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THE VALIDITY OF THE ISOTOPIC SPIN' QUANTUM NUMBER FOR LIGHT NUCLET

Wm, M, MacDonald

ABSTRACT OF THESIS

The validity of the isotopic spin quantum number, which exists
for charge independent‘nuclear forces, is affected only by the Coulomb
potentialo_ Unless charge independence is to be renounced) it must be
possible to attribute viclations of certain isotopic spin selection rules
on nuclear‘reactions:solely tovthe effect of the Coulomb potential in
mixing etates of different isotoplc'spino’

The‘isotopic spin impurity can be considered to arise in two ways:
(l) througn perturbation of uhe wave functions of nucleons in open shells
by their Coulomb interactlon with each other and with the field produced'
by protons in closed shellss and (2) through perturbatlon of the wave
functions of nucleons in closed shells by their mutual interaction. 'The
second effect, termed the “core 1mpur1ty" has been neglected in previous
work by L. A, Radicati. But a 51mple calculation using plane waves to
represent the nuclear states (statlstlcal model) gives a much larger figure\
for ohe core impurity than that which Radicati'found for‘the-impurity of
the state of nucleons in open shells. |

| Calculations of both types of impurity are then made using thev

33 coupling model of M. Mayen_end harmonic oscillator wave functions.
An understanding ie ootained of the operation of the Coulombvpotential in
introducing isotooic spin inpurity into uhe stetes of two and three
nucleons in an open shell by studylng the m1x1ng of states of the

representatlve conflguratlons (lp3/2) 5 (lpl/z) , and (lp3/2) to other

. low-1ying states. The 1mpur1t1es of these states are found to be even
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smaller than the results of Radicati. The principal reason for the

difference lies in our use of the r2 potential produced by a uniform

sphere of charge rather than the singular (1/r) core potential of Radicati.

A general formula is derivedhforrthe“qquivalent potential produced by
nubléons in closed jj shelléfwhen the field arises from scalar, spin
independent; two~body potehtialoA For the specific case of the Coulomb
intéraction one obtains an equivalent core potential which differs Qefy
little from that produced by a uniform sphere of chargé, v
The cére impurity for the nucleons in clésed_jjishells can then
. be calculated in terms of the two-particle matrix elements which were
just found. The figure obtained for the isotopic‘spih impurity of 012 is
in excellent agreement with the simple statistical model calculation and
canfirms the predominance of this core impurity over ﬁhe'impurity of
states of nucleons in open shells. One can conclude in fact tha£ only
thé isotopic spin impurity of the core need be considered to be.pfesgnt
in nuclear states_until'éuite high-excitations are reached., |
An isotopic spin selection rule on electric dipolg tfansitions

provides a basis'for‘thé actual experimehtal determination of isotopic
spin impurity ﬁrovided'that one can predict.uninhibited El widths with
sufficient reliability. A discussion is presented of the effectswhich
- produce variations in El matrix elements andvthe conclusion ié reached
that these effects are not important in light nuclei (A £ 20) at
moderaﬁe excitation energies ( { 15 Mev). Consequently,the-limité on
'iéotopic spin impurity determined experimentally by Wilkinson aﬁd
collaborators from the E1 éelection rule are approximately correct.

These limits are easily explained by the presence of the Coulomb inter-

action.,
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Higher order correction terms to the El selection rule are also

' ,calculéted and found to be ™~ 1000 times less effective than isotopic

spin igpurity in prometing forbidden transitions. In the course of the
calculation formulas are derived for the exact quantum mechanical
transition probabilities for radiation of any multipolarity.

Finally, the isotopic spin selection rule on f3‘ndecay is studied,
but one can show -that no violations of'the selection rule arerlikely to
be found in light nuclei., The éffect of the isotopic spin impurity on
the Fefmi coupling constant derived from 0t— 0+ transitions is shown

to be just beyond the present limits of experimental accuracy.
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THE VALIDITY OF THE ISOTOPIC SPIN QUANTUM NUMBER FOR LIGHT NUCLEI

Wm. M. MacDonald

1. Introduction

' The»introduction,of_thevisqtopic spin quantum number into nuclear
physics dccufred in a paper by Heisenberg (H32) on the systematics of
nuclei., Heisenberg proposed to write the nuciear hamilioniah in a way
which was symmetric with respect to the-nucléons interécting by taking
tﬁe wavekfun¢£ions for'a‘neutron of a proton to be-eigenfungtions |

cofresponding to the eigenvalues -+1 and -1 respectively of‘an.isotopic’

~ spin operator T¢ represented in its diagonal form by the 2 x 2

' 1 0\ - ‘ ' . :
matrix ?7< = (/ > . In order to treat correctly terms arising
0 =1

- from the space exchange of a neutron and a protom it is also necessary

to introduce the other three components of the isctopic spin vector

%’ = {75'77) z‘:}

.oj) 'z “(O "i) - 2z O)
'z§=10 - 7 " \: o. Ty = onl

With these definitions (which differ from those of later autﬁors; €oo,

(1)

Wigner (W37), (W4l),) one has a formalism which is the precise counter-
part of the Pauli spin theory and in fact the Pauli spin matrices
a?;,.a~&9‘andv0‘g~'have ﬁhis matrix representation. We should

remember,‘hawever, that the isotopic spin operates not in 3-space but

in "isctopic spin space", and we shall, for this reason, use the

. ‘ ‘ : » -3
§ﬂ‘§g-fv | to denote ?he components of the isotopic spin vector T .

“

It is trivial to verify that these operators satisfy the commutation

- relations

[??arZ]:=‘2Z?? \5‘17)1357==e§zg- Zﬁzf»1§37:=‘2£;r? | (22

..}'
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The simplicity with which the isotopic spin formalism can represent
the four nuclear interactions in common use was recognized by Cassen and .
Condon (C36) who gave the following formulas. for the Wigner, Bartlet,

Heisenberg, and Majoraha potentials

R

1]

V(r)

,VM(r) Wigner (ordinary)

VB(r) = 41+ 0"1°,0“'2) v(r) - Bartlett (spin exchange)

VH(r) -3(1 +-171°'Cé) v(r) . Heisenberg (space and spin

exchange)’

Vy(r) 41+ 0 0)A + T T)V(r)

Majorana (space exchahge)
(3)

Fallowing a suggestion by Breit .and Feenberg (BBé)'that the
nuclear forces are independent of the character of the ihteraéting
nucleons, i.e. wﬁether neutron or'proton, Wigner applied the concebt of
, isotopic spin to the fo}mulation of a theory of the symmepric hémiltonian
(W37a). Using as the two assumptions

(l)' the nuclear hamiltonian is inﬂependent_of the characte£ of

the interacting nucleons .

(2) nuclear forces are spin independent,
Wigner developed the elegant supermultiplet theory of nuclear structure
in which one can attach three quantum numbers to the nuclear levels
which chérécterize certain multiplets. .Using group theory the relative
separations 6f the multiplets can be given in terms of aAdirect and an R
gxchange integral, to be evaluated by use of some model or set of wave
: functions, for a potentiai which is the sum of a Wigner and a Majorana

interaction (W37b, F37b). Perhaps the most striking success of Wigner's
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theory is in the interpretation of the irregularities in binding energies .

16 | , .
of the miclei beyond 0  (W37b, WLO) e.g. energy differences between

odd-odd and even-even nuclei, instability of odd-cdd nuclei, ete.

The requirement of a description of the matrix element for' _
f? -decay;. which should be symmetrical in_thé nucleons, led Nordhgiﬁ.
and Yost (N37) to formulation of the theory in terms of the isotopic
spin coordinate. Wigner (W39) also locked ab.fg -decay from the
sténdpoint of supermultiplet theory and was able to give selection )
rules for /é? ~decay between:different supermultiplets for both Ferﬁi
and Gamow-Teller matrix eiemen‘bso The prediction of favored allowed
/c?mtransitions was and is a étriking success, unigue to Wigner's tﬁeoryo
The validity of the "first approximatioﬁ"g in which both of | |

Wigner's assumptions are made, and of the "second approximationg‘in which

.only the first holds,have been discussed in considerable detail by Wigner'

and Fegmberg (W41)., We shall not review the eV1dence for ‘the valxdlty
of the "first appr0x1mat10n" here but will only point ocut that the whale
theory of the rather successful jj ooupllng shell model rests on a

contradictory assumptlon (F49), the ex1stence of & strong spin-orbit

potential in order to provide the closwe of subshells at the "magic

numbers" (E33, E34, M48, ML, Hb9}o The suggestion of such a force has
also been made by Case and Pais (€50) to explain the 340 Mev pp scétteringu
data. In addition, work;ﬁy A. M, Feingoid (F52) and Keilson (51)
1nd1cates that an appre01ab1e splnaorblt coupling is to be expented
from a tensor force via second order perburbatlon thecryo This origin
of the spin-orbit force i§ not generally accepted, but other sources .
have net yet been found. The work of Bréit (B37a,b, 838) shows that

one cannot “expect from relativistic corrections to two partlfle equations

a spin orblt force of suff1c1ent magnltude to give the 33 coupllng



e

mbdelo This‘result hasAalso been verified by Dresner (DSB)'using'
pseudoscalar meson theory,

Even when the first approximation is'assumed to be invalidated
by strong spin dependent forces,‘hbwever, the isotopic‘spin of a.nucle?s
" remains a‘good quantum number in ﬁg; éeqond approximation and expremgly'
usefﬁl selection rules for nﬁéiear reactions emerge from its prqurpies.
In the next section we shall discuss the significahce of‘thg isotopic

spin for nuclei and give the consequences of its validity. .

2. The Isotopic Spin Quantum Number for Nuclei

(2.1) Validity of the Isotopic Spin and Selection Rules

, 1

Just as we have defined the isotopic spin vector 7 in 1 in

strict analogy to the Pauli spin vectors from the requirement that the
neutron and proton wave functions be'eigenfunctions of 7f§ with eigen-
values 41 and -1, we can proceed to define the isotopic spin T of

: ’ ’ -+
a particle and of a nucleus T by the equations

=413

T- 3%

iz

tgl?t =t 3YPs (1)

The f’»component of a nucleus will be given from these definitions by
the formula

"T'.§‘=i(N=Z). - (2)

The result follbwsfrom the conservation of charge that nuclear states
are eigehfunqtion of T . From the fact that a state of charge Tg¢
cannot belong to a state of lower multiplicity than‘(2Tg + 1) the

inequality follows that T 3 'Tg . The condition thét T be a good

quantum number is the same as that which holds; fér’example, forﬁf?,

o
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the spin quantum number; vig.

[T H]=eo 3)

or stated otherwise--T is a good quantum number if an only if H is

Ainvariant to rotations in isotepic spin space.

Tbgzcommon statements that_ T 1is agood quantum number énly if
nuclear forces are "chgrge indepéndent"‘or "does not depend:on the
isotopic spin" are seen to be misleading andverfoneouso‘;The charge of
the neutron énd proton really have little to dq.with>isotopié spin
formalism except insofar asvtﬁe charge cof a protbn diétinguishes it from
a neutron (W52). Furtherﬂ the absence of the isotopic spiﬁ from the
nuclear hamiltonian ié certainly sufficienﬁ but not at ali necessary for
the yalidity of isotopic spin. The'interactidn of the dharge symmetrical
meson theory»(E?i°z?2)‘ is obviously invariant under rofations in the

isotopic spin space of the particles and therefore leaves T a good

- quantum number, just as does the neutral meson theory.

The present active interest in the isotopic spin began primarily
with the experimentalists. in nuclear physics and those otherwise

interested in cataloguing and understanding the large amount of experi-

- mental data on,light nuclei which is being accumulated at an increasing

rate., For.them the isotcopic spin provides several important selection

rules in each of:the three types of nuclear reactions: (1) (B ~-decay,

(2) isomeric transitions, and (3) reactions resulting in heavy particle’
emission. Selection rules_fgr processes of type (1) are usually simple
and forbid such reactions such as (4, GL) going from the ground state

of an N = Z nucleus to the T = 1 states of the fi@al N = Z nucleus,

Selection rules for the first process were first given by Wigner (W39)

and are different for the Fermi and Gamow-Teller matrix element.



Fermi matrix element 4T = 0
Gamow~Teller matrix element AT = 0, 1 no 0—+0 . .
%
There are of course additional selection rules for spin and angular
f

momentum. Finally,.seléction rules for electric dipolé transitions were
recently derived by frainor (TSé) in sﬁpermultiplet'theory and by Qhristy
(Cc52), Radicati (R52), and Gell-Mann and Telegdi (G53) for the secoﬁd
approximation. _ )

The validity of these seiection rules is affected only by a
nuclear interaction which doesvnot commute with T ; i.e. by a "charge

dependent" interaction, and by the ordinary Coulomb interaction

2 . , : 2.
<2 ( ""‘5/‘%({"‘5,1) . which also does not commute with T ,
i¥g 't

Before any conclusions can be drawn about the equality of the neutron-neutron,

protron-proton, and neutron-proton nuclear force; we must consequently

know quantitatively the effect of the Coulomb force on the isotopic

spin guantum numbero' Dismissal of any observed departures from the
above selection rules by ascribing tﬁgm to the Coulomb forée would
strongly suggest "charge independence" of the nuclear interaction.
Conversely, the observation of large departures from the isotopic spin
‘selection rules whiéh could not be explained by Coulomb forcgs would
certainly impiy the existence of forces which were not independent of
the character of the interacting nucleons. Of éourse, in case Coulomb
forces should be shown to give rise to considerable mixing of the states &
of different isotopic spin the usefulness of the isofopic spin quantum ‘ \y‘
number would be destroyed. | |

An investigation of the effectiveness of the Coulomb interaction

in mixing states of different isotopic spih has been carried out by
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Radicaté{ (R53a) for the ground states of nuclei with two or four nucleons

outside a closed core, for the 1.74 Mev and 5.11 Mev states of Blos and
-y : " SR )

for the 7.12 Mev state of 0 . These calculations are limited somewhat

in their validity by (1) the use of the supermultiplet theoryv(especiallyv

for excited levels), (2) by the neglect of core excitation to higher

isotopic spin states, and (3) by the neglect to a large extent of
configuratioﬁ intera@tionol‘v The firsﬁ of these should tend to give
somewhat lower values for the percentage mixing of higher isotopie spin
states to the ground state because of phe.féct that the Coulomb excitation
leavés L~L aﬁd gl”_good quantum ngmberso In a classification of
nuclear states which has Lz' and nyz'gocd quantum numbers, as in
supermultiplet theory,the Coulomb perturbation should be much less
effective in mixing stateé° ‘The segond assﬁmption is completely
unjustified without further investigatiqp in view of the fact that the
first isotopic spin state which can be mixed to the T = O ground state
in even-even nﬁclei liés_atvonlnyJIS Mév, whereas the first such sﬁate
in light odd-odd nuclei? as we shall show, lies at 8 Mev. The fact
that energy denqminators for mixing are only twice asvlarge in thé

even—-even nuclei as in oddmoddinuclei suggests strongly that core

.excitation and configuration interaction may be very important even in

light nuclei where Radic;tiﬁs assumptions have the best chance of being
correct. For heavy nuclei thgse effects of core excitation,and config-
urétioh interaction are almost surely of considerable :"meortpan'ceo
We shgll restate the prpblem of isotopic spin impurity and our
approach to the whole_questiono”»
| We are interested in the gxpenﬁ&tp which one can assign an
isotopic spin quantum'number_;ovthe.states of,;light.nuclei9 by whi;h we

mean A % 20. Since an obvious manifestation of an isotopic spin
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quantum number wbuld bé the existence of certain selection rules for
nuclear reactions, we shall pose the more concrete question--How much
admixﬁure of states of different isotopic spin is introduced into an
eigenstaﬁe of the totél isotopic spin by the Coulomb interaction? We
shall call the amount of the admixture--‘ithe isotopic spin impurity of
the state". o ‘ |

In the shell model the simplest nuclear state is the ground
stafe of a nucleus consisting of closed shells in neutrons and protohs°
Although the ﬁumber of such states is an insignificant'fraction of thé
states of interest,; we can deécribe apprbximately tﬁe ground state and
low-lying étates of a nucleus with one or more particles in open shells
as the state of a system consisting of a closed shelllnucleus and one
or more extra nucleons. Since the states of different isotopic spin -
are separated by a rather large energy, this neglect of exchange terms
of the Coulomb interaction between closed shell and open shell states
is legitimate (¢f. 4.42). The effect of the Coulomb interaction in
promoting the isotopic spin impurity of the gfound state of the "éore",
or closed shells, and of the sﬁatg of the extra-shell nucleons can be
treated separately. In calculating'the lattef, the isotopic spin impurity
of the nucleons in Opeh she11§ (assuming no cbfe excitation), the inter-
action with the core is introduced bj an "effective" poténtial which
- represents the non—exchange terms in thé matrix element of the Coulomb
interat;;tiono

In this way we can approach the proﬁiem 6f_isotopic spin impurity

"in nuclei Having several closed shells .and one or more nucleons in open .

shells by answering as completely as possible the following two questionss

(1) In light nuclei (A € 20) to what extent does the Coulomb energy mix

~ to the ground state of the core, taken as the closed shells of the

W

~

AV,
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nucleus, excited states of the éore with different isotopic spin?
(2) What is the effect of the Couldmb interaction between particles in
open shells upon the impurity of thébisotopic épin quantum number of ﬁhe
ground state? 1 |

We shall first answer question (1) by using methods based on the
statistical model of the nucleus and thus obtaining results which are
somewhat less dependent on the detailsbof nuclear structure than later
calculations which use the jj cdupling model. Following this discussion .
a study is made of the mixing of states belonging to two or three particles
in an open sheli, The whole problem bf the mixing of isotopic spin states

for light nuclei then is compleﬁed and made consistent by using harmonic

oscillatér wave functions.also to find the mixing of the core (closeq

shells) of light nuclei. Gomparison of the latter‘fesults with the results
of the statistical model are in agreement;

Following the development of the answers to these questions, we
shall be concerned with the implications of‘thé experimental results which

shed light on the isotopic spin impurity of nuclear states. These results:

. can be classified into fg-decéy, isomeric transitions,'and reactions
" resulting in heavy particle emission. By far the greater emphasis will be

'placed on the data on isomeric transitions which comes from the work of

D. H, Wilkinson and collaborators. These experiments on the electric
dipole radiation were specifically designed to answer the questionvof
isotopic spin impurity.

It has been suggested by M. Gell-Mann and V. L. Telegdi, however,

that the 1owér bounds on isotopic spin impurity obtained by Wilkinson

from electric dipole transition are invalidated by the effect of higher
order terms in the electric dipole moments; These termé are ordinarily
neglected in the approximation 'kr (( 1 where "k" is the w&ve number of

the emitted\?/-ray and "R" is the nuclear radius. We shall show
that for the energy of the electric dipole
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transitions whichlWilkinéan'ansiders these higher order terms are a

‘ factoriof fx*lﬂﬂﬂléss imbortant than the isotopic spin impufity in
vpfomotihg transitions thch vio1até the &ieétion rﬁle 6n electric dipole
transitioné dérived by Radicati. In so doing we:offer a derivation of ' W
the:multipqle transition probabiiitiés for the non-relativistic hamiltonian
.which is exact in (kR) and in a form suitable.fbr estimating corrections

to the Weisskopfvformﬁlaé:(w51)o' Tﬁis has hbt been done before for the
non-relativistic hamiltonién and.has jusﬁ‘recently been done for the"

Dirac equation by Stech (S54).

(2.2) Dynamic Validity of the Isotopic Spin

In addition té questions concerning the mixin%,of states belonging
to different eigenvalués of the total isotopic spin T2 Wigqer has
raiéed a point which he has termed the question of the "dynamic validity
of ﬁhe isotopic sﬁ&n"; To éee whaﬁ'thiéumeané we observe that from the
cémmutati;n felations of 4% and the definitions (1) it follows that
the operator: ( 7’21‘5 7} ) raises or l;wers the 7}' eigenvalue i.e.
the chafge, of a state charag-;terize_d by 'ei-genvalue T  unless T§ T

or Ty= =T respectively,when the state is annihilated by the operator,

(‘T‘g +i T»?) ’H{T;Ts« = (T T (T +Te+ 1) -,Q‘r"rs-'.i

(Te-2T)Ur7e = VT (=1 4—_&? Yy B

In the theory of Wigner's second approximation, the corresponding

10 10
19 B €

states of an isobaric. triad, such as Be s .are simply the oV
different' T¢ = components of the same ~Témultip1et and should possess
the same nuclear spiﬁ J, parity, and ehérgy except for the perturbation

by the Coulomb inﬁeractiono Wigner's question then is--To what extent
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are the equaticns (4) valid iﬁ,the preééncé of the Coulomb force? This
question is of obvious significance for such reactions as the allowed~
favored  &-decays. . |

Assume first that we are given a éamplete set of commuting constants
of the motiocn includimg T s which is not quite a conétant of the -
motion because of the Coulomb interaction, We can then characterize
every nuclear level by a set of quantum numbersg_whicﬁ are valid in the
presence of the Coulomb interaction, and by the isotopic spin quantum
rmumber T° . The question of the dynamic validity is now equivalent to
the question of impurity of isctopic spin states; sipéevthe Coulcomb force
can only mix states of different T .

We can now see clearly that only when the quantum numbers, which

we use to characterize a nuclear state, do not form a complele set of

commating constants Qf_thesmotion‘doe§ this questicn arise. For example
in the calculations which are mads on the jj éoupling sheli modél the
quantum numbers are the configuratiens e.g. Cgfb%a)z and the spin and
isotopic spin J,T . For tﬁis case a sﬁate of_definite_ T  is mixed

by the Coulomb force with states of other‘configurapions héving the éame
Jy, T, For this reason the possibiiity arises of the result that the
Coulomb interaction leaves T a good quantum number but invalidates the
relation (4). We éhall give also an énswer in this thesis to the questicn

of dynamic validity.

(2.3) Location of the Low-lying Isotopic Spin States'

For a discussion of the isotopic spin selection rules and isotopic

spin mixing produced by the €oulomb interaction a knowledge of the low-

lying isotopic spin states is crucial. We are interested in the ground

state isotopic spin, the first excited isotepic spin state, and the
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first excited isotopic spin state of the same nuclear spin J and parity

as the ground state, ‘The latter level is the most important one for

consideration of the mixing of excitéd isotopic spin states to the ground

state,

For identification of the isotopic spin states in nuclei with
AL 2 we-have ﬁhe convenient rule that the ground state of all nmuclei
up to C’Z?.Bl+ (a53) have‘és the ground state T ;'7§r - The origin of
this rule (W37b) lies iﬁ the simplg fact that the Cbulomb energy will
make the normal state of the nucleus with the.largeSt value of T ¢  the
most stgble one unless the Céulomblperturbétion becqmes so large that
the binding_eﬁefgy is lower for the next higher isétopic spin multiplet
and same 775 . This is illustrated by the (Wigner-type) following
diagram in whicﬁ”the ordinate represents the excitation energy above
some (negativei‘;;ferehcé energyAana the abscissa is 'f3 . In the
di;gram Fig. le the gffect of the Coulomb force has been.tq bring the
T = l mﬁltip’let below the ' T = O multiplet for nuclei with "'T"( >4, o
A detailéd discﬁssién éf the stability relations forvhéaﬁgr*ﬁuclei

which Wigner diagrams suggest has been given by Feenberg (FL47).

¥
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The validity of this rule that the ground state has T =TT¢ for

1light nuclei enables us to determine the T - 1 level in odd-odd and

4

even-even huclei with 1"§’=‘o as the analogue (alwéys after corrections
for the Coﬁlomb energy difference and'neutrdéimoton mass differencq)of Y
~ the groﬁnd state of the neighboring ﬂ1‘{l==ﬁ. isobars. The relations

say further that every level.of the I—r§|=a 1 rniucleus must have an
analogue level of tHe same nuclear spin and parity in the T¢ = O

isobar. The identification of the first excited isotopic spin state
with the same séin and parity as the ground state is considerably more
difficult because such states occﬁr in a region of high level density

in the stable Tg=0 nucieué while only‘a few spins and paripies
have usually been measured for the unstable j'FH:i isobars., There

is difficulty’in'locating even. the first excited isotopic spin state 2
in even-odd nulcle:‘i‘9 so'tﬁe first excited state with thé same spin and |

parity is unknown in al1~these cases, We shal; make no attempt to
locate the lowalﬁing states in the dddaddd meﬁbers of.even A nuclei
since no information, even on the ground states of their isobars with i

| 1_§|==;l, is available. “
We shall now list the low=1lying isotopic spin states for
T{ = O nuclei which are even~even or odd-cdd and for odd-even nuclei'°

The level separations in these cases form three separate series.,

2{ = 0  Even-even Nﬁclei—-(The first T =1 J = ot state is unknown in all)
Be8 | LiSC/S')Be8 with dpulomb correction gives T = 1 state of Be8 A~

at ~16.8 Mev. The observation-that over 95% df the reactions

012( ¥, ol )Be8 leave Be8 in>an excited étate at 17.0+ 0.2

Mev (W51, T53) strongly suggests T = 1 for this state. Strong

angular correlations indicate a J 3 2 and Telegdi (T53)

assigns J = 2%, The spirs and parities of the ground states
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2 . B . S e
"~ are unkrown but we expect J = 2% if Telegdi's

of Lis,and B
assignment i$ correct.

(pﬁ)ClQ Qiﬁthouloﬁb‘cofrecticnbgives positionvof T=1
as 15.09 Mev. A state iz listed by Ajzenberg and Lauripsen
at this energy‘but there are several near by levels, so positive
1dent1flca+1on is not possible.
N 96 %3 = ~with Coulomb correction gives 12 2 to 13 3 Mev,
A number of states im O lie in this range including two J=2
stateé at 12,51 Mev and 12,95 Mev. Tentative identification

L4 -
of the ground state of N  as J = 2 favors either of these

two states as thé T = 1 analogue in Olé° Positive identification

FZOS/B')NeQO with Coulomb correction gives lool-ﬁévo A 10,1 Mev
level is listed by AJzenberg agd Lauritsen as occurrlng in ‘

(d n)Ne 20 and O ( o, o« )0 60 The latter reactwns however;
can show a 10. l Mev level only by viclation of the strict

1sotoplc spin selection rule.

6 : ' :
The level in Li at 3.58 Mev has the correct pesition, nuclear
spin and parity to cdrrespond to the ground state of Heé(J = O*)Q

The T =1 J = 1T state corresponding to ground state is

C
16
0
has not been made.
NeQO
Tg = 0 Odd=~odd Nuclei
Li
unknown
BlO

The 1.74 Mev state has the correct position, spin, and parity

(f = 0%) to be the first T = 1 level.

10 . -
The 8.89 Mev level of B® is suggested (A52) as T = 1

corresponding to the J = 3+ state at 7. 37 Mev in Belp° This

state has the same spin and parity as the ground state of B10
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N,

18

16~

The 2,31 Mev level has the correct position, spin, and parity

(J = 01) to be the first T = 1 state.

_

The 8,1 Mev level is quite possibly (S52, f52) the analogue
of the 6.1 Mev level of Clh, boph being J = 1 states.

This level has the same spin and perhaps parity as the J = 1
ground state. ' |

The Coulomb energy broduces the first stable T - 1 state. N

18 18
F (/35)0, with Coulomb.correction gives the T = 1 state in
18 '

"F aﬁ 1.1 Mev, No identifications of this T = 1 state or a

state of the same spin and parity as the grouﬂd state has been

made.,

Odd-even Nuciéi

N
Li

.Be?

15

17

19

tables.

o L 15 _ :
8.8 Mev separation from C Z leads to 10,9 Mev for T = 3/2

: 7 L
Peaslee and Telegdi (P53) conclude from data on Li ( /¢ )He

7 6 :
and Li (2 )Li that the first T = 3/2 level of Li’ occurs
at 10.8 Mev,
14.1 Mev sepération from Li  when corrected for Coulomb energy

gives 15 Mev for the first T = 3/2 level.

. 1 5
level of N .

