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I. Introduction

The problem under study involves a body of infinite extent through

which runs an infinitely long cylindrical hole of circular cross section.
The materisl of the body is viscoelastic which is modeled in the study as a
Standard Solid. The problem is that of finding the response in the body to
s uniform pressure against the surface of the hole that has an arbitrary de-
pendence on time,

We choose to solve the problem using the method of characteristics. The
cholce seems suitable for several ressons. The problem is one of plane
strain with axisymmetry which means that the response is dependent only on
the radial space variable and time. Further the governing equations are
hyperbolic. The method of characteristics accommodates a variety of initial
and boundary conditions so long as dependence on only two independent variables
in the problem is maintained. From our experience we feel that numerical ’
results are easier to obtain using the method of characteristics than by
transform techniques.

Using the method of characteristics the governing differential equations
are reduced to two different forms. The first is the decay equation which
can be integrated directly to find the behaviour along the wave front. The
behavicur behind the wave front is found by reducing the equations to their
canonical form. In this form they can be integrated only along character-
istic lines but the canonical form is simple and lends itself to integration
by finite differences.

In our search of the literature we are unable to find a record of an
attempt to solve the problem involving a viscoelastic body. The closest
[l,2J°

problem seems to be that solved by Kromm Kromm found the response in

an infinite elastic plate to an input on the surface of a single circular hole



in the plate. The input was either a uniform radial velocity or a uniform
pressure each with a step distribution in time. Using a transform technigue
he obtained numerical results. Even though the problem is quite different
from ours it is useful as a check. As the theory of viscoelasticity contains
the theory of elasticity as a special case, our solution is easily adapted
for the elagtic case. As Kromm's problem is one of generalized plane stress
and ours is plane strain it is necessary for comparison to take Kromm's

* constants for plane strain.

elastic constants and from them find "equivalen
Using these elastic constants we find the response numerically and compare
it to that found by Kromm. The two responses are so close together that
in Figures (2-5) they have to be shown by a single line.

(3] studied the Kromm problem but instead of solving

Chou and Koenig
it using integral transforms they used the method of characteristics. When
they compared their results with those of Kromm they stated that the two
sets of responses were identical.

To get a feeling for the influence of the viscoelastic parameters on
the response, we study two different viscoelastic materials. They are chosen
so that both materials have an instantaneous Poisson's ratio of 0.2308 and
so that the second viscoelastic material is more viscous than the first. We
have therefore, in effect, three comparable viscoelastic materials shbarting
with one that has no viscosity (elastic) and progressing with a second and a
third that are characterized by increasing viscosity. The responses cannot
be appraised in light of any other published results but they satisfy what
one would expect by intuition. We see by examining Figures 2-5 that the more
viscous the material is the less steep is the decay behind the wave front

and for stations apart from the cylindrical surface the smaller is the

amplitude of the discontinuity at the front of the wave.



y II. Formulation of the Problem

Our study is of an infinite visgoelastic body, initially at rest, having
an infinitely long circular cylindrical hole of radius "a'. The surface of
the hole is subjected to a uniform pressure applied with an arbitrary de-
pendence on time.

The body is.referred to a cylindrical coordinate system (r, 0, z) within
which the z axis coincides with the axis of the hole. In the development,

when it 1s appropriate, we use dndicial notation and all of the rules that

apply to 1its use. Because of the axisymmetry of the problem, we assume the

displacement field in the form:

u_ = ur(r.,a t)

T
uy, =0 (1)
u, =0

then, using strain-displacement relations in cylindrical coordinate system,

we obtain

£ = U
rr T,r
n
T
€ T e
68 " r (2)
£E_=¢€,=€ =g, =0
7% r6 T &z

The constitutive equations for a linear isotropic viscoelastic material are
given by
1 — ]
Pl(D)Tij = Ql(D)eij
(3)




where
nl ml
= £ D)»miopk
k=0 k=0
(k)
2 Mo
\ k k
= ) . =
PQ(D) /. CkD 5 QQ(D) E_} de »
k=0 =0
kO
in which a, by €5 d_ are specified constants and D = = ., In Egs. (3)
k k Btk ?
r;jj Eij are the components of the stress and strain deviators:
1
¥ = Eop—
iy % iy 73 Yagta
. (5)
9 — - = .
Eij = Eij 3 éij&kk s

where 6. . is the Kroneker delta. If the initial values of T., €:.s T, s
14 iJ iJ kk

€1 satisfy certain conditions[u3 the constitutive equations, Egs. (3), can

be writben in terms of integral equations as

M §

= e

. oy By,
6y (0 0) * [ oy - 0 5 (e e

I ;

(6)
t de

t (s ) = 6y(6)e (x, 0) + J[o 6 (6 - ©) 5= (5, Dar

where Gl(t), Gz(t) are the shear and bulk relaxaiion functions respectively
and x is the position vector of the particle considered.

