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Marginal-Preserving Imputation
of Three-Way Array Data in Nested
Structures, with Application to
Small Areal Units

Loring J. Thomas1 , Peng Huang1 , Xiaoshuang Iris Luo1,

John R. Hipp1 and Carter T. Butts1

Abstract

Geospatial population data are typically organized into nested hierarchies of areal units, in which each

unit is a union of units at the next lower level. There is increasing interest in analyses at fine geographic

detail, but these lowest rungs of the areal unit hierarchy are often incompletely tabulated because of cost,

privacy, or other considerations. Here, the authors introduce a novel algorithm to impute crosstabs of up

to three dimensions (e.g., race, ethnicity, and gender) from marginal data combined with data at higher

levels of aggregation. This method exactly preserves the observed fine-grained marginals, while approxi-

mating higher-order correlations observed in more complete higher level data. The authors show how this

approach can be used with U.S. census data via a case study involving differences in exposure to crime

across demographic groups, showing that the imputation process introduces very little error into down-

stream analysis, while depicting social process at the more fine-grained level.

Keywords

small areal unit imputation, count data, MCMC, three-way array data

Many data sources, including the U.S. census and organizations using Google’s S2 pro-

jection system,1 provide geospatial population data organized into a nested hierarchy

of areal units. In such hierarchical structures, each areal unit at a given level can be

expressed as the union of a set of units at the level below, in turn being part of a single

parent; each level is hence a spatial partition of the region of interest (see Figure 1).

Many sociological questions involve the cross-tabulation of population properties

within such units with other quantities (e.g., environmental, ecological, political, eco-

nomic, or other variables that vary across regions). With the advent of increasingly

well-developed spatial data sets (Facebook Connectivity Lab, Center for International

Earth Science Information Network, and Columbia University 2016; Rose et al. 2021),

performing such analyses at increasingly fine geographic resolution is of substantial

interest (Thomas et al. 2020).
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In practice, however, such fine-grained analyses can still encounter problems of

data availability. For instance, although detailed census data are publicly released at

higher levels of the census geography (e.g., counties), incomplete data are released

at smaller geographic scales (e.g., blocks and block groups). This issue is not unique

to the U.S. census: releasing fully detailed information at fine scale poses challenges

of acquisition cost (there are vastly more small areal units than large ones), avail-

ability (key variables may not be obtained at all scales), distribution and mainte-

nance costs, and privacy considerations. Where information for smaller units is

available, it is often available only marginally (i.e., summed across all values of a

covariate), without the cross-tabulation needed to study many demographic pro-

cesses. For instance, we may know how many individuals reside in a given unit by

race, by ethnicity, and by gender, but we may not know how many White Hispanic

women reside there. Raising our level of analysis to the smallest unit with complete

tabulation may resolve this difficulty, but at the cost of “blurring” spatial heteroge-

neity. This can cause problems for analysis, particularly when studying phenomena

that occur on small scales (e.g., neighborhood interactions, exposure to crime or

other events, or immediate access to local amenities).

Although there is no perfect substitute for complete data, the presence of incomple-

tely tabulated data suggests the viability of imputation strategies: even one-way mar-

ginals can be powerfully constraining, and two-way marginals even more so. When

marginals can be combined with information on correlations from higher-order units

with complete data, it may be possible to accurately estimate the local tabulation in a

way that preserves all known quantities. This preserves spatial heterogeneity and per-

mits fine-grained analysis, while also making use of more complete information where

available. Surprisingly, this approach to the multiway areal unit imputation problem

appears to have been overlooked in prior literature, although we draw on a number of

related developments in our work (as described later).

In this article, we introduce a method for imputing cross-tabulated count data orga-

nized into a nested system of hierarchical bins, which is highly parallelizable and

hence applicable to large systems (including the U.S. census). We focus on the case in

which data are cross-tabulated with up to three different discrete features, each of

which may take on a number of values (i.e., a three-way crosstab); our approach com-

bines lower-order information on marginals from the focal bin with more complete,

higher-order marginals from the bin’s parent to impute the full multiway array. We

can verifiably preserve all available information on the focal bin (assuming such data

are consistent), while approximating higher-order information to the extent possible

given low-order constraints. Our technique also allows either point estimation, or

simulation of draws from the conditional maximum entropy distribution of the target

array given the observed data constraints, supporting use cases such as multiple impu-

tation, which can offer consistent uncertainty measures (Rubin 1996). As an illustra-

tion of the method, we apply our approach to imputation of small areal unit data using

the 2010 U.S. decennial census, demonstrating how it enables fine-grained ecological

analysis (here, of differences in exposure to crime) despite data constraints.

Thomas et al. 159



PRIOR WORK

As noted, the specific problem of marginal-preserving multiway count-data imputation

from combined marginal and hierarchical information seems not to have been

addressed in prior work. However, a number of related problems have been studied,

solutions to which inform our own approach. By way of background, we thus begin

by reviewing related results on small areal unit estimation and imputation for three-

way crosstabs, both of which set the stage for our work.

Small Areal Unit Estimation

In its more general context, the problem of inferring characteristics of (usually small)

geographic regions is known as the small area estimation (SAE) problem. This chal-

lenge arises in many different fields, and work on SAE has bridged a number of disci-

plines, including but not limited to sociology, demography (Morrison 1971), and

statistics (Bunea and Besag 2000; Graham, Young, and Penny 2009). Small areal unit

estimation often deals with estimation of population demographics, but some work

goes beyond this to examine covariates such as poverty or disease (Molina and Rao

2010; Pfeffermann 2013). These techniques are also applicable to examination of

crime exposure in a population, as we explore here. There are numerous strategies for

this problem, ranging from simpler strategies such as uniform imputation (completely

uninformed at the small geographic unit) or spatial smoothing techniques such as kri-

ging that attempt to flexibly exploit spatial autocorrelation across units (Bennett,

Haining, and Griffith 1984; Mooney et al. 2020), to more informed model-based

approaches (Cohen and Zhang 1988; Steinberg 1979). Related to this work, some

researchers have specifically examined maintaining structural constraints and the use

of model assisted approaches (Espuny-Pujol, Morrissey, and Williamson 2018; Luna

et al. 2015; Moretti and Whitworth 2020).

In the field of criminology, the interest in estimating models in which crime is an

outcome measure in increasingly small geographic units has resulted in a need for

SAE. Whereas some scholars have simply used a uniform imputation strategy to assign

data from a larger geographic unit to a smaller unit, another strategy uses synthetic

estimation for ecological inference (Boessen and Hipp 2015). This strategy requires

the assumption that the relationships between variables in the larger geographic units

are the same as the relationships within the smaller geographic subunits.

Surprisingly few studies in criminology or sociology have explored the exposure to

crime of different demographic groups. Arguably, this state of affairs is due to the diffi-

culty of obtaining crime data at a more granular scale. For example, Alba, Logan, and

Bellair (1994) measured the context of small suburban communities (defined as popu-

lation less than 10,000) in assessing exposure to crime. Another study in Cleveland

aggregated census tracts to “neighborhoods,” and thus an even larger geographic unit

(Logan and Stults 1999). Yet another study measured the context as police precincts in

New York City, which are larger, given that at the time of the study, there were 75 pre-

cincts in a city with more than 7 million residents (McNulty 1999). The challenge is

that such units may be too large to capture the environment of a specific person, or

160 Sociological Methodology 54(1)



group of people. This issue arises in the context of other social exposures, as well; for

instance, Thomas et al. (2020, 2022) provide evidence that both infection hazards and

social exposure to others’ morbidity and mortality in the early COVID-19 pandemic

was affected by local variation in network structure influenced by housing and demo-

graphic factors at or below the block scale. Such differences in exposure may affect

not only immediate health outcomes, but also responsiveness to public health interven-

tions, with consequences for both policy effectiveness and health disparities.

The SAE problem is computationally challenging, both because it often involves

discrete optimization (e.g., for population counts) and because SAE solutions are often

intended to be used at scale; for example, given that the United States has more than 8

million census blocks, and there are more than 1.6 billion level 14 S2 cells worldwide

(each about 500 m across), efficiency can be a significant concern. As such, work on

this problem has spurred a range of computational advances, from algorithms to actu-

ally perform estimation (Graham et al. 2009; Vermunt et al. 2008) to the evaluation of

produced results (Pfeffermann and Correa 2012). Many of the more statistically prin-

cipled algorithms derive from the literature on hierarchical Bayesian modeling, which

provides numerous conceptual and statistical tools for flexible estimation and incom-

plete pooling of information across units (King, Rosen, and Tanner 1999). Although

these frameworks often require significant computational resources, as the Markov

chain Monte Carlo (MCMC) algorithms required for fitting and simulating draws from

such models (Rosen et al. 2001) are computationally intensive, the algorithms enable

estimations of more complex problems where the joint probability functions are not in

closed form.