3/2

' . 17 _. :
8.8 Mev separation from N 7 leads to 11.6 Mev for T
level of O, o
19 _.. 19 : . A
0 (/6 )JF " has a Q of 4.5 Mev giving 7 Mev for the T = 3/2

state while known states occur at 4.76 and 8.56 Mev. A

We shall summafize these level locations in the following i
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- -TABLE I - . - .

Separations of T =0 and

T=1 Mulﬁipléts for “Tf'vg.d Nﬁclei.

10 - 12

o 16 18 20

|facleus o Li V“Be .

10 12

14 016 18 ‘ 20

© 2,31 12-13 1,05 10.1

Separation of T = 5 and T

T = 1 level 3.58  16.8 1o7h- +15.09
' Mo/ | “
T - 1 level 8.89 8.1
of ‘ground -
state spin
and parity
TABLE IX

= 3/2 Multiplets for T¢ = L Nucled.

A 9 15 7 19
Nucleus Be9 \ O15 O17 ’ : F19
. ’ [ - ' )
S led . T
—‘:// ere 15 10.9 11.2 7
%Jeb// s
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Tt is hardly necessary to emphasize that although these levels _
are incomplete and experimentally unverified in many cases, the locations
are certainly correct to 10% or less and are therefore useful in prdviding,-
an orientaﬁiéﬁ and for computing the impurities of isotopic spin states; O

We again mention that the first - T = 1 -state of the same spin

)

and parity as the ground state T = ¢ in odd-odd nuclei with T{

lies much higher than the first T = 1 state. The first state which can
be mixed to the ground state by Coulomb forces does not lie more than a
factor of two lower in odd-odd nuclei 'T'§= © than the first T = 1

~ level in even-even Tg = 0O nuclei.

3, First Approximations to the Impurity of Isotopic Spin States of the
Core |

(3.1)" Sum Rule Techniques

The sb-called Coulomb pertufbation which actually contains also

the neutron=proton mass difference is given by

Z (E ’j:g){-“”f# + (Ma=Mp)eTg + & (it i) 1)
2#‘3 ‘7

C . 2
The last two terms cbmmute.with T and can produce no mixing of nuclear

states of either the same or different isotdpic spin if theée states
are orthogonalS but only energy shlf‘cs° The first term can be - _ ~

decomposed 1nto parts which are 1rredu01ble tensors in isotopic spin

space with separate selection rules for,each part,
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o
) 2
Sealar  $= F 3 L (1-3%F) uTeo
V%5 t -
. 2 - Q ° :
Vector  T=-% 5 SEEFG AT = otd
. ;? . [} (2)

-‘.-'p-a,
ens e _ et | oo\ =
Tenser T A Z i <Z’S;‘Ts.é' "'Tla"t i{‘i—f;) AT =011+

' ; - 0P OA4

The scalar part commutes with ‘I‘Z and therefore has matrix elements
which are independent of "T'{ . Since the sole effect of S is a
displacement of the T 1levels; it can always be included in the
m_mlear hamiltonian, - The tensor ng)caﬁ only mix the T = O with
T=2 state, and the energy separations of these states will enable us

(2
to neglect Té )

in computing the impurity of T = O states. We shall
limit our’sel';z'es to this case in this section and can therefore céﬁfine
curselves.to the vector component of the Coulomb pefturbationc

When one applies a Vpexﬂtur’bation :H:P' to an eigenstate "QZ, of

N .Q . @ o -
a hamiltonian, the perturbed state corresponding to yf, can be

expanded in the eigenstates qﬁg of the hamiltonian

) ¢ |
Vo= S as®, P
V=0 ) : Eo - Ev
The coefficients @ give the amplitude of higher states @9 in
‘ V } . 2
the perturbed state (ch with 4=|Qe| <1  for validity of the
expressions. The perceniage admixture of higher states to ,Q?o is

simply

. o | L
p= 2. H((g:f{ E}l’))j W
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By closure the ineguality holds

e H»;@,,)—gw,,}{&f e
BT (E.-E) | - . |

W
It is _theref;ore conven'ient_to subtract from T(()l) an expression which
. makes (@c;]{f'@c) zero and is of course a scalar in isotopic spin.
We shall use for the Coulomb perturbation C.
. / -
C=L5 (3% _ o 2 ot @
- g <= A H ' 1'.}' ' ,
co t*?,v , ' ' o ‘
whose expecta’pidn value is indeed zero in a T = O ground state as we
' shallv'sée'in the nex£ section., The percentage mixing of T - 1 states
to the T = O ground state is limited by
N : 2 2 o .
P Y (4) C ’EU . 7)
-~ . 1 .
(Ee~Ey) B -
' 2
We shall evaluate the matrix element of € by a method commonly used in
deriving sum rules. We first write
o=l ZH&—T’&—» 16Te (4 7)) + 2 (T + T)*| 255
>‘ ¢+ \ 5 LA A VTR 4 t
] “
' . r 2 . ..
Q) ) . , -1 .
+-?., Z %g - %TS-@'L‘:\'+'2‘_g3'+'tg£.)+(’2':4""'5:3)(2,';;1-2:&) /Z‘a'/z.{i
i‘é";‘l . | - o -~
— % ’ .
: : ATy . ' ; : , ~| =
t+ Z L Ax ﬁ{l('z};-}-"c,j ‘f"crﬁ'i’?»:u.)'f-(Z:Hz:é)(z?k'l'ﬁﬂ)]/zij/la&

(8)
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where the primed summaticns indicate that differgnﬁ indices never assume
the same value. We shall now assume that the.expecﬁation value of the
reciprocal separation distances is the same for every term of each‘of
A the’sums and shall designaﬁe these average‘values by‘ rzg . rzg rZi s

- and rzi r;i . Bach of the resulting expressions in the isotopic spin

coordinates can be summed explieitly to give

‘<sz>= -%EA:(A-I)(I— ";ES:){E’+ (A'4>Mf(/1f3)m5
- (9)

This expression satisfies the requirements of vanishing for T § - A/2
=2 -1 =1 -1l -

-and fo: Ty, = Ty, Tyg _212 rBi . The first case corresponds toc
all nucleons being neutrons so that no Coulomb interaction exists, The
second result follows from the fact that when these averages are equal
the sum vanishes. |

2

4,5 a7 .
{e2) = f—(Z i}l-%;-”l‘;z‘) L1z = O

-

(10)

The averages which appear above can be evaluated on the uniform
medel which regards every nucleus as a sphere of nuclear matter with

uniform density everywhere. The averages are then given by

_ i = oy & dudeades

V3T ez
Ry = = $’ drdt.desdeg
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: ’ 3 '
" where V 1is the volume of the nucleus &3@3 and represents a

volume integral in which the points ?‘i; }"2”5

S s and ? move over the
3 A
interior of a sphére of radius R.

The 1ntegrat.10ns can be effected most easily by use of a general

" formula for the 1ntegra,l f /(/L/z) oz, AT , To obtain this formula

choose the coordinate ¥ of the center of mass of particle 1 and

particie 2 and: Jo’ - ?"2 - ?l the relative separation. The trans-
formation is .
- > -
RS :{TF

A

2 +—ij¢’

- of which the Jacobian J (/_Z-_L;Z__) is un:_’c,yo The integral can

then be written..

glff(/m)m dru= fplp)pianadadps
**ain Dddelgap

with ( d,/@ ) the angular coordinates of ji'/.z and (8, @) those
ef ?c The ranges of integration for the coordinates are

s g2

- | ‘
peben O=hsffipesus dpiasis SRS )

and for the ; coordinate

O £t =7
0 24 <arw
oé-/oé,ze

Then Z'= - 9"f@a,o¢/4o)/ aza,mne. -’-(Jocw«. +ﬁw*¢+%€z /O)

'-2,€" '

L == / agff@?/oz&o-? -—/.z_/oze'?a«/é /9~9

(11)

)

-

a,
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This result now gives i with ease as

‘ LR
= - LS e &
A/.Z ;rb 2sa Kz, T, = e T‘[i‘?ﬁg"‘a‘ /v'?/oel.'* /6/2)_._5-/?

. -1l -1 _ =1 . e
Since T, r3h = (rlz) we obtain for this average
=l -1 =2
r = 144 R 12
12 T34 H | (12)

Trivial integrations yield the other averages

-1 =1 _ -2 -2
riz rlB = %% R = l°h57 R

- 2 ' -2
e TR = 2R (13)

Inserting thess quantities in (9) the matrix element emerges as

<02> = e'ZL A(A - 1)(0.764 0,017 4) ., (14)
1R | -

This result is very interesting in its dependence on A, From
equation (9) one might expect <:02;>- to be proportional to 'ASS but
this result is proportional %o A(A - 1) for A { ™~100. An |
interpretation of this result can Be méde wﬁich is best expressed by
the following equation |

2 2
p = P tiere AlA =1 = (3 .52 (15)

state particle 5 pparticle

where p state is the perturbation of a nuclear state, Pparticle the

pexturbaticn of the state of a single nucleon and A(A- 1)/2 represents .

the number of interacting pairs in the nucleus. This equation will be
justified later by another calculation of Pparticle? and will be seen

to be very'useful in estimating the mixing of excited states.
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{3.2) The Statistical Model

This simple calculation complétély neglects the effects of

correlation embobied in the Pauli principle as is obwvious from the

2 rml rﬂl and r_l ot
2° "12 713 12 734

in the same spin and isotopic spin state can never come intoc coincidence

expressions for ry For example, two particles

according to the Pauli principle, and for such pairs of particles the

above averages should be smaller, The effect of these correlations
) '
12

are sharply reduced. The average rié f;; is affected somewhat less

should be greatest on , since ccniributions from the éingularity

because the third particle may be in a different spin and isotopic state

from the particles 1 and 2, and this fact allows contributions from the

-1 L S

r13 singularity. Since therg is in rlz FBh a complete ;ack of
correlation between the positions of 1, 2, and 3, however; the average

riélr;h is'affected least of all by correlations, A much more physical

way of seeing the effect of correlations on the averages proceeds from

the physical'ihterpretation of these quantities. The significance of

rZi is that it provides a measure of the magnitude of the density

rfl
i3

associates the "density" in one direction from the point 1 with the

fluctuations in the nucleus, The .quantity rZé

on the cher hand

"density" in another difection from that point. We may interpret

-1 -1

Ty rlB as measuring the "angular" uniformity in density about a point. --
-l -l -

The last quantity r12 r3h correlates the density at one point with

that -at another point. For this reason rié f;i.measures the uniformity

of the density of the nucleus.
" For a reasonably  large nucleus it is clear that uniformity of
the nuclear matter from point to point should become a good approximation

' -1
 first. One sees in this way that . r can be well approximated

12 "3,
by its value for a uniform nucleus. Tbe effect of the nuclear surface
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Slater determinant
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-1 =1
will cause r12 rlB to deviate somew%au more fron 1ts value for a

uniform nucleus than r o does., The local den51ty fluctuatlons

12 “34

=2
should certalnly dlsappear last, 1f at a].l(9 S0 that TIQ w111 show a

rather large dev1at10n from 1ts value Por a unlform nucleus° Comparison

of the expressions (9) and (14) shows that correlation effects majibe ’
quite import,ént and mé,y materially affect the magnitude of < 02 ) o We
shall therefore procee_d to evaluate < 02> in a framework in which
such effeéts may'be copsideredo |

In attempting a more correct evaluation of <<G‘>9 we work in
the framework of the Hartree or single particle picture of the nucleus
and shall use a formalism which is similar to that of Rosenfeld_(RQS)°
There are avnumber.of his expressions which omit terms that are important
for our problem, however, and the result which we obtain for the matrix

(7 / ; (2:,, z.) /_,ﬁ ) Wiil differ in several significant respects from

that of Rosenfeld. The extension of these methods to the evaluwation of

three and four particle operators has not been»dpne previously.

*We begin by giving the state of the nucleus as described by the
wave function @e Qs Qo5 ooos Qn) which is antisymmetric in the
collective coordinates Qi representing five coordinates; three space
cocrdinates, a spin coordinate, and an isctopic spin coordinaste. That
the nuclear wave function should also be anti-symmetriec when the
isotopic spin is used as a coordinate f&ll@ws from the applicaticn of
the ekélusion priﬁéiple to thé neutrons and protens individually as
was elegantly shown by Klein (K38)., In tﬁe single particle model the

anti-symmetry of '@P permits representation of the state by a

@) e
_’Q’u :?. — @h}ch) . | ﬂh(&A)>

(16)

5
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where we shall take ?L(Qy) to be a single particle wave function of
the form. \
..-*‘%(Qa) = Pp, (1) Uy (03,7,) (17)
. : o
where 2. (a'.;,, 'Z",;) is a spin-isctopic spin function and '?ﬁy (1) 1is
a space state. -Our treatment_will be gquite general up to the point where
matrix elements are actually evaluated, but:from this point we use
plane wéves normalized to a box{bf'volume V. This choice constitutes
the use of the statistical model"‘which has been Qiscussed in detail
by Bethe (Bé36); The use here is sihilar to that by H. Euler (E37) and
Watanabe (WaB?) in their respective studies on the saturation properties
of nuclear forces andvthe effeét of nuclear forces on a Fermi
~ distribution of'nu¢leonso Our justifi¢ation of the use of the statistical
model is that we expect the results to be more dépéndent on the symmetry

of Y than on the functional form,

- (3.21) Matrix Elements of General Two, Three, and Four

Nucleon Operators . : -

Two Nucleoﬁ Operators:

< Consider an operator Wié(Qig Qé) of the collective coordinates

Qy and on _The.expectation value of Wi, will be
(VV,,_ (Q‘)‘Q")).—; ‘/. j ?P*'(Q,‘ “&QA)W:. ‘(Qn&a.’)@@,; uQA) .
‘ ' G Qa4 (18)

‘The anti-symmetry of P (Q4,--.Q4) = is defined by

B}@(Qs.' Q4) = - W(ay,- ,Qn) |

where Pij is an exchange operator on the collective coordinates Qs.

- We can express P..: when operating on properly anti-symmetrized wave

iJ
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functions as

N

is 4n isotopic spin exchange operator and FoF  1is
the spin exchange operator. The expectation value of W( @, Q,.) can
be written differently by separating the space and "total" spin
(isotopic~épin and intrinsic spin) éoordinabes of Q and Qy. Let
iy denotg the total spin state of both nucleons and use Xys Xy for

their space-coordinates,  Then -

(W(Q", @a)) = Z;' 'L‘ v dxt_dxby)*(zh"hi SQ:;“‘QA) w:;(Q:1Q; K‘
‘ 3 QA ‘ ' ’

x@(x,,xt?i ;_QT‘H-QA) (19)

The summation over "i% is simply the operation of taking a trace over

the 16 dimensional total spin state of the two nucleons. We can make a

unitary transformation in this space to the representation.in which the
1 2

states are eigenstates of 'C‘g “and '5; ; the f- components of the

isctopic spin of the %wo particles. .The expechation value of W(Qp QQ)

in this space will be

(W@, - 5 Ja /;(v'c,f 2)If) (J/W(a,f@-z.)/z et s

- (20)

where i and f are new gquantum numbers and (‘z.' / 3 (x,,'n,)/ f ) is a

matrix defined by .

(1' /2 [%uxa>/7£) = _,é; ' :/é;@*&n"ui $Q3_,‘ @A) @{"/ﬁ‘t;’cj Qn“‘ %‘é)l)

In the state @ given by (16) we shall suppose most of the

space states %‘, %o be cccupied by 4 nucleons, two neutrons and

'
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."’cwo protons; with each pair of like nucleons having opposite spin. We
shall restrict ourselves, as Rosenfeld does;, to the case of nuclei for
vhich A =4n and T = 0. One can give formulae for the more general
case “* when every space state is not filled with four particles, but the
ea : o

" expressions for the matrix .elements of multiple-=nucleon operators become
extremely complicated.

We now introduce for the %7, plane waves normalized to volume V
" >
- ok
%v = — c

Y- .

and. make the assumption that possible free particle states are dense in -
k-space. We can therefore replace sums over the ‘éy by integrals up

to some maximum k, determined by .

% ' p
tm = (Fm)T L 2533 oo 4o 4%
‘ 22s @ V
The general expression for (z jfn,,x,,)//) is the following

(¢ /;(xnxd/#) a7 [ ot ot 111£)Pap )P, 2)

= B )98, 6) 9r000)
fd?s' Z?ﬁ,»(z)% (z)K/f/F)?@(:)gof,Jz)

—(i/ %= /-//9&,:()_7;6/‘/22:7
;o

' ’ _ :
where i = total spin state for two non-congruent nucleons (different

. (22)

spin or isotopic spin). ' : .

/2_5 = a—'z Pz.,n-' ~ product of space and spin exchange operaﬁors,, e
The ap 2 is just intended to restrict the sum over spin states
to t.hose states compatlble with the requlrement that the 31ng1e=partlcle

wave functlon can not be taken twice i"rom @ to give terms like ‘

Z (MO 4/}:&) V()W (z) .
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With the normalization which we have chosen for the P,

the sums over states give the following expressions

Z 190l [ = AL

2 PP P Ipints) = Ah=) e"&n

eV

where

G,(/;)'=——§— ',(‘ém/;): 3 [T _ Ty (hmt)
. \ % S
T ¥ () > (23)
The function G(r) will be designated as theejuivalent nuclebn
correlation funcﬁiony since it gives the probability of a certain
relative separation r of two nucleons with the same spin and isotopic
spin. This correlation function was first introduced by ngner and

Seitz (W34) in the course of an ihveétigation of the binding energy of

_metallic sodium. In this case G(r) gives the probabllity of the

relative separatlon r of two electrons w1th parallel spin°
The sp601flc form of G(r) given here is the result of our

choice of free particlefwave»functiéns as the free particle states.

‘More generally, G(r) might be termed the "incomplete delta function"

and éan be'defined for any’orthonormal set from the equétion

. N
Gy (&;/g-,,&,_? = _E{ 30,,, (x,)‘ Pu (x.)

&

There exist general relationships of this kind, for example, for the
Hermite polynomials (A26)

n=R ' ‘ o
Z o7 M 03 (p) = g et
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so that the simple treatment of such correlation effects need not be
restrlcted to the statistical model of the nucleus. In fact, the
appllcatlon of formulae of the type (22) makes it poss1ble to apply
“correctly the formallsm we have developed to several single particle i
models which are much more reallstlc, e.g. the harmonic oscillator

que;lo

If we insert the expressions (24) into (23) we obtain finally

? (x—nx’v) = /éll/—-l‘ [i GL(/ZIZ)_Y [1 + _—' ' %! ] (21)

Three Nucleon Operators:

Just as in the case of the two nucleon operator we can write

the expectation ialue of a three nucleon operator as

(= 27 Jlltsls) (15 i,

where of course %;if; and . f now denocte the total spin state of

three nucleons., Similar considerations as'led to (24) now give

;(x,,x;ﬁi;) = - [1 - P 6’(’2'2) - P §*(nis) - 223G )

B> Gen)Glrn)G ) + e:zqza,g Gt) G lss)]
i ”n. o’:'& 11
U+ G+l 1) 7l s G i, )]

Y

(26)

where
‘cy.; - total spin State for three non=congruent nucleons

2 :
123
(no two hav1ng the same spln or 1sotop1c spin)

The terms which are multlplled by Kronecker ¢47@ came from terms which

had two or more particles in the same space state,
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Four Nucleon Operator: - -

 The matrix element of a four nucleon cperator is just

L <WTI34> = 'Zf(i[?{xl;utlgxﬁ)xﬁ)lf) (#I-Wf;;qli)dmdxzdxs Ctxq-

with the proper density matrix being '
: J) : I e 13 %
g (z,,Zz)xg)Zq? = M‘F [1 - R G )~ Gb (/z,;) - B G’(Am)

- @ﬁi 63?%a3) —-ig:?]$%5%z4> "5;244;7%3+)
| (Rl + B2 )6[4,, )G rn )Ghas )+ (Re# 2-242)6%/;)6/4/9‘)5/@4)
* @431 +/DM'?5/4/:) C;'@m)é"/én) (R + /2-?43)4&23 )6'/4“)5//2314) |

02)(34)

G //zn)@?‘é/f) 7> /Q-f)(»%’%/J)ﬁ%zﬁ)v"/éwa?)é'%/f)gzéu)

/¢sz

_ wm,,; Gl )§tose)Gliss) = RS Glors)B(h33)B 02 )G )

/3—%‘?‘ Glzs) 5/2;3 )6/42-4) 5, Corg ) = ,Q_{:"g /Q/ . )6/1?.9?/6/434) & K?AB)
=PI ﬂ/f )8 /224)5/323/@@/3) 27 ﬁgé‘/-")gf 32/ &{339)6%" _/ |

[737__ ﬁ’z/z fdpf’ +¢P W "‘J;’w 1‘9/;83,9 *”’;vn)

R :
{9"/)“'4) ("’2’ 7ify 'La;’z/w * ”n?)" < /‘% Mn*‘zp"/g

/)ﬂ )
T sn— .
B-A-2)03-3) "“3’ j
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These expfessions seem rather lengthy at first, but there are two
ways in which great simplifications caﬁ be achieved, | It will be noticed
.that the exchange terms arise from all the permutation operators on the
symmetrlc group of order tw09 three, or four. In evaluating the matrix
element of an operator; howevers terms of séy (?8) which are equivalent
under_the normal subgroup which leaves the operator invariant contribute
equal‘integrals to (27). Thus only_the_permutations of the correspcnding
faétor group, multiplied by their multiplicity in the symmetric group,
need be considered.

Secondly,a large number of terms will vanish under the trace
cperation wheﬁ the matrix elements of the operators are calculatedo. We

shall see this in the development which foilowso

_ e 2
(3.22) Evaluation of  {C°> for T¢ -0 A - in Nuclei

From equation (8) the squared Coulomb operator can be

written as
2= % ) /. / /
C-—/—;/jzw}v‘j@@*#;u@j

(29)

where we have defined

67-2 097- ¢ ' ¢ ! .77"&
;/—/ - L Gt Gy) + (o G Jy

_ [T | | / - - |
Wik = [ 5% - ZZ F+ Gy + %) + (Gt T i f’c‘kj//a/m’

[ ’7{@'*@”‘" T F Ge )t (o *‘?:PJ)/% f’@%g 274



=33=

From the complete’ d,mlu,y“mnet ry of the wave function it follows that

(C‘Z> _ [_/f.@___)(w > -+ AM'—/)//? 2)(W23>
fAat=1)4-2)fa-3) (o) /o
(30)'

In the case of T £ = 0 A = 4n muclel the operators whose matrix.

elements we shall need are

s .
W, = zE = “n
/R A/g: F/é—

Wy = (a2G.)(, + J‘.?) = a3
212213 212443

%3.}1 = _M@S' f'Z_'ff) u54

- Riztszg Anzzs«y-
| (31)

Evaluation of Wys
In calculating < W12> we shall omit terms of order %j or

smailer. The result will be

(W Y= 7 foa (210 /z)[//wf)m irRA)siin]

Using ﬂhe foiloﬁng SUms
/#/Wz L)) = I (/W h ) = 247
(IWh) (/R )= 2 |

‘**M

>,

we have for <‘,W12>: :
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WS = T = T et 2 §n)f
SRR . R

———

where s is defined as in section (3.1).

Evaluation of (W13 :

To evaluate <‘W123> we shall use (25) and shall include in
(¢ /;(x.,m w/F) all non-exchange terms ( gﬂ) absent) to order

1/A and the exchange 1ntegrals from terms of order unity.

(/;«6(,,%1 Z3 >/7£)— i (/7 rt él(’?- n) 6 ( 13 B~5 %L(QH)

+ /'%33% R-E4) 5%&)6‘/4,3) G%’/Aégs).
/6/4 ‘2) (2/ i “/(3 # 77/)/f)

In evaluating (25) the sums over i a}id f give expressions of the
form

z(uwnlz) = 64/’4;/&.3 o Z (‘z,dW",,lLu = 3N

"n‘

Z(&-\.W‘l.za‘ )("-l l'-‘3 = 30 /Z.,3 Z ("35, W;'lm) O

"‘aa

z(mwg,lz)(l ,w,,@).-._dg»:.;ve'.;f Z(@Mnb)él il ) b 274

Making use of the symmetries of 1ntegrals containmg ‘the Gé we

. obtain the terms of lowest order in 6 7ém/e



&

‘/»J  §¥as
("V;.zz> /z/ ,_//+ W_/ V"’/ /2/23 %.)/4

(34)

These are the lowest orde‘r“ terms for the correla‘bmn te“ms contalnlng
1n’oegrals over 6 é ) , because the appearance of each additional

6//3) ‘nlndgr the integral introduces another factor off-E-’/ .

Evaluation of < WIZB h):

In <ng3;+> we must include not only the terms of order 1/A

arising when the space states of two particles are the same, as in

: ' ' LR '
the second line of (23), but alsc terms of order 1/A in which the

“space states of three particles are the same., In this calculaticen some

 peculiar features arise from the fact that in some isotopic spin states

for four nucleons <W123&> is posifive, and in others it is negative,
In the case of <W12> and <W12? only poszitive values were pc::ssi‘ole° Let

us use the symbols (##4# #/Ma3s /[##+# ) to dencte the matrix

element of a state with Zr, =T, = Zrs= Tra=< ‘ while
(— -t W54 /-——++) means that the state iz 2, =7, = -z
and Zr3.= : Trg = 1_ ) , It then follows tnat

Z (/744;34/2) /++++ /%34/"1‘7‘-7‘-/+‘/='°“M3$/*m"“)

.+ /++-~—/WZaz?/f-f———/%/5=’~f-+/%3~z—/"”‘*°"“)_

where only the terms which are individually non-zerc are displayed.
The significance of this result is that the contributions from < w12%>
of order unity wii‘-l_ vanis‘riﬁ and the last-two terms .of (30) will both

2 . .
be of order A . Evaluation of the other sums arising in (27) gives -
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T (1 Wasn[0)(5 ) H)=o = 7 (4 Wiase )5 1 A2 UE)

AY

Z ﬁ‘/ %,4/)///9'3/;) =440k | |
ZGI Wi a4 [0l PPCR] =20 lnss

The only part of (W123h> arlslng from partlcles 1, 2, 3, and L in
different space states is that containing the nucleon correlation"
function. We give only the terms which are of lowest order, those in

which G //z) appears under the integral no more than twice

(as GL(/&/ or é’/é)&[/b/) )

| 2 - ‘ g 2/4/3)
’(%342 =, - -77—"9'- 9764/_2434_ :
, | (35)

The.terms arising from two paftiéles in‘the same space state are
of order l/@ - 3) but the extra fa\,tor of (A-B) for <W123L;> gives
terms of the same order as . <W123>

The contributions will be
(Z ;fx,,fz,zsiw)/f) 647//9 _3) //ap /3 + ‘l:z{? ”.39-/J£) |

v . X
" where . 9% is the total spin state of two equivalent nucleons
~ (same space state). The following\trac‘es over the total spin states

are needed

Z (?',4 IW/_:IQ-/2’,4>= &) = Z /)3;/%34 7_”)

7/:.

