleusj we are now in a position to give 

the isotopic spin impurity for a closed shell nucleus with two holes or 

two outside particles. Just as we did in (47) we can give the matrix 

elements between the ground state f?/1 
~-

and various kinds of excited 

states, Let ~v designate particl~ states found in the core; .. 
particle states occupied by the outside nucleons, The various 

excited states ~ ~ can be grouped into classes distinguished by 

the possible ways of exciting nucleons 

(A) Single nucleon excited 

(1) core nucleon 

(2) 11 outside 11 nucleon 

(B) Two nucleons excited 

(1) both core nucleons 

(2) both 11 outside 11 nucleons 

(3) one core and one outside nucleon, 
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Yhe corresponding matrix elements of the Coulomb perturbation 

-r: 2 fiJ given in (42) are as follows~ 
L>j .l 

rA,?, .c~..,~c ~~·.< ;;;:•·'·(~ .a ~:f• > ~~(~) v:~ '1ft ( ,) rt¥v (2.~ - S ~:(, )~:(t) v,~ 'lfy (I)~~ ~)J 

+ ~ u 1/1:( I)'\:~ (•) 'If, 'tlj..(l)} .{.1) - J 'P:(IW~ (~) 'IJ,).; ( 1) 1ft._ 6) J 

Inspection.of (Al) shows it to be the sum of the similar matrix with 

just a closed shell and a ·term which can be regarded as the contribution 

of the qutside nucleons to the equivalent potentialo This contribution 

should be small for large nuclei but in any case is easily taken into 

account approximately. (A2) has ~een calculated, the second line exactly~ 

the first line by an equivalent potential. This procedure neglects 

the exchange term~ but this can be shown to be -'\.,.; 5% of the direct 

termo The matrix elements (Bl) and (B2) have both been treated exactly 

and shown to be negligible compared to type A matrix elementso For 

similar reasons (necessity for recoupling .of excited states~ very 
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different space functions~ large energy denominators 9 lack of a sum for 

matrix elements between states differing by two partfcles (TAS 56)) we 

also expe~t (B3) to be smalL 

The conclusion we must draw for nuclei consisting of two holes 

or two particles outside closed shells is that the isotopic spin 

6 6 10 10 
impurity ofT~ 1 nuclei (He ~ Be s Be ~ C 3 etco) is just the isotopic 

spin impurity of the coreo · The isotopic spin impurity of the T ::: 0 

nuclei, (Li 6 
J B10~ N

14 ~ etc 0) is the sum of the impurities for the core 

and for the two particle stateo 

The isotopic spin impurity in the state of the outside neutron 

and proton in Li
6 

is 3o3o x 10=5
0 This is negligible-compared to the 

impurity of the core as 
. -3 

one sees from the value of p ~ 2o0 x 10 for 

4 He o The core impurity is increased in Li6 by the outside particle and 

decreased by the slightly larger spring constant -) and slightly 

larger radiuso From the results on the reduction of the core matrix 

elements by an equivalent potential and {Al), we see that the effect 

of the outside nucleons can be included by multiplying ·~(IS~.,,) by 

"-' .'- Making the other corrections we find for the isotopic spin 
~ 6 ' . ~3 

impurity of the ground state of Li p ~ 2ol x 10 o 

In N
14 

the·isotopic spin impurity is again due mostly to the coreo 

In making the correction for the effect of the two outside nucleons on 

the impurity of the core we must multiply ~~~) and 

a factor of 14/12o The result' after all corrections is 

14 for N o 

~ (IS~t,_) by 

-3 P ::::: 3o9 X 10 

We can also treat the ground state of B
10 

by regarding it as a 

closed shell nucleus with two holes in the J:'~ shell o In this 

case the isotopic spin impurity does not come from excited states of 



' 
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type (A2) ~ ·but only from (Al) states o l-1aking the corrections for the 

lack of two nucleons to interact with the core and the different radii, 

10 we find for the ground state of B 
. I I • ' 

2 2 10=30· p: o X 

Th . al f th i t ' ' • ' t ' Nl4 b d . 1s v ue o e so op1c sp1n .1mpur1 y 1.n may e compare .~ 

-3 with that of Radicati who obtains 2o5 x 10 from a less rigorous 

calculation~ The principal ways in ·which Radicati 1s work differs from 

this thesis have been pointed out in the appropriate sections of this 

thesis and are (1) failure to remove the isotopic scalar parts of the 

Coulomb interaction~ (2) use of 1/ri for the core potential instead 

of the more correct 
2 

r. 
. 1 

approximation, (3) neglect of excitation of 

the isotopic spin state of the_core, and (4) use of supermultiplet 

theory for excited states. Although supermultiplet theory may very well 

contain some element of the true description of ground states (inter-

mediate coupling seems necessary I54~ Z53, 153~ T53, T54, Sh54) its 

validity for excited states seems questionable (see however C53). In 

Ls coupling with the correct core potential and RadicatiDs assumptions 

for the state contributing the greatest impurity and the energy separation~· 
. 14 . -4 

the impurity of N would be p ~1.0 x .10 . The only difference between 

this corrected val~e of p and our value for the mixing of isotopic spin 
@ •. 

state of the outsid? neutron and proton is that produced by the different 

lp~ 2p level separations, 30 Mev in our work and 40 Mev in that of 

Radicati. 
14 

The impurity of a N may he·re be somewhat underestimated since· 

the effect of two outside particles is seen in.a more careful analysis 

not to .be treated in a completely correct way by increasing the effective 

potential of the core. The presence of two outside particles does in 

fact introduce the possibility of excitation of a core particle to 

·• 
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single particle state of different j . with recoupling of tpe spins 

of the two outside particlesj the excited particle~ and the core to the 

same spin as the initial state of the two outside particles (which was 

also the spin of the nucleus in its ground state)o The matrix element 

to such an excited state however should not be particularly large and 

the energy denominator is not decreased appreciably since the· energy 

difference which enters is still that between nuclear states of the 

same J in different T multipletso The additional contribution of 

these states should therefore not be largeo The effect of perturbations 

by excited states formed in such .a way but having the same isotopic spin 

as the ground state could~ on the other hand~ be more importanto The 

extreme single particle model would predict an energy denominator about 

half of that which we used when the particle excited from the coTe did 

not change its j valueo Even here the contribution of these matrix 

elements to the impurity alreadl correctly found should be negligibleo 

5o Isomeric Transitions 

Of the several methods by which one may test the validity of the 

isotopic spin quantum number~ the existence of certain selection rules 

on the electric dipole transitions has been the only phenomenon which 

has been experimentally investigatedo These selection rules were first 

derived on the basis of supermultiplet theory by Trainor (T52b) but it 

was pointed out by Radicati (R52) and Christy (C52) that these restrictions 

on electric dipole radiation actually follow from very general properties 

of the electromagnetic interaction with a system of nucleonso A more 

complete statement of the selection rules on isotopic spin change in 

El transitions was then given by Gell=Mann and Telegdi (G53) who aiso 

discussed in considerable detail the effect of these selection rules on 
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the absorption cross section for 7f' -rayso 