In this context, our work contributes to the SAE literature by implementing an algo-

rithm for small areal unit estimation that can produce imputed cross-classification data

for areal units that satisfy a complex constraint structure (guaranteeing that imputations

exactly preserve one- and two-way marginal totals, and are integer-valued), while also

including information from higher-order units. Our technique draws on the statistical

strengths of the SAE literature by leveraging a hierarchical model, extending the work

of Bunea and Besag (2000) by including additional information about the composition

of larger areal units in the imputation process.

Imputation for Cross-Tabulated Count Data

Apart from the SAE problem, our work is also related to the general problem of impu-

tation for cross-tabulated count data. In general form, this problem involves a target

matrix N 2 N
c13���3cd (with ci being the size of the ith dimension, N the natural num-

bers, and 3 the Cartesian product), from which only a subset of cells (or, in many

cases, marginal totals) is observed. The problem is then to produce a matrix N̂ that

approximates N , while preserving all observed quantities. For the purposes of this arti-

cle, we focus on the three-way case (i.e., d = 3 in the above), as this case allows for

significant variability for table interiors. Solving the three-way case also provides two-

way tables via marginal counts. Naively, the most basic option for three-way imputa-

tion is to evenly allocate population to each cell in the three-way crosstab. This
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preserves the 0-way marginal (i.e., the population total), but not other marginals. One-

way or two-way marginals can be preserved by a continuous relaxation of the prob-

lem, in which each cell is given the same value used as the expected value in the cor-

responding k-way chi-square test (McHugh 2013), but this does not provide an integer

solution. Obtaining integer solutions that exactly satisfy the marginal constraints can

be substantially more difficult (Bunea and Besag 2000).

Beyond preserving marginal (or other) information in N , one may seek to preserve

(or approximate) more general patterns of associations (e.g., correlations among cate-

gory memberships). Again, the continuous relaxation of this problem is substantially

simpler than the exact version; indeed, it has been extensively studied in the context

of log-linear models (Clogg and Eliason 1987). Log-linear models represent the

expected count for each cell in an array as a multiplicative combination of interac-

tions, such that the log expectation has a linear form; expected marginals are easily

preserved in this framework by incorporating parameters derived from observed mar-

ginals, but higher-order associations between category memberships can also be used.

The simplest approaches to inference for log-linear models are based on maximum

likelihood estimation under the assumption that counts are conditionally Poisson dis-

tributed (exploiting the resulting exponential family structure), but Bayesian and other

forms of regularized inference (Graham et al. 2009; Vermunt et al. 2008) have also

been used. Log-linear models are thus powerful and flexible tools for obtaining condi-

tional cell distributions that preserve expected patterns in a target matrix, although

they do not solve the problem of preserving exact marginals.

Exact preservation of higher-order properties is more difficult, and generally

requires specialized algorithms. In the context of graph construction (viewing a binary

adjacency matrix as a two-dimensional matrix of 0 or 1 counts), a large literature has

emerged on methods for preserving row/column marginals (i.e., degree sequences), as

well as degree mixing and block marginals (i.e., mixing rates) (for a review of several

common cases, see Tillman et al. 2019). Construction algorithms, which produce an

instance N̂ exactly satisfying some target properties of N , are of somewhat limited

value for imputation, as they make no guarantees that the arrays constructed are repre-

sentative of the set of feasible solutions (and generally they are not). Fortunately, it is

often possible to construct MCMC algorithms that, given a feasible instance of N̂ , will

simulate draws from a uniform (or other) target distribution over the set of feasible

imputations. For our purposes, the most relevant work is that of Bunea and Besag

(2000), who provide an algorithm for sampling three-way count arrays that approxi-

mate a target distribution while preserving all two-way marginals. (When the two-way

marginals are not available, Monte Carlo methods can construct data only on the basis

of one-way margins [Bunea and Besag 2000], but we do not pursue this here.) We

leverage and modify this procedure, using it to design an annealing algorithm that gen-

erates single imputations preserving both two-way marginals and higher-order correla-

tions (a necessary goal for high-volume applications); in turn, we produce our target

distributions using the log-linear modeling approach described above, exploiting the

spatial hierarchy of areal unit data to obtain correlation information from higher level

units while preserving lower level marginals.
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The primary contribution of this article is the implementation and development of a

technique to impute three-way crosstab data that exactly preserves a set of integer mar-

ginals. Existing imputation techniques (including many of the ones discussed in this

section), have difficulty with this kind of constraint structure. We leverage work on

existing imputation techniques that allows the incorporation of higher-order spatial

data to improve the quality of the imputed data.

TECHNICAL DESCRIPTION

Data Representation

As discussed above, we are interested in the specific case of imputing an unknown

three-way array of counts, n 2 N
I3J3K , for which the two-way marginals (i.e., quanti-

ties of the form nij�, ni�k , n�jk) are known. This array is assumed to represent the cross-

tabulation of entities within a given areal unit, for which the corresponding cross-

tabulation of entities within a parent unit, nH , is fully observed. Our goal will then be

to impute njfnH , nij�, ni�k , n�jk : i 2 1, . . . , I , j 2 1, . . . , J , k 2 1, . . . , Kg, while satisfy-

ing all observed marginals.

Imputation Method

To impute the data contained in the three-way marginal array, we extend the work of

Bunea and Besag (2000). Using this algorithm as a baseline, we take a valid starting

three-way array and use MCMC to simulate draws from the distribution of valid three-

way arrays, given the set of two-way marginals that constrain it and a target distribu-

tion at a higher level of geography. We use simulated annealing to find the valid start-

ing point and to find a maximum-probability array with respect to the target

distribution, a robust heuristic optimization procedure that helps avoid becoming

trapped in local maxima. More details on the imputation process can be found in

Algorithm 1.

The Target Distribution. Our algorithm, discussed in the section “MCMC

Optimization Algorithm,” requires a target distribution to be approximated (subject to

Algorithm 1. Produce a Three-Way Array That Satisfies a Set of Two-Way Marginals X, Y, Z.

1: nijk  floor(sum(X )=numTotalCategories)
2: n½1�  n½1�+ sum(X )� floor(sum(X )=numTotalCategories)
3: xError xMargin(n)� X
4: yError yMargin(n)� Y
5: zError zMargin(n)� Z
6: while M.0 do
7: n0  n
8: xError0  xError
9: yError0  yError

10: zError0  zError
#Ensure that the next state of the array has no negative values

11: while K.0 do

(continued)
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our marginal constraints); because the two-way constraints will automatically account for

all known information about the target array (n), the role of this distribution is to provide

information regarding three-way associations that cannot be obtained for the target areal

unit. Here, we use the conditional log-linear model for the fully observed contingency

table of the parent of the focal areal unit, nH , to generate the target distribution. As a log-

linear model is a discrete exponential family on the space of count arrays, it can be

understood as leading to the maximum entropy distribution on the space of such arrays

given the observed statistics and appropriate choice of reference measure (Darroch and

Ratcliff 1972; Jaynes 1982). Concretely, when applied to statistics based on table

12: i RandomInt(1, numTotalCategories)
13: j RandomInt(1, numTotalCategories)
14: while i = = j do
15: j RandomInt(1, numTotalCategories)
16: end

# Map the origin and destination of the move to the marginals
17: mappedIX  mapIndexToMarginalX(i)
18: mappedIY  mapIndexToMarginalY(i)
19: mappedIZ  mapIndexToMarginalZ(i)
20: mappedJX  mapIndexToMarginalX(j)
21: mappedJY  mapIndexToMarginalY(j)
22: mappedJZ  mapIndexToMarginalZ(j)

#Do the move in the three-way array
23: n0  moveAPerson (n, i, j)
24: K � = 1

# Update the marginal deviations
25: xError0½mappedIX �  xError0½mappedIX � � 1
26: yError0½mappedIY �  yError0½mappedIY � � 1
27: zError0½mappedIZ �  zError0½mappedIZ � � 1
28: xError0½mappedJX �  xError0½mappedJX �+ 1
29: yError0½mappedJY �  yError0½mappedJY � + 1
30: zError0½mappedJZ �  zError0½mappedJZ �+ 1

#If our array is nonnegative, end the search for a move
31: if numNegative(n0) = = 0 then
32: break
33: end if
34: end while

#Evaluate the relative error of our proposal and current arrays
35: error sum(abs(xError), abs(yError), abs(zError))� sum(abs(xError0),

abs(yError0), abs(zError0))
36: transitionProbability exp (error=temperature)
37: if uniform (0, 1)\transitionProbability then
38: n n0

39: xError  xError0

40: yError  yError0

41: zError  zError0

42: end if
43: M � = 1

#Cool the chain
44: temperature temperature�0:9
45: end while
46: return(n)

Algorithm 1. (continue)
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margins, it results in an inferred distribution that preserves the expected margins in the

contingency table, while maximizing the uncertainty of the cell values given those expec-

tations. We base our target distribution on the three-way effects observed in nH , while

simulating conditional on the two-way margins of n; this gives a maximum entropy

approximation to the three-way structure of nH , net of the (exactly preserved) marginal

constraints of n, which allows us to use information from higher-order areal units to

inform imputation for low-order units. This is accomplished as follows.

