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The HLA gene complex on human chromosome 6 is one of the
most polymorphic regions in the human genome and contributes
in large part to the diversity of the immune system. Accurate typ-
ing of HLA genes with short-read sequencing data has histori-
cally been difficult due to the sequence similarity between the
polymorphic alleles. Here, we introduce an algorithm, xHLA, that
iteratively refines the mapping results at the amino acid level to
achieve 99–100% four-digit typing accuracy for both class I and II
HLA genes, taking only ∼3 min to process a 30×whole-genome
BAM file on a desktop computer.

MHC | autoimmune diseases | transplantation

Genes within the HLA complex play an integral role in the
human adaptive immune system. Classical class I (HLA-A,

-B, and -C) and class II (HLA-DR, -DP, and -DQ) HLA gene
products function by presenting foreign antigens to T cells
to trigger immune responses (1). HLA genes show incredible
sequence diversity in the human population. For example, there
are >4,000 known alleles for the HLA-B gene alone (2, 3). The
genetic diversity in HLA genes in which different alleles have dif-
ferent efficiencies for presenting different antigens is believed to
be a result of evolution conferring better population-level resis-
tance against the wide range of different pathogens to which
humans are exposed (4).

In addition to its role in infectious disease defense, HLA has
been associated with >100 different diseases, including vari-
ous autoimmune disorders (1). However, although it plays an
important role in human health, people do not routinely have
their HLA genes typed. With the current trend toward precision
medicine, knowing their HLA types will be crucial in early diagno-
sis and management of many diseases. For example, autoimmune
disorder patients often have chronic problems with no exact diag-
nosis for many years after repeated doctor visits (5, 6). Knowing
patients’ HLA types could lead to early diagnosis and reduce the
burden on both patients and the healthcare system.

In the setting of hematopoietic stem cell transplantation
(HSCT), matching of HLA alloantigens between donor and
recipient to mitigate an allogeneic immune response is the sin-
gle most important factor dictating the successful outcome of
engraftment and survival after transplantation (7). HLA typing
for HSCT donor–recipient matching in the clinical laboratory,
including nucleotide sequence-based methods, focuses on char-
acterizing sequence variations (polymorphisms) in the three clas-
sical class I alpha proteins, HLA-A, -B, and -C, and two of the
classical class II beta proteins, HLA-DRB1 and -DQB1.

Finally, HLA determines reactivity and hypersensitivity reac-
tions to a number of therapeutic agents that act as haptens.
The Food and Drug Administration lists a number of drugs that
require or may benefit from HLA typing before prescription to
avoid severe adverse reactions (8).

HLA genes are usually typed with targeted sequencing
methods: either long-read sequencing or long-insert short-read

sequencing. In contrast, the most common personal genome
sequencing methods use short-read shotgun technologies, which
have historically been more difficult for HLA-typing algorithms
(9–12). Existing algorithms are either inaccurate or slow. Given
the growing popularity of precision medicine approaches and the
generation of personal genomes, there is a clear need for faster
and more accurate HLA-typing algorithms based on short-read
shotgun data.

Results
There are three main challenges for HLA typing from short-read
data. First, the high degree of sequence polymorphism means
there are many potential candidate alleles for each gene, which
means there is a high level of sequence “noise” when trying to find
the correct allele from a large search space. Many of the exist-
ing algorithms try to reduce the noise level by filtering out less
common HLA alleles from their candidate allele set. For exam-
ple, OptiType ignores any allele with no reported allele frequency
in AlleleFrequency.net (9, 13), whereas HLA-VBSeq only con-
siders ∼100 HLA alleles as candidates (10). Second, despite the
extensive polymorphisms within each HLA gene, alleles from dif-
ferent HLA genes can share regions that are extremely similar
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to each other, especially when looking at fragments resulting
from short-read sequencing. Furthermore, there are many non-
functional pseudogenes with similar sequences to functional
HLA genes. Third, there are no complete reference sequences
for most HLA alleles in the HLA reference database, Interna-
tional ImMunoGeneTics Project (IMGT)/HLA (3). Class I genes
typically have exon 2 and 3 sequences available in the database,
and class II genes typically have exon 2 sequences available in the
IMGT/HLA database—the so-called “core exons” that comprise
the antigen-recognition domain of the molecule involved in pep-
tide presentation and interaction with the T-cell receptor. How-
ever, the availability of sequences for other exons in the database
ranges from 5 to 36%. Noncore exons contribute to HLA
allele polymorphism (2), and many existing algorithms, such as
OptiType and HLA*PRG, which type HLA genes with core exons
only, report only a group or representative allele for each gene,
even when there are full-length sequences available for certain
HLA alleles in the database.