Z <"3'W=M-I "'ts) = —64/“;/&34 = 2 (‘&3 mq‘tzs)‘ Zﬁﬁ n_zHlim)

43 23 L) R
| =Z (4 Wiss |ie)
2 ° - - 2 X
.:Z (1 rw-;zaq-hns) = — 32’&;1'%-'1- '
3 :



-4

;37;

Using these sums in (28) we obtain 'for this contribution to <W1231¥>

. (WI—.Z.B#Z:' = _Zf_'.;_,_.f}: _ N (36)

(4 =3)

The terms arising from three particles in the same space state

1 " but are actually of the same order of

(8-2)(A-3)
magnltude as (36) Thelr contribution to <W1234> can be shown to be

are maltlplled by

| = s |
('W';au>3_“ | ;;:j'?j,:%} (37)

although the analysis is somewhai long.
Finally there are terms from pairs of“doubly occupied states;

and their contribution can alsc be calculated to be

4 ‘ —/ ml . T
(A=a)A-3)
These last two results show that the contribution of the correlatioen
ﬁems of <W123A>surely does not reside wholly in (35) but is
ffected considerably by contributions of doobly and triply cccupied
states and of pairs of doubly occupied states., The analysis of these

contributions is rather involved, but we can say something about the

“form of the correlat,:l.on term whlch comes from this part of <w1234>

without further calculation.
The largest correlation effects will come from terms with
G%) or Gh)6Y). In < wﬁ%) only thé first type of term
appears, 'aé we see froin ('35) ‘The contmbutlon wh:.ch <w123h> makes

to correlation terms of this order are therefore
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, 4'A-. 6%/3) : . | ot
VTS putag - | - (39)

where A is in general a function of A,

Combining the expressn.ons (36), (37), (38), and (39), we have

for <W1231+>

(‘V\/T;‘34> = - 4‘419.'/85—1/ ‘ +5) 62(/119

(/4 "-7)@-3,) 4/1/231'

(40)

. With these results for <W12> s <W123> ,'and <W1232;> R we can:derive
the matrix element of <‘02> . Using (30), (33), (34), and (40), we

obtain ,
c = 76§_+4 1) //5‘- F (4+4#)and — /7,4,5‘)4,;’4 4 A1 @2}
‘ (41)

where f@) contains the correlation terms

dzﬁ)= _ﬁf@) -’ 4 2)%:?/1@%”‘ +J€/423-)-7
~ /,4_,2)/,4 3) _9,__)% G¥hss)

A2 434

(42)

N

. : - =2 ,_l ,,]_: . -1 =X .,. . ’ z
If we insert the averages rl2’ L2 13 s and Tio r3£+ given in

 (12) and (13) the flnal result for <02> is

<02> _<_e_= AA - 1) O,878+O°Ol7 A-/-sz(A\)}‘ : (43)
16&” : - ,
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where R 1s the nucléar radius. If the correlation efféctsliﬁtrodﬁced
through f(A) are small thls result is ‘seen to be 1n remarkably close
’agreement w1th the equation (lh) obtained by the smmple sum rule
calculations. In v1¢w ‘of the extremely crude nature of the latter,
- the agreement is surprising.

" {3.23) Correlation Effects

1j are all equal to

the same constant, then <02>‘ = 0, Turning to (41) we can conclude

We observed in (3.1) that if the 154

‘that when this is so f(A) also must vanishn From (42) this implies
that . o |

L By, _ )=
}[4)——;2_‘ 2—54—,2)7#2‘[/4 2)(9-3)= 0
We can solve this for A and obtain

_ ., 34-5
Al Ny =y

(L1

Inserting this result in f{A) we have

— — ?’/3) -
JZ@) —L Q’?:’ '2)‘)72.?43 Z_—Gu//?/a)f- £ G’%di

+ 34~5 £ C?ﬁﬂ%a&)
2VF R4y 239

(45)

~ The evaluation of these integrals is quite difficult and no exact

expression‘has been obtained. The asymptotic behavior for o Ro > b
of these integrals is given in Appendix I, and these results bear out

the assertion that the corrections to 'rzg decrease most slowly, the

correctlons to r Il gess slowly than this, while the corrections

12 3&



=40

to r;i r;i soon become negligible for vlargenuclei° From eduetion (41)
we see that the effect of correlations will be to decrease the expectation
value of <:C%;> .although the effect should not be large,as one sees
from the way in which (45) was obtained. 'That this is reasonable can be
seen in the following way.

The qoantity <Cz'> is a measure of the perturbation of the
wave functlon whlch is assumed in the absence of the vector part of the
Coulomb perturbatlon Since the perturbation C for T ¢ = O has the
form

c? P

C = — T Z’ Tri Ty

: i#y’ , ’féﬁ ,
the effect of C on the wave function is to produce an apparent
attraction of neutrons and an apparent repulslon of two protons Since
'we actually evaluate <: ;> the effect of C on any pair of neutrons
or protons is a mutual repulsion. Now if the original wave functlon
contains,any correlation of this kind, the perturbetion produced by C
will be decreeeedo The statistical.model does provide a certain amount
" of the required cofreletion when one brings in_the exchange integrals
ccontaining the (3?2%) viz., there exists a repulsion between'any pair
of neutrons.of protons when both pdrticles have the same spin. To the
extent that this‘corgelation coincides with the muﬁual repulsion
required by C will the effect of C in bringing in higher isotopic
spin states be ;'educed° |

We can conclude from our discussion that setting f(A) = O
makes <:C2 > a maximum and Qe shall use this exoression fof <02>

in computlng the 1mpur1ty of the T.= O ground state of T f'“ 0 even-

" even nuclei ‘as predicted by the statlstlcal model, From (43)

<c - A(A-l)[O8’78+OOl7P:} L (46)
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One more:point should be mentioned concerning the relation of this

‘ value of <CQ> to the value obtained from other models, in particular the
single particle model with harmonic oscillétor.wave functions. When we

say that theb.valué"of' <62> given' by (hﬁ) neglects correlation effects,

one must not conclude that (Ah) represents an upper bound on the predictions
of more detalled single particle models. For although a nuclear wave |
function of the type (16) contains éertain_correlations, the individual
particle ﬁaVe functions are smooth (IQP_,; |t =1 ! ! > and do not provide
a Ypositive inter-nucleon® cor_-relation° A wave function or set of wave
functions, which deséribes a state with pronounced maxima or minima of the

‘nuclear density in certain regions of the nuclear volume could increase

the values of r ;nd rl; rig relative to rzi' r;lh‘ and thus

increase < >

(3.3) Impurltles in the T = O Ground States of T ¢ = O (N = 2) '

.Even=Even Nuclei.

Using the expression
2 2 .
with <C > given by (46) and (E - E;) from Table I in Chapter 2, we

can give an upper limit on p. These are the following

A 8 12 16 20
v -3 ' -3 . -2 -2
P_Max .206 x 10 7.5 % 10 1.9 x 10 o 3,9 x 10

(3.4) Perturbation Theory

The'perturbation'upper bound on mixing

)P & SCL)

(E -E)*
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where C 1is the pertufbation, may be much larger than the value of p
from the perturk;ation expression' (4) if there is much contribution to

2 .
<C > from high-lying states. In this case, one should use

N (CY |
P (E-E)* i

. ' : -2 ’ |

where (E - E) is the reciprocal of (E - E ) averaged with the
‘matrix eléments of - C. It is,; .in a sense, the average energy seﬁaration
of the ground'sﬁate from the excited states which are mixed to the ground
state by C. It'is of interest to see whether (1) is a gross overestimate
. of the p one should obtain from the statistical model. We shall

"~ therefore do a perturbation caiculation of p using for the ground

and excited states wave functions of the type (16).

We first use the perturbation formalism for 02 as a check of
_»thevexpression for the matrix elements ( ]Q, (1’2?0 ) between the
nuclear ground stdte and the excited states ’qu . -

The Coulomb perturbation (changing the sign for convenience) is
o, |
C — _e— Z ’r:h' +’Z}
T L =5
177 54

for a T?: = 0O state and we shall compute
(Iclo)= e* A= [y, (1 2) BT g 40, 4)
(48) -
where ?%9 is a wave function of the -type (16), differing from
ZZQ by either one or two single particle states. We shall notA

compute the matrix elements ( fy/C/O) for states @.; differing

by two particles from ZLQ , because these can be shown to be of
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order 1/A with respect to the matrix elements for which ‘@\) differs
from @o in one mngle-partwle >tate (TAS Chapter 6) The matrix
elements f‘or excitation of one particle are then - T

( / @f;z:‘:b/o) 7:,— Zf?ﬂ“ﬁ)/w/) ’Cjw-nx

2418 .

. L% 1G6r-weyga)]

whére @,’ (:y) is a single partlcle state consn.s‘tlng of a free

particle wave %,:/,) ' #' 4” multiplied by a spin and

isotopic spin state, For the first term to be non-=vanishing i and
7’ must be in the samé isotepic. spin state while in the second term
i, j, and = must all have the same total spin state. Summing ’%’(2)

~ over spin and isotepic spin states, under the assumption that 'ya

describes an .~ A - 4n nucleus in its grournd state;, we have

'(y ’L‘f/-f-‘&‘fa )____ (,47‘ ?’&7/)%0 /z__m“ﬁ%”)y&)@\

7

(50)

Wga shall negleét the exchange in”c.egréll.SJ which is small COmpared to the
direct intégrala The first integral to be evaluated over a sphere is

the following
ﬂ,@*f/@w ach '4// RN e

Carrying out. the necessary integration over the volume of a sphere we

- find

B Qo) 5 Ao e /6@- corf

(51)
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where

p=1E-L /R Gpi= Wz %‘Z% .

R being:the>fadius of the sphere. The matrix element (48) becomes

Cpeso)m 25y 2udSlrmael

- We noté here that contrary to the result of evaluations of (48) which

are not taken over a sphere the matrlx element is flnlte even as

<cé>o

"-‘2ZQ/C_? © . Thus (52) will give a finite result for

The sum over these matrix elements is

5= e o ) 2 A1) e f i [l

(53)

The factor of four in parenthesis arises from the fact that EZZJ may
differ from ?%Q in any one of four "total" spin states associated
with each space étate° The ihtegraﬂion on E%_ is over the intérior

of the Fermi sphere with radius in k-space of

/ 4
/ / 777/‘7/,? 5
/ _ L i = A .{_—23/4
The ranée of ?4%7 is from k, to infinity, corresponding to the
. o ) » o ) / z-- ( ’L) 5
condition under which the relation 1,Z' /6//6' /0 )/ ={C y is
valid. Defining dimensionless variables

4
Z =FR

we write (53) as



b5

Z/(»//C/o)/&% ("‘)& (’4 D" -%‘/ﬁlﬁ\/;"? /3(0/ wﬁ;

(54)

We then transform MZ’ to bipolar ccordinates aRe o andf the
- e
angle of rotation of ’? about ¢~ . Integrating over - 5& and

~the angle variables of a—"" 5

Z/(v/C/o)/ (&) - z//a.,%,, %;z o

(55)

A simple but crude approximation can be made

[ Gp)—cwmp | p)2_-ap . -
(/yz /~é—'/e @ = 1.5 - (56)

to check, at least approximately, the agreement of (56) with (hé) As

JO — o both 51des of (I¥) approach the same limit. The maximum of
both smes also occurs at the same value of JO o Insertlng ( 56) in
(55) we obtain

2 /ﬁ/é“/o)/ = (2 ) ) /  fo Ao 7,

(57)

where

o) = /@3 S 52D ) eoh e -{?;)3-/-2&:‘5407;.573«»@&3]@-“? |

For «9 (>° 3 we can appi‘oximate coshedx  sinhw = ﬁ .ew

so that quite a good approximation to f(&) is
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JZ(ZJ).=: 30— 5
2 - | (58)

W

Although "a" is determined by (11) to be approximately loﬁ)from'(57)'and.
(58) it follows that the value of <fC%> is rather sensitive to the
exact choice. We shall therefore choose "a® by requiring that (55)

give the same result as (46). This leads to the equation

A=/ 2 (Gaot—y) / 4 ‘
y = e [/29,27i+0,a/7/4f

(59)
Using the approximation Fatots > s we get
éééé) g6 0% 2&
a = ( L 257 4
ae7P# a.or 74
A /0 20 o 70
o lo FT v AST /GO
(60)
1/6

The fact that a is r_xpt con'stant. but o{, AA for largé A is
prob;bly a result of the apprcximation (Sg); Considering the rough
nature §f the approximation (56); the result (éO) shows that (54) and
(46) do in fact agree., Having satisfied the requirement that the
resulﬁ of (54) converge and'agree with (L6), we look at the perturbation
:expression forJ]ﬁ ol Since the energy denominators are simply the “ -
diffefence in kinetic energy of the particle in the eicited and the

i

: 2 .2
ground state; they are given simply by E, = B = ’gé_ (k - ks).

Placing this quantity in the denominator of (52) we can then square
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and sum to get for

PG M G /,ﬁ,c/d,of fogpimpiptt

27 20
(o~b - zt)>

(61) .

where we have again used dimensionless variables; We have made the
further assumption that there exists a "gap" in the continuum of freg
particle stafesg'so that thevlowest excited state occurs for propagation
vector. /(’ Vwith AR =12 s while the last filled state of the
degenerate Fermi gaé éf nucleons is Kkpy, with kpR = ¢ , The
introduction of the "gap" is necessary, since otherwise the expfession
for ;2>contains a logarithmic infinity. In 80 far as this assumption
is an ad hoc¢ addition to thé'stgtisticalvmode}, it is inconsistent with
the model. The physical relevancy of this gap is Quite clear, howevef;
and,in fact if one returns to the picture of free-particles in an
infiﬁitevpotentiél-well of finite radips,'one cbtains a discrete set
of levels. Regarding the sﬁatistipal picture, one can argue that it
is écarcelyAad hoc to introduce a physiéal feature, ordinarily relatively
incoﬁsequential for obtaining the groéé featufes of a'modeI, when that
feature becomes important.

The equation (61)'then_1eads to the usual upper 1imit on

when one uses the fact that the integrand possesses-a-strong maximum at
d"z—’z'z:::.ﬁz‘—'t-\cﬁL »

- o ot ‘
z(@z_a)‘v < ) 4/'77 @—/)ﬁﬂ“’%i’v/ 65&)" m,@
L 2m* Sor

(62)
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We can draw several conclusions by comparing (61) and (62).

. v - ¢ 2‘
Since /O/g&:o;:w{j rises to a sharp

maximum at LS e 4 , which corresponds to an energy of éJW 2

Jo
45/3 ‘. 9
and decreases extremely rapidly beyond, the average energy separation

used in (47) will not exceed ™~ 10-15 Mev for 8 £A £ 27,

if the energy separation E -~ E; does not exceed this. For E - El

greater than Ep , the rapid drop of the integrand in {(61) assures

that E - E will not be greéter than E ~ Ey. For E - Ey less than

Eys @ hlgher E = E is favored, As one sees from the graph of

/4 and from the integrand in (61), however, this

shift of E - E upwards from E - By is very slight.

We conclude from this discussion of the perturbatlon expressions

, (‘Y/C’/D) and for (CL> N i
;;Z (Eo-ESI- Ve

given by (61) and (62) that for the statistical model the upper limit

for

on zb is very close to the value of ‘Zb. .

(3.5) Summary of Results from the Statistical Model on Core Mixing

The object of these calculations was to provide an anéwer to the
qﬁestion of the extent to which the core ofvlight nucleil may be expected
to be pure isotopic spin T = O states. The results of these calculations
on even—even Tg = ¢ nuclei indigate that the impurity cf the T =0
ground state is small but not negligible. For O1 , for eiample, the
statistical.model gives 1.9 percent. impurity in the ground>state; this
is the same order of magnitude as Radicate (RSBB) has provided for the
impurity of the 7.12 Mev state of O16 by neglecting the core impurity.

Qur conclusion from'ﬁhe comparison of these results in that the isotopic

spin impurity of the core in light nuclei is of the same order of
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magnitude as the isotepic spin impurity of the particles in open shells.
The question of whether the more detailed shell model calculation will

alter this result will be answered in a later chapter.

L, Shell Model Calculations

The calculations based on the uniform model were intended
primariiy to provide an ofientation with regard to the isotopic spin
impurity of the core of light nuclei. Using the more detailed shell
modéls we wish £o investigate the impurity of the states of the particles
in open shells. The model we Shall use is the jj coupiihg shell model
whose origins and principal features have also been discuséed in detail
by Wigner (W51) and by Redlich (R54). The order of levels and the
magic numbers" of the jj medel can be derived by using the levels
of either'a square-well potential or an hérmonie oscillator potential,
ansisten£ use of both of these wave functions will provide estimates
of the isotbpic spin mixing which are in reasonéble agreemeny with each
other. This being the case we shall use the harmonic cscillator
funcﬁioﬁs in the shell model calculations which follow since the
evaluation of'matrix elemehts of two~-particle operators is particularly
simple in this case (T52a),

Tﬁg Scrodinger equation for a partiéle in an harﬁ;nic oscillator
potential'is |

- £ (At a%z)’ll)=5"ll) .

=2 | - (1)
' The solutions of this equatidn can be expanded. in eigenfunctions of
the angular momentum multiplied by a solution of the corresﬁonding

radial equation. These are
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Wog)- L YTle)

-}r»m :
where £ is a surface spherical harmonic and

-\iﬁf‘ j Y }
. 2 *.Z . Mow
foe =N, e _ 4/[*/5”1,_4__/ (wz,") = T3
4 *

(3)
: . /
A4 2 | :
A/ , being an associated Laguerre polynomial., The form given
npl—2, , .
‘here corresponds to the convention that n = 13 25 oo ¢ The radial

‘wave functions for n = 1, 2 are then

—2pt o
,?” -_-_-/\4; . }44"61‘/ ‘. .“A/;;'= 7’7_77£*/ ’Z«&'*-Za
A7 /-3 (,?,e-f-/)

_-)/&‘ : ] 2 ’ .
/eu =-/\£¢e 2 A,gw /_ 22 42 ’V;_e = A7 ,zj.éf/a?«6+/ @A"'*?)
L i AT 13- (1+22)

(4)

The parameter >  should be introduced from experimental date on
. features of the nuclear density distribution., There is considerable
ambiguity in the way one should proceed, however, but one might make

the assumption that »’ should be related to <z”2>b3/ the formula

_@ngb'_,v. Ol

l
where R is given by Z0A ¥ where A is the atomic mass number, and

r is the radial coordinate of a nucleen in the center of mass system,
The evgluaticn of ( T > would be found by using a nuclear wave

function composed of individual particle wave functions of the form (4).
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The equation (5) then gives the following values for

A 4 )2 A
4 1L L2 9 |
Y-y bR*  Fge (6)

In working in the 1p shell, however,‘we have found it convgnieﬁt to

2 2

2
determine - ~ from the equation r“ = R~ where .r* is the average

of rzbin the 1p state. In section (4.1) we shall also avefage r2

in the state of the‘outsidé particle. Physically this means that we

say that.the particles in outer shells actually érelmoving.in a region
close to- the nuclear boundary. In the '7;9 shell the value of Y = Eiﬁ
and this is sufficiently close to the values listed in (16) to be
reasonable as well as convéniént° As one proceeds to larger A thié
-‘method of choosing Y  would tend to give larger values of Y than
would (5). This happens because the relative weight of the contribution

to 7) of the outside particle in (5) grows smaller with increasing

atomic number.

(4,1) The Coulomb Perturbation of Single Particle Levels

Using the wave functions (4) we can proceed to discuss the
perturbation introduceﬁ by the'Coulomb interaction on the wave function
of a single proton outside a closed shell. We do hot consider the
impurity of the closed shell at this point. Although simple, the
perturbation of a single nucleon outside a CIOSed shell is interesting
as the clearest and most cbvious test of the dynamic validity of the
isotopic spin quantum number for the nuclear states composgd of jj
wave functions.

Nowa T ¢ = % 2 nucleus with a single particle outside

closed shells is in the state T = 4 and cannot be mixed with anything
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but another T = 2 state without excitation of the core to a T ;.l
state, The perturbat%on of the outside nucleon therefofe affects only
the dynamic valldlty of the isotopiec spin for the nucleus. If we succeed
in showing that the perturnablon of the extra nucleon wave function is .
very small, we shall have deménstrated that the wvalidity of the isptdpic
spin quantum number and the dynamic validity coincide in the case of
closed shell nuclei withian extra particle (or heole), This last
statement is true if states produced by excitation of two particles
play only a small role in the éore mixing. We shall see later that
this is the case.

The perturbation of the wave function of the single proten is
taken as that produced by é sphere of radius |Q .and uniform éharge

density.

Vir) = B2e” (Rr- 4) <24R

T i_e ’ - 22R

In describing the interaction of the extré nucleon witﬁ the core by an
equivalent potential Qe‘are neglecting the exchange terms arising from
the anti-symmetric part of the complete nuclear wave function (ef. L.413).
Although these terms are not describable by a central potential (TAS 106),
vtheir\@ontribution to isotopic spin impuritylis negligible., We first
show that the "outs{de" part of V(r) for 'r ;>YR makes a very smail
contribution to the métrix elements of‘.V(r) and that one can actually

take ,
V() = (e ) osre0 (g
with considerable accuracy. The single partl@le matrix elements of V(f) v

are given in the following table and would all be equal to ZeQ/R if

- (8) were valid.
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. . - S
where £,= "7 R* and V(r) is given by (7).
If we insert reasonable values of g: into these expressions, w;
: , .
£ is only

a few percent. As one expects, the deviation is slightly larger for
states of higher angular momentum and larger principal q‘uantmn numbér’o
From the fact that even for non-dlago"lal matrix elements the factor

- ga

will multlply the contributicns from V~ (r > R), we

can see that here too, (7), can be replaced by (8) with little error.
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We have shown by these results that we may use (8) inéteéa of (7)
to evaluate the core'perturbation of_ﬁhe single particle harmonic
oséillator'wave fanctions. Using this fact we can give an éxplicit
formula for the effect of the core in miiing"any harmonic‘oscillator.
wave functioh to higher states. To do this we note that the matrix -
elements ('ni&'] A% | mA) vanish unless }é’:—:,é‘ nwi =n, n+ 1. The

exact perturbation for the admixture of higher states therefore réduces

to one term

,}; ol 2lvi|n 2)
(Eo—ED* o (9)

In evaluating the equation (11) the constant term of (8)

contributes nothing, and we may in fact take V(r) as

. 2
V) = —-ZEZ > | . -
[ : L R3 ‘ (10)
This is the form of the core perturbation which we shall use in the
twe and three particle calculations also, (The validity of this
approximation of the core perturbation will be discussed in great

detail in a later section,) The matrix element of (10) required in (9)

follows from the formulas of Shaeffer (Ski) o
' 2 7 (n: +~l>
COWIGITN (’:;’i 2
(11)
Using »° = R® to determine <’ * approximately we find

JRE = £F = pmrd-1

Combining this with (11) we find for the perturbatidn of the single

particle cutside a closed shell
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= - M/n.-bé-l-ez) Ze")l‘ =3
= fé ’ Eo— Eu
F 4 C?’)’?-f'j"z/')l ( )

(12)
where :
- .21;_" 2 |
E.—E, = 4{” %) "’2‘ LY Mev
More explicitly we write p ;s
2
(QY)-!-L“?L)*

When we apply @his fofmula to the case of the 140 proton in 'N'3
find_p = L3 x lOmBQ' Due to the fact that ﬁhe r2 potential brings
a w;-+ into p, the ambiguitj in deﬁermiﬁing v 1is too seribusltb
allow one to believé (13) for more than order of magnitude results.

These impurities of thé éingle extra nuclecn state are much
ismallef than the isotopic spin impurity of the core as estimated in
'f(3°3)°‘ Fronm thié result we can conclude that--The dynamic validity of
the isotopic spln in closed shell nuclel w1th one extra particle (or
'hole) holds to the same extent that isotopic spin is a good quantum
number° |

(L.11) Coulomb Expansion of Single Particle Functions

For harmonic oscillator wave functions the Coulomb
perturbation (10) has an interesting significances it produces only
an expansibn of the wave functioﬁso Thus for the Schrodinger equation
of a single nucléon which interacts with the core potential given by

(10) we have



s 2 AT = e
(14)
But if we define :
S =yt - Ber an
. ar? TEE

(15)

equatién»(lh) is just the .oscillator equation (1) whose solutions are
giveﬁ'by (2) and (3) with a new parameter 2 1r EVART:
determined by an equaﬁion of‘the form of (5)} the change in -/ can be
related to an expansion of the nuclear wave function., From (15) one
can find the change im' ¥ to be in fact ﬂ

L 7 93/ ,f’)_/_"_.
o~ - - S35 = . .

For the (1d) proton (//50/7:> the expansion of the nuclear wave
function is 0013%0 This is an extremely small effect; A similar
result has been founq by B. Jancovici (JSA) u;ing exact wave functions
supplied by G. Breit (B54) for a neutron and ?roton in a nuélear :

potential described by a finite square well and Coulomb potential given

by (7).

(4.2) Validity of the Isotopic Spin for Two-Particle States
| Whenrthefe is only one particle outside closed Jjj shells,
there can be no mixing to higher isotopic'spin étates'ﬁnléssvthere is
alsc excitation of the core. With the appearance of ﬁwo-particles
butsidé closed shells, however, the possibility arises of mixing
betweén T=0 and.'T = 1 stateés as weil'és betwéen T = O states of

diffefentbonfig’urationso The first'type'of mixing produces violations
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of the isotopic spin selection.rules which are derived for eigenstates
of the isotopic spin. The second type of mixing destroys.the dynamic
validity  of the isotopic spin since the eigenstates of T [ and T

_are not related by -

(’71?-+£ 7;;)f¥;z?v= 4/k7?:3§kﬁr1237f2> Zpﬂ7§tl

(17)

As we have noted in (2.2) this is merely a consequence of the fact
that the Jjj configurations are not eigenstates of a hamiltonian
which includes the Cﬁuloﬁb interaction. .

Both of these two types of mixing.are produced by both the -
interaction of the particles with the core and with each other., The
core excitation, being a central poténtial proportional to. r2

(Eq. 10), commutes.with.the j of the individual particles and will
produce mixing>tb excited configurations differing from the ground
state only in the principal quantum number of one of the particles.
On ﬁhe other hand tﬁe particle interaction does not commute with the
j“df the individgal particles and can mix the ground stéte to many
configurations whose parities are the same.

For a specific 1nvest1gat10n of two partlcle m1x1ng we shall
choose to study the (/ﬁ%‘) and (/f@/.g,) configurations of
the Mayer jj. coupling shell model. The results which we obtéin will
be specifically applicable to the isobaric triads at A = 6 and A = 14,
Wé dé_notmimply that Jjj céupling should be valid for so light a‘
nucléus as Lié, bqt only that the general reéuitsvfor ( 575§é,)2 will
appear in otﬁer j2 type conflguratlons at larger A. We preferréd
for the sake of being spe01flc to calculate the (?/bg,‘> mixing for

a definite nucleus, A = 6. From the results of these calculations,



%

~59-

there will emerge certain general conelusions which are épplicable'to any

configuration A?L_ o
’ (4421) Caleulation of the Matrix Elements

The total interactién of.ﬁworparticleé;in an open éhell N
with the core through (12) and with each other‘through the Coulomb

pctential is
V—=." éﬁs;}é%é-é@)éfW$ /Ef - t;%/L§§75p ﬁ;i (!-giybzé‘léﬁ
Y3 r 2 2 e

where Yéf is the Jé<=component of the vectcr Z defined as

7-47

2 - ” (19)

and related to the total isotdpic spin operator T ‘and the J‘in'
compenent T-;;ZE or (My) by a4 .
‘ T= 2 & Te= Ztg=L(-2)
=1 fa . f = o '

(20).
The choice of a core potential proportional to r2 is justified by
the results of (4.413). This dependence differs from the l/r potential
used by Radicati for which there is no justificaéion and whicﬁ leads
to much larger matrix elements. Thé core potential represents only
the direct terms of the interaction of the extra nucleon ahd the core
{ef. hoh2), |
| In a mannér similar to that adepted in (3.1) we shall decompose

(18) into the irreducible components in isctopic spin space. Writing

v - —'5%2 [(1"'.‘*30/2'&4” (3&“ %&)4:‘7;
) (21)

for the core perturbation and
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Vi = 2 (t)F )

(22)
for the particle interaction, we can begin by decomposing the core as
- (o) EEUNSYIPS)
V.=V 4+ W

0= - 265 -03)

- ) 2
0= EED (e ph k)

- (23)

where \/c(°> is a scalar and ~ C.G ® 35 the zero'th component
(W31) of a vector in isotopic spin space., Sijnilérly for the particle

interaction, we obtain

_ (o) (o) - (20)
vV, = ,VP + VP +V-‘P

P .
() o e’*(-—'— b -5".-? .
v“F "/z"z 4 + 3 ‘#i 2
VY s - e Eptt
| ' A 12, -

-VG‘;J = e _bptra-3tt, |

. ‘ - e (21)
With | —\/_P( °) égai{i being an isotopic spin scalars "V{Igg)

the zero!'th component of. vector; and 'V-(‘;o)l ; the zero'th
.component. of a secoﬁd rank tensor in isotopic spin space., For the

two particle operators simple expressions in terms of T and Tf

exist,
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e o

T = &,LTf

| 2 (258)
< (28) 2) |
e ,zfz,,&(Ts 3%)

(25Db)

These expressions clearly exhibit the fact that in the two particle
case no mixing of states of different T is caused by the interaction
of the particles. From (25a) and (25b) it further follows that “/"g)

and Y‘(”";D) vanish in TS =@® states and have in Ts‘:i—' states

the fom ‘
: 2
Te=1 V2 == 2= bl et
{ ¢ s, P A n

Ta é-l TQD) = e * v~(2.o) .. e*
s P Wy P m
(26)

In the calculation of the effect of the Coulomb perturbation

we shall use only the vector and tensor parts of V Ybecause the

scalar part of the interaction can be included in the nuclear hamiltonian

and T will still be rigorously a good quantum number for the nucleus.