A saturated log-linear model contains sufficient statistics of effects at different lev-

els in the contingency table. Specifically, for an array defined by three dimensions/cov-

ariates i, j, k, we can specify the model as

E(nijk) = ttitjtktijtiktjktijk ,

where E(nijk) denotes the expected count of the i, j, k cell; t is the intercept, or the main

effect of the contingency table; ti, tj, tk denote the marginal effects for the dimensions

i, j, k, respectively; tij, tik , tjk denote the two-way interaction effects (with dimensions

as above); and tijk denotes the three-way interaction effect over all three dimensions.

(Fixing the expectation, when combined with the assumption of a maximum entropy

distribution over the set of possible matrices under a Poissonian reference measure,2

fully specifies the model.)

With information of two-way margins available for the target areal unit, one could

estimate the marginal effects and the two-way interaction effects. However, this is not

sufficient to provide information about the three-way interaction term. Here, we

approximate the three-way interaction effect for the contingency table of our target

areal unit by the effect observed for its parent areal unit (treating the former de facto

as a sample from the latter). This can also be viewed as a two-step process, in which

we first get an expected cell input on the basis of information at the lower level, and

then recalibrate it using information of the three-way interaction effect from the higher

level. Formally, take EL to be the expectation given all observable margins of the

lower level (i.e., target) areal unit; then we have

EL(nijk) = tLtL
i tL

j tL
k tL

ijt
L
iktL

jk , ð1Þ

where tL
� reflects parameter estimates based on the marginals of the observed (lower

level) areal unit. Now, letting tH
ijk be the estimate of the three-way effect from nH , we

use the specification

E(nijk) = EL(nijk)tH
ijk: ð2Þ

Thus, we use data from nH to fill in the “missing piece” that cannot be obtained from n

itself, while retaining all lower-order information from n.

Because of the exponential family properties of the log-linear model, the parameters

t are easily estimated from the observed counts. The parameters describe the ratio

between expected cell counts with and without the effects they represent; therefore,

they are equal to 1 when absent. The general effect t is equal to the grand mean of the
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contingency table, that is, �n:::. The one-way marginal effects are in turn equal to the

ratios between the corresponding marginal means and the grand mean. Formally,

ti =
ni��
n���

tj =
n�j�
n���

tk =
n��k
n���

where ni��, n�j�, and n��k denote respective marginal means. The two-way interaction

effects, in turn, are equal to the ratios of the respective two-way means to the expecta-

tions of those means arising from the respective one-way means. Formally,

tij =
nij�

ni�� n�j�
n���

=
nij� n���
ni�� n�j�

tik =
ni�k n���
ni�� n��k

tjk =
n�jk n���
n�j� n��k

where nij�, ni�k , and n�jk denote the respective two-way means. Therefore, we may

rewrite equation (1) in terms of observed counts as

EL(nijk) =
nij� ni�k n�jk n���

ni�� n�j� n��k
, ð3Þ

a quantity that is easily calculated.

With the first factor in hand, we now require only tH
ijk. As with the previous cases,

the three-way interaction effect is equal to the ratio of the three-way marginal mean

(here, identically the count of the i, j, k cell) to the expectation given the lower-order

effects.

Next, we process the three-way interaction effects using information from the higher

level unit. Similar to the previous derivations, the three-way interaction effect equals

the ratio of the cell with the three-way interaction effect over that without the effect.

Bearing in mind that all relevant counts are for nH , we have

tH
ijk =

nH
ijk

nH
ij� nH

i�k nH
�jk nH

���

nH
i�� nH

�j� nH
��k

=
nH

i�� nH
�j� nH

��k nH
ijk

nij� ni�k n�jk n���
, ð4Þ

which is again easily calculated from the observed arrays. This expression for tH
ijk

makes clear that it is already “normalized” with respect to the lower-order marginals

of nH ; thus, differences between n and nH in such quantities do not prevent tH
ijk from

being used to model n (indeed, the three-way effects by construction do not affect any

lower-order marginal expectations).
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Putting these pieces together, the final target distribution is proportional to a product

of Poisson distributions (a form that arises from the maximum entropy construction),

whose expectations are functions of data from the target areal unit and its parent. The

final target expectation for a given cell is the product of the expected distribution given

the lower level information (equation 3) and the three-way interaction effect from nH

(equation 4):

E(nijk) =
nij� ni�k n�jk n���

ni�� n�j� n��k
�
nH

i�� nH
�j� nH

��k nH
ijk

nij� ni�k n�jk n���
: ð5Þ

Imputing a Three-Way Array. We will use the target distribution specified above to

find a maximum-probability array, but any three-way array imputed must match

observed two-way marginals. Thus, we separate our imputation procedure into two

distinct steps. First, we construct an array that satisfies the constraints imposed by the

two-way marginals. Then, with this array that matches observed marginals, we opti-

mize the array with respect to the target distribution, preserving two-way marginals.

Each of these components is nontrivial. Because of the integer constraints, finding an

array that matches observed marginals (a valid array) is not possible using standard

techniques (e.g., the expected count array formed when performing a generalized chi-

square test). Likewise, for the three-way case, optimizing the array to maximize a tar-

get distribution is a challenging task.

Constructing a Valid Array. Our algorithm to impute a target three-way array

begins by finding an array that satisfies the observed two-way marginals. This compo-

nent must solve an array construction problem, prior to the optimization problem dis-

cussed in the second part of the algorithm (see the section “MCMC Optimization

Algorithm”). This part of the algorithm is concerned only with satisfying the two-way

and integer constraints; it does not consider the target distribution for array

construction.

Our strategy (detailed with pseudocode in Algorithm 1) can be broadly described as

follows. Algorithm 1 also includes optimizations discussed in the section

“Optimizations for the Construction Algorithm.” For a full description of the algo-

rithm, see the section “Description of Construction Algorithm.” Our algorithm initia-

lizes an array using data from the zero-way marginal (i.e., the total array population).

The population is divided equally across the array, with any remainder allocated to the

first cell. This is detailed in lines 1 and 2 of Algorithm 1. This initial state ensures the

total population of the array and the integer constraints are satisfied. However, it is

unlikely this initial array state will satisfy the constraints imposed by the one- or two-

way marginal values. We can define the deviation of our constructed array and the

observed two-way marginals with the sum of the absolute values of the differences

between the two-way marginals of our constructed array and the two-way marginals

of the target array. We then seek to minimize this deviation.

We use a strategy of simulated annealing to produce a valid array from the initial

state of our constructed array. Simulated annealing is a heuristic optimization tech-

nique designed to find the global minimum of an objective function, with minimal

assumptions regarding the function and search space. This strategy will simulate
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moving values (individuals) between cells in the array, keeping track of deviations

between the simulated marginals values and the target marginal values. A single move

will decrease the value of one cell and increase the value of another cell. However, the

array is not considered a valid state unless all cells in the array are nonnegative. If

there is a negative value in the array after a proposed move, we draw a new move on

the basis of the state of the proposed array. This process of drawing proposed changes

will continue until a valid state of the array is drawn. This valid state will be proposed

as a new state of our constructed array, and we compute the marginals of this array, as

well as the array’s deviation from the observed marginals.

The annealer will always accept moves in the array that decrease the deviation

between simulated and target marginals, as these moves will bring the simulated array

closer to one that satisfies the constraints of the two-way marginals. The annealer will

also accept moves that increase the deviation with a probability equal to exp DC�DP

T

� �
,

where DC is the deviation between marginals for the current array state, DP is the

deviation from the marginals for a proposed array state, and T is a temperature para-

meter. We still accept moves that increase deviation from the target marginals to pre-

vent the annealer from finding a local minimum in the error space. However, the

temperature parameter T will scale the likelihood that disadvantageous moves are

taken. At high temperatures, accepting moves that increase our deviation is more

likely; lower temperatures make it much more difficult to accept these moves. The

idea behind simulated annealing is to begin with a high temperature and allow the

state of the array to vary more easily with respect to our deviation. This will help pre-

vent the state of our array from being stuck in a local minimum of deviation. As the

annealer runs, we decrease the temperature geometrically, which will minimize the

deviation by the end of the annealing run. Although convergence was easily obtained

in the cases studied here, it is possible that the annealer will not converge to a valid

array. In this case, repeatedly restarting with a higher temperature and using a slower

cooling schedule until convergence is obtained is a practical strategy. Regardless, con-

vergence is always verifiable, as we can always determine whether our current array

satisfies the target marginals (and, if not, the degree of divergence).

The annealer we describe here should produce a valid array that matches the con-

straints from the two-way marginals, but the basic version of the algorithm requires us

to recompute the two-way marginals every time we get a new state for our constructed

array. Although computing the marginals of the array once does not take a significant

amount of time, computing them for every array state does add a high cost in compu-

tational time. To avoid this cost and improve the algorithm runtime, we introduce sev-

eral optimizations, detailed in the next section.