xHLA Algorithm Overview. Most existing HLA-typing algorithms
follow a two-stage framework: First, align potential HLA sequenc-
ing reads to a collection of HLA reference sequences (IMGT/
HLA), and then find a combination of HLA alleles that can best
explain the observed alignment results. Our algorithm, xHLA, fol-
lows the same general framework with differing details (Fig. 1).

Generating Alignment Matrix. The starting data for xHLA is a
BAM file that contains all sequenced reads mapped to a ref-

Fig. 1. Overview of the xHLA algorithm.

erence genome. Potential HLA sequencing reads are extracted
from the BAM file based on their mapping coordinates and
aligned to the IMGT/HLA database. All existing algorithms per-
form this step with DNA-level alignment, often accepting a cer-
tain degree of mismatches. A key difference in our algorithm is
the use of a fast and sensitive protein level aligner, DIAMOND
(14), and the acceptance of only perfect matches for quality-
trimmed reads. The rationale is that, in HLA typing, the most rel-
evant resolution is four-digit typing, which describes the protein-
level amino acid sequence differences encoded in the HLA
genes. Therefore, four-digit typing is what most clinical and next-
generation sequencing-based typing algorithms aim to achieve.
The problem with DNA-level alignment is that it cannot distin-
guish synonymous from nonsynonymous mismatches. For exam-
ple, it will rank five synonymous mismatches as more dissimilar
than a single nonsynonymous one. An added advantage of using
protein-level alignment is that the identity threshold is not arbi-
trary as in DNA alignment, because there is clear concordance
between 100% protein sequence identity and four-digit HLA
typing.

Another issue with alignment of short reads against the
IMGT/HLA database is that the database is not a typical refer-
ence sequence database. Most aligners have been developed to
find the best homologs in a database with many diverse sequences.
However, in this case, the reference database contains tens of
thousands of very similar sequences. For any short sequencing
read, there are many equally good or perfect matches. Most
off-the-shelf aligners are optimized to find a number of good
matches, but are not exhaustive. HLA*PRG is the only existing
algorithm that tries to solve this problem by using a graph ref-
erence sequence set with certain assumptions about the intronic
sequences (11). However, the HLA*PRG solution is very slow,
taking∼11 h for one 30× coverage whole-genome sequence BAM
file. xHLA uses a precomputed protein-level reference multi-
ple sequence alignment (MSA) of known HLA alleles from the
IMGT/HLA database to expand the initial alignment results. For
example, if a read is aligned to 100 reference sequences in the
initial alignment, xHLA will compare the read to all equivalent
sequence segments in the MSA corresponding to the initial 100
matches. Consequently, xHLA is guaranteed to exhaustively find
all equally good matches from the HLA database.

Four-Digit Typing. After aligning reads to the HLA reference
sequences, the next task is to infer the most likely HLA allele
combination that best explains the alignments. Rather than treat-
ing each gene separately, and by using alleles with the largest
number of aligned reads, OptiType uses integer linear pro-
graming to find the complete allele set as a single optimization
problem (9). This method is a better approach than the other
methods because it explicitly considers short reads that map to
multiple HLA allele candidates. However, there are two issues
with this approach. First, there are often many different solu-
tion sets explaining the alignments equally or nearly equally well.
Second, this method does not work when different HLA allele
candidates have different numbers of reference exon sequences
available. For example, allele candidates with a full set of exons
available will most likely have more reads aligned to it compared
with allele candidates with reference sequences from only a sub-
set of exons available. xHLA solves these problems in three steps.