‘The perturbation we shall use is therefore

gﬂ_-: VE(M)_'_ -vao) + V@;)
(27)

The evaluation of matrix elements of iZ/ﬂ s & potential containiné
isctopic spin dependence, ié most easily performed by transforming to
the Pépresentétion in'which the states are characterized by the eigen-
vélues of the individual fo In this represéntatlaﬁ the _problem

¢f finding matrlx ‘elements of an 1sotoplc Spln dependent two=part101e
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interaction between states completely anti-symmetric in space; spin, and
isotopic 'spin coordinates has .become the prcoblem of evaluating matrix
elements of several ordinary potentials between wave functions either
symmetric or anti-symmetric in the space _and spin coordinat,es of the
~tWo particles but containing no isc;topic s_pin_coordinat,es° The procedure
will ‘be clear_ in a moment.
We first'transfom matrix elements of the general form
( T Mg ’ W IY "1 Ms ), where’ Y and 3// represent all
the auxiliary quantﬁm numbers, into the representation in which states

2 & 3 )
are characterized by the individual t:‘ = 't‘gi + 'L‘.,'L,; -f—'&ﬁ (:: ":!i> and, -bh'.‘

(T il DIy = L (T )bk [T M)
. , e ' N
® (7'&“'&“,\'2)‘! Y'tfl-&h)

Defining -v-_f__r:.,r) by the equation
= (MT) |
»(7T Mr |V "T'.M""> = <\J'| V,_'T‘T' \‘10 (28)

a table of Clebsch=Gordon coefficients for spin % particles taken from

TAS. yields for ‘v._l(_rl‘_T) the following expressions

I Mer=o0.
Ve = o
VS = el (ap-ad)
V_ﬁ) = O

T Mpr ==

- ' - 2
VO = - B ea)r & g

| iz
W Me= - |
V"(:? = _g‘g}‘ (Q?' + /2'::> -— _lg e* - (‘29)

<R3
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The antiasymmetrie.character of '\fzs) ariees_from the difference in
symmetry of the spin-space part of wave functions wifh Tbg 0 and T = 1,
The vanishing of the 7V“§?, ~and 1/'@’»,follows from the general selectioh
rule on the zero"th component of isotopic spin vectors in Mp = O nuclei,
A éﬁT‘z + 1 - This rule is of very great importance for nuclear
electric dipole transitions. The.sign of W/’P) is determined by
the phases of Clebsch-Gordon coefficients and does not have a uniquely
v\determined sign, This apparent arbitrariness disappears, however, Qhen
one comes to the matrix element of “V‘@? since the sign of the anti-
- symmetric space-spin function aesociated with the T = 1 state is alsoc .
determined by the phase of the Clebsch-Gordon eoefficientsoh.
The matrix eiements of the potentials can nowvbe evaluated in
the followi@g way. Since the V(r) of (25) are diagonal in the L, S
representation, one can compute matrii-elements between the (lp)2 and
the low-lying configurations by using formula (38) of Racah (R42) fof

the particle interaction. , )
(it .k Lml A Im,em.ee,t_m) 2 (s LM|CP% ¢ 4y dg LMo
o LR (el mads s N3ty 4:-‘&*)
PAGISR VN NI FOIYEINIMEY

F*O (M.(w,.«émp@; \ Yy '€3 4 ”€4>

AQ +¢eq.
= 6_

(30)

WAN%‘Qggéq,Lﬁ%> is the Racah coefficient tabulated by Biedenharn (B152)
while CQJ\C‘“ Wﬁ;> is given in (51) of (R42). The integral Al
the matrix element of the expansion of —J- in Legendre polynomials

ALY

i.e.
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(31)

“where Qe'fa (12 is defined as

fular= 2 fva.x)p,ﬂ(pdra
W-'-' cot (T, ,7,)

The evaluation of the l"Q( can be accomplished very simply for harmonic

oscillator wave functions as Talmi (T52) shows explicitly. For complete- \

ness we give the procedure. Using the definition of 3042(1,2,) , Eq. (31)

can be writt en

| }(417 9"‘+'foirufou fobz, W/c.\,)éﬁ(/a., ,,fo)A‘A" M
where
§§6‘z.,h p)= szqé Pm&('?«) Rrata (1) Rna e @65 Py ()
" Introducing the center of mass coordinate and the relative coordinate by
B= 4(T+%)
2 = I(Zﬁ—'"fzi >
and use R, r, and v as new variables, we

When we let

'can express VZ/L.;.> 5‘&(4“%) ) as a rational polynomial 1n 'R, ir,

and M, for the F( ) which appear in (30). To do this we use

the obvious relations )
s R apr = [+ ]- R
. Lo r Y N
AR AR = AR ox -:-Q=+ﬁé weq

l -
F% + /LQV} (32?
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4 table of F(k) for various'diagonal and non-diagonal matrix elements
of £ is given in Appendix II.
RATE

Having evaluated the LS matrix elements of the expressions in
(29), we transform to 33 coupling matrix elements by the use of the
(LSJTilj»é ijt) transformatlon coefficients glven by Racah (R50), or
less explicitly by a formula due to Hope and quoted by Edmonds and
Flowers (E52a). The'final expressions for the non-zero matrix elements

- between ( d:a, ) and a number of 33 conflguratlons is glven in
Table I The corresponding matrix elements for (}ry ) are given in
Table IV, ,

Using the tabulated ff(ﬂé,‘,emlf,_ ')”732’3 *nq',,éq,> we can evaluate
these Jjj matrix elements for the nuclei Liég Beé, Nlb, and Olho Since
the shell model predicts level positions alsog‘although these will be
modified by various forces which we believe to exist in the nucleus
(T52) and (R54), we can also evaluate the percent admixture of higher
states to the ground state of (lr!»,) or (lfl/.),) . These are given in

Tables II, III and Tables V, VI respectively.

(4.,22) Mixing of Different Isotopic Spin States

The first observation is that in the ClFﬁeéibconfiguration
no mixing to the (lrUL>2'configuration can occur with change of
isotopic spin Tff This means that all miiing of different T states
must occur to configurations which are separated by a rather large
energy A~ 20-30 Mev. The particle interaction vanishes for Mp = O
gomponents and can therefore mix only T = 1 states. The core inter-
action on the other hand can only mix states of dlfferent isotopic spin.
In doing this there is an addltlonal selection rule, however, which
arises from the central foree character of the core potentlal The

rule is that £1£. CD where zém are the angular momenta of the
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individual particles. The result of these two selection rules on 2/ is
“that the cnly possible mixing of T = O and T = 1 states is that between

( ) /03/3) 2 and / ID "J/@,?f 34 or between ( | /g //&) 'zand ’/”4:%{;

(4.23). Mixing of the Isotopic Spin Triplet States

Although no mixing of different, isdt‘opic spin states of the
two outside particies caﬁ occur when Mr ='i."i i.e. when the I:;articles
are both' neutrons or both protons, the matrix elements between the T =1
stét.es of different configurat.iohs have several in’t,eresting fea'vrt,ur’es.°
We note first of all that mixing can '6001__11‘ to configurations in which

" the individual angular momentum j. of one or both particles is different.
The core interaction‘ does not play.‘a.ny role in these matrix elements, so
we should expect thetﬁ to be somewhat smaller than those to the lraa,_,“é‘?-},b -

- state, What we actually find is‘ that the latter matrix elements are
larger by a factor 0f A10 &= 15 than the matrix elements to states in
whlch one or both J s are different and that this difference is not
due to the core alone. This result holdsin fact fqr any sp1n-1ndep¢f1dent

"long range force" for which the F( ) defined in (31) are appreciably

larger than the F(k)

That the /é —value of the individual particle should be
preserved_near’ly foliows when we éhow that the coefficient of F(O) in
the Slater expansion of the matrixé‘lement vanishes unless the
excitation of the individual particle is to a state of the same./”é
Any centrall-poten.tial commutes wiﬁh ;Z; and therefore satisfies the
selection rule on :-"Lts. matrix elements, A-,Q; =0 , Now the coefficient

of F(O) for any two particle force is the matrix element of

gao ( _z)P (m,&) QG 2;) which is an average of. the two particle
interaction over all angles, The -.Q»(‘f 1,) E Cﬂo@“ﬁ) must commute
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therefore with theTindividual'/ﬂ, s and therefore also satisfies the
selection rule AQZJ;HQ . 9Since the pérticle interacticn is assumed
to be spin independent we immediately have the additional result that
the coefficient of F(O> vanishes betweeh jj states differing in the
individual Jj.

This result follows trivially from, the expressicn for

(,érﬂzj @?f&;xl,Q3/é4~3 " given in (30) when one uses the relation
WA ks £y LO) = W (4 Aa b, Lg)
- ( Yttem L it oy b

o/ it ) ?Mw '5
. o . .
We have shown therigore that appears only in the expansion
of the matrix element of the particle interaction between states which

-1

do not differ in the individual £  or j quantum numbers. From
§O) Y § k) follows then the appr0x1mate diagonality of long range
scalar parﬁacle interactions in the (A&.f{ ) representaticn.

, Besides the fac£ that matrix elements fron; (!F}hh>zfto the
‘Pb,u.zp‘b/" states are much larger than any bthers, we also note
that the 1argest matrix elements to jj' states arising from some .
(.6,6') coﬁfiguration are those to states where both particles have
parallel spin and orbit. Almost equally large are matrix elements
from (IF3W;>L't¢ states in which both particles have antiwparéllel
spin and orbit, Matrix elements from (l‘D?V%)Q' to states in which one
particle has parallel spin and orbit and the other anti-parallel spin
aﬁd orbit are generally smaller than the other two matrix elements.,

We have calculated the (!Fﬁf%JF”nmtrix elements fof_ A= 6

where the core consists of only two protons and two neutrons. = As we

have said, we do not wish to imply that Jjj coupling should be valid:
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for such a 1ight nucleﬁs, but merely wish to study the case of two
particle§ outside closed shells in order to see the general results
thch one may expect. Even in such a light nucleus, however, the core
interaction; which is proportional to the charge of the core, has matrix
elements (where they exist) of nearly tﬁice the magnitude of the

matrix elements. The core interaction is

particle interaction e

* A
even more important in heavier nuclei as one sees clearly in the mixing
of the (‘F”L)L state which is calculated for A ; 14. There the core
interaction is approximaﬁely 6 ~ 10 times as effective as tbe particle
interaction in producing mixing. While some of this large difference
between the relative effectiveneés of the core interaction in Be6 and
Nlh is due to the relatiQely smalleg matrix elements of (lrb@)z’ to

I F'IMZF’/% 5 we'gexpect the core interaction to increase in

importance proportionél to A,

In this discussion we have made two pointsbgl) that the Coulomb
interaction between two particles in an open shell has an effect like a
central potential in that it mixes states of the same J and A and
(2) that the core potential predominates over the extra-nucleon inter=
action in pfoducing‘mixingo From these two conclusions we can make
the statement--Unless the energy separation‘of the ground state of two
outside nucleons in a’ (nj)2 configuration from the same JT state
of (hj} 7r+laf) is much larger (5-10 times) than that from
aﬁother 60# @qj’h) of the same parity)the mixing may be computed
as though due to an "equivalent" central potential. We shall show in
" detail later that a not unreasonable equivalent central potential is
that due to a uniform sphere of chargéov

This discussion of.thé.twoépérﬁicle matrix elements may seem

somewhat irrelevant since these are matrix elements between states of
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the same isotopic spin. As we shall see in the aiscussion of the three
particle mixing, however; these effectsvwill play a paft in determining
the matfix elements getween,states ofvdifferént ié&topié spin for more
than two particles outsidehcloséd shells,

‘It seems clear that any detailed study of the relative contributions
- to mixing made by configurations dthgr _Athan the I:F/,;,z f,l’:. or | )'as/LQf5(L
is unjustified in view of the considerable splitting and displacement
of levels which is necessary even to give the Jjj shell model. In
order to cbtain some idea of thé extént to which higher configurations
appear in the ground state, we have given the matrix elements to the
j§ states arising frorﬁ (11')2° Although the (1f)>2 states lie twice
as far from the ground state as the states of (ld)29 the matfix elements
to the jj states of these configurations are of the same order of .
magnitudéq In fact the largést difference between matrix elements of
the same type'(to_pérallel spin and orbit, etc.) is 6nly 2 AJB,'whilé
several matrix elements are nearly equaio In-this»cése then the
energy denominators are decisive in determining the relative amounts

of mixing.
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TABLE I

The Jjj Matrix Elements between ( | '{os/@) and Other Low-lying Configurations

<

Hy = 0
Only the matrix elements. to [ JP%’ 2‘1”’;,‘ are none-zeré i
_ * : 2
( (pa) TV 1oy o 7T ) ,%3 ﬁ

The non-zero matrix elements are for these JTT' values

J T R

0. 1 0

1 0 1

2 1 0

3 0 1
Mp= 1

Matrix Aelement ((}F%,&)"'TTIQP' / ’lj"""T"“). T = '1-” = 1.

- For MT =1 multlply every F@() by («=l/3), for MT = =1 multiply every

F’k by 2/3.
44" T T (Qfsa)‘:r‘rl?fla'g"ﬂ’)
(sl /0 B POy ()
Pl /2 WA,
Pl 12 L R ) |
A o L (VR |
1% M, /R ;f:/—'; FOp*; 1p/f)
1P Ky, / 2 o .
Wl ) o EECCpuer) 25 F U3 td)
/2 —A[Z R (1) +_5—f PO (1))
/f@ /;4-/,,. /2 /" ;f(z)(@, g éf)z ) /" #® ) ; W)‘)
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TABLE I (Cont.)
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TABLE II

Interactlon Matrix Elements of ( [ .03, 2' to Low-lying Configurations and
the M]_xn.ng for Each.

- Mp =0 (L:Lé) :

’?Z ((/O’z)'aJ’T/&‘/ 1P %2 PY, 7‘7‘/) e.{o7 Mev
a . I=0,2 1"T4 =10

7‘9 22‘“’"1 w 3.3 x |03 - ) | e
(Ego“”[:;) T"""{;R TT @ 1
Mp = 1 (He )
ot A 2 - z
7. T ((,F»,) Ul Tl | p = —”L—(EO_ED
Cpn)t | o ~0.0177 Mev

1p% P, 2 0.00696

/bag/JQa 2 -0.0145 2.20 x 1077
‘ p%M%,z .mmWh &%xi&s,

P2t 2 ~0.0190 3.78 x 1077
\ pu,_l-@m 2 o 0

A+s6)* | o ~0.,0346 3.1h x 1077

()| 2 -0.00589 9.08 x 1077
(o Wy | 2 -0.00954 2.39 x 1078
G -0.0352 3.2l x 107
(%) | 2 - -0.0235 1.45 x 1077

.Q dy,)" | o 0.0499. 2.61 x 10°6
()| 2 0.0163 2,78 x 1077
ldyldsa| 2 0.0200 4.19 x 1077

% .

Udsn)"| o 0.0740 5.93 x 1070
(1depy"| 2 0.0681 4.86 x 1070
Ipladph, | O ~0.0139 2,02 x 1077
1pwu2py,| 2 0.00394 1.62 x 1078
PP 2 ~0.00394 1.62 x 1078

: ;rwr&,l 0 -0.453 2.15 x 10"Z+

L : -l
Ipudpy| 2 .QOLBS 2.01 x 10
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TABLE

11T

. Interaction of (//,5@)2' with Low-1ying Gonfigurgtions_im

My = -1 Nucleus (396)_, .

i7’ T (P *T11V14 j ) = #, = et (E~E)*
(ipm)* | o 0,035k 1.32 x 1076
IPonlpin | 2 -0.0139 2,03 x 1077
fpnlfs)y | 2 0.029C 8.80 x 1077 \
o3\ s, | 2 ~0.0155 2.51 x 1077
|prw by | 2 0.0380 1.51 x 107
\ptbry, | 2 0 0
(40 | o 0.0692 1,26 x 1070
( twesh)z’ 2 0.0118 3.63 x 0%
s, 147, | 2 0.0191 9.53 x 1078
()= o 0.0704 1.30 x 1070
( {0-,,1)‘"‘" 2 0.0470 5.78 x _10“7
(et | o -0.0998 1.04 x 107
(14w | 2 ~0.0326 1,11 x 1070
| o ~0.0400 1.68 x 1070
(ds,) | o ~0.1480 2.37 x 107
(1dsi) | 2 -0.1362 1,94 x 1077
PPk | 0 0.0278 8,08 x 107
lp2dby| o -0.00788 6.48 x 1078
| PPy 2 0.00788 6.48 x 107°
PPy o 0552 1.79 x 1074
lprdpw) 2 0.520 1.68 x 107




-7l
TABLE IV

The Jjj Matrix Elements between (dfé ) and Other Low-lying Configurations _

MT = 0 Nucleus

Only the matrix elements to ‘f”a_lf%L are non-zero

@ arivipuzpurT)= 222 L /2

Non=-zero elements are for J =0, T = 1, T - =0 and J=1,T = O, T - 1.
My =t 1

. 4 k )
For Mp =+ 1 multiply every § ) by (-1/3); for Mp = -1, by (¥2/3).

7‘;1" T T (éka‘fr/v/jj’f79 G=7"=/)

dn) ;o | | ‘%’g A (C//*’z)'@?’)z)'
Udw)* 7 o =22 A )7)

_ 2 . . a

(//39) / O | ‘.eg_? A8 (o Gal)?)

@p% )z / o ‘ ; at) (Qp)"j éa{)’)
Pn /O tiatl T ATl e
e Tle /'__ o .-2/@ ,é"fa) (45> ; fpp)
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TABLE V

Interaction Matrix Elements of j(’be)li to Low-lying Configurations and

‘the Mixing for Each.

Mp = O Nucleus (N 4)_

Only the matrix elements to IFOQfZFhL_ afe non-zers.
i E o | | ] b - R
74 T T (pw*TT Ul 4leT)EM p sy
ll"’/;_zv?'/‘ o) | | )
o 0. 403 Mev  siexig®

l
| o ©
3

Mp = + 1 Nucleus (Clé) '

il |GenYelvlgio)zm, P s
() | - 0.0772 Mev - , 1.90 x 1070
(L) | . o258 2.13 x 1070
CONE -0.0336 9.49 x 1071
(fn ) ~0.0184 5.20 x 107/
IF‘/,&QFI/,_ - -0.873  2dx mi
| f"/,_lfaz -0.0035L 3.94 x 10

L 2 ' 2 '
The energy separation of (1p) and (ld) was taken as
. 2 . 2 ‘
E, - E; = 17.7 Mev. The separation of (lp) and (1f) was taken as

35.4 Mev.,
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TABLE VI

: B . . _." L ) ' ‘ .
Interaction Matrix Elements of (:1F01> to Low-lying Configurations for

=1 ot

6 ¢+ i . ')’y?aﬁ

ij/ ' (('F" *o 1| U4 ?"O‘)Em £= TEergn*>
(1d3)* | -0.154 Mev. 758 x 107
Cids))? -0.0517 8.53 x 10"'6
(,;%)" 0.0672 : 380 x 107°
$ep, 160/, 0.0368 2.08 x 107
ot 2P0, | 0,940 - . 9.76 x 10~
Ipw2py| 000702 | 158 x 1077

E,-E = 2RV . = 17.7 Mev.

. 2 2 '
Energy separation of (1f) from (lp) ~1is 35.4 Mev,
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(4.3) Isotopic Spin Impurities in a Thrée Particle»Configﬁration

. The results of the calculation of the mixing of the states of

,two partlcles out31de a closed shell dlsclosed certain 1nterest1ng

general features concernlng the relatlve magnitude of the matrix elements :

to excited states. The two particle configuration, however, was seen
to have the special characteristic that no mixing of different isotopic
spin states could be producgd By the parti%le intéraction; Ccnsequenﬁly
thé efficiency of the particle interaction in mixing states of different
isotopié spin is first to be observed in the case of three particles
cutside a clbsedshell° In addition there was in the two particle case
no mixing of states of different isotopic spin belonging to configurations
which would be degenefaté on a strict harmonic oscill;tor model with no-
particle interaction other than the Coulomb potential, e.g. (lf’%;)l'and
.IP}a__IPu;' |
In order to investigate these features of the Coulomb mixing we

shall consider the isotopic spin impurity of the [P )3 state,
_ f %

.such a configuration being the one to which the low-lying states of Li

should belonge

(4.31) Fractional Parentage Coefficients and Tensor Operators

/For'the calculation of matrix elements for states beidnging
to éoﬁfigurations’of many particles we shall use the fractionalvpérentage
coefficients (c.f. p.) defined by Racah (R43) and their exﬁension to
the Jjj states of non-equivalent particles as given by Redlibhu<35h)g
Redlich“s.derivation is not generally acceééible and we shall give it
here in an abbreviated form for reference. We shall then develop
expressions- for the matrlx elements of general tenscr operators in
isctopic spin space 1n.preparatlon for calculating matrix elgments of

the Coulomb interaction.
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Consider a properly antieesymmetrizeo state for n particles in
the configuration jl, oo0s Jn with angular momentum d, Z-component of
angular momentum My, isotopic spin T, and ( -—compohent of isotopic
spin Mp. The total J can be obtained from the successive addition ’ -

K?, o )+ 7 ﬂfﬂ +

so that the set "a" of the angular momenta ,,}“ +,}S \ | | +Z’ +~a3|

may be added toa similar set "b" for the t; to complete the

specification of the state 3 . ‘Such a state @(}3, < J° MJ‘TMT‘)
wherer n denotes the set {ji_} and ¢, the collective set of a and

-’
b, can be found by first addlng a particle with angular momentum ./, to

the correctly symmetrized state @/ -c 7 /‘77 T /‘7 ) . and
then ant1—symmetr1z1ng Thus, |

Y (0, TMTTMT) /50 ([ﬂ 2, (47 MTT'MT)J’LidrM’TW}

ot'.T'
e Cogn (47 T')?"'} «JT)
’ (33)

whero ?([M(,ﬂj“ M}'Tfm%-»}n"*J‘MJ.TMT)is the unsynune\triéed state-
formed by vector addition of ﬂhe part.icle with spin jr to the correctly
anti-symetrized @(ﬂg):g_.u_/J'/M 7! MT’ ) . The coefficients
(w ,(J:l j‘l‘ﬂ)%m [}*TMTTM'i;) are the coefficients of fractional
parentage. 4
The c¢.f.p. can now be u_sed to reduce the.mat'rix eiements for
.configgrations for n particles to those for configurations of’ ne-1 &

pai'ticlesc, We can con51der two classes of operators

B Zt o '(3ha)‘

1=I
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‘where ti depends only on the coordinates of one particle and tij

depends on the coordinates of two particles.

In discussing matrix elements of (34a) we'shall take tg = tgk)(i)
to be the q&th component, of a general tensor operator of degree k in
isotopic spin space (R42), a scalar in space and>5pin coordinates, The
more general case when t3 1is a tensor operator in all cocrdinates
is obtained as a trivial generalization of the discussion which follows;

In writing matrix elements we shall suppress the 'MJ since
all matrix elements are independent of this quantum number. From the
symmetry'of»?062)4,9*7’ﬁ77-) . there follows

(e TTMr] FOlnaTTIMm = 5oy (2agToar | Plod|n, ugmmed
(35)

p(n-1)

where is defined precisely as in (34a) and no longer contains

the coordlnates ef—ene of the r“th partlcleo We are also assuming

that F< n)

commutes with T} so that Mp is a good quantum
number at all times. This is an expression of the law of conservation
of charge. Using (33) we can write for the matrix element on the right

hand side

(2, TTMe| FOMNn agTmpy = Z (xrﬂhﬁaaﬁﬁjo

(o (0 T T )4 }@_)d IT )@ a(% Tﬂ«g,aoc:rTM |6
hot b T ) o' TT M)

(36)

(n-1)

We now use the fact that F is assumed to be an ifreducible tensor
operator and the fact that it commutes with %, ;, the isotopic spin
vector of the r'th particle, to derive from (Lha) of Racah (R42) the

expression
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(’Y) -/ (ot TT)%’L“TTMTI F.‘(‘n-\)‘fn A &;Tzfﬁ)_/j,d,.'o(,:TTlmT>‘
)RR JGT+D (&T‘-i- D WITTRT | 44)

"\/‘('r‘r"k' - M'r M)t (4, :-T.) I FE) mmn (m;r»

(37)

Yem

The double-barred matrix element of F appearing on the right is

1ndependent of’ MT and can be related to the more usual matrix element

(n-1)

of F by formula (29) of Racah (R42)

(ot @ TT M) FO mmt o mma =€) VT k- Meg)-

A mza ()l RO n=a amT))
(38)

The quantities 'W"(a.bc. ~ (3-73 are the Racah functions and
'\}‘(a,be,\ o(.(%’f) are symmetrical quantltles closely related to
the Clebsch-Gordon coefficients. Now by comblnlng (35), (36), (37),
and (38) we have the desired reduction of the matrix elements of F( n)
to the n-1 particle configurations. The treatment of the two particle

cperators is preciéely the same except for the equation (35) which.

becomes -

(n «TTMr| §) 2 a7 TMry= 32 (o 7T [§7 |aaTTivr)

(39)

Assuming that the matrix elements of F and G are known for
_ the (n-1) particle case, the problem is now merely that of calculating
the c.f.p. For many configurations of equivalent particles .jn .the

c.f.p. have been given by Edmonds and Flowers (E52a), For configurations

~ of inequivalent particles of the kind jlj2 , it is easy to show (R4 .-

that the c.f.p are given bjr the expressions

&
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GHETTT )T = = - .
e TR Tt ) 3T)e R )T )

where - ; . o 3= -7
(T = AGTHET ) W(HTLTTYE) T
| - 1!

% (T‘T"T) z\](;_-‘-._,_',)&-rq_\, ) ‘W‘({i T4 \T 'T;")(— 0

With formulas (40) and (41) we can construct tables of c.f.p for the
3
three particle configurations in which we are interested, viz. <'F3¢> o
- ) 2 . 2 ' ‘
QPB,_») ‘?\/1 and ([,’_F's/,‘) :L,‘P‘b/?’ . Tables of these c.f.p.
follow with those for ( | \;3/1_)3 being constructed from the tables

of Edmonds and Flowers (E52) and John and van Wieringen (J51)

(@ T 77)

T | 7 |T=0| & | | |
13'=1] 3 0 )

L 4% = |
% BIE ERRE
% B AE|  |-%

%, 4’% “'?Ji
AR

In this table and those which follow, vacant squares are to be under-

stcod as zero elements. N



el AL )RR
Tir M=ol ol (il " |TIT T o] 1]
T3] o] 2 | AR :2,

Z za 1 é&‘l§#"§§
2l N el d ek
it 7 2 Rl
A ACE kAL
0 I O B W 2 i
%a '{—1-_3.

bl [ I8l (als] |
3 el : = |
fl sl Ll | B

 In both of these tables "a" designates three particle states arising
' ' 2
from the T = O multiplet of the parent (l Fa,a)

particle states;
"hi designates those arising from the T = 1 multiplet.
With these preliminaries we are ready to analyze the isotopic

3
- spin impurity in the (\KDB,&) ground state.