In our study we choose the standard solid as the viscoelastic model.
For this model the constitutive equations take special forms. In differential

equation form they are given by Eqs. (3) where Egs. (4) have the specific form



1 1
P (D) = Z & D% QD) = Z b, D" 3

o= k=b

2 1 w
P,(D) = \L, e 05 a(D) = 2 a " .

k=0 k=0

In integral form the constitutive equations are given by Egs. (6) in which

the shear and bulk moduli for the standard solid are given by

-4/t
= - 1
Gl(t} GlF + (Glo GlF)e

(8)

Gg(t) = Gop * (Gzo - GEF)e“t/T2 respectively .

In Egs. (8) the constants T,, T, are relaxation times of shear and bulk

1’ 2
modull respectively, and
Gp = G (@) 5 G =61(0);
(9)
Gop = Gy(®) 5 Gy = G,(0) .
The constants in Egs. (7) and (8) are related according to
Gloz'til; G‘]-F‘:‘”Z"Q's Tl-":":}:;
* 0 0
a o (10)
R D TR
3 3 - °
20 ¢y 2F ¢ 2 <,

From Egs. (2), and the constitutive relations we see that Ty F 0 for i # j,

and that



P (D)t = a0) (25 - u ) (11)

Noting thsat Tow® Too and T, 8T€ the functions of r and € only, the stress
egquation of motion becomes

T =T

rr 06 oo N
T -§- T ———C———s T ° l
TE,T r PUL (12)

In terms of stress devigtors it can be written as

- A
K?;r + % Tkk>,r + _EE_;T_QQ = pﬁr . (13)
The other two equations are satisfied identically.

For the condition on the cylindrical boundary of the hole we specify
that only normal pressure will exist and that it will be uniform. The method
of characteristics will accommodate any boundary condition that does not
viclate axisymmetry so this particular condition was chosen chiefly so that
our results can be compared with what published results there are. The body

is taken to be initially at rest.

The boundary condition takes the form
L
T (8 t) =1 (8, t) + 3 7, (8, 8) = - £(0)H(E) , (1k)

where H(t) is the usual Heaviside step function and f(t) is a prescribed,
continuous function of t.
The initial conditions are

ur(r, 0) = ﬁr(r, 0) =0 . (15)



The problem is now completely described. It is one of finding the four
variables T;T3 rée, T #0d u . The variables are governed by Egs. (1)
and {13) and are subject to the boundary and initial conditions specified by

Egs. {14) and (15) respectively.

ITI. Sclution of the Problem

The choice here is to solve the preblem using the method of character-
istics. There are many gualities of the problem that indicate this choice.
There are two independent variables - and the governing differential equations
are hyperbolic both conditions that satisfy the dictates of the method.
Further, we will be dealing in the problem with wave fronts which are
particularly well handled by this method.

FThere is no need to review the method in detail here ag it is coveﬁed
in books such as the one by R. Courant and D. Hilbert[Sjg However, it makes
the development more complete if we explain that the method of characteristics
is one of reducing the governing differential equations to two much simpler
forms, each of which is amenable to numerical analysis. The first of these
forms is called the canonical form and the second, the decay eguation.

They are not applicable everywhere on the space-time plane. The

canonical form of the differential equations is valid only along chearacter-
istic lines and is used in the domain of disturbed material. The decay equa-
tion is used along the boundary between disturbed and undisturbed material,
namely the wave front.

Each of the two forms is developéd separately.