The experimental investigation of the validity of the isotopic 

spin selection rules was undertaken by Wilkinson (W53I) who first 

determined a reliable method of predicting uninhibited El radiation 

widths and then checked for the uninhibited £( =rays expected in 

nuclei belonging to the same isobaric triad as the nucleus in which 

selection rules were predicted to operateo Wilkinson (W53a~ J53~ W53I~ 

II~ III~ IV) was then able to isolate a number of strongly inhibited 

t( -rays which were violations of the selection rules, and thus to 

place upper and lower limit~ on the isotopic spin impurity in several 

nucleio The results of Wilkinson were thrown into doubt by the remark 

of Gell=Mann and Telegdi (G53) that highero~r terms in the El moments 

are sufficient to promote 11 forbidden 11 El transitions in an even greater 

amount than the isotopic spin impurity would provideo A more careful 

investigation of these higherorde~ termsJ however» shows them to produce 

effects ~ 1000 times smaller than the effects of isotopic spin 

impurity in the transitions studied by Wilkinsono WilkinsonQs estimates 

of isotopic.spin still stand 9 subject to the somewhat questionable 

predictability of the El radiation widthso 

(5ol) Inhibition of El Transitions 

The non-relativistic Schrodinger hamiltonian for the interaction 

of particle of charge e and mass M with a radiation field represented 

by the vector potential A is (Kr38) 

;It = rJ-f;, (J- ~ 4) :(-- 1~ ~. VxA_., 
(1) 

~I 
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~ ...... e~ 

The quantity fo<.- ~ is the magnetic moment in magnetons !l =--· . / r· ~me;; 

Expanding the_quadratic term in~ and discarding those terms in A2 ~ 

we obtain the approximate hamiltonian 

where we have taken the static Coulomb field to be zero~ jr = 0. 

According to the usual perturbation approach to radiation theory one 

assumes the particles to be in eigenstat~of a more complete hamiltonian 

for nucleons would contain also the terms involving the central nuclear 

potential 9 the electrostatic interaction of the particles~ etc: 

Correspondingly the radiation field will also .be in some eigenstate 

describable by a q~antum analogue of Maxwellus equations. The process 

of radiation is then describable as a transition of the system of 

particles and of the.radiation field between two of their respective 

eigenstates~ these transitions being induced by the parts of the complete 

hamiltonian which couple the particle field with the radiation field, 

.From (2) this interaction hamiltonian is just 

(3) 

where we have written (3) in the unsymmetrized form which the gauge 

condition P'·A = 0. For the interaction of protons with an 

electromagnetic field one has an interaction of the form of (3) with 
•/ 

the anomalous magnetic moment of the proton and m = M 

the proton mass 

(4) 



For neutrons~ which have no charge~ but only an anomalous magnetic moment 

~AI the interaction (3) reduces to 

(5) 

Using the isotopic spin formalism the interaction of a system of A 

nucleons with the radiation field is just 

. · H:r = - 1~ { ~ Cf'i ·~ )(f--tri) t ~r (:f -ts.)+r.,( t+tt)} 
" ~ • ~ x A{~~ ) } ( 6) 

The neutron proton mass difference has been neglected in writing this 

formula as is certainly justified in first approximationo This result 

differs from that of Radicati (R52) and Gell~Mann and Telegdi (G53) by 

a sign because our e is positive for protons and negative for electronso 

The Hr in (6) is the sum of a part which is a scalar in 

isotopic spin space H0 and of a part which is the zerouth component 

of an isotopic spin vector H1 

(7) 

(8) 

If one makes the assumption (kR) (( l ~ one can demonstrate that 

the electric dipole transitions induced by· H
0 

are proportional to 

the square of the electric dipole moment between the initial and final 

nuclear states (B52~ Chapter XII)o 

"· 
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fi 

e L JJG~ Y,! fe-1t,C(J~)'f/(1, · ··v4) ~~(1, ···,A) 
·k=l 

(9a) 

Correspondingly El transitions induced by H1 have the transition 

probabilities proportional to the square of 

A 

Q/~ = . e Z rej1t_.,j41e M~ (~-~t/l·1r) 9}(1, ... 4~-1 (11"A) 
:.. 1<= 1 . (9b) 

If one now neglect· nuclear recoil upon emission of a.-( ·-ray~ the 
- A 

center of mass of the nucleus remains fixed and !. ~"* = 0 o Since 
. -fe= I . 

(9a) vanishes for electric dipole transitions only H1 can produce El 

transitions o 

From the fact that H1 is the zero~th component of a vector in 

isotopic spin space~ the following selection rules follow immediately 

(W31) 

~T = ±.i. 

The selection rule for N: Z nuclei is a generalization of Radicati~s 

requirement of no T : 0 ~ T : 0 transitionso The vanishing of the 

matrix elements of H0 makes the selection rules for Hr those whi.ch 

El transitions satisfy in all nucleL Their absolute validity for 

Ts =Onuclei can be impaired either by the impurity of isotopic 

spin states or by certain higher order terms in the multipole matrix 

elementso 
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In addition to the inhibition of the El transitions by isotopic 

spin selection rules there exists the possibility of inhibition of El 

transitions due to the correlation of the neutrons.and protons in the 

nucleus. This effect upon H1 follows immediately from (9b) where_we 

note that the pairing of neutrons and protons produces terms of equal 
.4 

magnitude but opposiie in sign ~ rcs-kll,~. This effect was first poi~ted 
<-/e:. I . 

out by Delbruck and Gamow (D3l)j and was later invoked by Bethe (Be37) 

to explain the anomalously small El transitions thought to occur in heavy 

nuclei. The evidence adduced b~ Bethe to support this widely held belief 

was of several kinds~-

(1) · anaomalously long~lifetimes in heavy nuclei -·· 

-12 16 . 
(10 sec.versus ·theoretical estimated 10- sec. for El) 

' 
(2) l{-ray widths for (nj ,( ) reactions 

(1/10 ev to a few ev versus 100 ev expected for 4-6 Mev 

-1 =rays) 

(3) small r-~ : for Li 7 ( P> "( )Be 
8 

by 17 0 63 1-iev -1 -ray 

(4) ~¥ widths observed in ( p,c( ) capture in F19. 

As has been pointed out by Kinsey and Bartholemew (K54) the·· 

number of El transitions in heavy.nuclei was suddenly reduced when the 

first a7~urate tables of internal conversion coefficients appeared (R51). 