An initial set of HLA allele candidates is first selected in a
similar way to the integer linear programing technique used in
OptiType, by using only the core exons that are available for
all HLA reference alleles in the IMGT/HLA database. Then,
for each allele candidate (sol) in the initial solution set (solu-
tion set), all alternative alleles (comp) that explain the align-
ments nearly as well are collected (Fig. 2). The current candi-
date, sol, is compared with alternative candidates, comp, based
on the reads aligned to all of the exons available for both alleles
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Fig. 2. Iterative allele set update considering all pairwise-shared exons.

in the IMGT/HLA database, rather than only the core exons as
in the initial round (Fig. 2). When comparing the two alleles, sol
and comp, only reads that are aligned to one of the two alleles,
but not both, nor any other alleles in the current solution set, are
considered (“is better” in Fig. 2). This filtering step is important
because reads that align to other alleles in the solution set are not
informative when comparing sol and comp because it is unclear
whether those reads are derived from the alleles being compared
or other alleles in the solution set. If the alternative allele can
explain more aligned and informative reads than the original sol,
we replace the original sol with the alternative comp and repeat
the iteration with a new set of alternatives (Fig. 2). When no fur-
ther optimization is found, the procedure is repeated on the next
allele candidate in the solution set. This procedure is a quick and
crude way of pulling noncore exons into play. However, when
updating an allele candidate, it is assumed that the rest of the
solution set is correct, which may not be the case because the
allele candidate changes through this iterative process. This lim-
itation means that one more iterative refinement step (Fig. 3) is
required.

The second iterative refinement step is similar to the proce-
dure described above, except that all candidate alleles in the cur-
rent solution set are compared with their respective set of alter-
native alleles in parallel, and only one candidate allele is updated
after each iteration. The update is repeated until no further opti-
mization is possible (Fig. 3).

For every HLA gene, if the above procedure produces two
alleles, a check is made on whether they are true heterozygotes
by comparing the informative reads aligned to the two alleles, but
not to any other allele in the solution set (zygosity check). If one
of the two alleles has five times more informative reads aligned
to it, the heterozygous call is changed to a homozygous call.

Full-Resolution Typing. The above procedure gives a four-digit
HLA allele set that best explains the alignments. We can option-
ally infer higher-resolution HLA types using the four-digit solu-
tion set as a starting point (Fig. 4). This process is an easier task
compared with the above four-digit typing task itself, because
the search space contains only higher-digit HLA alleles under
each set of four-digit alleles, rather than the entire IMGT/HLA
database.

Benchmarking. xHLA was tested on four public datasets bench-
marked from HLA*PRG’s and ATHLATES’ original publica-

tions (11, 15), including two whole-genome and two exome
sequencing datasets. In all cases, xHLA was more accurate
than existing algorithms (Table 1). HLA*PRG performed bet-
ter than other existing algorithms, but scored 83.3% (class I)
and 93% (class II) accuracy for the HapMap exome data based
on their own benchmark. In contrast, xHLA scored 98.3% and
100% accuracy on the same dataset. In terms of runtime, xHLA
was much faster than existing algorithms, taking ∼3 min per
30×whole genome (2 × 150-bp reads) sample on a machine with
16-core CPU and 30-GB memory. In comparison, HLA*PRG
was the slowest and most resource-demanding algorithm, taking
∼11 h with 80-GB memory. Other algorithms tested usually take
between 15 min and 5 h for similar samples.

Additionally, xHLA was tested on two much larger, private
datasets. For the whole-genome dataset, obtained through col-
laboration with the Center for International Blood and Mar-
row Transplant Research (CIBMTR; a research collaboration
between the National Marrow Donor Program/Be The Match
and the Medical College of Wisconsin), xHLA achieved 99.7%
(class I) and 99.4% (class II) accuracy, higher than all other exist-
ing algorithms tested (Table 1). For exome data, the GeT-RM
dataset (cell lines obtained from wwwn.cdc.gov/clia/Resources/
GetRM/), xHLA achieved 99.5% accuracy on class I HLA alleles,
but 96.1% on class II. Most of the errors (3.6% of 3.9%) for class
II typing in the GeT-RM dataset were due to missing heterozy-
gous calls (i.e., only reported one of the two heterozygous alle-
les), suggesting differential pull-down efficiencies of the exome
enrichment probes against sequences from different HLA alleles
for some class II HLA types.