Optimizations for the Construction Algorithm. The algorithm detailed in the pre-

vious section provides an array that will satisfy both the two-way marginal and integer

constraints. However, because of the requirement to recompute the two-way marginals

of proposed arrays, the algorithm can be expensive. To achieve better performance for

larger data sets, we implement a version of the algorithm that uses a change score.

Specifically, we compute the difference between the initial state of the array and the

target marginals, keeping track of these persistent errors. When we move values
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between array cells, we then update this persistent error by subtracting a person from

the departure cell of the marginals, and adding a person to the arrival cell of the mar-

ginals (rather than recalculating the marginals anew). This persistent error is equivalent

to using the error metric from the previous section, but it does not require recomputing

marginals.

The updated error metric will avoid the computational cost of recalculating the mar-

ginals, but it does require additional components. As noted above, we need to compute

a map between the three-way array and each of the two-way marginals. This mapping

will allow us to remove a person from the relevant cell of the two-way marginals and

add them to the arrival cell when making a move in the three-way array. We only com-

pute this mapping once, and can then refer to it when making moves in the three-way

array. In Algorithm 1, the helper function mapIndexToMarginal will take a three-way

array index and map it to the X, Y, or Z marginals, respectively.

Description of Construction Algorithm. Algorithm 1 provides pseudocode for the

construction of a three-way array that matches integer and two-way marginal con-

straints. This algorithm uses a set of two-way marginals X, Y, and Z. The name of the

marginal refers to the direction we sum across the array to produce each marginal. We

also need a set of helper functions for this algorithm. The functions xMargins(a),

yMargins(a), and zMargins(a) each take a three-way array and produce a two-way

marginal. The function RandomInt(a,b) produces a random integer from a to b, inclu-

sive. mapIndexToMarginal(a) takes a three-way array index and maps this index to a

two-way marginal index. We use one of these functions for the X, Y, and Z marginals.

Finally, numNegative(a) takes a three-way array and returns the number of negative

values in the array.

Lines 1 and 2 of Algorithm 1 produce the initial state of the array. The variable

numTotalCategories provides the number of cells in the array. Lines 3, 4, and 5 pro-

duce the deviation of the initial state of the array from the observed marginals. These

values are used to compute an error metric, and will be used as a persistent deviation

throughout the algorithm. Next, we specify how many arrays we will simulate with

the annealer (M), and we begin simulating arrays within the loop on line 6. Lines 7 to

10 are used to initialize the state of a proposed array, as well as the deviation this pro-

posed array would have from the target marginals.

After the deviation and array values have been initialized for our simulation, the

second while loop (on line 11) begins the search for a valid array state to compare to

our initial array state. Lines 12 to 16 draw two three-way array indices, i and j, and

ensures they are different. We also produce the corresponding two-way array indices

for X, Y, and Z using lines 17 to 22, which use the mapIndexToMarginal() helper func-

tion, which uses a precomputed map between three-way indices and two-way marginal

indices. After we produce all the necessary indices, we move a value in the three-way

array from index i to index j, which simply adds one to the jth cell of the array, and

subtracts one from the ith cell. Lines 25 to 30 keep track of the move in the three-way

array in the two-way marginals.

For this algorithm, a valid state of the array is one in which all cells are nonnegative.

At the end of every proposed move, we check to see if this condition is met (lines 31,
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32, and 33), and if so, immediately end the search for a new move. If any array cells

are negative, we draw another move and continue until we have a nonnegative array.

With our nonnegative array, we can next compute an error metric that uses the

deviations of the initial array and the deviation of the proposed array. Line 35 com-

putes this error, which is the difference in the absolute values of the deviation summed

for the initial array and the proposed array. This value would be positive if the pro-

posed array reduces the deviation from the target marginals; it would be negative if

the proposed array increases the deviation. The probability that our proposed array is

accepted and becomes the current state of the array is computed on line 36; it is sim-

ply the error term divided by the temperature term, exponentiated. Lines 37 to 42

check to see if we accept the proposed array state. If we do, then the proposed array

becomes the current array. Likewise, the deviations from our proposed array state

would become the initial deviations for the next iteration of the loop. If the array state

is not accepted, the proposal is discarded and we begin from the initial state again.

Before the loop iteration ends, line 44 cools the temperature parameter. We use a

geometric cooling schedule, where the temperature parameter is multiplied by a con-

stant for each run of the array. The final state of the array is returned on line 46, and

should have minimized the difference between the marginals of the array and the tar-

get array’s marginals. In the implemented algorithm, we also check if the deviation

between marginals is zero; we end the annealing process if it is. It is important to note

that although this description assumed we are using this algorithm for single imputa-

tion, the algorithm will also work for multiple imputation. By fixing the cooling

schedule and temperature parameters at 1, we are able to draw directly from the target

distribution, which will be produced by the Markov chain.

MCMC Optimization Algorithm. The construction algorithm detailed above will

produce a three-way array that satisfies the integer and two-way marginal constraints.

The second component of our algorithm optimizes the three-way array’s values with

respect to a target distribution, using the specification described in the section “The

Target Distribution.” Our algorithm builds on the approach described by Bunea and

Besag (2000) for simulating from three-way count arrays. This algorithm assumes we

start with a legal imputation of the target array (i.e., an array that satisfies the set of

two-way marginals and has no negative values), as well as a target distribution.

Both our algorithm and the Bunea and Besag algorithm use MCMC to simulate

three-way array configurations. The transitions between states use a basic move, in

which a person is moved from one cell to another in the array. However, as each state

of the array is required to match the two-way marginal constraints, eight cells in the

three-way array are modified in total for each basic move. Additionally, we can define

the log-likelihood of a given array state under the target distribution, which we will

denote l(n), where n is a three-way array. For two arrays, a current and proposed array,

the probability for the Markov chain to accept the proposed move is exp (l(n0)� l(n)),

where n is the current array state, and n0 is the proposed array state. Because the basic

move preserves all lower-order marginals, validity of an array produced by this method

is guaranteed (i.e., any array generated from a valid starting point will always be a

valid array).

170 Sociological Methodology 54(1)



We modify Bunea and Besag’s algorithm by using simulated annealing. In the con-

struction component of this algorithm, we used annealing to optimize the state of an

array to minimize deviation from the observed marginals. As our goal in this part of

the algorithm is to find the most likely configuration of the algorithm under the target

distribution, we can use simulated annealing for better single imputation quality. The

addition of simulated annealing is straightforward, and only requires us to modify the

acceptance probability with a temperature parameter. As with the construction algo-

rithm, the temperature parameter will scale the probability that the optimization algo-

rithm accepts proposed arrays that are less likely under the target distribution. Higher

temperature values (above 1) will increase the likelihood that less likely array config-

urations are accepted. Likewise, as temperatures approach zero, the probability of

accepting lower-probability array configurations also goes to zero. A fixed temperature

at 1 will accept new array states by exactly evaluating the likelihood within the target

distribution. A benefit of updating this algorithm to use simulated annealing is that the

algorithm can be run in both single and multiple imputation modes. In single imputa-

tion mode, the temperature would be set above 1, and the cooling schedule would be

set below 1. However, as mentioned above, by setting the temperature and cooling

schedule to 1, we would draw directly from the target distribution, which enables mul-

tiple imputation.

Optimization Algorithm Description. Algorithm 2 provides pseudocode for the

optimization of a three-way array with respect to a target distribution corresponding to

the maximum entropy distribution on n conditional on E(n) and the two-way margin-

als. We need several helper functions for this implementation. First, we use a helper

function doBasicMove(n), which takes a three-way array as an input, and moves some-

one from one cell in the array to another, maintaining all two-way marginals. As dis-

cussed above, this basic move modifies eight cells of the three-way array (for more

details, see Bunea and Besag 2000). We also use the helper function numNegative(n),

which takes a three-way array as an input, and outputs the number of negative values

in the array. Finally, the helper function numNegativeOne(n) takes a three-way array

as an input and outputs the number of negative ones in that array.

Implementation of our algorithm relies on a Markov chain that cools as the annealer

runs. The total length of the Markov chain is M � L, where M is the number of times

we cool the Markov chain, and L is the number of iterations we run the Markov chain

at each temperature. At each step of the Markov chain, we start by proposing a basic

move on the target three-way array n (line 3). n0, the proposed three-way array, will

match all two-way marginal and integer constraints. Next, we follow the Bunea and

Besag algorithm by checking the number of negative values (specifically negative

ones) in n0. If there is exactly one negative one in the array, we draw a new basic move

from n0; we continue to do so until either there is more than one negative value in n0,
or n0 becomes a nonnegative array. If n0 is an array with more than one negative value,

we discard the proposal, keeping the original state of the array. However, if n0 is a non-

negative array, we compute the ratio of the likelihoods for n0 and n (in log space) under

the target distribution, and divide this log-likelihood by a temperature parameter (line
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11). When exponentiated, this is the probability the proposed array is accepted as the

next state of the Markov chain.