Although several El transitions in heavy nuclei have been announced 

recently (Be52j S53) and these have rather long lives, even here it 

has been formed by a complex coupling of several nucleons with consequent 

reduction of the extreme single particle matrix element for El. That 

complex coupling can produce the necessary reduction by factors /V 100 

of the single particle matrix elements (W51) has been demonstrated by 

the :work of Lane and Radicati (L-54) • Their resultf'! show that a 

variation by a factor of 50 of the El matrix element from the 7.48 Mev 
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state of B
10 

to the ground state is possibleo The reason for the 

small number of true El transitions may be simply the absence of low~ 

lying states of the proper spin and parity in heavy nuclei (K54)o The 

evidence given in (l) and (2) 9 which was always circumstantial~ is now 

even doubtfulo tr Turning to (3) we find that the 17o63 Mev state in Be 

is now suggested to be 11- (A52) in spin and parityo If the ground 

state is 0~ as one expects for such an even=even nucleus 9 the parity 

change required for El transitions excludes the evidence in (3), Even 

if the 17o63 Mev should be 1~~ the small [7~ may very well be due 
,. 

to the isotopic spin selection rule operating in Be8o The evidence in 

20 
(4) is also spurious~ since all of the levels in Ne for'IIl.ed by proton 

capture in F
19 

are now known to have the wrong spin and parity for El 

transitions to the ground state (A52) o 

The belief that El radiation has the same transition probability 
2 

as E2 9 indicating inhibition of El by an amount (kR) also has been 

investigated by Kinsey and Bartholemew (K52~ K54) o Their conclusionj 

d d , ' f El . E2 ' M 25 base on one J.rect compar1.son o · an and. an gamma ray 1.n g 

and on indirect evidence in a series of ot:her nuclei 9 is that even 

from states as low as 7 Mev E2 matrix elements are at least an order 

of )Ilagnitude smaller than El matrix elementso Kinsey and Bartholernew 
'J.' 

conclude further that while the Weisskopf formulas (W5l) cnrerestimate 
... 

the El rates by about a factor of ten~ the ratio of El to Ml is correctly 

predicted to be ~0 for,A N 30o 

Evidence for the existence of an effect on El transitions arising 

from the collective motion of neutrons and protons in the nucleus can 

also be drawn from the giant resonances in photo-emission cross sections 

(B39 jl B48, L48 9 P48, M49 ~ S51~ M53) which occur at 15-25 Mev excitation 

.;· 
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of the product nucleus. These resonances have been interpreted by 

Goldhaber and Teller as due to relative vibration of two interpenetrating 

spheres containing separately the neutrons and protons. In this way 

they have predicted for the dependence on A of the energy at which the 

maximum of the photo-emission occurs 

(11) 

This agrees reasonably well with the experimental result Mc53) 

- e> .. l ih 
37A tllsv. (12) 

Levinger and Bethe (150) have also shown? however? that many of the 

features of the (Y1,""<) resonance can be deduced merely by the use 

of sum.rules for electric dipole absorption. The position of the 

maximum is predicted to occur slightly above the average nucleon kinetic 

energy~. however~ and this is constant at f\J ~5 Mev on the simple 

Fermi model of the nucleus. Obviously any features which follow from 

simple sum rule arguments must.follow from any model so the principal 

success which can be claimed specifically for Goldhaber and Teller 1 s 

model is that of predicting the A dependence of Em nearly correctly. 

Whether a model not embodying the ideas-of collective motion of the 

neutrons and protons can also predict this dependence remains to be 

seen. 

Finally we shall merely repeat the earlier remark that complex 

coupling of the nucleons can also inhibit the El transitions (154). 

Our conclusion from this.discussion of the El transitions is 

that at moderate energies ( <( 15 Mev) there is slight evidence for. 

some inhibition of El transitions~ but that this inhibition is not 

.ri 
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nearly so pronounced as one thought previously. It is not even certain 

that this remaining apparent diminution of El'matrix elements is not 

due to overestimates inh~rent in the crude nature of the Weisskopf 

formula. 

(5.2) Experimental Results on Isotopic Spin Selection Rules 

The establishment of reliable estimates ,for the uninhibited 

(by isotopic spin selection rules) widths for El transitions is clearly 

the first step in verifying the isotopic spin selection rules. Wilkinson 

began his investigation of the selection rules at precisely this point 

(W53b) by giving a list of El transitions and calculating the quantity 
2 

(2J f- 1) IMl . This quantity, first defined by Goldhaber and Sunyar 
2 

(G51) is the product of the spin of the initial state times /M/ , the 

ratio of experimental width !).. to the Weisskopf width (W51). The 

quantity is used by Wilkinson because his data are taken from ( f"l..,.. ) 
and ( oL.. ~ "( ) reaction cross sections from which one automatically obtains 

(2J t 1) r). by use of the Breit-Wigner formula. The factor 2J + 1 

should be removed for comparison of experiment and theory but is usually 

not known for high energy resonances (H54). In the El transitions 
2 

chosen by Wilkinson (2J+ l) jM / fluctuated by a factor of less than 

~ 2.5 from the value of l/5. Wilkinson's estimates of the 

uninhibited widths (7~ of El transitions were therefore made from 

(13) 

or using Weisskopf 1 s formula 

(9. v. 
(14) 

r"(~ indicates a partial width. 



Several remarks should be made about (14). The previous discussion 

(5ol) has shown clearly that one should place very little reliability on 

formulae for El widths extrapolated to different nuclei and especially 

to higher energies. Since Wilkinsones study actually contained one El 

t , t' . BlO t 
rans~ ~on ~n ~ wo i Bll . Nl3 f , Nl4 . 015 n s on~ ~n ~ our ~n ~ one ~n ~ one 

"16 ·. 17 
in 0 9 and one in F for a totai of eleven transitions with only one 

above 10 Mev j we dm probably trust (14) up to. A rv 20 and E""'O'.>~ ~ 12 Mev; 

within a.factor of 2 or 3 either way. The mere presence of the 

statistical factor (2J + 1) guarantees this much fluctuation • . 
The next step taken by Wilkinson (W53I) was to verify the existence 

of u..riinhibited El transitions between two T ::;; 0 states of a ·r f + 0 

nucleus. This is done by comparing several cross sections for radiative 

capture of neutrons as calculated from (14) by use of the Breit-Wigner 

one=level formula with the experimentally measured (n, ~) cross· section. 
8 . 10 12 . 12 

The nuclei used were Li j Be , B , and C and the levels were 

respectively at 2.04 Mev,· 6.81 Mev, 3.3:6 Mev, and 8.17 Mev. Although 

the analysis is fa:r from being convincing as t,o the agreement between 

-theory and experiment~ within an order of magnitude one can conclude that 

there is no inhibition of the El transitions. 

Following these preliminaries the El. trans.itions in several nuclei 

were studied for evidence of the operation of the "isotopic spin selection. 

rule (W53a, W53II, W53III, W53IV). The results of the analysis of 

Wilkinson and collaborators.is tabulated below. 

Nucleus 

10 
B 
14 N . 

016 

. 20 
Ne 

Level 

(2-)? 