Because most of the gold-standard HLA types we used for
benchmarking are based on core exons of the HLA genes (15–
17), the benchmarking procedure considered four-digit types
with the same core exon sequences as “consistent” types. This
fraction ranged from 0 to 1.9% of alleles in the benchmarking
datasets. The largest number of consistent, but not identical, pre-
dictions by xHLA was the HLA-DRB1 gene in the CIBMTR
data: There were 13 reported DRB1*14:01 alleles predicted as
DRB1*14:54 by xHLA. The two DRB1 types shared the same
core exon 2 sequence, and most of the reported DRB1*14:01
before 2006 were actually DRB1*14:54 (18). This result shows
that our typing algorithm works well beyond the core exons.

Discussion
As demonstrated in our experiments, we have shown that xHLA
is both faster and more accurate on whole-genome and -exome
sequencing data than other methods. Specifically, seven other

Fig. 3. Second-round iterative allele set refinement.

Xie et al. PNAS | July 25, 2017 | vol. 114 | no. 30 | 8061

http://wwwn.cdc.gov/clia/Resources/GetRM/
http://wwwn.cdc.gov/clia/Resources/GetRM/


Fig. 4. Full-resolution HLA typing as a downstream step after four-digit
typing.

methods were tested against xHLA on three whole-genome
and three whole-exome datasets. In all cases, xHLA performed
the best.

Although all of the methods use a similar process of align-
ment followed by choosing the alleles that best explain the align-
ments, there are some differences. The first main difference of
xHLA is the use of protein-level alignment and MSA-based align-
ment expansion, which results in a cleaner and exhaustive align-
ment matrix and, thus, higher accuracy compared with the other
HLA-typing methods, as summarized in Table 1. This finding
clearly shows the advantages of using protein-level typing because
a perfect match in protein space is immutable. Therefore, there
is no need to filter any of the initial data or worry about DNA
sequence similarity of HLA genes and pseudogenes. There is also
no bias introduced due to incomplete data in the IMGT/HLA ref-
erence sequence database. In addition, xHLA runs significantly
faster than the other methods on similar hardware specifications
by using DIAMOND, a double-indexing strategy that enables
a 20,000× speed-up as compared with BLASTX, with a similar
degree of sensitivity (14). It takes xHLA only a few minutes to
process a 30× genome with 150-bp reads on a modest desktop
computer. However, with shorter reads—say, 75-bp long—it will
take significantly longer, because the number of matches in the
exhaustive alignment matrix for shorter reads increases exponen-
tially. Although it is focused on four-digit typing, xHLA offers
an optional feature to run full-resolution HLA typing as a down-
stream step after four-digit typing.

Table 1. Accuracy of xHLA compared with existing algorithms

HLA
Data type Dataset Class (n) xHLA, % HLA*PRG, % PHLAT, % Reporter, % SOAP-HLA, % HLA-VBSeq, % OptiType, % ATHLATES, %

WGS Platinum I (18) 100 100 100 11.2
II (12) 100 100 100 66.3

1000G I (66) 100 100 63.7 4.5
II (44) 100 97.7 70.9 62.7

CIBMTR I (2,928) 99.7 98.5 91.0 97.5 97.0
II (2,872) 99.4 96.5 97.0 38.0 NA

Exome HapMap I (174) 98.3 83.3 87.7 26.5
II (104) 100 93.0 87.3 71.3

1000G I (66) 100 98.5
II (44) 100 100

GeT-RM I (646) 99.5
II (644) 96.1

A total of six datasets were used. Platinum, 1000G (WGS), HapMap, and 1000G (Exome) were identical to the benchmarking datasets used in refs. 11 and
15. Accuracy for HLA*PRG, PHLAT, and HLA Reporter on the public datasets were obtained from the same references. For each dataset, accuracy for HLA
class I and II genes is listed separately, and the number of alleles in each dataset is shown in the table.

Another key difference of xHLA is that it works beyond
the core exons of HLA genes. One interesting observation in
our benchmarking was the DRB1*14:54 and DRB1*14:01 pair:
Thirteen previously reported DRB1*14:01 were predicted as
DRB1*14:54, which is consistent with the fact that most pre-
viously reported DRB1*14:01 were actually DRB1*14:54 (18).
We excluded DPA1 and DQA1 due to the lack of truth data for
these genes.