(a) Canonical Form of the Governing Equations

We first transform the governing differential equations, Egs. (1l) and
(13), into a set of first order differential equations. We do so by intro-

ducing new dependent variables



w o= Uy =W, (16)

and take into account the relation

ul,r = 1:12 ’ (17)

The five governing differential equations (three Egs. (11), Eq. (13) and

Eq. (17)) take the form

Vi % + ijjvjsr =c; (i, 3 = 1-5) (18)
where
— 1 ?
(Vl) - (ulB TI‘I" TQG’ Tkks u-2)
0 /o 0 ~1/3p O]
le
- §—— 0] (0] 0 0
!
bl
B..}) = _— 0 0] 0] 0 (1
( la) 38.1 LS 9)
- El 0 0 0 0]
¢
-1 0 o 0 0.
T
(Trr TGG)
pr
/ ao . b ul 2bo EQ_ 22
" Yrr "3a.r 3a 2 3a T
1 1 % ]
(Ci)= _f‘_c_)—[l +ﬂﬁ+3&q2§_.b.g_u (19)
\ 8y 66  3a, r 3a, r 3a1 2 .
(cont'd)
, d
c1 kk cy r 1 2 1 r
L. 0 -
Before we establish the canonical form of Egs. (18), we first establish




the characteristic lines along which they are valid. The equation, dependent

on Eq. (18), governing the characteristic lines is given by (see reference 5)
det(Bij - }\dij) =0 , (20)

where A = defines the characteristic lines on the (r - %) plane. The

dr
at
conanical forms of the governing equations along the characteristic lines

are (see reference 5)

.y & : i
gél) a%m = z&l)cm' along %% = A(l) (i, m=1-35), (21)
( )

where the b is the left~hand eigenvector of the Bmp defined as

(no sumon i; i, my p=1=~-15) . (22)

)y L, (8),(8)
m P

mp

In Bg. {22}, A(l) is the (i)th eigenvalue of Bmp’ which can be determined

from Eg. (20). For our problem they are

D ; A2 P U O »5) 2o , (23)
where
v 2
c =1L } Zlo_ 20 (2k)
3p Kal 3p ’
Here, we note that A(l) = ¢ and A(z) = = ¢ describe two family of straight

lines with slopes (c) and (-c) respectively on the {r - %) plane (see figure 1)
and correspond to physical characteristics which are the ones across which

the vector v, or its derivatives may suffer a finite jump (physical considerations
dictate that u, will be continuous). On the other hand A(3) = A(h) = A(5) = 0
describe the family of straight lines (r = const.) parallel to the t axis

on the (r - t) plane, which have physically no meaning, but along which

the governing equations can be put into canonical form.



When we introduce the dimensionless gquantities

— r - ct

r=c b=

|
u
- - _QJ_—_ ol | pd ] - _ ~_1_-__ L] P u
ul - 5 (Trrs Tee’ Tkk) - pcz (Trrs Eees Tk.k) H (25)
u

u vy u o= —

2 22 Ty g 7
s A -

1 a ° 2 a ?

+the conanical form of the governing equations, Eq. (21), together with the

contimiity condition
du,, = v 46 = wdt  along r = const. (26)

can be written in the form:

aw ,
o .. .
o, . =fB..w, (i, j =1 - 0) (27)
1J d% lJ J .
where
. o e G
i = 1, 2 along the characteristiecs —— = + 1, -1
dat
i = 3 = 6 along the lines é{ =0 ,
dt
and

T s | 1 -
(Wj) (ul, Trr3 TGG’ Tkk, u23 r'




(x..)

1d

-1/3

1/3

GlO
20

(28)



(G20°G10)
(64

r'*!I:w

Jﬁpﬁ4

Q

HIIH

Hllh

'4||H

Srb ﬂrb 8Pb
1l a via vila

(28)

(cont'd)
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The conenical formn of the governing equetions, Eq. (27), is valid in

that region of the (r = %) plane within which the vector v, is

cophinuous .

The boundary end initial conditions, Egs. (14) and (15), in dimension-

less form become

(L, B) +1/3 T (L, B) = - e(OH(E)

: (29)
u,(r, 0) = u, (7, 0}y =0 ,

where

o(®) = L8,
pe

{v) Decey Eoustion slong the Wave Front

We are seeking the response of an infinite viscoelastic body having in-
finitely long cylindrical hole whose lateral surface is subjected to a uniform
pressure. As the resulting disturbance will move into the medium, the be-
haviour is best understood if it is deseribed using the notion of a wave front.
The wave front is defined as the boundery between disturbed end undisturbed

regions of the medium. When the material et a point becomes suddenly disturbad

from an undisturbed state it cen only do so 1f some derivative of the dig-
placement U, suffers a finite Jump at the point, that is v, or its derivatives
guffer o Tinite Jump. On the (? = %) plene, a wavefront can be represented
by & line and, by definition, that line will be & cheracteristic. This
particular line corresponds to a cylindrical wave front propagating into the
medium with the veloeity "c¢". In our problem the initial conditions are
homogeneous which means that of a family of characteristic lines, it is the
one emansting from the point with the coordinates (1, O) on the (r - t) plane

that will represent the wave front. The order of the digcontinuity of the




1k

characteristic line deseribing the wave front will depend on the boundary con-
dition at v = 1, specifically the dependence on time in the neighborhood of
% = 0.