1= ~- o+ 
1=_, o+ 
2.+ .... 3= 
- o+ 1 ... 
2~ ..., 2+ 

Energy (Mev) 

5.11 

8.06 ... 2.31 

7. .116 ~ ground 

6.913 -.6.137 
13.09 ...., ground 

13.70 -P L63 

Limits on Isotopic 
Impurity 

< 3 X 10~3 

< 2 x 1o-2 

) 4 X 10""6 

< 10=3 

X 10=2 
) 3 

< 3 X 10-2 

Spin 

~,-, 
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Although these are the figures adopted by Wilkinson, as is evident 

from his analysis considerable doubt should be attached to the exact value 

and in some cases to the order of magnitude. Perhaps the most reliable 
14· . . 

value is that for N were the forbidden S.06 - 2.31 transition is 

·Compared with the allowed transition to th~ ground state. The impurities 
16 

obtained for the levels of 0 are obtained by a comparison of El and E2 

branching ratios from the two levels (W53a, W53II) using the estimates 

of Weisskopf. Among the isomeric transitions, however, the E.2 have been 

known for some time (G51) to be unusual because of their large matrix 

elements, which equal or exceed the Weisskopf estimates. In Mg25 Kinsey 

and Bartholemew find the known E2 to be correctly predicted by the 

Weisskopf formula. It therefore is quite possible that the impurity 

estimates are low by an order of magnitude. The l.imit obtained for B
10 

is based on rather tentative level assignments (J53) but agrees with the 

theoretical predictions. 

All of these experimental results are in agreement with the 

estimates of isotopic spin impurity given in (4.42). As we expect if 

the isotopic spin impurity is predominately due to the core, these 

limits on mixing are very nearly the same for a wide range of energies 

and in several different nuclei. 

(5.3) Higher Order Effects on Isotopic Spin Selection Rules 

The selection rules on isotopic spin are based on the vanishing 

of the H0 matrix element in the lowest order approximation. There are 

three corrections to be considered: 

(1) neutron-p:roton mass difference, 

(2) dipole matrix element of the spih.dependent part of H0 , and 

(3) higher order terms in the expressions for the electric dipole 

moment. 
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The first of these is easily dismissed by noting that the dipole 

moment of the nucleus involves rko Taking the center of mass 

z. A 
as the origin 

z: 
h?,P 2 ~·'lt 

~=/ 
- o - (~~ -n?N )Z-1-?:.. +,-nl>/ 21~ 

-te=l ~I 

and therefore 

where 

n.?p :: proton mass = L00758 amu 

~N= neutron mass= L00893 amu. 

(15) 

We conclude from (151 that the effect of the center of mass and the 

center of charge nearly coinciding is to reduce single particle transition 

probabilities by 

(-

;h?N_;. me)~~ 
?-??# -v 

-c. 
~x/O 

Since the isotopic spin impurity produces El widths which are ~10-3 

times the single particle widths~ the neutron-proton mass difference can 

be neglected in considering the violation of the selection rules on 

isotopic spino 

·" 

(5o3l) Exact.Quantum Mechanical-Multipole Transition Probabilities 

In order to treat the corrections (2) and (3) we shall have 

to derive expressions for the electromagnetic transition probabilities in 

terms of exact multipole momentso The treatment of Blatt and Weisskopf 

(B52) is valid only when (kR) < ( l where k is the propagation number 

for the emitted photon and R is the nuclear radiuso Higher order terms 
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in (kR) will therefore enter the exact electric dipole matrix elements 

of H0 and produce transitions which violate the selection rules, 

The derivation of the multipole fields for electromagnetic 

radiation has been given by a number of authors (H35, H36, D39, ChO, G46, 

F50, Wa51] W5l, S52, M54) for both the classical I"faxwell field and for 

non-relativistic quantum mechanics using a variety of techniques. Only 

in the paper of vJallace 1r.rhich treats· the classical Maxwell field, 

however, are the multipole moments given correctly to all orders of kR. 

Quite recently French and Shimoto (F53) have studied the connection 

between the longitudinal and transverse electric fields for a bounded 

source in the long wavelength approximation, In doing this they have 

also derived exact expressions for the multi pole moments, but again only 

for the Maxwell field. 

We shall now present a derivation of the quantum mechanical 

transition probabilities for emission of electric and magnetic 

multipole radiation of all orders correct to all orders of (lu"l.). VJe 

begin directly with the non-relativistic Schrodinger equation for 

charged particles in an electromagnetic field, 
; 

In terms of the interaction h~niltonian H I between charged 

pa1~icles and a field, the transition probabilities for the emission 

of radiation are given by (SL~4) 

= 
(16) 

where a and b are indices denoting states of the nucleus. In the 

use of this formula we note that Hab is not the matrix element of 

but of the part of Hr arising from the positive frequency component 

of A, i.e, from A(r) defined in 

Hr 
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(17) 

we are interested only in H0 J which can produce violations of the isotopic 

spin selection rules (lO)o The expressions for the corresponding 

transition probabilities for H1 would follow trivially from those for H
0

o · 

In what follows~ however~ we shall actually use the interaction of 

equation (3) so that direct comparison of our multipole moments with the 

usual formulas can be madeo 

We begin by expanding A into a series characterized by the fact 

that each term of the series is an eigenfunction of the single particle 

J~ angular momentum operators and with Z~component M and 

a definite parityo This expansion is of the form 

- oO A= 2: £ ;? ( :T;M ;4l·) 
;:r=o 11-=- ;r ~ · _, 

A(:rl Milt) t)- 4- 1 [tCr. t~q~,t) r;;, + ~(J;M/~)t)Y;T-r/1 /. 

+ h.{.J;M ;4,t) Y./i-1. J 
(18) 

where -r can be a general vector field o The l 
1 

are the vector 
v 1L1 

spherical harmonics discussed ·by Corben (C40)j Goertzel (G46)~ and Franz 

(F50) whic are eigenfunctions of .j)a J; > L?. ,atial..Lz., The parity of the 
__, f1 ":f1- M J-#- 1 

spherical harmonics 'Y.,.;r+/
1 
l and Y:r;:r- 11 1 is ( ~1) while the 

~y- '1 J 
parity of ::r f. I is ( -1) o Consequently when one introduces 

I I 

the concept of electric or magnetic multipole fields distinguished by 
~ 

the parity of the magnetic field H associated with each~ either the 



.. 

"";€ ----7> 
electric field ~ or the magnetic field H can be expanded in a 

1Jn 
series which contains only /~~/ (F50). If we now perform the 

) I 

decomposition of ;{' and H 2 the electric and magnetic fields, into 

the positive and negative frequency components 

(19) 

Maxwell 1 s equations for /{4..-) and #t-t') are 

~ tx il0-) = -e~J0.J c rx.1(~- 1e.J/itfr:') 
(20) 

_,~ 

Consequently an expansion of ~-) in the y: .7;.7; 1 implies the 
-'I 

possibility of an expansion of H(r) in the vector functions 

and conversely. The only vector harmonics which need enter our 
~'1 

calculations are therefore the Y .... .,..I which can also be simply 
V;V; 

expressed as 

l Y:r,v; (~ '!) 
1 :Tt:T+ I)~~ (21) 

~ ~· ~ 

where L is the angular momentum operator r x f with j!= -r t7 

and }<:: tB 1"'/J l is a· surface spherical harmonic of order J ~~L The JM l·)~/ . 

multipole fields of order ~ -n? will be ·characterized by the parity .... ~ 
of H with the electric multipole field being assigned parity (-1) . 