Every L iterations of our Markov chain, we cool the chain. Like the construction

algorithm, we use a geometric cooling schedule for this algorithm, multiplying the

temperature of the annealer by a constant every L iterations. As the temperature of the

annealer decreases, the Markov chain will accept proposed states that are lower likeli-

hood under the target distribution less often than at higher temperatures.

VALIDATION OF IMPUTED DATA QUALITY

The previous sections provided algorithms for construction and imputation of three-

way count arrays with targeted characteristics. Next, we describe the test imputations

and metrics we use to validate the quality of population data imputed using this

approach. Our validation tests use U.S. census data on population distributions, using

several levels of geographic aggregation. We also use two validation metrics to deter-

mine data quality.

Data Used for Validation Runs

We use data from the 2010 U.S. census to assess the quality of our imputation tech-

nique. The U.S. decennial census published complete three-way population

Algorithm 2. Impute a Three-Way Crosstab.

Require: target expectations E(n), array state n, initial temperature T , decay parameter
c = 0:94

1: while M.0 do
2: while L.0 do
3: n0  doBasicMove(n)
4: while numNegativeOne (n0) = 1 do
5: n0  doBasicMove (n0)
6: end if
7: if numNegative (n0).1 then
8: next
9: else fnumNegative(n0) = 0g

randomNum Uniform (0, 1)
#Accept the proposed array with probability equal to the ratio of probabilities
of proposed:current arrays

11: if randomNum\ min (1, exp (( l (n0)� l (n))=T ))) then
12: n n0

13: end if
14: end if
15: L� = 1
16: end while
17: M � = 1

#Cool the chain
18: T  T � c
19: end while
20: return(n)
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distributions at several levels of geographic aggregation. The census uses a geographic

hierarchy for their data products, with census blocks aggregating into census tracts,

which themselves aggregate into counties.3 We consider the three-way distribution of

race, gender, and ethnicity within each geographically defined subpopulation (i.e.,

count data for each three-way category). Ethnicity has two categories, non-Hispanic

and Hispanic. Gender also uses two categories, male and female; race has seven cate-

gories.4 Given the national scale of the census, these distributions provide a large data

set for us to test our imputation.

We perform two imputation studies to validate the approach. The first uses U.S.

census data across the entire United States, specified at the county and tract levels.

Here, target distributions are defined using three-way distributions at the county level.

At the tract level, we use the two-way observed marginals for our target array. Full

three-way distributions are publicly available at the tract level, which allows us to

directly validate the quality of the imputation. We impute the three-way distribution

of race, ethnicity, and gender for each of the 73,057 tracts in the United States. We

perform single imputation and multiple imputation for each tract, comparing true val-

ues against imputed counts.

Our second imputation study involves analysis of a social outcome (exposure to

crime), using data specified at the tract and block levels. We specify a target distribu-

tion using full, three-way arrays available at the tract level, and use marginal two-way

arrays that were published at the census block level of aggregation. We chose to only

impute the three-way arrays for one U.S. state (California), which contains 710,154

census blocks. Comparison of analysis at the tract level on actual versus imputed data

provides another check on imputation quality. Although we cannot directly validate

block-level imputation (because the three-way marginals are not available), we use

this for an illustrative case study (see the section “Case Study for Quality Checking”).

Imputation Parameters

For both validation samples, we use the same settings for array construction and opti-

mization. The imputation calculations were completed on the same machine, using the

same computing resources (facilitating timing comparisons).

First, we detail the parameters used for construction of a valid array. For each array

we construct, we simulate up to 1 million array states (M in Algorithm 1). We allow

for up to 1,000 moves to find a new valid array state (K in Algorithm 1). We initialize

our temperature parameter T to be 10 times the error rate (deviation from the margin-

als) produced by the initial state of the array. In practice, all arrays produced by the

implementation of Algorithm 1 were found to match the two-way and integer con-

straints, indicating these parameters are sufficient for the heuristic optimization to suc-

ceed in finding valid array states.

Next, in the optimization component of the algorithm, we use a Markov chain of

length 50,000 for each array. We cool this chain every 1,000 iterations, for a total of 50

annealing steps. The initial temperature parameter T is set to 10, with a cooling para-

meter c of 0.94. This allows the annealer to accept less likely array states more readily
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for half of the Markov chain, with the second half of the Markov chain behaving more

strictly as a hill climber, seeking the maximum likelihood array state.

When doing multiple imputation, we fix both the temperature and the cooling para-

meter at 1 (i.e., we fix the algorithm at the target distribution, with no cooling). This

allows us to draw directly from the distribution of array states that is specified by the

target distribution and the marginal constraints. We use a thinning parameter of 1,000

and a burn-in parameter of 1,000, which were found to be adequate for convergence.

In seeding the Markov chains for the multiple imputation draws, we initialize the opti-

mization portion of our method with a draw from the single imputation mode of the

algorithm. We do this to ensure the Markov chain will burn-in, by starting it at a mode

of the target distribution.

Each of our imputation studies was performed on an Intel Xeon E5-2599 V4 central

processing unit (CPU). As the three-way array that is present for any areal unit does

not depend on any other areal unit, this problem is trivially parallelizable. Thus, we

used 30 cores for each imputation. We also introduce several special cases where we

can directly solve the state of the three-way array. In the first case, there is no popula-

tion in the array. Second, we can directly solve the “one-hot” case, or arrays in which

there is only one cell with any population. We can solve these arrays using only infor-

mation from the two-way marginals, trivially imputing the array.

Metrics for Assessing Data Quality

We use two main methods for the assessment of data quality. Both metrics require

observed data as a baseline. We rely on the tract-level imputation described above, as

the full three-way tract arrays are published in addition to the two-way marginal data.

Our first metric for assessing data quality relies on an error metric, and can be assessed

on an individual array basis. We also provide a metric for assessing quality that

depends on stable performance in a downstream analysis.

Error-Based Metric for Data Quality. The first metric we use to asses data quality

measures the degree that an imputed three-way array departs from its observed values.

In other words, this accuracy metric measures how many people are mismatched

between a simulated and observed array. Our error metric, E, is defined as

E =
P

i jOi � Iij, where O is the observed array for an areal unit, I is the imputed array

for the same areal unit, and the sum is over entries of the array. This error metric sim-

ply represents the number of people who are misallocated by the imputation.

For purposes of expressing this error metric in a standardized manner, we divide E

by the number of people present in the areal unit, which normalizes the error values to

a range between 0 and 1. (In tracts with zero population, we define the metric to be

zero.) This value is referred to as ER, and describes the percentage of the tract that has

been misallocated. Low values of this error metric indicate high-quality imputed data.

We compare the errors produced by our algorithm to error rates produced by several

other approaches. The first alternative we compare to is one described by Bunea and

Besag, in which there is no simulated annealing, and we simply use a Metropolis algo-

rithm to take a single draw from the distribution defined at the higher level of
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geography. In this case, error rates should be broadly similar—if the Markov chain is

burned in correctly, a random draw from that distribution is relatively likely to be from

a high-probability region—but with higher excursions because the algorithm will occa-

sionally select plausible but low-probability arrays. This provides a point of compari-

son for the annealing algorithm, which uses the same target distribution but attempts to

provide a maximum-probability array.

Next, we examine the case where we use the expected values provided by the target

distribution as the final imputed values. These expected counts are produced using the

log-linear framework described in the section “The Target Distribution,” which incor-

porates two-way data from the target level of geography with three-way patterns pres-

ent at the higher level of geography. Because the log-linear model is not constrained

to satisfy integer constraints, it is expected to accumulate numerous errors; however, it

incorporates distributional information, and (being easy to compute) is an obvious

practical alternative.

Finally, to examine the improvement produced by simulating the distribution of

possible three-way states under the target distribution, we also examine the error rates

when using the array generated by the construction algorithm as the final imputed

value. This array will be “valid,” in that it satisfies both integer constraints and the

known two-way marginals, but not otherwise adjusted. We examine this case to better

understand how the space of three-way arrays may be constrained by the two-way

marginals. This technique would also omit all data from the higher level of geography,

so we can examine how only incorporating the local demographic effects (i.e., the

two-way marginal constraints) may produce different arrays from the observed data.

Case Study for Quality Checking. Although direct error assessment is the most nat-

ural way to evaluate imputation quality, it does not speak directly to downstream

effects on subsequent analysis: relatively poor imputation may prove adequate when

downstream analyses are robust, but sensitive analyses may require very high degrees

of imputation accuracy. Such sensitivity inevitably depends on the analysis involved;

here, we use a case study involving a spatially heterogeneous outcome—exposure to

crime in one’s vicinity—as a plausible example of how errors may or may not affect

substantive conclusions. Specifically, we carry out our analysis at the tract level using

observed and imputed data, allowing us to compare results obtained in the two cases.