The line (¥ = 1) = % describing the wave front "S" is shown in Fig. 1.

Tn the boundary condition, the first of Egs. (29), g(t) is en arbitrary func-
tion of t. If g(0) # 0, we will show shortly that along S the vector v, will
guffer & finite jump. Since discontinuitles of v, are not permitted wlth the
use of the conenicel form of the governing equations, it will be necessary
to develop decay equétions that are velid along the line "S".

These are developed from Eq. (27) by recognizing that even though the
conanicsl equations ave not valid along the characteristic across which the
vy uffer finite jumps, they are valid on each side of it.

We begin by using Egs. (27) with the cholce of i = 1, which is the

‘ conanicel form of the governing equations along %% = 1, We write this
dat

equebion on both sides of the characteristic line and take the difference.

We obtaln

afw,]
g =Pyl o (30)

We enclose & function by squere brackets to denote the finite jump of the
function scross & characteristic line, i.e., [f] designates the finite Jjump
of the function (f) across a characterlstic line v = r(t).

On the other hand, from the continuity conditions we have

'[ﬁr] =0 . (31)

Here we use Hadamerd's lemma which states that [£] = 0 along r = (%)
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s ar
implies that [f,E] + [f,;] = 0, If we apply the lemma to Eq. (31) along
at

= 1 we obtain

& IR

5 - &
[w.] == [u,] along— =1 . 3
1 2 & (32)

From the constitutive relations, Egs. (6), we also have

G 2G

= 1220 1o 1= 20 13
[T;r} T2 [Err] - 2 L“z
pc 3pc
G -G
— 10 10 —
[Téej =3 [egg ) = 5 [UEJ (33)
ec 3pc
G G
_ 0 0
7] = =58 [, ] = 55 (8] .
pc pe

When, using Bgs. (28), we expand Eg. (30) and employ Egs. (31, 32, 33)

we obtain decay equations in the form

4[]
2+ L G enm)=0 amgZ=1, (3h)
dr o7 at
where
1 1 1)
m=—=—=132(G, . = G.)=+ (G~ G, ) = (35)
6oc? i 10 71 T 20 ~ YoF TE}
The solution of Egq. (34) is
e = -
[523 = A.<ﬁ%> e ™ along gf =1 , (36)
r at

where A is a constant to be determined from boundary and initial conditions.

We return to our problem. Since g(T) is a continuous function of t for
T > 0, using Eq. (36) it can be shown that in the disturbed region behind
the wave front S, the v; are continuous so that the conanical form

of the equations, Eq. (27), are appropriate. On the other hand
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along the wave front §, the constant A in the decay eguation, Eq. (36),
will not be zerc (implying the vi suffer finite Jjumps across

8) if g(0) # 0. The constant A can be obtained from the behaviour of the
boundary condition and initial conditions in the neighborhood. of the point
with coordinates (1, O) on the (r- %) plane. Using boundary and initial
conditions Egs. (29), and noting that [Er] = O everywhere on the (r -~ T)

plane one obtains
[6,(1, 0)] = - g(0) . | (37)
Using Eq. {37), the constant in Eq. (36) cen be determined. It is
A=~ "g(0) (38)
Accordingly, the decay eguation becomes

SaL/2 -
o) = - a(0) (2] ™) aong s (39)
v/

. . _ Y ol . — -y —
Knowing the jump in u_, the jumps Uy s To? Tgg and Thk along

S can be determined from Egs. {32) and (33).

IV. Numerical Analysis

We seek (wi) = (ﬁl, T, Tago ?kk’ EQ, Er) at a station T and a time %,

rr
and having these, we can calculate the strains and siresses. We refer to
Figure 1, which shows the (r - t) plane. On this plane, the line S:7 = 1 = T
divides the space-time domain into two parts, the domain Dl representing
undisturbed particles andD2 representing particles of the body which are

in motion. The part D2, which is the part that interests us, is subdivided
by means of & grid. The grid shown by fine solid lines is formed by two sets
of parallel lines. The first set (? -t = const.) is parallel to the line S,
and the second set (; +t = const.) has equal but opposite slopes. Each

diamond shaped element has diagonals measuring 2AT and 2A%.