Even though xHLA performed the best, it did drop in accuracy
in one of the three exome data samples that we tested. In our
private GeT-RM exome samples, the typing accuracy for class
II genes was 96.1%, much lower than in other samples. The dip
is likely due to differential pull-down efficiencies for different
alleles by the exome enrichment kit.

By considering well-documented population-specific haplo-
types (13), together with derived haplotypes from our recently
published large-scale whole-genome sequencing data (19), we
will be able to improve our typing accuracy further, especially
in exome data, where enrichment bias occurs.

With the current movement toward precision medicine, per-
sonal genome sequencing is becoming increasingly popular and
cheaper. HLA is one of the most relevant regions of the genome
for personalized medicine, given its diversity and role in the
immune system. xHLA is both fast and accurate in identify-
ing HLA types from personal genome data and should be used
to make HLA typing more readily available to individuals and
their physicians as an added benefit to having their genomes
sequenced.

Materials and Methods
The xHLA Algorithm Overview. The basic steps of the xHLA algorithm are
illustrated in Fig. 1. There are three major modules: construction of align-
ment matrix, four-digit typing, and full-resolution typing.

Alignment Matrix.
Preprocessing. The input data of xHLA is a BAM file where sequencing
reads are mapped to the hg38 human reference assembly (excluding alt
contigs). Both BWA’s mem mode (Version 0.7.15) (20) and Isaac (Version
0.14.02.06) (21) with default parameters work well with xHLA on diverse
datasets. Because all genome sequencing projects produce a BAM file, the
alignment step is not considered as part of xHLA. xHLA extracts relevant HLA
reads from the BAM file (chromosome 6, position 29,886,751–33,090,696),
then trims and filters them based on base quality scores. Trimming is based
on BWA’s trimming algorithm with Phred quality cutoff 20 from the 3′ end
after first trimming Ns. Reads <70 bp or with more than five positions with
Phred quality score <4 after trimming are removed.
DIAMOND alignment. The reads are then aligned to reference HLA exon
protein sequences from IMGT/HLA by using DIAMOND (Version 0.8.15;

8062 | www.pnas.org/cgi/doi/10.1073/pnas.1707945114 Xie et al.
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parameters: blastx –index-mode 1 –seg no –min-score 10 –top 20 -c 1 -C
20000). Strict filtering is performed on the alignments. The alignments need
to be 100% identical and cover the full length of the query reads, unless
the unaligned region of the query extends beyond the reference sequence.
Because protein-level alignment is used against exons, an additional compari-
son of reads against incomplete codons at exon boundaries is performed. Only
the alignments with equally best scores for each query read are kept.
MSA-based alignment expansion. The next step is to generate an exhaus-
tive alignment matrix by using a precomputed MSA of known HLA alle-
les with MUSCLE (22). For example, if a read is aligned to 100 reference
sequences by DIAMOND after the previous step, xHLA compares the read
to the equivalent sequence segments in all other reference sequences in
the MSA. All equally good reference matches are retained in the exhaus-
tive alignment matrix. Although only six HLA genes (HLA-A, -B, -C, -DQB1,
-DRB1, and -DPB1) are typed, all other HLA genes are used as alignment
references in the above steps. Reads that map equally well to genes being
typed and those that are not are considered as uninformative and excluded
from further analysis.