For this purpose, we use single and multiple imputation, allowing us to compare the

performance of both estimators at recovering observed-data results. Finally, as an

illustrative procedure, we repeat our data analysis at the block level. Although not suit-

able for validation (as we do not have block-level observations), this analysis provides

an example of how the imputation approach might be used in a realistic case, and how

pushing analysis to finer levels of geographic detail can potentially affect our substan-

tive conclusions.

Our case study examines how exposure to crime near one’s home is related to one’s

demographic characteristics. Crime is heterogeneously distributed, making members of

some groups more likely than others to be exposed; such exposure may, in turn, feed

concerns about neighborhood safety, willingness to access local affordances, and

stress. To examine this association, we use crime data obtained from police agencies
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for the Southern California Crime Study (SCCS). The SCCS researchers made an effort

to contact each police agency in the Southern California region and request address-

level incident crime data for six part 1 Uniform Crime Reports categories: homicide,

aggravated assault, robbery, burglary, motor vehicle theft, and larceny. These data

come from crime reports officially coded and reported by the police departments and

provide locations of crime incidents around 2010 covering about 83 percent of the pop-

ulation in a five-county area (Los Angeles, Orange, Riverside, San Bernardino, and

San Diego). Crime events were geocoded for each city separately to latitude/longitude

point locations using ArcGIS 10.2, and subsequently aggregated to various units such

as blocks and tracts. The average geocoding match rate was 97.2 percent across cities,

with the lowest value at 91.4 percent. These data have been used in several prior stud-

ies (Kubrin and Hipp 2016; Kubrin, Hipp, and Kim 2018).

We use the number of violent crime events that took place (homicide, aggravated

assault, robbery) and compute the average over three years (2009–2011) to smooth

year to year fluctuations. Prior literature shows that one’s exposure to crime is affected

by many demographic features, including the ones we have imputed in this article

(Alba et al. 1994; Logan and Stults 1999; McNulty 1999). The actual form of this rela-

tionship has not been closely examined, however, particularly at the level of small

areal units, which are needed to avoid averaging across areas with different crime

rates. Thus, using observed and imputed data at the census tract level, we specify a

saturated linear regression model (i.e., main effects, two-way interaction terms, and

three-way interaction terms). Additionally, we specify the same models at the census

block level, only using imputed data. We examine the block-level model to compare

whether the effects are similar to those of the tract-level model. At the tract level, the

mean number of crime events in the data is 42.38 events, with a minimum of zero and

a maximum of 666 events. At the block level, we use an additional buffer around each

areal unit. This buffer has a radius of 1 km. The mean number of crime events for the

block level data is 112.22 events, with a minimum of zero and a maximum of 2,234

events.

The census geographies we use here are adjacent levels of the census spatial hierar-

chy. Census tracts compose counties and are often relatively large. For tracts repre-

sented in the SCCS, the average tract population in 2010 was 4,604 people. Although

tracts can provide an overview of population distributions across space, the census

block level is much more granular (often about the size of a city block). The average

population for a census block in the area represented by the SCCS is approximately 80

people; the five counties have an average population of 3.765 million.

To compute one’s exposure to crime (i.e., the response term for this model), we use

the number of crime events that occur in a given areal unit, using data from the SCCS.

From this number of crime events, we consider a group’s exposure to crime in that

areal unit as Cijk = Epijk , where E is the number of violent crime events that occur for

that areal unit, and pijk is the proportion of the total number of people in a three-way

race, ethnicity, gender category (for the entire sample) that are present in the areal unit.

These values are summed across all areal units to produce an exposure for each of the

groups. This exposure functionally behaves as a weighted average of crime exposures
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in each areal unit. We then predict this exposure using dummy variables for each race,

ethnicity, and gender category, as well as all two- and three-way interaction effects

using these terms. The White, non-Hispanic male category is used as a reference group

for these regressions.

Given that these fully-specified models are not common in the literature, we present

three hypotheses about the nature of the relationship between the explanatory factors

and one’s exposure to crime, motivated by more general notions of cumulative, inter-

sectional, and saturated mechanisms of disadvantage. These hypotheses are schemati-

cally represented by Figure 2. We consider individuals as belonging to one or more

social categories, reflecting, for example, race and gender. Members of a given social

category may be, on average, particularly likely to be exposed to specific underlying

sources of disadvantage; some such sources may be unique to specific categories, and

others may be shared by members of multiple categories. Schematically, Figure 2

depicts social categories as boxes, each of which contains a set of “keys” that

“unlocks” particular sources of disadvantage (here indicated by color). An individual

belonging to only one social category receives the keys—and hence the sources of

disadvantage—for that category. When an individual belongs to multiple categories,

they inherit the keys from each category to which they belong. The consequences of

this can vary, leading to several hypothetical scenarios.

Figure 2. Schematic depiction of the ways overlapping social category memberships can lead
to different degrees of realized disadvantage.
Note: Each social category (i.e., a race/gender/ethnicity category) has a set of associated sources of

disadvantage. These sources of disadvantage can combine in a variety of ways. In the subadditive case,

overlapping sources of disadvantage only contribute once to the total degree of disadvantage. In the

additive case, all sources of disadvantage contribute once to the total amount of realized disadvantage.

Under superadditivity, additional disadvantage is “unlocked” due to having multiple sources of

disadvantage in distinct social categories.
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Our first scenario, represented by the subadditive row of Figure 2, occurs when the

sources of disadvantage for an individual’s social categories overlap. In this case, hav-

ing multiple memberships in disadvantaged groups provides more disadvantage than

being a member of a single category, but not as much as the independent combination

of both groups. Here, the sources of disadvantage saturate, and their effect on the indi-

vidual is subadditive.

Our second scenario, represented by the additive row, occurs when there is no over-

lap in the sources of disadvantage for the categories to which an individual belongs.

Here, the total disadvantage is simply the sum of the disadvantage for each category.

Finally, in our third scenario (the superadditive row) we consider the possibility that

some sources of disadvantage require “keys” from multiple categories to unlock. In

this case, the total disadvantage for multiple group memberships can exceed the sum

of the group disadvantages, because a joint member is affected by both the union of the

two group sources and additional sources of disadvantage that arise from comember-

ship. This is often discussed within the context of intersectionality (Crenshaw 1990),

with the notion that belonging to multiple disadvantaged groups can have a substan-

tially greater effect than the independent effects of each membership alone.

In the context of exposure to crime, it is plausible that sources of disadvantage asso-

ciated with gender, race, and ethnicity could correspond to any of these three scenarios.

To quantify this, we specify an additivity index, which we use to categorize the rela-

tionship for each of our three-way categories included in the model. This index can be

defined by

A =
bijk

a + bi + bj + bk + bik + bjk + bij

,

where a is the intercept term, and the b terms are the regression coefficients for the

one-, two-, and three-way effects. If the three-way effect in this term is zero, then

the index will also be zero, which implies a purely additive relationship. Likewise,

if the sign of the total two-way effects and three-way interaction term are the same,

then the index will be positive, indicating a superadditive relationship. Finally, if

the numerator and denominator are of different signs, this index would be negative,

which indicates a subadditive relationship. In the rare case where the total two-way

effect (denominator) is zero, we define A to be zero.

The magnitude of the index is also informative. Usually, we would expect A to be

between 21 and 1, which indicates the three-way effect is smaller in magnitude com-

pared with the rest of the effects. However, in the event that A is greater in magnitude

than 21 or 1, this indicates the three-way effect outstrips the combined two-way

effects, and would be able to flip the sign of the total effect.

Tract Imputation Results

Next, we describe the results of the imputations discussed above, evaluating the overall

quality of the imputed arrays. Imputing all 73,057 tracts took 7 hr, 33 min, and 49 sec-

onds on 30 cores of an Intel Xeon E5-2599 V4 CPU. As the tract-level three-way

178 Sociological Methodology 54(1)



arrays in the United States are known, we can directly compare the imputed three-way

arrays with the observed data. We use the error metric specified in the section “Error-

Based Metric for Data Quality.”

Array Approximation Results

This error metric provides support for the quality of the data imputation. Figure 3

describes the distribution of relative errors, showing that most tracts have a very low

error rate. Given that the mean relative error is 0.8 percent and the 97.5th percentile of

the error is 2.5 percent, this imputation schema produces three-way arrays that are

excellent proxies for the observed data (with error rates at or below error rates in the

census itself; Khubba, Heim, and Hong 2022).

We compare these error rates to the rates obtained by the other procedures described

in the section “Error-Based Metric for Data Quality.” We find that drawing directly

from the target distribution (using Bunea and Besag’s algorithm without simulated

annealing) produces very slightly elevated error rates compared with the ones pro-

duced by our updated algorithm. The mean error rate for all tracts in the United States

is 0.009 (0.9 percent), and the 97.5th percentile of the error is 0.0283 (2.83 percent).

The arrays produced by this algorithm are produced by the same process that we use

for multiple imputation, which we will show produces similar qualitative results to the

single imputation case when doing downstream data analysis. We thus conclude there

is some gain from annealing to find the mode of the target distribution (versus using

an arbitrary draw), but error rates are not very sensitive to this aspect of the algorithm.