-
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3
{(4.32) Impurity of. the (M/—;} Ground State. -
v

The greatest impur"it'y in the T = 1/2 ([r's/’:)g state we
- may expect to arise from low-lying sfatesg perhaps solely because of
smaller eriefgy denominators, as‘ we have suggested in the two particle
case, The nearest states of different isotopicv spin, viz. T = 3/2,
are those belonging to the 'sabme configuration, ( | F'%)B - . - Although
of course these states are all degenerate on the strict single particle
model which does not consider particle interactions, we know from the
data that the separation of the first T = 3/2 and T = 1/2 statves in
Li7 is probably 7 10.8 Mev (P53) or a little higher, The first
isotopic .spin state of the same spin and parity may well lie several‘
Mev higher. | .
Another configuration which should lie very near to (| F'z,/)

( F’),:) ’Fl/ This state also introduces T = 3/2 impurity into
the T = 1/2 state cf ( | P';/ . The splitting of the ' \Fs,,_lrf, states
of the same lwtopl%has been sug;geoted by Inglis (I54) as 0.48 Mev in
. L:'rv..7 and by Adair (453) as >\ 1.5 Mev, Althqugh these estimates are
not in agreement with th.e dependence oﬁ »/é, and A wusvally assumed

( A+ //3;) A_ 3 (I53, M5Cb), both values are much smaller than .
the energy separation of the T multiplets. This is in.agreement with
Wigner's isotopic multiplet picture of nuclear levels.

The significance of this rather obvious point is that the energy
separations of different iéotopic states are alwayé large . in light
nuclei even when the states belong to the same or an adjacent config-
ui”étionc In fact, if we take the. separation of differént orbits to be
given by the oscillator or square well models, the energy vdenominator
for the admixture of T = 3‘/'2 of (”;-,/:)'2'2‘?3/’_ is only thrée

times (30.9 Me{r) the minimum separation which could exist between -
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the T = 2 state of Orag and another T = = 3/2 state, i.e. ™~ 10.8 Mev.
hctually, the calculations of Kurath (Ku52) on the (| fn"') .lead to a
separation of the = 3/2 1/2 and J = 3/2 = 3/2 states -
of ~v 43 Mev. We shall therefore compute the amount‘of' T = 3/2
impdrity which comes from states of (”bkgﬁlf}enas well as states of
& ?’3/.&‘) and (P'&/%) \FI/""’ A |
Impurities from conflglmatlons like (|‘>}/a) ‘?’7/ may also
appear and we should like to know what are the relative magnitudes of |
the mixing to this configuration and to (]FQGJ)ZZLP?%L . From
equations (35), (36), (37), end (38) we see thet three-particle matrix
elements are linear combinations of tWo=particle matrix elements.

' The ¢.f.p. concerned satisfied the sum rule (R54)

7| Cae (a7

o )Ty

where the config:lr'ation (’n): (é,)“?' _ (éﬁy}}ﬁ and - M ={¥' ‘71';

The ¢.f.p.. are therefore always less than unity. Since for th;ee particles .
the sum is distributed over not more than four parent states and .the ¢.f.p
vary emong themseives in magnitude by no more than a factor of ~~ 2

(as one verifies from the above tablee or from the more ektensive tables

of Edmonds and Flowers (E52)), the relative magnitude of corresponding
matrix elements (same J, Mp) to different configurations is determined
moetly by the relative magnitudes of the two pafticle matrix elements

of the parent states. Observing that matrix elements from (lr}a)z'to

G

Fa,tZP‘%_ are 10 v 15 times larger than those to all other
configurations, we conclude that the three particle matrix elements
from L?s,?_)3 to (\?3,,_) QF'}/L'will also predominate by such a

f’actor°
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‘We may therefore expecﬁ that in the thréé particlé casé alsc the. -
mixing to (}P;5> 'ZP%’ "should predominate over the mixing to any
other conflguratlon except p0331b1y (lr%a)B (-f%ﬁ;> IFVZ‘ .
Even here UP},L) Q'F3/z, may be as mportant as the others, in
spite of the larger energy separation involved, just becausé the
corresponding two-particle matrix elements are so much larger.

For a system of n nucleons the Coulomb interaction is simply

V=-§§3 (4~ :ﬂ-)é + et Zé —-fn (i 'ﬁ&;)’&ig

1=1
(41)
'Analogous to equation (27) follows the result
2= -V-Q:) '*',T/d".;? \/—(aa)
where
\ 9 zZe* 2
V= ';% I
‘V-(yo)_; _ 2 Ty + “ﬁ‘j
P ' 173 2&4&
bo) D
\f' o= e> fg{tgd“"g'ﬁ,'“ﬁg
Vo4 i
d | g (42)

The -v»&n) and '\f“($)-are the gero components of vectors in
isotopic spin space arising from the core and particle interactions
respeeti's}elyo We can no longer use the simple relations of (25a) and
{25b) where T and T f’ are theltotal isctopic spin operators for
the system and ité f' -component but instead must use the methods
given in (4.31). 1In the calculation of Radicati (R53a,b) the different

transformation properties of the irreducible components of the Coulomb
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energy are ignofed with the results that the isotopic spin scalar and
tensor parts are eiﬁher treated incoyrectly,or neglected.

Fromrthe table of ¢.f.p. for (]faéi)B we observe that the only
compoheﬁﬁ ofAthe'lT = 1/2 multiplet which can be mixed t§ aTs= 3/2
state iz the J = 3/2 component. We shall calculate the matrix elements
of the interaction éb/) between these states by evaluating the elements
for each of the three operators in (42). One might a priori éipect A |
these matrix elements to be quité large since they are betﬁeen two states
of the séme configuration, - That this is not so can easily'be seen in
the following calculation of <T‘V26°) which wevgive in some detail for
this reason, as well as to iliustrate the techniques we use.

The métrix elément of any of the three operators in (42) follows

from (36) and the cofop° table for' | (lriﬁ:§3 as
<<3 33 _M l V(aa)\(?: >

- (234 ]) ) AR
<(:.> (o')sﬁv LLMT‘VM%)Q‘(M)JN z;i >
@ S 1EP a0 13)
- Genidim i@ )(m;.m, MT)
| (aﬁ)

where “V”65> denotes a general thweempartlcle operator and the
métrlx elements on the r¢ght are between un=ymmetrized states obtained

by vector coupling a single nuc'leon‘to the properly symmetrized two

"particle states of C\Y‘S,L)zf" . These matrix eleménts can be expressed

for A;y* 2") |
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<(§:L)2‘(TT M-rl V‘(ao)KgDL(J_T) . M‘\"> ( |Y,+ T
Wik )V E 5= s X@ T Q:@ -

(L)

The matrix elemen‘bs in (43) of _3Vc<' 4 can be expressed as matrix
elements of 9:\/2(’°> , which does not contain the coordinates of one

particle; and the proper c¢.f.p., inserted from the table to) give
<C.,. M I V'-(m) (3>3~-MT>
== -,f" (=03 g vJ“”I('ﬂ (o0} ;3L MT)

"”<( )(a |)'.::: T'_, +V:(‘°? @)?a;)% ',% %\‘4-,->]

(431)

This result is quite interesting since from (44) we see that only

| <(%39- J—r“ v—-(!@)) (_B_)L 3’T> can be different for the two téms

" of (43')., This, however, means that the matrix element of 'V—( ) i1l

vanish since the double=barred matrix elements of T(‘ ) for J = O, 2'
(2)

are equal. Further, only the F( terms of the Siater expans:_on for

' 2 .
the matrix elements of 7%_ will not cancel in (43'), as we have
™ C
explained in our discussion of the two particle terms. The matrix
elements between T = 1/2 and T = 3/2 of the (IP'},}) configuration

will be much smaller than one mlght ‘expect .

Combining two equations similar to (43') and (b,l;)y we can find

10
the matrix elements for V_( ) \/ 3) and therefore of W
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These are given inAthe table which summarizes the intermultiplet matrix
elements having the initial state ( F%ﬁ)g

The m1x1ng of - ( r;¢)3 and (JF ‘Fk; can actually occur
for the = 1/2, 3/2, and 5/2 components of the T = 1/2 and T = 3/2
multiplets. As a matter of interest we have found the intermultiplet
- matrix elements for all ﬁhese J states, It is very interestiﬁg to
note that the smallest isotoplc spin mixing between these conflguratlons
occurs‘for the 3/2 state, which should also be the ground state
for (jrég)B according to Nordheim®s empirica%ly derived rules. This
prediction of the ground state spin has been verified by direct
calculation (K52) on the. 35 ‘coupling sheli model.

The calculation of, the mixing between Q[”a)s and Q?%)afz_"‘rs{l
is somewhat more lengthy due to the existence of two :%_53_ states having
the parents (01) and (21) in the (!Féﬁv)z configuration (cf,lthe
derivation of the c.f.p.). As we expected these metrix elemeﬁts are
quite large and are the only Ones'into which the core interaction enters
in preducing isotopic spin impurities in the 2& %; staee of (LF%&)S
We observe ’ehat the matrix elements to the Qpa,}) 2_“2?3’3. state having'
the parent (21) are much smaller than those to the state with (Ol) perent.°
This is a reflection of the faet that all the tﬁo particle matrix
elements beéetween J = 2 states are much smal}er than theselbetween
J = O states,

The matrix ‘elements for isotopic spin.mixing between.alllthese
configuratiens are given in table VII. Their magnitudes are ehat one
sheould exﬁect from'considerihg the corweqwnding two particle matrix
elements., The determ;natlon of the percentage impurity which these

matrlx elements 1mply is somewhat amblguoue considering the lack of

‘ B



~89-

knowledge on éepqrations of states of varicus configurations., We have
therefore given what one might consider to be an upper 1imit on the
impurity from various T - 3/2 states by taking the separation of the

T=1/2and T = 3/2 states to be E_ - E; " 10 Mev and calculating

L
“c = ..22%_._. *in each case, From the discussion which preceded

(E.— B~

this calculation we must conclude that this p is really an extreme

upper Limit for the mixing of the ground state if one neglects excitation
cf the core. |

Perhaps the most significant feature of Table ViI is the large
faétor by which the mixing produced by the core exceeds the mixing
produced by the particle interaction.. Again this conclusion reflects'
the corresponding situation in the mixing of two particle states. The
domination of the perturbation by the core is quite significant when

one considers that Z is only 2 for the "core" in the A = 6 triad.
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TABLE VII

{pnd % "77/ 2P/ ¢ //°’%)3 %% M 7‘,> 7"
M e 4= Nuclews p=ic "
4 o .
-4l i e v 35X 10
%, ~;f;,/7;& v/a.oééa Me .
Lpw) TEMr IV pn) 1oy, T % M7)= 7
T | Mr 7% A=T Nackws | p=10 >
4| 4 o | .
-4 -é-’;ég -%z —-0.0/70 Nev Q.88 X 10
-4 ;7-(5,4%%2 - ©006%¢ fl.,?sx/c?"‘r
%| 4 s - |
=g
/ .
-4 | ;z.:; /3%'7%‘2 #0.0320 /02 X /0
<(1)o3,;) 3,3 MT/ U | (lF%) 203 A % (77" MT> =,
! T M ' 77@ A= 7 Nacleuws P=/0 2952
O / 4| —=EZE - /32 | L 7ExIO T
-4 —--é—éz LEL  —ou223 Sp2x107
2 A ————?7'6 = ©.0593 352x16%
-4 Be*/ _ 3 5 e* o -
e Y é_ﬁ 360 5:",% —6.00/7 29 Xx/0 7
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(4L.4) The Excitation of the Isotopic Spin State of Closed Shells

In the calculations which we have done on the mixing of ,3;:
the isotopic spin states of two or three nucleons we have always neglecte&
the excitation of the isotopic spin sfate‘of the core. Since a11>our |
calculations have been based on the Jjj coupling shell model oflthe . u
nucleuss this assumption is a particularly convenient one. All ﬁucléi
'_ with mass numbers between A = 12 and A = 20 will then requiré'ﬁothing
more than a éalculation»involﬁing the states of either two particles or
twd holes. We now purpose to consider the excitétion of ﬁhéjéore‘and
the isotopic spin impurity in a nucleus with élosed shells., .The prdblem
can be treated by two differentvmeth0d§ which iliuminate'twé.differéht
aspects of the Coulomb effect on thelisotopic épiﬁ state of closea Sbgllso
These two methods are (1) thé redﬁétibn,tq the two nuclebn.matrix f
elementsS and (2) the method of an "equivalént" potential of a closed
shell. The first approaéh will shew how one may regard tﬁe.excitatidh
of tﬁe isotopic spin state of the core as an extension bf the proﬁlem
of Coulomb mixing of the states of two nucleons. The second appfoach
is a rigbrous derivation of the method.by which we have included the
,effect‘of the interaction of the core on two particle stateé, but will
showfin fact how we can also use the method to calculaté‘thé impurity
of a closed shell.,

Findlly we shall give some consideration to the question of how
~ one may obtain‘apﬁroximately the isotopic spin impurity in the ground
and excited states of nuoclei. The result of this investigation will be
- that one may relatively easily estiﬁate isbtopic spin impurities in

ground and excited states of nuclei.
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{4.41) Reduction of Closed Shell Mixing ¥o Two Particle
Mixing
The wave function for a closed shell nucleus corresponds to

a dJ 0 T =0 state and is an antisymmetric linear combination of

products of the single particle wave A’fun@tions ’7/'., g?f,m»(/’a"\ ?)u(‘-ﬁ’)
The function of space and spin coordinate %’.,mv (7&?) is
characterized by a definite value of angular momentum J and tﬁe
Z-component ™9 . The isotopic spin function u(?” is an eigenfunction
of ‘ﬂ‘f - with eigenwvalues i& .1/2. The nuclear wa&e function for the .
ground state of a shell will be designated bj 1Q° and can be
~written as a Slater déterminant of these wave functionsbwith all the

(25, + 1) values of .~ appearing as well as the eigenfunctions
Cu({+4). and wu(-3). Excited siatesbof the closed shell nucléus Zpé

can also be written as Siater detefminants, or as linear combinations

6f Slater determinants, in which one or more single particle wave functions
have been changed to states of a single particle lyingloutside the shell.
Since the Coulomb perturbation is a two-particle operator, matrix elements
will vanish to states éég differing from QPQ. by more than two
single particle states. We shall first assume that @QV differs

from ?ya . by only one state since we expect the contributions to be

small from states which correspond to the excitatibn of two nucleons.

This approximation will be checked by deriving a general expression for

the contributions from states of two=particle excitation and‘evaluating

it for Cjz'(closed lSl/:L and IFS/L on jj coupling model).

The Coulomb interaction of system of nucleons is given by
e 2o )= O YO

1y | \

and has the irreducible components
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where V(O) is a scalar in isotopic spin space; V- -°, the zero'th
(20 , '
component of a vector; and V( ), the zero’th component of a tensor
' . 2
of rank two., The selection rule on the matrix elements of V'( 0)
| | (20)

which reads, A T = 2, insures that the only mixing produced by V

will be to states which 1lie so high that their contributions to isotopic
. (10) .

spin impurity can be neglected. Thus only matrix elements V . need
be calculated, and we shall put
22 (4 +tg) |
4 — — ] . g‘ -
C 2 Sl (46)

i
- for convenience. The selectionrule AT =1 on C insures that all
its contributions to mixing are from T = 4 states and none are from

T = O states. The impurities produced in 4‘ by C are therefore

]
isotopic spin impurities. |
Designate the excited single particle state in Q:‘L; by ’w,.,
with momentum 53 : suppressing the principal quantum number n for the
present.. The Z-component of the state must be the same as that éf the

corresponding state in @Po 5 j2m2 say, so that My = O. The

matrix element of C is (TAS 56)
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@, ) =-% 3 [furode turte g0

_ -f“(”(.)“? C-’L) .,..E.,Lti‘;k v, () QP;LCZ)J

(47)

Summing over the isotopic spin states of particle 2 this becomes
(%)6@ ) = - -* =2 DQ’;(D%’&)Q %.M?q () = |
- [Roge 1. % msw] e

Using the Dirac notation (48) can be written more explicitly as

(4.L0)= = L2 [y,

zm'z}lm)

)]

(49)

“Qanga*ﬂu l/;,,_

‘We shall transform the two particle mabtrix elements into the JM;

representation; obtaining

(":P,,,C’EP)"- g Z Z Z [(ga mq.vmljaj,ﬂ"lj)(«(gagTMJ"é-»mvg.m>
G4 TlA 4 T) |
= (g Loy T15) G W o e
EYRITATR ]

|
Ry
| (50)
We have omitted the indei MJ on the matrix elements of 7552 since

these are independent of ‘M . For simplifying this sum we introduce
J :

the V(abc; 44 ) discussed by Racah (R42) and defined by him as



~95

(ﬁixwlﬁmwﬁ (-\W’L 49%-%’ Vs 4 W\m,,mw»)A
- (51)

The first ;c,erm in (50) when summed only over my, My is
Z (33'}"'\1'&0’“»\’&3 leMT> ‘a'i'éu J MJ’\'A%M%%\'W“)
= )TrMn g (QT+\3‘\/‘(~33@.TW;—M.MT)
mEMT
V(3 T yma - Mz )

= zmrb\f(éﬂ—éz ‘)m“MTm1)V(%|J'-éz '\m.‘;- Mr"ma‘) éz-d_'\" \) (52)
oy .

where we have used the symmetries of the V(abec, oL/Q"( ). Using the
orthogonality relation |

e, )d (;/,1 ')
Qe4\

1'2@ V(§b ¢y W‘(abc,'-‘&mﬁ =

the equation (52) becomes

Z (agmz’glwt\jS’&lTMT)('&'L‘}|TMT"31M\?I |)

MHM:'
' 2T+l g4 |
o?«ga.*—l (?‘ A'D (53)
By similar processes one gets for the second term in (50)
Z (‘&smaléffr‘hlis& Imy Cél’gz JMT Ié.m‘i,m;\
My, My . .
= - arel g -0t
. &73;_-{-] :
| - (54)

Insertion of equations (53) and (54) into equation (50) gives finally

CR=-FZ ) [Gig 4+

Qé-lv

s .>~'f+z* oy 7 754 T)]

(55)
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The 7 and ?(/ represent the principal quantum numbers of the single
particle states jl and jzo' The significance of the equations (53) and
(54) which reéuire that a particle of the state‘ ﬁka must be excited
withouﬁ chéﬁge of the'individual angular momentum ‘j2 is very easily
geen by using the fact that the spin of 'yio is J = 0. The excited
- state QQJ can be regardéd'as a shell with a single hole of spin Jj,
coupled to an outside particle, i.e. the excited nucleon, of spin j3q
But unless Jo = 33 *ﬁi, will not have spin J = 0 and the matrix
element (@ N ’C/ll)é) will vav.nishbo

The form of equation. (50) displays the relation of the problem
. of core excitation to the existence of a two particle interaction. The
individual tefms are in fact the "matrix elements® for the excitation of
a single particle which is interacting with another particle of the
' coré fhfough the Coulomb ﬁotentialo These are not matrix elements
between properly symmetrized two particle states as one sees from the
derivation of (55).

From (49) we observe that the matrix element (55) corresponds to
the excitation of Jjust the siﬁgle particle staﬁe j2m2, whilé m, may
assume (ij-F 1) values and o shduld assume a different value for
each closed shell. The value of 15g’ for the excited nucleon ﬁay
also assume tﬁo values corresponding to whether a neutron or a proton
was excited. Let oL (Jp) deéignéte

Gay= (el

' o~ BX (56)
where <@4,C(wo) is the matrix element (55) between lﬂo and
the staté~ /QJQ 'corrésponding to excitation of particle 'j2m2 and

Eo - Ejf is the appropriate energy denominator. The total impﬁrity P
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in Q_-P,, is then

P= Z Q(Q_,&'i + \) ob"(,%i') "~ (sum over closed shells) -
& - - (57)

' 12
(L.411) Calculation of the Impurity in ¢ and HeA

We shall apply these formula to the specific case of
12 ’
C and shall then compare our results with the amount of isotopic
spin impurity obtained from the calculations on the statistical model,
.. 12 .
On the jj model C  consists of closed ‘S‘/;_ and [f)'s/’_ shells
and the isotopic spin impurity follows from (55) and (57)
p= &L"_(\F'%) + 4&.‘-(\3:,;) .
- (58)
- =—gr Caa=+\) ( )
(o E‘F""*} p)=- {2 ép,,lpzi)“l,m)(urbk) T)(1+6

g oo Kws.,,,am\uf»z\sm-e»“(zrws»s‘\z%x\\wr»s.

(59)
(Bt )s) == & { m'[@” 'rwlml sy, 'rﬂ'>-
| = 0T (2t lps, T ] 1p, \s,,l:r)J

+ <2‘S'/=-lg//:.o |7iLr_; l OS’/Q’LO)}
(60)



-98-

We now apply the same procedure with which we calculated two partlcle
matrix elements in (4.21). We flnd first the "matmx elements™ .in LS
e’oupling;,_ calculate ali the required -Slater integrals, and transform -
%o jj <coupling. The necessary Jj "matrix elements" are list.qd in
the following table while the appropriate Fk are to be found in
. Appendix II ' '

Direct Terms _
(J‘PQ/" ‘P’zl\/uxl lr"/a-\f"LQ) Fe ((Fy" | Pz'?) “"’ > ((lF)‘L\.\ Fl?)
(ap VS0 47 | 19w 9,00 =0 |
~ = - ROy
(2% 1561 15, | 1pa 15, ) = B2 Gplsy 1p19)

e

(a&'/l '{n/v’z'\ /Ln_, ‘S’/,,'Fa/g_z‘) F (9$ lr') ‘Fls>

(‘ZS&; |3t/‘_0 ‘/’LIL}"QQ/’L ‘g"zﬁ ) F° (QS ‘S <l331>

4 Exchange Terms.

 (9pn 19,0 |;2L,,,I’I9/,Ll?'a@ o) =0 |
(2p% A \7‘:1! 18y, (‘;s/,,\) = —5'1- = (:z?\\s Ak ‘\ﬂ

(&?3/,‘ ‘g'/;l \)JLT.&

l?//;\r’aw ==3F (2? sy 1S [p)
| (2sy, 16%.0 \’7{‘];\ P2 18,0) =0
_(ém,lpa',_l lz!:;\lfv,_ls,,zl) = -’-q'- ':FCA‘P';‘F“S)
Q(ls‘o,_ }?s/;z\zi \lmts/,,,z) =- F‘_sz Is 1 1S 1?)
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We emphasize tﬁa‘b these are nbt ‘matrix elemernts between prbper’ly
symmetrized two particle states , but only between unsymmetrized states }
of two particles coupled to form different angulér momenta. With these
values éf the "matrix elements" the mixing coefficients given by (59)

and {60) become | ,
(Eo-n 'E}?%\)d(‘tﬁ/’) = - %‘L {3 F-”o(&P(P I7QP) 'b) _,-}? F’ZC:}.F l FQ\QSE)
+ 2P (apts 1p 1)+ 4 Filapity |s \@}
(61)

(2. E“\s,,)ez(\s:,,**%{4?"(&?\1:\?%. F asip ylpis)

F Folasis ) )& .

Using the value for -5 = .;—Z%m these equations yield for the mixing
coefficients for C 2

(Em B ) <ipw)= = 01024 -:gf

(EemEy,) «(,) = — 0. 858 &

| R ¥
According to equation (57) the impurity in the ground state of C
e R\- - -
= Q,oe( )
h have taken - — B —m= . This:
where we have taken E° E‘P’ B (= E. E‘ is value

of p for C1 is to be compared with the value obtained from the

expressicn for p found from the statistical model

R e?IR A
Ps = ﬁﬁ_&} @»9'78’+0°0l7"\} (EQ'I'E)

The wvalue of’ F& for C]“ is found from this expres;mn to be

YR o -
4.0 (e > A o
F -E, T A (64) -
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The agreement between (63) and (6_[;) is really quite remarkable, but the
value of p found from (63) will be somewhat lower than the upbér limits
‘given in our work on the statistieal.modelq We now know that E0~u By
is equai to the separation of levels for a single particle having the
same J wvalue but differing by unity in the principal quantum.nuﬁber n,
Where we took EO - El'f\/ls Mev for an upﬁer,limiﬁ on p (and should
again.for‘an unquestionable upper 1limit), we will assume now that
Eg - By »is at leAast as large as the separtion of the wo . and ,2';
levels, or /¥ 20 Mev. The impurity in 612 is'therefmré 3.02 x 10=3
as compared to the previously estimated 7.5 x 10?30 We must remember,
ﬂoweverg that most of this factor of A4 2.5 difference is a result of
a different cheoice of Eo,m El and the agreement of statistical model
and these shell modelvcalculations is really surprisinglyg perhaps
‘fortuitauslys closé°

The impurity of the o, -particle is very easiiy found by using
just the o((l»SI/,_) found above. If we use the 28,18 "separation
fér Heh ”ﬁ’ 25 Mev; the isotopic spin impurity in the ground state

i

.of He is

=3
N An\0

‘ (E@vél)l
g ‘ N ' ’ . 1
The fact that the impurity for He 1s nearly as large as that for C
- is a result of the much smaller radius of'Her

{4.412) .Contributions to Impurities from Doubly

Excited Shells

- The contributionvto isotopic spin impurity from
excited states /gid formed by excitatlion of two particle states in
120 has been assumed to be much smaller than‘contributionS'from

states ?Q.; of single particle excitation; We shall now justify
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" this assﬁmption by first de_riving a general expression for the isétopi@
spin impurity from "doubly excited" states and then evaluating the

oo 1z
expression for Cl .

Just as we wrote equation (47), we first write the matrix element

. of C between ,.L.!)c and a doubly excited state Y (TAS isé)as
(0,00 = =5 [ [40) Wy __17;?& Yl Yo
U0 %) B )k
. N

(65)
This matrix element v?anishes unless fh-a"kpg,“-’u'-‘ us "‘5_ , i.e. two .
protons or two neutrons are exc:i‘i:,edk° In this cése we find
(. Cw = = & [fo30g8 (78, G100 () =
| ..f?w(t)‘?f(‘a«) e,o,tc\scP.,mJ ()
~or using Dirac notat:s.on
(’Ll!.,,C'\J/. =& & [<?”~'»W"j4w’4’ ’m,"‘i*’“""éw*m -
e |z |gomgam) | @)

Again we transform to the JMJ representation

(@,.C’Lho)= = %j % { }3m334 m4!$@TMr)Q.jJMJ—Hm jz,vm, '
| U Ga Tl T

= (Jama ?ﬂ‘% |42 M) G IM:H.W.g vs):
(62)

(T 4 T)
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This matrix element can be foﬁged for any of the values of my, m,, msy,
_and m4 so that the isotopic spin impurity due to excitation of particles
of spin Jl and 32 w:.ll be the square of (68) summed over all the
pOSQ:Lble values of’ mly mzs 5139 and m . A factor of two comes in fromv :
the posmbj.llty of exciting two neutrons or two protons. This sum is

2 (e = 2(%)" A= 2B +c}-=r 3Gt dde)
b= T 2, 2, lderelige )il ThE)

pmna I M TMI
(/5, &Q U'V\;rl \’m\f&{mu)( r'&;.T M3 \’é\'muézma)
(M« J \»m, $147) Q,m 3! |7r,,\é b3 )

| B:—. 2 (v&-svm%qwdag?ql'!"m— @mq,ag'mg‘f M;r>

IMg :" M7 -m ™
oy me -

(34> Tl 014 b(m;:r'mxlj,m,é,m)
(’}@;}43 l,m\g—gz ”3+1a3—',/1,,\/3’5=, ) |
C = Z Z Z (14“‘41}3%3\gqéamr)@4warg;wah4§33'%>

| (Qq 1 ITMr H,m,«&l\ﬁﬂ»)(jlﬁ; J" Mql-l-jf,,m.-a‘;m,)
G T 1A B D) G P |41 T

(69)
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These three expressions can all be reduced by the methods which gave

(53) and (54). The resulting expression forv(69) is

®

§ 1J5
4147)

ISI(/d‘ qujz’}e—)_’z( ) ' (Q“:H'h{ 15j"fjl/?.u.