. . ~-

and the magnetic multipole field parity ~(~1) • The respective 

fields and vector potentials are given as follows~ 
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Electric multipole fieldg 

Jc ~ n? ) = ;lc~ y X 4 X~m 
;Je~n?)==:f fx A.~J ~ 

"" ~ 'YY) 

(22) 

Magnetic multipole field: 

~l~-J XJ!Yn 
.4.. . 

V X b~) X: 
A.. -/VY> 

(23) 

~ 

The relation between ~t= and ~~ follows from Maxwell 8s 

equations and the relation 

(24) 

When (22) and (23) are inserted in Maxwellqs equations} we find that 

satisfies 

!'- t"L:t - ..e'UttJ -~-"*~.)I p ~) = t:::) 
(~a. - A,2. - ;.:a("l 

Since we shall normalize to a sphere of volume V and radius a~ we 

have the solution for ~ r/t.) 

'~ 
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_It (AJ j;( /:_;.) 
fi r(iJj;(-k«J~-o 

(25) 

We first derive the transition rates for emission of magnetic 

multipole radiation of order~~), The vector potential will be 

then 

(26) 

where we determine ,,6_.e by normalizing to one quantum of energy 

Afc ~ in the volume V, The energy in the volmne V will be 

E == -f~ fi~:V ::" ~~ .JIA'tll) ,~d~ 
~ 

it -= ~'!z.. /4/~j 4-71'-a'.tl~)/t'-~11.. 

which is to equal icc,( , The integral is. a monqtonic increasing 

function-of a so that the value of the integral obtained by using' 

the asymptotic form of cJ'~ (;fA.) 

~~:t.(*A) ~~ C~A- z~n:). 
(27) 

will become asymptotically correct in the limit of large a, From 

the value of the integral 

~:<.(+,- ;tct-w)d(~) = 



we deduce 

The value of / b.t / ~ emerges as 

{28) 

The vector potential for the magnetic multipole field can therefore be 

(29) 

From the relation we find 

·immediately 

the vector potential for the electric multipole fieldo 

Before inserting these expressions (28) and (29) into equation 

(16) using, (3) (for reason given above) 9 we shall transform the matrix 

element 

into 

(31) 



~139-

where 

the quantum mechanical "transition current", The density of final 

states per unit energy follows from the asymptotic form of 

(27) and the boundary condition (25) as 

Thus 

(32) 

.The magnetic multipole transition probability per unit time and per 
' 

unit solid angle for the direction of the emitted photon follows 

immediately by combining (16); (29) ~ (31), and (32) 

7;:6'1 = .E:. * -/-.iJY!e~ L .1~ \tm - ;_ ~ fc,®Jt ;;. .. fxZ: -1~ ~m ~lot. 
'1: -~~~1) x_~ e, (j. I J '1 () FIJ 

We have transformed the second term of 
fZ. 

~b by the use of _,. 
l?x Ae (.f)vn) =- ·iir:~ (..ii"W~) . 

to obtain a similar form. 

(33) 

(34) 
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We shall now proceed to transform these integrals into forms from 

which the usual multipole moments will emerge after one further approximation, 

The is the Levi-Civita tensor density 

Integrating by parts 

B. 

I 
-I 

0 otherwise 

· . where we have used th·e operator identity. 

V'x z = l'fr 61-4) - A.":] 

even permutation of 1~ 2, 3 

odd permutation of 1, 2, 3 

(36) 

· ..... 

~-



·c 0 In a similar way, by using the continuity equation . 

~--§' d. r- :;;b = ~ ~.6 = z'kfit 

fl6:: f'et.Jt~l 

we obtain 

-.fa /5!. 6 
-;)( Z /~f'.tYn = -tcj/(i~~ tLm ft'-~J 

-2·:~~,.., ~-.51~) (37) 

D. As in A, we can also obtain 

~ fl~ crt. l 7'~ ~~ 14 ~ ~y;;,;;;rn ~(foil i(~~) 
(38) 

Define now the generalized multipo1e moments 

Magnetic~ · . . . 

~~· • - ~-~-~J/1 ~ filt*A)Yir-·~f!)~(rt~tf}'J) 
""m 1f.-L MfVft 

~~ = .:_. ~!! Jt~f-M):j;,.,(~<;)~{f;.f~~) 

-r trJI£~/t):C..,(~~)t)!r·!JP•2J 
(39) 

Electricg . 

. ~m = r;/;;:! (ej[(/-;.-t)/.t,~:,~f)]Ji~S'J 

where 

't li Jt;,_f"*A) Yi".., (~ 7') JZ • :?;._;} 

(40) 
(2.£+ 1)!! - (2-li- 1)(2.£ - 1) (2£- 3) o 00 2 or l. 
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Using the relations established in (35), (36), (37), and (38) and the 

definitions of (39) and (40)', the transition probabilities per unit time 

(integrated over solid angle) are 

·. 11 ~ 1<"+' 
,.,., .. --: ~+1)/JJa. t 

(41) 

(42) 

These formulas are exact so far in that no assumption about the 

magnitude of (kR) has been made. If we make the "long wave length 

approximation" kR <:( 1, i.e., only low e,nergy gamma rays are 

considered, we put 

Since 

.the multipqle moments defined in (39) and (40) become 

.M-c1~ = - ~c. jff..J. Y/."N) ~Crt r g;1.) 

M'~~ - ~ t"" J A_~~~ d..:;,- C<r~";;. '5•) 
(43) 

(44) 
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These are-precisely the single particle-moments of Blatt arid Weisskopf 1 s 

formulas XII (3.32) p. 599 (B52). 

Although no derivation of the exact non-relativistic quantum 

mechanical multipole transition probabilit~es have peen published, a 

very recent derivation of the exact multipole moments for-the Dirac 

equation by B. Stech (554) has appeared._ The treatment is similar to 

the preceding development. 

(5.32) Higher Order Contributions of H0 

We have pointed out in (5.3) two types of higher order terms in 

H0 which produce contributions to El radiation and therefore violations of 

.the selection rules in 'S = 0 nuclei. We estimate the first of these, 

the contribution of the spin dependent 

~Co> I 
This contribution appears in 

i'Y'(I 

part of 

in (44) and 

to El radiation. 

hence in (42). We 

I 
by ~i"r'"f1 is shall show that the transition probability produced 

I . 

negligible by evaluating I ~qn, \• . . Since we are interested in H0 Q,'rf\ ' 
comparison of (3) with (7) shows tbat we should use 

In using 

'e e. --roc -- :J. M c.. 

A?! (o) 
~., ...... and 

(tn nuclear magne~ons 
ei\. ) 

.:lMC. . 

we are of course using the 

extreme single particle picture, but this approximation gives the 
I 

proper orders of magnitude, To evaiuate ~~ and Q~~ assume 

that and. are constant over a sphere of-· radius 

the radius of the nucleus, and that is of order unity. In 

_, I(· . ) '"ti. we also take c- ··of order unity and -,r ~pt'~"' "-'0.5 .§..._ o 

~M~ 
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I 
The divergence in ~L'h"l is approximated by (1/R). We then obtain 

I (:?~· ~ (o) 
. ~1'n'l 

Pv '\..1 _j_ ( *=~ )a. 
~b ~ . 