Next, when using the expected counts produced by the log-linear models (for our

target distribution) as the imputed arrays, we see noticeably elevated error rates. The

Figure 3. A histogram of relative errors.
Note: The solid line is the mean (0.8 percent); the dashed line is the 97.5th percentile (2.52 percent).
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mean error rate is 0.0124 (1.24 percent), and the 97.5th percentile of this error distri-

bution is 0.0396 (3.96 percent). These error rates are still relatively low, but they are

roughly 50 percent higher than the annealed imputation method, and the estimates do

not satisfy integer constraints (making them unsuitable for some applications).

For the third case, where we simply construct a valid three-way array that conforms

to the integer and marginal constraints, we would expect the error rates to be signifi-

cantly higher than when we use simulated annealing to produce the most likely three-

way array under the target distribution. Indeed, the mean error rate produced by this

imputation is 0.047 (4.7 percent), and the 97.5th percentile of the error is 0.158

(15.8 percent). This case provides an interesting point of comparison, as it shows the

space of three-way arrays is significantly constrained by the two-way marginals, but

despite this, significant improvements are still made through the optimization compo-

nents of the algorithm. To further visualize the differences between the imputations

described here, we plot the error histograms in full in Figure 4.

Overall, these results suggest that although constraints are powerful, incorporating

distributional target information is still important for getting high-quality approxima-

tions. When this is done, optimization to ensure a mode is selected (versus a random

draw from the target) is helpful, but less vital. This also implies that our approach is

not extremely sensitive to annealing performance, which may be useful in settings for

which the cost of high-quality annealing runs is a concern.

Results for Downstream Analysis

In addition to direct approximation error, we also use the case study described in the

section “Case Study for Quality Checking” to evaluate data quality. Our case study

examines the effects of disadvantaged social category membership on exposure to

crime. As we are using three-way arrays to examine this relationship, we are particu-

larly interested in the three-way coefficients from the regression specified above.

Figure 5 shows the coefficients for the observed data model and the imputed data

model. For the observed data model, the means and variances are directly computed

from 1,000 bootstrapped samples of areal units. We use a standard bootstrap sampling

design for the observed data model.

For the imputed data model, we examine the effect of using the algorithm in single

imputation mode versus multiple imputation mode. In single imputation mode, we

draw a single array for each areal unit. Then, we sample areal units using the standard

bootstrap design. In the multiple imputation mode, we use a slightly different sampling

method. For each of the 2,000 bootstrapped samples, we draw a set of arrays from the

distribution defined by our target distribution. The Markov chains used to draw from

this distribution were seeded with a draw from a single imputation run of the algo-

rithm to ensure the chains were burned in adequately. Then, we draw n arrays from

that areal unit, where n is the number of times that areal unit has been drawn for that

bootstrap sample. We then use the quantile method to compute the distribution of each

coefficient.
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The three-way coefficients from Figure 5 almost all overlap with zero, indicating

mostly additive effects. In addition, the simulated and observed distributions of three-

way coefficients all have significant overlap with each other. A researcher would

obtain similar qualitative results from interpreting the observed and simulated models

(i.e., the effects significantly different from zero are the same). This indicates that qua-

litatively, the simulated arrays are similar in nature to the observed arrays, and would

not introduce significant error into downstream analysis. Additionally, although the

single imputation produces coefficients that tend to be slightly closer to zero, both sin-

gle and multiple imputation modes produce similar results to the observed data model.

We also examine the patterns in the coefficients reported in Figure 5 with respect to

their additivity indices. For each coefficient reported from the analysis done with the

bootstrapped samples from the observed three-way arrays, we compute the additivity

index from the section “Case Study for Quality Checking.”Figure 6 reports the distri-

bution of these additivity indices. As expected from a cursory examination of the coef-

ficients in Figure 5, the majority of coefficients exhibit an additive pattern. For the

Black, Hispanic female and Pacific Islander, Hispanic female coefficients, there are

some cases of subadditivity present, but for the most part, the three-way coefficients

Figure 5. A plot of three-way effects.
Note: The blue points are the coefficients of the known model with cyan 95 percent simulation intervals;

the red points are coefficients of the multiply imputed model with magenta 95 percent simulation

intervals. The green points and yellow 95 percent simulation intervals are for a model that uses a

bootstrap design, but with single rather than multiple imputation. Known data simulation intervals were

computed with 2,000 bootstrap iterations using the quantile method. Imputed model intervals (red) were

computed using a set of Markov chain Monte Carlo samples that use the multiple imputation mode of

the algorithm; the yellow intervals use a single imputation mode of the algorithm. For full color figures,

please view the online article.
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describe an additive relationship between disadvantaged category membership and

exposure to crime at the tract level. Notably, we find no sign of systematic superaddi-

tivity at this level of aggregation.

Block-Level Imputation Results

The tract-level analysis suggests additive effects are predominant, but this could be an

artifact of aggregating over locally heterogeneous units. Although the full data needed

to replicate the observed-data analysis at the block level is not available, we can do so

using our imputation scheme. For a single imputation, we imputed the 710,145 census

blocks in California on 30 cores of an Intel Xeon E5-2599 V4 CPU in 12 hr, 53 min,

and 42 seconds. We hypothesize that the higher areal unit/second imputation rate is

likely due to the lower population of census blocks compared with census tracts. There

are also more census blocks than census tracts that can be trivially solved (see the sec-

tion “Imputation Parameters”). The full three-way arrays at the census block level are

not available, so we are unable to compute the same error metrics that we use for the

census tract imputation.

Given the imputed block-level arrays, we once again examine the relationship

between gender, ethnicity, and race on exposure to crime. We apply the same basic

procedure as in the tract-level case study. However, rather than measuring crime in

the specific block (which is too small a unit of analysis to provide a reasonable notion

Figure 6. Additivity indices for each of the three-way categories in the model across 2,000
bootstrap iterations.
Note: Additive values are when the three-way effect size is less than 5 percent of the combined one- and

two-way effects. For the full color version of this figure, please consult the online version.
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of exposure), we measure crime in a 1-km buffer around each focal block. Once again,

we use multiple imputation to get a set of potential arrays for each areal unit, drawing

from the target distribution specified at the tract level.

The three-way effects from the block-level exposure to crime are summarized in

Figure 7. We used 500 bootstrapped samples from the crime and areal unit data to

compute the simulation intervals for this plot. The patterns in these coefficients gener-

ally match the patterns from the tract-level analysis, but the magnitude of these coeffi-

cients is much greater. None of the three-way coefficients intervals contain zero,

representing significant three-way effects. We use the same multiple imputation sam-

pling as described above to generate these estimates.

As the observed effects are consistently negative, we expect there is less of a

strongly additive pattern at the block level. Figure 8 depicts the patterns in the additiv-

ity index for the three-way coefficients. Almost all the coefficients exhibit a strongly

subadditive pattern, with only the other race, Hispanic female and Asian, Hispanic

female categories having some additive indices. We thus find that, at fine spatial

scales, the relationship between exposure to crime and disadvantaged group member-

ships is subadditive, implying that the sources of disadvantage associated with group

memberships overlap. This runs counter to the common intuition that disadvantage

compounds across social categories, but it is mechanistically sensible: many things

can lead to living in poor housing, or having a large number of potential offenders

nearby, but once one acquires such a source of disadvantage, there is a limit to how

much additional impact it can have. Thus, the sources eventually saturate, with

Figure 7. Estimates of three-way coefficients at the census block level.
Note: Red points are the mean estimates across 500 bootstrap intervals, with the magenta region

representing the 95 percent simulation intervals.
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diminishing marginal effects. This nonlinear effect is lost when data are aggregated to

the tract level, as would be necessary without the ability to impute at the block level.

Although the pattern of additivity indices is different between the block- and tract-

level analyses, we note that the general pattern of the coefficients matches. We do not

see radical differences across scales, but rather subtle variations that can be obscured

by averaging. As noted, however, those variations can lead to distinct substantive con-

clusions about the nature of disadvantage in crime exposure.

DISCUSSION

We implemented and tested an imputation framework for nested areal units, showing it

produces high-quality data for three-way arrays that contain count data. The algorithm

specified in this article should produce high-quality data for arrays in which all entries

are nonnegative integers. Likewise, we are able to leverage data at a higher level of

geographic aggregation to optimize the configuration of an imputed array to what we

expect the correlations between array cells to be.

With the recent push in many social science fields for measures constructed at

smaller geographic scales, along with the limited availability of some data at such

small geographic scales, our imputation algorithm may be applicable in a range of set-

tings. For example, our case study showed a generally similar pattern in crime expo-

sure for residents of different demographic groups whether measured in census tracts

or the smaller spatial unit of blocks, but we saw sharper and stronger patterns when

using the smaller geographic units. Given the spatial segregation of residents at

Figure 8. Additivity indices for the three-way block coefficients.
Note: Coefficients are in the additive category when the three-way coefficient is less than 5 percent of

the other combined effects. For the full color version of this figure, please consult the online version.
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varying spatial scales, measuring such effects at smaller geographic scales is arguably

substantively important for addressing such research questions. The spatial averaging

that occurs when aggregating to larger geographic units risks obscuring the patterns

we were able to observe after imputing the data to blocks.