- 24T It IM‘; TNieds T
+ (44 Ja T Fr '3“%*3‘)%}

(70)

where the sum on J 1is from the lafgér of ljl - j2

| - 4]
to the smaller of ljl'+ 52‘ 5 \jB +'jh \°= To obtain the total

isotopic spin impurity due to excitation of a pair of particles from
any two states of the nucleus consisting only of ciosed shellég'we must
sum (70) over all possible valﬁes of j19 j25 j3, and jh afte? dividing
each term 1like (70) by the correct energy difference. This gives for

the isotopic spin impurity

B ' ¢ ‘ _‘ . .. '. .
o= T 3 dode ) .
' < ' g — g(n [ . ))2- | ‘
Py o= El§ids1dege)) -
j9444 '
(711)

The largest contribution to the sum for ClQ might be expected
to come from the.térm which has the smallest‘éhergy denominator viz,
excltatlon of two F%/ parﬁlcles to \E?OL_ states. For either

319 Jzyor 33, JL in the sane state, howeverg the term given in (70)

vanishes. Since parlty is a good quantum number the excitation of

particles from \?}6. and \glfi_ must be to an odd=§arity .
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"two-particle state”, The lowest lying is \??/2_ Sy, and this has
only, J 1 in common with \Xn/_‘_“ \%1,7' . For this excitation (70)

leads ‘bo the 1sotople spln mpurlty

_(l—> 0 3{-0[3,,129“,&“‘ Fa,‘_\gl/"\)?-_; .

S (CPAIEN PO CAPATEN AR
+ (Qs'/a_\P'I,_| \X’,‘,_ lf%\&l,,ﬂ)t} |

Since <\P"9 a$ !,2_1 ‘ A‘_'B’ l | ‘03,,» lS//J) = ¢  we are left with

Pz ?%‘)E? +3 (w ot [ 1s1)

or evaluating the matrix element

€*/R )"‘

r =
b= 772X 10 (&% -~

This is to be compared with the value of p for C1 given in (63)

_E' = .27 X IO |
i (73)

The energy denominators for excitation of \FB,JS//L to
‘all other states aré twice as large, making the cont:ributions'_negligibl_e
from ali states except possibly a '.2?’5,2_ 2/9/,7_ combination, f‘rom
'phe results for the two particle mixihg and the ensuing discussion on;a
"sees that these matrix elements might excged those to :\V i,\_\gl,z‘_ by

a factor of.10. Considering the additional factor of <. 2 in the
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energy denominator of '.%yagy;z&;b thésevcontributibns.to‘(&1)icannét
exceed (72) by more than ;g; Therefore even in thislcase the contributions
from doubly excited states is negligible.

We conclude-=States formed from the ground state of cloéed shell
nuclei by excitation of two nucleons contribute negligibly tOvisotopic

spin impurity of the ground state.

(4.413) An Eguivalent Potential for Closed jj Shells

If we return to any of the equations (47), (48), or (h9)‘
we can see that if the sumvover the states SPQCi) were performed and(
then th; integration over just the coordinate of the second particle
performed, we should have for the first term of (48) a maﬁrix element
for the excitation of a single nucleon moving in the equivalent potential
of the other nucleons in the closed shells. The second term, which we
call the exchange term; is actually equal to the first term whén jl = Jo

and my = my (remember 53 = Jj, according to (54) and (55)) and reduces

i

the sum over my; when Ji j2 by a factor of

. /‘Pl ,gz,
(l @_?,ﬁn\) (;;g,.;.,)

This means that if one wished to calculate (47) by neglectlng the
second term; one should multlply the sum over the Jl = 32 terms by

%) i.e. by 3/4 when Jjj = 32 = )F3’» or by 2 when
J17° j2 = lQ%_ . This is merely subtracting the self~perturbation.
effect. The terms of the sedond sum have no simple inﬁerpretation in
terms of an equivalent potential (TAS 10 ) when “”’nj.#— w’"‘je . T};ese
"exchange" 1ntegrals will be much smaller, however, than the "direct™
integrals.,

The'equivalent\potential is given by the sum

Ve (1) = j%a/ Fgri N Pyomd () (74)
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carried out over all closed shells of the nucleus, The integral in (74)

can be expressed in terms of "spinless" wave functions

o }n;. = %ﬁ}":z &7)

by the transformation
VE‘ Z («éa.a 4 ’/em-e'i' Ws)(»f‘fu‘b‘.' Mg /,Z:-E?W3> '
ijm_L_ X (') (74)

6.
Now using a Slater-type expansion of the integral (TAS 87), we can write

™ b YT N *)/,, R , :
R OATEE 0= 27 taimat aemantimd)

where
773,”%4)- 22l fp() Fot(1) 77 fall 3, Jllom ) oty

C’ddw/z = 4' Zz
s, | < 77)

Now choose the coordinate system so tha’c‘_ B =0 and cove,,= cab)

" From squations (47) and (52) of Racah (R42)

C/mxz/ e (conenyy) [Lrne ) = (- )m'e’(u+/)7/?’-££’7é voc )" A_
-V-(.éaé‘é = e v O) (78)

where the V(abc§ 9967) are the functions previously introduced as
. related to the Clebsch-Gordon coefficients. With this notation Vg

becomes

Ve, ) = 'Z %“ﬂzﬁ ﬁaéf-/)'l/“(étﬁ'oaa)@j,w) ,
Wﬁ%‘?)éé)Z(ﬂ +4'Vg,7, ;—mm o)

(79)



-107-

with W(£j £ j; 3k) being a Racah coefficient. In summing over jvthe
€ values also change. Only even k appear in the sum'since
V(4L k; 000) vanishes unless /f%_f%-,?és R;,‘ is even.

The second éum in (49) in the same way gives rise to a sum over

"non-diagonal" integrals of the form

s (1) v (1) = . 4,
Sy )75 % d ) W){,&a 24, M’WM ”“'X’””i 4””-“//445” r/‘>
mhy iy,

“//p ”ré (jééal vanf (;)

(80)

Just as we obtained (79) we obtain for the sum over the "incompletel

matrix elements (80) .

J/gg d'(v)«z 5%%7%y3(7) = 257 éﬁQiﬁ,é%)

f""d'
"5“4""!27"'-{. o

//(u;f/)@zﬂ«./)(aj,m@, #7) Vge_,z,, 4 000 )1)
Wllg gy s64) Vg4~ mj, m,0)

&

(81)

* with o ° _,
e, 4) = 22 fo () Rorts ()5 Rlavass,)lloocr, ),

(82)

‘The expressions (81) and (82) are quite general and suffice to determine
the effective potential produced by ény scalar two—body force. In the
next sectlcns however, we llmlt ocurself to the Coulomb potentlal

(L, LJ.L,) Electrostatlc Potential Produced by Protons
12

in Heh and C

The sum in (74) has been carried out over all the states
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which protons (or neutrons) occupy in a closed shell nucleus and therefore
VE(rz,) is the electrostatic'potential produced by protons in the
nucleus We shall now Droceed to calculate VE(rz,) for 51mple closed
shell nuclel Heh and C]L to compare thls VE(E) w1th the electrostatlc -
potential which is produced by a uniform sphere of charge. In this
way we shall justify‘the use of this latter potential in the calculation
of the perturbation of the states of one, two, and three particles
outside a core of closed shells

We shall derive the VE(r) for C1 first and shall immediately
be able to give VE for He also, $1nce for 012, k can only be 0 or

2 the sum in (79) reduces to

Virt,) = /z%g’)(,a,/p,) V'ﬁ/aoeaa)h/" 7%/%; %0)

ot gt
Z?(; 97 % %o —rympe)
=% N

f-/,z%é)(/, L) W,Q,M,,)W'(’} ‘%/%, 4o/
m,
¢ e 3(/) k2 =iy o)
f‘o??az ")f/: /) V(@oo'aﬁo)W(O./zé (s0)
f( DYASG 4% *«0"‘”’9 ’”“c/o) (83)

’1)
L]

The sum over the V(3/2 3/2 23 -m mj 0) in the second term can be

J
shown to vanish, so one has only terms in which k = 0. By considering

the series expression for the V(abc; 4941() one can show that
oH'
Z("/) V(J‘g'o'—oexo) (/)a"" »/ay‘f-/

Combining this with

' (_/)17'- 4;, ' 3
j 0)= ‘ ’ = bV
W/%, y) // 7'-/)47{7‘/) 7/2/,!0)000) %Q/__i/_
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we derlve the result

(,?/é,u/) V?fl’jafooo)mifj f/o)Z’(/)hU Wjo'—m r o)- ﬂv

K o (84)

From this it follows that

VEGn )= 279 (0p5 12 + 2223 (1) 15)

(85)
for C*2. The potential for'Heb' is obviously

VECh) = 2 2gleific; /5) -
- (86)

Performing the integration indicated in (77) we find

L ARIVIR 54 %z/r- os)

(87)

%@// '//o)"‘e f—-—e +:z/-5 %/
(88)

M

where

5 22 :
&= = /’9 °
We have used >’ M" in our calculations with harmonic
oscillator wave functions in the 1p shell and will therefore proceed
to discuss the effective potent_i'als: for this value of 2. Later we

shall see how the discussion applies to (87) and (88) for any value of ¥ .

_The asymptotic forms of (87) and (88) are



7?5‘57(2r;zs> ~ ;%3 /1—- Tf:‘f:)i%?’ ' £ el
N €55
(89)
20 (1p11p) ~ £ LE o of2t)  Feel
)  en o o
N , £974
(90)

Thése expressions are yéry interesting as a representation of the
physical picture. The potential produced by /§ particles is an
oscillator potential for smalli :{ s similar to the potential of a
uniform sphere of charge. This is a reflection of the fact that a

/S wave. function represents a distribution of charge which isrnon=
zero at the ofigin and is consfant'to first‘order'in 5? .o The

constants are not precisely those which one finds for a uniform sphere

of charge
7., z&z ' L 42 »

RN

(91)

s

but these are determined by the overall charge distribution and depend
on ¥ . At large distances 5? > »Z ‘the potential must become
2 : ' .
:EE: . For the {90 wave function»thebpotential at the
origin is constant. This reflects the fact that the 49& wave function

represents a particle in an orbit, so that one is "inside" the charge

at the origin. By Gauss' Theorem the potential must be constant here.
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_l]_]_m

L o
The potential produced by the protons in He is given by (86)
and is '

W) =g & Sl /E ¢ )

(92)
o ' : . 12
The potential produced by the protons in C is given by (85) .and is

e ()45 E v f 56E 1)

(93)
The asymptotic forms of (93) are : - :
V'/_g) ~£.. ﬁi/(— / ' g’fv<<1‘
e* ¢ -
~ & & >>Z
s 7 | 8
(94)_
The numerical values of these potentials as a function 6f éf are
given in Tables VIII and IX.

Also given are the potentials of a
uniform sphere of charge for Z = 2 and Z

= 6
Z=¢ P = %—?‘ 3(/—3;4529 £<4
= _e;a._ : > 1
5 §
Z=/e  Vu = /%- /—-Lg) e
= JE? £
s - 8

(95)
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The pot‘ential. for He6 is also given for the value of [ v '—‘53—2-,,
which is perhaps more reasonable for this nucieuso The data in
Tables VIII and IX are plotted on the graph which gives -,_ ( & / and
éfz_ VE (g for Heh and 012 as functions of 5

These graphs show very clearly that the elect;'ostatic potential
for a uniform spheré is quite a‘good approximation to. that producéd by
protons in the proper harmonic oscillator states for single particles.

31.?3:‘5: instead of 2§ the two potentials can be

o

made to coincide at the origin and differ by less than 5% everywhereo

By choosing ¥ =

The effect of changing ¥ is most' easily seen by ‘writing the

‘éxpressions for %(&) (/,_g; /) and ?)éro)()/gj /p) in terms of a new
variable 72 = > 4, . Equations (87) and (88) become simply

'7%”’)(/:;/;)= e? ﬁ;" %&7

(p)//o,,p)__,gaa/‘/._e 7 z /%/?;

(96)

(97)

The effect of =/ is {:o determine first, the value of the potential
at the origin, and secondly, to accelerate the approach of the potential
to the asymptotic form 1/r. Using (96) and (97) we obtained the last

two columns in Table VIII.
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TABLE VIIT

Coulomb Potential of Protons in HeLP

£ £ v ) LVEG) »=in Eveta) v=%,

0 3.00 2.77 3.57
0.2 2.96 2.76 3.49
0.4 2.8L 2,56 3.14
0.6 2.64 2.35 2.7
0.8 2.36 2,09 2.31
1.0 2.00 1.8 1.95
1.4 1.43 1.41 1.43
1.8 1.11 1.11 11
2.2 0.909 0.909 ' 0.909
2.6 0.769 0.769 0.769
3.0 0.667 0.667

0.667
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TABLE IX

COulomb Potential of Protons in 012

EnG)  &owk)pes & Sved)

o o oy B

2.00

©9.00 8.33 0
8.88 8.20 0.185
8.52 7.84 0.371°
7.92 7.23 0.556
7.08 6,47 0.741

6,00 5.65 0.926

©4.29 1,28 ©1.30
3.33 3.33 1.67
2.73 273 2.13
2.31 2.31 2.41
2,00

2,78
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In summarizing the results of this section we can say
(1) the use of the Coulomb potential of a uniform
sphere is justified for calculating the mixing
of two-particle states whén the core is not excited,
(2) the electrostatic potentialvfor the 012 nucleus
. produced by protons in harﬁonic oscillator states
differs from that predicted by the unifqrm model by
less than 10%, perﬁéps much less.,
The iast remark has éfeat significance for the interpretation of high
energy electron scattering experiments on C

(4.41)) Simplified Calculation of Impurity in a Closed

Shell Nucleus

The close agfeément_bétweén the electrostatic potential
produced by‘a ciosed shell of prdﬁons and the potential produced by a |
ﬁniform sphere of chérge suggesté a'very simple method of calculating
very approximately the impurity in thé‘ground states of closed shell

nuclei. For the equivalent potential VE(r) we use
= [ (F /%@//”f

= .é;i:!? (:kpz

In using VE(r) we must be careful to subtract the self;perturbation

(98)

effect, i.e. the perturbation .of an orbit by the particle itself. This
is subtracted in the exact calculation by the appearance of the proper
matrix element in the second term of (47). The equivalent potential

(98) gives the quantlty' uz(f/oﬁﬁa) defined in (56) as -

BRI X 5

(E é‘,/,a,)g(,/%)_, "('L); ﬁ,ﬂ/A”//’) @ e?- .
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The factor of 3/4 approximately corrects for the selprerturBation;

it is just __QZ_ﬂ . Similarly .

;%/7P/ _ _ _
‘(' e 49' )¥4=: ~3'f/r-— 7%T = e étc>f‘;€%F
- o<(/51) |

These quantltles now give for the perturbatlon of 012

p= s /»%-:.:—;

This differs from the exact result only by 7%,_but this accuracy is at

least partly coincidence.

(4.42) Isotopic Spin Impurity for Closed Shell Plus Two Nucleons

'Having discussed separately.the isotopic spin impurity for
the gr@und states of two nucleons ouﬁside a closed shell and for the
grounq state of a_closed shell nucleus, we are now in a position to give
the iéétbpic spin impurity for a closed shell nucleus with two holes or
two outside particles, Just as we did in (h?)'we can give the matrix
elements between the ground state Zéz | and various kinds of excited
states. Let 7ép designate particle st;tes:foune in the core;

]{y 5 particle states occupied by the outside nucleons. The varicus
excited states @Q_; can be grouped into classes distinguished by
the possible ways of exciting nucleons
(A) Single nucleon gxqitéd |

(l). core nucleon
(2). "Qutsidé" nucleon
(B) Two nucleons”excited
(1) both core nucleons
(2) both "outside" nucleons

(3) one core and one outside nucleon.
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The corresoondiﬁg matrix elements of the Coulomb perturbaticen
7/, jg given in (42} are as follows:
(>

(A/) (@-},Cd)\) Z g(tpa'(') %f("") UQ,QPP. (') Ql)v CL) f'lPof(\)'LPf(l) ?),zQPy(l)qprL&)]

+ Z? ﬁ@ﬁ(u)')cfz(z) U % 1)34441) - zp;(\)ygw U, L(D%CL)]

A (@V\C@D = ; g )‘0:(')%(9‘)@;&7‘,;('512152) = jﬁ‘(d%"(ﬁ%‘%(/)%g(é{
* Il B T Yol = [ 2]

,(31)' (@)= ‘a);(.vw;tca>?ia@,c»>%(g>- JROWDV % ()Y
B0 @)= [0 20 Ul Rl = J L0 K0 VTl V)

(BB) (%,C‘EP.) = j'llé:( )4 «5(@%;%(»%(@ - f%—*m)cé‘ (2) Mzkv(l)u}bﬁ)

Inspection.of'(Al)‘shows it to be the sum of the similar matrix with
just.a‘clqsed shell and a term which can be regarded as the contribution
of ?he outside nuclecns to the eduivalent potential,- This contribution
.should be small for large nuclei but in‘any case 1is éasily taken into
account approximately, (A2) has been calculated, the second line exactly,
the fifst line by an equivalent potentiaia This procedure neglects

the exchange term, but this can Ee shown to be A« 5% of the direct

term. The matrix elements (Bl) and (B2) have both been treated exactly
and shoﬁn to be negligible compared to type A matrix eleﬁentso For

similar reasons (necessity for recoupling of excited states; very
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different space functiéns9 lafge eﬁergy deﬁominatorsSYiack of a sum for
matrix elements between states differing by two particiés (TAS 56)) we
also expect (B3) to be small,

The conclusion we must draw for nuclei consisting of two holes

or two particles outside closed shells is that the isotopic spin

6 10

. : ‘ 10 : ’
impurity of T = 1 nuclei (Heé9 Be ', Be” , C , etc.) is just the isotopic

spin impurity of the core.  The isotopic spin impurity of the T = O

10 14

n.’ucli.eit(LJ°1.,€"9 B, N7, etc.) is the sum of the impurities for the core

andvfor the two particle state.

The isotopic spin impurity in ﬁhe state of the outside neutron

5

o 6 - . :
and proton in Li is 3.3. x 10 °, This is negligible -compared teo the

3

impurity of the core as one sees from the value of p=20x10" for

ho The core impurity is increased in Li6 by the outside particle and

He

decreased by the slightly larger spring constant .ﬁ’ and slightly

larger radius. From the results on the reduction of the core matrix

elements by an equivalent potential and (Al), we see that the‘effect

‘of the outside nucleons can be included by multiplying ;4(9$4y by -
A

4 ;E o Makingvthe other cofrections we find for the isotopic spin

impurity of the ground state of 14° 5 =21x107, | ‘
In Nlh thevisotopic spin iﬁpurity is again due mostly to the core. .

In making the cdrrection for the efféct of the two outside nucleons on
the :il.xnpurity' of the core we must multj;;ply ,(,(//9%) and o (/S/,‘,‘,) by
a factor of 14/12. The result after all corrections is p = 3.9 x 1077
for Nla°

We can also'treat the ground sﬂate'of Blo by regarding it as a _"'“

closed shell nucleus with two holes in the 5993§; shell. In this

case the isotopic spin impurity does not come from excited states of
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type (A2), ‘but oniy from (A1) states. Making the corrections for the

lack of two nucleons tc interact with the core and the different radii,
10

we find for the ground state of B p=2.2x 1072,

14

This value of the isotopic spin.impurity in N may.be compared _ >
with that éf Radicati who obtains 2.5 x 10‘”3 from a less rigorous
calculation. The principal ways in which Radicati's wofk differs from
this thesis have been pointed out in the appropriate sections of this
thesis and are (1) failure to remove the isétopic scalar parts of the
Coulomb interaction, (2) use of_ l/fi for the core potential instead
of the more correct 'ri approximatién,l(B) negleﬁt of excitation of
the isotopic spin state of the core, and (4) use of supermultiplet
theory for excited states, Although supermultiplet theory may very well
contain some element of the true description of gréund,states (inter-v
mediate coupling seems necessary 154, Z53, L539 T53, T54, Sh54) its
validity for excited states seems questionable (see howevér €53). Iﬁ
LS coupling with the correct core potential and Radicati's assumpﬁions
for the state contribﬁting the greatest impufity and the'éhergy separationy |
the impurity of Nll+ would be p 1.0 x.lonhe The only differenceAbetween
thislcorrected vglge'of P and oﬁr value for the mixing Af,isotopic spin
state of the outside neutpdn and proton is that produced by the diffg}eﬁf
ip, 2p level separaéions, 30 Mev in our work and 40 Mev in_that of
Radicati.

The impurity of a Nlh may here be somewhat underesfiméted since-'
the effect of two outside particles is seen in a more céréful analysis -
not to be treated ih a completely corfect way by increasing the effective

potential of the core. The presence of two outside pérticles does in

fact introduce the possibility of excitation of a'core particle to
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single particle state of different Jj with fecoupling of the spins

éf the two outside particles, the excitéd particle, and the core go the
‘same spin as the initial state of thevtwo outside particles (which was
also thé spin of the nucleus in its éround state). The matrix element
to such an excited state however should not be particularly large and
the energy denominator is not decre;sed appreciably since the energy
difference which enters is still that between nuclear states of the

same J in different T multiplets. The additional contribution of
these states should therefore not be large. The effect of perturbations
by excited states formed in such,a‘way but having the same isotopic spinh
és the ground state could, on the other hand; be more important, The
extreme single partiéle model would predict an eﬁergy denominator about
half of that.which we used when the‘particle excited fréﬁ the core did

not change its j value. Even here the contribution of these matrix

elements to the impurity already correctly found should be negligible.

5. Isomeric Transitions

Of the several methods by which one may test the validity of the
isotopie spin quahtum number, the existence of cerﬂain gelection rules
on the electric dipole transitions has been the only phenomenon which
has been experimentally investigated. Tﬁese selection rules were first
derived on ﬁhe basis of sﬁpermultiplet theory by Trainor (T52b) but it
w;s pointed ocut by Radicati (R52) and Christy (C52) that these restrictions
on e1e¢tric dipole radiation actually follow from very general properties
of the electrdmagnetic interaction with a system of nucleons. A more
complete statement of the selection rules on iscotopic spin change iﬁ
El transitions was then given by GeilaMann and Teleédi (G53) who also

discussed in considerable detail the effect of these selection rules on
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the absorption cross section for >y~ =-rays.

The experimental investigation of the validity of the isotopic
spin selection rules was undertaken by Wilkinéon (W53I) who first
determined a reliable method of predicting uninhibited El1 radiation
widths and then checked for the uninhibited ¥ =r5ys expected in
nuclei belonging to the same isobaric triad as the nucleus in which
selection rules were predicted to operate. Wilkinson (W53a, J53, W53I,
II, III, IV) was then able toc isclate a number of strongly inhibited

¥~ -rays which were viclations of the selection rules; and thus to
pléée upper and lower limits on the isdtopic'spin iﬁpufity in several
nuclei. The results of Wilkinson were thrown into doubt by the remark
of Gell-Mann and Telegdi (G53) that higher order terms in the El moments
are sufficient to promote "forbidden? El transitions in an even greater
-amount than the isotopic spin impurity would providé° A more careful
investigation of these highérorder terms, however, showé them to produce
effects = ‘lOOO times smaller than the effe@ts‘of isﬁtopig spin
impurity-in the transitions studied‘by Wilkinjson° Wilkinspn“svestimates
of isotopic'spin still stands subject to thevédmewhat questionable

predictability of the E1 radiation widths,

(5.1) Inhibition of El Transitions

The non-relativistic Schrodinger hamiltonian forvthe interaction
of partidle of charge e and mass M with a radiation field repreéented
by the vector potential A is (Kr38)

H o= (B-8A) = p2 T N
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Th a tity. S~ is the.magnetic moment ih'magnétdhs-..-" e®
e gquantlivy . T —
e /0 2me
Expanding the quadratic term in ‘;ﬁ%/ and discarding those terms in A,

we obtain the approximate hamiltonian

H:pﬁ; ---GM7 (5 ﬂf-/o f‘?)m,@t% 17‘,\‘29 ‘(é)

where we have taken the static Couloﬁb'field to be zero,.:? = 0.
According to the usual perturbation approach to radiation theory one .
assumes the particles to be in eigenstates of a more complete hamiltonian
for ﬁucleons would contain also the terms involving the central nuclear -
potential, the electrostatic interaction of the particlesg_etc:
Correspondingly the radiation field.will alsc be in some eigenstate
describable by a quantum analogﬁe of Maxwell'!s equationsov The process

of radiation is then describable as a transition of the system of
particles and of the radiatiocn field between tw& of their respective:
eigenstates, these transitioné being induced by the parts of the complete

hamiltonian which couple the particle field with the radiation field,

From (2) this interaction hamiltonian is just

o 4 l'
He = =55z (F°F) = pait- )

(3)
where we have written (3) in the unsymmetrized form which the gauge
condition E7°A = 0. For the interaction of protons with an
electromagnetic field one has an interaction of the‘form of (3) with

_=/44/,' , the anomalous.magnetic‘moment of the proton éﬁd mzHM

- the proton mass

) HJ: | (,9 ;) /.?,r sz )
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For neutrons, which have no charge, but only an anomalous magnetic moment
22 the interaction (3) reduces to
Hz = —pn 3 (Fx )
| ‘ (5)

Using the isotopic spin formalism the interaction of a system Aof A
nucleons with the radiation field is Jjust

;t‘ = = 2} { (Pﬂz)(.a "ﬁ%)"'[{"‘l‘ (‘l ff!)"'f*“ﬂ( +£51>]

| ’ ?€~Vx»4(3’%)} (6)

The neutron proton mass difference has been neglected :‘i.n'writing this
fpmula as is certainly justified in first approximation. This resu.lt
differs from that of Radicati (R52) and Gell-Mann and Telegdi (G53) by
a sign because our e is positive for protons and negative for electrons.

The HI in (6) is the sum of a part which is a scalar in
isotopic spin. space Hg and of a part which is tk;e zero'th component

of an isotopic spin vector Hl,

. A .
s = Z[e %7 + 4 Gpew)add] o

He = {=[ (F; Z) + C}’”r p) ;—'.,V*AJ{,-“ (8)

If one makes the assumption (kR) {€ 1 , one can demonstrate that
the electric dipoie transitions induced by H0 are prbportiunal to
the square of the electric dipole moment between the initial and final

nuclear states (B52, Chapter XII).

»
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Qm = ¢ E, AN ) B (A,

(9a)

Correspondingly El transitions induced by Hj have theitransitidn

probabilities proportional to the square of

A ' | |
D = e 2 A S toh o) -0 09),
Ty : : : ' ‘

If one now neglect nuclear recoil upen emission of a ‘1/ "-ray, the
' A

center of mass of the nucieus remains fixed and ﬁg;lfaﬂé:=~€9 . Since
(9a) vanishes for electric dipole transitions only Hy can préduce E1
transitions.