(45) 

for gamma rays of 1'\..1 10 Mev ( ~ 1~ ~~ 4 x 10-
6

. The contribution 

~'"" of the magnetic moment to El transitions therefore provides a rate 

4 x 10-
6 times an uninhibited matrix element of H0 • This is negligible 

compared to· the effect of isotopic spin impurities. 

The higher order term in ~~~ arising from the second term of 

-j.e. (-k~t-) can be found by using 

(""A)-f 
gAr~tt) ... ~-

The second term in an expansion of 

or 

( ~./l) .t-1-:e 

(~.tt3Jif:;... 

Q,~ = -}~/-r_fJX.,.:fo'~ .,_ ~~JX:., •. ;t.J!J 
ey'•) 

The ratio of ~~~~ I is found by the same approximations as before. 
J'l'fl 

The result is 
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From we find that for 10 Mev photons 

to' 
We therefore conclude that all the-higher order terms in H

0 
give 

r1 ~6 
rise to t :;.. widths for El emission which are of order 10 times the 

uninhibited widths, The G. widths produced by isotopic spin 

impurities are proportional to the impurity p and are at least 10~3 

times a "normal" El width, 

~--~-Decay 
The Fermi theory of t{ -decay (F34) based on field theoretic 

concepts introduces an inte~~ctiorr hamiltonian 

][ = ~ {r oL'f 'IJ; jo1-1 Q + {ot.. <J' fl/1')~ 0 H~ ~~ J 
(1) 

between the field describing the nucleon, the electron~ and the neutrino­

(or anti~neutrino). The operators 0}{ and ~ operate on the 

nucleon wave function with the neutron and proton being regarded as t1rm 

ll. L. states of the same entity, _, is an operator on the wave functions 

of the light particles, the electron and neutrino, The interaction 

H is now restricted to a linear combination of a few fundamental forms 

by the requirement that H be relativistically covariant scalar. If 

one uses Dirac spinors to describe all the fields present in (1) 9 it 
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is known that there are only five fundamental forms which satisfy this 

requirement on H. Any linear combination of these five forms would 

be a suitable H. 

For allowed transitions in the non-relativistic approximation 

the half-life t -decay can be found for any linear combination 

of these forms from 

(2) 

where f-{e_-;vv; J is a function of the charge of the nucleus and 

the maximum energy ~ of the emitted f. particle. The F is 

the Fermi matrix element. 

~ = J 4l ~ (t~,· ti~tl'YI, = ]'Y2t (~ :t iT,)W.: · 
r;:, (3) 

fl.');. 
~ is called the Gamow-Teller matrix element squared and is given 

by 

.de. 
(4) 

The and are the Fermi and Gamow~Teller coupling 

constants respectively. The suggestion of using the isotopic spin 

formalism for writing the Fermi and Gamow-Teller matrix elements in a 

form which is completely symmetrical in the coordinates of all nucleons 

is credited to Nordheim and Yost (N37)~ but th~ above form was first 

given by Wigner (W39) in his dis?ussion of the theor,Y of (3 -decay 

from the supermultiplet theory· (W37a) •. The form of the operators 

appearing in (3) and (4) permits the formulation of selection rules on 

. '. 
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the isotopic spin quantum number T and the total angular momentum J. 

Fermi matrix elementg 

Gamow-Teller matrix element: ~T = 0>1:.1 

T=of.I•O 
A :r::: t:!'J'i:./ 

J•o .p, o 
(5) 

The non-zero value of f~ has been well established for a 

number of years (K43) 9 but the existence of a non-zero ~~ was not 

established until the discovery of J ::;:: 0 't., J = 0 +- ~ ~decays. 

For such transitions the Gamow-Teller matrix element is zero so that the 

decay can only proceed by the Fermi interaction. The first known 

+ . u ~ u· 
0 _, 0 + fJ -:decays were the 0 ( f 1 )N 

· 10 A+-. 10 
level and the C Cr )B to the 1.74 Mev level. 

(S49) to the 2.31 Mev 

As a result of a 

.number of recent experiments, however, a number of such decays have 

been given. These are summarized in the Table X due. to Moskowski (M53). 

(6.1) The Validity of Isotopic Spin Selection Rules fo~DecaY, 

By the use of the selection rules (5) one might hope to test 

t,he validity of the isotopic spin quantum number by looking for a 

f ~decay which disobeys the selection rule on 

isotopic spin, ~r'jl = O, for the Fermi interaction (R53a, K53). A 

look at the possible 0 -f; 0 transitions reveals that both of the first 

two transitions are certainly T ;:: 1 __, T :;; l , while this is also 

asserted by Stahelin (S53a, S53b) to be true of the next three. If one 

10 14 looks at the level schemes of B and N , one sees in fact that there 

is no J ::: 0 T = 0 state to which the (3 -decay could go. This 

situation prevails generally among the light nuclei as one shows by the 

.following simple argument. 
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TABLE X 

o~ o+Transitioris 

·'>;'.·':'\ 
Positron Maximum Half-life (sec.J Log ft 

c1o LOS.±" 0.1 19.1(1.65 t 20%) 3.77 + 0.2 

014 

Al26 ' (3.27 ± 0.05) 6.3 3.52 + 0.03 - -

Cl 
34 

4.45! 0.1 1.5S .! 0.05 3.47 ± 0.06 

K3g ) 4. 75 0.95 ± 0.03 )3.37 

v46 )6.0 0.40 >3.45 

Mn4~or50)6.3 0.2S ')3 .. 3S 

. Co54 )7.4 O.lS )3.51 

. (a) R. Sherr and J. Gerhartj Phys. Rev. 9lj 909 (1953).-

(b) 

(c) 

R. Sherr, H. Muether, M. G. Whitej Phys. Rev. 75j 282 (1949) .. 
. 26 

L. Katzj private communication (Energy Al27(c(, n)Al Q value). 

(d) P. Stahelinj Phys. Rev. 92~ 10771 (1953) (Half-lives). 

(e)·' W. Arber and P. Staheliri, Helvetica, Physica Acta 26, 433 (1953). 

(f) D. Green, private communication (energy from indir~ct evidertce). 

(g) W. M. Martin and S. W. Breckon, Can. J. Phys. 30.., 643 (1952'). 

(h) P. Stahelin and P. Preiswerk, Nuovo Cimento 10, 1214 (1953). 