Four-Digit Typing.
Integer linear programing based on core exons. The four-digit typing pro-
cedure is divided into four steps. The first step uses only information from
“core exons” (exons 2 and 3 for class I HLA genes, and exon 2 for class II),
and similar to OptiType (9), an integer linear programing approach is used
to derive an initial set of HLA alleles that best explains the alignment matrix
of core exons. This procedure was performed by using the lpSolve package
(Version 5.6.13) in R.
Allele set update considering noncore exons. There are always many allele
candidates that can perform equally or nearly equally well compared with
the alleles in the initial solution set. Therefore, for each allele in the ini-
tial solution set, we replace it with one alternative at a time and keep all
solution sets whose total number of explainable aligned reads reduced by
only two or fewer reads. Then, we determine which performs better when
considering noncore exons. Performance of each alternative allele is depen-
dent on the other alleles in the solution set. This procedure is the second
step, which crudely pulls the noncore exons into consideration (Fig. 2). When
comparing original vs. alternative allele types, we consider all exons where
both types have reference sequences in the database. Furthermore, only
reads that align to one of the two allele types, but not to both, nor to any
other alleles in the current solution set, are considered. If the alternative
allele type performs better than the original type, we replace the original
with the alternative and repeat the procedure for the same allele until there
are no more changes. Then, we carry out the same procedure for the next
allele (Fig. 2).
Iterative Allele Set Refinement. The third step is another iterative refine-
ment procedure. In the previous step, updating an allele assumes that the
other alleles in the solution set are correct. In this step, the solution set is
treated as one unit, and refinements are made to best improve the perfor-
mance of the solution set, rather than using only an individual allele (Fig.
3). In other words, each allele in the current solution set is compared with its
alternative allele types, and potential improvements are recorded if the orig-
inal is replaced with the alternative. After collecting all potential improve-
ments, the single best refinement is chosen and committed. The procedure is
repeated until there are no further changes to the solution set (Fig. 3).
Zygosity Check. The last step in four-digit typing is a zygosity check. If the
previous steps produce two different alleles for an HLA gene, the number
of informative reads aligned to the two alleles are compared. Informative
reads are defined as reads that do not align to other HLA genes in the cur-

rent solution set. If one of the two alleles has five times more informative
reads aligned than the other allele, the heterozygous call is changed to a
homozygous call.

Full-Resolution Typing. After producing the four-digit typing solution, xHLA
can optionally perform full-resolution typing based on the four-digit solu-
tion set (Fig. 4). For each four-digit allele in the solution set, reads that
are unambiguously assigned to that allele are extracted and realigned
to all DNA reference sequences from IMGT/HLA under the same four-
digit allele type. For each pair of full-resolution types, all exons with
reference sequences in IMGT are considered, and the type explaining
the largest number of unambiguous reads in the pair is taken. The
final full-resolution type is identified recursively based on these pairwise
comparisons.

Benchmarking. We used four public and two private datasets to benchmark
xHLA. The four public datasets are identical to those used in HLA*PRG (11)
and ATHLATES (15) in their original publications:

• Illumina Platinum Genomes, whole-genome sequencing (WGS), three
samples, from the HLA*PRG paper (11). For this dataset, reads mapped to
chromosome 6 and unmapped reads were extracted from the BAM files
and mapped to hg38 (excluding alt contigs) by using BWA’s mem mode
with default parameters.

• The 1000 Genome Project, WGS, 11 samples, from the HLA*PRG paper
(11). For this dataset, the hg19 BAM file was lifted over to hg38 with
CrossMap (23).

• HapMap, exome, 29 samples, from the HLA*PRG paper (11). Reads were
mapped to hg38 (excluding alt contigs) by using BWA’s mem mode with
default parameters.

• The 1000 Genome Project, exome, 11 samples, from the ATHLATES paper
(15). Reads were mapped to hg38 (excluding alt contigs) by using BWA’s
mem mode with default parameters.

Accuracy measurements for existing software on the public datasets were
extracted from the HLA*PRG and ATHLATES papers. Ground truth HLA allele
types were obtained from each dataset’s original publications (11, 15–17).

In addition, we benchmarked xHLA on two much larger private datasets:

• CIBMTR samples, WGS, 488 samples. The samples were sequenced with
2×150-bp reads at 30× coverage. The ground truth HLA types were
obtained from CIBMTR and were generated as described (24).

• GeT-RM samples, exome, 108 samples. The samples were sequenced with
2×75-bp reads at 30× coverage. The ground truth HLA types were from
the Centers for Disease Control and Prevention site (https://wwwn.cdc.
gov/clia/Resources/GETRM/pdf/HLA POSTER DATA.pdf).

For the private datasets, reads were mapped to hg38 (excluding alt con-
tigs) by using the Isaac aligner (Version 0.14.02.06) with default parameters.
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