.From the fact that Hy = is the zero'th component of a vector in
isotopic spih space; the following selection rules follow immediately

(W31) -- : o
! AT=0%tl T, ¥0
1 |

1
¢

| ZS;T_ =+1 'TE =0
The selection rulevfor N = Z nuclei is a geﬁeralizatioh of Radicati's
'requirement of no T=0=»T=0 tr#nsitionson The!#aniéﬁing of the
matrix'elemeﬁts of Hy makés the selection rules»for HI those which
El‘transitions sétisfy in all nuclei°  Their absoluté validity for

'TE ::GDnucléi can be impéired'eiﬁhér by #heiimpurity of iéotopic
spin stateé or by certain highér qrder terms in the.multippie matrix

elements.



o126

In addition to the inhibition of the El transitions by isotopic
spin selection rules there exists the possibility of inhibition of El
transitions due to the correlation of the neutrons.and protons in the
nucleus. This effect upon Hy follows immediately.from»(9b) where.we
note that the pairing of neutrons and protons produces terms of equal
magnitude but opposite in sign Z’ %k/&’& This effect was first pointed
out by Delbruck and Gamow (DBl?, end was later invoked by. Bethe (Be37)
to explain the anomalously small El tran51tions thought to occur in heavy
nucleio The evidence adduced by Bethe to support this widely held ‘belief
was of several kinds:

(1) anaomalously long-lifetimes in heavy:nuolei N

(lO==12 sec. versus ‘theoretical estimated 10_16 sec. for E1)

(2) 7(;ray widths for (n, o/ ) reactions

-

(1/10 ev to a few ev versus 100 ev exoected for u_é Mev
+ -rays) , ‘_

(3) small [T, - for Li'( PY  )Be by, 17.63 Nev ~ray

(4) fﬁi widths observed in ( F)ﬁ’ ) capture in F19

As has been pointed out by Kinsey and Bartholemew (K54.) the“
number of El transitions in heavy‘nuclei was suddenly reduced when the
first a;éﬁrate tables of internal conversion coefficients appeared (R51).,
Althouéh several El transitions in heavy nuclei have been announced5
recently (Be52 S53) and these have rather long lives, even nere it
has been formed by a complex coupling of several nucleons With consequent
reduction of the extreme single particle matrix element for El That
complex coupling can produce the necessary reduction by factors A 100
of the single particle matrix elements (W51) nas been demonstrated by
the work of Lane and Radicati (LSh)f Their results show that a

variation by a factor of 50 of the E1 matrix element from the 7°h8 Mev
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state of BlCj to the ground state is possxoie° The roason for the
small number of true El tran31 tions may be Dimply nhe absence of low-
lying states of the proper spin and parlty in heavy nuclei (K54). The
ev1dence given in (1) and (2), which was always 01rcumstant1a1, is now
even doubtful. Turning to (3) we find that the 17.63 Mev state in Be®
is now suggested to be 1+ (A52) in spin and parity. If the ground
staﬁe is 0+ as cne éxpeots for such an even%even nucleus; the parity
change required for El transitions excludes the evidence in (3). Even
if the 17083 Mev should bé 1=, the small [1A may very well be due
to the isotopic spin selection rule operating in Beso The evidence in
(4) is also spuriou59 since all of the levels in Ne20 formed by proten
capture in F’19 are now known to have the wrong spin and parity for El
tran31tions to the ground state (A52).

The belief that El radiation has the same transition probability
as Ea, 1ndicat1ng inhibition of El by an amount, (kR) also has been
investigated by K nsey and Bartholemew (K529 K54) . Thelr conclusion,
based on cne direct comparison of an El and an E2 gamma ray in Mg2
and_on indirect evidence in a series of other nuclei, is that even
 from sﬁatesvasvlow as 7 Mev E2 matrix eloﬁents are at leost an order
of;nagﬁitude sﬁoller than E1 matrix elemontso Kinsey ard Bartholemewt
conelude further that while the Weisskopf formolas (W51) overestimate
the E1l rates by about a factor of ten, the ratio of ﬁl to Ml is correctly
predicted to be 200 for.A ~2 30, |

: Ev1denee for the ex1ptence of an effect on El tran51tlons arising
from the cellective motion of neutrons and orotons in the nucleus ecan
also be drawn ”rom the giant resonances in photo emi581on cross secticns

(B)99 Bh8, LASS PL8, MLY, 85_!._9 M53) whioh occur at 15-25 Mev excitation
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of the prcduct nucleus., These resonances have been interpreted by
Goldhaber and Teller as due to relative vibration of'tyo interpenetrating
spheres containing separately thelneutrons and protons. In this way
they have predicted for the dependence on A of the energy at which the

maximum of the photo-emission occurs

4 —
E. LA ©
m (11)
This agrees reasonably well with the experimental result Mc53)
-z 37A ev. (12)

Levinger and Bethe (L50) have also shown,‘howevery that many of the
-features of the (71;{\ resonance can be deduced merely by the use
of sum rules for electric dipole abserptiono The position of the.
. maximum is predicted to occur slightly above the average nucleon kinetic
energy,,heWevers aﬁd this is constant at v 15 Mev on the simple
Fermi model of the nucleus, Obviously any features which follow from
simple sum rule arguments must. follow from aﬁy model so the ﬁrincipal
success which can be claimed specifically for Goldhaber and Teller's
model is that of predicting the A dependence of E nearly'correctly°
Whether a model not .embodying the ideas of collective motion of the
neutrons and‘pretons can also predict tﬁis dependence remaine to be
seen. | | |

Finally we shall merely repeat the eariier remark that complex'
coupiing of the nucleons can also inhibit the El1 transitions (L54).

Our conclusion from this:discussion of the El transitions is
that at moderate energies ( <L‘15_Mev)Athere is slight evidence for

‘some inhibition of El1 transitibns, but thaﬁ this inhibition is not



-129~

nearly so pronounced as one thdughﬁ previoﬁsly. It is not even certain
that this remaining apparent diminution of El matrix elements is not

due to overestimates inherent‘in.the efude nature of the Weisskopf

formula,

(5.2) Experimental Results on Isotopic Spin Selection Rules

The establishment of reliable ésiiﬁaeeéﬂfor the uninhibited
(5y isotopic spin selection rules) widths for El transitions is clearly
the first step in verifying the isotopic spin selection rules. Wilkinson
began his investigation of the selection rules at precisely this point
(W53b) by giving a list of El transitions and calculating the quantity
(2 + 1) |M]2° This quantlty, first defined by Goldhaber and Sunyar
(G51) is the product of the spin of the initial state times IMI he
ratio of experimental width [4  to the Weisskopf width (W51). The
quentity is used by Wilkinson because his data are taken from (Fg—( )
and ( o,y ) reaction cross sections from which one automatically obtains
(QJe+ 1) r%k by use of the Breit-Wigner formula. The factor 24 1
,shouid be removed for comparison of experiment and theory but is usually
not known for high energy resonances (H54). In the El transitions
chosen by Wilkinson (2J+ 1) lMlz fluctuated by a factor of less than
 ~/ 2.5 from the value of 1/5. Wilkinson's estimates of the
uninhibited widths rg of El transitions were therefore made from

| .
(aT+D IMP* ~o.2 0

or using Weisskopfis formula

Y, |
(2T + 1) My, ~0.022. 47 El ev (1)

"¢, indicates a partial width.
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Several remarks should be made about <1h)° The previous discussion
(5.1) has shown clearly that one should place very iittle reliakility on
formulae for El widths extrapolated to dlfferent nuclei and espe01ally
to hlgher energies. Since Wilkinson's study actually contained cne El1
transition in Blo; twoe in Blis one in NIB, four in Nlh, one in 0159 one
'in 0169 and one in F17 for a total 6f'e1even transifions with only one
above 10 Mev, we can probably trust (14) up to A A 20 and E.,, < 12 Mev;
‘within a‘factor of 2 or 3 either way. The mere presence of the .
statistical factor (2J + 1) guarantees this much fluctuation.

The next step taken by Wilkinson (W53I) was to verify ghe existence
of unirhibited EL transitions between two T = O states of a T ¢ F O
nucleus, This‘is done by comparing Sevéral cross sections for radiative
‘capture of. neutrons as calculated from (14) by use of the Breit-Wigner
one-level formula with the eiperimeﬁtally measured (n,'w/) cross section.
The nuclei used were Lis9 Eelo,'Blzb and 012 and the‘levels were
respectively at 2,04 Mev, 6.81 Mev, 3.36 Mev, and 8,17 Me.v., Although
the analysis is far frém being conv{ncing asito the agreement between
-theory and experiment; within an order of magnitude one can cénclude that
there is no inhibition of the_El transitibns°

Followiﬁg.these preiiminaries the El'tranéitions in several nuclei
were studled for ev1dence of the operation of the isotopic spin selection
'. rule (W53a, W53II, W53III, w531v) The results of the ana;ysm of

Wilkinson and collaborators. is tabulated below.

Nucleus Level Energy (Mev) ' Limits on Isotopic Spin
10 : Impurity
B (2-)? © 5.1 - { 3 x 1073
1 ‘ _ N
N ot §.06 = 2.31 <2 x 1072
o6 - 1= o0t 7.116 =» ground > 4 x 1056
2t - 37 6.913 ~#6.137 (107
17 = 0t 13,09 = ground 33 x 1072

ne2C 27 = 2% 13.70 = 1.63 ¢ 3 x 1073
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Although these are the figures adoptéd by Wilkinson, as is evident
from his analysis considerable doubt should be attached to the exact value
and in some cases to the order of magnitude. Perhaps the most reliable

1he ' ’ :
value is that for N were the forbidden 8.06 - 2,31 transition is

. .compared with the allowed transition to the ground state. The impurities

obtained for the levels of Olévare obtained Ey a comparison of E1 and E2
branching ratios from the two levels (W53a,.W§3II) using the estimates.
of Weisskopf. Among the‘isomeric transitions, however, the E2 have been
known for some time (G51) to be unusual because of their large matrix
elements, which equal or exceed the Weissképf estimates, In’Mg25'Kinsey
and Bartholeﬁew find the known E2 ts be correctly predicted by the
Weisskopf f§rmula° ‘It therefore is quite possible that the impurity

10

is based on rather tentative 1evel assignments (J53) but agrees with the

‘theoretical predictions.

All of these experimental results are in agreement with the
estimates of isotopic spin impurity given‘in (4.42). As we'expect if
the isotopic spin impuritj isvpredominately due to the core, these
limits on mixing are very nearly the.same for a %ide range of‘energieé

and in several different nuclei.

(5.3) Higher Order Effects on Isotopic Spin Selection Rules

The selection rules on isotopic spin are based on the vanishing
of thé Hy matrix element in the lowest order approximation; There are
three corfections to be considered:
(1) neutron-proton mass difference,
(2) dipole matrix element of the spin dependent parﬁ of Hy, and-
(3) higher order terms in the expressions for thé electric dipole

moment .
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The first of these i3 easily dismissed by noting that the dipole
moment of the nucleus involves :% - rp. Taking the center of mass
| %=1

as the origin . _ =

2 el P Z A
mp X g+ rrw LA = O = /‘m/o-mrv)z%ve S rnn L4
=/ A=) #=/ r=/

and therefore

g, 55_»”'-")-»:’ 2
#= "=t (15)

where
e = proton mass = 1.00758 amu

_ 9m4s = neutron mass = 1,00893 amu.

We conclude from (15) that the effect of the center of mass and the
center of charge nearly coinciding is to reduce single particle transition
prcbabilities by -

o o = T 2 R

P4

3

Since the isotopic Spin impufity produces El widths which are ~ 10
times the single particle Widths, the neutron-proton mass difference can
be neglected in considering the violatibn of the selection rules on

isotopic spin.

(5,31) Exact_éuantum‘Mechanica1~Multipole Transition Probabilities
In order to treat‘the.correcti§ns (2) and (3) we shall have j
~ to derive expressions for the electromagnetic transition probabilities in
terms of exact multipole moments. The treatment of Blatt and Weisskopf

‘(B52) is valid only when (kR) { ¢ 1 where k is the propagation number

 for the emitted photon and R 1is the nuclear radius. Higher order terms



~133-

in (kR) will therefore enter the exact electric dipdle matri¥ elements
of Hy and produce transitions which violate tﬁe selection rules.

The derivation of the multipole fields for electromagnetic
radiation hés been given by a number of éuthors'(HBB, H36? D39, CLO, GL6,
FSO,hWaSlg W51, 552, M54) for both the classical Maxwell field and for
non-relativistic quantum mechanics using a varieﬁy of techniques. Only
in the paper of Wallace which treats the classical Maxwell field;
however, are the multipple moments given correctly to all orders of kE.
‘,_Quite recently French and Shimpto (F53) héve studied the connection
between the.longitudinal and transverse electric fiélds for a bounded
source in the long wavelength approximation. In doing this they have
also derived exact expressions for th¢ multipole moments, but again only
for the Maxwell field.

We shall now present a derivation of the guantum mechanical
transition probabilities for emission of.electric and magnetic
multipole radiation of all ordefs correct to all orders of (kR). We
begin directly with the nonurelatiﬁistic Schrodinger equation for
charged particles in an electromagnetic field.

| In terms‘of the in%eraction hamiltonian HI_ between charged
particles and a field, the transition probabilities for the emission-

of radiation are given by (S4/)

(16)

Tw = SE LT

where a and b are indices dendting states of thwe‘nuc_vleus° In the
“use of this formula we note that ‘Hab is not the matrix element of Hy
but of the part of Hy arising from the positive frequency component

of A, i.e. from A(r) defined in
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X =g WL A e
17)

(ef. B5L (18.16) or ScL9, chapters 8 and 14). Of the two My = H,dndH,
we are interested only in Hy; which can produce violations of the isotopic
spin selection rules (l’é)o The expressions for the corresponding
tfansition prcbabilities for Hl would follow trivially from those for H,.
In what foliowsg however, we shall actﬁally_usé the interaction of
equation.(B) so that direct comparison of ouf multipole moments with the

‘usual formulas can be made.

We begin by expanding A into a series characteriééd by the fact
that each term of the series is an"eigenfunction of the single particle
angular momentum operators J = and Ja with Z=componént M and

a definite parity This expansion is of the form

%Z A(Tm % )

J=0 m==T

2T(djﬁ4)25,t' 53 A Z}?(J.fﬂ .4, ) JV ‘P‘?(b‘ﬁﬂ Aﬁt>x<rjﬂr//
+ },,(J:M;Z;t) YJ‘.J__/' /_]

(18)
-
where A can be a general vector field. The Ly, ¢ are the vector

. =
spherical harmonics discussed by Corben (C40), Goertzel (G46), and Franz

‘ 3 3
(F50) whic are eigenfunctions of ;r ;T' L aHGLLzo The parity of the
-—-’ M

, J+ 1
spherical ha”monlcb XTJ‘-HI and V-J- ), ) is (-1) while the
parity of y TT (wl) Consequently when one introduces

" the concept of electric or magnetic-multipole fields distinguished by

L o
the parity of the magnetic field H associated with each, either the
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eglectric field g or the magnetic field H can be expanded in a
NE
series which contains only er/ (F50). If we now perform the
> .
_ -
decomposition of g and H , the electric and magnetic fields, into

the positive and negatiﬁe frequency components

“ ¢ Wt
S = Zl)e 7 # Ere”
o) = PG e~ "+ /‘7&‘5‘“’/@@?"

(19)

Maxwell's equations for | gﬁ”) and /;/’/%9) are
=y — .
¢ Tx AG) == BB < TREGS = KA
(20)

. —p o .
Consequently an expansion of ég é’)) in the VM implies the
q y Xpan: e (¢ 7/ P4
—-p
possibility of an expansion of H(r) in the vector functions s
and conversely. The only vector harmonics which need enter our
_-.’
L 5 v 7 :
calculations are therefore the }év‘/ which can alsc be simply
. . ']

expressed as

Zw = - L Yo £S5 ¢)
iy E Xrm CLp) TR e

- - _ -»
where L is the angular momentum operator = x F with F= .-_.{': v
A

and . is a surfac herical harmonic of order J,M. Th

n }’TM f’%gp) is a surface spherical harmonic of order J, e

multipole fields of order «Zj 777 will be characterized by the parity

of H with the electric multipole field being assigned parity (-1) .
. e |

and the magnetic multipole field parity -(-1) . The respective

fields and vector potentials.are bgiven as follows:
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Electric multipole field:
/

/éZ-ﬂZ:ﬁ?) = ;g{" an jif
Zz-pem)-—-; 7 x 4}?@) z;,,,

Helt,m) = £ R,

~2 (22)

Magnetic multipole field:

,;aQ(anva) = = %%' ¢£¥§L2 jziév*vv

(23)
The relation between /62; and cé?é; follows from Maxwell's
equations and the relation
é5?6237¢ﬂ D= ‘?Eﬁ?v/;2?<2577°,)
Tk Pxd = #2
(24)

When (22) and (23) are fnserted in Maxwell's equations, we find that

satisfies

434@3. f"léng&é) 7"74: c?éf(/’,) o

Since we shall normallze to a sphere of volume V and radius a, we

have the solution for df?(Za)
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. i /4) /ﬂ/ﬁéfij-a

We first derive the transition rates for emission of magnetic

- (25)

multipole r_adiatibn of order //(j yy;) s The vector potential will be

then v ‘ ,
— Z 0 '
A (£, )= be. St (44 Yoy 659
_ AL(E A1) X
(26)
where we deteﬁnine vé,g v by normalizing to one quantum of energy

Ke A in the volume V. The energy in the volume V will be

—._.;—-'Z- > . R iV 2,"
£ = g 0/42%2?%f = -—=~h/////4(h)l de

2 ¥

-2 < “ .’ - 2
£ = 2 |kl '[4-7733/%»4)4 o

which is to equal %’ﬁ“)é . The integral is a monotonic increasing
function.of a so that the value of the integral cbtained by using’

the asymptotic form of y,e’(%‘/},)

/ié?§5(€4yz) naive (Hn - fL)
, (27)

will becomé a's;irmptotically correct in the limit of la‘rge a, . From

the value of the integral

[ gen (b~ £ 4 ) (F) =
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we deduce
& 2 ' 7 | Ha
; a4 —ao eimvormvemmesin - a-l
/ 4;771 () iy ~~ F77 /_;,rg Y

: 2-
The value of / b&/ emerges as

bt = (et) Lt K= o KK

% é?w&x« _ Clw

(28)

- The vector potential for the magnetic multipole field can therefore be

taken as

R L (R
(%iz; éggxrl)‘ﬂg.f ﬁf qﬂaﬁﬁhﬂiq” 6766'/%%412)1;’77[24252L)

(29)

From the relation 4& (:ﬁm)a:: "% 7 @m) we find

‘1mmed1ately

/ %
5ﬁm) # //Qﬂ)ﬁ*j %ﬂ)%mmy (30)

the vector potential for the electric multipole field,
Before inserting these expreésions (28) and (29) intoc equation
(16) using. (3) (forlreason given above), we shall transform the matrix

element

Fos = »m/%f?% ’3"'/’;/% a (ﬁ'?)?‘

into

_ __/7—‘ “/'fﬁ;*?' xA @y (31)
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where _ :
— ‘ '
Jap = oy [.% (Pem + (F‘Fa,) 9%]
the quantum mechanical "transition current", The density of final

states per unit energy follows from the aéymptotic form of

(27) and the boundary condition (25) as

AR — flr = I G Sutegral)

Thus

&)= ==
ST 28 T 2x (32)

The magnetic multipole transition probability per unit time and per

unit solid angle for the direction of the emitted photon follows

immediately by combining (16), (29), (31), and (32)
&
%= i?iﬁagzaizg /“"—1/63?64 L‘éfé Ve *“'/‘9/?% d‘-ﬁzxé.efﬁ }/rn}p /
(33)

Similarly, S - S ' "
= .Q:Q_.Zg_m > -
76:6 A‘é{éﬂ)%“/ e Tga V)((-’gté " ‘%/ a““?jﬂ/m?&/
(34)

: ‘ : E.
We have transformed the second term of 7:;5 by the use of

UxAe bm) == ik Fm (4m)

to obtain & similar form.
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We shall now proceed to transform these integrals into forms from

which the usual multipole moments will emerge after one further approximation.

A,
- z'g/ﬁ;? vy = zelt ot Fe o =
> S L _e'Kw)L/em--" (3 ._@ v
c 3/ (' ’ 3a=° 'aaaf
_ e (x,g;;— &ém?’){f,& X’W?
- . o m
The &enﬂi is the Levi-Civita tensor density
/ even permutation of 1, 2, 3
Comd = « : o
me -/ odd permutation of 1, 2, 3

C’_otherwise

Integratlng by parts

L/‘fb »Ajdﬁ4)}ém =2 j‘/ﬁ")g’”’w@qf‘)(as)

._;/,‘/é;;z. ?"Zj? Yors 21 ;k'%¢~ &'-ﬁé%/&)—&?f[/'é}{m

- where we have used the operator identity

Wz = ifFe)-47]

F7%7k,ké>va ==.“7%L??ﬂb ké*V7

From

and 1ntegratlon by parts.

- /t/gx,..(*u. )fe Ve 95 = R /@é’i)jjém W@“ 03&.4)
Fp ﬂr‘/j,e Yo Cpt #2)

(36)



-
¢, In a similar way, by»uéing the continuity equation .
Vodhs = fff =i ﬁz
- ﬁ‘i‘,?’“‘?‘g;
we obtain | ‘
#1:g//3r4. E%(Zfayaz)4§v»éé '5%)/12;§f>éfk )é»lggfyﬁg
“ﬁnﬁ‘/}%l{em (7 Tad)

(37)

D. As in A, we can also obtain .

7/“;/%*9““ Z,e/m%!’ /* g@fm&w@zxwﬁ)

(38)
Define now the‘generélized multipble moments
Magnetic: ) .
rgem = = 6’““;*‘:) /e ﬁlﬁwm@wm(yx Zﬁu)

%f@ i (4&#7)// /;ém)fm/fﬁﬁ)wéﬁgatﬂ)
A //m;x ol mg}

(39)
* Electrics | |
*f*f;f" St [l ol
3 1F Ry QAQL&(géQ/)34;;q(gp 9ﬁ)4;9 éu{~;z
(40)

where (244 1)1 = (244 1)(21';1)'(21@- 3)... 2 or 1.
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Using the relations established in (35), (36), (37), and (38) and the

definitioné of (39) and (40), the transition probabilities per unit time

(integrated over solid angle) are

”F;L ;iiiigfﬁwqj 1; Iéyb4hn + 4ﬂb47n/

g_ euler) ,kzz-u
rTrA.k LE‘&HW ,aé,&m + ztm l

(41)

(42)

_These formulas are exact so far in that no assumption about the
magnitude of (kR) has been made. If we make the "long wave iength
approximation'" kR ‘<<f'l, i.e., only low énergy gamma rays are
considered, We_pui

folta) ~ (#1)%
Crr)!!

Since | 2 (/Z, ,é ) .
- the multipole moments defined in_(39) and (40) become
M, = - o flz.'f Yewn dinr (50: _f? b)

—rn /f,eytmOAM(CfaO—C‘fL)
(43)
2m = f/l‘eylm ?4*6013.

= ik [ et

(44)
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These are~precisely'the single particleimoments'of'Blatt”and!Weieskopf's
formulas XII (3.32) p. 599 (B52).-

Although no derlvatlon of the exact non—relat1v1stlc quantum
mechanical multipole transition probabilities have been published, a
very recent derivation of_the exact multipole moments for the Dirac
equation by B. Stech (S5h) pas appeared. The treatment is similar to
the precedlng development | | | |

(5 32) Higher Order Contributions of HO

We have p01nted out in (5 3) two types of hlgher order terms in

Hy which produce contrlbutlons to El radlatlon and therefore v1olatlons of
the selection rules in ’G =0 nuclelo We estimate the first of these,

the contribution efﬁthe‘spin dependént part of H, to El radiation.

o) !
1m

shall show that the transition probability produced by éQdLn is

This contribution appeers in & in (44) and hence in (42). We

negllglble by evaluating l éZ \p, Since we are interested in H,
f‘m

comparison of (3) with (7) shows that we should use

! ' .
= - L : in nuclear magnetons
== (’bga +_}}A:N) S A\ el k
e e *Qch
oL T 2Me
(o) :
In using fﬁl .and é%ﬁ; ‘ ~ we are of course using the

extreme single partlcle plcture but this apprcx1mat10n glves the

proper orders of magnitude. To evaluate GQghw,' and C;wa, assume

thet q%L and épb 71 . are constant over a sphere of radius R s

the radius of the nucleus, and that :}zlh vp:is of erder unity. In
oA -

Q@.‘m we'also take & of order unity and TQ‘?”‘"‘-)MO'E L=TLAAN
’ o aMe
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The divergence in &L is approximated by (1/R). We then obtain
cexd |&, ‘ o
(o 25 MC."
im

(45)

for gamma rays of "/ 10 Mev

(QUY)

I,\, L x 107, The contribution
of the magnetic moment to El transitions therefore prov:Ldes a rate
L x 10 -6 times an uninhibited matrix element of H,. This is negligible
compared to the effect of isotopic spin impuriﬁies

The higher order term in @IW\ arls:mg from the second term of

j.e, ("(‘4) can be found by using

L2
J‘e (#0) = éwﬂ)’ 7 (4,67*5/7-2

The second term in an expansion of

2= QL+ QL #
found from successive terms in (ﬂw) is |
O ol ). / e
2 o
A e Taa ) o 59

M/mxmz 3 j

”’ ""‘f # /zJYmﬂ% # X :}/‘ z }

Qh—n

The ratio 'of g‘)

or

is ‘found by the same approximations as before.

Q‘“ f fuC (/cle)*

The resu]_t is -
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From (éé/?) ~ Jﬁfff;ﬁfﬁéf we find that for 10 Mev photons
37 . -

@/W? . o
~ lO
@

We therefore conclude that all the higher order terms in H0 give
rise to [_5\ widths for El emission which are of order 1036 times the
uninhibited widths., The ﬁ widths produced by isotopic spin
‘ impuriti’es’ are proportional to the impurity p and are at least ZLO‘=3 )

times a "normal® El width.

6. 13 ~Decay '
The Fermi theory of g -decay (F3L4) based on field theoretic

concepts introduces an interaction Hamiltonian

A= G (9o + (ok?@* o @}

(1)

between the field describing the nucleon, t>he electron, and the neutrino
(or antfianeutrino)n " The operators @H and & cperate on the
nucleon wave fﬁrx;:tion witrh the néutr’on and proton be:‘Ln.gi Aregérded as twe
staﬁes 61_‘ the same entity. @L' is anboperator on the wave functions
of the light f)articles, thé eiectzjon and neutfino,, The inter‘action '

H is nowvrestr’ictedA fo a linear combination of a few fundamental forms
by the requirement that H be relativistically covariant scaléro ‘If

one uses Dirac spinors to describe all the fields preéent in (1), it
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is known that there are only five fundamental forms which satisfy this
requirement on H. Any linear combination of these five forms would
be a suitable H.
For a.ilowed transitions.in t_,he_ non—relativisti¢- approximation
the half-1ife t for (E ~-decay can be found for any linear combinat.ion

of these forms from

B o>t— =5 Pt &G

(2)

where 36(2:‘\/\/: ) is a function of the charge of the nucleus and
the maximum energy V\’a of the emitted é - particle, The F is

the Fermi matrix element.

Ee f@;;cmnaw f‘% (r, £ T

Q‘a’ is called the Gamow-Teller matrix element squared and is given

= 14, |‘+ IG !"“+- IQ&I“’
G j@' ?: (ts: +ifna)o';; (I )

by

: ﬁ;‘ and ﬁ; are the Fermi and Gamow-Teller coupling
constants respectively. The suggestioq of using the isotopic épin .
fdrmal‘ism for wriﬁihg the Fermi and Gamov:r—Teller matrix elements in a
form which is completely symmetrical in the coordinates of ali nucleons
is éredited to Nordheim and Yost (N37.)9 but the -above' form was first
given by Wigner (W39) in his discussion of the theory of ﬁ ~decay
from the super-multipiet theory  (W37a). . The form of the operators

appearing in (3) and (4) permits the formulation of selection rules on

4
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the isotopic spin quantum number T and the total angular momentum J,
Fermi matrix element: AT g,_.‘_a 2 J’m@ .

Gamow-Teller matrix element: AT = O,'tl AT =e )ﬁ l

Teof Tmeo J‘w#o( |

The non-zero value of f@ has been well established for a
number of years (KAB), but the existence of a non=zero @rﬂ - was not
+ P -decays.,

For such transitions the Gamow-Teller matrix element is zero so that the

: +
established until the discovery of J =z Ow=sp J =0

decay can only proceed by the Fermi interaction. The first known
v@t—*a“’ /@ -decays were the th(ﬁ‘* )Nlb' | (849) to the 2.31 Mev
_lévél and the Clo(/&‘#)BlO to the 1.74 Mev level. As a result of a
number of recent experiments, however; a number of such decays have

been given. These are summarized in the Table X due to Moskowski (M53).