.4 

a,b 

cjd 

dje~h 

djf 

g 

g 

g 
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The o"t:..,. .o+ decays must occur among the even nucle~ which is to . f, 
say~ in the isobaric triads. By a triad we mean the three nuclei having 

the same atomic' number and T f : O, +L 
. - The member of 

these triads is always the stable one in its ground state and decay is 

from the neighboring isobars to it. The T J = 0 member of A = 4n + 2 

triads is odd-odd and has non-zero spin for its ground state in all 

known cases. The neighboring even=even isobars do have J : 0 t for 

the ground state, however, and hence 0 t-~ 0 + decay to an excited state 

·of the odd~odd· T f = 0 ·nucleus might be possible. The level in the 

T ! = 0 nucleus which corresponds to the ground state of the even­

even nucleus must, however, be J = 0 1- also and is a T = 1 level. 

Since this first T ~ 1 level comes at ~ 1 - 2 Mev, there is 

+ 
practically no probability of another J = 0 level below it, i.e., 

one having T :: 0. One cannot expect~ therefore, to find allowed o+ ~ 0 + 

transitions with IJt"f I = 1 among the A = 4n + 2 triads. 

Among the A = 4n triads the nucleus with the stable ground 

state for A ~ 20 is again the T t = 0 nucleus 3 now an even-~ven 

nucleus with a J : 0 '+- ground state. Since the neighboring isobars 

are odd-odd, however, their ground states are not expected to be 

the p -transition from their ground states could not be o+..,. o+then. 

The only hope of observing J :: o+~ J = o+transitions which 

violate the selection rule on isotopic spin would therefore seem to be 

fJ -decays from excited states of the unstable members of triads to 

the stable T ~ = 0 nucleus. In view of the long half~ life for 

(.3- -decay as compared to that for isome~ic transitions 3 the 

possibility of such experimental tests is negligible unless the spin 

difference between the J :: 0 state in the parent and its own ground 

• state (and all lower states) is large. Such a situation does, indeed, 
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( 
26 34.. 38) ( . ) 

seem to occur in heav:i,er nuclei 13Al1y 17e117 ~ 19IS_
9 

S53aJb but the 

~-decay has been determined as T = 1~ T = 1 by the Coulomb energy r ,, 
difference of the corresponding states. 

We .conclude-- jS -decay is unlikely to provide direct evidence on 

the validity of the isotopic spin quantum number by violations of isotopic 

spin selection rules. 

(6.2) Effect of Isotopic Spin Impurity on the Fermi Matrix Element 

From the commutation rules_ for the rr'( ~ T/ ~ and 'T' t components 

of isotopic spin the.value of the Fermi matrix element (3) follows 

immediately 

(6) 

independent of any assumptions on the nuclear hamiltonian other than that 

of invariance under rotations in isotopic spin space, The Gamow-Teller 

matrix element cannot be evaluated under such a general assumption~ but 

can be evaluated exactly in the lS coupling scheme of supermultiplet theory 

(G39~ W39), Since an· evaluation of the Fermi element is possible without 

any restriction on the wave functions~ we may hope to obtain a test of the 

validity of the isotopic spin by checking the constancy of the ft value 

for J = 0 ~ J = 0 transitions. 

The validity of equation (6) in a certain sense involves more 

than the validity of the isotopic spin as a good quantum number, as we 

have already pointed out. The validity of (6) actually requires that 

the wave functions for the numbers of a mirror pair or corresponding 

states of an isobaric triad 'should be generated from each other by the 

operator (Tt 't iT~ ) • If one has actually found a correct set of 

eigenfunctions for the description of nuclear levels, this requirement 

must be satisfied. We have found t~at if one uses jj wave functions 

... 

• 



~151-

there is a certain amount of mixing of the same isotopic·spin states 

belonging to different configurations, Such mixing means that even though 

corresponding levels of numbers of mirror pairs or triads might have the 

same isotopic spin, the wave functions for these levels could not be 

generated from each other by ( Ts :t C""h ) , We 

calculated the mixing of the same isotopJ spin 

have actually only 

states belonging to one 

or two particles outside a 'closed shell. For three pqrticles outside a 

closed shell such mixing might well be very large since the energy 

separations of two levels of the same isotopic spin is much less than if 

the levels have different isotopic spin, If one considers the possible 

excitation of closed shells, the mixing is undoubtedly even larger, 

although the actual difference betw~en the wave functions of different 

numbers of a triad will not be correspondingly larger, of course, since 

the same closed shells belong to all of them, 

In spite of this fault of the jj wave functions from the general 

arguments based on "charge independence" the value of the Fermi matrix 

element ( 3 ) is certain and this is true therefore no matter what the 

specific choice of wave functions for corresponding states between which 

the Fermi interaction causes (3 -decay. The Gamow-Teller matrix 

elementsJ which must be evaluated.on a specific model or at least with 

a definite choice of coupling (T52c)J are much more unce1~ain. If we 
I 

restrict ourselves to J = 0 't-.. J :::: o+-transitions, however, we have 

seen that we have only the Fermi matrix element. This fact means that 

we can study a feature of ~ -decay which is connected only with the 

validity of T. This feature is the variation in the experimentally 

measured ft value for o+ _,. o+ transitions. 

Let us see what the effect of the Coulomb interaction should be 

on the ft values for ~ -decay. Since the Coulomb interaction can 
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only mix states of the same J = o+ although different isotopic spin•to 

the two J : o+ states participating in the p -decay, the Gamow-Teller 
" ,. . ~ 

interaction does not enter whether there are isotopic spin impurities or 

not. Let the effect of the Coulomb interaction on corresponding states 

1J {7;1j) J 1Jt (;, 7f :1.: I) be to produce the impure states !// ( 7;7J) and 

IIJ!. I ( T; Tf , :t:. I ) 

1£'(;;7j) - 11-(ki ... 1/Jtr,7;) to.., 1/J.(7",
1tj) 

(7) 

'l({here of course T =f: T 1 • Then the Fermi matrix element ( 3 ) will be 

)fJJ~tfr;:ti)(?St.t' 7;;)1'r-r:&) =I v~rJo-dt) ltr;&l~J+d 
+ a/Ci/J. ~ ({'; 7j ) (r :t 7j+ $ 

,(8) 

since and~ (i /iji :t 1 )- are also correspondipg states. 

Since a1 ,a2 will be at most a few percent, the Fermi matrix element is 

just 

(9) 

if we assume p as is appropriate when the impurity of 

the core predominates. The ft value for J = o+_, J = o.+transitions· 

'being given by 
=2 

ft = (~F) 

the effect of is9topic spin impurity is to increase ft by 

(10) 
.~ 
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rf(A) = (ft)' ----
(.ft) 1-~ (11) 

12 -3 
From the result for C where p "'"'3 x 10 and the variation of 

8/3 
p o<. A predicted by the statistical model, we find for A rv36 that 

-2 (I 
p A.. 5. 6 x 10 . This gives . cJ (30) ~~.; 1. 06 or a ~ 6% variation in 

ft value. Although the previously measured ft values were not sufficiently 

accurate to detect such 

14 t 14 
for 0 ( ~ )N to 3% 

accuracy is attainable. 

is maximal and assumes 

a variation, a recent :measurement of the ft value 

accuracy (G54) indicates that the required 

The variation of p with atomic number taken here 
~2/3 

E0 - E1 I)(. A as indicated by the 

E(T ~ l) - E(T ; 0) energy separation of the ground state T = 0 and 

first T ::::; 1 state in even-even nuclei with T 1 ::: 0 (M54a). The energy 

separation of (n + 1)1. and n.L levels on the harmonic oscillator 

model is also proportional to -2/3 A • 

''\ ·' 
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Appendix I: Evaluation of Certain Correlation Integrals. 