7

To establish Wy in the region D2, we stert at the origin and along S where
it is known from the decay equations, and fan out into region element by element,
To be more explicit, we know Wy at the points O and 1 in Figure 1, and using a
technigue to be explained shortly, we find Wy at the point 2. Having LA at the

points 1, 2,and 3, we use the same technique to find W at the point 4, and so

forth.

In explaining the technigue we refer to element M shown in Figure 1.

W, is known at points Al, A2 and A3 and is sought at the point A. As there
are sixz unknowns, we need six equations to establish them.

The boundary lines AAl and AA2 are the characteristic lines T - © =
const., and ¥ + t = const. respectively. Two of the six equations come from
using the conanical form of the governing eqﬁations along the characterigtic
lines AA, and AA, in the element couverging on A (Eg. (27) with i = 1, 2).

The four remaining equations are the conanical forms of the goveming
equations along the line AA3, T = const. (Eq. (27) with i = 3 = 6). The six

elements of W, are found at A by sclving the six equations by the method

of finite differences.

For the element L adjacent to the line r 1, the procedure is the same

except that the equation along the line r - t

lij

const. must be replaced by

the boundary condition at T = 1, namely the first of Egs. (29):

Wi

—-El"r(A) + ?kk(A) = - g(a) . (40)

V. Numerical Results

Our choice is to calculate and exhibit three quantities; the radial
stress Tops the tangential stress Too and the radial velocity ﬁr“ Each
quantity is found at two stations; the first at r = a, the edge of the

cylindrical hole, and the second at r = 2.5a. We use f(t) = P, for the time
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dependency of the input though with the method of characteristics any function
could have been chosen. This particular choice enables us to compare our

results, for the elastic case, with those due to Kromm[l’gl,

This comparison
is possible because the theory of viscoelasticity contains the theory of
elasticity as a special case,

Kromm studied the response in an infinite elastic sheet to a uniform
input applied to the surface of a circular hole. One of his inputs was a
Pressure having a step distribution in time and it is the response due to
this input with which we compare ours. The comparison is additionally
significant because Kromm established his response using integral transforms.

In establishing a response to compare to that of Kromm we first recog-
nized that his problem was one of generalized plane stress and ours is plane
strain. However it is well known that the solution of one problem can be
taken as the solution of the other provided the elastic constants are adjusted.
Kromm used a Péisson’s ratio of 0.30 from which we found the “"equivalent"
Poisson's ratio for plane strain to be 0.2308. Using this value we found
the responses at the same stations as Kromm and compared the two sets of
results. The results are almost identical. They are so close that they are
indistinguishable from one another in Figures 2-5.

Our main interest however, is in the response in viscoelastic bodies.

We choose two separate viscoelastic materials to show the influence of the
viscosity on the response. The second of the two materials is the more
viscous. As each material is modeled by the Standard Solid each is identified
by the quantities listed below, The quantities are chosen so that both
materials have the instantaneous Poisson's ratio of 0.2308 which will mean

that the elastic response we have found can be considered the limiting case

for the three responses.
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(a) Material one

G
-é-J:F—=ouo; 'r'l=3O,
10
(k1)
G ‘ G
o = 2.28571; G = 1.1ke855; T, = 5.0,
10 10
(b) Material two
G
EJ;E =0.20 3 T =1.50 ;
10
(%2)
G G
Egg = 2.28571; agg = 0,5714275; ?2 = 2,50,
10 10

We have then, in effect, three comparable viscoelastic materials
starting with one having no viscosity (elastic) and progressing with a second
and a third characterized by increasing viscosity. The influence of viscosity
is revealed in Figures 2-5. The Figures show that the more viscous the
material is the less steep is the decay behind the wave front and for
stations apart from the cylindrical surface of the hole the smaller is the

amplitude of the discontinuity at the front of the wave.
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CAPTIONS FOR FIGURES

Fig. 1 Description of characteristic lines and wave front on the (E - E)

plane,
Fig. 2 Radial stress for the stations r = a and r = 2.5a.
Fig. 3 Tangential stress for the stations r = a and r = 2,5a.

Fig. 4 Radial velocity for the station r

n
£

It

Fig. 5 Radial velocity for the station r = 2.5a,
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