(6.1) The Validity of Isotopic Spin Selection Rules for [5 -Decay

By the use of the selection rules (5) one might hope %o test
the validity’of tﬁe isotopic spin guantum number by locking for a
Jd=0-9J =0 ~decay which diso‘beys the selection rule on
isotopic spin, AM' = O, for the Fermi interaction (R53a, K53). A
lock at the possible ‘0-9 O transitions reveals that both of the first
two transitions are certainly T = 1 «p T = 1 , while this is also
asserted by Stahelin (S53a, S53b) to be true of the next three, If one
looks at the level schemes of BlO and Nlh, one sees in fact that there
is né J =0 T= O’ state to which the /@ ~decay could .go. This

situation prevails generally among the light nuclel as one shows by the

following simple argument.
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TABLE X
Oﬁ- O*'Tran51tlons ‘
" Poéitron Maximum . Half-life (sec.) | ng_ﬁi
ct0 1.08+0,1 19.1(1.65 + 20%) 3.77 + 0.2
ot )
n®  (3.27% 0.05) | 6.3 | 3.52 4 0,03
o L.45% 0.1 1.58 + 0.05 R s oQos
K $u75 0.95% 0,03 9337
v v60 0.40 - >3.45
b0 3 0.28  »3.38
TSRS N | 018 . 3.8
'(a) 'R. Sherr and J. Gerhart Phys Re& 91, 909 <l953)f
(b) R. Sherr, H. Muether, M. G Whlte, Phys. Rev. Zés 282 (1949).
(e) L. Katz, private communication (Energy Al 7(7{, n)Al26 Q valué)°
(d) P. Stahelin, Phys. Rev;_ggg 1077L (1953) (Half-lives)o
(e) W. Arber and P, Stahelin; Helvetica, Ph&sicé Acta 26, 433 (1953).
- (f) D. Green, private communication (énergy from indirect evidence).
(g) W. M. Martin and S. W, Breckon, Can. J. Phys. 30, 643 (1952).
(h) P, Stahelin and P, Preiswerk, Nuovo Cimento 10, 1214 (1953).

d,e;sh

d,f -
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The C)t;«yO'+ decays must occur éméng the éven nucleivwhich is to
say, in ﬁhe isobaric triads;f‘By a triéd we mean thg three nuclei having
the same atomic' number and T ¢ = ,09;t'lf The TSs - O member of
these triads is always the stable one in its ground state and decay is

" from the neighboring isobars to it. The Tef :‘O member of A = hn-+'2
triads is odd-odd and Has‘nbn—zero spin for its ground state in ali
known cases. The neighboring even-even isobars do have J = oT for
the ground state, however, and hence 01— 0% decay to an excited state
"of the odd-odd - T f = 0 nucleus might be possible, The level in the
T“if =0 nUcleus'which corresponds to the ground state of the even-~
even nucleus must, however, be J = 0 T alsoand isa T = 1 level.
Since this first T = 1 level comes at ~~ 1 - 2 Mev, there is
practically no probability of anothet. Jd = O+ievel below it, i.e.,
one having T = 0. One cannot expect, therefore, to find allbwed O+-9 ot
transitions with léﬁr’ =1 among the A = 4nT 2 triads.
Among the A - 4n +triads the nucleus with the stable ground
state for A £ 20 is again the T s :.O nucleus? now an évenugven
nucleus with a J = O'F ground state, Since the neighboring isobars
are odd-odd, however, their:ground states are not expected to be J = G+;
the fﬁ =transition from their ground states could not be ot O+%heno
The only hope of observing J = o+-»J - CTtransitions which

violate the selection rule on isotopic spin would therefore seem to be

63 ~-decays from excited states of the unstable members of triads to
the stablev Tg = 0 nucleus. In view‘of the long halfulife for

(3_ -decay as compared to that for isomeric tfansitions9 the
possibility of such experimental'tests is negligible unless the spin
difference between the ‘J =0 state,in the parent and its ocwn ground

* state (and all lower states) is large. Such a situation does, indeed, .
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26 ‘
seem to occur in heavier nuclei (13A113’ 701%?, 19K19 (S53a,b) but the

: %9~decay has been determined as@.T =12T=1 by thg Coulomb energy
difference.of the corresponding states,
We.conclude—~/3 ~-decay is‘uplikgly to ﬁrovide direct evidence on
" the validity of the isotopic spin quantum number by Violationg of isotopic

spin selection rules.

(6.2) Effect of Isotopic Spin Impurity on the Fermi Matrix Element

From the commutation_rulesvfor the Ty , 'rﬁ s and T¢ component.s

of isotopic spin the.value of the Fermi matrix element (3) follows

immediately

j% (Tg £1T ) - TRy (6)

' independent‘of any assumptions:on the nuclear hamiltonian other than that
of invariance under rotations in isotopic spin space. The Gamow-Teller
matrix element cannot be evaluated under such a genera1 assumption; but
can be évaluated exactly in the LS coupling scheme of supermultiplet théory
(G39, W39). Since an evaluation of the Fermi element is possible without

'aﬁy rest;iction on the wave functions, we may hope t§ obtain a test of the
validity of the isotopic spin by checking the constancy of the ft value
for J =0-9J =0 transitions.

The validity of equation (6) in a certain sense involves more
than the valiaity of the isotopic spin as a good quantum number, as we
have already pointed out. The validity of (6) actually requires that
the wave functions for the numbers of a mirror pair or corresponding
states of an isobaric triad ‘should be generated from each other by the
operator ,(Tﬁ't iT{ ), If one has actually found a correct set of

eigenfunctions for the description of nuclear levels,; this requirement

must be satisfied. We have found that if one uses jj wave functions
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there is a certain amount'of mixing of the same»isotopic-spin states
belonging to different configurations. Su¢h mixing means that even though
corresponding levéls of numbers bf mirror pairs or triads might have the
same isotopic spin, the wave functions for these levels could not be
generated from each other by (‘7‘%-1::'T° ). We have actually only
calculated the'mixing of the same isotopzé spin states belonging to one
orvtﬁo particles outside a closed shell. .For three particles outside a
closed shell such mixing might well be very large since the energy
separations of two levels of the same isotopic spin is much less than if
the levels have different isotopic spin. If one considers the possible
excitation of closed shells; the mixing is undoubtedl& even lgrger,
although the actual aifference between the wave functions of different
numbers:of a triad will not be correspondingly larger, of céurse,:since
the same closed shells belong to all of them.

In spite of this fault of the jj wave functions from the general

arguments based on "charge 1ndependence" the value of the Fermi matrlx
element ( 3 ) is certain and this is true therefore no matter what the
specific choice of wave functions for corresponding states between which
the Fermi interaction causes /3 ~decay. The Gamow-~Teller matrix
elements, which must be evaluated on a specific model or at least with

a definite choice of coupling (T52c), are much more uncertain. If we
restrict ourselves to J = O+-¢J = O*'t;ansitions, however, we have
seen that we have only the Fermi matrix.elemento‘ This fact means that
we can study a feature of ﬁs ~decay which is COnnecéed only with the
validity of T. This feature is the variation in ﬁhe experimentally
measured ft value for O - O+'transitionso

Let us see what the effect of the Coulcomb interaction should be:

on the ft values for (5 -decay. Since the Coulomb interaction can
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only mix states of the same J :O"' although different isotopic spin’to
the two J = 07 states participating in the ﬁ -decay, the Gamow-Teller
_interaction does not enter whethﬁex'*”there are j‘:so'f.opic spin impurities or
not. Let the effect of the Coulomb iﬁteragti_.on on corresponding states

U %), @£ /) e to produce the impure states ¥’ (T7) an
WUT,T7,21) |

Y1) = Si-ar YU(TT;) +@.I’M(ﬂLTE> |
YTTe) = A W) a QT

wherg of éourse T # T'., Then the Fermi matrix element ( 3 )' will be

SUTT2) (T2 %,)B17F) = G~aPl-az) 17 GH2E#)
;'#‘a/aa. /#‘;?F)(Ti 7}#’/)

(8)

since 62,‘ dé_ and @(7‘)’7;3} /)‘ are also corresponding states.

Since aj,as will be at most a few percent, the Fermi matrix element is -

Just

/@/&':.3 v(/-’gﬁ/&) A |
“ (9)

if we assume 'ai ;\\? a, Z p as is appropriaté when the impurity of -
- the core predominates. The ft value for J = oty J = 0.*transitions

"being given by .
noa (R : (10)

the effect of isotopic spin impﬁrity is to increase ft by

»

<



2

=153~

@ ; ] ,
(5t) A S (11)

() =

Ffom the result for 012 where p~~3 x 10 ‘and the variation of
p A8/3 predicted by the statistical model, we find f§r A ~36 that
p~5.6 x lngo This gives .J(BO) Ar 1,06 or a "V 6% variation in
"t valﬁec Although the previously meaéured ft values were not sufficiently
accurate to detect sﬁch a variaition, ‘a fecent 'meésurement ‘of the ft value
for Oll;( /5+ )NMI to 3% accuracy (GSA)'ihdicates that the required
accuracy is‘ attainable, The variation of p with atomic nﬁmber taken here

2/3
as indicated by the

is maximal and assumes Ep - B & A
E(T = 1) - E(T = 0) energy separation of the ground state T = O and
first T = 1 state in even-even nuclei with T ¢ =0 (M54a). The energy
separation of (n+ 1).4 and n.f levels on the harmonic oscillator

2/3

model is also proportiocnal to A '7,
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Appendix I: Evaluation of Certain Correlation Integrals.

The integrals we require are

__%/_.3? §J(/Z'L) | : I3= G{Azg)

/Z‘{Z V3 /LZS

_I;: -‘—"/_-—’3 §*(413) | g 61(/23)

nliz Andaq

'where” ' g _' designates the ir;tegratioﬁ of all coordinates over the
;rolunielof.a sphere of radius R. In tl%ese calculations a parameter
-whose ﬁlagnitude determines the :accuracy of the evaluations is
R=ky, R=1.523 Al/B where k; 1is the wave length of a particle
at the top'of the degenerate Fermi d‘istribution of nucleons. The
-evaluAati.ons are expected to be asymptotically correct for Q 9’ 3,
wnose' K 1is related to A in the following table. ' '

A 10 | 20 30 4O

& | 3.28 L.12 L;J_?B 5,20.

Evaluation -of I

Using formula (3.1 ~ ll) we write I; exactly as

I, = >5 62((:)@ -uf 12°-+|(ore33 |
(1)

We make the approxi_mation of letting the upper limit go to infinity

because G (g) decreases ]o) rapldly as S increases. Inserting

the definition of G (?) = Ol_:r} J 3/(
L .

§

) = &‘1 T L T" ' : 23
-4~ 3y (e- 4 3
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From Watson. (W9f)(13.33) we find Struve's integral

[T Rl T)R)
TR AT e ) )

which gives

() . 2

j olx ,'3"‘/1 e #._.-
o X3 1=y

Lemmel's method giveglﬂf7¢(5gl2 - 3)

% |
L g @de =-

{é()+'éﬂﬂ&§'

4-\«-&

‘where dgl ) is'a general cylinder function of order TL. .

Specialization to e = 3/2 yields

0 -
i‘d" TR0 o L
- X

X 4T

Finally Gubler?s investigation of the Weber-Schafheitlin integral (W990

supplies
' %

5o, (M:):B(Lt)alt“ U e sves) F°(““+'z:.w:.m
AT R (g5 )*'

where QFl is a generalized hypérgeometric function defined by

- (%), ¢ \(k;a%sjiém
%( - ?>flw ',?%)E> ':EZ “\’(f’\“"(f%’).“

@, = d(eu— ») (a4 =1)

v

For our case

j JS/,_(X\d.xmr ?Cé,i',%;‘o aﬁ___vl.@z_& o
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When we combine these results we get
I —_ a7 e <3 352’ ._ .?— +- 9&67>
| 2 . o
ek R\ - Re & (2)

‘This result shows that for H% > 3 we can expect <~ 30% error if
we use only the first term-in parenthesis. We shall do this because
I, IB’ and Ih cannot be evaluated explicitly to an accuracy better.v

~ than this and we want only the asymptotic value, If we use only the R3
term under the integral in (1), our result for Iy is just

T ~ _2'2_7_5_,1._
3)

Evaluation of I,

The integral will be evaluated by using bipolar coordinates for
the point 3 , viz. (= ri3 D= rpz and jD the angle of
rotation of the plane containing ri3 and rp3 about the axis r1s.

The volume element becomes

iz, = :r(."s_tu_'?_’ do=olod
T wl 3’ TT

or using the properties of Jacobians .

T(am) - [ ) (g

' The coordinate transformation is given by

%y = Resocp (2,-2)*+ R* = o> |
g2 T Re-y (3= )=+ R* =
= Eﬁ‘.. } _ .

.where we have.taken the -Z-axis parallel to Tyoo
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B
e

Tgz)= lacel T(M_%

Rz, T 1?'2;?

and

J ([ X3s2 == .,G-:-.."i ‘ ‘.,,,v |
TEE) T F s

Conssguently we havs

d"‘tﬂa = 2 cd?mtﬁwdc? |

J

Ncw epplying this to I, there results
2
T, = _L_3$/ () mmd%_
aa P Y

where the limits are rather_complicated if the points 1, 2, 3 are
restricted to & sphere. Instead, by using ihe fact that G%(bf) decreases -
rapidly, we can restrict only the points 1 and 3 to a sphere while
allowing 3 to range to infinity. The contribution from points outside
the sphere will be smallo The 1imits on T, w , 30 are now simple.

and we have for Iq

v = ‘”f
xaz ~ _\/_.3 G"rdrz_ <§$L(G_)f dwt,\: .‘..j&ﬂ‘@’(ﬁ’)f glww) )

o e d
Lo T fm: £ cLo*'G#"(e‘)
(3)
We valma+° this Ln\?np same way du_ Iy wés integrated to get
e :
L2 ao@ R
.
(L)
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Evaluation of ;3.

Use bipolar coordinates .for the point 3 and get

: , .
T A el A"*‘,.‘ o—“\}« I f A_ . : Ll . ) ! . . oL
B iR , A
I$ = ﬁ Ol’cld«’tz j;aicoﬁ)qv + f j do- q 2(0"‘) !
, R L 2 ' f L
Since (3(g~> decreases so rapidly, and the contribution to i#%?Zé
. : . 1%
where = Tys ‘is greatest for small "y , the integral is
asymptotically equal to ;
-~ 4T ebcd ‘
I ( % d«~ G(r) =
(5)

¢
.

Comparing (3) énd'(S) we see

" Evaluation of I,

Carrying out thé integral on the coordinates (2) and (4) Ihs
becomes . v
L .

Iq = “H?G : f@ (4137 (Rz ><R"- %)d"ﬁ.d"fs

' ' | (6)

If we look at the volume as composed of concentric shells of radii
r; and ras the rapid decrease of G$(h,;> insures that the greatest ¢ >
contribution will come from the shells with nearly equal radii, i.e.

r] = ra. We approximate



=156~

I‘} = fk‘é _L-wgcl?{/bla) (R’l- %t)wdrudc;;

We now use coordinates centered on the point 1 and let ri3 go to infinity

obtéining thus
I, = f" (‘?'Trfoto~ l(@cr)(‘lvfdn > (gz ))

~ 5-§O—éé‘~ e_q_-‘:r.{dx J3/(:x,)

From Watson (W )(13.42 - 1)

Jwal-b T la) T(bt) (R bea
e t

< a/ 5) PVV by a

vl=

Inserting this in I9

4 ﬁza R* - (7
Conclusion

The general expectations expressed in (3.1) concerning the

behavior of corrections to ri- o ¢ - ol
ehavior of corrections to rlzv s rlz ria s an “r12_ T3,

are verified, Ii gives the correction to rzg and decreases least

f%léﬁlygvbeing proportional tc 1//1%° I, énd 13 give corrections to
Aol se 4 '34,, -1 -1
STRSL and decrease as 1/765 Pinally, the term Wthh corrects T3 T 3

is proportlonal to IL and decreases as 1/7€g The asymptotic values of

the integrals are

I~ () T ~(»oee>R°‘ I4~( > - ®
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2
F(O)((lp) 5
F(2) ()’

# s
O am’;
F(z)((ip)zs
@ ap);

M am’

F(d)((lp)Z;A

£2)

2
(1p) ;

0 : -
F * (2pls; 1pls)

l E
F~ (2pls; 1slp)
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(lp)2)
(lp)z)

(14)%)

2 .
(1d) )
1plf)

2 .
(1f) )

2
(1f) )
1p2§)

1p2p)

o
. F (2slp; 1slp) . =

FL (2s1p; ipls) =
- p0 (2sls; (ls)2 =. 1

Table of Fk(ﬁzilf?2) Afa /ZQ).

1}
(0]
N
I3
1<

1]

[+)
H
.._J
|«

ol
0 1 i

11
o®

I
R

|
(]
0

"
o
hn



=161~ .

BIBLIOGRAPHY

A26 P. Appell and J. Kampe de Feriet, Fonctions Hypergeometric et

Hyperspherique--Polynomes d“Hermite, Gauthier-Villars, Paris

(1926).
A52 F. Ajzenberg and T. Lauritsen; Rev. Mod. Phys. gg; 321 (1952).
INA53 . R. K, Adair, Phys; Rev, 92, 1491 (1952).
B36 H. Bethe and R. Bacher;.Rev° Mod. Phys. 8, 82 (1936).
' B37.  G. Breit, Phys. Rev, g;,-zae,'778 (1937). |
Be37  H. Bethe, Rev. Mod. Phys., 9, 222 (1937).
BBB" "G, Breit; Phys; Rev, 53, 153 (1938).
B39 | W, Bothe and W, Gentner, Z, F. Physik 112, 45 (1939).

BL& G. C. Baldwin and G. S. Klaiber, Phys. Rev. 73, 1156 (1948).

B51 D, Bohm, Quantum Theory, Prentice-Hall, Inc., New York, (1951),

B52 J. M, Blatt and V. F. Weisskopf, Theoretical Nuclear Physics,
John Wiley and Sons, New York, 1952.
Be52 Beiinéj Newton, and Rose, Phys. Rev. 87, 670 (1952).

Bis2 Lo‘éofBiedenharng ORNL-1098, Oak Ridge National Laboraﬁory, 1948.

B5i, G. Breit, private communication to E. P. Wigner (1954).



€36
CLO
€50

c52

c53
D31
D39
D53
B33
E34

E37

E52a

E52b

F34
F37a

F375

-162-

B. Cassen and E. U. Condon, Phys. Rev. 50, 846 (1936).:

H. C. Corben and J, Schwinger, Phys. Rev. 58, 953 (1940). ”
K. M, Case and A. Pais, Phys. Rev, 80, 203 (1950). . . . .

R. F. Christy, ?ittsburgh Confererice on Medium Energy Nuclear

Physics (1952).

ROF;lChristy; 'Ph3lrso Rev, §2; 839 (1953).

M. Delbruck ana~G; Gamow, Z. F. Physick Zg; 492 (1931).
S. M. Dancoff and P, MqrriSon; Phys. Rev, Qﬁ; 122 (1939).
L. Dre;ner; PhySl Rév° g;;vzol L (1953).

W. M. Elsasser, J. Physique et radium 4, 549 (1933).

W. M. Elsasser, J. Physique et radium 5, 389, 635 (1934).
H. Euler, Z. F. Physik 105, 553 k193;/)°

A. R, Edmondé and B, H. Flowers, Proc. Roy. Soc. (London) 2144,

515 (1952).

A. R. Edmonds and B, H. Flowers, Proc. Roy. Soc. (Londgn) 2154,
120 (1952).

: e “
E. Fermi, Z. F. Physik 88, 161 (1934).
E. Feenberg and E. Wigner, Phys. Rev., 51, 95 (1937).

. E. Feernberg and M. Phillips, Phys. Rev. 51, 597 (1937)..



R

F852

F53

G39

GL6

H54

I54

J51

~163-

E. FeenbergSVRevn Mod. Phys. 19, 239 (1947).

E. Feenberg, Phys. Rev, 76, 1275 (1949),

 W. Franz, Z. F. Physik 127, 363 (1950).

B. H. Flowers, Proc. Roy Soc, (Loqdon) giéé; 243 (1952),
A. M. Feingold, Princeton University tﬁesis ki952)°

J. B. French gnd Y. Shimamoto, Phys. Rev, 91, 898 (1953).
B. 0. Gronblémﬂ Phys. Re%. 56, 568 (1939).

G. Goertzel, Phy%, Rev. 19; 897 (1946).

¥, Goldhaber and E. Teller, Phys. Rev. zgglloaé (1948).
M, Goldhaber and A. W. Suﬁyér, Phys. Rév° 83, 906 (i§5l)o

M. Gell-Mann and V. L, Telegdi, Phys. Rev. 91, 169 (1953).

W. Hansen, Phys. Rev. 47, 139 (1935).

H. Heitler; Proc. Camb, Phil. Soc, 32, 112 (1936).

&
0. Haxel, J. H. D. Jensen, and H, E. Suess, Phys. Rev., 75, 1766

(1949).

D. J. Hughes, Phys. Rev. 9k, 740 (1954).

D. R. Inglis), Rev. Mod. Phys. 25, 390 (1954).

H. A, Jahn and H. van Wieringen, Proc. Roy. Soc. (London) 209A;

502 (1952).



"J53

K38

Kr38

K43 .

K52

Ku52

K53
K5k
L48
150

L52

153

L5L

48

ML9

=16~
G. A. Jones and D. H. Wilkinson, Phys. Rev. 90, 722 (1953).
B. Janéovici, private cémmunication {1954) . ®

0. Klein, J. Physique et radium 9, 1 (1938).

H, A, Kramers, Die Grundlagen-der Quantentheorie, Akademisch

Verlagsgesellsckaft, Leipzig, 1938.

E. J. Konopinski, Rev. Mod. Phys. 15, 209 (1943).

B. B. Kinsey and G. A. Bartholemew, Physica; 1112 (1952).

D. Kurath; Phy's° Rev. 88, 804 (1952).

0. Koefed-Hansen, Phys. Rev. 2&; 1075 (1953).

B. B. Kinsey and G. A. Barﬁholemew; Phys. Rev, 22;.12g0 (1954) .
J. L. Lawson and M. L. Perlman, Phys. Rev. ZQ; 1190 (1948).

J. S. Levinger and H. Bethe, Phys° Revolzgz 115 (1950),

T. Lauritsen; "Energy Levels of Light Nuclei,” Annual Reviews

of Nuclear Science, Vol. I, Annual Reviews, Inc., Stanford, (1952).
. - ’ '
A. M, Lane, Phys. Rev. 92, 839 (1953).

A. M, Lane and L. A. Radlcatl, Proc, Phys. Soc. (London) 67A

167 (1954).
M. Mayer, Phys. Rev. Th, 235 (1948).

M. Mayer, Phys. Rev. 75, 1969 (1949).



-165-

| M;h9 McElhigneys et, élo,iPhys, Rev, ZQ;;Sgén(l9h9)u

M53a Montalbetti, Katz, and Goldemfberg;.}’hys9 Rev, 2;; 659 (1953)m.
M53b  S. A, Moskowski;-private.communication to.J,‘B, Gerhart (19535,'%
Msia  S. A. Moskowski and D. C. Peaslee, Phyé, Rev. 93, 455 (1954).
M54b S. A. Moskowski, Phys. Rev. gﬁ, L7 (1954) .

N37 LowomW&@nlamF;Lommt,mws,mwogg 942 (1937).

N39 L. W, Nofdheim, Phys. Rev. zg, 18§4_(19A9).

P&é Ho L. Perlman'énd G. Friedlander, Phys° Rev, Z&,‘AAZ (1948)0,

P53 D. C. Peaslee and'V? L. Telegdi, Phys; Revf 92, 126v(l953)5

c'Racah; Phys. Rev. 62, 438 (1942).

(9]

Ri42

R43 G, Racah, Phys. Rev. 63, 367 (1943).

RLB L. ‘Rosenfe]_d_9 Nuclear Forces, Interscience Publishers, Inc.,

New York, 1948.
R50 G. Racah, Physica 16, 651 (1950).
R51 Rose, Goertzel, énd:Spinrad; ?hysozRev, 83,.79 (1951).
-RSZ>,-_'L° A. Radicati, Phys. Rev. §1; 521 L (1952).
R53a L. A, Radi¢ati, Proc. Phys; Soc. (London) 'ééé, 139 (1953).

R53b Lo A;'Radic?atiﬁ:f’ro_é° Phys. Soc. (London) éZﬁs 39 (1953).



RS

s

SL9

- Sch49

s51

552

" Sh52

Cs53a

553b f

S54

Sh54

T52a

T52b

T52¢

TAS

T53

T54

-166-
M. Redlich, Princeton University thesis (1954).
W. Shaeffer, Rev. Mod. Phys. 16, 245 (1944).

Sherr, Muether, and White, Phys. Rev. 75, 282 (1949).

L. I. Schiff, Quantum Mechanics, McGraw-Hill Book Co., New York

(1949).

K. Strauch, Phys. Rev. 81, 973 (1951).
B. Stech, Z. F. Naturforschung 7A, 4O (1952).

R. Sherr and J. B, Gerhart, Phys. Rev. 86, 619 A (1952).

P. Stahelin, Phys. Rev. 92, 1077 (1953)."

* P. Stahelin, Helv. Phys. Acta 26, 691 (1953).

B; stech, Z, F. Naturforschuné gg, 1 (;?5@),.

Sharp, Gellman, and Tauber? Phys,fRevf;gg, 762 (l95hj:
I. Talmi,-Helv, Physn Acta 25, 185 (1952).

L. E. H, Tfainog, Phys. Rev. §2,’962_(19522.

G. L. Trigg, Phys. Rev. 86, 506 (1952).

E. U. Condon and G. S. Shortley, Theory of Atomic Spectra,

‘Cambridge University Press (1953).

G. E. Tauber and T. Y. Wu, Phys. Rev. 91, 443. (1953).

G. E. Tauber and T. Y. Wu, Phys. Rev. 94, 762 (1954).

i

i



=

W3l

W34
W37a
W37b
W39
Wa39

WLO

W41
Wi
W50
w51
Wa51
W53I

W53I1

W531V

W53a

~167-

_Eo'Po Wigner, Gruppentheorie, Friedrich Vieweg and Sohn,

Braunschweig (1931).

E. P. Wigner and F. Seitz; Pﬁys° Rev, L6, 509 (1934).
ﬁo P°>Wigner, Pﬁys° Rev. éi, 166 kl937).

E. P. Wigner, PhysoiRev° éi,-9h7 (1937).

E. P, Wigner, Phys, Rev. 56, 519 (1939).

S. Watanabe, Z. F. Physik 113, 482 (1939).

E. P, Wigner, Bicentennial Symposium, University of Pennsylvania.

(1940).

E. Wigner and E./fedpberg, Reny Prog, Phys. §, 2 A'(
6.AU'4Vaﬁsnff;25? ;7/12§nsaz€ l:}naonLS-

E. P. Wigner, The jj Coyp

w%(m ¢

~

ing Model for Nuclei, Lectures at

University of Wisconsin (1951).

V. Weisskopf, Phys. Rev. 83, 1073 (1951).

P; R. Wallace, Can. J. Physics 29, 393 (1951).
D, H. Wilkinéon, Phil. Mag, Lk, 547 (1953).

D. H. Wilkinson, Phil. Mag. Lk, 1019 (1953).

W53III D. H. Wilkinson and A. B. Clegg, Phil, Mag. Lk, 1269 (1953).

D. H. Wilkinson and A. B. Clegg, Phil. Mag. 4k, 1322 (1953).

D. H. Wilkinson and G. A. Jones, Phys. Rev. 90, 722 (1953).



-168-

-~

Ws3b  D. H. Wilkinson, Phil. Mag. Ak, 450 (1953).

253 N. Zeldes, Phys. Rev. 90, 416 (1953).

&

b