Implementation of this algorithm represents a substantial step forward in three-way

array imputation, especially with the constraints we described, but the problem of

imputing high-order arrays is still difficult. For example, Bunea and Besag (2000)

claim that for the three-way crosstab imputation problems without two-way marginal

constraints (i.e., with independent one-way margins), the Monte Carlo method is amen-

able, yet this remains a scenario where the formulae are not yet derived and the algo-

rithms are not yet implemented. They also point out that their algorithm is specific to

the three-way array case, and although the basic move could, in theory, be adapted to a

higher-order array, the problem cannot be solved in a “plug and play” fashion. A new

transition set must be derived for higher-order arrays, as the transition rule used here is

specific to the three-way case (and, in general, each order requires a new set of basic

moves, associated with its respective symmetry group). Integrating higher-order mar-

ginal constraints into models for simulating high-order array data would also be a valu-

able next step in this line of research.

Another open question in this area is the provable irreducibility of the underlying

Markov chain used for the multiple imputation case. The construction algorithm pro-

vided here is verifiable, and the optimization and imputation algorithms guarantee the

result is margin-preserving, but the basic move of Bunea and Besag has not been

proved to be irreducible in all cases. Their original paper proves irreducibility for any

I3J3K array such that one of the dimensions has cardinality 2. Irreducibility is thus

ensured for the cases studied here, or any other population data using, for example, a

two-class sex tabulation. Subsequent work by Lee (2018) provides a proof for the

3333K case, as well as simulation studies suggesting the property is preserved for

cardinalities 43434 and higher. It thus appears likely the property holds for all three-

way arrays, although this is still unproven. Failure of irreducibility would imply that

the Markov chain would not explore the entire state space of possible arrays, thus pos-

sibly (1) finding a point estimate that suboptimally captures three-way correlations or,

(2) in the multiple-imputation case, providing an imperfect approximation to the target

array distribution. (It would not, however, lead to invalid imputations.) Care should

thus be exercised when using this method for multiple imputation on arrays that vio-

late the cardinality conditions, when a high level of precision is required.

The model we used in this article to simulate three-way array data is highly scalable.

For small areal unit estimation, our imputation scheme does not require information on

adjacent units’ imputed values, so each areal unit can be estimated independently. This

has substantial computational benefits, as large sets of areal units can be imputed in

parallel, which provides a significant decrease to overall runtime. We were able to

simulate three-way distributions for all tracts in the United States, as well as all census

blocks in California, in less than 24 hr, showing the algorithm can be used in other very

large regions. Both the construction and optimization problems contribute to runtime,
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so it is likely that arrays with lower population would increase imputation speed, as the

construction algorithm will converge more quickly with fewer people.

Release of small areal unit data often reflects a “tug-of-war” between advocates of

openness, transparency, and data quality (on the one hand) and privacy (on the other).

Each faction cites a range of arguments in its favor (often with a certain degree of

zealotry), and we here limit ourselves to commenting on implications for the imputa-

tion problem. Three-way imputation applied to valid data may or may not allow data

identification at a given level of confidence, depending on cell counts; for the scenario

studied here, high-confidence identification must come from the two-way marginals,

as the higher-order correlation structure is both estimated and approximate.

Techniques such as differential privacy can be used by data collectors to design per-

turbed marginals that provide guaranteed bounds on identifiability, and algorithms

such as those shown here may be useful for verifying the results of such constructions

(and ensuring they still lead to valid arrays). Similar validation applications are possi-

ble for privacy-preserving techniques based on, for example, areal unit aggregation

(whereby units are merged until they no longer permit identification beyond the speci-

fied level of confidence). Given that data-perturbing methods such as differential pri-

vacy pose significant data quality concerns, another use for this type of imputation

method is to ensure the perturbed data yield imputed arrays that are still appropriate

for downstream analysis. Particularly given the importance of neighborhoods, blocks,

and other small units for social processes related to social disadvantage, obfuscation

methods that induce systematic bias in small-scale structure have the potential to nega-

tively affect policy-relevant research affecting vulnerable communities. We hope

obfuscators will leverage imputation and related methods to help verify their modifica-

tions will not have such downstream effects.

The imputation techniques introduced here could also be extended in several ways.

First, there could be additional spatial dependencies among the areal units. For this

case, the algorithm could be extended by generating a target distribution from both the

areal unit immediately higher in the spatial hierarchy from the target unit, and from

that unit’s neighbors. A natural approach is to estimate tH
ijk using a spatial smoother at

the level of higher-order units, then using this (rather than the tH
ijk based only on the

parent unit) for lower level imputation. Directly incorporating autocorrelation at the

lower level is also possible, but would require a more complex, multilevel approach

and would be less amenable to parallelization. Both are potentially fruitful directions

for further work.

Likewise, this technique could also be extended to cases where the areal units are

not perfectly hierarchical. The most obvious direction to extend the algorithm would

be similar to the extension described for using multiple parent geographies. In this

case, it may make sense to average the correlation structure of parent geographies that

overlap with the target areal units. A more radical proposal of this type is suggested for

cases in which complete three-way information is available for some units, but only

two-way information is available for others. In this case, an interesting option is to train

a kernel learner (Scholkopf and Smola 2001) or similar predictive algorithm to predict

the lower level tijk coefficients from observed marginals and other spatial and
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contextual data; the trained algorithm can then be used to predict t̂ijk directly, as

opposed to using tH
ijk as a proxy. Although kernel learning suggests itself because of its

interpretation in terms of a similarity function, other methods could also be used.

On a final, substantive note, our sample application to exposure-to-crime data sug-

gests disadvantage in this context is largely subadditive: notably, we do not see the

superadditive effects often presumed (but less often tested) in sociological discussions

of intersectionality. This subadditivity is largely masked at higher levels of geography

(although we do not see evidence of superadditive effects there, either). Although it is

possible this is peculiar to the case of crime exposure, the mechanistic interpretation

discussed here would suggest the phenomenon may be much more common. A more

systematic investigation of when and how often disadvantage is additive, subadditive,

and superadditive across different contexts and for different types of disadvantage

would greatly illuminate theory in this area, and may also inform policy interventions.

Regardless, our findings reinforce the value of fine-grained spatial data for accurate

assessment of local social processes.

CONCLUSION

We specified and demonstrated an algorithm for imputing three-way array data within

a hierarchically nested context. This imputation problem is challenging, as it is con-

strained by the two-way marginal structure of the array, an integer constraint, and

needing to be optimized with respect to higher-order array data. We provide a scal-

able, robust technique to impute these three-way arrays that relies on MCMC and

simulated annealing strategies.

In a test imputation of all tracts in the United States, simulated data from our algo-

rithm produced remarkably low error rates. At the tract level, we observed a mean allo-

cation error of approximately 0.8 percent, with nearly all tracts having errors below

2.5 percent. Such errors are better than or comparable with error levels in the census

itself (Khubba et al. 2022), suggesting imputation is unlikely to be a dominant source

of error in subsequent analyses. Likewise, in a case study that examines three-way

categories exposure to crime, we found that both imputed and observed data produced

similar conclusions about the relationship between disadvantaged category member-

ship and exposure to crime. Combined, both of these metrics show that the imputed

arrays are very similar to observed arrays, and can be used in downstream analyses

without introducing significant error.

As sketched herein, there is considerable room for further work on the imputation of

higher-order array data embedded in spatial hierarchies. With the proliferation of these

nested data structures, methods that allow the use of data at low levels of geographic

aggregation where data may be incomplete are particularly valuable.

Acknowledgments

We would like to thank the members of the Networks, Computation, and Social Dynamics lab and the

Center for Relational Analysis for their input. In addition, we highlight the helpful feedback of Fan Yin

and Katie Faust in improving this work.

188 Sociological Methodology 54(1)



Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publi-

cation of this article: This work was supported by National Science Foundation award SES-1826589.

ORCID iDs

Loring J. Thomas https://orcid.org/0000-0002-7430-8038

Peng Huang https://orcid.org/0000-0001-5614-786X

John R. Hipp https://orcid.org/0000-0001-9006-2587

Carter T. Butts https://orcid.org/0000-0002-7911-9834

Notes

1 The S2 geometries use nested areal units on the sphere; they can be used to describe spatial relation-

ships across Earth on the basis of sets of locations and attributes.

2 That is, h xð Þ=
Q

i xi!ð Þ�1
, where the product is over cells. This amounts to assuming indistinguishabil-

ity of individuals within groups.

3 There is also an intermediate level of aggregation known as the block group, but because their data

availability is similar to blocks, we do not consider them here.

4 Those categories are White, Black, Asian, Native American, Pacific Islander, multiple races, and

other.
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