The integrals ·we require are 

Ji= ~ cf-1 §~ 1)..) 
y:a. ~ /'l.i2 

~here ~ · designates the integration of all coordinates over the 

volume of.a sphere of radius R. In these calculations a parameter 

whose magnitude determines the accuracy of the. evaluations is 
1/3 

R = km R·= 1.523 A where ~ is the wave length of a particle 

at the top of the degenerate Fermi distribution of nucleons. The 

·evaluations are expected to be asymptotically correct for ~)' 3, 

whose· ~ is related to A in the following table. 

A· 10 20 30 40 

~· 3.28 4.12 4.73 5.20. 

Evaluation ·of I1 

Using formula (3.1 - 11) we write I 1 exactly as 
~R . 

I,=~ ('f) t (j'(p) (f3- 1-<J' 1<.,. t 1 ~ R/) 
(1) 

We make the approximation of letting the upper limit go to infinity 

because G2 (~) decreases so 

the defirrltion of G
2
()) = 

Inserting 
•..J, 
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From Watson(W'fi)(1Jo33) we find Struve's integral 

r 
"i•ihich gives 

rr c t) J"' ( t) _ 

t~*..Y . 

l.!cmmel g s method gi vert',{W sf~ ( 5 "12 ~ 3) , 

where it&) i; a general cylinder function of order j"'­
Specialization to ~ = 3/2 yields 

Finally Gubler?s.investigation of the Weber-Schafheitlin integral (W1o/') 

supplies 

where 2F1 is a generalized hypergeomet.ric function defined by 

00 

~\ k .. , ' J Jt ·, fp .. ·~~ )~) = .,;;, 

C_oO"" ::: ~lot+~) · · · (ot-t "r\ :_ IJ 
For our case 

{~, \ ' , . Co(r )~ r"YI 
"(\ 1 (f, )Y\ •. (pt)V\ . 
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When we combine these results we get · 

(2) 

This result shows that for ~ > 3 we c9-n expect rv 30% error if 

we use only the first term·in parenthesis. We·shall do this because 

I 2 .1l r3 ~ and r4 cannot be evaluated explicitly to an accuracy better 

3 than this and we want only the asymptotic value. If we use only the R 

term under the integral in (1), our result for r1 is just 

(3) 

Evaluation of r2 

The integral will be evaluated by·using bipolar coordinates for 

the point 3 ' viz. o-::: rl3 t,;J = r23 and r the angle of 

rotation of the plane containing r13 and r23 about the axis r 12 • 

The volume element becomes 

or .using the properties of Jacobians . . _I 

[~(~) J ( :,~3t )] 
The coordinate transformation is given by 

(c-J- ~I )l-+ R'2. = 0'""' ... -x"i -== R~ J 
()3 ~ R~j 

%3 = i-! . 

where we have taken tqe Z-axis parallel to r 12 • 

~J 
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-~ 1!1 -~--1 
cf-4-V 

and 

Consequently w~ have 

Now applying this to I 2 there results 

where the limits are rather complicated if the points 1, 2, 3 are 

restJ.•icted to a sphere o Instead.~ by using the fact that ~ (cr') decreases _ 

rapidly, we can restrict only t.he points land 3 to ·a sphere while 

aUo1r.ring 3 to range to· infinity. The contribution from points outside 

the ~o;phere will be small o The limits on o-, w , J are now simple 

and we have for I., 
"" (-JMl.[~)Jf::~ +j:~qr,-)(Jw) 

f' -~ p Ja-- f ) ) 

(3) 

I1 was integrated to get 

A 10 20 30 40 
(4) 

Oo47 
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Evaluation of I3 

Use bipolar coordinates for the point 3 and get 

I3;:,: ~~.J. ~~) . ·o-; d~ot wcl"f cl-e,ck,_ 

(~'(a-).-- + f Jf ~ ;.-(~ '( --~ 

Since gc<r) decreases so rapidly, and the contribution tojd~d7~ 
/7.1., 

where J · = r12 · is greatest for small J , , the integral is 

asymptotically equal to 

:[~ ~. ':!:Jr/(j clrG,d~)' ft,.. t7"Cr),.. 
if h..12- Jo 

Comparing (3) and (5) we see 

Evaluation of I4 

Carrying out the integral on the coordinates (2) and (4) r4 

b.ecomes 

T~ - v. -:0-JG~c-,.J (R'- ~ )(R'- ~)ab:,d't'3 

If we look at the· volume as composed of concentric shells of radii . . 

r1 and r 3 , thE3 rapid decrease of G,{n. IJ) insures that the greatest 

(5) 

(6) 

contribution will come from the shells with nearly equal radii, i.e, 

r1 :::: r 3 , We' approximate 
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We now use coordinates centered on the point 1 and let r 13 go to infinity 

obtaining thus . _ 

~ = 1~. ~·( trr J.:,_ rq'(a-)a-~(:rr 1:. ~~ (R.'- ~~f) 

From Watson (W )(13.42 - 1) 

Inserting this in r 9 

Conclusion 

Jt=t (ad;) ~(ttJ 
i 

The general expectations expressed in (3.1) concerning the 
=2 -1 -1 

behavior of corrections to r 12 } r 12 r 13 and -

(7) 

-2 are verified. 11 gives the correction to r
12 

and decreases least 

C~lo':'~Y, being proportional tr 1/~. r 2 and I3 give corrections _t_o __ 

~l =l - - lt:J :z, '0 - ' 0 t -1 =1 ' r 12 r 13 and decrease as 11 'I.(, , l' 1.nally, the term wh1.ch correc s :r 12 rJh 

3 ' ' 
is proportional to -14 and decreases as 1/R;.. _The asymptotic values of 

the integrals are - _ _ __ 
I,....... (;,7 ) 1.. ·-r ,.., I --(ll ).J... 

l lfRc, R.~ ;a_ 3 lD~ R:C.. 
(8) 
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Appendix II 

Table of 

. ) 2 2 
F(2 ((lp) ; (lf) ) 

2 2 
. F(4)((lp) ; (lf) ) = 

F(O)((lp) 2 2 3~' ' lp2p) - e - 8 ~re 

F( 2) ( (lp) 
2 2 5g ' 1p2p) - e - 24 ..1TC 

~ 

Fo_ (2p1s; 1p1S) - ?Fi - 6o 1[ 0 

F
1 

(2p1s; 1s1p) = • 3!¥ ~ 1t 0 . 

lJ~· . F (2s1p; 1s1p) . :: 
4 -rr:. 

Fl (2s1p; 1p1s) - -1 N - 12 ;r 2 
.1& · Fo (2s1s; (ls) = 6 :rc:. · 
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